
AMPol-Q: Adaptive Middleware Policy to Support QoS

Raja Afandi, Jianqing Zhang, and Carl A. Gunter

University of Illinois Urbana-Champaign, Urbana, IL 61801, USA,
afandi@illinoisalumni.org,{jzhang24,cgunter}@cs.uiuc.edu

Abstract. There are many problems hindering the design and development of
Service-Oriented Architectures (SOAs), which can dynamically discover and com-
pose multiple services so that the quality of the composite service is measured
by its End-to-End (E2E) quality, rather than that of individual services in iso-
lation. The diversity and complexity of QoS constraints further limit the wide-
scale adoption of QoS-aware SOA. We propose extensions to current OWL-S
service description mechanisms to describe QoS information of all the candidate
services. Our middleware based solution, AMPol-Q, enables clients to discover,
select, compose, and monitor services that fulfil E2E QoS constraints. Our im-
plementation and case studies demonstrate how AMPol-Q can accomplish these
goals for web services that implement messaging.

Key words: AMPol-Q, WSEmail, Adaptive Middleware, Policy, Service Ori-
ented Architecture, QoS, Dynamic Service Discovery, Security, Ontologies.

1 Introduction
Although there has been considerable attention devoted to the composition of functional
properties in Service Oriented Architectures (SOAs), more work is needed to deal with
non-functional Quality of Service (QoS) properties such as reliability, performance and
security required by clients. Issues that need attention include providing QoS features
at the level of the individual service and client, discovering and composing candidate
services on the basis of QoS features, monitoring and ensuring that a promised QoS
is actually provided during execution, and adopting and using QoS-aware SOAs on a
large scale. At least three problems must be overcome. First, current approaches [1–3]
for dynamic service discovery and composition do not provide a global view of QoS
features about all candidate services prior to invocation. They are limited to discover-
ing first-level immediate services, and each individual service is responsible for dis-
covering other services independently. They also lack the comprehensive specification
of QoS features. Second, QoS is not compositional in the sense that functional fea-
tures expressed through interfaces or functional components are composed to achieve a
composite functionality (e.g. workflow systems). QoS-based composition requires com-
plex calculations of aggregate QoS values of multiple entities involved in a transaction.
Participants are interested in the final aggregate value of the runtime global QoS (e.g.
end-to-end delay, overall cost, global integrity and confidentiality). However, current
QoS-aware systems are not able to support global QoS behavior. Third, and finally,
QoS-aware service composition and negotiation may not be effective without moni-
toring. Most QoS-aware systems do not guarantee that an agreed quality of service is



actually provided during execution. Existing QoS-monitoring approaches [4, ?,5] rely
on trusted third parties to centrally monitor QoS delivered by service providers. This is
technically difficult and limited to QoS features like availability and performance, while
security and privacy cannot be covered. Moreover, monitoring involves complex and
domain-specific logic for measuring and verifying QoS, which make the task harder.

To address these problems, we have developed an Adaptive Middleware Policy to
Support QoS (AMPol-Q). Our approach is based on an integrated collection of refer-
ence frameworks for description, discovery, and monitoring that are specially suited to
handle QoS features in a SOA. The description framework includes semantic model
for capturing QoS requirements, constraints and capabilities. We extend current ser-
vice description and advertisement mechanisms (OWL-S and UDDI) to gather QoS
information about all the candidate services. For efficient implementation, we represent
these QoS requirements as policy rules. In the discovery framework, AMPol-Q serves
as a broker (at the client end) for dynamically discovering and composing matched
services on the basis of functional as well as non-functional features. The candidate
services are first discovered on the basis of their functional capabilities and the final
set of services is selected according to their QoS features. This approach is capable
of evaluating global quality requirements and applying different types of optimizations
(such as context-aware optimizations) to select the best-matched services. It negotiates
the QoS properties between service providers and consumers to create an agreement.
The monitoring framework provides an agile and adaptive mechanism to automatically
plug in customized modules for measuring, verifying and ensuring QoS features with-
out modifying the baseline system. We use a technique [6] in which the QoS contracts
are monitored at each individual participant. Furthermore we improve on distributed
monitoring approaches by providing support for two-way specialization.

We validated AMPol-Q with a prototype implementation and a case study on WSE-
mail [7] that shows how AMPol-Q can enhance the function of email messaging sys-
tems by enabling automatic deployment and use of complex QoS features like cycle
exhaustion puzzles, reverse Turing tests and identity based encryption without the need
for global deployment or changes to the baseline system. This case study shows how
SOA can support QoS-aware service discovery, selection and monitoring.

2 Description Framework

The AMPol-Q description framework is a collection of interoperable semantic models
used to represent QoS features of all entities in SOA. These QoS ontology and policy
models, which are extensions to current service description frameworks [8–11], are
intended for global discovery and selection of candidate services on the basis of QoS
features. They are based on layered semantic models (QoS Ontology, Policy and Entity
Profile). The steps of describing QoS features are a series of bottom up instantiations of
these models. We use semantic models because they can be easily extended with new
concepts. Furthermore, existing reasoning tools can be applied on the semantic models
to detect ambiguity or inconsistency. Our discussion focus on novel features related to
capturing global QoS behavior and to achieve support for E2E Global QoS.



Semantic QoS Ontology Model Our semantic QoS ontology model provides a stan-
dard generic ontology for arbitrary QoS features. It defines the nature of associations
between QoS concepts, QoS metrics, and the way they are measured and monitored.
Figure 1 shows the detailed ontology model. To facilitate reusability and extensibility,

Fig. 1. AMPol-Q QoS Model

the ontology has a modular design and is categorized into three models: base, monitor-
ing and domain.

In the QoS base ontology model, each QoS feature is an instance of a class QoSFea-
ture, and it is associated to a Quantitative or Qualitative property. Quantitative relates
the attributes which can be measured by numbers with a particular unit. For example,
the percentage availability of a service. Qualitative relates to attributes which cannot
necessarily be measured by exact amount. For example, the obligation features such as
requirement of data encryption or providing an X.509 certificate.

In the context of global QoS, we define QoSSimple and QoSCopmosite as sub-
classes of QoSFeature. QoSComposite represents complex global QoS features which
are drawn from calculation of aggregate QoS values. For example, the formula for com-
posite service availability is the product of availability measure of each participant
service. The computational logic is captured by AggregateFormula. Different entities
may specify QoS values (QoSMetricValue) with different units (e.g. 90% versus 0.90
or 50F versus 10C). The unit conversion is done by QoSConversion, which captures
the conversion logic. In global QoS, there are dependencies and correlations between
QoS features. For example, some QoS values are inversely proportional each other, e.g.
the service response time and the throughput; some are directly proportional, e.g. ac-
cessibility and availability. QoSRelation class captures these relationship types. Some



composite QoS is measured from aggregate values of different types of related QoS
feature. For example, response time at a client is a sum of network latency and service
processing time. This behavior is captured by the has-a object property.

Current QoS modeling approaches [3, 8, 9] do not have ontologies to support mea-
surement, verification or monitoring of QoS features. We propose a QoS monitoring
ontology model, which binds QoS features with their corresponding monitoring pro-
cess (QoSMonitoringProcess). The QoS monitoring process involves measurement of
QoS features, verification by evaluating measured QoS values against required policy
values, adherence logic to provide required QoS features, and enforcement logic to e.g.
permit or deny the requests. Domain specific ontologies can be defined by extending
QoS base ontology model. We sketch a domain ontology for our case study later.

Policy Model AMPol-Q represents QoS features in the form of policy rules. The policy
model specifies rules that use QoS ontologies to define QoS features of a particular
entity. These policy rules are then used to describe, discover and compose services and
to monitor QoS. See [12] for details of AMPol-Q policy model.

Policy rules are defined as an implication property in the form of antecedent implies
consequent, e.g. [(a:QoSFeature o:Operator a:QoSValue) connective (b:QoSFeature
o:Operator b:QoSValue)] implies [ACTION]. The Rule property uses QoS ontology to
represent antecedent conditions; action can be permit or deny. Both QoS constraints
and capabilities are described as rules.

For dynamic service composition based on global QoS, the advertised QoSValue
can be calculated only if the QoS values of all dependent services are determined. For
example, a loan processing service LP provides functionality for acquiring loans from
banks. In order to process loan requests it talks to credit reporting agency CR to verify
a client credit history and coordinate with bank B for loan processing. Processing time
for acquiring a loan (the functionality of the LP service) can be calculated by adding
its processing time (P:QoSFeature) and processing times of all the dependent services
(CR and B). If CR and B are dynamically discovered then LP’s processing time cannot
be calculated beforehand. Current description languages are not able to handle these
kinds of complex QoS features. To solve this problem we introduce a concept of rule
templates. Rule templates can specify antecedents containing unresolved template vari-
ables. Antecedents can be evaluated only if all the template variables are determined
(during runtime). In the above scenario, say, LA processing time is 50ms, the capa-
bility rule of LA can be represented as [P:QoSFeature = (50ms:QoSValue + p1:T1 +
p2:T2)], where p1 and p2 are template variables, T1 and T2 are templates which are
defined as T1 = ((B.P):QoSValue) and T2=((CR.P):QoSValue). This problem can also
be solved by modeling each QoS feature as a QoSComposite object with a has-a object
property to represent dependent QoS feature values and an AggregrateFormula object
to represent aggregation logics. But our policy engine implementation has shown that
rule templates are simpler to construct and more efficient to evaluate.

AMPol uses meta-specification (the policies of a policy) to specify how polices are
evaluated and enforced. For example, in a service oriented environment for monitoring
global QoS, the policy model should be able to specify which entities the policy is ap-
plied to and which entities enforce them. In a distributed system, the creator of the rule
or the policy might not be the entity who will check the enforcement of the policy. So



it is necessary to indicate the subject and target of the policies explicitly. Furthermore,
by explicitly relating rules to their enforcement and adherence components (QoS mon-
itoring components), our adaptive policy model can take the policy conformance and
enforcement logics for each individual quality requirement out of the core application.
This is beneficial for monitoring QoS features in a flexible and dynamic manner. Each
Rule or RuleSet has associated meta-information, which is captured through the class
MetaSpecification. MetaSpecification has Subject, which is the entity the rule or rules
set will be applicable to (entity providing QoS feature), and Target, which is the entity
enforcing the rule or rules set (entity assuring QoS is met). It uses Transformation and
QoSMonitoringProcess for policy enforcement.

The policy model aids wide-scale adoption of complex and dynamic QoS features.
The policy language is generic enough so that the policy semantic schema and core
components (policy engine, inference engine, merging, comparison, conflict resolution
and so on) do not need to be modified by the addition of new assertions. Addition
and execution of associated third-party components is also policy driven (extension
policies).

Entity Profile Model Finally, we propose a construct named profile which captures
everything required to specify QoS features. It can be associated with a system en-
tity and can be advertised. Thus, clients can use it to discover desired services. Entity
profiles represents entities’ QoS capabilities, constraints, extension constraints, service
dependencies and dependent request templates. The client profile contains only QoS
capabilities, QoS constraints, and extension constraints.

The entity profile model supports end-to-end global QoS better than current service
description and advertisement mechanisms such as OWL-S. Unlike current approaches,
every service description in AMPol-Q explicitly specifies a list of its dependent services
so that the discovery mechanisms can gather global QoS information about all the can-
didate services. Furthermore, we propose service request templates, a functional request
based on IOPE attributes [13], to enhance dynamic services discovery. These templates
have static IOPE attributes and dynamic IOPE template variables which can be instan-
tiated using the client functional request’s IOPE attributes. Each service provides the
templates for their dependent services and the third party can use them to discover
other services.

We use OWL to implement the QoS model and core policy model constructs. Policy
rules are written using SWRL language constructs, which use an ontology vocabulary
described by the QoS model in OWL. The benefit of using this two layer approach is
that, first by using OWL, it is possible to perform reasoning over the knowledge model
(QoS model) and the policy rules, and second, by the use of SWRL policy rules and
underlying policy framework, the system’s QoS behavior can be controlled without any
ambiguity. Details of the implementation are given in [12].

3 Discovery Framework
Discovery framework consists of Service Discovery and Chaining, Global QoS Analysis
and Policy Agreement and Contract Negotiation. It provides mechanisms for discover-
ing global QoS information about all the candidate services, selecting best matched



services and binding selected parties in a QoS contract. As mentioned in Section 1,
QoS based service composition requires complex calculations of aggregate and global
QoS values, which makes it hard to work with QoS features without global analysis.
We will show how this section addresses issues related toGlobal QoS based service
composition.

Fig. 2. Service Chain Graph

Service Discovery and Chaining The framework initiates a discovery process on be-
half of a client. First the immediate-level services are discovered by using conventional
IOPE based discovery approach. IOPE based request is send to a registry or directory
service, which returns a list of services matched on the basis of functional IOPE at-
tributes. We extend the discovery approach proposed by [14] to return AMPol-Q entity
profile for the selected services. For each first-level service, the IOPE base discovery
process is re-run to gather profiles of its dependent services. The IOPE request for dis-
covering dependant services is generated from the request templates associated with a
dependent service. The template variables are first assigned values from the available
IOPE information of client or other services and then fully populated request is used
for discovering profiles of dependent services.

Service discovery process continues until the profiles of all the candidate services
are discovered. This global information can be modeled as an AND-OR graph called
Service Chain Graph (SCG). In the SCG, an OR combination shows the option of
choosing one of the candidate service and an AND combination represents dependent
services which must be composed. Figure 2 shows a SCG for the example of loan
processing agency we discussed before. In this example, we have an option of two



candidate services for each type. Client has an option of getting loan either from loan
processing agencies or directly from a bank. Only bank B2 directly deals with small
business clients. Loan processing agencies are dependant on credit reporting agencies
and banks. Bank B1 independently verifies the credit score of a client from an external
credit reporting service, while bank B2 has its own internal credit reporting department.
By doing a traversal on SCG we can easily extract service chains (SC). Service chain
represents a set of services which can provide a required service functionality. Global
QoS analysis is done on each service chain to select a best candidate chain for final ex-
ecution. For the above example, we have thirteen possible service chains. Service chain
are further modeled as a tree to simplify the global QoS analysis and policy matching.

Global QoS Analysis and Policy Agreement Global QoS analysis has two steps: 1)
pre-process QoS information; 2) match the policies and create a contract. These steps
are repeated for each service chain in a SCG to create a list of policy contracts with
associated agreement value.

Pre-processing is to map the global QoS requirements and capabilities to each indi-
vidual node so that policy matching and agreement can be done independently between
two nodes. It involves normalizing ontologies, filling rule templates, calculating ag-
gregate QoS values, propagating rules and associating different entities with constraint
rules. For example, for service chain 5 in Fig 2, the aggregate availability of the com-
posite services (LA1, B2 and CR2) will be calculated by the product of availability
value of each individual service, and then either a new capability rule is added to rep-
resent this value (e.g. in case of a broker) or the capability value of first level service
(LA1) is replaced by the calculated aggregate value. Similarly, suppose client has a re-
quirement of end-to-end message confidentiality then this constraint is propagated to
all the services in the chain, so that during policy matching phase it can be compared
against capabilities of each service.

Next, to find out whether a node fulfills the QoS requirements or not, QoS con-
straints are matched with QoS capabilities. For any constraint, if there is no matching
capability (or capability is not sufficient enough) then there must be an associated capa-
bility module (adherence logic). Every rule can have associated adherence, verification
and enforcement modules. If external capability is required then it must be checked
against extension policy restrictions of that node. QoS requirement rule can only be
satisfied if there is a matching capability rule available or there is an extension module
available to provide the QoS capability and there are no extension restrictions on this
module.

At last, a policy contract is created and an agreement value is assigned. Policy con-
tract contains all entities in a service chain along with their capabilities and imposed
constraints. Agreement value is penalized for every non-resolvable conflict, missing as-
sociated capability, no associated monitoring module, restricted extension modules etc.
The service chains in which entities cannot fulfill the QoS requirements of each other
are heavily penalized and hence have less chance of getting selected.

Contract Negotiation The contract with maximum agreement value in the policy con-
tract list is selected, verified and signed from each entity in the service chain. The terms



of the contract imply that the entities in question will comply with all the QoS con-
straints and will provide agreed upon QoS behavior. Policy contract is sent to each
party in a service chain. Each individual entity verifies the contract policies against its
private policies (if any). If a contract is rejected by any entity in a service chain then a
next best contract is chosen for agreement. Negotiation process continues until all the
entities agree on a particular contract. Because our service selection approach is based
on global QoS information, it is able to select best set of services, while most existing
approaches [14, 13, 15, 3, 1] can only select the first available matched service(s). Con-
tract negotiation phase is optional but it provides assurance of a desired QoS from all
entities even if capabilities or constraints are not advertised.

Implementation details of AMPol-Q discovery framework are are given on the [12].

4 QoS Monitoring Framework

Adaptive Middleware for QoS Monitoring Monitoring involves measuring delivered
QoS, verifying QoS features and taking enforcement actions. AMPol-Q is an agile and
adaptive middleware framework that enables the participants to adapt to QoS features
of others during runtime. It is realized by two-way specialization, which extracts the
logic of measuring QoS values and verifying and enforcing QoS policies by third party
customized and pluggable components. These components are called extensions. This
is executed in the way described by extension policies. The QoS features in a policy
contract are associated with these extensions and can be dynamically added or removed
per collaboration. In order to support a new QoS behavior, we do not need to change
the core of the application. Instead AMPol-Q middleware can locate, load and execute
new extensions automatically. The whole procedure is called system extension. We have
used a middleware approach to mask problems of heterogeneity and distribution. Its
flexibility and extensibility helps to support dynamic QoS, fine-grained policy control
and seamless system evolution. It hides the implementation complexity from the core
application logic and the functionality provided can be re-used by different applications.
The discovery framework is also a part of the AMPol-Q middleware, which acts as a
broker at the client end for discovering and selecting services. Figure 3 shows different
components of the AMPol-Q middleware.

Entities in a service chain must be capable of providing requested QoS features,
fulfilling QoS requirements, or complying with QoS constraints. We call this an adher-
ence logic. First we need to distinguish between two types of QoS features, pluggable
and non-pluggable. Pluggable QoS can be supported independently without any signif-
icant change to the core application, e.g. an encryption algorithm. Non-pluggable QoS
features that cannot be supported by just adding an external capability, e.g. process-
ing time or network bandwidth. Generally, qualitative features (capabilities) are likely
to be pluggable more often than quantitative ones. A specialization can only be ap-
plied to a pluggable QoS feature. QoS capabilities may be pluggable through adherence
components, while logic for QoS measurements, verification and enforcement for both
qualitative and quantitative QoS features are easily pluggable.

The monitoring framework has three core components: QoS measurement, policy
verification, and policy enforcement. Each component is heavily reliant on extensions.



Fig. 3. AMPol-Q Middleware

The service invocation process starts with the interpretation of policy contract at the
client side. It executes a series of verification and adherence extensions on a request
message to provide required QoS for a target service. On receiving a request, the ser-
vice middleware first verifies the QoS constraint imposed by a service on the client.
According to verification result the enforcement logic either rejects the request or for-
wards it to the service. Once the response is ready, the verification logic verifies that
a response complies with client constraints. If the verification fails, the pluggable ad-
herence logic is executed to conform the response message with the client constraints.
On receiving a response, the client verifies the QoS delivered by the service, which
may involve measuring QoS through extensions. If verification fails, then the enforce-
ment mechanism will take actions accordingly. The QoS policies are verified, adhered
or enforced on a point-to-point basis, but eventually they all comply with global QoS
constraint and requirements.

Extension Manager The extension manager manages extension components and the
system extension process. Extension management is controlled by extension policies,
in which extensions are downloaded and executed only if extension policies allow doing
so. Extension policies may restrict a type of extension to be only downloadable from a
particular trusted extension server or may restrict the execution of an extension to allow
limited access to the system resources (such as sandbox execution). Additionally, The
system extension has a meta-level control over the adaptation process to ensure that the
changes are effective.

Modules of the monitoring framework are implemented in C# and the extensions
are packaged in separate DLLs. Details are given in the [12].



5 Validation and Case Studies

Policy-based WSEmail In this case study, we integrate AMPol-Q with WSEmail [7]
to show how the email services could be enhanced to support QoS features in an end-
to-end adaptive manner. In particular, our implementation is able to add new QoS re-
quirements for availability and security. It deploys and uses plug-ins for puzzles [16] to
raise burdens for email spammers [17, 18], and identity-based encryption [19] to allow
senders to encrypt mail for recipients based on email addresses or other strings. As with
the puzzles, our goal is to show how AMPol-Q can aid the deployment of IBE without
requiring universal adoption of IBE by users. This case study is an extension of our
implementation in [20] and illustrates the application of AMPol-Q to systems based on
static service invocation rather than purely discovering other service dynamically.

The case study uses security domain QoS ontologies named APES [20] (Attach-
ment, Payment, Encryption and Signature). Encryption and Signature classes specify
the cryptographic parameters used for encryption or signature. For availability, Payment
class specifies the type of cost (puzzles) imposed on the message sender. Attachment
class specifies the patterns of the messages and attachment files, which is the primary
medium for spreading viruses.

There are four entities involved in the system, the Sender Mail User Agent (SMUA),
the Sender Mail Transfer Agent (SMTA), the Recipient MTA (RMTA) and the Recip-
ient MUA (RMUA). MTAs advertise their clients and their own entity profiles, which
are merged with client profiles for simplicity. MTAs entity profiles also contain depen-
dent services (Relays or RMTAs) and their request templates, which can be used to
dynamically discover dependent MTAs. These request templates also specify a mecha-
nism to discover relaying MTAs by providing a reference to an extension e.g. a plugin
for querying local DNS server for finding next hop MTA. In the example settings we
map a MTA to a single relay per email address domain, which is in fact a target RMTA.
So in this case we only have one service chain with three entities (SMUA =⇒ SMTA
=⇒ RMTA). Also there is a third-party trusted plugin-server which hosts the exten-
sions. For the current setup we show how the SMUA can automatically adapt to the
QoS constraints of the target services (SMTA, RMTA and RMUA).

The MUA’s AMPol-Q middleware is configured as a broker for discovering pro-
files of other entities. AMPol-Q first requests an SMTA entity profile and then fills in
the dependency request templates; this only requires email addresses for the users. It
invokes a pluggable discovery component to retrieve the merged entity profile of the
RMTA. Because there is only one service chain, a single contract is created with an
agreement value and simply send to other entities for QoS monitoring. Messages sent
by the SMUA are verified against the contract and accordingly adherence extensions are
downloaded and executed to conform the message with required QoS constraints. At the
SMTA, the received message is first verified by the middleware and then processed by
the SMTA application (if the verification succeeds). When the message is relayed to
the RMTA, it is again verified and then forwarded to the RMUA. QoS discovery, ver-
ification, measurement, adherence and enforcement mechanisms are provided through
pluggable extensions which are automatically downloaded from a trusted third party
plug-in servers.



Web based WSEmail Based on WSEmail, this case study realizes AMPol-Q for typical
web-based applications. Here a web browser client (CB) and a web application server
(AS) adapt themselves to accommodate QoS aware service discovery and monitoring.
The motivation behind this case study is that most of the client applications in SOA
are web based and we try to show that how easily AMPol-Q can enable these client
applications to be QoS aware.

We extended WSEmail by providing an application server and a browser-based
MUA instead of the WSEmail MUA. We also extended it to provide a multi-hop and
multi-relay topology to dynamically discover relays. Profiles are advertised on a UDDI-
based server instead of relying on DNS entries. On receiving an HTTP request from a
MUA browser, the application server internally talks to the WSEmail MTA and replies
with an HTML page. In contrast to previous case study, it is not possible for the web
client to do dynamic discovery and selection of services and to publish or advertise its
QoS policies.

Our implementation considers AS and CB to be two independent entities with their
own QoS features. CB does not need to discover any services as it statically invokes
AS, while AS dynamically discovers other services. HTTP request from a CB is inter-
cepted by AMPol-Q middleware and it first sends a modified HTTP request for service
selection along with CB’s QoS policies and functional intent to AS. The corresponding
AMPol-Q middleware component at AS receives the request and initiates the service
discovery based on CB request. We consider each AS application (for example, servlet
or asp pages) to be a service interface and like other services, AS should also provide
a complete entity profile including request templates to discover other dependent ser-
vices. In the web-based scenario these profiles do not need to be advertised at registry
service as the AS is never dynamically invoked by clients. The final service chain is
selected and the contract is negotiated by AS. The communication between AS and CB
is done through HTTP requests and responses. Finally the original HTTP request from
CB is evaluated against an agreed contract and the final modified HTTP request is sent
to AS. On receiving a response message, it is monitored by verifying against agreed
contract.

We used Firefox Mozilla v1.5 as the browser and Apache Tomcat (v4.1) as AS.
See [12] for the implementation details and video demonstration.

6 Related Work

Different service description (e.g. OWL/OWLS, Web Service Modeling Ontology) and
QoS models [1, 8, 9] represent services with both functional and non-functional require-
ments, but they do not provide explicit support for compositional QoS and E2E service
discovery. The OWL-S process model has implicit information about dependent ser-
vices, but this information is not useful for discovering other services. Additionally, the
QoS models in these works do not capture monitoring and compositional aspects. There
are studies [2, 3, 14, 21] on QoS aware dynamic discovery and composition of services,
but these are not able to discover or compose services on the basis of E2E global QoS
features and do not provide sufficient support for continuously changing QoS require-



ments. There is no comprehensive specification that states how dynamic selection and
invocation of services is to be performed on the bases of QoS features.

There are efforts on contract monitoring [5, 6] and mediating services [4, 15] through
trusted third parties, but these approaches are based on local criteria and do not ad-
dress the global end-to-end QoS assurance problem of the composite business services.
Different policy frameworks [10, 11] are used to enforce requirements for individual
entities. Adaptability is achieved by adding, customizing or replacing entities such as
aspects [22], components, or concerns [23]. Existing efforts assume a built-in logic to
support and ensure QoS policy constraints (QoS requirements) or have a static binding
with external processing components to handle policy rules. AMPol-Q provides a more
flexible approach because it takes the QoS logic out of the core application and provides
it in a form of pluggable extensions.

There is a work [24] on a broker-based framework for QoS-aware Web Service
(QCWS) composition. It is based on several service selection algorithms used to ensure
the E2E QoS of a composite web services. This work addresses the problem of evaluat-
ing E2E QoS, but leaves open questions about how to support and ensure them. It also
does not address the issue of how to dynamically discover E2E global QoS information.

There is work [25, 26] on dynamic adaptation in a service-oriented framework that
addresses entities that have different QoS requirements on a per session basis. This work
does not provide concrete negotiation protocols and does not explicitly specify which
system entity will enforce the policy. [27] is another policy-based effort to achieve E2E
adaptability, but it also does not support negotiation of requirements and focuses more
on system extensibility and policy framework. DySOA [28] provides a framework for
monitoring the application system, evaluating acquired data against the QoS require-
ments, and adapting the application configuration at runtime. It has a simple manual
policy negotiation between the requester and the provider but does not support run-
time negotiation. It does not address system extensibility beyond the capability of re-
configuring system parameters. GlueQoS [29] proposes a declarative language based on
WS-Policy to specify QoS features and a policy mediation meta-protocol for exchang-
ing and negotiating QoS features. One obvious limitation of GlueQoS is that it does not
support dynamic system extensibility. All of above efforts only can handle simple QoS
features because WS-Policy framework they use is not generic and adaptive enough to
support new types of QoS constraints.

In a related work [30] on messaging systems we explored using XACML to model
policies for email systems. In this work policies are used for controlling access to mail-
ing lists. A related effort [20] on adaptive policies uses a ‘non-semantic’ policy language
to model security features. AMPol-Q uses a semantic approach to support more com-
plex policies. [20] is similar to AMPol-Q but it is based on systems with static binding
and a more domain-specific focus, while AMPol-Q has a more generic formulation. In
other work [31], we explored more sophisticated policy merging mechanisms than the
ones in AMPol-Q, but these could perhaps be used for AMPol-Q policies as well.



7 Conclusion

We have introduced AMPol-Q, a policy-driven adaptive middleware for providing E2E
support for dynamic QoS features in SOA. Its main contributions are its E2E solu-
tion, its adaptive middleware framework for supporting and monitoring QoS features,
its generic semantics-aware reference architecture for describing, discovering and com-
posing services on the basis of their non-functional features, and its application of this
middleware to the systems based on web services. AMPol-Q differs from other work on
adaptation in its focus on exploring an E2E solution for QoS features that incorporates
all of the necessary support features. This work also provides one of the most complete
studies to date of a proof-of-concept QoS-aware policy system based on Web services.
Our future work includes formal security analysis, improved security measures such as
sandbox protection, features to support privacy, models for negotiating policies, policy
conflict resolution and performance testing.

8 Acknowledgements

We are grateful for help and encouragement we received from Anne Anderson, Noam
Artz, Mike Berry, Jodie Boyer, Rakesh Bobba, Jon Doyle, Omid Fatemieh, Munawar
Hafiz, Fariba Khan, Himanshu Khurana, Steve Lumetta, Adam Lee, Kevin D. Lux,
Michael J. May, Anoop Singhal, Kaijun Tan. This research was partially supported
by NSF CCR02-08996, CNS05-5170, CNS05-09268, and CNS05-24695 and ONR
N00014-04-1-0562 and N00014-02-1-0715.

References

1. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware mid-
dleware for web services composition. In: ITSE’04: IEEE Trans. on Software Engr. (2004)

2. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and dynamic service
composition in eflow. In: Tech. Report, HPL-200039, Software Tech. Lab. (2000)

3. Zeng, L., Benatallah, B.and Dumas, M., Kalagnanam, J., Sheng, Q.: Quality driven web
service composition. In: WWW’03:Proc. of 12th Int. World Wide Web Conf. (2003)

4. Piccinelli, G., Stefanelli, C., Trastour, D.: Trusted mediation for e-service provision in elec-
tronic marketplaces. In: Lecture Notes in Computer Science, 2232:39. (2001)

5. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service based
systems. (In: ICSOC’04: In Proc. of the 2nd Int. Conf. on Service Oriented Computing)

6. Jurca, R., Faltings, B.: Reputation-based service level agreements for web services. (In:
ICSOC’05: In Proc. of the 3rd International Conference on Service Oriented Computing)

7. Lux, K.D., May, M.J., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure Internet messaging
based on Web services. In: Int. Conf. on Web Services (ICWS ’05), IEEE (2005)

8. Tsesmetzis, D., Roussaki, I.G., Papaioannou, I., Anagnostou, M.E.: Qos awareness support
in web-service semantics. In: AICT-ICIW’06. (2006)

9. Dobson, G., Lock, R., Sommerville, I.: Qosont: a qos ontology for service-centric systems.
In: EUROMICRO-SEAA’05. (2005)

10. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization and
privacy for semantic web services. (In: AAAI’04: Workshop on Semantic Web Services)



11. Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken, S.: Kaos
policy management for semantic web services. In: IIS’04: IEEE Intelligent Systems. (2004)

12. AMPol-Q: website. http://seclab.cs.uiuc.edu/ampol/AMPol-Q (2006)
13. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with interac-

tive composition techiques. In: IEEE Intelligent Systems, 19(4). (2004)
14. Pathak, J., Koul, N., Caragea, D., Honavar, V.G.: A framework for semantic web services

discovery. In: WIDM05. (2005)
15. Shuping, R.: A model for web service discovery with qos. In: ACM SIGecom. (2003)
16. von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using hard AI problems for

security. In: Proceedings of Eurocrypt. (2003) 294–311
17. Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection depletion

attacks. In: NDSS99: Networks and Distributed Security Systems. (1999)
18. Dwork, C., Naor., M.: Pricing via processing or combatting junk mail. In Brickell, E.F., ed.:

Proc. CRYPTO 92, Springer-Verlag (1992) 139–147
19. Boneh, D., Franklin, M.: Identity based ecncryption from the Weil pairing. SIAM J. of

Computing 32(3) (2003) 586–615
20. Afandi, R., Zhang, J., Hafiz, M., Gunter, C.A.: AMPol: Adaptive Messaging Policy. In:

4th IEEE European Conference on Web Services (ECOWS’06), Zurich, Switzerland, IEEE,
IEEE Conference Publishing Services (2006)

21. Karastoyanova, D., Buchmann, A.: Development life cycle of web service-based business
processes. enabling dynamic invocation of web services at run time. In: ICSOC’05: In Proc.
of the 3rd International Conference on Service Oriented Computing. (2005)

22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proceedings ECOOP ’97.
Volume 1241 of LNCS., Jyvaskyla, Finland, Springer-Verlag (1997) 220–242

23. Hürsch, W., Lopes, C.V.: Separation of concerns. Technical Report NU-CCS-95-03, College
of Computer Science, Northeastern University, Boston, Massachusetts (1995)

24. Yu, T., Lin, K.: Service selection algorithms for composing complex services with multiple
qos constraints. In: ICSOC’05: 3rd Int. Conf. on Service Oriented Computing. (2005)

25. Mukhi, N.K., Konuru, R., Curbera, F.: Cooperative middleware specialization for service
oriented architectures. In: WWW ’04, IEEE Computer Society (2004)

26. Mukhi, N., Plebanni, P., Silva-Lepe, I., Mikalsen, T.: Supporting policy-driven behaviors in
web services: Experiences and issues. In: ICSOC ’04, IEEE Computer Society (2004)

27. Baligand, F., Monfort, V.: A concrete solution for web services adaptability using policies
and aspects. In: WISE’03: Proceedings of the Fourth International Conference on Web In-
formation Systems Engineering, IEEE Computer Society (2004)

28. Bosloper, I., Siljee, J., Nijhuis, J., Hammer, D.: Creating self-adaptive service systems with
dysoa. (In: ECOWS’05, Proceedings of the 3rd European Conference on Web Services)

29. Wohlstadter, E., Tai, S., Mikalsen, T., I.Rouvellou, Devanbu, P.: Glueqos: Middleware to
sweeten quality-of-service policy interaction. In: ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, IEEE Computer Society (2004)

30. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-based access
control to enable attribute-based messaging. In: Annual Computer Security Applications
Conference (ACSAC ’06), Miami Beach, FL, Applied Computer Security Associates (2006)

31. Lee, A.J., Boyer, J.P., Olson, L.E., Gunter, C.A.: Defeasible security policy composition for
web services. In: Formal Methods in Software Engineering (FMSE ’06), Alexandria, VA,
ACM (2006)

32. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with owls-mx.
In: Proceedings of 5th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 06), ACM (2006)



A. Appendix

A.1 Implementation of Ontology Reasoner and Policy Model

The use of a policy-based approach for the dynamic control of QoS behaviour of the service ori-
ented system requires an appropriate QoS policy representation and processing. In the context of
the Semantic Web, the representation power of semantic languages together with their processing
frameworks and rule languages, make them ideal for implenting QoS and policy model. In this
section, we describe our appraoch for the combination of the OWL ontology for QoS model with
the Semantic Web Rule Language (SWRL) as the basis for a semantically-rich policy language
that can be used to formally describe the desired QoS behaviour and capabilities of different en-
tities in a service oriented system. We have used OWL to implement QoS and core policy model
constructs. Policy rules are written using SWRL language constructs.

The benifit of using this two-folded policy based implementation approach has many benifits.
First by using OWL and SWRL, it is possible to perform reasoning over the knowledge model
(QoS model) to correctly resolve conflicts, mismatches and to evaluate global QoS fatures. Sec-
ond, the OWL/OWL-S and SWRL connection makes the ontologies more powerful since it uses
the expressive power of rules and underlying efficient reasoning. We believe that this policy based
approach for controlling system behaviour (especially non-functional) is ideal for service oriented
systems e.g. web services based systems.

Policy model used to represent QoS constraints and capabilities is shown in Figure 4, while
QoS ontology model is already discussed in the section 2 and presented in Figure 1. A stripped
down OWL ontology of both the AMPol QoS model (including APES and messaging domain on-
tology) and policy model is described in http://seclab.uiuc.edu/ampolq/ontology/
ampolq_base.owl

Fig. 4. Policy and Rule Model

Semantic Web Rule Language (SWRL) is based on a combination of the OWL DL Lite
language with the RuleML languages. SWRL extends the set of OWL constructs to include a
high-level abstract syntax for Horn-like rules that can be combined with an OWL knowledge base.
The SWRL rules are of the form of an implication between an antecedent (body) and consequent



(head), which can be associated to AMPol-Q rules. Adhering to this rule format makes SWRL
easier to translate rules to or from existing rule systems e.g. Prolog, Jess (herzberg.ca.
sandia.gov) and Jena (jena.sourceforge.net).

Our OWL and SWRL processing implementation is based on Protege (protege.stanford.
edu) knowledge based framework. Protege provides Java APIs to process OWL and SWRL mod-
els. The Protege-OWL parser internally uses Jena ontology parser for processing OWL ontolo-
gies. Jena is one of the most widely used Java APIs for RDF and OWL, providing services for
model representation, parsing, persistence, querying etc. For processing SWRL rules, our imple-
mentation uses Protege SWRL API and Jess rule engine to execute rules. Jess is a small, light
weight and one of the fastest rule engines available. Protege framework provides a SWRL rule
engine bridge, which is a subcomponent that provides a bridge between an OWL with SWRL
rules and a rule engine. Its goal is to provide the infrastructure necessary to incorporate differ-
ent rule engines into Protege-OWL to execute SWRL rules. Protege also provides a bridge for
supporting Jess rule engine.

The SWRL rules together with the ontology can be loaded into the Protege framework using
a Jena ontology parser and then SWRL rules are transformed to Jess rule specs using SWRL
to Jess rule bridge. Rule engine process the rules and pass the inferred knowledge back to the
bridge. Currently, we have implemented a basic version of the OWL and SWRL rule-based rea-
soner for QoS policies on top of Protege framework and Jess rule engine. OWL/OWLS ontology
models and basic SWRL rules are processed through Protege APIs and high level QoS and policy
constructs are processed by AMPol-Q ontology and rule processing framework called AMPol-
Q Semantic Web Framework. AMPol-Q framework does the policy level processing, merging,
comparison and transformations required for global QoS analysis and policy agreement creation.
High level overview of the AMPol-Q ontology framework is shown in Figure 5.

AMPol-Q middleware modules are implented in .Net and underlying they are using AMPol-
Q ontology framework java interfaces by native calls, so it poses a considerable performance
overhead. We have implemented the the AMPol-Q ontology framework in jave due to Protege
(which internally uses java interfaces to Jena and Jess). We have used Protege because it is an
open source, widely used knowledge-based ontology framework. Our future work includes more
efficient implementation of AMPol-Q middleware components and reasoning engine.

A.2 Discovery Framework

We have used a middleware based approach to implement all the components of AMPol-Q.
AMPol-Q middleware is a central architectural component in supporting and enforcing QoS. Its
role is to to mask out problems of heterogeneity and distribution within the system. It is flexibile
and extensibile enough to to support requirements like dynamic QoS, fine-grained policy control
and seamless system evolution. Middleware approach hides the implementation complexity from
the core application logic and the functionality provided by the middleware can be re-used by
different applications.

AMPol-Q middleware has components for service discovery, global QoS analysis, contract
negotiation and monitoring. High level overview is shown in Figure 3. Discovery component is
a part of AMPol-Q middleware, which acts as a broker at client end for discovery and selecting
services on the basis of their QoS features. For minimal implementation to support dynamic QoS
aware discovery, we only need AMPol-Q middleware to be present at the client or broker node.
But for contract negotiation we need AMPol-Q middleware to be present at each node.

AMPol-Q middleware supports both types of service invocations, dynamic and static. In
static invocations the discovery process is same except that it directly query for the entity profile
of a known service. If all the services and their dependent services are statically invoked then the



Protégé Knowledge Based Framework

Jess Rule Engine

Jena Semantic Web Framework
SWRL Plugin

SWRL-Jess
Bridge

AMPol-Q Semantic Web Framework

OWLS-MXAMPol-Q Service Profile
Discovery

AMPol-Q Global Analyzer
and Contract Creation

Fig. 5. Implemenatation Overview

resultant SCG will have only one service chain and there will be only one contract for negotiation.
Our case study on WSEmail is based on both static and dynamic invocation.

The whole discovery framework is implemented using three corresponding modules: service
profile discovery, contract creation and contract negotiation. The profile discovery and contract
creation modules uses the AMPol-Q Semantic Web Framework to reason, normalize and compare
policies. High level overview of the AMPol-Q discovery components is shown in Figure 5.

For service profile discovery, we leverage on current OWL-S service description framework
based on functional description and extended it to integrate AMPol-Q entity profile model. We
use and extend semantic aware UDDI approach proposed by [32], [14] and [13] to adver-
tise and query services based on IOPE functional request. Extended OWL-S profile is used to
advertise services and AMPol-Q entity profile. Our service discovery implementation uses the
OWLS-MX [32] (www-ags.dfki.uni-sb.de/˜klusch/owls-mx/) API for IO based
dynamic service discovery. OWLS-MX is a hybrid semantic Web service matchmaker that re-
trieves services for a given query both written in OWL-S, and based on OWL ontologies. The
OWLS-MX matchmaker performs pure profile based service IO-matching along with logic-based
semantic matching. AMPol-Q discovery component extend OWLS-MX to provide global discov-
ery of multiple services to create service chains. For each service request the target services are
discovered through OWLS-MX approach and from the service profiles of each discovered ser-
vice further dependent services are repeatedly discovered until a chain is complete. We further
enhanced the discovery mechanism by providing a support for rule driven service matching in
which if the SWRL rules defined in a service request or service profile are satisfied then a par-
ticular service is choosen for a service chain otherwise it is discarded. This approach gives us a
capability to incoporate domain and QoS level criterians in the discovery process to further refine
our search. For example in our case study on WSEMail, an IOPE based service search for an
RMTA of a user say afandi@yahoo.com will result in many MTA services but we are only inter-
ested in a specific RMTA with a particular domain or name e.g MTA serving yahoo.com domain.
Figure 6 shows rules for discovering relays and recepient mail server. The Figure 7 shows the re-
sult based on AMPol-Q extended discovery model, while query based on OWLS-MX would have
returned four services (RL1, RL2, SS and RS). Each service has OWL-S definition, AMPol-Q



Entity Profile and Service Query Matching Policy constraints. Examples of OWL-S request and
service profiles along with policy rules can be found from AMPol-Q website.

Fig. 6. Service Query Matching Rules

Fig. 7. Mail Relay Query Result

One of the implementation challenge for us was how to integrate the AMPol-Q middleware
with the high level application in a dynamic and adaptive manner without modifying or chang-
ing the client application. Integration also requires that there should be minimal effect on the
application logic and performance without burdening it with extra functionality. The AMPol-Q
middleware modules can be integrated to a high level application by developing application spe-
cific hooks or interceptors. We need to identify the appropriate message entry and exit points in
an application and then use hooks to intercept these messages and only allow them to proceed
further if they are successfully processed by AMPol-Q underlying components. These hooks can
either be directly integrated into a source code of the application or plugged into the application
if it provides a mechanism for adding plug-ins or aspects. In case of pluggable hooks, we don
not require source code of the application and integration will be relatively easy. Pluggable hooks
are again pluggable components which can be plugged into different applications and can modify
or enhance its behavior. Different types of applications and distributed system technologies (e.g.
email clients and servers, web application servers, web browsers, .Net COM+, J2EE etc. even
Java 1.5) do provide a framework to develop and inject aspects, interceptors, hooks or filters.



For two-way specialization and for global QoS analysis, AMPol-Q middlewrae suspends the
initial functional request until the final contract is created. Once a contract is negotiated then
each node binds this contract to corresponding functional interface, so that during actual request
processing the entities do not re-initiate the discovery and selection process. This contract has an
expiration time and it is usually valid for a particular communication session. This per invocation
multi-step approach does have a considerable performance overhead. A simple solution is to
perform the dynamic discovery and contract negotiation less frequently or only when the policies
are changed. But this solution requires a framework for propagating QoS policy changes to the
interested entities and it is not feasible for highly dynamic QoS features. We aim to address these
issues in our future work.

A.3 Monitoring Framework
The monitoring framework is implemented using three corresponding modules: policy adherence,
policy enforcement and system extension manager. We have designed and implemented AMPol-
Q extension manger inspired by the WSEmail plugin framework [7]. It is a white-box framework
and is extended by inheritance.

Fig. 8. AMPol-Q Monitoring Framework: Client sends a request to the service

Figure 8 shows the steps followed by the adherence, extension and enforcement components
of the client and service provider for sending a request to a service. After contract negotiation,
AMPol-Q middleware invokes the policy adherence component by calling the adherence con-
troller, which co-ordinates all the processing steps. At the server end, on receiving a request
message, AMP-Q middleware calls the policy enforcement component by calling enforcement
controller, which coordinates all the processing steps.

We have implemented all the AMPol-Q middleware modules in C # .NET and packaged the
code in DLLs. For developing pluggable extensions we have also provided AMPol-Q extension
framework which is packaged in a separate DLL.



A.4 WSEMail

Figure 9 shows the high level system configuration of the WSEmail system. The high level design
of both case studies on WSEmail are shown in Figure 10 and Figure 11.

Fig. 9. WSEmail System

Fig. 10. WSEmail case study: High level Design

As mentioned before, the policy rules for different entities in our case study are defined
using a rule language SWRL. The SWRL rule expressions shown in figures below are in the
form of antecedent implies consequent. Antecedent is a conjugate of binary atoms and if all the
binary atoms are true then the consequent holds. Each SWRL rule is assoctaied with a Rule in
the AMPol policy. The consequent part of the SWRL rule verifies the AMPol Rule to be true or
false by setting its property verified. In this section we will only discuss the secenario of sending
an email message from SMUA to RMUA.

Figure 12 shows the policy rules for both RMTA (RS, sandy) and RMUA (RC, afandisandy).
RMTA and RMUA policy rules are prefix with RS and RC. RC policy constrains the sender to
encrypt the message using IBE technique and to sign the message either using MD5 or SHA-1
algorithm. Signature rules are enforced at RS and encryption rule is enforced at RC. RS also
specifies policy rules for message attachment and uses puzzle for payment mechanism inorder
to raise burden for spammers. RS extension rules are the extension constraints and allows only
to execute plugins downloadable through https or ssh secure protocols. The RC and RS poli-
cies are merged together and a combined profile (for RS sandy and RC afandisandy@sandy) is
published to the registery service. Complete OWL profile including QoS policy, extension con-
straints, dependencies and capabilities can be viewed from http://seclab.uiuc.edu/
ampolq/ontology/ampolq_rsrc.owl .



Fig. 11. Web Based WSEmail: High level Design

Fig. 12. RS and RC Policy Rules

Relay RL1 (london) and RL2 (rome) have policy rules for attachment size. Figure 13 and 14
shows these policy rules. Profiles can be viewed from http://seclab.uiuc.edu/ampolq/
ontology/ampolq_rl1.owl and http://seclab.uiuc.edu/ampolq/ontology/
ampolq_rl2.owl

Fig. 13. Relay 1 (london) Policy Rules

Similarly, SMTA (SS, gary) has a policy rule on outgoing message attachments that their
size should not be greater than 2 MB. Figure 15 shows this policy rule on attachment size. SS
profile can be viewed from http://seclab.uiuc.edu/ampolq/ontology/ampolq_
ss.owl.

The sender client SMUA (SC, afandigary@gary) defines the required QoS behaviour in
Figure 16. The message will be send through a route which has a message delivery time less
than 35 seconds. SC profile can be viewed from http://seclab.uiuc.edu/ampolq/
ontology/ampolq_sc.owl.

Services are discovered using OWL-S request profile. The resultant service chain is shown
in Figure 17. There are two service chains (or message routes). After global analysis, only the
service chain SC-SS-RL2-RS fullfills the message delivery requirements of the SC. The combined
policy agreement with all the required policy rules for a session is shown in Figure 18. (http:
//seclab.uiuc.edu/ampolq/ontology/ampolq_merged.owl). The merged pol-
icy contains adherence and enforcement rules for each entity in the session. In this scenario we
are only considering a message delivery from SC to RS (not the return path from RS to SC) so
we have only shown adherence rules for SC and enforcemnet rules for all the entities.



Fig. 14. Relay 2 (rome) Policy Rules

Fig. 15. SS Policy Rules

Fig. 16. SC Policy Rules

SC

SS

RL1RL2

RS

Fig. 17. Service Chain Graph



Fig. 18. Merged Policy Rules


