

AMPOL: ADAPTIVE MESSAGING POLICY BASED SYSTEM

BY
RAJA N. AFANDI

B.S., Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 2000

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master’s of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

 ii

 iii

ABSTRACT

Electronic messaging is a critical application that enables electronic communication

between a very large collection of principals. However, it is challenged by limits in

flexibility, integration, and security. Due to these limits principals are not typically

willing to or in some cases not able to accept all types of communications from different

parties. This thesis explores the idea of developing adaptive policy based messaging

system AMPol, which aims to solve the limitation faced by messaging systems. AMPol

approach is to enable parties to advertise communication policies to which a sender can

adapt in order to get a message to a recipient on terms acceptable to the recipient. In this

work different case studies are described to show how declarative requirements in the

form of policy can help system achieve adaptability and flexibility. Especially a case

study on email system explores the idea of using cutting edge web technology, web

services, as a foundation for expressing and negotiating communications in a large scale

system such as Internet email.

In this work we have emphasized on the architectural aspects of the AMPol System and

proposed architectural models for Policy Adaptation, Policy Negotiation and System

Extension. In future we plan further investigations regarding theory, interoperability,

experimentation, and security. Similarly, for wide scale adoption and to illustrate the

effectiveness of our proposed approach we need to develop requirements for applications

in different specific areas. In this work we have only presented applications in the area of

internet email and VoIP communication to support our proposed theory.

 iv

DEDICATIONS

This thesis would not have been possible without the support of my parents, relatives and

numerous friends. I am also especially thankful to my dear wife who endured this long

process with me, always offering moral support and guidance.

 v

ACKNOWLEDGMENTS

This project would not have been possible without the support of many people. First of

all, I would like to thank my adviser Carl A. Gunter for his valuable insight and critical

feedback which helped me throughout this work. Also thanks to my colleagues and group

members, Jianqin Zhang, Munawar Hafiz, Kevin Lux, Kaijun Tan, Jodie Boyer, Zahid

Anwar, Moazzam Saleem, Himanshu Khurana, and many more for offering me excellent

guidance and support.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ...VIII

CHAPTER 1: BACKGROUND .. 1
1.1 INTRODUCTION... 1
1.2 REQUIREMENTS.. 3

1.2.1 Requirements for Policy and Negotiation... 4
1.2.2 Requirements for Policy Enforcement and System Extension ... 5

1.3 MESSAGING MODELS ... 7
1.3.1 Basic Messaging ... 7
1.3.2 Four Node Messaging... 8

CHAPTER 2: POLICY MODEL.. 11
2.1 POLICIES .. 11

2.1.1 Static and Dynamic Policies ... 11
2.1.2 Policy Model .. 13

CHAPTER 3: POLICY DISCOVERY AND NEGOTIATION 18
3.1 INTRODUCTION... 18
3.2 POLICY MERGING... 18
3.3 POLICY QUERY PROTOCOL... 19

3.3.1 PQP for Basic Messaging ... 19
3.3.2 PQP for Four Node Messaging... 20

CHAPTER 4: POLICY ENFORCEMENT AND SYSTEM EXTENSION.............. 25
4.1 INTRODUCTION... 25
4.2 OVERVIEW OF APPROACH .. 26
4.3 EXTENSION MODEL.. 27
4.4 FEATURES AND ISSUES ... 33

CHAPTER 5: IMPLEMENTATION CASE STUDIES.. 36
5.1 PUZZLE BASED ANTI SPAM IN WSEMAIL... 36

5.1.1 Introduction .. 36
5.1.2 Architecture and Implementation ... 39
5.1.3 Discussion... 51

5.2 ADAPTIVE VOIP CALL SYSTEM ... 52
5.2.1 Introduction .. 52
5.2.2 Background... 53
5.2.3 Architecture and Implementation ... 56
5.2.4 Discussion... 60

CHAPTER 6: RELATED AND FUTURE WORK ... 61
6.1 INTRODUCTION... 61
6.2 POLICIES AND NEGOTIATION.. 61

6.2.1 Trust Negotiation and Policy Management .. 61
6.2.2 Policy Composition .. 63
6.2.3 Policy Based Email System .. 64
6.2.4 Petmail .. 64

6.3 ADAPTATION AND EXTENSION ... 67
6.4 FUTURE WORK... 69

CHAPTER 7: CONCLUSIONS .. 72

 viii

 vii

REFERENCES.. 73

APPENDIX A: WSEMAIL-PUZZLE DEMO SCREENSHOTS 76

AUTHOR’S BIOGRAPHY.. 82

1

 viii

LIST OF FIGURES

Fig 1: Basic Messaging Model ... 7
Fig 2: Four-Node Messaging .. 8
Fig 3: Examples of APES Rules ... 14
Fig 4: Policy Merging ... 19
Fig 5: Policy Exchange and Merging.. 22
Fig 6: Component Extension Framework ... 30
Fig 7: Component Invocation ... 32
Fig 8: RTT Puzzle Examples .. 39
Fig 9: WSEmail Architecture.. 39
Fig 10: WSEmail Server Architecture .. 41
Fig 11: WSEmail-Puzzle Architecture.. 43
Fig 12: RMTA Policies... 45
Fig 13: RMUA Policies .. 46
Fig 14: SMTA Policies ... 47
Fig 15: Merged Policies .. 48
Fig 16: Modified WSEmail Server Architecture .. 49
Fig 17: Modified WSEmail Client Architecture... 51
Fig 18: ACS Architecture ... 56
Fig 19: ACS Components ... 59
Fig 20: RMTA Policies... 76
Fig 21: RMUA Policies .. 76
Fig 22: Login Window.. 77
Fig 23: Message Sending Window ... 77
Fig 24: RTT Puzzle Download ... 78
Fig 25: Solving RTT Puzzle ... 78
Fig 26: Hash Cash Puzzle Download.. 79
Fig 27: Solving Hash Cash Puzzle.. 79
Fig 28: Message Received .. 80
Fig 29: Viewing Message ... 80
Fig 30: Viewing Error Message.. 81

 1

1. CHAPTER 1: BACKGROUND

1.1 Introduction

Messaging in different levels is one of the foundations of distributed system. To satisfy

application and security requirements, most entities have communication policies. These

policies lead to corresponding protocols. In an open distributed messaging environment,

however, communicating entities alter the policies dynamically due to ever-changing

requirements and increasing security threats and trust establishment between

unacquainted entities. The sending entity needs to identify the policy to set up a secure

conversation with the “stranger”. This dynamic buildup of trust involves all parties

advertising their current communication policies and the interested parties acquiring and

adhering to the policies. Adaptation of the communicating parties in response to this

policy modification is crucial for the communication to continue.

However, most secure messaging systems are based on fixed protocols; the two sides are

limited to those who have known the protocol. Most protocols are not flexible enough to

handle changing requirements of the two sides. From the point of the view of the

application, most of the systems use messaging policies on incoming and outgoing

messages to enforce certain rules for security or service-oriented purposes. But these

systems are so brittle that even a slight change in application or environment cripples the

whole system.

Adaptation is a relationship between a system and its environment. Systems are often

classified as adaptable, which are able to be modified by an external agent or adaptive

(also called evolutionary), which are able to modify themselves without external stimuli.

 2

In this work, we propose AMPol, Adaptive Messaging Policy System, a policy-based

adaptive messaging system. The communicating parties check their own environment,

determine and exchange the temporal requirements, set up dynamic conversation policies

based on static policies by policy advertisement, negotiation and migration. By enforcing

the policy, both sides perform agreed operations on the messages, carry out

corresponding business process, install and execute designated third-party plug-ins and

finally send messages between themselves. Thus, a more flexible and extensible

messaging platform is presented to applications.

Adaptation can be viewed in different perspectives:

1. dynamic adaptation of policies enforced by the system

2. adaptation of system interaction protocols

3. adaptation of core application structure

In this work, we analyze these three adaptation perspectives with respect to distributed

messaging and service oriented systems. In AMPol these three perspectives can be

viewed as Policy Adaptation, Adaptive Policy Discovery & Negotiation, and System

Extensibility. This adaptation process in AMPol can generate and enforce dynamic

policies to react ever-changing circumstances and requirements in an adaptive manner.

For general purpose, we refer to every node on Internet as an “entity” whether it is a

client or server or peer, unless specified. We refer to change in functionality either by

adding new components or modifying current implementation for adaptive behavior as an

“extensions”. Generally for change, modification or extensibility of a behavior we use

terms “adaptable”, “adaptation” or “adaptive” interchangeably unless specified.

 3

1.2 Requirements

We have defined following properties for adaptive messaging system:

o Local and Global Adaptation: Adaptive system must be able to provide adaptation

at multiple levels and in different perspectives. Each node in a system must be able to

adapt itself with respect to system extension or requirement specification or policies.

Globally the system should be able to coordinate end to end adaptation thus achieving

uniformity and conformance with in system entities. In AMPol system each node

must be able to adapt to requirements specified in policy and the overall system

should maintain its stability and balance.

o Initiator predictability: The system must be able to identify the initiator or stimuli

responsible for triggering adaptation process. This is important in the AMPol

perspective as in messaging system it is required to know the origin of message or the

sender; similarly it is important to know who wants adaptation of which entity. This

requirement is critical for client driven extensibility and for secure adaptation of a

particular entity in the systems. Also system should be able to identify when to

change and when not to.

o Graceful Selection: If system entities fail to establish a dynamic session then they

should be able to gracefully terminate the session and system should maintain its

stable state. Similarly the system and its entities should maintain stable state even

after the failure of adaptation process.

o Dynamic Component Update: To realize the adaptation, the system needs to install

the third party’s software (plug-ins). An adaptive messaging system should support

such feature and make the update as transparent as possible.

 4

o Secure dynamic protocol: In a dynamic messaging system, a dynamic protocol will

be set up for each session. The dynamic protocol should be reliable, secure,

vulnerability – resistant.

o A coherent, standardized messaging system: It is usually desirable that all nodes in

a system should work in a coherent way and support consistent adaptation throughout

the system. Similarly the whole adaptation process, policy specification, merging and

negotiation should be uniform. It is preferable to rely on standardized methods and

mechanisms that can help achieve interoperability with other standard systems.

We also have following two assumptions:

a) Communication Protocol: There is a communication protocol between entities.

Based on the protocol, entities can exchange information so set up dynamic policy for

a conversation.

b) Environment Analysis: Each entity is capable of analyzing the environment, such as

network traffic and system performance, to detect potential attacks

1.2.1 Requirements for Policy and Negotiation

For an adaptive messaging system it is very important to have policy language and

negotiation mechanisms with certain characteristics, such as:

o The policy language should be simple, well formed and should have well-defined

semantics, as the meaning of a policy written in specific language should be

independent of its implementation.

o The policy language should support basic level logical operations and standard

functions to represent logical expression of rules within a policy.

 5

o The policy language with standard functions should be monotonic. It is usually

required for Access Control policy for writing positive rules that grant access to a

resources and it does not deny access on providing any additional credentials or

identity.

o The policy language should support low level basic data types and it is desirable to

have high level multi-attribute data types. It should be extensible to support new types

and functions.

o Policies constructs should be distinct or modular such that policy language should be

composable. Merged policy should also maintain the semantics and all the above

properties.

1.2.2 Requirements for Policy Enforcement and System Extension

Adaptation is a relationship between a system and its environment. Systems are often

classified as adaptable which are able to be modified by an external agent or adaptive

which are able to modify themselves without external stimuli (also called evolutionary).

Our objective is to achieve both Adaptive and Adaptable behavior in a system with

following properties, (some of these properties are also identified by [2]):

Independence: Adaptation mechanism should not modify the core base implementation.

Meta-adaptation: Adaptation mechanism should have the ability not only to adapt the

system in order to meet requirements and performance goals but to adapt the adaptation

process itself in order to ensure that changes are carried out effectively.

Run-time availability: For 7x24 hour availability of the system, adaptation through

extensions should ideally be integrated into the system at run time without disrupting the

availability of services.

 6

Modular extension: According to the separation of concerns principle, each extension

must be implemented as a separate module that can be incrementally added to and

removed from the core application.

System-wide consistency: Adapting a system with a single extension goes beyond

refining individual components, but also involves a system-wide refinement of multiple

components/ clients and interaction with them at the same time. This includes dynamic

refinement of interaction behavior with other clients and system components without

breaking consistency.

Client-specific customization: The above extensions can exclusively be applied on

behalf of the specific clients who have need of these customizations. So a system must

provide support for dynamic client-specific extensibility.

Selective combination: Often there is a need for a dynamic and selective combination of

extensions on a per collaboration basis. Which subset of extensions must be combined

together is dependent on contextual information historically related to the collaboration’s

message flow in the client and core system.

Scalable: The process of selective combination and system-wide integration of

extensions must remain manageable as the number of core component instances and the

number of candidate extensions increases.

Performance: The run-time adaptability should not degrade the overall system

performance.

Secure: The whole adaptation mechanism should be secure and reliable.

 7

In the above discussion we have identified some basic requirements for adaptive systems,

now we need to present a basic messaging model on which we will build on to present a

complete model which satisfies above requirements.

1.3 Messaging Models

We focus on two types of messaging model: Basic messaging and Four-Node Messaging.

1.3.1 Basic Messaging

Basic messaging is the base for all messaging systems. (See Fig 1)

Fig 1: Basic Messaging Model

It has two entities, Initiator and Respondent. Following assumed protocol, Initiator starts

the session to accomplish a particular task, such as downloading a file. Respondent

accepts session request from Initiator and cooperate with the Initiator to accomplish the

task. Each communication session consists of two phases, Handshake and Message

transferring. In the handshake phase, Initiator and Respondent might authenticate each

other if authentication is required. They also might exchange the communication

requirements, negotiate and come to an agreement of the requirements which both sides

should satisfy. In this work, both types of requirements are described in policy and we

call the first phase Policy Negotiation. In the Messaging Transferring phase, each side

 8

processes the outgoing messages according to the agreed requirements and checks

whether the incoming messages satisfy the agreed requirements. In this work, we call this

phase Policy Enforcement.

1.3.2 Four Node Messaging

Fig 2: Four-Node Messaging

Four-Node Messaging (See Fig 2) is the typical model of an Email system. It consists of

four entities:

1. Sender (Sender MUA or SMUA): The entity that initiates the conversation session

composes and submits new messages.

2. Sender’s Relayer (Sender MTA or SMTA): The entity that accepts a message and

moves it forward towards its destination. The destination may be local or reached via

another MTA.

3. Recipient’s Relayer (Recipient MTA or RMTA): The entity that accepts a message for

local delivery.

4. Recipient (Recipient MUA or RMUA): The entity that receives the message.

 9

In the following, we shall use terms defined in RFC2476 [1] to denote the nodes. In a

general Email messaging system, there are more than two MTAs. For simplicity, we only

focus on the scenario of two MTAs.

The task of the Four-Node messaging model is to transfer a message from SMUA to

RMUA. Because they may not be online at the same time and can not talk to each other

directly, the messages must be relayed by intermediary. SMUA sends the message to

SMTA; SMTA stores and forwards to RMTA; RMUA delivers the message from RMTA.

Each conversation above is an application of Basic model. Additionally, because

SMUA’s message reaches RMTA and RMUA eventually, there are two virtual

conversations, between SMUA and RMTA and between SMUA and RMUA. In general

email systems, these two virtual conversations are ignored. RMTA and RMUA can do

nothing on SMUA but accept the message. This vulnerability is one of the main reasons

for SPAM. While filter based approaches do provide mechanism for restricting certain

messages to be placed in user’s message in-bin, but this approach does not provide any

mechanism to establish a virtual communication channel between SMUA and

RMUA/RMTA. Due to the absence of this virtual agreement between SMUA and

RMUA/RMTA, SMUA is not able to conform its message to the requirements of

RMUA/RMTA and it usually result in a failed message delivery. Thus filter based

solutions do not prevent spam as much as they interfere with every-day email

communications.

 10

In this work, we will address how to implement the Handshake (Policy Negotiation) and

Message Transferring for the two virtual conversations we have discussed above, and in

the end we will emphasize on system extension for adaptive policy enforcement.

 11

2 CHAPTER 2: POLICY MODEL

2.1 Policies

Security policy is a statement of what, and what is not, allowed. In this work, we treat it

as a set of rules or constraints which describes entity’s security requirement for

communication. For example, Alice may accept the message from Bob only if it is signed

by Bob using his certificate; a SMTA will not relay a message from SMUA unless the

SMUA offers the solution of a Puzzle [32], [33], [34], [35] problem assigned by SMTA.

In AMPol, policy is the key point to describe the adaptive actions. Each entity of the

conversation takes adaptive actions based on the policies. How to guarantee the policy to

describe the system’s requirement and adaptive actions accurately and how to generate

the effective policies? are significant issues. We will be addressing these issues in

sections below.

2.1.1 Static and Dynamic Policies

Entities have policies for creating a conversation sessions with other clients. Entities also

have rules to instruct other clients to set up dynamic policies for each conversation

session. For a particular conversation session, as the environment and the characteristic of

client varies, the security policies are also different. For example, in a trusted domain,

entities may not authenticate each other and messages can be sent in plain or with weak

encryption. While in an open domain, entities must authenticate each other; confidential

messages must be encrypted strongly; some additional methods to counter particular

 12

attacks, such as DoS, are introduced. Additionally, for different entities, one entity can

have different policies.

So, we divide policies into groups of static policy and dynamic policy. Static policy is a

policy framework for any conversation session. It defines some general rules and

constraints for communication. Static policy also defines rules to create and negotiate

dynamic policy. For example, entity Alice defines the following static policy:

1. Every incoming message must be signed by sender using sender’s certificate;

2. Every outgoing message must be encrypted using designated algorithm and pre-

shared key;

3. If an incoming message is to be relayed and the sender is unknown, some

mechanisms, say Puzzle [34] or Cookie [36], must be applied to reduce the risk of

being compromised by a DoS attack.

Before the message is transferred, the two entities involved in the communication must

set up dynamic policy which should satisfy the requirements of each participant in a

specific communication sesion.

Dynamic policy is a set of rules and constraints on a particular (specific) conversation

session. It is based on static policy, but it is specific for every conversation session.

Entities generate dynamic policy based on static policy, environment and policy

negotiation. Environment refers to the entity system’s status and the network. By

analyzing some parameters of the network or system, an entity can detect some potential

attack. The characteristic of the other conversation entity is another element of

environment.

 13

Communication entities exchange static policies to get each other’s requirements for the

conversation. They make an agreement on the dynamic policy. We call such procedure a

policy negotiation.

During the process of policy negotiation, both sides will get a couple of policies. They

need to be merged to a single policy set. Some of the collected policies may be

conflicting or inconsistent with each other. We need some mechanisms to reconcile the

inconsistency, and to detect and solve conflicts. We call this mechanism policy merging.

2.1.2 Policy Model

o Action Rules (AR): Action rules describe the operations required for the

Confidentiality, Integrity and Availability of communication. For each operation, we

assume the subject is sender/receiver and the object is the message. Each action rule

is a pair of action name and action property: (A, P).

 A is a set of possible operations on message. For example, {Attachment, Puzzle,

Encryption, Signature}. Here we use the first capital letter of the operation name

to denote a particular operation.

 P is a descriptor of the details of the operation. For example, for Encryption, it

indicates the algorithm, key size and other parameters used in encryption; for

Puzzle, it indicates what type of Puzzle will be applied, RTT or Hashcash. P also

contains the address where sender/receiver can get the third-party plug-in. This

is an important feature for adaptive system because sender/receive needs to

install plug-in to satisfy unknown side’s requirements. To be compatible with

Web Service specification, P is formatted as a URI in the implementation.

AR: {(a, p) | a∈A, p∈P}

 14

In web service based messaging system, there are four common actions. They are

Attachment, Puzzle, Encryption and Signature. We call these rules APES.

Attachment is the actions on attachments. Because attachments are a possible source

of virus, rules for attachments are necessary. For Attachment, the corresponding

property descriptor P would be filter patterns for block/filter the particular. Figure 3

below contains some examples of Action Rules:

Fig 3: Examples of APES Rules

A is an extensible set. We can add new type of actions to the set to satisfy new

security requirements. Because P is a URI style descriptor, it is flexible to construct

various properties for any action.

o Rules Set (RS): A policy (Static or Dynamic) is a set of rules. Each rule is a pair of

Application (AP) and Action-Rules (AR), denoted as (AP, AR). RS is the set of all

(Attachment, ua), ua=
“http://seclab.cs.uiuc.edu/AMPol/AR=A&pattern=RemoveEndwithPif”
The attachment in the message should be removed if its name ends with
“pif”.

(Puzzle, up), up=
“http://seclab.cs.uiuc.edu/AMPol/AR=P&type=RTT&download=
http://seclab.cs.uiuc.edu/Plugin#RTT”

The other communication initiator is required to resolve RTT puzzle;
initiator can get RTT plug-in from “http://seclab.cs.uiuc.edu/Plugin#RTT”

(Encryption, ue), ue=
“http://seclab.cs.uiuc.edu/AMPol/AR=E&Alg=AES&keysize=1024”
The message should be encrypted by AES, and the key size is 1024.

(Signature, us), us=
“http://seclab.cs.uiuc.edu/AMPol/AR=S&Alg=DSA&keysize=512”
The message should be signed by DSA, the parameter is…

 15

rules.

RS: },|),{(ARarAPaparap ∈∈

Application (AP) indicates the usage of the policy. In messaging system, there are

two typical types of usage for entity. AP = {Ingress, Egress}. Ingress policy is

applied on incoming messages; Egress policy is applied on out-going messages.

o Static Policy (SP): SP defines a set of rules to be enforced during the communication

process. SP is a subset of RS.

SP⊆RS

SP defines each entity’s basic policies for incoming and outgoing messages. It is the

base for generating dynamic policy. Following are some examples of Static Policy

(The property descriptor of action is same as the above example):

SP1 = {(Ingress, (Signature, us)), (Ingress, (Puzzle, up)), (Ingress, (Attachment, ua)),

(Ingress, (Encryption, ue))}.

SP1 defines a set of rules for ingress messages. Sender of the message is required to

sign, encrypt the message. Sender may or may not give a solution of Puzzle. If

sender attaches a file whose file name extension is “pif”, the attachment will be

filtered out by the recipient. It is also mandatory.

o Dynamic Policy (DP): The data model of a dynamic policy is same as static policies.

DP is a subset of RS. DP is generated during the process of policy negotiation.

DP⊆RS

o Operation on Policy: For generating Dynamic Policy, we define a group of operations

 16

on policies.

 Create an empty policy:

Create: → RS

 Add a rule to a policy (Rule Set):

Add: AP × AR × RS → RS

Semantic: ap ∈AP, ar∈AR, rs⊆RS, Add (ap, ar, rs) = rs ∪{(ap, ar)}

 Remove a rule from a policy (Rule Set):

Remove: AP × AR × RS → RS

Semantic: ap ∈AP, ar∈AR, rs⊆RS, Remove (ap, ar, rs) = rs – {(ap, ar)}

o Summary:

 A: Action set, a set of possible operations on message.

{Encryption, Signature, Puzzle, C…, Attachment…};

 P: Property of action, a set of URI style descriptor.

 AR: Action Rule, a pair of (A, P)

 AP: Application set, the set of usage. Currently, we only concern policies

applied on incoming and outgoing message.

{Ingress, Egress}

 N: Necessity set. Used with AR, indicating whether the rule is mandatory or

optional.

{mandatory, optional}

 RS: a set of 3-tupel (AP, AR, N). RS is the set for all rules.

},|),{(ARarAPaparap ∈∈

 SP: Subset of RS.

 17

For example: {(Ingress, (Signature, us)), (Ingress, (Puzzle, up)), (Ingress,

(Attachment, ua),), (Ingress, (Encryption, ue))}.

 DP: Subset of RS.

In this work, for simplicity, we have based policy model on APES action rules. Surely

new action rules can be added (e.g. rules for QoS, protocol versions, Bayesian anti-spam

filters etc), but currently we are focusing on application areas e.g. security and internet

email, for which we think APES rules are sufficient to represent application requirements

in the form of AMPol policy model. The AMPol policy model is extensible enough to

support other action rules and in future we plan to propose a generic policy model for

AMPol which can support action rules to model requirements of any application domain.

 18

3 CHAPTER 3: POLICY DISCOVERY AND

NEGOTIATION

3.1 Introduction

Entities need to make an agreed dynamic policy before sending the message. We call this

process Policy Negotiation. We define the following principals for policy negotiation:

1. Priority Principal. If the static policies from initiator and respondent conflict each

other, the respondent’s has higher priority. If initiator can not yield, the negotiation

fails and the conversation stops.

2. Effort Symmetry. In order to prevent DoS attack or other similar attacks, initiator

should raise the dynamic policy at first. In this way, if the initiator wants the

respondent to consume some resource, it needs to consume its own resource at first.

In Policy Negotiation, we need protocols to exchange static policy and dynamic policy.

We also need a policy merge method to generate dynamic policy based on static policies.

3.2 Policy Merging

Given two SP’s from initiator and respondent (See chapter 2), we merge them into a

dynamic policy. If one rule from respondent conflict with the other rule from initiator

then the latter is removed. Following is the pseudo code of the algorithm of policy merge.

Merge: RS × RS → RS. Given spi, spr⊆ RS (spi denotes the static policy from initiator;

spr denotes the static policy from respondent.

 19

Fig 4: Policy Merging

3.3 Policy Query Protocol

Policy Query Protocol (PQP) is used for Policy-based messaging system. PQP specifies

the stages of communication of APES rules. We discuss the protocols for Basic

Messaging and Four-Node Messaging respectively.

3.3.1 PQP for Basic Messaging

The parties involved in the basic messaging system can be classified as the initiator and

the respondent of the protocol. We denote the ingress and egress policies of initiating

party as ΠIni
I and ΠIni

E respectively. Similarly the ingress and egress policies of

responding party are denoted as ΠRes
I and ΠRes

E respectively. Here are the message

exchanges.

Step 1: Initiator (denoted as Ini) wants to communicate with respondent (denoted as

Res). It queries the ingress policy of respondent.

 Ini → Res: Query for ΠRes
I

Merge (spi, spr)
dp = Create();
for each (ap, ar) in spr

dp = Add (ap, ar, dp);
for each (ap, ar) in spi

dp = Add (ap, ar, dp);
for each (api, ari) in spi

for each (apr, arr) in spr
if (api, ari) conflict with (apr, arr) then

dp = Remove (api, ari, dp)
return dp

 20

Step 2: Respondent returns the static policy, together with the validity period and a

signature (signature is optional).

 Res→ Ini: ΠRes
I

Step 3: Initiator verifies the signature and then merges its own egress static policy and

respondent’s ingress static policy. This generates the dynamic egress policy for initiator

ΠIni
E ′.

 ΠIni
E ′ = ΠIni

E ⊕ ΠRes
I [⊕ denotes the merging operator]

The message for respondent is prepared by conforming to dynamic policy. It also pushes

to the respondent this new dynamic policy.

Ini → Res: ΠIni
E ′ || Message complying with APES rules described by ΠIni

E ′

Step 4: Respondent evaluates the dynamic policy ΠIni
E ′, to see whether it conforms to its

static policy. If not, respondent discards the message immediately. Otherwise, it verifies

whether the message conforms to the dynamic policy. If the message conforms to the

dynamic policy, it is accepted and an Acknowledgement (ACK) is sent to initiator.

 Res→ Ini: ACK

3.3.2 PQP for Four Node Messaging

We illustrate the protocol in relation to the mail-messaging scenario where the SMUA

and RMUA are associated with SMTA and RMTA. A message M is to flow from SMUA

to RMUA via SMTA and RMTA. The four entities involved here have ingress and egress

policies specified statically in the APES format. We denote the ingress policy

specification of receiving client (RC) as ΠRC
I, the egress policy of sending server as ΠSS

E

and so on. It may be argued that some of the combinations are meaningless, for example

 21

the egress policy for a sending client, ΠSC
E, because this implies that a client is imposing

a policy on itself. However, such a policy can be existent as the policy is dynamically

negotiated and the sending client wants to comply with the ingress policy of the receiving

client and server, and enforces them as the egress policy upon itself.

In the initial stage, some optional policy exchange occurs between the sending client and

the receiving client and their corresponding servers. These are as follows:

o Pull egress policy. The sending client pulls the egress policies from the sending

server and merges them with its existing APES policies. A policy merge is defined as

a union of the values of the APES policies. The policies are considered to be non-

overlapping meaning the sending server and the sending client does not define non-

conforming value for P etc. The result of the merge defines an egress policy for the

sending client and we denote it here as,

 ΠSC
E ′ = ΠSC

E ⊕ ΠSS
E [⊕ denotes the merging operator]

o Push ingress policy. The receiving client pushes its ingress policies to the receiving

server and the receiving server merges them with its existing APES policies. This

gives the merged ingress policy for the sending server which is denoted as,

 ΠRS
I ′ = ΠRS

I ⊕ ΠRC
I

The equilibrium state reached after exchange of these policies is shown in figure 5.

The reason for this exchange is to have better performance as it reduces the number of

queries for advertisement that a client has to make. Instead of making two queries, the

sending client now makes only one query to the receiving server and gets the merged

policies for the receiving client. Ignoring this exchange has no impact on the overall

protocol except for the performance.

 22

Fig 5: Policy Exchange and Merging

The policy query and execution phase can now be described.

Step 1. SC wants to communicate with RC. SC queries the advertised ingress policy for

RC and RS and sends this query to SS.

 SC → SS: Query for ΠRS
I and ΠRC

I

Step 2. SS relays the request to RS.

 SS → RS: Query for ΠRS
I and ΠRC

I

Step 3. RS sends the merged policy ΠRS
I ′ to SS.

 RS → SS: ΠRS
I ′

Step 4. SS sends the merged policy ΠRS
I ′ to SC.

 SS → SC: ΠRS
I ′

Step 5. SC sends messages complying with ΠRS
I ′ via SS. This goes through RS to RC

and RC accepts it because it is compliant to its ingress policy.

 SC → RC: Message complying with APES rules described by ΠRS
I ′

ΠSS
E

Pull Egress
Policy

Push Ingress
Policy

ΠSC
E ′ = ΠSC

E ⊕ ΠSS
E

ΠRS
I

ΠRS
I ′ = ΠRS

I ⊕ ΠRC
I

 23

Step 6. RC sends acknowledgement to SC via RS and SS. SC receives ACK and is

assured the policy is correct.

 RC → SC: ACK

If the policy merging stages described before are non-existent, then step 2 and 3 become

as follows,

Step 2a. SS relays the request to RS.

 SS → RS: Query for ΠRS
I and ΠRC

I

Step 2b. RS relays the request to RC.

 RS → RC: Query for ΠRS
I and ΠRC

I

Step 3a. RC sends its ingress policy ΠRC
I to RS.

 RC → RS: ΠRC
I

Step 3b. RS merges the ingress policies and gets ΠRS
I ′ .It sends the merged policy ΠRS

I ′

to SS.

 RS → SS: ΠRS
I ′

The policies have temporal value associated with them, which denotes the lifetime. After

that time is expired, policies are renegotiated. However, say RC changed ΠRC
I and

pushed that to RS to have a new value of ΠRS
I ′. SC still has previous binding, as it does

not get any invalidation message. When it tries to communicate, the message is rejected

and SC queries again to get the new binding.

A more conservative approach is to have each dynamic policy binding valid for the

session only. A new session would always have to acquire the APES policies. This makes

 24

policy alteration much easier as the policies are always current. However, it has

performance overhead associated with it.

 25

4 CHAPTER 4: POLICY ENFORCEMENT AND SYSTEM

EXTENSION

4.1 Introduction

We need a mechanism by which the affected nodes of the system can dynamically

reconfigure or adapt themselves so that they can work properly and also the clients of the

system can be informed so that they can abide by these new requirements in advance. In

some cases system itself or clients have to add new components in order to support these

changing requirements. So in order to support adaptive message communication in

AMPol, we also need a secure and reliable model for adapting or extending the behavior

of system itself. Adaptation or extension in system functionality is triggered by AMPol

messaging policies which may require new plug-ins/components to fulfill the

requirements for successful conversation setup or message delivery. We have proposed a

policy driven framework for managing and extending these plug-ins/components for

functional adaptability of a particular system node in AMPol. This extension framework

provides a functionality to achieve extended behavior which can be used for successful

enforcement of AMPol messaging policies. Although this framework is generic enough

for general purpose component management and extensions, but we will focus toward

AMPol messaging specific requirements.

Adaptation is a relationship between a system and its environment. Systems are often

classified as adaptable which are able to be modified by an external agent or adaptive

which are able to modify themselves without external stimuli (also called evolutionary).

 26

Our objective is to achieve both Adaptive and Adaptable behavior in a system with

properties discussed in requirement section.

4.2 Overview of Approach

The basis of AMPol system is dynamic component composition. For achieving

functionality adaptation, applications are made up of small components which are

brought in at run-time from the network when needed, executed and discarded after use

(if they are not required for further use). Which components are used to achieve a

particular functionality depends on the messaging policies, run-time execution

environment, extension policies and system constraints, thus under different parameters

different component will be used, hence achieving adaptive and extensible behavior.

Sometimes support for dynamic and client-specific customization is also required. The

AMPol extension model provide this by a minimal functional core implemented as a

component-based system and an unbound set of potential extensions that can be

selectively integrated within this core functionality. An extension to this core may be a

new component, due to new requirements of end client (in messaging policy).

A component is an independently deployable unit of composition with well-defined

interfaces and explicit dependencies. A component may encapsulate state and provide

interfaces which define services the component offers to clients, which also forms a

contract between a client and a component. Component technology is well suited in

realizing reconfigurable and extensible systems. Component frameworks proved

independence which means that components are inherently loosely coupled and any

dependencies are explicit and visible which eases the process of adaptation at run-time. In

 27

general, a component configuration can be manipulated dynamically by adding, removing

and replacing components and changing connectivity.

The AMPol component extension model (framework) defines a software architectural

model in which the components represent the most variable elements of the domain. A

component-based application can thus be instantiated from the component framework by

simply providing the specific components needed for the particular application.

Customization and extension of the application is then achieved by replacing components

with more suitable ones. The novelty of this component model is that it allows policy

driven selective combination of extensions on a per collaboration basis, enabling easy

client-specific customization and extensions. It also supports self adaptable adaptation

mechanism, which is called meta-adaptation. In the related work section we have done a

detail comparison of our proposed model with other related efforts.

This section presents the component selection and extension model, its implications, and

how it can be realized to build adaptable messaging system. We also present a notion for

the customization process of a component-based application as a selective combination of

one or more extensions into a minimal core system.

4.3 Extension Model

In AMPol extension model, the new functionality module which is needed to be added is

referred as “extensions”, while the module which has already been integrated is referred

as “component” and accordingly the Extension Manager and Component Manager

manages these entities.

In AMPol, extensions are like normal components with some of the following attributes:

 28

o Meta Specifications: This information is used in the evaluation of extension policies

and for verification of extension by Extension Validator.

• Type: It describes the nature of extension as either a Java plug-in applet or a

windows dll or a web service etc.

• Dependencies: This attribute specifies the dependency on other components.

• Constraints: It describes the dependencies with respect to operating

environment, hardware and other technical constraints etc.

• Functional specifications: High level description of services provided by the

component with input and output formats. Usually it represents interface

definition (e.g. idl or wsdl file).

• Owner Information: It contains a certificate of the owner of a component.

• Identifier: It is used for identification along with version number.

o State: It represents a persistent data of a component for maintaining state.

o Executable: Binary executables.

Figure 6 gives a high level overview of component and extension management

framework. The AMPol messaging policy (resultant merged dynamic policy from all

nodes) is fed to the Component Manger through Component Evaluator, which evaluates

the policy and outputs a list of required components needed for successful evaluation of a

policy. The Component Selector, on the basis of its Component Selection Policies,

searches for required components from the Component Repository. Currently the

framework only provides local searching from a repository which is locally managed. We

are looking at some global component searching mechanisms, by which we can search

for a component on Internet through different other techniques also. The Component

 29

Repository maintains components with their meta-specification, state, code and meta-

searching information. The meta-searching information is used for efficient searching of

a component. If a Component Selector is able to find a component, then it asks a

Component Loader to load a corresponding component. Component Loader decides

among different Execution Strategies to load a component and decision is based on a

type of component, current operating environment, available resources etc.

The Component Loader chooses from following Execution Strategies:

o Standalone/Remote: The Component is loaded either remotely on any other machine

(Remote) or as a Standalone component: locally in a different address space as a

completely independent process (as incase of remote object executed locally).

o Sand Box [37]: In this approach the component is executed in a restricted and

resource safe environment with minimal possible permissions. The sandbox

environment ensures component code is unable to reference memory or resources that

are not made available to the environment.

o Internal: The Component is loaded in a same address space of current process or in a

new thread of a local parent process. This is not a recommended strategy due to

higher security risks. It is only recommended when component is from trusted third

party.

New strategies and corresponding execution logic can be easily added by extending the

behavior of the Component Loader.

 30

Fig 6: Component Extension Framework

Using a specific type of execution strategies, a Component Loader accordingly loads and

executes the component. There are different types of extensions/components and

accordingly different types of execution mechanisms which depend upon the component

type and specification:

o Volatile/Stateless: This type of execution component does not maintain or keep state.

Component execution without state especially for single call functionality is also

called volatile execution.

o Persistent/State full: This type of execution component does maintain or keep state

among multiple calls. This execution mechanism is used for client-specific

customization.

 31

o Transient/Disposable: In this execution, the components are disposed or deleted

from repository or system after execution. These components are for one-time usage

and keeping them in the system may be vulnerable to the system as hackers can use

them for any exploit etc.

o Remote: Components are executed remotely as in Remote Execution Strategy.

Component Loader is also responsible for managing these types of executions. Resource

Allocator is responsible for allocating resources for component execution, for example

allocating a remote machine for executing a component remotely etc.

If a Component Selector is not able to find a required component, then it asks the

Extension Manager to download that component. The Extension Manager is responsible

for extending current functionality/capability of the system by extending the component

base. The Extension Controller controls the whole extension process which is driven by

Extension Policies. These policies define criterions for the download and execution of

extensions, thus limiting certain type of components to be added as a possible extension.

Extension Controller support different types of Extension Strategies, which specifies the

extension download and verification mechanism. Some possible strategies are:

o Extension from Trusted Third Party

o Verifiable Extensions

o Un-Trusted Extensions

o Local Extensions

The Extension Validator verifies the extension incase if verification is required. After the

extension is downloaded and verified, it is then registered and stored in the Component

Repository so that a Component Selector can search and load it.

 32

Fig 7: Component Invocation

A component is ready to service a request after it is loaded by a Component Loader. So a

core application (the AMPol core component) whenever require a services of a extended

component, it asks the Component Coordinator. The Component Coordinator invokes

component interface and accordingly replies with results. The core application can also

directly invoke the component interface if it supports the invocation logic. Sometimes if a

component interface specification does not exactly conform to the core application or the

messaging policy requirements, then the Component Coordinator uses Adaptors to

transform data formats between application and components. These Adaptors are also

type of components which can be managed and extended just like other extensions and

components.

 33

4.4 Features and Issues

In this section we will discuss that how AMPol extension model fulfills the requirements

identified in the background chapter.

We have argued that an adaptive messaging system should have the ability not only to

adapt the system in order to meet the requirements and performance goals but also should

have the ability to adapt the adaptation process itself in order to ensure that changes are

carried out effectively. This framework enables our goal of meta-adaptation: adaptation

in the adaptation process itself. AMPol Extension framework itself is composed of plug

and play components which can be replaced to achieve adapted or extended functionality.

Similarly, functionality of different core components of the framework can be inherited

and new customized extensions can be developed. In addition, Component Selection

Policies, Extension Policies, Execution and Extension Strategies can be dynamically

added or updated to achieve modified component and extension management behavior.

We believe this added dimension of flexibility is essential in systems which are to adapt

themselves in the face of changing operating conditions.

In accordance with the separation of concerns principle, each extension in AMPol

extension framework is implemented as a separate component that can be incrementally

added to and removed from the core application hence modular, incremental and

manageable functionality extension can be achieved.

The AMPol extension framework presents an independent extension mechanism on top

of the core implementation and thus does not modify the core implementation. Due to

this independence, extensions are integrated into the system at run time without

disrupting the availability of other services, which ensures the 24x7 runtime availability

 34

of the system, even in the process of adaptation. Similarly due to above discussed

independent and modular extension mechanism, the process of selective combination and

incremental integration of extensions remain manageable and scalable as the number of

core component instances and the number of candidate extensions increases.

As defined earlier, in the AMPol extension model, extensions are loosely coupled, well

defined components having explicit dependencies and due to overall modular structure of

extension framework; it is easy to maintain system wide consistency. As we discussed

earlier that adapting a system with a single extension goes beyond refining individual

components, but also involves a system-wide refinement of multiple components and

interaction with them at the same time in order to avoid inconsistency. In the current

scope we have limited our work to extensions for which there is no or minimal effect on

other components and their interaction. However, with these relatively simple

components and extensions we can easily maintain system wide consistency. In the future

we will be looking into scenarios for maintaining consistency incase of complex system-

wide interactions and dependencies of extensions.

The AMPol extension model provides client-specific extensibility. Extensions can

exclusively be applied on behalf of the specific clients who have the need of specific

customizations by specifying them as a requirement in a messaging policy. Currently the

model only supports stateless client-specific extensions and their customizations. Further

work is required to manage complex state-full per session or multi session client-specific

dynamic extensibility and customization.

The Component Selector provides a policy driven support for dynamic and selective

combination of components on a per collaboration basis. Which subset of extensions

 35

must be combined together is dependent on the messaging policies, run-time execution

environment, extension policies and system constraints.

In this work we have not addressed security vulnerabilities and threats to our proposed

extension model. In future we are planning to provide a threat model along with possible

security solutions to tackle different types of attacks. Similarly in future we plan to

critically evaluate the overall performance and reliability of our framework and will

propose some enhancements for better efficiency and performance. The performance

tests of our proposed extension manager (simplified and limited implementation of plug-

in architecture), which is implemented in WSEmail1.0, shows promising results [16].

 36

5 CHAPTER 5: IMPLEMENTATION CASE STUDIES

5.1 Puzzle Based Anti Spam in WSEmail

5.1.1 Introduction

WSEMail [16] is an electronic mail system which is developed as a family of web

services. As we know, the advent of web services has created the foundation for highly

interoperable distributed systems to communicate over the Internet using standardized

protocols and security mechanisms. WSEmail is basically an attempt to fully exploit

these mechanisms and, to analyze and redesign older systems and protocols to see

whether they can benefit from the new architecture and technologies.

Electronic email systems have evolved over a period of time and the resulting systems

face challenges with flexibility, security, and interoperability with other messaging

systems. To address these problems there are essentially different choices, such as

incremental overlaying, redesigning from scratch, or basing a system on different

foundation. The first two approaches have been extensively explored but without fully

resolving the issues with flexibility, security, and scalability. The third option has also

been explored, but such systems have not been standardized and also face scalability

problems. Due to recent developments in standards bodies (W3C [28], OASIS [29] etc),

the third option has become viable and WSEmail tries to explore this approach by basing

an email system on the emerging infrastructure for web services.

 37

Web services provides a service oriented infrastructure based on data interchange

protocols such as SOAP, WSDL, and other XML-based formats developed at W3C and

other standards bodies. These protocols aim to provide standardized, secure, flexible and

interoperable infrastructure level support for B2B and B2C systems.

WSEmail messages are SOAP messages that use web service features like security and

routing to support integrity, authentication, and access control for both end-to-end and

hop-by-hop message transmissions. Extensibility in WSEmail is achieved by developing

it as a collection of services that can be added or extended to the base system. This also

provides a mechanism to integrate different messaging systems such as the usual email

SMTP based messages with various kinds of instant messaging systems. The prototype

system based on web services illustrates potential for new ideas in security, flexibility,

and integration using pluggable applications such as on-demand attachments, routed

forms, and integrated instant messaging.

In this case study we have extended the functionality of WSEmail to provide support for

adaptation. For this purpose we have developed a puzzle based anti spam functionality

for WSEmail. In the perspective of AMPol, we have also modified the WSEmail core

implementation to support policy based messaging. These functional extensions to

WSEmail have been incorporated without significantly modifying the core

implementation. By using this puzzle based anti spam scenario we have tried to show the

adaptation in WSEmail messaging system with respect to three adaptation perspectives

which we have discussed before in AMPol architecture. This extended WSEmail version

(further on WSEmail extended version will be referred as WSEmail-Puzzle) supports the

basic implementation of our proposed AMPol architecture. It supports static and dynamic

 38

policies along with basic policy negotiation, advertisement and merging. For system

extension we have only implemented the Component Extension Manager with limited

functionality and extension support.

Puzzle based anti spam solutions already exist [32], [34] and a lot of related work has

been done in the area of DOS attacks [35], [33]. Puzzle based anti spam solutions

increase the cost of sending email in order to create a computational symmetry between

sender and receiver. So the idea is that if you want to send me email messages then you

have to perform certain task or solve a puzzle for me and then you can send me a

message. Certainly this idea to some extent can avoid spam in our message in-bin. In our

WSEmail-Puzzle implementation we have provided support for two types of puzzles:

Reverse Turing Test (RTT) and Hash Cash puzzles. RTT puzzles are user interactive

puzzles which involves human interaction to solve a graphical problem, as shown in

figure 8. Hash Cash are usually non-interactive and computationally bound puzzles. In

these types of puzzles, the sender has to allocate memory or processor resources to solve

a specific problem (e.g. in case of Hash Cash it is to find hash collisions). Our scope of

this study is not to sell the idea of puzzle based anti-spam but to show that how a system

can be adapted to support new functionality and this new functionality can be a puzzle-

based anti-spam feature in an email system.

 39

Fig 8: RTT Puzzle Examples

5.1.2 Architecture and Implementation

WSEmail architecture is based on AMPol Four-Node messaging model. Figure 9 gives a

high level architectural overview of WSEmail.

Fig 9: WSEmail Architecture

A Sender Client SC makes a call on its Sender Server SS both residing in the same

domain. These calls are SOAP calls over TCP because SS is a web service. The server

 40

SS then makes a SOAP call on the Receiver Server RS to deliver the mail from the

Sender Domain SD into the Receiver Domain RD. The Receiver Client RC periodically

makes calls to RS to find new messages or download message bodies.

Security is based on standards for web service security, supported by encrypted tunnels.

Clients like SC and RC are typically authenticated to their servers by a password, while

servers authenticate themselves using certificates. Such certificates are used in TLS and

used to sign messages using XMLDSIG. For instance, the message from SC to RC will

be given an XMLDSIG signature by SS that is checked by both RS and RC.

5.1.2.1 WSEmail Server Architecture

There are three major entities at the server-side WSEmail system: the core email server,

database server and DNS server. The core email server is basically a web server that is

responsible for dealing with receiving and distributing mails to both clients and other

servers. The database server stores messages for the email server. The DNS server

publishes service (SRV) records so that remote WSEmail servers can locate each other.

Software components of the WSEmail server are illustrated in Figure 10:

 41

Fig 10: WSEmail Server Architecture

5.1.2.2 WSEmail Plug-In Architecture

The WSEmail server is built upon multiple pluggable interfaces. This fundamental design

feature means that any of the major parts of the server are swappable and can be

upgraded without changes to other pieces. Similarly it provides easy functionality

extension on top of its core implementation. An important feature of WSEmail is its plug-

in architecture and its functional extension through these plug-ins. Most critical

components are written as plug-ins and major features such as instant messaging and

federated identities are simply plugged in, which demonstrates the extensibility of the

server and the protocol. This functionality, combined with the client's ability to download

and use new programming, enables a new dynamic email system.

 42

There are basically two types of plug-ins, Message-Dependent and RPC-Like. Message

dependent plug-ins receive and process a WSEmail messages to perform specific tasks

e.g. message filtering etc. The RPC-like plug-ins take XML based arguments as input to

perform specific functions not necessarily dependant on an email message.

5.1.2.3 WSEmail-Puzzle Architecture

Our effort aims to provide policy based adaptable messaging system and for this purpose

we have to modify the WSEmail system without significantly changing its core

implementation. We basically have to achieve three adaptation perspectives, which are:

o policy and requirement adaptation

o adaptive policy/requirement discovery and negotiation

o adaptive policy enforcement and system extension supporting policy enforcement

Now we will discuss which components we have added and modified to achieve these

features in WSEmail.

Policy Adaptation and Negotiation:

The basic situation can be seen in the figure below. Here a sender uses his Sender Mail

User Agent (SMUA) to send a message to a recipient MUA (RMUA) via a Sender Mail

Transfer Agent (SMTA). This message passes through a receiver MTA (RMTA) of the

recipient. The recipient has ingress policy for what mail he is willing to receive. There

are also policies associated with the relays (SMTA and RMTA): an egress policy for

outbound messages and an ingress policy for inbound messages. So a message going

from SMUA to RMUA must comply with SMTA egress policy, RMTA and RMUA

ingress policies. To comply with these policies, SMUA may have to adapt its

 43

functionality and for this purpose it can dynamically extend its functionality by

integrating plug-ins from a trusted server.

Fig 11: WSEmail-Puzzle Architecture

We have added a Policy Manager component for policy evaluation and enforcement for

each node in WSEmail. We have designed an XML based policy language specifically

for WSEmail which is based on APES rules, but only supports A and P part of AMPol

policy model. We represent messaging requirements and constraints in the form of policy

and there are two types of policies in our system: ingress and egress policies. Server

nodes (SS/SMTA & RS/RMTA) can have both types of policies and client nodes

(SC/SMUA & RC/RMUA) only have ingress policies. In WSEMail-Puzzle architecture,

 44

all policies reside at server nodes (SMTA/RMTA), and MUA’s do not manage or store

any policies. This approach is useful because as in email systems, server MTA’s are

usually online 24x7 hrs and can provide instant access to client policies.

WSEmail-Puzzle also supports dynamic policies, policy query and negotiation. In above

scenario, in order to send a message from RMUA to SMUA, SMTA (on behalf of

RMUA) queries corresponding RMTA for ingress policies. RMTA merges its ingress

policy with RMUA ingress policy and reply back with merged policy. SMTA then

evaluates these merged policies and only send related rules merged with its own egress

policy to SMUA. SMUA also evaluates the rules of resultant merged policy and

accordingly create a message which complies to this merged policy. Accordingly SMTA,

if required, perform certain operations on a message and finally sends the message to

RMTA, which should now be delivered to corresponding MUA as it satisfy all the

corresponding requirements of each node. RMTA first checks the message against its

ingress policy and then against RMUA policy. If message evaluation is successful then

RMTA puts the message in MUA mail queue to be retrieved by MUA whenever it comes

online.

Dynamic policies are generated by flat merging of policies of different nodes. We do not

handle conflicts and dynamically merged policy is simply a union of rules. Figure 12

below shows sample static policy for RMTA, which has three sections for Ingress, Egress

and Local policy.

 45

Fig 12: RMTA Policies

The Local Policy is another type of policy specifically for messages bounded within same

domain. The Ingress policy has two rules for inbound messages. It requires sender to

solve RTT puzzle and message should not have attachments with zip or pif file

extensions. The Egress policy does not allow messages to go out of domain which have

<WSEmailPolicy xmlns:xsd=http://www.w3.org/2001/XMLSchema

type="static" node="WSEmailMTA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">

<PolicyRules>
<PolicyRule Id="#05" type="P" DllName="RTT.dll"
RetrieveURI="http://seclab-london.cs.uiuc.edu/classes/RTT.dll"

 FriendlyName = "RTT No.1" Version = "1.0">
 <Key>RTT</Key>
 <Description>RTT Puzzle</Description>
 </PolicyRule>
 <PolicyRule Id="#08" type="A" >
 <Key>ZIP+PIF</Key>
 <Description>No Zip and PIF Attachments</Description>
 <Condition>~(type=*.zip, *.pif)</Condition>
 </PolicyRule>
 </PolicyRules>
</Ingresspolicy>

<Egresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>
 <PolicyRule Id="#09" type="A" >
 <Key>ZIP</Key>
 <Description>No Zip Attachments</Description>
 <Condition>~(type=*.zip)</Condition>
 </PolicyRule>
 </PolicyRules>
</Egresspolicy>

<Localpolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>

<PolicyRule Id="#01" type="A" DllName="HashCash.dll"
RetrieveURI="http://seclab-
london.cs.uiuc.edu/classes/HashCash.dll"

 FriendlyName = "HashCash No.1" Version = "1.0">
 <Key>HashCash</Key>
 <Description>HashCash Puzzle</Description>
 </PolicyRule>
 </PolicyRules>
</Localpolicy>

</WSEmailPolicy>

 46

attachments of zip files. The Local policy requires sender to solve HashCash puzzle in

order to send message to other recipient with in the same domain.

Fig 13: RMUA Policies

Similarly Fig 13 and 14 show the static policies of RMUA and SMTA. The final merged

dynamic policy at SMTA is shown in figure 15, which is just a union of corresponding

rules in the Egress and Ingress policies. The merged policy will be send to SMUA, which

then has to construct a message complying to all defined rules in the policy.

<WSEmailPolicy xmlns:xsd="http://www.w3.org/2001/XMLSchema"

type="static" node="WSEmailMUA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>
 <PolicyRule Id="#01" type="A" DllName="HashCash.dll"

RetrieveURI="http://seclab-
london.cs.uiuc.edu/classes/HashCash.dll"

 FriendlyName = "HashCash No.1" Version = "1.0">
 <Key>HashCash</Key>
 <Description>HashCash Puzzle</Description>
 </PolicyRule>
 <PolicyRule Id="#09" type="A" Level="Private" >
 <Key>Size</Key>
 <Description>Small Attachments</Description>
 <Condition>(size<=20KB)</Condition>
 </PolicyRule>

 </PolicyRules>
</Ingresspolicy>

</WSEmailPolicy>

 47

Fig 14: SMTA Policies

In the WSEmail-Puzzle, every server MTA provides a publically accessible interface to

clients for acquiring merged dynamic policies. As in WSEmail, the MTA server is based

on web service, so we have provided a web method for acquiring dynamic policies for a

particular recipient. MTA’s do not publish static policies and only provide access to

dynamic policies based on client credentials, which provides a secure and controlled

mechanism to publish MTA policy rules. These dynamically policies are usually subset

of static policies and only contain those rules which are not considered confidential. For

example the second rule in RMUA policy is confidential and it is not included in the

merged policies.

<WSEmailPolicy xmlns:xsd="http://www.w3.org/2001/XMLSchema"

type="static" node="WSEmailMTA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
</Ingresspolicy>

<Egresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>
 <PolicyRule Id="#09" type="A" >
 <Key>ZIP</Key>
 <Description>No Attachments</Description>
 <Condition>~(type=*.*)</Condition>
 </PolicyRule>
 </PolicyRules>
</Egresspolicy>

<Localpolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
</Localpolicy>

</WSEmailPolicy>

 48

Fig 15: Merged Policies

To provide the features related to Policies and Negotiation we have added a Policy

Manager Component to WSEmail which has following modules:

o Policy Decision Module: It verifies the message whether it comply with specific

policy or not.

o Policy Loader: It loads ingress and egress policies during initialization phase. It also

loads egress policies of SC/SMUA on request.

<WSEmailPolicy xmlns:xsd=http://www.w3.org/2001/XMLSchema

type="merged" node="WSEmailMUA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">

<PolicyRules>
<PolicyRule Id="#01" type="P" DllName="RTT.dll"
RetrieveURI="http://seclab-london.cs.uiuc.edu/classes/RTT.dll"

 FriendlyName = "RTT No.1" Version = "1.0">
 <Key>RTT</Key>
 <Description>RTT Puzzle</Description>
 </PolicyRule>
 <PolicyRule Id="#02" type="A" >
 <Key>ZIP+PIF</Key>
 <Description>No Zip and PIF Attachments</Description>
 <Condition>~(type=*.zip, *.pif)</Condition>
 </PolicyRule>
 <PolicyRule Id="#03" type="A" DllName="HashCash.dll"

RetrieveURI="http://seclab-
london.cs.uiuc.edu/classes/HashCash.dll"

 FriendlyName = "HashCash No.1" Version = "1.0">
 <Key>HashCash</Key>
 <Description>HashCash Puzzle</Description>
 </PolicyRule>
 </PolicyRules>
</Ingresspolicy>

<Egresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>
 <PolicyRule Id="#04" type="A" >
 <Key>NO</Key>
 <Description>No Attachments</Description>
 <Condition>~(type=*.*)</Condition>
 </PolicyRule>
 </PolicyRules>
</Egresspolicy>

</WSEmailPolicy>

 49

o Policy Merger Module: It merges two policies on the basis of flat merging rule

which is simple a union of rules of corresponding policies. It discards confidential

rules in the merging process.

o Policy Publisher: It provides a SOAP interface for querying ingress policies. On

receiving a request it calls the Policy Merger Module to merge RMTA and RMUA

ingress policies and returns a merged policy back to requestor.

o Policy Evaluator: This module controls the whole policy evaluation and

enforcement process. It asks the Policy Decision Module to check the compliance of

the message with specific policy. It uses Policy Loader to load policies and make

them available to Policy Publisher and Merger Modules.

Figure 16 below shows above discussed modules and components for WSEmail-Puzzle

Server (MTA’s).

Fig 16: Modified WSEmail Server Architecture

 50

Similarly WSEmail Client (MUA’s) also has the same Policy Manger Component for

evaluating and enforcing policies. In this Policy Manager we do not need Policy

Publisher and Policy Merger Modules as we do not need to publish any MUA’s policies.

Policy Enforcement and System Extension

Every WSEmail node (Server MTA and Client MUA) has a Policy Manager Component

to evaluate and enforce their corresponding policies. If for some rule, a particular node

does not have any capability to enforce or satisfy the requirements specified in that rule,

then that node may need to download a plug-in or an extension, which can be used to

satisfy the requirements. For this purpose we can also use already built in support for

WSEmail plug-ins, but these plug-ins are specifically built for WSEmail and they only

work if WSEmail plug-in framework is in place. In our implementation we have modified

the WSEmail plug-in architecture to make it more generic and dynamically extensible.

For this purpose we have modified the plug-in architecture in accordance with our

AMPol Extension model and implemented an Extension Manager which also supports

the WSEmail specific plug-ins along with other generic plug-ins and extensions. The

Extension Manger is integrated in both WSEmail Server and Client, thus providing

extensibility throughout whole WSEmail System. Although this Extension Manger

Component is a simplified version of what we have proposed in AMPol Extension

Model, but it serves our purpose here regarding dynamic and generic extension of

WSEmail system.

 51

Fig 17: Modified WSEmail Client Architecture

5.1.2.4 Implementation

WSEmail-Puzzle prototype runs on Windows server and client systems. Our

implementation and modifications are implemented over the .NET framework and relies

on Web Services Enhancement (WSE) 1.0, CAPICOM 2.00, SQL Server 2000 (to store

messages for the server), and IIS 5.0. Currently Extension Manager only provides support

for Windows based DLL plug-ins or COM based components. These plug-ins do not

need to comply with the WSEmail Plug-in architecture as it was in previous

implementation of WSEmail.

5.1.3 Discussion

In above discussion we have shown modification to WSEmail for simplified

implementation of AMPol Policy, Negotiation and Extension Model. WSEmail-Puzzle

supports Static and Dynamic policies based on AMPol APES rules. It also supports

 52

policy advertisement and simple one step policy negotiation for communicating merged

policies with clients. Similarly we have achieved a third adaptation perspective of AMPol

in WSEmail-Puzzle through incorporation of Extension Manager.

We have tried to address the problems of flexibility, security, and interoperability faced

to current messaging systems by basing our system on entirely new foundation. The

WSEmail-Puzzle based on AMPol, tries to explore this approach by basing an email

system on the emerging infrastructure for web services. Web services inherently provide

flexibility and interoperability, and WSEmail-Puzzle exploit this feature to achieve a

highly adaptable email system. For security purposes, the WSEmail-Puzzle uses Web

Services Enhancement (WSE) security features, which provide secure data transfer on top

of web services protocols.

Although what we have shown is a minimal implementation of proposed AMPol models,

but a simple working prototype successfully shows an implementation proof of our

concept.

5.2 Adaptive VoIP Call System

5.2.1 Introduction

This case study discusses the architecture and development of extensible call

management system, called Adaptive Calling System (ACS), which supports connection

and call management between VoIP clients and PSTN telephone clients.

ACS helps VoIP clients to dynamically establish a connection between each other. Our

aim is not to build a complete call management system with rich functionalities, but to

build an adaptable system with basic functionalities emphasizing on adaptation feature.

 53

ACS assists in establishing connection and managing calls for client communicating

over:

o VOIP to VOIP

o VOIP to PSTN Telephone lines

ACS system is based on the AMPol model which manages connections between two

VOIP clients and VOIP & Telephone clients. Each client specifies its requirements for

communication protocols in the form of policy. These requirements are negotiated with

each other and both clients agree upon it in order to establish a successful connection. If a

particular client does not support a required protocol then he can dynamically extend its

functionality to add a component which can communicate with the other client using

required protocol.

We will try to show the extensible nature of the ACS by dynamically extending the

functionality of its clients to use multiple VoIP protocols per demand.

5.2.2 Background

Voice over IP (VoIP) uses the Internet Protocol (IP) to transmit voice as packets over an

IP network. Using VoIP protocols, voice communications can be achieved on any IP

network regardless it is Internet, Intranets or Local Area Networks (LAN). In a VoIP

enabled network, the voice signal is digitized, compressed and converted to IP packets

and then transmitted over the IP network. VoIP signaling protocols are used to set up and

tear down calls, carry information required to locate users and negotiate capabilities.

 54

The key benefits of Internet telephony (voice over IP) are the very low cost, the

integration of data, voice and video on one network and simplified management of end

user and terminals.

There are a few VoIP protocol stacks which are derived from various standard bodies and

vendors, namely H.323, SIP, MEGACO and MGCP. These are control (signaling)

protocols and they create a VoIP connection between clients. Currently ACS supports

clients with H.323 and SIP protocol only for P2P VoIP communication.

H.323 is the ITU-T's standard, which was originally developed for multimedia

conferencing on LANs, but was later extended to cover Voice over IP. The standard

encompasses both point to point communications and multipoint conferences.

Session Initiation Protocol (SIP) is the IETF's standard for establishing VoIP

connections. SIP is an application layer control protocol for creating, modifying and

terminating sessions with one or more participants. The architecture of SIP is similar to

that of HTTP (client-server protocol). Requests are generated by the client and sent to the

server. The server processes the requests and then sends a response to the client. A

request and the responses for that request make a transaction.

ACS clients currently use the RTP protocol for actual data (voice media) transfer and

either SIP or H.323 protocol for control signaling in order to create a connection. Where

real-time transport protocol (RTP) provides end-to-end delivery services for data with

real-time characteristics, such as interactive audio and video or simulation data, over

multicast or unicast network services.

Applications typically run RTP on top of UDP to make use of its multiplexing and

checksum services; both protocols contribute parts of the transport protocol functionality.

 55

However, RTP may be used with other suitable underlying network or transport

protocols. RTP supports data transfer to multiple destinations using multicast distribution

if provided by the underlying network. RTP itself does not provide any mechanism to

ensure timely delivery or provide other quality-of-service guarantees, but relies on lower-

layer services to do so. It does not guarantee delivery or prevent out-of-order delivery,

nor does it assume that the underlying network is reliable and delivers packets in

sequence.

In the past few years, the VOIP industry has been working on addressing the many key

issues e.g. interoperability, quality of service, scalability, security etc and in ACS we

have tried to address few of them by basing our system on AMPol architecture:

Interoperability: In a public network environment, products from different vendors

need to operate with each other for voice over IP.

Security: Encryption (such as SSL) and tunneling (L2TP) technologies are developed to

protect VOIP signaling and bear traffic, but these techniques are not standardized for

VoIP and thus results in highly inflexible and complex system with customized security

solutions.

Extensibility: Due to ever-changing requirements especially in the area of protocols and

data streaming functionality, VoIP systems must be extensible to support these new

requirements. Currently most VoIP systems provide static set of protocols with fix

functionality.

Policy Enforcement: As in messaging systems, each client wants to control the

incoming and outgoing data flow. Similarly VoIP systems also require policy

enforcement mechanism to efficiently control its data communication flow.

 56

Integration with Public Switched Telephone Network (PSTN): While Internet

telephony is being introduced, it will need to work in conjunction with PSTN in the

foreseeable future. Gateway technologies are developed to bridge the two networks, but

communication with gateways requires specific non standardized customization at client

end.

5.2.3 Architecture and Implementation

ACS is an extensible and flexible system for P2P VoIP call management. ACS

concentrates on System Extension perspective of AMPol and incorporates a simple

extension model and a minimal functionality for Policy Management.

Fig 18: ACS Architecture

Figure 18 above shows an overview of ACS architecture. Every VoIP client in ACS

defines its communication requirement and constraints in the form of policy called

 57

Communication Policy. Then it uploads these policies to Information Server (Policy

Server). The Information server serves as a trusted policy publisher, providing online

access to policies of different clients. ACS does not support complex policy

advertisement and negotiation, instead uses a centralized trusted policy repository to

publish and access policies. When any client wants to create a VoIP connection to

another client, it first searches for other client policy requirements from Information

server and then accordingly initiates a call session.

If it is not able to fulfill the communication requirements of the other client then it either

tries to download the plug-in component or discard the communication. Plug-in

components are downloaded from a trusted party hosting those components and clients

policies have to specify from which third party server these components can be

downloaded.

Let’s suppose Client A is only capable of supporting SIP/RTP based VoIP

communication and Client B is capable of communication using H323/RIP protocol.

Now if A wants to create a communication link with client B, A first downloads B’s

policy from information server and then A will evaluate it. A will find that in order to

communicate with B it must support H323/RIP protocol, and it can also find from policy

that there is a third party component available which can be used to establish a successful

link with B. If policy has this meta-information for downloading component then A will

download and use that component to create a H323/RIP based communication session

with B.

Similarly suppose there is another client C which provides VoIP to PSTN services i.e. it

can convert VoIP traffic to PSTN telephone traffic and can connect VoIP clients to

 58

telephone lines. Here C is working like a media gateway between VoIP and PSTN links.

Say for this purpose it supports a customized protocol for signaling and RTP for voice

media (e.g. C/RTP) then for A, to connect with C and to use its services, has to download

a required component which support C/RTP protocol. This customized protocol requires

extra control information such as target telephone number etc, and for this, the

downloaded plug-in component can popup a GUI screen and ask the user for extra

information.

In the Figure below we have shown some related components in server and client for

achieving above discussed behavior. The server does not need any extensible behavior, it

only requires components for uploading, storing, searching and publishing policies.

Clients require a Policy Evaluation component for evaluating the requirement of other

clients. It has a Policy Decision Module to verify that the incoming connection request

conform to its communication policy or not. The Policy Downloader simply searches for

a communication policy of the target client with which it wants to establish a

communication channel. In ACS, for real time performance, communication policies are

only for signaling (establishing connection) phase and so policy verification is only done

during channel creation and call setup. For media transfer there are usually no policy

constraints, because for secure and reliable communication, the security and reliability

requirements are only required during call set-up. During this call set-up, secure and

reliable channel are created for media transfer e.g. two parties can establish a secure

connection for VoIP over SSL link and can achieve reliability by RTP over TCP. Along

with protocol types, security and reliability requirements can be specified in

 59

communication policy, while APES rules of AMPol only concentrate on security, puzzle

and attachment related rules.

Fig 19: ACS Components

Clients have an Extension Manager to download and integrate plug-ins from the trusted

third party. The ACS Extension Manager has similar functionality and properties as of

AMPol Extension Manager.

We have implemented ACS system in SmallTalk using SQUEK environment. SIP/RTP

and H323/RTP plug-in components are developed in C++ as windows DLL. While a

 60

client having VoIP to PSTN functionality was developed in Java 1.2+ and for that

purpose we have also implemented Policy and Extension Manger in Java. Now we are

working toward a demo showing above discussed scenario for client A, B and C.

5.2.4 Discussion

In this study we have discussed architecture and development of ACS for simplified

implementation of AMPol Policy and Extension Model. ACS supports Static policies

extended from AMPol APES rules. It supports policy advertisement through dedicated

Policy Server. System extension is achieved through incorporation of Extension Manager

at clients. Although what we have shown is a minimal and modified implementation of

proposed AMPol models, but it successfully shows how declarative requirements in the

form of policy can help system achieve adaptability and flexibility.

 61

6 CHAPTER 6: RELATED AND FUTURE WORK

6.1 Introduction

This section presents a detail overview of comparison of our work with other related

research efforts. In the end, future plans are also discussed which gives a general

overview of our future milestones to achieve for AMPol project. We have identified three

related research areas based on our three adaptive perspectives and tried to point out

some commonalities and differences.

6.2 Policies and Negotiation

There has been lot work done on Policy Models, Languages and Negotiation but here we

will limit our discussion to Policy Negotiation in ATN, Policy Management, Policy

Composition and Policy Based Email Systems. These areas have direct relation with the

AMPol model and perspectives, and we will analyze them with adaptation perspective in

mind.

6.2.1 Trust Negotiation and Policy Management

The AMPol Model shares a lot of properties and problems encountered in research area

of Automated Trust Negotiation [23], [24], [25], [26] (ATN). ATN is a new approach to

access control and authentication in open, flexible systems. It enables open computing by

assigning an access control policy to each resource that is to be made accessible to

outsiders. An access control policy describes the properties of the parties allowed to

access that resource, in contrast to the traditional approach of listing their identities. An

attempt to access the resource triggers a trust negotiation, in which the resource owner

 62

and the requesting party take turns disclosing relevant access control policies and digital

credentials to one another. In AMPol and WSEmail, a particular client messaging

resources have the same meanings as of a resource in ATN. Similarly as in ATN, AMPol

also specifies policies which describe requirements and constraints to access these

resources for a successful communication. In contrast AMPol emphasize on adaptation

aspects of a system rather than trust.

The AMPol and the ATN approaches heavily rely on policies and hence both face issues

and problem related to policy management. The policy management is a relatively new

field of endeavor, of which the Ponder project and KAoS’s KPAT are the most prominent

and most advanced examples [19], [20], [21], [22]. The policy management research has

not yet addressed the related challenges of large-scale policy deployment, such as ways to

help users understand large numbers of complex, interrelated policies, so that they can

quickly and effectively change them in response to evolving needs. The policy

management issues alone could be overwhelming to solve and there are few areas in

ATN which overlaps with policy management for AMPol. These areas can be policy

configuration management, algorithms for analysis of policies for consistency, evaluation

tools and test beds for testing policy conformance etc.

In the trust negotiation, negotiating parties usually rely on policy disclosures to learn each

other’s access control requirements and these policies may contain sensitive information.

This problem can be avoided by using meta-policies: policies for disclosing other

policies. Even with this protection, an adversary may be able to infer private information

by observing behavior of a negotiator. AMPol policy disclosure and negotiation

mechanism also faces this problem.

 63

In this perspective, approaches used in ATN can also be used for AMPol policy

disclosure and negotiation, such as:

o An improved understanding of the application domain factors that may prevent the

sharing of resources and an understanding of the kinds of policies for sharing

information between unknown entities.

o Policy analysis algorithms and management tools that allow users to easily create,

understand, and update a large set of policies, and to control who is allowed to make

changes under different circumstances.

o An investigation of radically different cryptographic approaches for disclosing and

migrating credentials or policies that will provide improved resilience against attacks

against privacy.

o A design and implementation of modular, reusable, scalable, and portable

components for policy management and negotiation strategies.

6.2.2 Policy Composition

Efficient algorithms are required to solve issues like how to merge policies, especially

policies for different domains. New techniques like defeasible policy merging [15] can be

applied for AMPol policy merging which can provide an efficient and readable priority

based policy merging mechanism.

Lee [15] et al. in their work, proposed a solution to the problem of composing WS-

SecurityPolicies. They have presented an abstract framework for specifying policies in

semantically enhanced way and a mechanism for easy merging and composition of

policies with other policies in an automated fashion. They also presented an instance of

 64

this framework based on defeasible logic. Defeasible logic very closely models the ways

in which human’s reason and solves problems, making it excellent candidate logic for the

specification of security polices and composition rules. Enhanced policies described

using defeasible logic can change the ways in which they are composed with other

policies based upon conclusions drawn by other parties in the coalition or by examining

high-level context information regarding the environment in which the web service is to

be deployed.

6.2.3 Policy Based Email System

Kaushik et al. proposed a policy driven approach for email systems in order to tackle

spam problem. In their work they tried to overhaul the email so that it can continue to

serve as the valuable resource that it has been in the past. There work is quite similar to

policy driven approach used in WSEmail-Puzzle. Both solutions view a mailbox as a

network resource of the recipient and email messages as access requests from senders,

requesting write access to a mailbox. In their approach, they replace the current notion

that an arbitrary user has an implicit right to place a message in anyone’s mailbox with a

scalable, attribute-based access control policy in which a sender’s access to a recipient’s

mailbox is controlled by the recipient. Furthermore in order to grant access rights to

sender they have also used the notion of sender authentication and gradual trust

establishment (trust negotiation) along with reputation of each entity in the email system.

6.2.4 Petmail

The Petmail [31] (P.E.T: Permission, Encryption and Transparency) is a Permission-

based Anti-Spam System. Basic idea of Permission-based Anti-Spam is to consume

 65

some of my time without explicit permission; you must be willing to give up some of

your own. A mailbox is a kind of resource of recipients. Besides the storage that is

required to store the message, recipient needs to spend some time to deal with incoming

messages. Messages also costs bandwidth of a mail server and all these parameters (time,

storage, and bandwidth) are a resource. If someone wants to access these resources, it

must get some permission. In WSEmail-Puzzle and generally in AMPol, we have the

same idea of policy based access to target client’s messaging resources.

The Petmail uses a novel data structure called Identity Record to store the information of

each side of email system. It proposed an Address Server to accomplish the name search,

look up the permission (policy) and routing information. Message transportation is

accomplished by the Transport Provider and Address Server. It applies some anonymous

transport technologies to relay messages in order to achieve message sender and receiver

privacy. It uses an Agent Component to communicate with the rest of the world on user’s

behalf. Agent enforces the user’s policies, and implements the Petmail protocol. Ticket

Server is used to implement CAPTCHA challenges, a type of puzzles. The Ticket Server

produces signed Ticket, which is a statement that some given sender has passed some

challenge. This Ticket is labeled with the Ticket Server's URL or other identifying string,

and then included in a Petmail message to make it eligible for acceptance by a given

recipient.

If a sender never sent a message to recipient before, according to recipient’s IDRecord,

the recipient’s Petmail agent only grants generic permissions to the sender, i.e. redirects

the sender to Ticket Server. Sender has to answer a CAPTCHA or Hash Cash challenge

which cost some resources of sender. If the solution is correct, Ticket Server issues a

 66

ticket to sender. Together with the message body, the ticket is sent the recipient’s agent.

The agent verifies ticket, signature, etc. If the verification succeeds, the message is

delivered to recipient and some specific permission is granted to sender. Generally,

sender does not need to apply ticket next time.

In the AMPol WSEmail-Puzzle, MTA not only enforces the policies but also proposes

and verifies the Puzzle solution. While in Petmail, verification of the puzzle solution is

accomplished by the third party, Ticket Server. The Petmail approach is relatively more

flexible and maintainable for this application. It is more flexible because if recipient does

not trust Ticket Server anymore, it can subscribe to any other Ticket Server. In the

WSEmail-Puzzle, MUA only can take advantage of MTA’s Puzzle components. But

WSEmail-Puzzle can easily extend its policy verification mechanism specifically for

puzzles and delegate it to third party. In order to achieve this we just have to replace

current policy verification module with the modified one, which support remote puzzle

verification. This approach is more maintainable because if puzzle technology is

improved and we need to update current puzzle implementation then for the WSEmail-

Puzzle we have to integrate new puzzle components. In Petmail, it is outsourced to Ticket

Server and only Ticket server needs to be updated.

Petmail introduces a simple Trust Model which is not explicitly addressed in WSEmail-

Puzzle and AMPol. It is practical in application that if a user has satisfied some

requirement, he is not willing to repeat the same steps to set up the secure connection

with the same correspondent again. It is tedious and waste of resources.

In the Petmail, the policy (permission) is pre-defined by recipients. The policy

(permission) is static and there is no negotiation process. AMPol generates dynamic

 67

policies and two sides can exchange information with each other. While in Petmail, the

permissions are fixed and they can not change dynamically based on environment or

context.

The Petmail assumes that if sender wants to send an email to the recipient, sender trusts

the recipient and grants specific permission to recipient, i.e. allows recipient to send back

email to sender without a ticket. It is possible that the spammer has the victim send a

message to spammer at first, then the spammer gains the access to victim’s mailbox

immediately.

In Petmail, all messages are required to signed and encrypted. The recipient needs to do

computation for verification and decryption. It is subject to DoS attack if the spammer

sends message no matter it gets tickets from Ticket Server or not. Recipient’s agent will

spend a great deal of resources to deal with these messages. Petmail can not resist such

attack efficiently.

6.3 Adaptation and Extension

Adaptation and extensibility of the software systems has been studied by various

researchers in different perspectives. Some of the well known efforts are reflection [6],

open implementation [7], adaptive programming [8], aspect-oriented programming [9],

component composition [10], [14], and collaboration based design [11], as well as quality

of service (QoS) policy management in the networking community [12]. In these

approaches, there is an entity representing a system execution policy. For example, it is

called meta-object in the context of reflection, concerns in the principle of separation of

concern [13], component or plug-in in component composition, and aspect in aspect-

oriented programming. Applications can adapt to a given requirement by adding,

 68

customizing or replacing these entities. Our adaptation framework is also based on

extensions and components, and extensibility is achieved by adding, customizing or

replacing these entities. Our work is novel because along with dynamic component

composition it also supports client-specific customization and the adaptation process

itself is adaptive, thus achieving extensibility from perspectives of clients, systems and

process itself.

Eddy et al. [2], [3], [4] has proposed a software composition model that supports client-

specific and dynamic customization of distributed systems and services. The software

composition model, named Lasagne, supports a selective and dynamic injection of

crosscutting features into a minimal core system on a per client-request basis. This

Lasagne approach on one hand integrates collaboration-based design and component-

based development into a unified software decomposition strategy. On the other hand, it

provides a technique for composing these components in a dynamic and context-sensitive

manner: components are dynamically selected depending on the needs of the context and

are incrementally composed into the distributed application at runtime. Lasagne model

fulfills most of the requirements which we have outlined before, but there core model

lack meta-adaptive features and their model is not policy driven so it has relatively static

composition and extensibility logic.

Tan et al. [5] has used a meta-level architecture for managing and adapting policy-based

security services. The have define a meta-level system to be an architecture which

separates domain knowledge from control knowledge. According to them, there are

number of advantages of this type of architecture: it supports a loosely coupled approach

to designing and managing knowledge and enables the sharing of knowledge across

 69

different systems. This type of meta-architecture enables them detect, analyze and resolve

multiple policy conflicts, decide if a change in the environment necessitates a security

reconfiguration and to decide if a suitable level of security interoperability between

heterogeneous systems is achievable. The AMPol Extension model also separates the

domain knowledge from the controlling knowledge. The core Component and Extension

Manager Components controls the domain components irrespective of their type and

kind. The AMPol Extension model can be used for any application domain components

and it is also verified to some extent in our case studies. Furthermore, the AMPol

Extension model is also policy driven as the meta-level architecture proposed by Tan et

al.

6.4 Future Work

 This work only investigates some architectural issues for flexibility and integration in

order to develop adaptive policy based system. We have emphasized on the architectural

aspects of the AMPol System and proposed architectural models for Policy Adaptation,

Policy Negotiation and System Extension. This is just a start toward a comprehensive and

generic adaptable messaging system, and many areas need to be thoroughly explored and

investigated. Related areas such as formal theoretical foundations, algorithms,

interoperability, security, scalability, testing etc. specifically need to be investigated in

the context of AMPol.

 Efficient algorithms are needed to for merging, evaluating and verifying policies. Policy

negotiation protocol verification techniques are needed to compensate for the increased

flexibility of the system, which leaves the design of potentially tricky security protocols

 70

in the hands of non-specialists. For this purpose we can benefit from advances in

automated verification of the correctness of security protocols e.g. systems like TulaFale

[9] and ProVerif [10] to provide verifications for web service security protocols.

We also need to explore issues related to interoperability of our proposed system so that

it can work with the existing base and to determine the features that offer the most likely

practical benefits.

We have not fully evaluated and tested AMPol models, so we need implementation test

beds to thoroughly evaluate and analyze them in order to justify our claims. Similarly, for

wide scale adoption and to illustrate the effectiveness of our proposed approach we need

to develop requirements for applications in different specific areas. In this work we have

only presented applications in the area of internet email and VoIP communication to

support our proposed theory, but we need to explore other related application domains in

order to extend our models and this will also help us determine the features that offer the

most likely practical benefits.

In this work, to avoid complexity, we have based AMPol policy model only on APES

action rules. In future we plan to propose a generic policy model for AMPol, which can

support action rules to model requirements of any application domain.

Similarly there are lots of open questions regarding AMPol Extension Model which need

to be addressed. Currently the model only supports stateless client-specific extensions

and their customizations. Further work is required to manage complex state-full per

session or multi session client-specific dynamic extensibility and customization. In

current scope we have limited our work to components/extensions for which there is no

or minimal effect on other components and their interaction. In future we need to look

 71

into scenarios for maintaining consistency incase of complex system-wide interactions

and dependencies of extensions. Also we have not addressed security vulnerabilities and

threats to our proposed extension model. We also need to provide a threat model along

with possible security solutions to tackle different types of attacks. Similarly in future we

plan to critically evaluate the overall performance and reliability of our framework and

will propose some enhancements for better efficiency and performance.

 72

CHAPTER 7: CONCLUSIONS

In this work we have explored the idea of developing an adaptive policy based messaging

system and tried to solve the limitation faced by the conventional messaging systems.

The AMPol approach is to enable parties to advertise communication policies to which a

sender can adapt in order to get a message to a recipient on terms acceptable to the

recipient. The communicating parties check their own environment, determine and set up

dynamic conversation policies through policy advertisement, negotiation and migration.

By enforcing the policy, both sides perform agreed operations on the messages, install

and execute designated third-party plug-ins and finally send messages between

themselves. Thus, this approach present a more flexible and extensible messaging

platform to the applications.

AMPol is based on three adaptation perspectives: dynamic adaptation of policies,

adaptation of system interaction protocols and adaptation of core application structure. In

AMPol, for these three perspectives we have proposed models for Policy Adaptation,

Policy Negotiation and System Extensibility. By using these models, we have shown that

the system can generate and enforce dynamic policies to react to ever-changing

requirements in an adaptive manner. In this work different case studies are described and

we have shown that how declarative requirements in the form of policies can help system

achieve adaptability and flexibility. In this work we have emphasized on the architectural

aspects of the AMPol System and have only presented applications in the area of internet

email and VoIP communication to support our proposed theory. In future we plan to

investigate other related areas building on our current work.

 73

7 REFERENCES

[1] RFC 2476 Message Submission.

[2] Eddy Truyen, Bart Vanhaute, Wouter Joosen, Pierre Verbaeten, Bo
Noerregaard Joergensen, "Dynamic and Selective Combination of Extensions
in Component-based Applications", in Proceedings of the 23rd International
Conference on Software Engineering (ICSE'2001), May 2001, Toronto,
Canada.

[3] Eddy Truyen, Bart Vanhaute, Wouter Joosen, Pierre Verbaeten, Bo
Noerregaard Joergensen, "A Dynamic Customization Model for Distributed
Component-Based Applications, accepted for International Workshop on
Dynamic and Distributed Multiservice Architectures (DDMA 2001).

[4] Eddy Truyen, Dynamic and Context-Sensitive Composition in Distributed
Systems, PhD thesis, K.U.Leuven, Belgium, November 2004

[5] Juan Jim Tan, Stefan Poslad, Yanmin Xi: Policy Driven Systems for Dynamic
Security Reconfiguration. AAMAS 2004: 1274-1275

[6] G. Kiczales et al. The Art of the Metaobject Protocol. MIT Press, 1991.

[7] G. Kiczales, Beyond the Black Box: Open Implementation, IEEE Software,
vol. 13, no. 1, 1996.

[8] K. J. Lieberherr, The Art of Growing Adaptive Object-Oriented Software,
PWS Publishing Company, 1995.

[9] G. Kiczales et al., Aspect-Oriented Programming, In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP’97),
Springer LNCS 1241, 1997.

[10] M. Aksit et al., Abstracting Object-Interactions Using Composition-Filters, In
Object-based Distributed Processing, R. Guerraoui et al. (eds.), 1993.

[11] M. Mezini and K. Lieberherr, Adaptive Plug-and-Play Components for
Evolutionary Software Development, In Proceedings of the Conference of
Object-Oriented Programming, Systems and Languages (OOPSLA’98), 1998.

[12] T. A. Campbell, QoS Architectures, In Multimedia Communications
Networks, M. Tatipamula and B. Khasnabish (Eds.), Artech House Publishers,
Chapter 3, 1998.

[13] W. L. Hursch and C. V. Lopes, Separation of Concerns, Technical Report
NU-CCS-95-03, Northeastern University, 1995.

[14] Y. Ichisugi, EPP: Extensible Type System Framework for a Java Pre-
Processor, In Proceedings of SPA’99, 1999.

 74

[15] Adam J. Lee, Jodie P. Boyer, Lars E. Olson, and Carl A. Gunter. Defeasible
Security Policy Composition for Web Services. Technical Report, CS Dept,
University of Illinois, 2005.

[16] Kevin D. Lux, Michael J. May, Nayan L. Bhattad, and Carl A. Gunter.
WSEmail: Secure Internet Messaging Based on Web Services. Technical
Report, University of Pennsylvania.

[17] TulaFale: A Security Tool for Web Services,
http://blogs.msdn.com/bgroth/archive/2005 /01/11/351109.aspx

[18] ProVerif: A Tools for Analysis of cryptographic protocols,
http://www.di.ens.fr/~blanch et/crypto-eng.html

[19] D. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In 2nd International Workshop on Policies for
Distributed Systems and Networks, Bristol, UK, January 2001.

[20] T. Grandison and M. Sloman, Trust Management Tools for Internet
Applications, Proc 1st Int.Conference on Trust Management, May 2003,
Crete, Springer LNCS 2692, pp 91-107.

[21] L. Lymberopoulos, E. Lupu and M. Sloman. Using CIM to Realize Policy
Validation within the Ponder Framework. DMTF Global Management
Conference, San-Jose, California, June 2003. (winner Academic Alliance
Paper Competition)

[22] A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. R. Breedy, L.
Bunch, M. Johnson, S. Kulkarni and J. Lott. KAoS policy and domain
services: Toward a description-logic approach to policy representation,
deconfliction, and enforcement. In Proceedings of Policy 2003, Como, Italy.

[23] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith,
, and L. Yu. Negotiating trust on the web. IEEE Internet Computing, 6(6),
2002.

[24] T. Yu, Automated Trust Establishment in Open Systems, PhD thesis,
Department of Computer Science, University of Illinois at Urbana-
Champaign, 2003.

[25] T. Yu, M. Winslett, and K. E. Seamons, "Automated Trust Negotiation over
the Internet,'' 6th World Multiconference on Systemics, Cybernetics and
Informatics, Orlando, July 2002.

[26] M. Winslett, "An Introduction to Automated Trust Negotiation,'' Workshop on
Credential-Based Access Control, Dortmund, October 2002.

[27] K. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Requirements for
Policy Languages for Trust Negotiation. In 3rd International Workshop on
Policies for Distributed Systems and Networks, Monterey, CA, June 2002.

 75

[28] World Wide Web Consortium (W3C), http://www.w3.org/

[29] Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/home/index.php

[30] Web Services Enhancements (WSE),

http://msdn.microsoft.com/webservices/building /wse/default.aspx

[31] J. Fenton and M. Thomas. Identified internet mail. Work in Progress draft-
fenton-identified-mail-01, IETF Internet Draft, October 2004. Expires April
2005.

[32] A. Serjantov and S. Lewis. Puzzles in P2P systems. 8th CaberNet Radicals
Workshop, Corsica, October 2003. http://citeseer.ist.psu.edu/637647.html

[33] A. Back. Hashcash – A Denial of Service Countermeasure. 1997.
http://www.cypherspace.org/hashcash/

[34] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
Ernest F. Brickell, editor, Proc. CRYPTO ’92, pages 139-147. Springer-
Verlag, 1992.http://research.microsoft.com/research/sv/PennyBlack/junk1.pdf

[35] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authentication with client
puzzles. In Bruce Christianson, Bruno Crispo, and Mike Roe, editors,
Proceedings of the 8th International Workshop on Security Protocols, to
appear in the Lecture Notes in Computer Science series, Cambridge, UK,
April 2000. Springer. http://citeseer.ist.psu.edu/aura00dosresistant.html

[36] D. J. Bernstein, SYN Cookies, http://cr.yp.to/syncookies.html

[37] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack. Upgrading
transport protocols using mobile code. In Proc. SOSP, pages 1–14, Bolton
Landing, NY, Oct. 2003.

 76

8 APPENDIX A: WSEMAIL-PUZZLE DEMO

SCREENSHOTS

This section contains screen shots of a WSEmail-Puzzle demo. The RMTA policies

requires sender SMUA to solve a RTT puzzle and the RMUA requires sender SMUA to

solve a Hash Cash puzzle. The Figures 20 and 21 shows the corresponding policies.

Fig 20: RMTA Policies

Fig 21: RMUA Policies

<WSEmailPolicy xmlns:xsd="http://www.w3.org/2001/XMLSchema"

type="static" node="WSEmailMUA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">
 <PolicyRules>
 <PolicyRule Id="#01" type="A" DllName="HashCash.dll"

RetrieveURI="http://seclab-
london.cs.uiuc.edu/classes/HashCash.dll"

 FriendlyName = "HashCash No.1" Version = "1.0">
 <Key>HashCash</Key>
 <Description>HashCash Puzzle</Description>
 </PolicyRule>
 </PolicyRules>
</Ingresspolicy>

</WSEmailPolicy>

<WSEmailPolicy xmlns:xsd=http://www.w3.org/2001/XMLSchema

type="static" node="WSEmailMTA">

<Ingresspolicy xmlns="http://securitylab.cs.uiuc.edu/WSEmail">

<PolicyRules>
<PolicyRule Id="#05" type="P" DllName="RTT.dll"
RetrieveURI="http://seclab-london.cs.uiuc.edu/classes/RTT.dll"

 FriendlyName = "RTT No.1" Version = "1.0">
 <Key>RTT</Key>
 <Description>RTT Puzzle</Description>
 </PolicyRule>
 </PolicyRules>
</Ingresspolicy>

</WSEmailPolicy>

 77

The following screenshots step by step shows a scenario of SMUA sending message to

RMUA and solving puzzles required by RMTA and RMUA to successfully send the

message.

Fig 22: Login Window

Fig 23: Message Sending Window

 78

Fig 24: RTT Puzzle Download

Fig 25: Solving RTT Puzzle

 79

Fig 26: Hash Cash Puzzle Download

Fig 27: Solving Hash Cash Puzzle

 80

Fig 28: Message Received

Fig 29: Viewing Message

 81

If sender is not able to correctly solve the puzzle then message is not delivered and

“Delivery Failure” error is send back to sender.

Fig 30: Viewing Error Message

 82

AUTHOR’S BIOGRAPHY

Raja N. Afandi graduated from the GIK Institute of Engineering Sciences and

Technology, Pakistan in 2000 with Bachelors in Computer Systems Engineering. Before

joining UIUC graduate programme, Afandi worked as a Software Analyst for ABN-

AMRO Global IT Systems, Pakistan for several years. He completed a Master of Science

in Computer Science from the University of Illinois in 2005.

