AMPol: Adaptive Messaging Policy*

Raja Afandi, Jianging Zhang, Munawar Hafiz and Carl A. Gunter|
University of Illinois at Urbana-Champaign

Abstract

Interoperability in a large-scale distributed system is
challenged by by the diversity of node policies. We in-
troduce AMPol (Adaptive Messaging Policy), a service-
oriented architecture that facilitates policy-aware, end-to-
end adaptive messaging between multiple parties. AMPol
provides services for expressing non-functional QoS poli-
cies, finding them, and carrying out system extensions to
adapt to them. We implement this approach with a web ser-
vice middleware that allows parties to use policies for fea-
tures like attachments, payment, encryption, and signatures.
Our implementation demonstrates how AMPol can enhance
the function of email messaging by enabling automatic de-
ployment and use of features like cycle exhaustion puzzles,
reverse Turing tests and identity based encryption without
the need for global deployment or changes to the baseline
messaging system.

1. Introduction

Service Oriented Architectures (SOAs) use middleware
with standardized interfaces, languages, and protocols to
provide interoperability between heterogeneous systems
with loose coupling. One challenge for this objective is
to support non-functional quality requirements like secu-
rity, availability or reliability constraints without breaking
the interoperability of the system. In a highly dynamic
and varying environment these features and their constraints
may change frequently with each change affecting inter-
operability and flexibility. Supporting policy requirements
in a service-oriented environment is more complex than
traditional distributed computing environments (based on
DCOM/COM+, J2EE and CORBA) since such behaviors
cannot be assumed by client applications and there may be
no coupling between requester and provider. Such systems
can be made to function on a large scale in an interoperable

*The 4th IEEE European Conference on Web Services (ECOWS’06),
Zurich, Switzerland, December 2006

TContact: afandi@illinoisalumni.org, {jzhang24, mhafiz} @uiuc.edu,
http://cs.uiuc.edu/cgunter

way by allowing requesters to dynamically adapt to the pol-
icy requirements of others with whom they need to interact,
we call it policy adaptation.

In SOA, the term Quality of Service (QoS) refers to
non-functional properties which affect the definition and
execution of a service, while QoS policy refers to a set
of constraints of the non-functional behavior of a service.
In this paper, we extend this definition to include service
consumers because there may be non-functional constraints
from a target service which affect the execution of a client,
we call this feature two-way policy. Furthermore, the scope
of these QoS constraints may not be limited to immediate
service consumers and service providers; it may involve all
the intermediate entities or end parties (e.g. brokers, com-
posite services, message relays or end node message recip-
ients). We call this feature end-to-end policy. End-to-end
policy supports adaptive messaging between the requester
and the service provider including all the intermediaries.
Current approaches [8, 28, 21, 9, 24, 29] lack this end to
end and two-way notion of policies. Also, adaptation based
on non-functional quality requirements would require sys-
tem updates. SOAs based on web services with meta data
specifications and adaptive middleware approaches offer a
promising platform for realizing this kind of scalability and
interoperability.

While a variety of studies have explored aspects of how
the promise of end-to-end adaptive interoperable systems
can be realized, new case studies are needed to reveal more
requirements and design alternatives. This paper describes
one such effort in which we explore an adaptive architec-
ture to support QoS policies for large-scale messaging sys-
tems, such as email, instant messaging, chat rooms, list
servers, Wiki pages, blogs, bulletin boards, and so on. In
many cases, these systems lack basic facilities for adapta-
tion, which breaks their functionality with the introduction
of new policy requirements. For instance, email messages
are often discarded by mail relays for the reasons unknown
to senders. In some cases, these policies are secrets of the
relays or recipients, such as many anti-spam filtering tech-
niques, while in other cases, they could have been adver-
tised to potential correspondents to facilitate reliable mes-
saging. Examples include rules for the allowed sizes of

messages, types of attachments, origin guarantees such as
DNS listing, required signatures or encryption, efc. If these
policies can be communicated to senders in an easily adap-
tive way, the overall messaging system can be made more
secure and efficient without sacrificing convenience. This
domain-specific focus leads us to appreciate the need for
new features in the general solutions. For instance, in mes-
saging scenarios we need to consider the assurance of poli-
cies at multiple nodes in a manner that is not just a general-
ization of the two node client-service model. Also, there is
considerable benefit in our application to enabling dynamic
system updates. Although the case study is domain-specific,
our adaptive service-oriented architecture should be appli-
cable to a range of other types of systems.

In this paper, we propose Adaptive Messaging Policy
(AMPol), a reference architecture for adaptive interopera-
ble messaging based on advertisable QoS requirements in a
form of policies. AMPol is based on the idea that the en-
tities participating in message processing should learn and
adapt to the policies of each other in an end-to-end man-
ner. This is achieved through three fundamental architec-
tural components:

(1) Policy model: describes QoS requirements of the enti-
ties’ dynamic behaviors in the form of policies.

(2) Policy discovery: encapsulates protocols to publish,
discover and merge such policies.

(3) Extension and Enforcement (EE): adds policy confor-
mance capabilities and enforces policy rules on mes-
sages.

Our validation case study realizes AMPol based on
WSEmail [18], an approach to email in which legacy pro-
tocols, such as SMTP, IMAP, and S/MIME, are replaced by
families of Web service (SOAP) calls and email messages
are formatted in XML. We aim to validate AMPol by show-
ing how email services could be facilitated by the AMPol
architecture to support QoS policies in an end-to-end adapt-
able manner. In particular, our implementation is able to
automatically support addition of new QoS constraints for
availability and security by deploying plug-ins for puzzles
(to raise the burden for spammers) and identity-based en-
cryption (which allows senders to encrypt mail for recipi-
ents based on email addresses). All this can be done with
secure and seamless integration in a large-scale messaging
system.

AMPol’s goal is to support dynamic and complex QoS
policies and maintain the interoperability of the systems.
Our solution is based on the idea of two-way policy adap-
tion, end-to-end policy and an agile middleware to sup-
port these policies. This paper’s main contributions are
its end-to-end and two-way policy solution, adaptive and
generic distributed policy framework, reference architecture
of adaptive middleware for messaging systems, and appli-
cation of this middleware for WSEmail.

The paper is divided into seven sections. Sections 2, 3, 4
are the core of the paper. They describe our policy model,
policy discovery, and EE components respectively by pro-
viding the designs of the components and reviewing these
with respect to our implementation of the case study. Sec-
tion 5 describes a case study on WSEmail to validate the
AMPol solution. Section 6 discusses some of the work
related to adaptive messaging and policy. Section 7 con-
cludes.

2. Policy Model

The entities involved in adaptive messaging would need
to declare their policies up-front to allow others to discover
the policies. The AMPol policy model provides the frame-
work for specifying a set of rules or constraints describing
the QoS requirements. The policy constructs should be dis-
tinct, modular and supportive of various rule combination
logics, making the policy language expressive and unam-
biguous. The policy model should unambiguously define
which entities the policy is applied to and which entity en-
forces the policy. The language for expressing the policy
should be generic so that the policy scheme and core policy
engine do not need to be modified when new assertions are
added. The AMPol policy model is illustrated in Figure 1;
the rest of section shows how it satisfies these requirements.

The basic unit of the policy is the construct Rule. Each
rule describes an operation or process requirement for a
message, e.g. encryption and signature. Each rule has two
parts. One is the action, which specifies the operation (e.g.
encryption). The other one is the property, which speci-
fies parameters of this operation (e.g. IBE encryption). The
Rules are combined into a RuleSet with connectives AND,
OR, EXACTLY-ONE, etc.. One or more RuleSets form a
Policy. A Policy is associated with the application level
usage (using the App attribute). For example, in a messag-
ing system, the policies can be specified as ingress, egress,
or local policies covering messages entering, leaving, or
within the local domain. Finally, PolicySet contains the
Policy constructs.

Policies are classified as static or dynamic. Static policy
is defined by each entity before the communication occurs.
It defines rules that are effective for all conversations. Dy-
namic policy, which is based on static policy, is a set of
run-time rules for a particular conversation session. If there
are multiple entities involved in a session, each entity needs
to know the static policies of others and then generate the
dynamic policy. Section 3 describes how to obtain dynamic
policies.

AMPol uses meta-specification, i.e.“the policies of a pol-
icy”, to elaborate the policy definitions. For example, each
Rule or RuleSet needs meta-information, e.g. who will
perform the required operation and who will check whether

PolicySet hasPolicy Policy A RuleSet T Rule hasProperly Property
A . A [
hasRelation —hasCombinationAlgo J/ hasMetaSpec
v ¥ v [|
PolicyRelation| |CombinationAlgo| |Authorization|| Obligation MetaSpecification| |MessageSecurity
rendPoint
[T [T T |
visibilityLevel enforcementTarget subject transformation priorityLevel | | | |
N2 N2 NA N N2
Visibility Target Subject | |Transformation Priority Attachment || Payment | |Encryption| | Signature

Figure 1. AMPol Policy Model

the policy constraint is satisfied. In the AMPol policy
model, the rules are applicable to the Subject entity and the
rules are enforced by the Target entity. In a distributed sys-
tem, the creator of the rule or the policy might not be the en-
tity who will verify or enforce the policy. So it is necessary
to indicate the target explicitly. To conform or enforce the
rules of a policy, the entity needs some extended function-
ality to perform the operation. We define Transformation
for a Rule that contains all the information to identify and
download a particular plug-in. Policy engines can parse the
transformation information and pass it to system extension
module. The latter can download and execute the plug-in.
Thus, if different domain specific rules and corresponding
plug-ins are introduced, the policy engine and system ex-
tension module do not need to change.

In service oriented systems, clients and services have a
built-in logic to enforce or conform to policy constraints.
Even if these logics are independently provided, the under-
lying policy frameworks are not flexible enough to dynami-
cally bind policy rules to external processing components to
handle (i.e. parse, comply, enforce or verify) policy rules.
In AMPol, we have decoupled the policy conformance and
policy enforcement logic from the core policy engine and
provided these logics in the form of pluggable extensions.
The binding logic of a policy rule with a processing plug-in
is specified in the meta-specification of a policy rule itself
instead of hard coding it in a core policy engine or applica-
tion logic.

All of the above meta-information is encapsulated by
MetaSpecification, which also contains entities to indicate
the visibility (Visibility) and the priority (Priority) of the
rule. One aspect of meta-specifications is that they are ap-
plicable at different granularities, both at the rule level and
the rules set level.

Domain specific policy rules can be defined by extend-
ing the AMPol policy model. Our case study on messag-
ing systems is based on a set of rules called APES for At-
tachment, Payment, Encryption and Signature. The Encryp-
tion and Signature rules specify the cryptographic parame-
ters required for encryption and signature. For availability,
the Payment rule specifies the type of cost (puzzles) im-

posed on the message senders. The Attachment rule spec-
ifies the patterns of the attachment files, which are the pri-
mary medium for spreading viruses. These rules are used to
put constraints on different entities in the messaging system
to achieve security goals.

3. Policy Discovery

After specifying policies individually, the entities need
to exchange them and negotiate a mutual acceptable pol-
icy set for the current session. We call this policy discov-
ery. The policy discovery component consists of three func-
tional sub-components, which provide the ability to adver-
tise, merge, and query policies. This component is able to
publish each entity’s policy to everyone involved in the ses-
sion and ensures the published policies are accessible re-
motely. Each entity is able to query the other’s static pol-
icy or the final dynamic policy. Policy merging of two or
more policies is supported and it has the potential to sup-
port multi-node policy discovery.

Policy Advertisement is used to publish static policies to
other entities. The issues relevant to publishing are what to
publish, where to publish, and how to publish. The pub-
lishable policies are determined using a meta-level attribute
of the policy model. The published policy is a public sub-
set of the static policy. Policies of a particular entity can
be published at the local node (e.g. service itself), or at a
dedicated policy server (registry or discovery service), or
at any remote customized server. The main requirement is
that the server is available and remotely accessible through
some known protocols. From the policy consumer’s per-
spective, the main issue is the protocol and the location to
find the published policies. The protocol for finding (query-
ing) policies is implementation specific (e.g. HTTP, SSL,
Web Service SOAP interface, LDAP, or custom-built proto-
cols). The location of a policy-hosting node can be known
in advance or can be learned by different types of discovery
protocols such as UDDI or DNS. We assume policies are
available somewhere on a remote server and can be queried
for a particular system entity. AMPol has pluggable com-
ponents for advertising and querying policies and these cus-

tomized components can be plugged to the AMPol system
to configure it per application scenario.

Policies for email clients (senders or recipients) can be
published at the mail server. Each mail server is responsi-
ble for providing services for uploading, updating, querying
and downloading policies for a particular system entity. The
entity that is publishing the policy also specifies how the
policies are uploaded and maintained in a policy publishing
server. This can be done in either the push or pull mode. In
push mode, clients upload/update the policies to the server.
In pull mode, policy server periodically (or when required)
updates the policy for a particular client by re-acquiring the
policy from the client.

As discussed before, the scope of policies may not be
limited to immediate service providers only, it may involve
intermediate entities (e.g. an email message may go through
multiple forwarding entities). To discover and merge the
policies of all the participating nodes and generate an end-
to-end dynamic policy, we have added a policy dependency
construct called PolicyRelation [2] in the AMPol policy
model. When a node advertises its policies, it also provides
a reference to its immediate dependent nodes. The policy
relation information is used to discover policies of depen-
dent nodes. This policy reference either directly points to
another policy or provides meta information to discover the
policies of dependent nodes. Discovery continues until poli-
cies of all the nodes are discovered and merged. The final
policy is an end-to-end dynamic policy. Our current work
on policy discovery is focused on static system topology.
Our work [2] on global QoS involves exploring solutions
for policy discovery for dynamic SOAs which dynamically
discover and compose services.

Policy Merging is required to reconcile the policies of di-
verse parties in Policy Query Protocol exchanges (the pro-
tocol description is given later in this section). The prop-
agated static policies are merged to generate the dynamic
policy. The service requester (message sender) is the inter-
ested party to get the service’s (message recipient) policy
and generate the dynamic policy. The merging can happen
at different nodes of the system that lie in the path of the re-
quester and the service provider. For simple client-service
interaction, policies are merged at client node. For two-
way adaptation, the merged dynamic policy is also sent to
the service along with the request message. The Policy and
RuleSet constructs of the AMPol model have the Combi-
nationAlgorithm structure, which specifies policy combi-
nation algorithms such as AND, OR, EXACTLY-ONE and
SO on.

PQP, the Policy Query Protocol is the fundamental pro-
tocol for generating dynamic policies from static policies
when a message transmission is required. The initiator in
this case is the message sender requester. We present PQP
for ‘four-node messaging’ (for email systems) as illustrated

in Figure 2.

SD

v
, 7 Pull Egress
Policy

Push Ingress
Policy

Figure 2. Policy exchange and merging

SC is the message sending client. It is connected with
SS, also known as sending server. These two entities consti-
tute the message sending domain. At the message recipient
domain, RS is the recipient server that receives the mes-
sage and forwards it to receiving client RC. The four enti-
ties involved have ingress and egress policies specified by
the policy model. We denote the ingress policy specifica-

tion of receiving client (RC) as H%{C’ the egress policy of
sending server as H]SES and so on.

In the policy advertisement mechanism for four node
system, the policies can be advertised at the server node.
AMPol proposes either a push or pull mechanism to load
ingress policies from clients to an email server which serves
as a policy server. The policy server then merges its ingress
policy with the client’s ingress policies. This results in the
merged ingress policy for the receiving server and client.
It. is denoted as: H{és .:.Merge(H{{S,H%{C). Thgse poli-
cies are stored per receiving client and can be queried by a
unique identifier which can be fully qualified email address.
This whole process is a part of policy advertisement. The
push and pull mechanism and merging of policies in the
server is done in the policy advertisement step to achieve
better performance. Another advantage of this is that it does
not require RC to be remotely accessible all the time.

Clients may use a pull mechanism to improve sending
performance. For example, the sending client SC pulls
egress policies from the sending server and merges them
with its own static policies. This step is done at the start
of the PQP protocol. The merging of policies at the client
node reduces the requirement of any merging during PQP.
.It is denoted as: HE/C = Merge(HEC, H]SES)’ whe.re.: H]SE;I
is the merged egress policy of SC and SS. The equilibrium
state reached after exchange of these policies is shown in
Figure 2.

The policy query phase can now be described. Step 1:
Client SC wants to communicate with RC; so it queries
the advertised ingress policies of its immediate node SS:
SC — SS : Query for HISS and H{{C' Step 2: Server SS
finds out that its ingress policy has a dependency relation

with RS policy. RS is resolved from the RC (e.g. through
DNS mapping) and SS relays the request to RS. SS — RS
: Query for H{QS and H%{C' Step 3: As the policies at RS
are already merged with the recipient’s policies, there are
no further policy dependencies and the server RS sends the
merged policy H{és to SS.RS — SS: H{Q/S’ Step 4. Server

SS sends the merged policy to SC. SS — SC: Hgs. Step 5.
SC merges the received policies with the sending domain’s

egress policies (HE/C) and sends messages complying with

Hgs and HE/C via SS. This goes through RS to RC and
RC accepts 1t because it is compliant to its ingress policy.
SC — RC : Message complying with Hgs and H]SEé

For two-way adaptation (i.e. to enforce policies for the
reply message) the above protocol can be easily extended to
propagate the policies from SS to RS and RC in the first two
steps or during the actual request processing. The merged
ingress policy of SC and SS are sent to RS and RC ulti-
mately so that all the nodes can comply to ingress policies
of other nodes to send a reply message.

The above protocol uses distributed discovery mecha-
nism in which PQP components at each node are configured
according to the application scenario and system settings. In
conventional Web services, the policies can be advertised at
a UDDI or registry service. The service requester’s PQP
module queries the policy of immediate target service from
the policy server, and if there is a policy dependency, the
discovery continues until all the policies are discovered and
merged into dynamic policy. AMPol’s flexibility to adapt
the policy discovery protocol for application specific set-
ting helps achieving real adaptivity for any type of system
(e.g. P2P, service oriented computing or Email system).

We have used a middleware based policy framework to
implement all the components of AMPol. This middle-
ware policy framework includes components for publish-
ing, querying, merging, enforcing and complying to poli-
cies. It hides the implementation complexity from the
core application logic and the functionality provided by the
middleware can be reused by different applications. To
achieve greater adaptivity we want automatic system ex-
tension mechanisms that do not require modifying baseline
applications. Once the dynamic policy is negotiated, the
AMPol middleware components at each individual node act
autonomously to enforce or comply to policies. For one-
way adaptation (client adapting to services or message re-
cipients), we only need the AMPol middleware to be active
at the client node. But for two-way policy adaptation we
need AMPol middleware to be active at all the participating
nodes.

The AMPol middleware can be integrated to a high
level application by developing application specific hooks
or interceptors. We need to identify the message (re-
quest/response) entry and exit points in an application and

then use hooks to intercept these messages and only al-
low them to proceed further if they are successfully pro-
cessed by AMPol underlying components. These hooks
can be directly integrated into the source code of the ap-
plication or dynamically plugged into the application if it
provides a mechanism for this. In the case of aspects or
pluggable hooks, we do not require source code of the ap-
plication and integration will be relatively easy. Different
types of applications and distributed system technologies
(e.g. email clients and servers, web and application servers,
web browsers, .Net COM+, J2EE etc.) provide frameworks
to develop and plug interceptors, hooks or filters.

Our proof-of-concept discovery model for Web services
consists of three main modules: policy publisher, policy
merger and PQP handler. The policy publisher service is
implemented as a C# .NET Web Service. It reads the stored
static policy file(s). The loaded policy is mapped into pol-
icy objects and maintained in key-value pairs. Accordingly,
a component is developed for client middleware to inter-
act with the policy publisher. When the client requests a
service, the AMPol middleware hooks intercept the request
and initiate the PQP exchange. It retrieves policy for a par-
ticular message by calling the policyQuery web method of
the policy server. It then calls policy conformance mod-
ule of the EE component for conforming a message to the
policy. There is a policy merger module at both server and
client nodes as policy merging is required at all nodes.

4. Enforcement and Extension

Once mutual acceptable policies have been negotiated,
the participating entities need to determine how to conform
to the policies of each other or how to enforce their own
policies. AMPol’s enforcement and extension component
ensures that the sending client conforms to the policy of
the recipient, and if required it extends the client system.
The recipient side enforcement component verifies that the
incoming messages comply with policy requirements. The
extension component should not modify the core implemen-
tation of each entity. It should be able to control the adap-
tation process itself in order to ensure that changes are car-
ried out effectively. Each extension must be implemented as
a separate module that can be incrementally added to, and
removed from, the core application by adding or removing
a rule/assertion from the policies. We show how AMPol
fulfills these requirements to provide adaptability.

The enforcement and extension model has three sub-
components, namely, policy conformance, policy enforce-
ment and system extension (see Figure 3. For two-way
policy adaptation, these components need to be active at
each participating entity nodes. Extensions are realized as
third party plug-ins and these extensible components can
be dynamically added or removed from the AMPol system.

The novel idea here is the decoupling of the conformance
and enforcement logic in independent, dynamically plug-
gable processes. The pluggable process is called extension
whereas the mechanism to locate, load, and execute these
extensions is called system extension. The interpretation of
policy on the service requester side is the execution of a se-
ries of extensions on a message to conform to the dynamic
policy. For policy enforcement at the service end, the ser-
vice enforces the policy by executing the corresponding pol-
icy verification functionality on the request message. Simi-
larly, the service conforms the response message to the poli-
cies of a requestor and accordingly the requester verifies it.
The policy conformance and the policy enforcement mech-
anisms follow classic pipes and filters architectural style,
with the operations for enforcement applied in reverse or-
der of operations in the conformance component.

Every participating entity must be able to comply to re-
quested policy constraints to fulfill QoS policy requirements
of other entities: we call this policy conformance logic.
Here we want to distinguish between two types of con-
formance logics, pluggable and non-pluggable. Pluggable
policy conformance logic can be supported independently
without any significant change to the core application or
policy framework, e.g. an encryption algorithm, execut-
ing puzzles, efc. Non-pluggable policy conformance logic
cannot be supported by adding an external capability, e.g.
processing time or network bandwidth. Generally qualita-
tive policy constraints (e.g. security, privacy) are likely to
be pluggable more often than quantitative ones (e.g. mea-
surable QoS constraints). So a policy conformance concept
can only be applied to pluggable policy logic. Policy con-
formance capabilities may be pluggable through extensions,
while logic for policy verification and enforcement for both
qualitative and quantitative features are easily pluggable.

Each AMPol extension modifies the original request
message to comply with a particular policy constraint. An
extension for a puzzle will generate an output message that
will contain an original message appended with a puzzle
result. Similarly an extension for encryption will generate
a modified message which contains the encrypted original
message. These output message formats are defined in meta
specification information of both extension and the Trans-
formation part of the meta-specification for a static policy
rule.

Our design and implementation of AMPol extension
framework has been inspired by the WSEmail plug-in
framework [18]. It is a white-box framework and is ex-
tended by inheritance. Figure 3 shows the steps followed by
the conformance, extension and enforcement components
of the sender and recipient.

The PQP module, after retrieving the dynamic policy, in-
vokes the policy conformance module by calling the con-
formance controller, which coordinates all the processing

Message

Policy Conformance T, System Extension

+ Policy
(3) Extension
Policy
(8)

Modified

M
Dynamic S (4) | Extension
Policy Policy Verifier
) Extension
Finder

® Extension
(6) | Extension Repository
Validator

Policy
Conformer

Conformance|
Controller

Message
)

H
| Modified
Message

©)

)
R
S
k=

19]|013U0D UOISUBIXT

Message
13)

Enforcement|
Controller

Static
Policy

Extension

Message 4
) Executer

+Policy | |

(1)
- (12)
Policy Enforcement Modified \ ——
Message

Policy
Verifier

Figure 3. EE Components

steps. The controller first identifies the transformations for
property rules using the policy conformer, then invokes the
extension controller and passes it the list of transformations
along with the policy and the message.

The extension controller verifies the transformations
against system extension policy. If the verification suc-
ceeds, the extension controller calls the extension finder
to find the required extensions. If required, it downloads
the extension using the meta-information in the transforma-
tions. Then the extension controller calls extension valida-
tor to validate the authenticity of all required extensions.
Finally, the controller calls the extension executor to exe-
cute the extensions. If any extension fails then the whole
process aborts with failure. The resultant modified message
is returned to the conformance controller, which returns it
to the PQP module.

The message returned to the PQP module is sent to the
target service or the recipient by the underlying application
specific transport mechanism. At the recipient end, the pol-
icy enforcement module enforces all of the constraints on a
received message. The enforcement controller coordinates
all the policy enforcement tasks. It first performs the same
policy compliance check as the sender node. The iden-
tified list of transformations is passed to the enforcement
controller, which extracts the original message from the re-
ceived message. The same process is repeated for a reply
message, in which the recipient executes conformance ex-
tensions to comply to the sender’s dynamic policies.

The AMPol middleware suspends the initial functional
request until the dynamic policy is created. This per-
invocation multi-step approach does have a considerable
performance overhead. Caching the dynamic policy is a
simple solution to improve performance. A policy could
have a lifetime, and, after it expires, the policy is renego-
tiated. However, it is not easy to set a suitable expiration
time to achieve significant performance improvement. Re-
negotiation of policies requires a framework for propagat-
ing policy changes to the interested entities, and it is not
feasible for highly dynamic policy constraints (e.g. con-

ventional QoS constraints for availability and performance).
We have addressed some of these issues in AMPol-Q [2].

We have implemented all the AMPol middleware com-
ponents in C# .NET and packaged the code in DLLs. To
develop pluggable extensions we have also provided AM-
Pol extension framework which is packaged in a separate
DLL.

5. Validation and Case Study

In current email systems, consider the challenge of
telling potential email correspondents some rules concern-
ing the email you wish to receive. For example, you may
wish to specify that attachment must be less than S00KB in
size and must be of certain extension types, and the mes-
sages from certain parties, like banks and mutual fund com-
panies, must be encrypted using IBE. Such policies could
be quite helpful in improving security, resisting spam, and
avoiding a lot of annoying email mysteries arising from pol-
icy conflicts. Quite a bit can be done by filtering, and there
are limits on what can be advertised (for instance, it makes
little sense to tell spammers what criteria you are using to
identify them as such). But in many cases, it would be
helpful to just let the potential correspondents know what
protocol and policies you would like them to respect when
they are sending you a message. Our case study shows how
an AMPol solution can support the use and deployment of
complex policies without requiring universal adoption and
changes to the baseline system.

We have created a prototype of AMPol with Puzzles and
IBE for a WSEmail messaging system. WSEmail [18] uses
the emerging suite of W3C standards and service-oriented
computing concepts as a foundation for messaging, rather
than trying to design on top of the existing SMTP legacy
protocols. It provides a service-oriented Mail User Agent
(MUA) client and Mail Transfer Agent (MTA) server which
support extensible messaging with plug-ins that work for
both the MUAs and the MTAs. One of our key objects of
this case study is to supply the functional components of
adaptive messaging with very few extensions of the WSE-
mail platform.

Puzzles [13] are a mechanism to prevent DoS attack; in
particular, puzzle-based anti-spam email systems have been
studied for many years [10]. There are two general types
of puzzles. One type is the cycle exhaustion puzzle such
as hashcash [11]. Another type of puzzle is a Reverse Tur-
ing Test (RTT). If the recipient demands puzzle-based anti-
spam, the sender needs to know what kind of puzzle is re-
quired, what the puzzle problem is and where it can get
the puzzle plug-in package to resolve the problem. Iden-
tity Based Encryption (IBE) [7] is a technique for address-
ing some of the burdens of key distribution that have made
public key encryption of messages less widely used than

PKI vendors had expected. As in the scenario of the puzzle
based anti-spam, the sender needs to know that the message
should be encrypted by IBE and what IBE tool the sender
needs to install. AMPol provides mechanisms to address all
of these issues.

Our case study is based on the APES policy rules. We
have used the Encryption rule to specify the cryptographic
parameters of IBE. Payment rules are used to specify the
RTT or hashcash type of payment imposed on the message
sender. Another important security concern is the attach-
ment, which is the primary medium for spreading viruses
among email client hosts [19]. The Attachment rule is used
to specify the patterns of the content, for example the rule
say that the recipient does not accept an attachment that has
a “.pif’ extension. (This does not necessarily mean that the
sender will not send a .pif file without this particular exten-
sion; proper security would prevent delivery or .pif process-
ing of the attachment.)

There are four entities involved in the system, the send-
ing client (Sender Mail User Agent, SMUA), the sending
server (Sender Mail Transfer Agent, SMTA), the receiving
server (Recipient Mail Transfer Agent, RMTA) and the re-
ceiving client (Recipient Mail User Agent, RMUA). MTAs
advertise their clients and their own policies, which are
merged with client policies for simplicity. MTA policies
also contain information for policies of dependant entities
(Relays or RMTAs). In this scenario, we do not consider
intermediate relays; we send a message to one recipient and
it is transferred through an SMTA and an RMTA to the re-
cipient (SMUA =—> SMTA — RMTA —> RMUA). Also,
there are trusted third-party plug-in servers to host the ex-
tensions. For the current setup, we show how an SMUA
can automatically adapt to the target policy constraints of
services (SMTA, RMTA and RMUA). Figure 4 shows the

. g Cllroce [ﬁé"ﬁ.’i:i &
N Sgress C T o

SMTA Policies Policies RIMTA

Registry Service
(DNS)
o 3
Plug-in 5
Client Ingress 4%—» [3
Policies Tpigns
Plug-in

Sender MUA

%@ Client Ingress

Recipient MUA Poicies
Server

Figure 4. WSEmail Case Study: Architecture

high level system configuration of the case study.

The AMPol middleware at the SMUA starts the policy
query protocol by intercepting messages at a send request.
After determining the dynamic policy, the message sent by
the SMUA is verified against the policy and, accordingly,
conformance extensions are downloaded and executed to
conform the message with required policy constraints. At
SMTA, the received message is first verified and then pro-

cessed by SMTA if the verification succeeds. When the
message is relayed to the RMTA, it is again verified and
forwarded to the RMUA. The QoS policies are verified,
adhered or enforced on point-to-point basis but eventually
they all comply with end-to-end policy constraints and re-
quirements. Pluggable extensions for policy discovery, con-
formance and enforcement are automatically downloaded
from a trusted third party plug-in server.

Our case study uses IBE package from Voltage for
IBE [26], an RTT package based on CAPTCHA [27], and a
cycle exhaustion puzzle system based on hashcash [4]. All
packages are wrapped as COM components. However, the
aim of AMPol is to facilitate the deployment of any tech-
nique that is effective without the need for a global con-
sensus or changes to the baseline messaging system. For
instance, we could also have explored the use of various
‘postage’ schemes [1, 23].

We have integrated AMPol modules into the WSEmail
implementation of [18] through hooks developed for WSE-
mail servers and clients. The hooks are placed at appropri-
ate message entry and exit points in an application to inter-
cept these messages and only allow them to proceed further
if they are successfully processed by AMPol underlying ser-
vices. These hooks are directly integrated into a source
code of the client MUA application and plugged into ap-
plication server at the service end as a filter. To implement
RTT and hashcash puzzles we have implemented two exten-
sions for each type of puzzle by adding to the AMPol ex-
tension framework. Each extension application modifies or
appends something to the input message. An extension for
an RTT puzzle generates an output message that contains an
original message appended with a puzzle result. Similarly
an extension for IBE generates a modified message which
contains the encrypted original message appended with an
encrypted symmetric key. Message formats are associated
with policy rules through the Transformation part of the
meta-specification.

The RTT Extension displays a dialog box and user is
challenged to write the displayed image text in a text box;
the correct user input is appended to the input message. The
hashcash extension solves the hash collision problem and
appends the result to the input message. For the IBE case
study we implemented the IBE extension in a similar way.
The IBE extension first generates an AES symmetric key,
and then encrypts the message using this key. The key is
then encrypted using the IBE encryption algorithm using
the recipient email address as an IBE encryption key. On the
other end, the same type of IBE extension is used to verify
and extract the original message. The IBE-encrypted sym-
metric key is decrypted using the recipient’s email address.
The symmetric key is then used to decrypt the encrypted
original message.

Timing delays might be an issue for AMPol. In our pro-

totype, the delay could come from Web service overhead
(compared to conventional email protocols), the process of
publishing, fetching, finding, merging, adapting of the poli-
cies. In our previous work [18] on WSEmail, we carried
out a performance evaluation of WSEmail through a se-
ries of experiments. These showed that a single WSEmail
server should be able to routinely handle the normal load at
some published benchmarks. This means our implementa-
tion is based on a plausibly efficient platform. The delay
caused by policy operations can be mitigated by cache. The
SMUA can fetch and cache the SMTA’s static policies in
advance. The SMTA or RMTA can cache static policies for
other MTAs after the first interaction. Even dynamic po-
lices can be cached. A mechanism to flush a “dirty” cache
is needed for this solution. As for policy enforcement and
system extension, the SMUA needs to download and install
third party plug-ins only the first time it needs them. The
flexibility of the AMPol middleware and the consequent
timing delay is a trade-off that should be tolerable for many
applications.

6 Related Work

There have been a number of attempts to exploit service-
oriented architectures to make distributed applications more
adaptive and policy driven. Meta data approaches [16, 20]
support the description, discovery and composition of ser-
vices. These approaches use languages like KAOS [25],
REI [14], XACML, WSPL, WS-Policy and OWL-S, to de-
scribe QoS requirements and policy constraints. Associ-
ated policy processing frameworks are used to enforce re-
quirements for individual entities. Adaptivity is achieved
by adding, customizing or replacing entities such as com-
ponents, aspects [15], or concerns [12]. AMPol aims to
integrate and extend these types of mechanisms to achieve
an end-to-end solution that works in at least the domain of
messaging systems.

Requirement-driven dynamic adaptation has been ex-
plored [22, 21, 9] in a service-oriented framework to deal
with entities that have different QoS requirements on a per
session basis. Their work uses WS-Policy to describe the
QoS requirements; policies are enforced by a framework
that supports dynamic binding of non-functional quality re-
quirements with applications. The authors provides a mid-
dleware to achieve cooperation and agreement of require-
ments between entities. But their system does not have
concrete negotiation protocols and does not explicitly spec-
ify which system entity will enforce the policy. There is
work on using policy framework and system extensibility
to achieve end-to-end adaptability [S]. But this work does
not support negotiation of requirements and focuses more
on system extensibility and policy framework. DySOA [8]
is another effort to achieve an adaptive system. It provides a

framework for monitoring the application system, evaluat-
ing acquired data against the QoS requirements, and adapt-
ing the application configuration at runtime. Its manual pol-
icy negotiation mechanism is simple, but it does not have
support for runtime negotiation. Moreover, DySOA does
not address system extensibility and only re-configures the
alternative variables for system parameters. GlueQoS [28]
proposes a declarative language based on WS-Policy to
specify QoS features and a policy mediation meta-protocol
for exchanging and negotiating QoS features. One limita-
tion of GlueQoS is that it does not support dynamic system
extensibility; it assumes that both ends have the capability
to perform the required operations to fulfill QoS require-
ments.

AMPol differs from these studies in its focus on explor-
ing an end-to-end solution that supports all the necessary
adaptive features for supporting policy-aware messaging.
Our goal was to explore the extent to which adaptivity is
constrained by domain-specific issues. We have found that
many important issues can be viewed as general concern not
particular to messaging systems, but the domain-specific fo-
cus has led us to appreciate the need for new features in the
general solution. For instance, all of the existing systems
focus on adaptivity in a two-node system. Our messaging
scenarios call for protocols that adapt the policies of four
nodes in a manner that is not just a generalization of the
two node protocol. We have provided a specific treatment
of this four node case (PQP); our future work involves a
fully general and efficient treatment. Aside from this multi-
node issue, the main distinctions of AMPol lie in its added
flexibility.

Existing efforts [8, 28, 25, 14], XACML, WS-Policy as-
sume a built-in logic to enforce policy constraints (QoS re-
quirements) or have a static binding with external process-
ing components to handle policy rules. In AMPol, the bind-
ing logic of a policy rule with a processing plug-in is speci-
fied in a policy rule itself instead of hard coding it in a core
policy engine (or application). This enables AMPol to be
more flexible in its adaptability than other approaches.

The efforts discussed above use WS-Policy frame-
work, which is not generic and adaptive enough to sup-
port new types of QoS constraints. WS-Policy lan-
guage is an assertion based declarative language which
is based on domain-specific policy specifications such
as WS-PolicyConstraints, WS-SecurityPolicy and WS-
ReliableMessagingPolicy. These policy specifications have
domain specific vocabulary elements and in order to provide
a support for new type of assertion (non-functional con-
straints), the policy schema needs to be updated and each
underlying policy engine must install a new code module
to understand and process the semantics of the new asser-
tion type. In contrast, AMPol provides a generic model for
rule specifications in which a policy rule is defined as an

attribute-value pair. Rules are domain independent so par-
ties extend the specification language without modifying the
policy schema and underlying policy engine. Only the pol-
icy conformance and enforcement logic at the end nodes
needs to be updated.

XACML fulfills most requirements of the AMPol pol-
icy model, but we have used our own light weight policy
languages because XACML does not support the AMPol
constructs for transformation, visibility, policy relations and
others. In a related work [6] on messaging systems we ex-
plored using XACML for modeling policies for email sys-
tems. In this work policies are used for controlling access
to messages and XACML is an ideal choice for this.

In other work [17], we explored an approach to merg-
ing general web service policies in a way that accounts for
priorities and conflicts through the use of “defeasible policy
merging”. This work could be used to extend AMPol so it
provides more sophisticated policy merging than we have
used in our current system.

AMPol-Q [2] extends AMPol to provide a comprehen-
sive solution to support and monitor global QoS for dy-
namic composite services. In AMPol-Q we proposed a se-
mantic policy model similar to The AMPol policy model
and implemented it by extending OWL-S and SWRL. The
AMPol-Q middleware enables clients to dynamically dis-
cover, select, compose, and monitor services that fulfill end-
to-end QoS constraints. Work on AMPol is based on sys-
tems with static binding and have a domain specific focus
while AMPol-Q has a more generic treatment and applica-
tion.

7 Conclusion

We have introduced an architecture to support QoS poli-
cies for SOAs, explained a detailed design, and imple-
mented a prototype to illustrate the concepts and useful-
ness of the idea. Our architecture, AMPol, is based on
functional components for expressing policies, discovering
them, and facilitating extensions to conform to and enforce
them. Our case study validates the approach and imple-
mentation by showing how to deploy puzzles and IBE over
a WSEmail platform to support complex policies. This pro-
vides one of the most complete studies to date of a proof-
of-concept adaptive policy system based on Web services.
Our future and current work includes support for multiple
recipients (e.g. mailing lists), improved security measures
such as sandbox protection, features to facilitate dynamic
service composition, more sophisticated and semantically
rich models for representing, discovering and negotiating
policies, policy conflict resolution and performance testing.
Our project web site [3] includes a video demonstration of
adaptive messaging based on the implementation described
in this paper.

Acknowledgements

We are grateful for help and encouragement we re-
ceived from Anne Anderson, Noam Artz, Mike Berry, Jodie
Boyer, Rakesh Bobba, Omid Fatemieh, Fariba Khan, Hi-
manshu Khurana, Steve Lumetta, Adam Lee, Kevin D. Lux,
Michael J. May, Anoop Singhal, Kaijun Tan. This research
was partially supported by NSF CCR02-08996, CNS05-
5170, CNS05-09268, CNS05-24695 and ONR N00014-04-
1-0562, N00014-02-1-0715.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]
(8]

(9]

M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber.
Bankable postage for network services. In Proceedings of

the 8th Asian Computing Science Conference, 2003.
R. Afandi, J. Zhang, and C. A. Gunter. AMPol-Q: Adaptive

middleware policy to support QoS. In International Confer-
ence on Service Oriented Computing (ICSOC '06), Chicago,

IL, December 2006.
Adaptive Messaging Policy (AMPol). http://seclab.

cs.uiuc.edu/ampol/.
A. Back. Hash cash - A Denial of Service counter-measure,

1997. www.hashcash.org/papers/hashcash.

pdf.

F. Baligand and V. Monfort. A concrete solution for Web
services adaptability using policies and aspects. In WISE 03:
Proc. of 4th Int. Conf. on Web Information Systems Engineer-

i{lg Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and H. Khu-
rana. Using attribute-based access control to enable attribute-
based messaging. In Annual Computer Security Applica-
tions Conference (ACSAC ’06), Miami Beach, FL, December

2006. Applied Computer Security Associates.
D. Boneh and M. Franklin. Identity based ecncryption from

the Weil pairin%. SIAM J. of Comp., 32(3):586-615, 2003.
I. Bosloper, J. Siljee, J. Nijhuis, and D. Hammer. Creating

self-adaptive service systems with DySOA. In ECOWS’05,

Proc. of the 3rd European Conf. on Web Services.
F. Curbera and N. Mukhi. Metadata-driven middleware for

Web services. In WISE '03: Proceedings of the Fourth Inter-
national Conference on Web Information Systems Engineer-

ing. IEEE Computer Society, 2003.
C. Dwork and M. Naor. Pricing via processing or combatting

junk mail. In E. F. Brickell, editor, Proc. CRYPTO 92, pages

139-147. Springer-Verlag, 1992.
Hashcash.org. http://www.hashcash.org/.
W. Hiirsch and C. V. Lopes. Separation of concerns. Tech-

nical Report NU-CCS-95-03, College of Computer Science,

Northeastern University, Boston, MA, 1995.
A. Juels and J. Brainard. Client puzzles: A cryptographic

defense against connection depletion attacks. In NDSS99:

Networks and Distributed Security Systems, 1999.
L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin,

and K. Sycara. Authorization and privacy for Semantic Web

services. In AAAI’04: Workshop on Semantic Web Services.
G. Kiczales, J. Lamping, . Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. [rwin. Aspect-oriented pro-
gramming. In M. Aksit and S. Matsuoka, editors, Proceed-
ings ECOOP 97, volume 1241 of LNCS, pages 220-242,
Jyvaskyla, Finland, June 1997. Springer-Verlag.

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian.
SchemaSQL - A language for interoperability in relational
multi-database systems. In Proc. of the 22nd Int. Conf. on

Very Large Data Bases, 1996.
A.J.Lee, J. P. Boyer, L. E. Olson, and C. A. Gunter. Defeasi-

ble security policy composition for web services. In Formal
Methods in Software Engineering (FMSE ’06), Alexandria,

VA, November 2006. ACM.
K.D. Lux, M. J. May, N. L. Bhattad, and C. A. Gunter. WSE-

mail: Secure Internet messaging based on Web services. In

Int. Conf. on Web Services (ICWS ’05). IEEE, July 2005.
M. McDowell and A. Householder. Cyber Security Tip

ST04-010: Using caution with email attachments.

us-cert.gov/cas/tips/ST04-010.html.
S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web

services. IEEFE Intelligent Systems, 16(2):46-53, 2001.
N. Mukhi, P. Plebanni, I. Silva-Lepe, and T. Mikalsen. Sup-

porting policy-driven behaviors in Web services: Experi-

ences and issues. In /CSOC ’04. IEEE Computer Society.
N. K. Mukhi, R. Konuru, and F. Curbera. Cooperative mid-

dleware specialization for service oriented architectures. In

WWW °04. IEEE Computer Society, 2004.
F. Rideau. Stamps vs spam: Postage as a method to eliminate

unsolicited commercial email. http://fare.tunes.

org/articles/stamps_vs_spam.html.
R. Shuping. A model for Web service discovery with QoS.

In ACM SIGecom '03.
A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,

J. Dalton, and S. Aitken. KAoS policy management for Se-
mantic Web Services. In 1IS°04: IEEE Intelligent Systems,

2004.
Voltage Identity Based Encryption.

voltage.com/ibe_dev/.
L. von Ahn, M. Blum, N. Hopper, and J. Langford.

CAPTCHA: Using hard Al problems for security. In Pro-

ceedings of Eurocrypt, pages 294-311, 2003.
E. Wohlstadter, S. Tai, T. Mikalsen, I.Rouvellou, and P. De-

vanbu. GlueQoS: Middleware to sweeten Quality-of-Service
policy interaction. In ICSE '04: Proc. of the 26th Int. Conf.

on Software Engineering.
L. Zeng, M. Benatallah, B.and Dumas, J. Kalagnanam, and

Q. Sheng. Quality driven Web service composition. In
WWW’03:Proc. of 12th Int. World Wide Web Conf.

WWW .

http://www.

