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Abstract— Managing risk is a central problem in the design
and operation of networked control systems, and due to the
increasing role and growing complexity of software in such
systems, managing software related failures is becoming a
central challenge. Even simple programming errors can cause
catastrophic failures [1]. Hence, it is vital to contain risks due
to software related failures in such systems.

Our main thesis is that most software related failures can
be managed through relatively simple and generally applicable
strategies, and such strategies can be effectively developed
and reused with suitable support from software infrastructure
such as middleware. We describe mechanisms in Etherware,
our middleware for control over networks [2], for containin g
software failures, and demonstrate the effectiveness of these
mechanisms through experiments in a vehicular control testbed.

I. INTRODUCTION

As we continue to incorporate more advanced technologies
and their associated control systems into our daily lives,
there is a corresponding increase in both their capabilities
to serve us, and their capability for damage when things go
wrong. For example, an automated city-wide traffic system
could enable much more efficient transportation in such
highly congested environments as cities, perhaps avoiding
waits at traffic lights and reducing energy waste. At the
same time, we may also be able to better utilize the large
capital investments in roadway systems. The realization of
such a system would probably require automated vehicles
capable of maintaining close and predictable formations
through the use of various distributed sensors and complex
control software. Unfortunately, a single programming error
can result in fatalities very easily.

The role of software is becoming increasingly important
in control systems, and the complexity of software design
and implementation is contributing significantly to the risks
in such systems. At the present state of understanding
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of software engineering, it is almost impossible to design
software without errors [3]. Formal methods for program
specification and verification [4] can help detect many errors
in control software. However, there could still be errors in
the model of software itself that could lead to failure. Hence,
the presence of software errors in such systems must be a
basic assumption in system design and analysis.

Since we may not be able to eliminate all software errors,
we instead approach the problem from a different direction.
We contain the failures caused by software errors, and
insulate other system components from their impact. We
accomplish this by modular software design, reduction of
dependencies between various software components, em-
ployment of fail-safes and analytical redundancy through
collation, and design of control hierarchies with the ability
to perform supervisory overrides during critical failures.

Since most of these strategies are generally applicable to
networked control systems, we advocate their incorporation
into software infrastructure such as middleware that can be
easily reused. This not only reduces software development
cycle times, but also improves system safety as reused
software has the benefit of diverse application and testing.
Indeed, this has been one of the central goals for Etherware,
a middleware that we have developed for control over
networks [2], so that it effectively supports our strategies
for management of software failures.

The rest of the paper is organized as follows. We begin
by considering various classes of software related failures in
Section II, and present our strategies for managing these fail-
ures in Section III. In Section IV, we describe mechanisms to
support the implementation of these strategies in Etherware,
and demonstrate the effectiveness of these mechanisms in
Section V. We conclude in Section VI.

II. SOFTWARE RELATED FAILURES AND RISK

In this section, we consider various kinds of software
related failures that can occur in networked control systems,
and analyze the risks due to these failures.

A. Programming errors

Programming errors are a major reason for software fail-
ure. They may occur due to incorrect assumptions, faulty
design, algorithmic errors, or coding errors. Since verifying
the correctness of software is impossible in general [5], itis
hard to detect all errors in software before they cause failures
during system operation.

Even simple software errors such as assuming incorrect
storage size for a programming variable can cause catas-
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trophic system failures [1]. Hence, the risk due to pro-
gramming errors can even be far greater than those due to
non-software errors such as signal noise. The inability to
predict the occurrence of software errors makes managing
their impact far more complicated.

B. Passive failures

Passive failures are failures that result in a loss of some
system functionality. This includes failures of operational
software, computing nodes, and communication links. Such
failures are a consequence of imperfect software and hard-
ware.

The risk due to a passive failure is usually the loss of
functionality provided by the associated components. Hence,
the threat due to these risks is determined by the criticality
of the components that have failed.

C. Active failures

Active failures involve incorrect operation of software that
could lead to faulty system operation. These are usually
caused by programming errors, algorithmic errors, or even
unexpected inputs, and can be fairly hard to detect.

Since active failures still produce what might be perceived
as valid output by other parts of the system, their impact
can propagate, and even lead to system-wide failures. Since
active failures are much harder to detect, and can cause much
more damage, they usually pose a higher risk than passive
failures.

D. Byzantine failures

Byzantine failures are caused by willfully malicious agents
operating within the system. Not only do they perform
undesirable operation, but they may also be specifically
designed to avoid detection. For instance, a rogue car in
an automated traffic system can cause significant damage.
Hence, the risk due to these failures can be significant.

III. MANAGING SOFTWARE RELATED FAILURES

In this section, we consider various strategies for managing
the software related failures described in Section II.

A. Component based design

Programming errors are inevitable in complex software,
and must be accounted for in system design. In particular,
their impact must be contained as much as possible. This
is usually accomplished through modular design, where
the various software modules are designed in a decoupled
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fashion so that errors in one module do not cause failures in
other modules.

Component based design of networked control systems
software is a modular approach where the software is de-
signed as a set of interacting modules, each implementing
a well defined functionality. For instance, the software for
the control system shown in Figure 1(a), can be designed
as in Figure 1(b) with Sensor, Filter, Controller, Supervisor,
and Actuator as software components. With such design,
programming errors in a component such as the Supervisor
can be contained and other connected components such as
the Controller can be insulated from the resulting failures.

In the rest of the paper, we will assume component based
design of software, and by the term component, we will mean
software components as in Figure 1.

B. Local temporal autonomy

While many programming errors can be contained through
component based system design, component failures such as
passive failures can still affect other connected components.
For instance, a failure of the Sensor in Figure 2(a) can affect
Controller as it directly depends on receiving periodic and
timely feedback from the Sensor.

Local temporal autonomy is the property of software
components to tolerate failures of other connected compo-
nents for a short period of time. This allows sufficient time
for the failed components to recover, and resume normal
operation. The State Estimator in Figure 2(b) provides rea-
sonably accurate, though deteriorating, estimates of system
state to the Controller so that it can operate for some time
after a Sensor failure. This local temporal autonomy of the
Controller prevents the failure of the Sensor from cascading
into larger system wide failure.

Although local temporal autonomy is useful as a buffer
against failure, it cannot be employed indefinitely. However,
if it can operate safely long enough for the Sensor to be
recovered from failure, the failure can be isolated from the
rest of the system. Such techniques can be used to provide
local temporal autonomy to most components in networked
control systems, and significantly improve system robustness
in the presence of software related failures [6].

In general, local temporal autonomy insulates components
from passive failures of other connected components, and en-
ables recovery from such failures while maintaining system
stability.



C. Collation

Longer component disruptions may not be manageable
through local temporal autonomy. In such cases, simple fail-
safes can be enforced until the disrupted components can be
recovered. For instance, during a disruption of the Controller
in Figure 1(b), the Actuator may enforce a simple fail-safe
to maintain the plant in a safe state.

Active failures, however, can have a more serious im-
pact on system operation, and more sophisticated strategies
are needed to address them. Simplex [7] is an elegant
architecture for managing active failures of controllers.In
Simplex, two controllers are employed: a simple robust
controllers, and a complex and possibly defective controller.
The complex controller usually has better performance and
operates the system most of the time. However, a supervisor
constantly monitors the state of the system and can quickly
switch to the simple controller if the system approaches some
measurable level of instability due to active failures in the
complex controller.

The Simplex architecture can be generalized to a Collation
[8] based approach to software failure management. In
addition to providing a Simplex like functionality, Colla-
tion can be employed iteratively in an operational system
allowing for on-line testing of new components. With a
reliable backup component, perhaps a Controller, continually
guarding against a new component failure, it is safe to
evolve an operational system. When the newer component
(Controller) has been evaluated to be safe, it may in turn
serve as the reliable backup to a future new Controller which
may either operate more efficiently or provide additional
functionality. For large networked control systems, wholesale
replacement of the system may be cost prohibitive. Collation
affords the ability to evolve, leading to greater overall system
stability throughout the lifetime of the networked control
system.

D. Security overrides

Byzantine failures require a more security oriented ap-
proach to minimize and contain the impact of malicious
agents. Networked control systems can be designed with
multiple layers of control hierarchy [8], where lower level
controllers control local tasks, and higher level controllers
supervise larger sub-systems. For instance, in an automated
traffic system, the car controllers control individual cars,
while traffic supervision components control the flow of
traffic in larger traffic domains.

During normal operation, lower level controllers exert
discretionary control to perform local tasks, while higher
level controllers perform more coarse grained supervision.
However, when a malicious agent is introduced in the system,
the local controllers may not have sufficient information
to operate effectively. For instance, when a rogue car is
introduced in an automated traffic system, individual car
controllers may not be able to respond effectively. In fact,
the situation may be made worse by local greedy response,
causing traffic jams and system instabilities. In such situa-
tions, there must be mechanisms for higher level controllers
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to intervene and exert mandatory control to best address
the threats. For instance, the traffic supervisory components
could take over control of individual cars to slow them down
and allow emergency response vehicles such as police cars
and ambulances to respond more effectively.

An important point to consider during security overrides
is that such overrides must preserve low-level safety mech-
anisms. For instance, the mandatory traffic supervision must
still defer to low level safety mechanisms such as collision
avoidance, else the mandatory control might actually increase
the risk of failure as we demonstrate in Section V-C.

IV. MIDDLEWARE BASED MECHANISMS

The software fault management strategies outlined in Sec-
tion III are fairly general, and can be reused across most net-
worked control systems. Such reuse not only reduces the time
and effort required during system design, but also improves
the overall software quality as reused software is more likely
to be well designed and tested in operation. However, this
requires well designed software infrastructure that provides
mechanisms to support effective reuse. In this section, we
provide a brief overview of Etherware, a middleware for
networked control systems, which we have developed as
software infrastructure. In particular, we describe Etherware
mechanisms that support the development and reuse of
software fault management strategies from Section III.

A. Etherware

Etherware is a message oriented component middleware
for networked control systems. It is software infrastructure
for such systems, and supports the development of compo-
nent based software for such systems.

A generic component in Etherware is shown in Figure 3.
It consists of a control law that implements the functionality
of the component, and a state object that specifies the
current software state of the component. These constitute
the software that need to be implemented by the control
software engineer. These objects are then encapsulated within
aShell, which provides a uniform communication interface to
the other components in the system. Components participate
in control hierarchies (represented vertically) and data flows
(represented horizontally) as shown in Figure 3.

Components interact with each other by exchanging mes-
sages addressed using componentprofiles, which are mean-



MessageStream

ActuatorSecurity OverrideController

Filter

Fig. 4. MessageStreams and Filters

ingful descriptors of components. For instance, a sensor
profile could specify that the associated sensor is a color
video camera operating at a frequency of 50 Hz, and covering
a certain geographic area. Other components could then
communicate with the sensor using only this information,
and obtain meaningful feedback without having to worry
about low level network details such as IP addresses and
ports.

Component based design insulates components from fail-
ures of other components, and promotes local temporal
autonomy by allowing continued operation while the failed
components recover. Message based communication decou-
ples the components so that they are not dependent on
the operational states of other components or intervening
communication links. This exposes (disguises) most passive
failures as simple message delays that can be addressed
in a uniform fashion. Finally, profile based addressing of
messages allows components to be restarted, upgraded, or
even migrated as the low-level identity and network location
of components is not exposed (and hence not required to be
known).

B. Message streams

Etherware based components communicate by exchang-
ing messages. However, most communication in networked
control systems consists of streams of messages, where all
messages in a given stream need to be delivered with similar
guarantees. For instance, sensory feedback messages may
need to be delivered with low delay, while supervisory
control messages may need to be delivered with high re-
liability. Etherware supportsmessage streamsas a uniform
mechanism for specifying such requirements. For instance,a
control message stream from a Controller component to an
Actuator component is shown in Figure 4.

Message streams constitute a simple mechanism to address
passive failures. Etherware supports efficient restart mecha-
nisms that allow failed components to be restarted in a timely
fashion. Message streams to failed components are main-
tained across such restarts, and the connected components
can continue operating without being aware of such restarts.
Further, failures of computing nodes or communication links
are exposed to components as a closing event of a message
stream. This allows components to track such failures with-
out needing to constantly monitor the system.

Multicast streamsare multi-source multi-receiver message
streams supported by Etherware. Such streams are useful
for efficient delivery of multi-recipient messages such as
system-wide feedback. These streams insulate components
from passive failures as well.
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C. Message filtering

Etherware also supports filtering of messages through a
message stream. For instance, if the Controller in Figure 4
has an active failure, then its controls to the Actuator can be
overridden using an appropriate Filter. Similar filters canbe
used to filter all messages to or from a given component.

Message filtering can also be used to enforce mandatory
control while reacting to Byzantine failures as described in
Section III-D. For instance, a supervisor could override the
discretionary control of low level car controller using an
override as shown in Figure 4.

D. Etherware architecture

The architecture of Etherware is based on the micro-
kernel concept in operating systems [9]. Specifically, the
architecture of Etherware in an operating system process
is shown in Figure 5. An Etherware process has aKernel
that manages all components in the process, and delivers
messages between them. In particular, the Kernel can tol-
erate component failures and supports component restarts,
upgrades, and migration while being operational. This allows
passive failures to be tolerated quite easily, and insulates the
rest of the system from such failures. The Kernel also has a
Schedulerthat determines the priorities for message delivery.

The Kernel is a simple and robust module which is fairly
well tested and reused. All other Etherware functionality and
services have been implemented as service components. This
allows the system to tolerate failures in most of the Etherware
software as well, and hence insulates the system from such
failure. Further details about the Etherware architectureand
services can be obtained from references [2] and [6].

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of Ether-
ware mechanisms for software fault management. Specifi-
cally, we present experiments to show how effective restarts
and overrides can help reduce software related risk in control
systems.

A. Vehicular control testbed

Our study of networked control systems has focused on
the vehicular control testbed shown in Figure 6. The testbed
consists of radio controlled cars operated by control software
executing on a network of laptop computers. Visual feedback
is provided by a pair of ceiling mounted cameras, processed
by dedicated desktop computers, and is available as feedback
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after appropriate data fusion. Vision images are processed
and controls are actuated at a frequency of 10 Hz.

The testbed is operated by Etherware based component
software whose architecture is shown in Figure 7. Each car
is operated by an Actuator based on controls specified by a
corresponding model predictive Controller. The way-points
for the Controllers are specified by a higher level Supervisor.
The communication between these components is through
message streams as shown in the figure. Feedback is provided
through a multicast stream by a Feedback Server, which
accumulates sensory information from the Vision Sensors.

B. Component restarts

In the first experiment, we demonstrate the effectiveness of
fast component restarts in addressing component failures.In
this experiment a single car is operated in an oval trajectory,
and failures are injected into the car Controller causing it
to be restarted subsequently. The deviation of the actual car
trajectory from the desired trajectory, as a function of time, is
shown in Figure 8. Restarts are indicated by pointers, and the
accompanying numbers indicate, in milliseconds, the time for
each restart.

For the first 60 seconds, the car operated without restarts
and tracked the trajectory with an error of less than 50mm.
The first restart occurred at about 70 seconds into the
experiment, and was followed by two other restarts in the
next 20 seconds. The last three faults were also handled
by the restart mechanisms in Etherware. The plot in Figure

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

45 83 39

3219

46 42 128

time (seconds)

D
ev

ia
tio

n 
fr

om
 tr

aj
ec

to
ry

 (
m

m
)

Deviation (mm)
Time of controller down
Time of controller up
Elapsed time to recover (ms)

Fig. 8. Etherware based software architecture of the testbed

8 indicates that the error in the car position during these
restarts was well within the system error bounds during
normal operation.

To illustrate the effectiveness of these two mechanisms,
the entire Etherware process managing the Controller was
restarted at about 100 seconds after the start of the exper-
iment. As shown in Figure 8, the subsequent restart of the
Etherware process with the Controller took about three sec-
onds. During this time, the actual car trajectory accumulated
a large error of about 0.8 meters with respect to the desired
trajectory. This clearly illustrates the necessity for efficient
restarts. Furthermore, even though the Controller restarted
after three seconds, additional error was accumulated before
recovery. This was so because the Controller had to reconnect
to the other components, rebuild the state of the car, and
bring it back on track. This demonstrates the improvement
that has been achieved by the efficient restart mechanism in
Etherware.

We have similarly demonstrated the effectiveness of Ether-
ware mechanisms for component upgrades and migration as
well [2], [6].

C. Security overrides

In the second experiment, we show the importance of
message filtering based overrides in Etherware. In this ex-
periment a rogue car operated by a human is introduced
into a traffic setup with two regular and two police software
controlled cars. On detecting the rogue car, the two police
cars are tasked with pursuing and ”apprehending” it. The
safety goal is to track the rogue car without causing any
accidents, while the security goal is to minimize the distance
between the police cars and the rogue car.

The police cars can be operated with local discretionary
control, where each car is controlled independently, or with
global mandatory supervision and security override, where
all cars are controlled by a central supervisor. Safety is
provided by low-level collision avoidance.

We consider the following scenarios in the experiment:



TABLE I

SAFETY MEASURE FOR THE FOUR SCENARIOS

Collision Avoidance Security Override Time to first collision (seconds)

No No 2
No Yes 10
Yes No No collisions
Yes Yes No collisions

TABLE II

SECURITY MEASURE FOR THE FOUR SCENARIOS

Collision
Avoidance

Security
Override

Minimum of distances between police cars and rogue car
Mean distance (mm) Std. deviation (mm)

No No 2182.7 1195.5
No Yes 925.6 833.5
Yes No 913.0 785.0
Yes Yes 766.1 578.2

1) No collision avoidance or security override:This cor-
responds to local discretionary control of cars without
low-level safety.

2) Security override without collision avoidance:This
corresponds to global mandatory control of cars, also
without low-level safety.

3) Collision avoidance without security override:This
corresponds to local discretionary control with low-
level safety.

4) Security override with collision avoidance:This cor-
responds to global mandatory control with low-level
safety as well.

The results of the experiment are tabulated in Tables I and
II below.

In the first case, since there is no collision avoidance,
and the cars are operated with local discretionary control,
collisions occur within the first two seconds of operation, and
the police cars are quite ineffective. The situation is improved
in the second case, since global mandatory supervision
controls the system with better global information. However,
since the global supervision is coarse grained, collisionsstill
occur and affect the system performance.

Interestingly, in the third case, the performance actually
improves by enabling low level collision avoidance, even
though the cars are operated with local discretionary control.
Basically, the safety mechanism prevents further system
failures and improves performance.

The best improvement is achieved when both low level
collision avoidance and global mandatory supervision are
enabled. The safety mechanism prevents further failures,
while the global supervision exploits better information and
centralized control to optimize for better security. This
demonstrates the effectiveness of security overrides, and
illustrates the importance of safety preservation by security
overrides in control systems.

The videos for these and other interesting experiments on
the vehicular control testbed can be viewed at the testbed
website [10].

VI. CONCLUSIONS

In this paper, we have established the importance of
managing software failures to reduce risk in networked
control systems. We have considered the various kinds of
software related failures in networked control systems, and
analyzed the risks associated with them. We have presented
various strategies for managing these failures and reducing
the associate risks. We have illustrated how these strategies
can be implemented using software infrastructure such as
middleware, and demonstrated the effectiveness of such
strategies in practice on a vehicular control testbed.
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