Using Attribute-Based Access Control
to Enable Attribute-Based Messaging *

Rakesh Bobba, Omid Fatemieh, Fariba Khan, Carl A. Gunter, and Himanshu Khurana
University of Illinois Urbana-Champaign'

Abstract

Attribute Based Messaging (ABM) enables message
senders to dynamically create a list of recipients based on
their attributes as inferred from an enterprise database.
Such targeted messaging can reduce unnecessary commu-
nications and enhance privacy, but faces challenges in ac-
cess control. In this paper we explore an approach to ABM
based on deriving access control information from the same
attribute database exploited by the addressing scheme. We
show how to address three key challenges. First, we demon-
strate a manageable access control system based on at-
tributes. Second we show how this can be used with ex-
isting messaging systems to provide a practical deployment
strategy. Third, we show that such a system can be effi-
cient enough to support ABM for mid-size enterprises. Our
implementation can dispatch ABM messages approved by
XACML review for an enterprise of at least 60,000 users
with only seconds of latency.

1. Introduction

Attribute based systems are useful in practice because
they are flexible, intuitive, and highly deployable. A com-
mon example is attribute-based directory searching where
the attributes of an employee (e.g., department, location)
are used to find the employee. In this example the flexi-
bility comes from the ability to combine (attribute, value)
pairs arbitrarily and intuitiveness comes from a common
understanding of employee attributes. In general, attribute-
based systems are deployable because most attributes asso-
ciated with an enterprise are already present in various en-
terprise databases and assigned to enterprise users; e.g., in
LDAP directories for the example above. Other examples of

*In Annual Computer Security Applications Conference (ACSAC *06),
Miami Beach, FL, December 2006.

T Affiliations of the authors: Bobba, Khurana, National Center for Su-
per Computing Applications (NCSA); Fatemieh, Khan, Gunter, Computer
Science Department.

attribute-based systems include attribute-based authentica-
tion, access control, and trust negotiation [11, 5, 18, 17, 8].

An application that can benefit greatly from integration
with an attribute-based system is multi-party e-mail mes-
saging in an enterprise. Today, mailing lists are used to pro-
vide such messaging and while they enable a single sender
to communicate with a large number of recipients, they also
lead to e-mail inboxes filled with many messages that do
not interest the recipient. This is often caused by the fact
that the recipient lists are overly broad. For example, if the
University of Illinois wishes to send an e-mail to all of its
faculty on sabbatical, it is likely to do this by sending it to
all faculty and including a body that indicates that the mes-
sage only applies to the ones on sabbatical. In principle, it
would be possible to use a database to find out who is on
sabbatical and use this to create a mailing list, but this may
seem like a hassle given the system staff time required to ac-
complish it. So it is much easier to send to a large number
of recipients just to reach the subset that actually needs to
see the message. Though technically such unwanted mes-
sages do not qualify as spam' they tend to waste users’ time
all the same.

Attribute-Based Messaging (ABM) is the concept of al-
lowing lists of messaging recipients to be formed dynam-
ically by using an attribute-based recipient address. This
approach brings the flexibility of attributes in enabling the
sender to send targeted messages, which 1) enhances the
relevance of messages to the recipient and 2) allows the
sender to send confidential messages knowing that the mes-
sages would be delivered only to the intended recipients.
The approach also brings the intuitiveness of attributes as
enterprise users typically understand the attributes associ-
ated with the users of their enterprise. Thus an ABM mes-
sage with an address consisting of a query that returns the e-
mail addresses of the faculty on sabbatical would save about
6 out of every 7 professors the hassle of deleting a message
that does not apply to them. Furthermore, this concept can
be applied to any collection of attributes that are available

1Spam is defined as unsolicited commercial e-mail by the Federal Trade
Commission.

in an enterprise database to which the mailing mechanism
can be linked. For instance, it might be possible to send a
message to all of the female CS graduate students who have
passed their qualifying exams to tell them about a fellow-
ship opportunity that has these requirements. ABM holds
the opportunity to be make more efficient use of recipient
time than broadcast messages or even specialized bulletin
boards or web pages.

Practical ABM raises some interesting challenges, how-
ever. To identify these challenges we first consider a pos-
sible ABM development and deployment path. An initial
step would be the collection of enterprise attributes and
their assignment to users in a database, or perhaps, a sin-
gle view of such user-attribute assignments from a collec-
tion of databases as offered by a data services layer. The
next step would be to set up an ABM server and associate
it with a domain Mail Transfer Agent (MTA) for compat-
ibility with current SMTP systems much like the mailing
list servers of today. This ABM server would be responsi-
ble for resolving attribute-based messages to a list of e-mail
addresses from the database(s). The next step would be to
provide an interface to clients to compose and send mes-
sages to attribute-based addresses (ABM addresses). It is
at this step that we find the interesting challenges of ABM,
which primarily have to do with the security and privacy of
deployed ABM systems.

First, there is the challenge of finding a manageable way
to deal with access control. If anybody can send a message
based on any set of attributes, this may increase rather than
decrease the number of unwanted communications. It also
entails some privacy issues. For instance: who, if anyone,
is allowed to send an e-mail message to faculty that make
a salary of more than $150,000? If these concerns make it
too difficult for an organization to decide on a policy for ac-
cess to ABM, then ABM will not be useful. Second, there is
the challenge of finding a plausible deployment avenue for
ABM that allows the clients to send and receive attribute-
based messages with restricted access policies via the enter-
prise messaging system. If each Mail User Agent (MUA)
client or enterprise MTA must be modified to incorporate
ABM, then this will be too expensive for deployment in the
foreseeable future. Third, there is the problem of making
ABM sufficiently efficient. Since each message address en-
tails an access control decision and dynamically forming a
set of recipients, there is a serious question about whether
users will loose patience or MTAs will be overwhelmed.

In this work we address these three security and privacy
challenges by employing an Attribute-Based Access Con-
trol (ABAC) approach integrated into an architecture fo-
cused on deployability. We then implement a prototype and
conduct experiments that demonstrate the efficiency of our
solution. This work is described in the following seven sec-
tions. In the second section we outline our approach for a

practical access control system. In the third section we dis-
cuss how the ABAC approach is suitable for ABM. In the
fourth section we describe our architecture for ABM using
ABAC and eXtensible Access Control Markup Language
(XACML) with off-the-shelf e-mail MUAs and MTAs. In
the fifth section we describe our implementation and look at
measures of its performance for various types of policies. In
the sixth section we outline related work on targeted mes-
saging and practical demonstrations of ABAC. In the sev-
enth section we make conclusions, including limitations of
our current work and possible future work.

2. Approach for Practical Access Control

An attribute-based messaging system comprises an en-
terprise attribute database that provides user to attribute
mapping functionality, a query language and composition
mechanism that enables senders to compose ABM ad-
dresses, a bridging mechanism that connects the ABM sys-
tem with the enterprise messaging system, an ABM server
that provides service to all enterprise users and related com-
ponents, and the access control component. The access con-
trol component is needed to ensure that the sender is autho-
rized to send the message to the set of recipients represented
by their collective attributes in the composed address. The
absence of access control would allow senders free and easy
access to all enterprise users’ e-mail inboxes and would also
violate the privacy of user attributes. Note that this privacy
is currently enforced in enterprise databases by allowing
only authorized administrators access to them. When at-
tributes are made available to users in the ABM system, it
is essential that the privacy of the attributes be enforced via
appropriate access control. To do so, the access control sys-
tem would comprise a policy language that enables admin-
istrators to specify policies, a policy engine that acts as the
Policy Decision Point (PDP) by evaluating specified poli-
cies against a given access request, and a Policy Enforce-
ment Point (PEP) that enforces the decision. In the ABM
system the ABM servers acts as the PEP. As identified in
the Introduction, practical access control for ABM involves
addressing the challenges of manageability, deployability,
and efficiency.

In order for the access control system to be manageable
it must use access control techniques that specify an effi-
cient mapping of permissions to services (i.e., the ability to
send messages to a set of recipient with a given collection
of attributes). For example, Access Control Lists (ACLs)
would not be a good policy model for ABMs since the cre-
ation and management of such lists for a potentially large
number of attributes would be unwieldy. To address this we
turn to ABAC, which has recently proven to be successful
in access control for distributed systems [5, 8, 11, 17, 18].
In ABAC arequester is granted access to a collection of ser-

vices based on a furnished collection of attributes. Translat-
ing this to our ABM system, a message sender is granted
the permission to send messages to a set of recipients with
a collection of attributes based on his own collection of
attributes. This approach has two advantages in terms of
manageability. First, since the ABM systems extracts at-
tributes from enterprise databases for addressing purposes,
using ABAC allows us to derive access control information
from the same databases. Second, like Role Based Access
Control (RBAC) [9], ABAC simplifies assignment and re-
vocation of permissions. However, since ABAC uses at-
tributes directly it avoids the need to set up and manage a
role administration system that is needed for RBAC.

For server-side deployability on a variety of messaging
environments the access control system must employ a us-
able, standardized policy language and a standards-based
implementation of a policy engine. To address this our ar-
chitecture and prototype are based on XACML [10] and
Sun’s standards-compliant implementation of its policy en-
gine (sunxacml.sourceforge.net). There are sev-
eral advantages to XACML for our practical demonstra-
tion. First, XACML lends itself very well for ABAC policy
specification as the framework supports attributes. Second,
the XACML standard has widespread support from industry
and standards bodies and this may support adoption. Third,
its successful integration in several commercial products [3]
as well as research projects [14] indicates the confidence in
its deployability and effectiveness.

For client-side deployability the access control system
must enable the sender to compose an attribute-based mes-
sage that complies with the access policy using almost any
existing MUA. To address this we use policy specialization
techniques where the sender logs into a web server to com-
pose an ABM address using only those attributes that he is
allowed to route on; i.e., the composition of an ABM ad-
dress is limited to attributes based on the access policy for
the sender. This ABM address is returned to the sender in
a file that he can then attach to his message, which is ad-
dressed to a pre-specified e-mail address of the ABM server.
Furthermore, the ABM address is integrity-protected and
securely bound to the sender’s e-mail account so that it can-
not be spoofed or replayed. This approach also provides
e-mail semantics that users are familiar with in that once
they compose and send a message they expect the message
to be delivered. Other approaches for addressing this chal-
lenge can also be envisioned; e.g., the development of MUA
plug-ins that can access enterprise attributes and understand
and enforce access policies. However, a major advantage of
our approach of setting up a web server is that we avoid the
need for developing multiple plug-ins for different MUAs
as well as requiring installation of additional software on
the client side.

The efficiency of the access control system can best be

gauged via prototype implementation and experimentation.
With an eye towards rapid prototyping and performance
we have employed several commercial of-the-shelf compo-
nents that are well-implemented and standards-compliant
including, for example, Sun’s XACML policy engine. In
our implemented solution a a user accesses a web page
to create an ABM address that further makes a request;
our policy engine specializes the organizational policy to
this user, indicating the attributes that the user can use for
routing. The user then forms the desired attributes into
an address, which is represented using a query language.
This query is added to a message as an attachment and
sent to a distinguished ABM address at an MTA using the
user’s standard MUA. The ABM system collects the e-mail
from this distinguished inbox and dynamically creates a
distribution-list using the attached query and the enterprise
attribute database. With an enterprise of 60,000 principals
using its existing enterprise database or an XML database
view of it, we are able to show that both the XACML de-
cision procedure and the dynamic list creation can be one
within seconds in typical cases, and will still have satisfac-
tory performance for emerging XML database representa-
tions that integrate heterogeneous enterprise databases.

3. ABAC for ABM

In this section we describe how ABAC is employed
to provide manageable access control for ABM. All
enterprises have attribute data about their users in their
databases. For example, a university might have the
following attribute data on a user represented as {(astribute,
value) pairs:

UserlID: user089

Position: Faculty

Designation: Professor
Department: Computer Science
Courses Teaching: CS219, CS 486
Date of Join: 06/24/1988

Annual Salary: $80,000

This information may not all be available in one central-
ized database but, instead, might be distributed over multi-
ple databases that are managed by different units of the Uni-
versity. Our ABM system makes use of this information,
present in an enterprise’s collective databases, abstracted
as user attributes to dynamically create recipient lists. To
have this attribute information available to the ABM system
we envision the use of a data services layer (dubbed infor-
mation fabric by Forrester Research [20]) that exemplifies
the Service Oriented Architecture (SOA) approach [4] and
presents a view of the attribute data after extracting it from

the disparate databases.

To send an attribute based message to a group of recipi-
ents a user needs to specify the attributes in a logical expres-
sion. For example the expression ((position=faculty) and
(salary>$150000)) defines a group that constitute faculty
who make a salary of more than $150,000. This expres-
sion is referred to as an ABM address and, in practice, can
be specified using the language of the database (e.g. SQL)
or via a commonly used query language that can be exe-
cuted on a variety of database technologies (e.g. XQuery
(www.w3.org/XML/Query/)).

A user is permitted to send a message to a given ABM
address based on his/her attributes. For example, only
a user who has the (attribute, value) pair (position =
faculty) or the pairs (position = staff) and (designation =
coordinator) (i.e., only faculty or coordinators), might be
allowed to send messages to the ABM address (position
= faculty) (i.e., all faculty). We specify access policies as
well as ABM addresses in disjunctive normal form to make
them flexible and intuitive. Specifically, access policies
take the following form:

cond = (attribute,(value)); i.e, if the condition cond is
satisfied then “access” is granted to (attribute, (value))

where:

(value) is a set of discrete or enumerated values

(value;, ..., valuey),

cond = (Terma) or (Terms)or...(Termy),

Term; = (literaly) and (literals) and . . . (literal,,),

literal; = (attribute <arg> value), and

argisone of =, <, >, < or >.

Therefore, we argue that the access rules can express a
variety of policies and, similarly, an ABM address can spec-
ify almost any arbitrary group based on attributes. ABAC
policies in ABM have similarities and differences with
those of more traditional enterprise services; e.g., file ac-
cess or web services [19]. They are similar in that just like
attributes may be mapped to file access permissions in file
systems, they would be mapped to the routable attribute. So,
the ABAC policy for the above example would grant “ac-
cess” to the (attribute, value) pair (position = faculty) if the
following expression of (attribute, value) pairs is satisfied:
(position = faculty) or {position = staff) and {designation
= coordinator).

They are different because unlike files one can envision
granting access to an ABM addresses that combine various
attributes in a logical expression. The equivalent notion in
file systems would be to have a policy that grants access
specifically to text that is common to two given files, which
is a level of granularity not seen in practice. Clearly, even in
ABM specifying a unique access policy for every possible
ABM address is not practical. To address this issue, we take

a simplifying, pragmatic approach: a user is allowed to send
messages to any combination (using logical and and logi-
cal or operands) of (attribute,value) pairs if she can send
messages to those pairs individually. This turns out to be
a reasonable approach because instead of choosing the or
operand the sender can easily send out multiple e-mails to
achieve the same effect and when the sender chooses the
and operand she only ends up targeting his e-mail to a nar-
rower set of recipients than she is allowed to. Therefore, at
most one access policy is required for each (attribute,value)
pair. In practice, there are various ways to reduce the num-
ber of policies, some of which are explored in Section 6.

4. Architecture

Figure 1 illustrates the architecture of our ABM system
and its associated access control system, which strongly in-
fluences the overall structure. The ABM system comprises
a web server to help users compose policy compliant ABM
addresses, a PDP along with the access policy, an attribute
database, and an ABM server associated with an enterprise
MTA that resolves ABM addresses to recipient lists and me-
diates other components. The message flows in our system
can be classified into three functional classes, viz., Policy
Specialization Path, Messaging Path and Address Resolu-
tion Path. We now describe these flows in detail.

Policy Specialization (PS) Path. This path refers to the
message flow in the system when a user logs into the web
server to compose policy compliant ABM addresses. These
messages are represented by dashed lines in Figure 1. In
step one the user authenticates herself to the web server.
In step two the web server sends the user’s information to
the ABM server and requests for a specialized policy for the
user. In steps three and four the ABM server retrieves user’s
attributes from the attribute database. In step five the ABM
server sends the user’s attributes to the PDP and requests
a specialized policy. The PDP then evaluates all the poli-
cies in a policy file against the user’s attributes and returns
the specialized policy, viz., a list of {(attribute, value) pairs
that the user can route on. The ABM server then returns
the specialized policy to the web server in step seven. The
user then composes an ABM address and downloads it in
step eight. ABM addresses created using the web interface
include user’s e-mail id, are time-stamped, and are integrity
protected using SHA-1 Hash MAC. Messages using freshly
composed ABM addresses aren’t subject to an access policy
check at the ABM Server, in order to reduce the burden on
the PDP (e.g., within 24 hours; note that extent of freshness
is a system parameter and should be based on the dynamic
nature of policy and user attributes).

Messaging (MS) Path. This path is represented by solid
lines in Figure 1. Users send ABM messages using any

Legend

e
_—

AR1
- i Attribute
Policy Specialization - PDP IAR2:
(PS) Path:m= == = = m T
1. Authenticate User -
2. User Info.(ID) T IO’)4 < (Y)A
3. User Info.(ID) d o i oyl o
4. User Attributes R IR 1o <
5. UserDand | olal i: T
Attributes : VIUVETTY v H
6. Routable Attributes :
7. Routable Attributes - —P§2+ bl o
8. ABM address » _P§Lf -
Messaging (MS) Path: IS R ABM Server
— :
1. Send and receive
(ABM) messages :
(SMTP)
2. Notify ABM Host (7')? ?8' : '
and Send resolved o ol H N
| :)
messages : =
[
Address Resolution : v
(AR) Path: ssssssssuus >
1. User ID, Attributes :
and ABM Address :
2. Authorization Client < MSl: > MTA
decision :
3. ABM Address
4. Resolved list of
Addresses

Figure 1. ABM Architecture

standard MUA 2 to a pre-specified e-mail address such
as abm@localdomain.com, with the ABM address in-
cluded in the message as an attachment. The enterprise
MTA is configured to notify the ABM Server when it re-
ceives a message for the pre-specified address. The ABM
server after processing the message invokes the enterprise
MTA to deliver the message to a list of recipients as speci-
fied by the ABM address.

Address Resolution (AR) Path. This path refers to the
message processing by the ABM server and is represented
by dotted lines in Figure 1. The ABM Server, on receiving
the (e-mail) message, verifes the Hash MAC on the ABM
address, verfies that the from address in the message is same
as the e-mail id included in the ABM address, and queries
the attribute database for the sender’s attributes. In step one,
the ABM server checks with the PDP that the sender is au-
thorized to send the message to the ABM address included
in the message. In step two, the PDP evaluates the policies
for accessing the attributes contained in the ABM address
against the sender’s attributes and responds in the affirma-
tive only if the user is allowed access to all attributes in the
ABM address. The ABM Server then resolves the ABM ad-

2ABM system can easily be integrated with web-based e-mail in en-
terpsises that use web-based e-mail system but for generality we assume
the presence of an e-mail client like Outlook.

dress to a list of e-mail addresses by querying the attribute
database in steps three and four. It then forwards the mes-
sage to each member in the list via the enterprise MTA.

Security Analysis. Analyzing the proposed architecture,
one can see that the ABM system as described above is open
to replay attacks. A malicious user can steal an ABM ad-
dress, composed by a legitimate user in step PS8, either on
the network or from the user’s machine and use it to route
messages. This attack would be successful, even though
ABM addresses are integrity protected with a Hash MAC,
because the adversary can spoof the legitimate user’s e-mail
id. So when the ABM server receives the adversary’s e-
mail message it believes that the sender of the message is
the legitimate user (who composed the ABM address used
by the adversary). Hence, there is a need for the underly-
ing messaging system to provide the ABM server with an
authenticated e-mail id of the sender. Toward that end we
need to do the following: (1) have the enterprise MTA in-
voke the ABM server only for messages originating inside
the enterprise, (2) require SMTP authentication at the enter-
prise MTA, and (3) ensure that the user id used in SMTP
authentication and from address of the message being sent
are the same. Step one ensures that only enterprise users
can use the ABM system and can be achieved using mail
filters. Steps two and three ensure that the from address in

the received e-mail message is authentic. Popular MTAs
like SendMail support SMTP authentication and step three
can be achieved using mail filters.

5. Implementation and Experimental Results

To test that the architectural framework presented in Sec-
tion 4 satisfies the manageability, deployability, and effi-
ciency requirements for ABM, we implemented a prototype
ABM system. We used this prototype implementation as
a test bed for experimental evaluation. This section pro-
vides details on the prototype implementation, experimen-
tal setup, and performance results with the aim to show that
ABM can satisfy the above-mentioned requirements.

5.1. Implementation

We had to make a number of decisions on the technolo-
gies and programming languages to use for the major com-
ponents of our proposed architecture. These decisions, and
the reasoning behind them are briefly discussed in this sec-
tion.

PDP. As it was described Section 2, we chose to use
XACML and Sun’s standards-compliant implementation of
its policy engine for our implementation. An XACML pol-
icy file is stored in conjunction with the PDP. This policy file
contains the policies for sending messages based on each
(attribute, value) pair. Our current implementation supports
numeric and enumerated attributes.

Database. Our system has been implemented using
two different database representations, relational and na-
tive XML. We included an XML database representation
in our evaluation as we envision data abstracted from het-
erogeneous enterprise databases to be in XML format. The
queries submitted to the XML database are XQueries, and
the queries for the relational database are expressed in SQL.
We had to chose a database management system with sup-
port for XML and XQuery as well as SQL. We used the
recently released community technology preview release of
Microsoft SQL Server 2005 (Standard Edition), which pro-
vides support for all the above mentioned data models and
query languages.

ABM Server. The ABM server is associated with an en-
terprise MTA. The ABM Server gets automatically invoked
when the MTA receives an ABM message targeted for the
inbox associated with the ABM Server. This enabled us to
use our domain MTA without any modification. We used
C# to implement the ABM Server, and used the University
of Illinois MTA as the enterprise MTA.

5.2. Test Bed

Studying the components in our system in Figure 1, we
anticipated that the two major resource consuming compo-
nents of our system would be the database and the PDP.
Based on this assumption, we decided to place them on dif-
ferent machines on the network. Our prototype runs on win-
dows client and server machines. The database was running
on a Windows 2003 Server with dual Intel Xeon 3.2GHz
processors and 1 GB of memory. PDP, Web server and
ABM Server were running on a 2.8 GHz Pentium 4 with
1GB of memory with Windows XP Pro operating system.

5.3. Experimental Setup and Results

The goals of our experiments were to evaluate the per-
formance of our ABM system both with and without access
control. These goals enabled us to demonstrate the feasibil-
ity of the system as well as determine the additional costs
imposed by the access control component. To evaluate the
performance with access control we needed to study the per-
formance on the three paths described in Figure 1, namely,
policy specialization, messaging, and address resolution. To
evaluate the performance without access control we needed
to study the performance on messaging path and address
resolution path but without the authorization check. How-
ever, since we are using the University of Illinois MTA, the
performance on the messaging path is not part of the evalu-
ation of our system, because the University of Illinois MTA
will add the same latency to our messages as it would add
to any regular e-mail.

To carry out the evaluation we needed to vary three ex-
perimental components: (1) the complexity and number of
access policies, (2) the number of users and their assign-
ment to a varying number of attributes in the database, and
(3) and the complexity of ABM addresses.

Policy Generation. The complexity and number of the
access policies affects the time frame of the policy special-
ization path and the authorization check on the address res-
olution path. We wrote a probabilistic XACML policy gen-
erator using Java, which created uniformly random policies
of varying complexity by varying the number of terms and
literals in the conditional clause of each policy (please re-
fer to Section 3 for definitions). Specifically, the number of
terms and number of literals in each term were uniformly
drawn between one and five, creating relatively simple to
reasonably complex policies. The number of policies de-
pend on the number of (attribute,value) pairs and we varied
the number of attributes between 25 and 125 with an aver-
age of 5 values (or value ranges) per attribute for resulting
policies ranging from 143 to 674.

Database Population. The distribution of attributes in
the user population affects the number of recipients a given

ABM address resolves to, which, in turn, affects the time
frame of the address resolution path. Users were assigned
an attribute based on the incidence probability of that at-
tribute. For example, if an attribute has an incidence proba-
bility of 0.1 then 10% of the user population is assigned that
attribute. For our test database, most of the attributes (80%),
had a probability of incidence that ranged from 0.0001 to
0.01, 10% had a probability of incidence that was between
0.5 and 0.9 and the remaining 10% had the probability close
to 1. This distribution allowed a big range in the number
of recipients per message, and, intuitively, this distribution
also reflects organizations where all the users have some
common attributes and rest of the attributes are sparsely
distributed in the population. The schema below illustrates
the way user’s attributes data was stored in the relational
database.

Relational Database Schema (assuming X variables in
the system):

[userid] Primary Key, nvarchar (20)
[passwd] nvarchar (40)

[attr0] int

[attrl] nvarchar(128)

[attrX] int

For storing data in the native XML format we created
a relational table, which consists of three columns. The
third column contains the attribute information stored in
XML format. The following schema illustrates this better.

[userid] Primary Key, nvarchar (20)
[passwd] nvarchar (40)
[attributes] XML(AttributeSchema)

AtributeSchema associates an XML Schema
(www.w3.org/XML/Schema) with the XML values in
that column.

ABM Address Generation. The complexity of an ABM
address affects the performance on the address resolution
path by affecting both the number of recipients it resolves
to and the database query resolution time. Similar to our
approach for policy generation we varied the number of
terms for a given address query between one and five (cho-
sen randomly) and the number of literals in each term be-
tween one and three (also chosen randomly). Each literal
was randomly assigned an attribute from the routable list
of attributes of the message sender. The same set of ABM
addresses were used to evaluate the system both with and
without access control.

Performance Measurements on the Address Resolution
Path. The performance on this path is translated to the la-
tency between the time an ABM message is received by the

Relational Database
DB Size | Avg. Address Resolution Time
(No. of | List Mean 95% Conf. Interval (ms)
Users) Size With Without
Access Control | Access Control
60K 422 (167, 322) (83, 244)
45K 302 (134, 294) (65, 206)
30K 220 (117, 179) (61, 116)
15K 145 (115, 147) (50, 72)
XML Database
DB Size | Avg. Address Resolution Time
(No. of | List Mean 95% Conf. Interval (ms)
Users) Size With Without
Access Control | Access Control
60K 745 (4682, 6062) (4628, 5970)
45K 472 (3969, 4711) (3599, 4436)
30K 317 (2640, 3217) (2581, 3151)
15K 171 (2341, 2857) (2067, 2624)

Table 1. Address Resolution Time. Number
of attributes = 100; nhumber of policies = 568.

ABM Server until the time the message is sent out to the
MTA for distribution.

For the case with access control this latency includes the
time for: (1) checking the integrity of the ABM address via
HMAC verification (2) consulting the PDP for authoriza-
tion (in our experiments we do an authorization check on
all messages irrespective of the freshness of the composed
ABM address) (3) retrieving the list of the recipients spec-
ified by the ABM address from the database, and (4) re-
composing the message with the list of recipients. For the
case without access control only the third and fourth latency
components were included.

We performed our tests using databases of user size rang-
ing from 15,000 to 60,000. Each of the experiments was
performed on a sample of 100 users chosen uniformly at
random from the corresponding databases. Table 1 summa-
rizes our results. The Average List Size field in the table
refers to the average number of recipients that the ABM
addresses resolved to. The ABM addresses used had 2.5
terms on average and each term had 2.5 literals on average.
There were 100 attributes in the system and 568 policies.
There were 2.5 terms on average per policy and 2.5 liter-
als on average per term. It is worth mentioning that since
the databases were probabilistically filled, users were ran-
domly selected, and the queries were also probabilistically
generated, we had no direct control on the average list sizes.

Performance Measurements on the Policy Specialization
Path. The performance in this path is translated to the la-
tency a user would see from the time she attempts to log

14 -

12

10

Time (sec)

143 282 398 568 674

Number of Policies
(Number of policies ~=5 * Number of attributes)

Figure 2. Policy Specialization Time

in to the system until the time her specialized policy is re-
vealed to her. This time includes: (1) a database lookup for
retrieving a user’s attributes and (2) a policy decision time
for determining the routable attributes.

We studied the policy specialization time with regard
to complexity of the policies and the results capturing the
latencies are summarized in Figure 2. Each policy had
2.5 terms on average and each term 2.5 literals on aver-
age. Each of the experiments was averaged over 100 runs.
The database used for these experiments was a relational
database with 60,000 users, which was filled using the dis-
tribution described above. In each of the runs the policy
specialization is performed with respect to a user chosen
uniformly at random from the database.

5.4. Analysis of Results

Feasibility Without Access Control. As shown in Table 1,
the average latency added to an e-mail message by the ABM
system (address resolution latency) without access control
is under 250ms using a relational database. It is under six
seconds using an XML database. The implemented sys-
tem thus can process 240 requests per minute using a rela-
tional database and 10 requests per minute using an XML
database. Though the address resolution takes longer when
using an XML database, we can expect that to decrease in
the future as XML technology matures.

Feasibility With Access Control. As shown in Table 1,
the average latency added to an e-mail message by the ABM
system (address resolution latency) with access control is
under 350ms when using a relational database and under
seven seconds when using an XML database. Adding secu-
rity to the system added at most 100ms additional latency
when using a relational database and 450ms latency when
using an XML database. Thus, on average the ABM sys-

tem with security can process 190 requests per minute using
a relational database and 8.5 requests per minute using an
XML database. The discrepancy in latency added by secu-
rity when using a relational database vs. an XML databases
is due to the fact that the authorization check involves one
database look up and one access validation and on average
an XML database look up took 350m.s more than relational
database lookup. Access validation, via the PDP, by itself
takes around 60ms and gives us a throughput of 1000 vali-
dations per minute.

As expected, Figure 2 shows that the policy specializa-
tion time increases with the number of policies in the sys-
tem. The number of policies in the system is directly pro-
portional to the number of attributes in the system. In partic-
ular, it is equal to number of attributes X average number of
values/sub-ranges per attribute. The number of values/sub-
ranges per attribute was randomly drawn between 1 and 10.
So we can conclude that the policy specialization time is
directly proportional to the number of attributes in the sys-
tem. Our experiments showed that for policy specialization,
database access time remains virtually constant regardless
of the number of attributes in the system. This value is about
40ms for relational and 400ms for XML databases. This is
due to the fact that each policy specialization includes a sin-
gle lookup on the primary key of the database. So the ob-
served increase in the policy specialization is due to the in-
crease in the policy evaluation time, not the database lookup
time.

Arguably, the latencies of 12 seconds might be beyond
the level of patience of most of the users and also impact
the scalability of the system. However, we have to keep
in mind that specialized policy need not be computed ev-
ery time a user wants to send a message. The ABM sys-
tem could periodically, say once a week or once a month,
compute the the specialized policy for all users and cache
it. Re-computation between the periods will only be nec-
essary if there is a change in the policy or users’ attributes.
Therefore, we conclude that even with security included the
performance of the ABM system remains reasonable.

6. Discussion

In this section we discuss some of the issues that are im-
portant for usability of ABM.

Policy Administration. Specifying and managing polices
can potentially be a significant burden in the deployment
of our ABAC based ABM system. Even having only one
access policy, for each {attribute, value) pair can lead to a
large set of access policies to be managed by an enterprise
policy administrator. In practice, however, most attributes
do not need a separate access policy for every possible
value. For example, some attributes like address may
not need a policy for every single value as it may not be

possible to even enumerate all values. For some attributes it
might be possible to encode policies for all possible values
of the attribute into a generic form. For example, a policy
to send a message to students in a given course might be
that the sender must be teaching the course. So there is no
need to write a separate policy for each (course, value) pair
as policies for all values of attribute course follow the same
pattern and hence can be written as one policy. The logical
form of such a policy is shown below.

(request.teaching = variable_x)

= (course, variable_t),

where

request.teaching is requester’s teaching
attribute value and

variable_z is a variable that refers to

the course attribute value in the access request.

Some attributes in an enterprise might need only one ac-
cess policy for each disjoint subset of possible values. For
example an attribute like Age whose possible values are
from (17,120) might need a policy only for disjoint sub-
ranges like (17,30], (30,65] and (65,120). In general, we
observe that any attribute that has infinite or uncountable set
as the range of values and whose values cannot be grouped
together in any meaningful way will have only one policy.
While any attribute that divides the population into disjoint
sets might need a policy for every (attribute, value) pair.
We analyzed attributes in three units of University of Illi-
nois with the above observations in mind found that only
20% of them need a unique policy for each value while for
50% of them a single policy per attribute is sufficient.

Furthermore, a single enterprise policy administrator
does not necessarily need to specify and manage policies
for all attributes in an enterprise. Policy administrators in
each unit can be responsible for specifying and managing
policies for attributes originating from their unit, thereby
enabling distributed administration of access policies.

User Interface. End users cannot be expected to write
database queries or logical expressions. An effective user
interface for composing ABM addresses is crucial for the
ABM system to be adopted. Similarly, policy administra-
tors will benefit from a user interface for specifying poli-
cies. Though we do not address these needs in this work,
user interfaces that closely satisfy the requirements are
those found in web directories and catalog searches. More-
over, recent advances in natural language query interfaces
such as NaLix [12, 13], that enable translation of queries
in English into queries in XQuery can further improve the
usability of ABM system.

Privacy Considerations. Another issue that needs atten-
tion when deploying a system like ABM is privacy of sender
and recipient e-mail addresses and of the ABM address it-

self. For instance, should the senders be allowed to know
the list of recipients of the message sent to a particular ABM
address? Are receivers entitled to know why they received
a particular message or the ABM address that was used to
target the message? When the attributes used to target a
message are sensitive allowing senders to know the list of
recipients would compromise the privacy of the recipients.
Similarly letting the recipients of a message know the ABM
address used to target the message might leak sensitive in-
formation if they could learn who else received the message.

If a sensitive attribute, for example medical condition,
is used in an ABM address to target messages then 1) the
ABM address using the sensitive attribute, 2) the list of re-
cipients (e-mail addresses) targeted by the ABM address
and 3) the sender’s e-mail address should all be consid-
ered sensitive and there should be policies governing the re-
lease of such information. For instance, senders may be al-
lowed to know only those recipients that are not targeted by
the sensitive attribute. Recipients may be allowed to know
only their attributes that were included in the ABM address
rather than the (entire) ABM address. If a sender target-
ing messages based on sensitive attributes is not allowed to
know the recipient list, it might be desirable to reciprocally
not let the recipients know who the sender is.

7. Related Work

We discuss four areas of related work: targeted messag-
ing systems, secure role-based messaging, WSEmail, and
attribute based access control.

Perhaps the most similar technology to ABM arises
in Customer Relationship Management (CRM) systems.
CRMs help enterprises target customers by isolating spe-
cific buying patterns and using this to customize the com-
munication with them. The key difference between CRMs
and ABM is that in CRMs the communication is from the
enterprise to the customer group and so there is no need
for access control. Where as in ABM messages are sent
by users to other users after access is determined by the
attributes of the sender. In other words, CRM generally
uses a monolithic permission given to the owner of the sys-
tem, whereas ABM provides diverse permissions to a broad
user group. Traditional list servers also provide a way to
send e-mail messages to a certain group of people. One can
imagine driving membership in lists from a database of at-
tributes to provide a form of ABM. For example, SendMail
(a popular MTA) can be integerated with LDAP but it lacks
a mechanism to control the use of such mailing lists. A
key difference between ABM and list servers is the fact that
ABM has the potential to route on ‘involuntary’ attributes of
recipients rather than relying solely or mainly on voluntary
subscriptions. A good potential use of ABM is to provide a
way for users to subscribe to lists automatically and volun-

tarily by collecting a user profile of interests.

Secure role-based messaging uses RBAC for authoriz-
ing access to sensitive e-mail content [7, 16]. In this area
[7] allows users to send messages to a given role identi-
fied by a special e-mail address. Users that are assigned to
that role can then provide their role membership credentials
and access the e-mail. Using a slightly different approach
[16] employs Identity Based Encryption (IBE) for encrypt-
ing messages to recipients; i.e., recipient must authenticate
themselves to a role administration system and obtain the
e-mail decryption keys. These two approaches differ from
ABM access control as described in this paper by focusing
on the access control rules for recipients, whereas we fo-
cused on access control rules for senders. Of course, they
also differ in the use of roles rather than attributes as a foun-
dation for policies.

The Adaptive Messaging Policy (AMPol) project, of
which this paper is a part, has considered some technolo-
gies related to ABM [15, 2, 1]. WSEmail is the idea of
building messaging systems over a web services founda-
tion. A prototype [15] of such a system demonstrated
messages that could be routed with addresses that are de-
termined dynamically as the message passes through WSE-
mail MTAs. However, this system does not decide on recip-
ients based on their attributes. A WSEmail-based design [2]
shows how to adapt to recipient policies as part of messag-
ing, but this design does not deal with multiple recipients.
Other details on AMPol, can be found on the AMPol web
site (seclab.cs.uiuc.edu/ampol).

Early works on ABAC [5, 17, 19, 18] use it for trust
negotiation and credential based access control in a dis-
tributed system with multiple administrative domains. Our
ABM study shows how ABAC is also valuable for enter-
prise applications and uses attributes assimilated from back-
end databases. Also, access control in ABM is different
from access control in traditional systems and services be-
cause the resource (i.e., an ABM address) is somewhat dif-
ferent than a resource in these traditional systems. Most
of the research on ABAC provides insights on theory and
expressiveness for applications but do not discuss imple-
mentation of the proposed designs and practical studies on
applications. Some works [14, 19, 18] have led to imple-
mentations, but no performance data is available. At the
same time performance of access control systems in becom-
ing important in recent application such as location based
access control [6]. In this work we demonstrate the prac-
ticality of ABAC for a novel enterprise application (ABM)
in a mid-size enterprise as evidenced by our performance
evaluation.

8. Conclusion

We have demonstrated a simple and manageable access
control model for ABM based on ABAC that accommo-
dates a useful collection of ABM applications. We have
shown that this access control system can be embedded in
an architecture that can be deployed in virtually any enter-
prise messaging system. Finally we have shown that this
architecture can be implemented efficiently for mid-size en-
terprises and we have given a profile of policy parameters
that affect its efficiency.

There are a number of interesting questions and open op-
portunities for ABM with ABAC. Two of these will partic-
ularly interest us for future research: interdomain opera-
tion of ABM and more expressive ABAC policy languages.
While we have shown how to architect and deploy ABM
for enterprises, it is much trickier to do this when multiple
enterprises are involved. For example, suppose we wish to
send a message to all of the doctors in a given county. This
cannot be done with a single database or even the collec-
tion of databases of a single enterprise. There is some need
to map the attribute ‘doctor’ across multiple domains. This
problem arises with virtually any interdomain authorization
challenge so the problem is only illustrative, but it is perhaps
more tractable for ABM than for interdomain authorization
in general. Clearly some techniques are required to map at-
tributes. We have a design for such a system assuming such
a mapping is possible, but it needs to be developed and stud-
ied in the way we have approached the enterprise systems
in this paper. Our ABAC policy language (implemented as
a subset of XACML) is rudimentary. We choose it because
it was clearly useful and yielded non-trivial questions about
processing and performance. However, one can certainly
imagine ABAC based ABM systems benefiting from a more
theoretical analysis of policy language expressibility such
as that undertaken by [11, 17] for distributed systems. At
the same time, it is not clear how complex a policy language
should be; perhaps expressiveness is less important than the
ease of maintaining policies. After all, existing systems do
not offer ABM at all, so even basic functions are a step for-
ward. Complex policies that lead to unintentional user er-
rors would dampen enthusiasm for deployment. Neverthe-
less, there are a variety of interesting theoretical questions
that can be considered in this area.

Acknowledgements

We would like to thank Noam Artz, Mike Berry, and
anonymous reviewers for their helpful comments. This ma-
terial is based upon work supported by the ONR N00O14-
04-1-0562 and N00014-02-1-0715. This work also bene-
fited from partial support by NSF CCR02-08996, CNS05-
09268, and CNS05-24695, a grant from MacArthur Foun-

dation and the Sohaib and Sara Abbasi Fellowship. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s)
and do not necessarily reflect the views of ONR, NSF or
MacArthur Foundation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

R. N. Afandi, J. Zhang, and C. A. Gunter. AMPol-Q:
Adaptive Middleware Policy to Support QoS. In Interna-
tional Conference on Service Oriented Computing(ICSOC),
Chicago, IL, December 2006.

R. N. Afandi, J. Zhang, M. Hafiz, and C. A. Gunter. AM-
Pol: Adaptive Messaging Policy. In European Conference
on Web Services(ECOWS ’06), Zurich, Switzerland, Decem-
ber 2006. IEEE.

XACML references. Technical Report v1.54, OASIS, May
2005.

N. Bieberstein, R. Shah, K. Jones, S. Bose, and M. Fi-
ammante. Service-Oriented Architecture COMPASS: Busi-
ness Value, Planning, and Enterprise Roadmap. Pearson
Education, 2005.

P. A. Bonatti and P. Samarati. A uniform framework for reg-
ulating service access and information release on the web. J.
Comput. Secur., 10(3):241-271, 2002.

K. Borders, X. Zhao, and A. Prakash. CPOL: high-
performance policy evaluation. In CCS ’05: 12th ACM Con-
ference on Computer and Communications Security, Vir-
ginia, pages 147-157. ACM Press, 2005.

D. Chadwick, G. Lunt, and G. Zhao. Secure Role-
based Messaging. In CMS ’04: Eighth IFIP TC-6 TC-
11 Conference on Communications and Multimedia Secu-
rity, Windermere, UK, pages 263-275, 2004.

E. Damiani, S. D. C. di Vimercati, and P. Samarati. New
Paradigms for Access Control in Open Environments. In 5th
IEEE International Symposium on Signal Processing and
Information, Athens, December 2005.

D. Ferraiolo, D. Kuhn, and R.Chandramouli. Role Based
Access Control. Artech House, 2003.

eXtensible Access Control Markup Language (XACML).
Technical Report v1.1, OASIS, August 2003.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In IEEE Sympo-
sium on Security and Privacy, Oakland, May 2002.

Y. Li, H. Yang, and H. Jagadish. Nalix: an interactive natural
language interface for querying xml. In ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD
2005), Baltimore MD, June 2005.

Y. Li, H. Yang, and H. Jagadish. Constructing a generic
natural language interface for an xml database. In In-
ternational Conference on Extending Database Technology
(EDBT 2006), Munich Germany, March 2006.

M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First
experiences using XACML for access control in distributed
systems. In XMLSEC *03: ACM workshop on XML security,
Virginia, pages 25-37. ACM, 2003.

[15]

(16]

(17]

(18]

[19]

(20]

K. D. Lux, M. J. May, N. L. Bhattad, and C. A. Gunter.
WSEmail: Secure internet messaging based on web ser-
vices. In International Conference on Web Services (ICWS
’05), Orlando FL, July 2005. IEEE.

M. C. Mont, P. Bramhall, and K. Harrison. A Flexible Role-
based Secure Messaging Service: Exploiting IBE Technol-
ogy for Privacy in Health Care. In DEXA "03: 14th Interna-
tional Workshop on Database and Expert Systems Applica-
tions, page 432. IEEE, 2003.

L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In FMSE "04:
ACM workshop on Formal methods in security engineering,
Washington DC, pages 45-55. ACM, 2004.

T. Yu, M. Winslett, and K. E. Seamons. Supporting struc-
tured credentials and sensitive policies through interoperable
strategies for automated trust negotiation. ACM Trans. Inf.
Syst. Secur., 6(1):1-42, 2003.

E. Yuan and J. Tong. Attributed Based Access Control
(ABAC) for Web Services. In ICWS’05: IEEE International
Conference on Web Services, Orlando, page 569. IEEE, July
2005.

N. Yuhanna, M. Gilpin, L. Hogan, and A. Sahalie. Infor-
mation fabric: Enterprise data virtualization. White Paper,
Forrester Research Inc., January 2006.

