
Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories∗

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa Thati†

May 15, 2005

Abstract

Existing models for analyzing the integrity and confidentiality of protocols need to be extended to enable
the analysis of availability. Prior work on such extensionsshows promising applications to the development
of new DoS countermeasures. Ideally it should be possible toapply these countermeasures systematically in
a way that preserves desirable properties already established. This paper investigates a step toward achieving
this ideal by describing a way to expand term rewriting theories to include probabilitic aspects that can show
the effectiveness of DoS countermeasures. In particular, we consider the shared channel model, in which
adversaries and valid participants share communication bandwidth according to a probabilistic interleaving
model, and a countermeasure known as selective verificationapplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in a probabilistic extension of the Maude term rewriting
sytem and automated techniques are used to demonstrate the effectiveness of the countermeasures.

1 Introduction

There are well-understood models on which to base the analysis of integrity and confidentiality. The most common
approaches are algebraic techniques [2] based on idealizedcryptographic primitives and complexity-theoretic
techniques [1] based on assumptions about complexity. There has also been progress on unified perspectives
that enable using the simpler algebraic techniques to proveproperties like those ensured by the more complete
cryptographic techniques. However, neither of these approaches or their unifications is designed to approach the
problem of availability threats in the protocols they analyze. To fix on an example, suppose a protocol begins by
a sender sending a short message to a receiver where the receiver’s first step is to verify a public key signature
on the message. A protocol like this is generally consideredto be problematic because an adversarial sender can
send many packets with bad signatures at little cost to himself while the receiver will need to work hard to (fail
to) verify these signatures. Algebraic and complexity-theoretical analysis techniques ensure only that the recipient
will not be fooled by the bad packets and will not leak information as a result of receiving them. They do not show
that the receiver will be available to a valid sender in the presence of one or more invalid attackers.

In [3] we began an effort to explore a formal model for the analysis of DoS based on a simple probabilistic
model called the “shared channel” model. This study shows that the shared channel model could be used to prove
properties of DoS countermeasures for authenticated broadcast that could be verified in experiments. We have
subsequently conducted a number of experiments to explore the application of such countermeasures to other

∗Appearing in IEEE Foundations of Computer Security (FCS ’05), Chicago IL, June 2005.
†Addresses of the authors: K. Sen, G. Agha, C. A. Gunter, J. Meseguer, University of Illinois at Urbana-Champaign; Michael Green-

wald, Lucent Bell Labs; Sanjeev Khanna, University of Pennsylvania; Prasannaa Thati, Carnegie-Mellon University. This work was
supported by ONR grant N00014-02-1-0715.

1

classes of protocols. The aim of this paper is to explore the prospects for using the shared channel model as
a foundation for extending term rewriting models of networkprotocols to cover DoS aspects of the protocols
and their modification with counter-measures. Our particular study is to investigate the use of a probabilistic
extension of the Maude rewrite system calledPMaudeand its application to understanding the effectiveness of a
DoS countermeasure known as “selective sequential verification”. This technique was explored for authenticated
broadcast in [3] but in the current paper we consider its application to handshake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim in this work is to demonstrate techniques for showing how a network protocol
can be systematically “hardened” against DoS using probabilistic techniques while preserving the underlying
correctness properties the protocol was previously meant to satisfy. That is, given a protocolP and a set of
propertiesT , we would like to expandT to a theoryT ∗ that is able to express availability properties and show
that a transformationP ∗ of P meets the constraints inT ∗ without the needing to re-prove the propertiesT thatP
satisfied in the restricted language. The shared channel model provides a mathematical concept for this extension.

In this paper we develop a key element of this program: a formal language in which to express the propertiesT ∗

and show that availability implications hold forP ∗. We attempt to validate this effort by showing its effectiveness
on a selective verification for TCP. In particular, we show how we can specify TCP/IP 3-way handshake protocol
in PMaude algebraically. First, we take a previously specified formal non-deterministic model of the protocol.
We then replace all non-determinism by probabilities. The resultant model with quantified non-determinism (or
probabilities) is then analyzed for quantitative properties such as availability. The analysis is done by combining
Monte-Carlo simulation of the model with statistical reasoning. In this way, we leverage the existing modelling
and reasoning techniques to quantified reasoning without interfering with the underlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2, wegive the preliminaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol in Section 3. Then we briefly describe PMaude and
actor PMaude in Section 4. In Section 5, we describe and discuss the algebraic probabilistic specification of DoS
hardened TCP/IP protocol in actor PMaude. We introduce a quantitative property query language in Section 6. We
describe the results of our analysis of some desired properties written in the query language for the specification
of TCP/IP protocol in Section 6.5 followed by conclusion.

2 DoS Theory

On the face of it, the established techniques for establishing confidentiality and integrity are inappropriate for
analyzing DoS since they rely on very strong models of the adversary’s control of the network. In particular they
assume that the adversary is able to delete packets from the network at will. An adversary with this ability has
an assured availability attack. Typical analysis techniques therefore adapt this assumption in one of two ways.
A first form of availability analysis within these frameworks is to focus on the relationship between the sender
and the attacker and ask whether the attacker/sender is being forced to expend at least as much effort as the valid
receiver. In our example this is an extremely disproportionate level of effort since forming a bad signature is much
easier than checking that it is bad. Thus the protocol is vulnerable to the imposition of a disproportionate effort
by the receiver. This is a meaningful analysis, but it does not answer the question of whether a valid sender will
experience the desired availability. A second form of availability analysis is to ask whether the receiver can handle
a specified load. For instance, a stock PC can check about 8000RSA signatures each second, and it can receive
about 9000 packets (1500 bytes per packet) each second over a100Mbps link. Thus a receiver is unable to check
all of the signatures it receives over such a channel. A protocol of the kind we have envisioned is therefore deemed
to be vulnerable to asignature floodattack based on cycle exhaustion. By contrast, a stock PC cancheck the
hashes on 77,000 packets each second, so a receiver that authenticates with hashes can service all of its bandwidth

2

using a fraction of its capacity. This sort of analysis leadsone to conclude that a protocol based on public key
signatures is vulnerable to DoS while one based on hashes is not.

These techniques are sound but overly conservative, because they do not explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for analyzing DoS have emerged in the last year that
provide a fresh perspective by accounting for this issue. Inessence these new models are both more realistic for
the Internet and suggest new ideas for countermeasures. We refer to one basic version of this new approach as the
shared channel model. The shared channel model is a four-tuple consisting of the minimum bandwidthW0 of the
sender, the maximum bandwidthW1 of the sender (whereW0 ≤ W1), the bandwidthα of the adversary, and the
loss ratep of the sender where0 ≤ p < 1. The ratioR = α/W1 is theattack factorof the model. WhenR = 1,
this is aproportionateattack and, whenR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen from valid parties and flood the target with anything he can
form from these. But in the shared channel model he is not ableto delete specific packets from the network. In
effect, he is able to interleave packets among the valid onesat a specified maximum rate. This interleaving may
contribute to the loss ratep of the sender, but the rate of loss is assumed to be bounded byp and randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this paper arises from recognizing theasymmetrythe attacker
aims to exploit; his willingness to spend his entire bandwidth on an operation that entails high cost for the receiver
also offers opportunities to burden the attacker in disproportionate ways relative to the valid sender. This can be
seen in a simple strategy we callselective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving in an artificially lossy channel. The sender compensates by sending extra copies
of his signature packets. If the recipient checks the signature packets she receives with a given probability, then
the number of copies and the probability of verification can be varied to match the load that the recipient is able
to check. For example, suppose a sender sends a 10Mbps streamto a receiver, but this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatures. Torelieve the recipient of the need to check all of these
bad signatures, the receiver can check signatures with a probability of 25%, and, if the sender sends about 20
copies of each signature packet, the receiver will find a valid packet with a probability of more than 99% even if
the network drops 40% of the sender’s packets. This technique is inexpensive, scales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common bi-directional stream protocol that uses acknowledgements and retransmissions for
reliability, per-byte sequence numbers and windows for flowcontrol, and three-way handshakes to establish and
terminate connections. We assume that readers are broadly familiar with TCP and present an overly simplified
description ignoring many details. TCP connections pass through three phases: connection initiation, data transfer,
and connection termination. A sender initiates a connection by sending a packet with the SYN flag set and an initial
sequence number. The receiver responds by acknowledging the SYN flag, and sending back a SYN of its own
with its own sequence number. When the original sender acknowledges thereceiver’s SYN (the 3rd packet in a
3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmission Control Block) to be allocated at each end of the
connection. The TCB occupies a few hundred bytes of connection identification, control information, and statis-
tics, as well as a much larger allocation of packet buffers toreceive data and hold other data awaiting transmission.
In most operating system kernels both packet buffer space and the number of available TCBs are fixed at boot time
and constitute a limited resource. This opens a significant vulnerability to adversaries who aim to overwhelm this
limit by flooding a server with SYN packets; this is typicallycalled aSYN flood attack.This threat is mitigated in
many systems by storing connection information in a SYN cache (a lighter-weight data structure, recording only

3

identity information and sequence numbers for the connection) until the connection becomes ESTABLISHED, at
which point the (more expensive) full TCB is allocated.

Normally, a legitimate connection occupies a slot in the SYNcache for only one round trip time (RTT). If
no ACK for the SYN+ACK arrives, then the server eventually removes the entry from the SYN cache, but only
after a timeout interval,tA, which usually ranging from 30-120 seconds. TCP has other structures, such as packet
reassembly buffers, that can become bottleneck resources,but those that are cleared after a timeout can be analyzed
in a fashion similar to the SYN cache. If there is no timeout, then they can be analyzed like the TCB table.

SYN flooding attacks constitute an easy denial of service attack because SYN cache entries are relatively scarce,
while the bandwidth needed to send a single SYN packet is relatively cheap. The attacker also gains leverage from
the disparity between the one RTT slot occupancy (often on the order of a millisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that can hold asyn-cache slot fortA = 100 seconds. In a SYN
cache withB = 10, 000 slots, and a 100 second hold time, only approximately 100 slots open up each second
under a determined DoS attack. An energetic attacker can generate 300,000 SYN packets each second on a
100Mbps Fast Ethernet link, making it extremely unlikely that a legitimate client will successfully get any of the
newly freed slots.

A SYN attack is simple to model; attackers merely send SYN packets, blindly. The attack can be characterized
by the cumulative attackers’ SYN arrival rate, which we willdenote byrA. To compute the effectiveness of the
DoS attack, we must determine the probability of success of aclient’s attempt to connect, and from that compute
the number of legitimate connections per second that the server can support under a given attack raterA.

As a baseline case, it is instructive to understand the simplest scenario, in which the server offers no defense.
If the order in which incoming SYNs are processed at the server is adversarially chosen, then it is clear that
rA ≥ B/tA suffices to completely take over the syn-cache, forcing the server to drop all valid requests. To see
this, observe that every secondB/tA of the attacker’s slots in the SYN cache expire, andB/tA new ones arrive to
take their places. Even in a more realistic model where the incoming SYN requests at any time instant are assumed
to be ordered in accordance with a random permutation, it is easy to show that an attack rate ofO(B/tA) suffices.

It is clear from this analysis (as well as from abundant empirical evidence) that even a moderate rate of DoS
attack can totally disable a server. For a server with a SYN cache of size 10,000 and a timeout interval of 75
seconds a moderate attack rate of 200 to 300 SYNS per second isenough to almost completely overwhelm the
server!

Selective verification can improve this performance significantly. LetB denote the number of slots in the SYN
cache. Suppose we want to ensure that the attacker never blocks more thanf × B table entries for some fraction
0 < f < 1. We ask the server to process each incoming SYN with probability p wherep satisfiesptArA ≤ fB,
then we ensure that at least a(1− f)-fraction of the SYN cache is available to legitimate users.We are effectively
inflating the bandwidth cost of mounting an attack rate ofrA to berA/p. Considering once again an attacker on
100 Mbps channel (300, 000 SYNs/sec), if we setp = 10−3/6, we ensure that the attacker cannot occupy more
than half the table at any point in time. The attacker can still deny service, but is now required to invest as much
in bandwidth resources as the collective investment of the clients that it is attacking.

If we increase the cache size by a factor of30, we can get an identical guarantee withp = .005. The overhead
on a valid client to establish a connection then is only200 SYN packets, roughly8KB, for each request. These
overheads are not insignificant but they allow us to provide unconditional guarantees on availability of resources
for valid clients. If we downloaded the PS version of this paper (500KB), the blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted with the naive alternative: the cache size would have to
be increased to6× 107 to get the same guarantee.

4

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to specify a wide range of concurrent systems [?]. In prac-
tice, however, some systems may be probabilistic in nature,either because of their environment, or by involving
probabilistic algorithms by design, or both. This raises the question of whether such systems can also be formally
specified by means of rewrite rules in some suitable probabilistic extension of rewriting logic. This would provide
a general formal specification framework for probabilisticsystems and would support different form of symbolic
simulation and formal analysis. In particular, DoS-resistant communication protocols such as the DoS-hardened
TCP/IP protocol discussed in Section 5 could be formally specified and analyzed this way.

The answer to whether such a semantic framework exists is affirmative, and is provided by the notion of a
probabilistic rewrite theory. Usually, the rewrite rules specifying a non-probabilistic system are of the form

crl [L] : t⇒ t′ if C

where the variables appearing int′ are typically a subset of those appearing int, and whereC is a condition. The
intended meaning of such a rule is that if a fragment of the system’s state is a substitution instance of the patternt,
say with substitutionθ, and the conditionθ(C) holds, then our system can perform a local transition in thatstate
fragment changing it to a new local stateθ(t′). Instead, in the case of a probabilistic system, we will be using
rewrite rules of the form,

crl [L] : t(−→x)⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

where the first thing to observe is that the the termt′ has new variables−→y disjoint from the variables−→x appearing
in t. Therefore, such a rule isnon-deterministic; that is, the fact that we have a matching substitutionθ such that
θ(C) holds does not uniquely determine the next state fragment: there can be many different choices for the next
state, depending on how we instantiate the extra variables−→y . In fact, we can denote the different such next states
by expressions of the formt′(θ(−→x), ρ(−→y)), whereθ is fixed as the given matching substitution, butρ ranges along
all the possible substitutions for the new variables−→y . The probabilistic nature of the rule is expressed by the
notationwith probability −→y := πr(

−→x), whereπr(
−→x) is a probability distributionwhich depends on the

matching substitutionθ, and we then choose the values for−→y , that is the substitutionρ, probabilistically according
to the distributionπr(θ(

−→x)).
We can illustrate these ideas with a very simple example, namely a digital battery-operated clock that measures

time in seconds. The state of the clock is represented by a term clock(t,c), wheret is the current time in
seconds, andc is a rational number indicating the amount of charge in the battery. The clock ticks according to
the following probabilistic rewrite rule:

[tick] : clock(t,c) ⇒
if b then

clock(t + 1,c- c

1000
)

else
broken(t,c - c

1000
)

fi
with probability B := BERNOULLI(c

1000
) .

Note that rule’s righthand side has a new boolean variableB. If all goes well (B = true), then the clock
increments its time by one second and the charge is slightly decreased; but ifB = false, then the clock will go
into a broken statebroken(t,c - c

1000). Here the boolean variableB is distributed according to the Bernoulli
distribution with mean C

1000 . Thus, the value ofB probabilistically depends on the amount of chargeleft in the

5

battery: the lesser the charge level, the greater the chancethat the clock will break; that is, we have different
probability distributions for different matching substitutionsθ of the rule’s variables (in particular, of the variable
c).

Of course, in this example the variableB is a discrete binary variable; but we could easily modify this example
to involve continuous variables. For example, we could haveassumed thatt was a real number, and we could have
specified that the time is advanced to a new timet + t’, with t’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of new variables−→y could contain both discrete and continuous
variables, ranging over different data types. In particular, both discrete and continuous time Markov chains can
easily be modeled, as well as a wide range of discrete or continuous probabilistic systems, which may also involve
nondeterministic aspects [4]. Furthermore, the PMaude extension of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite theories [5, ?], and we can formally analyze their properties
according to the methods described in Section 6.

We give below a precise mathematical definition of probabilistic rewrite theories. Note that an ordinary rewrite
theory [6] is a tripleR = (Σ, E, R), with (Σ, E) and equational theory and withR a collection of possibly
conditional rewrite rules.

Definition 1 (Probabilistic rewrite theory) A probabilistic rewrite theoryis a 4-tupleR = (Σ, E∪A, R, π), with
(Σ, E, R) a rewrite theory where the equationsE are confluent and terminating (perhaps modulo some structural
axioms) and the rulesR are coherent with respect to the equationsE [?]. Furthermore, the rulesr ∈ R are of the
form

crl [L] : t(−→x) −→ t′(−→x ,−→y) if C(−→x)

where

• −→x is the set of variables int,

• −→y is the set of variables int′ that are not int; thus,t′ might have variables coming from the set−→x ∪ −→y ;
however, it is not necessary that all variables in−→x occur int′,

• C is an equational condition, i.e., a conjunction of equations where all the variables involved are in−→x ,

andπ is a function assigning to each rewrite ruler ∈ R a function

πr : [[C]]→ PFun(CanGSubstE(−→y),Fr)

where:

• CanGSubstE(−→x) denotes the set of ground substitutionsθ for the variables−→x which are inE-canonical
form, i.e., cannot be further simplified by the equationsE,

• [[C]]{µ ∈ CanGSubstE(−→x) | E ⊢ µ(C)} is the set ofE-canonical ground substitutions for−→x satisfying
the conditionC,

• Fr is aσ-algebra structure on CanGSubstE(−→y), and

• PFun(CanGSubstE(−→y),Fr) denotes the set of all probability measure functions on thisσ-algebra.

We denote a ruler together with its associated functionπr, by the notation

crl [L]:t(−→x)⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

If the set CanGSubstE(−→y) is empty because−→y is empty thenπr(
−→x) is said to define atrivial distribution; this

corresponds to the case of an ordinary rewrite rule with no probability. If−→y is nonempty but CanGSubstE(−→y) is
empty because there is no canonical substitution for somey ∈ −→y because the corresponding type is empty, then
the rule is considerederroneousand will be disregarded in the semantics.

6

A probabilistic rewrite theory has a natural operational semantics (see?? for a more detailed exposition). Given
a ground termu all the one-step rewrites with the rules inR are defined as expected:

• we need to find a subterm ofu matched by one of the rules, sayr ∈ R with substitutionθ and satisfying the
rule’s condition,

• we then need to choose a ground substitutionρ for the variables−→y in the given rule; of course, the choice
of ρ should be made probabilistically, according to the probability distributionπr(θ),

• in this way we obtain aone-step probabilistic transitionu → v, where we may assume that bothu andv
are in canonical form by the equationsE, and wherev is obtained fromu by replacing the subterm which is
the left-handside instance of the rule by the correspondingrighthand side with−→x instantiated byθ and−→y
instantiated byρ, and then simplifying the resulting term with the equationsE.

Thecomputationsof the system are then infinite paths of such one-step probabilistic transitions. The PMaude
system can support symbolic simulation of such computations using the underlying Maude engine and a library
of probability distributions, so that the substitutionsρ are obtained by sampling such distributions using a pseudo-
random number generator.

Note however that, in general, a probabilistic rewrite theory R which we could execute this wayinvolves both
probabilities and non-determinism. The non-determinism is due to the fact that, in general,different rules, possibly
with different subterm positions and substitutionscould be applied to rewrite a given stateu: the choice of what
rule to apply, and where, and with which substitution isnon-deterministic. It is only when such a choice has
been made that probabilities come into the picture, namely for choosing the substitutionρ for the new variables
−→y . This gives our specifications a great flexibility to deal with different kinds of probabilistic-nondeterministic
systems that have been considered in the literature, but this generality poses some limitations on the kinds of
analysis that can be performed. In particular, for the kind of statistical model checking discussed in Section 6 that
will be used to formally analyze our DoS-resistant TCP/IP protocol we need to assume thatall non-determinism
has been eliminatedfrom our specification; that is, that at most one single rule,position, and substitution are
possible to rewrite any given state.

What this amount to, in the specification of a concurrent system such as a network protocol is thequantification
of all non-determinism due to concurrency using probabilities. This is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite theory to satisfy some simple requirements.

4.1 Sufficient condition for absence of un-quantified non-determinism in an object-oriented PMAUDE

specification:

We will consider rewrite theories specifying concurrent actor-like objects and communicating by asynchronous
message passing; this is particularly appropriate for communication protocols. In rewriting logic such systems
(see [7] for a detailed exposition) have a distributed statethat can be represented as amultisetof objects and
messages, where we can assume that objects have a general record-like representation of the form:〈o : C | a1 :
v1, . . . a1 : v1〉, whereo is the object’s name,C its class, and theai : vi its corresponding attribute-value pairs
in a given state. It is also easy to model in this wayreal-time concurrent object systems: one very simple way to
model them is to include a global clock as a special object in the multiset of objects and messages. Rewrite rules
in such a system will involve an object, a message, and the global time and will consume the message, change the
object’s state, and send messages to other objects. To deal with message delays and their probabilistic treatment
we can represent messages asscheduled objectsthat are inactive until their associated delay has elapsed.

7

apmod SIMPLE-CLIENT-SERVER is
protecting PMAUDE .
including ACTORS .
protecting NAT .

vars t t1 t2 T : PosReal .
vars C S : ActorName .
vars N M : Nat .
op counter:_ : Nat → Attribute .
op server:_ : ActorName → Attribute .
op total:_ : Nat → Attribute .
op ctnt : Nat → Content .

rl [send]: 〈name: C | counter: N, server: S〉 (C← empty) T ⇒
〈name: C | counter: N+1, server: S〉 [T+t1,(C← empty)] [T+t2,(S← ctnt(N))] T

with probability t1:= EXPONENTIAL(2.0) and t2:= EXPONENTIAL(10.0) .

rl[compute]: 〈name: S | total: M〉 (S← ctnt(N)) T ⇒ [T+t,〈name: S | total: M+N〉] T
with probability t:= EXPONENTIAL(1.0) .

rl[busy-drop]: [t,〈name: S | total: M〉] (S← ctnt(N)) ⇒ [t,〈name: S | total: M〉] .

op init : → Config .
op c : → ActorName .
op s : → ActorName .
eq init = 〈name: c | counter: 0, server: s〉 〈name: s | total: 0〉(c← empty) 0.0 .

endapm

Figure 1: A simple Client-Server model with exponential distribution on message sending delay and computation
time by the server

Example 2 We can illustrate systems of this kind by means of the client server example in Fig. 1. In the example, a
clientc continuously sends messages to a servers. The time interval between the messages is distributed exponen-
tially with rate2.0. The message sending of the client is triggered when it receives a self-sent message of the form
(C← empty). The delay associated with the message from the client to theserver is distributed exponentially
with rate10.0 (see rule labelledsend). The message contains a natural number which is incremented by 1 by the
client, each time it sends a message. The server, when not busy, can receive a message and increment its attribute
total by the number received in the message (see rule labelledcompute). If the server is busy processing a
message (computation time is exponentially distributed with rate1.0), it drops any message it receives (see rule
labelledbusy-drop). Note that we can modify the rulebusy-drop to allow the server actor to enqueue any
message it receives when its is busy.

The rule for sending a message by a clientC to a serverS is labelled bysend. The left hand side of the rule
matches a fragment of the global state consisting of a clientactor of the form〈name: C | counter: N,
server: S〉, a message of the form(C← empty), and a global time of the formT. The rule states that the
clientC, on receiving an empty message, produces two messages: an empty message to itself and a message to a
server, whose name is contained in its attributeserver. Both the messages were produced as scheduled objects
to represent that they are inactive till the delay time associated with the messages has elapsed. The delay timest1
andt2 are substituted probabilistically.

Note that the model has no non-determinism. All non-determinism has been replaced by probabilistic choices.
A model with no non-determinism is a key requirement for our statistical analysis technique briefly described in
Section. 6. We next give a sufficient condition to ensure thata PMAUDE specification has no non-determinism.

1. The initial global state of the system or the initial configuration can have at most one non scheduled message.

8

A1

A2

An

r
A

r
A

r
X

drop rate
for packets received

B

X

p

send rate

send rateattacker

server
honest client

shared channel

messages

Figure 2: An instance of the TCP’s 3-way handshake protocol.

2. The computation performed by any actor after receiving a message must have no un-quantified non-determinism;
however, there may be probabilistic choices.

3. The messages produced by an actor in a particular computation (i.e. on receiving a message) can have at
most one non scheduled message.

4. No two scheduled objects become active at the same global time. This is ensured by associating continuous
probability distributions with message delays and computation time.

5 Probabilistic Rewrite Specification of DoS resistant 3-way handshaking in TCP

We now present an executable specification of TCP’s 3-way handshake protocol in probabilistic rewriting logic.
We consider a protocol instance composed ofN honest clientsA1, . . . , AN trying to establish a TCP connection
with the serverB, and a single attackerX that launches a SYN-flood attack onB (see Figure 2). The clients
Ai transmit SYN requests toB at the raterA, while the attackerX floods spurious SYN requests at the raterX .
These rates are assumed to be parameters of an exponential distribution from which the time for sending the next
packet is sampled. The serverB drops each packet it receives independently with probability p. Each message
across the network is assumed to be subject to a transmissiondelayd, which we assume to be constant. Of course,
these assumptions about the various distributions can be easily changed in the implementation that follows.

Each clientAi is modeled as an object with four attributes as follows.

<name: A(i) | isn:N, repcnt:s(CNT), sendto:BN, connected:false>

The attributeisn specifies the sequence number that is to be used for the TCP connection,sendto specifies
the name of serverB, repcnt specifies the number of times the SYN request is to be (re)transmitted in order to
account for random dropping of packets atB, andconnected specifies if the connection has been successfully
established as yet. The attacker is modeled as an object witha single attribute as follows.

<name: XN | sendto: BN >

The serverB is modeled as an object with two attributes.

<name: BN | isn: M , synlist: SC >

The attributeisn specifies the sequence number thatB uses for the next connection request it receives, while
synlist is the SYN cache thatB maintains for the pending connection requests.

Following is the probabilistic rewrite rule that models theclientAi sending a SYN request.

9

rl <name:A(i) | isn:N, repcnt:s(CNT), sendto:BN, connected:false>
(A(i)← poll) T

⇒
<name: A(i) | isn:N, repcnt:CNT, sendto:BN, connected:false>
[d + T , (BN← SYN(A(i),N))]
[t + T , (A(i)← poll)] T

with probability t := EXPONENTIAL(rA) .

We use special poll messages to control the rate at whichAi retransmits the SYN requests. Specifically,Ai

repeatedly sends itself a poll message, and each time it receives a poll message it sends out a SYN request toB.
The poll messages are subject to a random delayt that is sampled from the exponential distribution with parameter
rA. Specifically, the message is scheduled at timet + T , whereT is the current global time. The net effect of this
is thatAi sends SYN requests toB at raterA. Perhaps it is important to point out that the poll messages are not
regular messages that are transmitted across the network; they have been introduced only for modeling purposes.
Further, note that the approach of simply freezingAi by scheduling it at timeT + t does not work since that would
also preventAi from receiving any SYN+ACK messages that it may receive fromB meanwhile. Finally, note
that the replication count is decremented by one after the transmission of SYN message, and the message itself is
scheduled with a delayd.

The rule for SYN flooding by the attacker is very similar, except that it uses randomly generated sequence
numbers.

rl <name: XN | sendto: BN > (XN ← poll) T
⇒ <name: XN | sendto: BN > T

[d + T , (BN← SYN(XN,random(counter)))]
[t + T , (XN← poll)]

with probability t := EXPONENTIAL(rX) .

The following rule models the processing of SYN requests by the serverB.

rl <name: BN | isn: M , synlist: SC > (BN← SYN(ANY,N)) T
⇒ if (drop? or size(SC) > SYN-CACHE-SIZE) then

<name: BN | isn: M , synlist: SC > T
else <name: BN | isn:s(M), synlist:add(SC,entry(ANY,M))>

[d + T , (ANY← SYN+ACK(BN,N,M))]
[TIMEOUT + T , (BN← tmout(entry(ANY,M)))] T fi

with probability drop? := BERNOULLI(p) .

The random dropping of incoming messages is modeled by sampling from the Bernoulli distribution with the
appropriate parameterp. Note that an incomming request can also be dropped if the SYNcache is full. If the cache
is not full, for each request that is not dropped, the serverB makes an entry for the request in the cache, and sends
out a SYN+ACK message to the source of the request. A cache entry is of the formentry(N,M) whereN is the
name of the source which has requested a connection andM is the sequence number for the connection. Timing
out of entries in the cache is modeled by locally sending a message to self that is scheduled after an interval of
time equal to the timeout period. Here is the rule for removing timed out entries.

rl <name: BN | isn: N, synlist: [s(SZ), (L1 entry(ANY,M) L2)]>
(BN ← tmout(entry(ANY,M)))

⇒ <name: BN | isn: N , synlist: [SZ , (L1 L2)] > .

The first argument in the value of thesynlist attribute above is the number of entries in the list, while the
second argument is the actual list of entries. The rule for processing the SYN+ACK message at the clients is as
follows.

10

rl <name: A(i) | isn:N, repcnt:CNT, sendto:BN, connected:false>
(A(i)← SYN+ACK(BN,N,M)) T

⇒
<name: A(i) | isn:N, repcnt:CNT, sendto:BN, connected:true>

[d + T , (BN← ACK(A(i),M))] T .

The rule is self-explanatory; the only significant point to be noted is that the attributeconnected is set to true
after processing the SYN+ACK message. Since the clients replicate their requests to account for random dropping
of packets at the server, it is possible for them to receive a SYN+ACK message for a connection that has already
been established. Such SYN+ACK messages are simply ignoredas follows.

rl <name: A(i) | isn:N, repcnt:CNT, sendto:BN, connected:true>
(A(i)← SYN+ACK(BN,N,M))

⇒
<name: A(i) | isn:N, repcnt:CNT, sendto:BN, connected:true> .

In contrast to the honest clients, the attacker ignores all the SYN+ACK messages that it receives from the server
B.

rl <name: XN | sendto: BN > (XN ← SYN+ACK(BN,N,M))
⇒ <name: XN | sendto: BN > .

Finally, the initial configuration of the system is

< name: XN | ... > [t1 , < name: A(1) | ... >]
[t2 , < name: A(2) | ... >] ...

[tn , < name: A(N) | ... >] < name: BN | ... >

wheret1, . . . , tn are all distinct and positive. Note that the since all the clients are scheduled at different times,
it follows from our discussion in Section 4 that the system does not contain any un-quantified non-determinism,
which is essential for statistical analysis to be possible.

6 Query Language for Analysis

To query various quantitative aspects of a probabilistic model, we introduce a query language calledQuantitative
Temporal Expressions(or QUATEX in short). The language is mainly motivated by probabilistic computation tree
logic (PCTL) and EAGLE. In QUATEX, some example queries that can be encoded are as follows:

1. What is the expected number of clients that get connected to B out of 100 clients?

2. What is the probability that a client got connected withB within 10 seconds since it initiated the connection
request?

We next introduce the notations that we will use to describe the syntax and the semantics of QUATEX followed by
a few motivating examples. Then we describe the language formally, along with an example query that we have
used to investigate if the DoS free 3-way TCP/IP handshakingprotocol model meets our requirements. The results
of our query on various parameters are given in Section.??.

We assume that an execution path is an infinite sequence

π = s0 → s1 → s2 → · · ·

11

wheres0 is the unique initial state of the system, typically a term ofsortConfig representing the initial global
state,si is the state of the system after theith computation step. If thekth state of this sequence cannot be rewritten
any further (i.e. is absorbing), thensi = sk for all i ≥ k.

We denote theith state in an execution pathπ by π[i] = si. The denote the suffix of a pathπ starting at the
ith state byπ(i) = si → si+1 → si+2 → · · · . We letPath(s) be the set of execution paths starting at state
s. Note that, because the samples are generated through discrete-events simulation of a PMAUDE model with
no non-determinism,Path(s) is a measurable set and has an associated probability measure. This is essential to
compute the expected value of a path expression from a given state.

6.1 QUATEX through Examples

The language QUATEX, which is designed to query various quantitative aspects ofa probabilistic model, allows
us to write temporal query expressions like temporal formulas in a temporal logic. It supports a framework
for parameterized recursive operator definitions using a few primitive non-temporal operators and a temporal
operator. For example, suppose we want to make a query over anexecution path that”Whether the clientA(0)
gets connected withB within 100 time units.”For this we write the following query in QUATEX

IfConnectedInTime()(t) =
if t > time() thenfalse

elseif connected() thentrue
else© (IfConnectedInTime()(t)) fi fi;

IfConnectedInTime()(time() + 100)

The first four lines of the query define the operatorIfConnectedInTime()(t), which returns true, if along an
execution pathA(0) gets connected toB in time t. The state functiontime() returns the global time associated
with the state; the state functionconnected(t) returns true, if in the state,A(0) gets connected withB and returns
false otherwise. The fifth line of the query writes a path expression, which returns true, if by the global time
time() + 100, A(0) gets connected withB.

The above expression is a simple formula that can also be expressed in metric temporal logic. Let us complicate
the example a bit by querying probabilities. Note that the above query is a query about a path. Now suppose that
we want to know”the probability that along a random path from a state, the client A(0) gets connected withB
within 100 time units.”This can be written as the following query

NumConnectedInTime()(t) =
if t > time() then0

elseif connected() then1
else© (NumConnectedInTime()(t)) fi fi;

E[NumConnectedInTime()(time() + 100)]

In this query, we define the operatorNumConnectedInTime()(t), which is similar toIfConnectedInTime()(t),
except thatNumConnectedInTime()(t) returns1 whenIfConnectedInTime()(t) returns true andNumConnectedInTime()(t)
returns0 whenIfConnectedInTime()(t) returns false. Then the state query at the fifth line returns the expected
number of timesA(0) gets connected toB within 100 time units along a random path from a given state. This
number lies in[0, 1] since along a random path eitherA(0) gets connected toB within 100 time units orA(0) does
not get connected toB within 100 time units. In fact, this expected value is equal to the probability that along a
random path from a state, the clientA(0) gets connected withB within 100 time units.

A further rich query that is interesting to our probabilistic model is as follows

12

Q ::= D SE

D ::= set ofDefn

Defn ::= N(x1, . . . , xn)(y1, . . . , ym) = PE;
SE ::= c | f | F (SE1, . . . , SEk) | E[PE]
PE ::= SE | F (PE1, . . . , PEk) | N(PE1, . . . , PEn)(SE1, . . . , SEm)

| if SE then PE1 else PE2 fi | ©PE | xi

Figure 3: Syntax of QUATEX

ConnectedInTime()(t, count) =
if t > time() thencount

elseif anyConnected() then© (ConnectedInTime()(t, 1 + count))
else© (ConnectedInTime()(t, count)) fi fi;

E[ConnectedInTime()(time() + 100, 0)]

In this query, the state functionanyConnected() returns true if any clientA(i) gets connected toB in the state.
We assume that in a given execution path, at any state, at mostone client gets connected toB, which is true with
our probabilistic model. We will use a simpler variant of this query in our experiments.

6.2 Syntax of QUATEX

The syntax of QUATEX is given in Fig. 3. A query in QUATEX consists of a set of definitionsD followed by a state
query expressionSE. In QUATEX, we distinguish between two kinds of expressions, namely,path expressions
(denoted byPE) andstate expressions(denoted bySE); a path expression is interpreted over an execution path
and a state expression is interpreted over a state. A definitionDefn ∈ D consists of a definition of apath operator.
A path operator definition consists of a nameN and two sets of formal parameters on the left-hand side, and apath
expression on the right-hand side. The first set of formal parameters denote thenon-freeze formal parametersand
the second set of parameters denote thefreeze formal parameters. When using an operator in a path expression,
the non-freeze formal parameters are substituted by path expressions and the freeze formal parameters are replaced
by state expressions. A state expression can be a constantc, a functionf that maps a state to a concrete value, a
k-ary function mappingk state expressions to a state expression, or the expectationE[PE] denoting the expected
value of the path expressionPE. A path expression can be a state expression, an applicationof a path operator
already defined inD , a conditional expression ifSE then PE1 else PE2 fi, or the unary temporal path
operator© (standing for next). We assume that expressions are properly typed. Typically, these types would be
integer, real, boolean etc. The conditionSE in the expression ifSE then PE1 else PE2 fi must have
the typeboolean. The path expressionPE in the expressionE[PE] must be of typereal. We also assume that
expressions of typeinteger can be coerced to thereal type.

6.3 Semantics of QUATEX

Next, we give the semantics of a subset of query expressions that can be written in QUATEX. In this subclass, we
put the restriction that the value of a path expressionPE that appears in any expressionE[PE] can be determined
from a finite prefix of an execution path. We call such path expressionsboundedpath expressions. The semantics
is given in Fig. 4.(s)[[SE]]D is the value of the state expressionSE in the states. Similarly, (s)[[PE]]D is the value
of the path expressionPE over the pathπ. Note that if the value of a bounded path expression can be computed
from a finite prefixπfin of an execution pathπ, then the evaluations of the path expression over all execution paths

13

(s)[[c]]D = c
(s)[[f]]D = f(s)

(s)[[F (SE1, . . . , SEk)]]D = F ((s)[[SE1]]D , . . . , (s)[[SEk]]D)
(s)[[E[PE]]]D = E[(π)[[PE]]D | π ∈ Paths(s)]

(π)[[F (PE1, . . . , PEk)]]D = F ((π)[[PE1]]D , . . . , (π)[[PEk]]D)
(π)[[if SE then PE1 else PE2 fi]]D = if (π[0])[[SE]]D == true

then(π)[[PE1]]D
else(π)[[PE2]]D

(π)[[©PE]]D = (π(1))[[PE]]D
(π)[[N(PE1, . . . , PEn)(SE1, . . . , SEm)]]D

= B[x1 7→ PE1, . . . , xn 7→ PEn , y1 7→ (π[0])[[SE1]]D , . . . , ym 7→ (π[0])[[SEm]]D]
where N(x1, . . . , xn)(y1, . . . , ym) = B ∈ D

Figure 4: Semantics of QUATEX

having the common prefixπfin are the same. Since a finite prefix of a path defines a basic cylinder set (i.e. a
set containing all paths having the common prefix) having an associated probability measure, we can compute
the expected value of a bounded path expression over a randompath from a given state. In our analysis tool, we
estimate the expected value through simulation instead of calculating it exactly based on the underlying probability
distributions of the model.

6.4 Statistical Evaluation of a QUATEX Expression

Given a probabilistic model and a QUATEX expression, we evaluate the expression at the initial stateof the model.
The evaluation of all path and state expressions, except theexpectation expression, is straightforward and follows
directly from the semantics. However, the evaluation of an expression of the formE[PE] cannot be done directly
for a complex probabilistic model. Rather, we use discrete-event simulation to estimateE[PE] with certain given
confidence and certain given confidence interval. Specifically, we assume that we are given three parameters
with each expressionE[PE], namelyl, u, α, wherel andu are the lower and upper bounds, respectively, of aα-
confidence interval of the estimated value ofE[PE]. Let X be random variable giving the value of the expression
PE along a random pathπ from a states. Then(s)[[E[PE]]]D = E[X]. Let X1, . . . , Xn ben random variables
having same distribution asX. We calculaten such thatProb[l ≤

∑
i∈[1,n] Xi/n ≤ u] = α holds. Once we

know the number of samplesn, we estimateE[X] by drawingn samplesx1, . . . , xn of X. The estimated value of
(s)[[E[PE]]]D is then given by

∑
i∈[1,n] xi/n.

6.5 Experimental Evaluation

For our experiments, we evaluated the following expressionwith different values forrX , the attacker rate.

CountConnected() = if completed() thencount() else© (CountConnected()) fi;
E[CountConnected()]

In this expression,completed() is true in a state if allAi’s have either sent their all SYN packets or got connected
with B. count() in a state returns the number ofAi’s that got connected toB.

14

7 Conclusions

Our study demonstrates that we are able to express and prove key properties, but performance limitations of the
automated system in our current formulation require us to use parameters more limited than those that arise in
practice. Addressing these efficiency limitations and showing the general invariance property described above
remain future work objectives.

References

[1] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack.Lecture Notes in Computer Science, 1462, 1998.

[2] Danny Dolev and Andrew C. Yao. On the security of public-key protocols.IEEE Transactions on Information
Theory, 2(29):198–208, 1983.

[3] Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh Venkatesh. Dos protection for reliably authenticated
broadcast. In Mike Reiter and Dan Boneh, editors,Network and Distributed System Security (NDSS ’04).
Internet Society, February 2004.

[4] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. Probabilistic rewrite theories: Unifying models,
logics and tools. Technical Report UIUCDCS-R-2003-2347, University of Illinois at Urbana-Champaign,
May 2003.

[5] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. A rewriting based model for probabilistic
distributed object systems. InProceedings of 6th IFIP International Conference on FormalMethods for Open
Object-based Distributed Systems (FMOODS’03), volume 2884 ofLecture Notes in Computer Science, pages
32–46. Springer, 2003.

[6] Jośe Meseguer. Conditional rewriting logic as a unified model ofconcurrency.Theoretical Computer Science,
96(1):73–155, 1992.

[7] Jośe Meseguer. A logical theory of concurrent objects and its realization in the Maude language. InResearch
Directions in Concurrent Object-Oriented Programming, pages 314–390. MIT Press, 1993.

15

