Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa'Thati

May 15, 2005

Abstract

Existing models for analyzing the integrity and confidelitffaof protocols need to be extended to enable
the analysis of availability. Prior work on such extensighsws promising applications to the development
of new DoS countermeasures. Ideally it should be possibépply these countermeasures systematically in
a way that preserves desirable properties already edtablisThis paper investigates a step toward achieving
this ideal by describing a way to expand term rewriting tiesoto include probabilitic aspects that can show
the effectiveness of DoS countermeasures. In particularcensider the shared channel model, in which
adversaries and valid participants share communicatiowiiaith according to a probabilistic interleaving
model, and a countermeasure known as selective verificagiplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in aghibbtic extension of the Maude term rewriting
sytem and automated techniques are used to demonstraféettteveness of the countermeasures.

1 Introduction

There are well-understood models on which to base the daalfyimtegrity and confidentiality. The most common
approaches are algebraic techniques [2] based on ideaigptbgraphic primitives and complexity-theoretic
techniques [1] based on assumptions about complexity. eThas also been progress on unified perspectives
that enable using the simpler algebraic techniques to ppowperties like those ensured by the more complete
cryptographic techniques. However, neither of these ambres or their unifications is designed to approach the
problem of availability threats in the protocols they aalyTo fix on an example, suppose a protocol begins by
a sender sending a short message to a receiver where theer&chist step is to verify a public key signature
on the message. A protocol like this is generally considerdzk problematic because an adversarial sender can
send many packets with bad signatures at little cost to Hfmagle the receiver will need to work hard to (fail

to) verify these signatures. Algebraic and complexityetie¢ical analysis techniques ensure only that the redipien
will not be fooled by the bad packets and will not leak infotima as a result of receiving them. They do not show
that the receiver will be available to a valid sender in thespnce of one or more invalid attackers.

In [3] we began an effort to explore a formal model for the gs@sl of DoS based on a simple probabilistic
model called the “shared channel” model. This study shoasttie shared channel model could be used to prove
properties of DoS countermeasures for authenticated basadhat could be verified in experiments. We have
subsequently conducted a number of experiments to expgherapplication of such countermeasures to other

*Appearing in IEEE Foundations of Computer Security (FCS,'@hicago IL, June 2005.

fAddresses of the authors: K. Sen, G. Agha, C. A. Gunter, Jelylear, University of lllinois at Urbana-Champaign; Mich&geen-
wald, Lucent Bell Labs; Sanjeev Khanna, University of Petuania; Prasannaa Thati, Carnegie-Mellon University.isTliork was
supported by ONR grant NO0014-02-1-0715.

classes of protocols. The aim of this paper is to explore thspgects for using the shared channel model as
a foundation for extending term rewriting models of netwgprbtocols to cover DoS aspects of the protocols
and their modification with counter-measures. Our pardicgtudy is to investigate the use of a probabilistic
extension of the Maude rewrite system calRiaudeand its application to understanding the effectiveness of a
DoS countermeasure known as “selective sequential verdita This technique was explored for authenticated
broadcast in [3] but in the current paper we consider itsiagfibn to handshake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim in this work is to demonstrégchniques for showing how a network protocol
can be systematically “hardened” against DoS using prdisabitechniques while preserving the underlying
correctness properties the protocol was previously meaasttisfy. That is, given a protocdt and a set of
propertiesT’, we would like to expand” to a theoryT™ that is able to express availability properties and show
that a transformatio®* of P meets the constraints ifi* without the needing to re-prove the propertiéthat P
satisfied in the restricted language. The shared channelrpoovides a mathematical concept for this extension.

In this paper we develop a key element of this program: a fblamguage in which to express the properfi&s
and show that availability implications hold fét*. We attempt to validate this effort by showing its effectiess
on a selective verification for TCP. In particular, we showtwe can specify TCP/IP 3-way handshake protocol
in PMaude algebraically. First, we take a previously spediformal non-deterministic model of the protocol.
We then replace all non-determinism by probabilities. Témuttant model with quantified non-determinism (or
probabilities) is then analyzed for quantitative proprtsuch as availability. The analysis is done by combining
Monte-Carlo simulation of the model with statistical reaisg. In this way, we leverage the existing modelling
and reasoning techniques to quantified reasoning withoertfaring with the underlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2gme the preliminaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol ect®n 3. Then we briefly describe PMaude and
actor PMaude in Section 4. In Section 5, we describe and skstie algebraic probabilistic specification of DoS
hardened TCP/IP protocol in actor PMaude. We introduce atgative property query language in Section 6. We
describe the results of our analysis of some desired piliepettitten in the query language for the specification
of TCP/IP protocol in Section 6.5 followed by conclusion.

2 DoS Theory

On the face of it, the established techniques for establishonfidentiality and integrity are inappropriate for
analyzing DoS since they rely on very strong models of theeeghry’s control of the network. In particular they
assume that the adversary is able to delete packets fronethenk at will. An adversary with this ability has
an assured availability attack. Typical analysis techegqtherefore adapt this assumption in one of two ways.
A first form of availability analysis within these framewarks to focus on the relationship between the sender
and the attacker and ask whether the attacker/sender ig toeged to expend at least as much effort as the valid
receiver. In our example this is an extremely dispropositerievel of effort since forming a bad signature is much
easier than checking that it is bad. Thus the protocol isenalble to the imposition of a disproportionate effort
by the receiver. This is a meaningful analysis, but it dodsangwer the question of whether a valid sender will
experience the desired availability. A second form of alality analysis is to ask whether the receiver can handle
a specified load. For instance, a stock PC can check aboutRB880signatures each second, and it can receive
about 9000 packets (1500 bytes per packet) each second d08Mbps link. Thus a receiver is unable to check
all of the signatures it receives over such a channel. A poditf the kind we have envisioned is therefore deemed
to be vulnerable to aignature floodattack based on cycle exhaustion. By contrast, a stock PCloeck the
hashes on 77,000 packets each second, so a receiver tharttingtes with hashes can service all of its bandwidth

using a fraction of its capacity. This sort of analysis leads to conclude that a protocol based on public key
signatures is vulnerable to DoS while one based on hashes.is n

These techniques are sound but overly conservative, betagy do not explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for zinglypoS have emerged in the last year that
provide a fresh perspective by accounting for this issueskence these new models are both more realistic for
the Internet and suggest new ideas for countermeasuresf@/déa one basic version of this new approach as the
shared channel modeThe shared channel model is a four-tuple consisting of timenmam bandwidthil/, of the
sender, the maximum bandwidi; of the sender (wherd’y, < W), the bandwidthy of the adversary, and the
loss ratep of the sender wheré < p < 1. The ratioR = «/W is theattack factorof the model. Wherk = 1,
this is aproportionateattack and, wherR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen fimhpaeties and flood the target with anything he can
form from these. But in the shared channel model he is nottaldielete specific packets from the network. In
effect, he is able to interleave packets among the valid ahasspecified maximum rate. This interleaving may
contribute to the loss rajeof the sender, but the rate of loss is assumed to be boundediy randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this papsesfrom recognizing thasymmetrythe attacker
aims to exploit; his willingness to spend his entire bandkvith an operation that entails high cost for the receiver
also offers opportunities to burden the attacker in dispropnate ways relative to the valid sender. This can be
seen in a simple strategy we cakltlective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving in an artificially lossynoleh The sender compensates by sending extra copies
of his signature packets. If the recipient checks the sigegtackets she receives with a given probability, then
the number of copies and the probability of verification canvaried to match the load that the recipient is able
to check. For example, suppose a sender sends a 10Mbps strearaceiver, but this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatureelitwe the recipient of the need to check all of these
bad signatures, the receiver can check signatures withtapildy of 25%, and, if the sender sends about 20
copies of each signature packet, the receiver will find advadicket with a probability of more than 99% even if
the network drops 40% of the sender’s packets. This teckngmexpensive, scales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common bi-directional stream protdeat ises acknowledgements and retransmissions for
reliability, per-byte sequence numbers and windows for fontrol, and three-way handshakes to establish and
terminate connections. We assume that readers are braadlifar with TCP and present an overly simplified
description ignoring many details. TCP connections pasaitih three phases: connection initiation, data transfer,
and connection termination. A sender initiates a connedtjosending a packet with the SYN flag set and an initial
sequence number. The receiver responds by acknowledgn8YN flag, and sending back a SYN of its own
with its own sequence number. When the original sender acknowledgeedb®er's SYN (the 3rd packet in a
3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmissomir@ Block) to be allocated at each end of the
connection. The TCB occupies a few hundred bytes of cormeaientification, control information, and statis-
tics, as well as a much larger allocation of packet buffereteive data and hold other data awaiting transmission.
In most operating system kernels both packet buffer spatéh@mumber of available TCBs are fixed at boot time
and constitute a limited resource. This opens a significalmerability to adversaries who aim to overwhelm this
limit by flooding a server with SYN packets; this is typicatiglled aSYN flood attacKkThis threat is mitigated in
many systems by storing connection information in a SYN egehlighter-weight data structure, recording only

identity information and sequence numbers for the conaektintil the connection becomes ESTABLISHED, at
which point the (more expensive) full TCB is allocated.

Normally, a legitimate connection occupies a slot in the Sd@¢he for only one round trip time (RTT). If
no ACK for the SYN+ACK arrives, then the server eventuallgnoves the entry from the SYN cache, but only
after a timeout interval, 4, which usually ranging from 30-120 seconds. TCP has othectsires, such as packet
reassembly buffers, that can become bottleneck resolmaehose that are cleared after a timeout can be analyzed
in a fashion similar to the SYN cache. If there is no timedugnithey can be analyzed like the TCB table.

SYN flooding attacks constitute an easy denial of serviezkibecause SYN cache entries are relatively scarce,
while the bandwidth needed to send a single SYN packet isveliacheap. The attacker also gains leverage from
the disparity between the one RTT slot occupancy (often erotder of a millisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that can hadgracache slot fot 4 = 100 seconds. In a SYN
cache withB = 10, 000 slots, and a 100 second hold time, only approximately 108 slpen up each second
under a determined DoS attack. An energetic attacker caergen300,000 SYN packets each second on a
100Mbps Fast Ethernet link, making it extremely unlikelgttha legitimate client will successfully get any of the
newly freed slots.

A SYN attack is simple to model; attackers merely send SYNets; blindly. The attack can be characterized
by the cumulative attackers’ SYN arrival rate, which we wiéinote byr 4. To compute the effectiveness of the
DoS attack, we must determine the probability of successctieat’s attempt to connect, and from that compute
the number of legitimate connections per second that theesean support under a given attack rage

As a baseline case, it is instructive to understand the sishglcenario, in which the server offers no defense.
If the order in which incoming SYNs are processed at the sdsvadversarially chosen, then it is clear that
ra > B/ta suffices to completely take over the syn-cache, forcing émees to drop all valid requests. To see
this, observe that every secoBd't 4 of the attacker’s slots in the SYN cache expire, & 4 new ones arrive to
take their places. Even in a more realistic model where th@nting SYN requests at any time instant are assumed
to be ordered in accordance with a random permutation, &3y ® show that an attack rate@{ B/t 4) suffices.

It is clear from this analysis (as well as from abundant eioglirevidence) that even a moderate rate of DoS
attack can totally disable a server. For a server with a SYdheaf size 10,000 and a timeout interval of 75
seconds a moderate attack rate of 200 to 300 SYNS per secenough to almost completely overwhelm the
server!

Selective verification can improve this performance sigaiitly. LetB denote the number of slots in the SYN
cache. Suppose we want to ensure that the attacker nevésbitwre thanf x B table entries for some fraction
0 < f < 1. We ask the server to process each incoming SYN with prababpilwherep satisfiegpt ar4 < fB,
then we ensure that at leastla— f)-fraction of the SYN cache is available to legitimate usk¥e.are effectively
inflating the bandwidth cost of mounting an attack rate oto ber 4 /p. Considering once again an attacker on
100 Mbps channel30, 000 SYNs/sec), if we sep = 1073/6, we ensure that the attacker cannot occupy more
than half the table at any point in time. The attacker cahdsihy service, but is now required to invest as much
in bandwidth resources as the collective investment of liieats that it is attacking.

If we increase the cache size by a factoB0f we can get an identical guarantee witk= .005. The overhead
on a valid client to establish a connection then is dtlg SYN packets, roughlgKB, for each request. These
overheads are not insignificant but they allow us to provitdeonditional guarantees on availability of resources
for valid clients. If we downloaded the PS version of this @af>00KB), the blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted hdthdive alternative: the cache size would have to
be increased t6 x 107 to get the same guarantee.

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to gpecwide range of concurrent systen®§.[In prac-
tice, however, some systems may be probabilistic in nagitieer because of their environment, or by involving
probabilistic algorithms by design, or both. This raisesdhestion of whether such systems can also be formally
specified by means of rewrite rules in some suitable proiséibiextension of rewriting logic. This would provide
a general formal specification framework for probabilistygstems and would support different form of symbolic
simulation and formal analysis. In particular, DoS-resi$tcommunication protocols such as the DoS-hardened
TCP/IP protocol discussed in Section 5 could be formallyHjge and analyzed this way.

The answer to whether such a semantic framework exists rsnafiive, and is provided by the notion of a
probabilistic rewrite theory. Usually, the rewrite rulgsesifying a non-probabilistic system are of the form

crl [L]:t=+t if C

where the variables appearingtirare typically a subset of those appearing,iand where”' is a condition. The
intended meaning of such a rule is that if a fragment of théesy's state is a substitution instance of the pattern
say with substitutio, and the conditiod(C') holds, then our system can perform a local transition in skete
fragment changing it to a new local std#tg’). Instead, in the case of a probabilistic system, we will begis
rewrite rules of the form,

crl [L]:t(7)=¢(Z,y) if C(Z) with probability ¥ = m.(7)

where the first thing to observe is that the the t¢riras new variableg disjoint from the variables’ appearing

in t. Therefore, such a rule ion-deterministicthat is, the fact that we have a matching substituficuch that
6(C) holds does not uniquely determine the next state fragmieetetcan be many different choices for the next
state, depending on how we instantiate the extra varialles fact, we can denote the different such next states
by expressions of the forth(6(z), p(y')), whered is fixed as the given matching substitution, puinges along

all the possible substitutions for the new variablgs The probabilistic nature of the rule is expressed by the
notationwi t h probability ¥ := 7.(2), wherer,.(Z) is a probability distributiorwhich depends on the
matching substitutioi, and we then choose the values gy that is the substitutiop, probabilistically according

to the distributionr,.(6(2)).

We can illustrate these ideas with a very simple example ghamdigital battery-operated clock that measures
time in seconds. The state of the clock is represented bynadeock(t, c), wheret is the current time in
seconds, and is a rational number indicating the amount of charge in théeba The clock ticks according to
the following probabilistic rewrite rule:

[tick] : clock(t,c) =
if b then
clock(t + 1,c-
el se
broken(t, c -

To00)
| o)
fi
with probability B := BERNOULLI (15g)

Note that rule’s righthand side has a new boolean variBblé all goes well 8 = true), then the clock
increments its time by one second and the charge is slightiyedised; but 8 = f al se, then the clock will go
into a broken statbr oken(t, ¢ - 155) - Here the boolean variabkis distributed according to the Bernoulli
distribution with meanm%. Thus, the value oB probabilistically depends on the amount of chatgé in the

battery: the lesser the charge level, the greater the chthatehe clock will break; that is, we have different
probability distributions for different matching subatibnsé of the rule’s variables (in particular, of the variable
c).

Of course, in this example the varialiBés a discrete binary variable; but we could easily modify #xample
to involve continuous variables. For example, we could lzesgeimed thdt was a real number, and we could have
specified that the time is advanced to a new ttme- t’ , witht’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of neviaddes®’ could contain both discrete and continuous
variables, ranging over different data types. In particdath discrete and continuous time Markov chains can
easily be modeled, as well as a wide range of discrete orroomiis probabilistic systems, which may also involve
nondeterministic aspects [4]. Furthermore, the PMaudensitn of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite thearigs, ?], and we can formally analyze their properties
according to the methods described in Section 6.

We give below a precise mathematical definition of probatidirewrite theories. Note that an ordinary rewrite
theory [6] is a tripleR = (X, E, R), with (X, F) and equational theory and witR a collection of possibly
conditional rewrite rules.

Definition 1 (Probabilistic rewrite theory) A probabilistic rewrite theoris a 4-tupleR = (X, FUA, R, 7), with
(X, E, R) arewrite theory where the equatiofsare confluent and terminating (perhaps modulo some strattur
axioms) and the rule® are coherent with respect to the equatidri$?]. Furthermore, the rulegs € R are of the
form

crl [L]: (%) — (7, %) if C(T)

where

e 7 is the set of variables in

e 7/ is the set of variables irf that are not int; thus, ¢ might have variables coming from the SgtU 7/;
however, it is not necessary that all variablesahoccur int’,

e C'is an equational condition, i.e., a conjunction of equasiovhere all the variables involved are i,
andm is a function assigning to each rewrite rute= R a function
7, : [C] — PFun(CanGSubsi(%),)
where:

e CanGSubst(7') denotes the set of ground substitutighor the variablesz” which are in E-canonical
form, i.e., cannot be further simplified by the equatiéhs

e [CT{p € CanGSubst(z) | E - u(C)} is the set off-canonical ground substitutions far” satisfying
the conditionC,

e F,is ac-algebra structure on CanGSubsfy), and
e PFun(CanGSubsi(7), F,) denotes the set of all probability measure functions ondhiggebra.
We denote a rule together with its associated functian, by the notation
crl [L]: (@)=t (7,y) if C(Z) with probability ¥ :=m.(7)

If the set CanGSubsty/) is empty becausg’ is empty thenr, (') is said to define arivial distributior this
corresponds to the case of an ordinary rewrite rule with nolgability. If 7/ is nonempty but CanGSubsfty’) is
empty because there is no canonical substitution for spraey’ because the corresponding type is empty, then
the rule is consideredrroneousnd will be disregarded in the semantics.

A probabilistic rewrite theory has a natural operationahagtics (se@?for a more detailed exposition). Given
a ground termy all the one-step rewrites with the rulesihare defined as expected:

e we need to find a subterm afmatched by one of the rules, say¥ R with substitutiord and satisfying the
rule’s condition,

¢ we then need to choose a ground substitutidar the variablesy’ in the given rule; of course, the choice
of p should be made probabilistically, according to the prolitgtdistribution r,.(9),

¢ in this way we obtain @ne-step probabilistic transition — v, where we may assume that battandv
are in canonical form by the equatioAs and where is obtained fromu by replacing the subterm which is
the left-handside instance of the rule by the correspondgighand side withz” instantiated by and
instantiated by, and then simplifying the resulting term with the equatidghs

The computation®of the system are then infinite paths of such one-step pridtabtransitions. The PMaude
system can support symbolic simulation of such computatiging the underlying Maude engine and a library
of probability distributions, so that the substitutignare obtained by sampling such distributions using a pseudo-
random number generator.

Note however that, in general, a probabilistic rewrite tige®g which we could execute this wagvolves both
probabilities and non-determinisithe non-determinism is due to the fact that, in genelifierent rules, possibly
with different subterm positions and substituti@osilld be applied to rewrite a given statethe choice of what
rule to apply, and where, and with which substitutiom@n-deterministic It is only when such a choice has
been made that probabilities come into the picture, nanmlglioosing the substitutiomfor the new variables
. This gives our specifications a great flexibility to dealhwdkifferent kinds of probabilistic-nondeterministic
systems that have been considered in the literature, baiigrierality poses some limitations on the kinds of
analysis that can be performed. In particular, for the kifhstatistical model checking discussed in Section 6 that
will be used to formally analyze our DoS-resistant TCP/IBtpcol we need to assume ttadk non-determinism
has been eliminatetfom our specification; that is, that at most one single rplgsition, and substitution are
possible to rewrite any given state.

What this amount to, in the specification of a concurrentesystuch as a network protocol is tipgantification
of all non-determinism due to concurrency using probab#itThis is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite thetar satisfy some simple requirements.

4.1 Sufficient condition for absence of un-quantified non-derminism in an object-oriented PMAUDE
specification:

We will consider rewrite theories specifying concurrentoadike objects and communicating by asynchronous
message passing; this is particularly appropriate for comoation protocols. In rewriting logic such systems
(see [7] for a detailed exposition) have a distributed stiast can be represented asnaltisetof objects and
messages, where we can assume that objects have a generdililee representation of the fornjo : C' | a4 :
v1,...a1 : v1), Whereo is the object’s name(' its class, and the; : v; its corresponding attribute-value pairs
in a given state. It is also easy to model in this wagl-time concurrent object systenane very simple way to
model them is to include a global clock as a special objedtémultiset of objects and messages. Rewrite rules
in such a system will involve an object, a message, and thHegtone and will consume the message, change the
object’s state, and send messages to other objects. To dbahessage delays and their probabilistic treatment
we can represent messageseseduled objecthat are inactive until their associated delay has elapsed.

aprnod S| MPLE- CLI ENT- SERVER i s
protecti ng PVAUDE .
i ncludi ng ACTORS .
protecting NAT .

vars t t; to T : PosReal .
vars C S : ActorNanme .
vars N M: Nat .

op counter:_ : Nat — Attribute .
op server:_ : ActorName — Attribute .
op total:_ : Nat — Attribute .

op ctnt : Nat — Content .

rl [send]: (nane: C | counter: N, server: S) (C—enpty) T =
(name: C | counter: N+1, server: S) [T+t1, (C—enpty)] [T+ta, (S—ctnt(N))] T
with probability ¢;: = EXPONENTI AL(2.0) and t2: = EXPONENTI AL(10. 0) .

rl[compute]: (name: S| total: M (S—ctnt(N) T = [T+t (nane: S| total: MN)] T
with probability ¢ = EXPONENTI AL(1.0) .

rl[busy-drop]: [¢ (name: S| total: M] (S—ctnt(N) = [¢ (name: S| total: M] .
op init : — Config .
op ¢ : — ActorName .
op s : — ActorName .
eq init = (nane: c¢ | counter: 0, server: s) (name: s | total: O)(c—enpty) 0.0 .

endapm

Figure 1: A simple Client-Server model with exponentiakidisition on message sending delay and computation
time by the server

Example 2 We can illustrate systems of this kind by means of the clemesexample in Fig. 1. In the example, a
clientc continuously sends messages to a sesvarhe time interval between the messages is distributechexpo
tially with rate 2.0. The message sending of the client is triggered when itvese self-sent message of the form
(C— enpty) . The delay associated with the message from the client tedher is distributed exponentially
with rate10.0 (see rule labelledend). The message contains a natural number which is increrddntd by the
client, each time it sends a message. The server, when ngtdausreceive a message and increment its attribute
t ot al by the number received in the message (see rule labetaghut €). If the server is busy processing a
message (computation time is exponentially distributetl veite 1.0), it drops any message it receives (see rule
labelledbusy- dr op). Note that we can modify the rubusy- dr op to allow the server actor to enqueue any
message it receives when its is busy.

The rule for sending a message by a clié€rb a serverS is labelled bysend. The left hand side of the rule
matches a fragment of the global state consisting of a chetdr of the formname: C | counter: N,
server: S), amessage of the forlC— enpt y), and a global time of the form. The rule states that the
client C, on receiving an empty message, produces two messages:piy rmessage to itself and a message to a
server, whose name is contained in its attribsiteg ver . Both the messages were produced as scheduled objects
to represent that they are inactive till the delay time assi@l with the messages has elapsed. The delay times
andt» are substituted probabilistically.

Note that the model has no non-determinism. All non-detesmi has been replaced by probabilistic choices.
A model with no non-determinism is a key requirement for tatistical analysis technique briefly described in
Section. 6. We next give a sufficient condition to ensuregPd¥AUDE specification has no non-determinism.

1. The initial global state of the system or the initial conf@tion can have at most one non scheduled message.

attacker send rate

X

&
shared channel

honest client A server
— 7 1\ \

! B

A [J J J
A, — 7 p

I:A messages drop rate
for packets received

An send rate

Figure 2: An instance of the TCP’s 3-way handshake protocol.

2. The computation performed by any actor after receivin@asage must have no un-quantified non-determinism;
however, there may be probabilistic choices.

3. The messages produced by an actor in a particular congru{ae. on receiving a message) can have at
most one non scheduled message.

4. No two scheduled objects become active at the same giotml This is ensured by associating continuous
probability distributions with message delays and commrdime.

5 Probabilistic Rewrite Specification of DoS resistant 3-wghandshaking in TCP

We now present an executable specification of TCP’s 3-waydstaake protocol in probabilistic rewriting logic.
We consider a protocol instance composedvolfionest clientsdy, ..., Ay trying to establish a TCP connection
with the serverB, and a single attackeX that launches a SYN-flood attack @h (see Figure 2). The clients
A; transmit SYN requests tB at the rate- 4, while the attackerX floods spurious SYN requests at the rate
These rates are assumed to be parameters of an exponesttibudion from which the time for sending the next
packet is sampled. The servBrdrops each packet it receives independently with prolighili Each message
across the network is assumed to be subject to a transmisiayy!, which we assume to be constant. Of course,
these assumptions about the various distributions candiy ehanged in the implementation that follows.

Each client4; is modeled as an object with four attributes as follows.

<nanme: A(i) | isn:N, repcnt:s(CNT), sendto: BN, connected:fal se>

The attributel sn specifies the sequence number that is to be used for the TGRec@M,sendt o specifies
the name of serveB, r epcnt specifies the number of times the SYN request is to be (retnéted in order to
account for random dropping of packetsiatandconnect ed specifies if the connection has been successfully
established as yet. The attacker is modeled as an objechwitigle attribute as follows.

<name: XN | sendto: BN >
The serverB is modeled as an object with two attributes.
<name: BN | isn: M, synlist: SC >

The attributel sn specifies the sequence number tBatises for the next connection request it receives, while
synl i st is the SYN cache thaB maintains for the pending connection requests.
Following is the probabilistic rewrite rule that models tient A; sending a SYN request.

rl <name: A(i) | isn:N, repcnt:s(CNT), sendto: BN, connected:fal se>
(A(i)«poll) T

=

<nane: A(i) | isn:N, repcnt:CNT, sendto: BN, connected:false>
[d + T, (BN—SYNA(i),N)]

[¢t + T, (A(i)«poll)] T

with probability ¢ := EXPONENTI AL(74)

We use special poll messages to control the rate at whjcketransmits the SYN requests. Specifically,
repeatedly sends itself a poll message, and each time ivesca poll message it sends out a SYN requeft.to
The poll messages are subject to a random dellagt is sampled from the exponential distribution with paeter
ra. Specifically, the message is scheduled at timel’, whereT' is the current global time. The net effect of this
is that A; sends SYN requests 18 at rater4. Perhaps it is important to point out that the poll messagesat
regular messages that are transmitted across the netwegkhaive been introduced only for modeling purposes.
Further, note that the approach of simply freezihdy scheduling it at tim& + ¢ does not work since that would
also preventd; from receiving any SYN+ACK messages that it may receive fl@mrmeanwhile. Finally, note
that the replication count is decremented by one after Hrestnission of SYN message, and the message itself is
scheduled with a delay.

The rule for SYN flooding by the attacker is very similar, epicéhat it uses randomly generated sequence
numbers.

rl <pname: XN | sendto: BN > (XN <« poll) T
= <name: XN | sendto: BN > T
[d+ T, (BN~ SYN(XN, random(counter)))]
[t+ T, (XN—poll)]
with probability ¢ := EXPONENTI AL(rx)

The following rule models the processing of SYN requestshieyservers.

ri <name: BN | isn: M, synlist: SC > (BN— SYN(ANY,N)) T
= if (drop? or size(SC) > SYN CACHE-SI ZE) then
<name: BN | isn: M, synlist: SC>T
el se <nanme: BN | isn:s(M, synlist:add(SC, entry(ANY, M) >
[d + T, (ANY— SYN+ACK(BN,N, M)]
[TIMEQUT + T, (BN—tnout(entry(ANY,M)) 1 T fi
with probability drop? := BERNOULLI (p)

The random dropping of incoming messages is modeled by sagripbm the Bernoulli distribution with the
appropriate parametgr Note that an incomming request can also be dropped if the &¢Re is full. If the cache
is not full, for each request that is not dropped, the seBrarakes an entry for the request in the cache, and sends
out a SYN+ACK message to the source of the request. A cachgismf the forment r y(N, M whereNis the
name of the source which has requested a connectioiMasthe sequence number for the connection. Timing
out of entries in the cache is modeled by locally sending asags to self that is scheduled after an interval of
time equal to the timeout period. Here is the rule for remgtimed out entries.

rl <nane: BN | isn: N, synlist: [s(SZ), (L1 entry(ANY,M L2)]>
(BN «— tnout(entry(ANY,M))
= <nanme: BN | isn: N, synlist: [SZ, (L1 L2)] >

The first argument in the value of tlsynl i st attribute above is the number of entries in the list, while th
second argument is the actual list of entries. The rule focgssing the SYN+ACK message at the clients is as
follows.

10

rl <nanme: A(i) | isn:N, repcnt:CNT, sendto: BN, connected: fal se>
(A(i) — SYNWACK(BN, NN M) T
=
<nane: A(i) | isn:N, repcnt:CNT, sendto: BN, connected:true>
[d+ T, (BN—ACK(A(I),M)] T

The rule is self-explanatory; the only significant point #orinted is that the attributeonnect ed is set to true
after processing the SYN+ACK message. Since the clienteatg their requests to account for random dropping
of packets at the server, it is possible for them to receiv¥d<RACK message for a connection that has already
been established. Such SYN+ACK messages are simply igasrédiows.

ri <name: A(i) | isn:N, repcnt:CNT, sendto: BN, connected:true>
(A(i) < SYN+ACK(BN, N, M)
=
<name: A(i) | isn:N, repcnt: CNI, sendto: BN, connected:true> .

In contrast to the honest clients, the attacker ignorehal&YN+ACK messages that it receives from the server
B.

ri <name: XN | sendto: BN > (XN <« SYN+ACK(BN, N, M)
= <name: XN | sendto: BN >

Finally, the initial configuration of the system is

< nane: XN| ... > [t1 , <nanme: A(1l) | ... >]
[to, <nanme: A(2) | ... >] ...
[t, , <name: AN | ... >] <nane: BN| ... >
wheretq, ..., t, are all distinct and positive. Note that the since all thertil are scheduled at different times,

it follows from our discussion in Section 4 that the systeregloot contain any un-quantified non-determinism,
which is essential for statistical analysis to be possible.

6 Query Language for Analysis

To query various quantitative aspects of a probabilistidehowe introduce a query language cali@dantitative
Temporal Expression®r QUATEX in short). The language is mainly motivated by probabdisbhmputation tree
logic (PCTL) and AGLE. In QUATEX, some example queries that can be encoded are as follows:

1. What is the expected number of clients that get conneotBatt of 100 clients?

2. What is the probability that a client got connected vidtithin 10 seconds since it initiated the connection
request?

We next introduce the notations that we will use to desctileesyntax and the semantics ol QI Ex followed by
a few motivating examples. Then we describe the languagedity, along with an example query that we have
used to investigate if the DoS free 3-way TCP/IP handshgkiotpcol model meets our requirements. The results

of our query on various parameters are given in Secfén.
We assume that an execution path is an infinite sequence

T =890 —> 81 — S — -

11

wheresg is the unique initial state of the system, typically a ternsoft Conf i g representing the initial global
state s; is the state of the system after thi& computation step. If thet! state of this sequence cannot be rewritten
any further (i.e. is absorbing), then= s, for all i > k.

We denote thé'® state in an execution pathby 7[i] = s;. The denote the suffix of a pathstarting at the
ith state byr() = s; — si11 — sip2 — ---. We let Path(s) be the set of execution paths starting at state
s. Note that, because the samples are generated througktdisments simulation of a PAMMDE model with
no non-determinismpPath(s) is @ measurable set and has an associated probability reedshis is essential to
compute the expected value of a path expression from a giaéan s

6.1 QUATEX through Examples

The language QATEX, which is designed to query various guantitative aspectspbbabilistic model, allows
us to write temporal query expressions like temporal foemuh a temporal logic. It supports a framework
for parameterized recursive operator definitions usingvwa gamitive non-temporal operators and a temporal
operator. For example, suppose we want to make a query ovexemution path thaWhether the clientA(0)
gets connected witk within 100 time units.For this we write the following query in QATEX

IfConnectedInTime()(t) =
if ¢t > time() thenfalse
elseif connected() thentrue
else O (IfConnectedInTime()(t)) fi fi;
IfConnectedInTime()(¢ime() + 100)

The first four lines of the query define the operaléConnectedInTime()(¢), which returns true, if along an
execution path4(0) gets connected t® in time ¢t. The state functiotime() returns the global time associated
with the state; the state functi@onnecte(t) returns true, if in the statel(0) gets connected with and returns
false otherwise. The fifth line of the query writes a path egpron, which returns true, if by the global time
time() + 100, A(0) gets connected with.

The above expression is a simple formula that can also bessgd in metric temporal logic. Let us complicate
the example a bit by querying probabilities. Note that thevatquery is a query about a path. Now suppose that
we want to know'the probability that along a random path from a state, theeot A(0) gets connected with
within 100 time units.” This can be written as the following query

NumConnectedInTime()(t) =
if t > time() theno
elseif connected() thenl
else O (NumConnectedInTime()(t)) fi fi;
E[NumConnectedInTime()(time() + 100)]

In this query, we define the operattumConnectedInTime()(t), which is similar toIfConnectedInTime()(t),
except thallumConnectedInTime()(¢) returnsl whenIfConnectedInTime()(¢) returnstrue antiumConnectedInTime ()(t)
returnsO whenIfConnectedInTime()(¢) returns false. Then the state query at the fifth line returaskpected
number of timesA(0) gets connected t& within 100 time units along a random path from a given stateis T
number lies irf0, 1] since along a random path eith&f0) gets connected t8 within 100 time units or4(0) does
not get connected t® within 100 time units. In fact, this expected value is eqoaite probability that along a
random path from a state, the cliefit0) gets connected witfs within 100 time units.
A further rich query that is interesting to our probabikstiodel is as follows

12

Q == D SE

D = setofDefn
Defn = N(z1,...,2)(Y1,...,Ym) = PE;
SE == c|f|F(SEy,...,SEx) | E[PE]
PE = SE|F(PE,...,PE,)| N(PE,,...,PE,)(SEi,...,SE,)

|if SE then PE, else PE; fi | OPE |

Figure 3: Syntax of QATEX

ConnectedInTime()(t, count) =
if t > time() thencount
elseif anyConnected() then O (ConnectedInTime()(t,1 + count))
else O (ConnectedInTime()(¢, count)) fi fi;
E[ConnectedInTime()(time() + 100,0)]

In this query, the state functiomnyConnected() returns true if any clienti(i) gets connected t® in the state.
We assume that in a given execution path, at any state, atanestlient gets connected 18, which is true with
our probabilistic model. We will use a simpler variant ofstiuery in our experiments.

6.2 Syntax of QIATEX

The syntax of QATEX is givenin Fig. 3. A query in QATEX consists of a set of definitior3 followed by a state
guery expressioSE. In QUATEX, we distinguish between two kinds of expressions, nanmth expressions
(denoted byPE) andstate expression@enoted bySE); a path expression is interpreted over an execution path
and a state expression is interpreted over a state. A defidtfn € D consists of a definition of path operator

A path operator definition consists of a nafieand two sets of formal parameters on the left-hand side, patha
expression on the right-hand side. The first set of formapaters denote then-freeze formal parameteasid

the second set of parameters denoteftbeze formal parameterdVhen using an operator in a path expression,
the non-freeze formal parameters are substituted by patiessions and the freeze formal parameters are replaced
by state expressions. A state expression can be a comstfinctionf that maps a state to a concrete value, a
k-ary function mapping: state expressions to a state expression, or the expecHifitj denoting the expected
value of the path expressidtE. A path expression can be a state expression, an applicat@mpath operator
already defined inD, a conditional expression ifSE then PE; else PE.; fi, or the unary temporal path
operator() (standing for next). We assume that expressions are pyojyped. Typically, these types would be

i nt eger, real, bool ean etc. The conditiorSE in the expression ifSE then PE; else PE,; fi must have

the typebool ean. The path expressidPE in the expressiok[PE] must be of type eal . We also assume that
expressions of typent eger can be coerced to threeal type.

6.3 Semantics of QATEX

Next, we give the semantics of a subset of query expresdiaisan be written in QATEX. In this subclass, we
put the restriction that the value of a path expres§iirthat appears in any expressiBfiPE] can be determined
from a finite prefix of an execution path. We call such path egpiondoundedpath expressions. The semantics
is given in Fig. 4.(s)[SE] p is the value of the state express®if in the states. Similarly, (s)[PE] p is the value

of the path expressioBE over the pathr. Note that if the value of a bounded path expression can bgutad
from a finite prefixrg, of an execution path, then the evaluations of the path expression over all ei@cpaths

13

(s)llp =c
()lflp = f(s)
(S)[[F(SEl, e ,SEk)]]D = F(S)[[SEl]]D, ey (S)HSEIC]]D)
(s)[EIPE]]p = E[(m)[PE]p | ® € Paths(s)]
([F(PEy, .., PEO]p = F((m)[PExlp, .., ()[PEc])
(71') [[E SE then PE; else PEy f_l]]D = if (W[O])[[SE]]D == true
(

(MIOPE]p = (nV
(m)[N(PEy,...,PE,)(SE4,...,SE.)]bp
= Bz — PEy,..., 2, — PE, ,y1 — (7[0)[SE1]p,- -, Ym — (7[0])[SEx] D]
where N(zi,...,2n)(Y1,...,Ym) =B € D

Figure 4: Semantics of QA TEX

having the common prefixg, are the same. Since a finite prefix of a path defines a basicdeylset (i.e. a
set containing all paths having the common prefix) having ssoeiated probability measure, we can compute
the expected value of a bounded path expression over a rapdtinirom a given state. In our analysis tool, we
estimate the expected value through simulation insteadlofitating it exactly based on the underlying probability
distributions of the model.

6.4 Statistical Evaluation of a QUATE X Expression

Given a probabilistic model and au@TEXx expression, we evaluate the expression at the initial efake model.
The evaluation of all path and state expressions, excegpectation expression, is straightforward and follows
directly from the semantics. However, the evaluation of>xgression of the fornk[[PE] cannot be done directly
for a complex probabilistic model. Rather, we use discestent simulation to estimate[[PE] with certain given
confidence and certain given confidence interval. Spedificake assume that we are given three parameters
with each expressioB[PE], namelyl, u, «, wherel andu are the lower and upper bounds, respectively, of a
confidence interval of the estimated valueedPE]. Let X be random variable giving the value of the expression
PE along a random path from a states. Then(s)[E[PE]]p = E[X]. Let Xy, ..., X,, ben random variables
having same distribution a&. We calculate: such thatProb[l < 3., ,; Xi/n < u] = a holds. Once we
know the number of samples we estimatd=[X'] by drawingn samples:y, . .., z, of X. The estimated value of
(s)[E[PE]] p is then given by) ;. (;) 2i/n.

6.5 Experimental Evaluation
For our experiments, we evaluated the following expressiim different values for x, the attacker rate.

CountConnected() = if completed() thencount() else O (CountConnected()) fi;
E[CountConnected()]

In this expressiongompleted() is true in a state if ald;’s have either sent their all SYN packets or got connected
with B. count() in a state returns the number 4f’s that got connected t8.

14

7 Conclusions

Our study demonstrates that we are able to express and pegvyeréperties, but performance limitations of the
automated system in our current formulation require us topgameters more limited than those that arise in
practice. Addressing these efficiency limitations and shgwhe general invariance property described above
remain future work objectives.

References

[1] Ronald Cramer and Victor Shoup. A practical public keyptosystem provably secure against adaptive
chosen ciphertext attackecture Notes in Computer Sciendd62, 1998.

[2] Danny Dolev and Andrew C. Yao. On the security of publ@ylprotocolsIEEE Transactions on Information
Theory 2(29):198-208, 1983.

[3] Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santasfiketesh. Dos protection for reliably authenticated
broadcast. In Mike Reiter and Dan Boneh, editdMgiwork and Distributed System Security (NDSS.'04)
Internet Society, February 2004.

[4] Nirman Kumar, Koushik Sen, JésMeseguer, and Gul Agha. Probabilistic rewrite theoriasfyihg models,
logics and tools. Technical Report UIUCDCS-R-2003-2347jversity of lllinois at Urbana-Champaign,
May 2003.

[5] Nirman Kumar, Koushik Sen, JésMeseguer, and Gul Agha. A rewriting based model for prdisioi
distributed object systems. Froceedings of 6th IFIP International Conference on Forfai@thods for Open
Object-based Distributed Systems (FMOODS,@8Jume 2884 of_ecture Notes in Computer Scienpages
32-46. Springer, 2003.

[6] Jos Meseguer. Conditional rewriting logic as a unified modalafcurrencyTheoretical Computer Science
96(1):73-155, 1992.

[7] Jos Meseguer. A logical theory of concurrent objects and édization in the Maude language. Research
Directions in Concurrent Object-Oriented Programmjpgges 314—-390. MIT Press, 1993.

15

