
Improving Multi-Tier Security
Using Redundant Authentication∗

Jodie P. Boyer
jpboyer@uiuc.edu

Ragib Hasan
rhasan@uiuc.edu

Lars E. Olson
leolson1@uiuc.edu

Nikita Borisov†

nikita@uiuc.edu
Carl A. Gunter

seclab.uiuc.edu/cgunter
David Raila

raila@uiuc.edu
Department of Computer Science

†Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801

ABSTRACT
Multi-tier web server systems are used in many important
contexts and their security is a major cause of concern.
Such systems can exploit strategies like least privilege to
make lower tiers more secure in the presence of compromised
higher tiers. In this paper, we investigate an extension of
this technique in which higher tiers are required to provide
evidence of the authentication of principals when they make
requests of lower tiers. This concept, which we call redun-
dant authentication, enables lower tiers to provide security
guarantees that improve significantly over current least priv-
ilege strategies. We validate this technique by applying it
to a practical Building Automation System (BAS) applica-
tion, where we explore the use of redundant authentication
in conjunction with an authentication proxy to enable inter-
operation with existing enterprise authentication services.

Categories and Subject Descriptors: D.4.6 [Security
and Protection], J.7 [Computers in other systems], K.6.5
[Security and Protection]:Authentication, Physical Security

General Terms: Security

Keywords: Authentication, Building Automation Systems

1. INTRODUCTION
Multi-tier web server systems are of great importance in e-

commerce and enterprise information applications, and are
gaining importance in many other contexts. Motives such as
extortion, identity theft and other types of fraud have made
these systems highly attractive as targets for attackers, so
their security is a cause for rising concern. Such systems split
functionality between “tiers” such as a web server, applica-

∗This paper is to appear in CSAW 2007 in Fairfax, Virginia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSAW’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

tion server, and database. To improve security of the system
as a whole it is desirable to limit the privileges of higher tiers
when they utilize the services of lower ones. A typical strat-
egy is to use the principle of least privilege to limit a higher
tier’s access to only the lower-tier functions required for its
mission. However, the operation of a higher tier typically
requires broad privileges in the lower tier. For example, an
application server that needs access to a database may be
given access to all records on the database even if, at any
given time, it should only be allowed to access the records
of a limited collection of principals who have authenticated
themselves to the application server and made requests that
require access to the limited view of the database.

In this paper we explore a strategy we call redundant
authentication that can be used to limit the privileges of
higher tiers based on a requirement that they produce non-
repudiable evidence that principals on whose behalf they
operate have recently authenticated themselves to the sys-
tem. This greatly limits the scope of a compromise in many
cases, including the case study we use to validate the con-
cept. Our case study consists of two applications that inte-
grate enterprise authentication with the security functions
of a Building Automation System (BAS) using redundant
authentication. The first application allows principals to
delegate access to rooms and the second allows them to open
doors remotely. Both applications are implemented using a
higher-tier web application server that controls the lower-
tier BAS server. In particular, we construct a middle-tier
control system gateway that enforces attenuation of privi-
lege to limit actions that the application server performs for
specific principals. With this protection, only the resources
of principals that have recently authenticated a request to
the application server can be affected. Redundant authen-
tication assures that certain basic control system privileges
are respected by the application server, again assuring a
limit on the behavior of a compromised application server.

The paper offers three contributions. The first is the idea
of redundant authentication as a strategy for robust multi-
tier security. The second is a pair of BAS applications to
validate this approach in a practical context. The third is a
strategy for implementing redundant authentication in prac-
tical contexts using an authentication proxy, which is an iso-
lated process that translates enterprise authentications into

Figure 1: Multi-Tier Web Server System

non-repudiable credentials that can be used for redundant
authentication. We applied this strategy to BAS applica-
tions to implement them utilizing the University of Illinois
enterprise authentication servers.

The paper is organized into six sections. In the follow-
ing section, we discuss the general concept of redundant au-
thentication, including possible applications and some of the
challenges to its use. In Section 3 we discuss application re-
quirements for a BAS case study and how they may relate to
multi-tier security. In Section 4 we consider the design and
implementation of our prototype using redundant authen-
tication with an authentication proxy. Section 5 provides
analysis and related work. Section 6 concludes.

2. ARCHITECTURE
Web server systems are often organized as a collection of

tiers that divide responsibilities between specialized software
components. In a typical case, a system is organized as an
application server that is attached to the Internet and com-
municates with back-end components such as a database.
Figure 1 illustrates this organization. When Internet users
require service, they authenticate to the application server,
which determines their authorizations and uses these to mod-
ify the database according to the privileges of the principal
that represents the user on the system. Although the appli-
cation server is acting on behalf of a single principal in this
instant, it requires general access to the database because it
may act on behalf of many different principals. This is wor-
risome in the face of threats like identity theft because an
attacker who manages to compromise the application server
may be able to execute a wide range of actions relative to
the database, such as querying for the names and Social
Security numbers of all principals in the system.

Ideally one would like to limit the application server to
act on behalf of a specific client, perhaps by deriving a view
for that client and restricting it to that view, but to be ef-
fective, there must be a way to enforce such a restriction on
the application server. One way to do this is to insist that
the application server declare that its actions are on behalf
of a specific principal, for whom it produces evidence that
the request requires access to the database. This is possible
in some circumstances and would have the effect that the
application server is unable to gain access to large amounts
of sensitive data. It may still compromise resources of prin-
cipals that are validly authenticated to the system, but in
many applications this will be only a small portion of the
system resources as a whole. To accomplish this, we ex-
amine the idea of redundantly authenticating a principal by
demanding proof of authentication at the lower tier and en-
forcing restricted privileges according to the specified prin-
cipal.

Redundant authentication is a possible protection mea-

Figure 2: User Accessible BAS

sure for many types of multi-tier systems. To show how it
can be used in practice and to explore some of its challenges,
consider a typical BAS integration scenario depicted in Fig-
ure 2. Here a user on the Internet (or enterprise network)
obtains a credential from the enterprise server to authenti-
cate himself and obtain authorization for actions like open-
ing a door using the BAS control network. It is typical that
such control networks provide modest security and, given
the importance of the resources at issue, they are protected
behind an application server and gateway. The architecture
is comprises of three tiers, with the BAS controller itself
representing the bottom tier. The middle tier, the gateway,
provides support for interoperability with the control sys-
tem and adds security by separating the complex software
on the application server from the vulnerable control net-
work. Redundant authentication is part of this protection.
If, for instance, the gateway insists that requests from the
application server come from a recently authenticated user,
then a compromised application server is unable to execute
a command such as “open all doors”. Indeed, the most it
could do is to open doors that could have been opened by re-
cently authenticated principals. This significantly mitigates
risk in the system. Referencing Figure 2, the protocol op-
erates as follows. A user authenticates himself to the appli-
cation server, which determines authorization for requests.
The server processes the authorized request by passing the
request to the gateway, along with the redundant authenti-
cation token. The gateway enforces policy restrictions using
redundant authentication and information within the legacy
BAS controller and decides if the action is authorized. The
gateway then effects the necessary actions using the protocol
of the BAS, which carries out actions with the appropriate
building resources. In order to make an accurate decision,
the gateway must check that the authentication came from a
trusted source, which means that any authentication claims
must provide non-repudiation. Although there is some cost
in treating the authentication redundantly, the advantage is
that complex application-specific logic is not carried out on
a machine attached to the building control network and its
actions are limited by the general policy on the gateway.

To support redundant authentication as discussed above,
the authentication material passed from the user to the ap-
plication must be non-repudiable; i.e. the application server
should be able to forward a token to the gateway that con-
vinces it that a valid user has authenticated. Most enter-
prise systems do not provide non-repudiable credentials, so
it is necessary to insert a proxy authentication system to
provide this function. This enables the gateway to com-
municate directly with the application server and facilitates

Figure 3: Proxy Authentication

interoperability with client claimants. Figure 3 illustrates
the concept. The claimant provides a request REQ to the
appropriate application logic on the application server and
uses a password PSWD to authenticate to the authentica-
tion server, which then provides a credential CRED for the
authentication proxy. The authentication proxy creates a
non-repudiable credential CRED*, which it provides to the
application server. These are supplied to the gateway in a
high-level protocol where the client request is expressed in a
command REQ*. The gateway enforces limitation of privi-
lege and translates this high-level command into a command
that the control system understands. In this way the exist-
ing enterprise authentication server supports the redundant
authentication in a way that is transparent to the client.

An alternative to redundant authentication would be for
the client to authenticate to the gateway directly. For exam-
ple, the application server could bundle the request REQ*
and pass it to the client to give to the gateway, along with
the (repudiable) credential CRED. This method also pre-
vents a compromised application server from acting arbitrar-
ily maliciously. However, it presents a much larger attack
surface for the gateway, since now any user may send any
request to it and thus exploit potential vulnerabilities. With
redundant authentication, only the application server ever
needs to communicate with the gateway, and thus both the
application server and the gateway must be compromised
in order to gain unrestricted access to the control system.
In addition, with redundant authentication, the application
server may implement a different authorization policy than
the gateway. The gateway uses a simple policy, such as at-
tenuation of privilege. The application policy may be much
richer and implement organizational constraints, such as for-
bidding delegation of access to and remote unlocking of sen-
sitive rooms. As long as the application server is not com-
promised, both policies operate in concert, and in case of
compromise, the gateway policy mitigates the damage that
can occur.

3. APPLICATION REQUIREMENTS
As discussed in the previous section, we focus our efforts

on building a redundant authentication system for a build-
ing automation system. In this section we present our ap-
plications, threats, threat model, and discuss how we plan
to mitigate the threats to our system.

While building automation systems are responsible for
controlling many different functions, our applications focus
specifically on building security systems. We propose two

applications for a building automation system. First, we
propose an application that provides the ability to delegate
room access to other principals in the building (called del-
egated access), and second, we propose an application that
gives principals in the building the ability to unlock doors
for which they have been granted access via a web service
(called mobile access).

The delegated access system allows building managers to
assign rights to room managers that in turn manage the
access list for a room. As an example, imagine that Joe
runs the lab in room B and needs to give his student Sally
access to the room. In a typical system, Joe contacts the
building manager, Bill, who gives Sally access to the room,
followed by a notification to Sally to tell her that her access
rights have been updated. If the system had delegated access
rights, Bill would give Joe the rights to manage the access
list himself. This way, Joe can simply log into the delegated
access system and add Sally to the access list. This addition
would be audited and, once the change has been made, Sally,
Joe, and Bill would receive e-mail notification of the change
and Sally would have access to the room.

The mobile access application allows users to connect to
the system either over the web or with an application on
their cell phone and request that their door be unlocked.
Currently, if a user, Fran, forgets her key she must visit the
building manager who will issue her a physical temporary
key. With the mobile access scenario, Fran could simply use
a web service to request that her door be opened, either by
web access or by a small application on her cell phone that
would send a command to open her door. Actions through
the mobile access system should be audited for suspicious
behavior to ensure that they do not enable new types of
attacks on the building or other assets.

Because these applications deal directly with the building
automation system, it is important to consider the threats.
The major concern associated with a security breakdown in
one of these systems is that it may leave the building au-
tomation system vulnerable. Attackers could launch serious
attacks such as modifying access to rooms in the building
or unlocking arbitrary doors in the building. Both of these
threats would allow them to mount a physical attack on
a building, during which they could steal equipment, access
sensitive files, etc. Another example is a denial of service at-
tack, where attackers could remove some or all access rights
to rooms in the building, rendering the building unusable by
its occupants. However, attacks on the building are not lim-
ited to attacks on the building security system. If attackers
gain access to the building, they may also be able to change
the status of other systems controlled by the BAS, such as
environmental controls or security monitoring systems.

A least privilege system would be able to mitigate threats
to other building functions, since neither of our applications
needs to access them (although we are currently exploring
other applications that allow users to control room temper-
atures and make use of the video monitoring system). How-
ever, least privilege cannot address threats to the building
security functions, and thus we use redundant authentica-
tion as a core strategy to mitigate them. In particular, it
is important to specify the type of policy that the gateway
applies to requests. In our system, the gateway applies an
attenuation of privilege policy that rejects requests unless
the entity making the request has been issued access within
the BAS to the room on which they are performing an ac-

tion. This means that principals can only delegate access to
rooms to which they have access, and the mobile access sys-
tem will not give principals more access then they already
have. An important feature of this policy is that it uses
information that is accessible to the gateway independently
of the application. Additionally, it provides the application
server the ability to enforce special purpose access policies,
such as maintaining a set of principals and delegation rights.

We assume that attackers may be able to compromise the
application server, but not the authentication proxy or the
gateway. This is a reasonable assumption because the au-
thentication proxy and gateway are small, special purpose,
isolated implementations and can therefore conform to strin-
gent security requirements. As a result, we assume that the
gateway does not fully trust the application server. Attack-
ers might gain the ability to replay cached authentication
certificates with requests to the gateway within a certain
time period. However, our policy enforces the constraint
that attackers are only as powerful as recently authenticated
individuals.

As a case study, we have developed a system for delegated
access and mobile access for the Siebel Center for Computer
Science at the University of Illinois. The Siebel Center is
a 225,000 square foot office building that houses the UIUC
Computer Science Department that was built in 2004 and
uses the Andover Continuum System for its BAS. Addition-
ally, we integrate our system with two available authenti-
cation systems: Bluestem [9], a Kerberos-based authenti-
cation system developed at the University of Illinois, and
Microsoft’s Active Directory system [11]. We present the
details of this case study in the following section.

4. IMPLEMENTATION
Figure 4 shows the architecture of the prototype we im-

plemented to satisfy the requirements of Section 3. An ar-
bitrary client uses the system by directly contacting the ap-
plication server, which is described in Section 4.1, and is-
sues a command such as “unlock the door to room 101.” If
the application server determines that the client has not yet
authenticated, or if it decides that enough time has elapsed
that the client needs to re-authenticate, it redirects the client
to the authentication proxy, described in Section 4.2. The
authentication proxy may use a pre-existing enterprise Au-
thentication Server, such as UIUC Bluestem or Active Direc-
tory. If the client successfully logs in, then the proxy issues
a cryptographic token to the client. This token is passed
back to the application server, which maintains its own pol-
icy logic. If the command issued from the client is allowed
by the policy, based on the client’s identity as confirmed by
the authentication proxy, then the application server sends
the command and the cryptographic token to the gateway
over a dedicated link.

The gateway, described in Section 4.3, is a trusted server
that enforces the building system’s access control policy
logic, which is independent from the particular application
that issued the command. The policy data is stored in a
database within the building control network, and can be
queried using standard SQL. If the building system’s pol-
icy logic is satisfied, then the command is translated into
the OPC standard and sent to the controller. The building
network, including the SQL server and the controller, is a
legacy system provided by Andover Controls.

We have implemented two applications to demonstrate

this architecture. These implementations are described in
Section 4.4.

4.1 Application Server
The application server utilizes an XML-based interface

to the system using the oBIX XML language for operating
mechanical and electrical control systems in buildings [4].
Using an XML specification enables other oBIX-based ap-
plications to have a common communication vocabulary. In
recent versions, the purpose of oBIX has been generalized to
include any type of embedded software systems. The com-
mittee specification defines a general object model and a set
of operations on these objects. In theory, any kind of object
could be represented in this model; however, we choose to
use other more appropriate XML specifications for objects
such as user principals and authorization tokens.

In oBIX, objects are referenced via a named URI and ac-
cessed with the read or write operations. Commands that
are more complex than a read or write, such as modify-
ing an access control list, can also be performed with the
invoke operation. In our prototype, each door is assigned a
URI and contains two boolean sub-objects1 called unlocked

and open, representing respectively whether the door is un-
locked, and whether the door is open. Principals are granted
the privilege to write to the unlocked sub-object, but the
open sub-object is read-only. This is simply a design deci-
sion reflecting the capabilities of the doors in our prototype.
One could easily imagine a system in which doors can also
be opened automatically.

Additionally, the prototype provides access control to each
area of the building. Each area has doors assigned to it. This
way, if an area of the building has two doors, a principal
only needs to be granted access once to the area, rather
than once for each door into the area. These area objects
are also assigned URIs and can be accessed with a read

oBIX operation, which returns the doors assigned to an area.
These values are read-only, since doors and areas are fixed
locations in a building; thus, the write oBIX operation is
meaningless for area objects.

However, a more interesting operation is invoke, for which
we define two possible commands: grant access and
revoke access. We wish to allow delegation of granting
access to rooms to the “owners” of a room. Ownership of
rooms and delegation is not currently supported by the BAS,
and therefore must be implemented and enforced by the ap-
plication itself.

The access control lists for each area are stored in a database
in our prototype system. In order to respect this security
policy, we also require principals to identify themselves. The
authentication process is described in Section 4.2. The ap-
plication server receives a security token from the authen-
tication proxy. This token is encoded as a PKCS#7 signed
statement [16], using syntax as described in [10]. This signed
statement can be verified against the authentication proxy’s
public key, and is included in any requests sent by the ap-
plication server to the gateway.

4.2 Authentication Proxy
Our architecture employs a proxy authentication server

in order to abstract the details of the enterprise authenti-

1The term sub-object is used in the model description of
the committee specification [4], we simply reuse their vo-
cabulary.

Figure 4: Prototype Architecture

Auth Proxy Client App Server

GET /app/

check for cookie
generate cacheID

set authCookie = cacheID

redirect to
http://AP/login?
 cacheID=cacheID&

app=AppServer

GET /login?
 cacheID=cacheID&

app=AppServer

user: "user"
password: "pass"

Auth Certificate: { user="user", time, ...}, cacheID

redirect to
http://AppServer/app/

GET /app/

store auth cert
under cacheID

lookup auth cert
under cacheID
in authCookie

Figure 5: Authentication Protocol

cation system from other components of the system and to
provide a non-repudiable authentication credential that can
be used in redundant authentication. The authentication
server itself is a trusted component of the system and we
expect that it should receive similar protection measures as
(and perhaps be colocated with) the enterprise authentica-
tion server.

Our design of the protocol for interactions with the au-
thentication proxy is based on the UIUC Bluestem proto-
col [9], an authentication service for web applications de-
ployed on the University of Illinois campus. The protocol is
a three-way interaction between the client, the application
server, and the authentication proxy, shown in Figure 5.

1. When the client first contacts the application server,
the application server checks for the presence of an
authentication cookie. If this cookie is absent, it gen-
erates a cache ID and sets it in a cookie at the client.

2. The application server redirects the client to a web

page on the authentication proxy, passing as parame-
ters the cache ID and the name of the application being
requested. The application server asks the client to log
in using the enterprise authentication credentials.

3. Assuming the enterprise authentication is successful,
the authentication proxy generates an authentication
credential, digitally signed using the private key of the
AP, and then sends it directly to the application server,
coupled with the cache ID. The application server ver-
ifies the signature and stores the credential in its au-
thentication cache.

4. The authentication proxy redirects the client back to
the application server web page. The application server
notices the presence of a cookie and uses the cache ID
to look up the presence of an authentication credential
in the cache. If it is present, then the authentication
is considered successful; otherwise, it returns to step
1.

The cache ID serves as a secret index into the application
server authentication cache, and an attacker who guesses it
would be able to exploit the legitimate client’s credentials.
Therefore, the ID is generated as a random 128-bit number
and is kept secret during communications between the client,
application server, and the authentication proxy by way of
using TLS to protect the individual connections.

Both the application server and the gateway maintain a
trustworthy copy of the public key of the authentication
proxy, so they can both verify the signature on the authen-
tication credential. The credential includes the following
fields: a) the current time, b) the enterprise authentication
method used (we currently support two, Microsoft Active
Directory [11] and UIUC Bluestem), c) the enterprise ID
of the client, and d) the application service that had re-
quested the authentication. The last component is present
to ensure that another application or service that uses the
authentication proxy cannot use the credentials it obtains
from users to authenticate with the BAS application server
or the gateway behind it. This concern also justifies send-
ing the credential directly to the application server from the
proxy, since a BAS-destined credential will only be sent to
the BAS server.

In addition to allowing redundant authentication, the au-
thentication proxy offers the advantage of encapsulating the

enterprise authentication system details from the applica-
tion, allowing them to be more easily switched or upgraded.
The non-repudiable authentication credential can also help
make audit logs more trustworthy, an application that we
plan to explore in the future.

4.3 Gateway
The gateway is responsible for marshalling requests from

the application to the BAS. Unlike the application server,
the gateway is considered a trusted component and is the
last line of defense against attackers to the system.

The gateway receives requests across a dedicated connec-
tion with the application server. These requests have a
very structured format which allows the gateway to care-
fully check the integrity of the commands. Requests include
the ID of the requester, the room on which an action is
to take place, and arguments necessary to complete the re-
quest, such as the name of the principal to whom access to a
room should be granted. Additionally, the request includes
an authentication token signed by the authentication proxy.
When the gateway processes requests, it checks the token
to ensure both that it is fresh and that it is from a trusted
source. Following these integrity checks, the gateway then
enforces its specialized authorization policy by determining
if the user has access to the specified room within the BAS.
The gateway also makes sure that the token it receives is
fresh. Currently, it rejects tokens older then 10 minutes.
The gateway then processes the command on the BAS if
the policy constraints are met.

The gateway interfaces with the BAS in two ways. First,
it accesses the legacy database used by the BAS. Specifically,
the database provides information about principals’ access
rights, as well as a log of recent accesses to rooms in the
building. Second, the gateway uses an OPC [12] interface
to operate the BAS. The OPC interface allows the gateway
to control objects in the building as well as determine the
current state of objects in the building. In our applications,
the OPC interface is used specifically to unlock doors and re-
turn the current state of doors in the building, because door
state information is not stored in the building database.

4.4 Applications
To provide a practical implementation of our architecture,

we built a prototype application for door access and dele-
gation in the Siebel Center for Computer Science. The web
server was implemented in C# and ASP.net, and runs on
Microsoft IIS.

When the user visits the website, the web server verifies
that the user is logged in. If not, the user is redirected to
the Authentication Proxy for login and returned to the web
server. There the user is presented with the main menu,
where she can choose to unlock doors or delegate access
(grant/revoke). To unlock a door, the user provides a door
ID and initiates an unlock request. The web server forwards
the request to the oBIX interface, which in turn sends the
request to the gateway. The result is returned to the web
server via the oBIX interface. A screenshot of the unlock
page is shown in Figure 6 in the appendix.

The delegation application allows a user to grant room ac-
cess to a another user. The application enforces the policy
that each area is assigned to an area owner, and only the
area owner may delegate access privileges to other users.2

2This type of policy suffices for our particular application,

The application also allows the user to revoke access per-
missions she had granted in the past. To assist the user, a
list of delegated accesses previously granted by the user is
displayed. This information is kept locally in a database.
A screenshot of the grant/revoke access page is shown in
Figure 7 in the appendix.

In designing the web application prototype, we considered
the tradeoffs between usability and security. We decided to
favor higher security in the prototype, at the expense of some
usability features. For example, it might be convenient to
show all doors accessible to the user in the unlock dialog.
However, we decided not to list the accessible doors for two
reasons: first, an intruder who breaks into the system by im-
personating another user should not learn the access infor-
mation, and second, keeping accessibility information con-
sistent with the BAS would require database synchroniza-
tion between the BAS and the application database. So, the
web server only displays minimal information as a response
to the request. When the user makes a request to unlock a
door, it only tells her whether the request succeeded or not,
without providing a reason. Similarly, in the grant/revoke
access page, we do not display information about areas that
can be delegated by the current user. We only show the
delegation history of area accesses granted by the user, and
this information is protected by a secret PIN. Thus, a ma-
licious intruder who succeeds in breaking into the system
and impersonating a user can only derive door access and
ownership information through brute-force trial and error.

5. ANALYSIS
In this section, we present a risk analysis of our approach

of multi-level security with redundant authentication and
compare our architecture with several alternative techniques
that also aim to minimize damage resulting from mistakes
in the application or malicious attacks.

5.1 Risk Analysis
Our architecture introduces several new components, with

complex interactions between them; potentially, each com-
ponent could be a target for attack. However, the compo-
nent breakdown is designed to compartmentalize any faults
or attacks and to simplify the design and implementation of
the security-critical components.

In particular, the application server is the most vulnerable
component of our architecture: it performs sophisticated in-
teractions with the client, presenting a large attack surface,
and it contains complex and evolving application logic that
can be a source of vulnerabilities. Of course, we expect that
standard precautions for protecting the application server
will help prevent routine break-ins, but some attacks may
nevertheless succeed. Therefore, our design explicitly limits
the impact of any faults in the application server: as long as
the gateway and authentication proxy are both secure, even
a fully compromised authentication proxy may only execute
actions on behalf of recently authenticated users.

The authentication proxy and the gateway are both trust-
worthy components, but the design of both is relatively sim-
ple. We expect the authentication proxy can be secured in
a similar way to the enterprise authentication system, and

and is much easier to implement than allowing multiple area
administrators. More complicated models such as the rela-
tional database access control model (initially proposed in
[7]) could be implemented, if desired.

because the logic of the proxy is small and unchanging, we
expect that vulnerabilities will be rare. And even a full
compromise of the authentication proxy is tempered by the
gateway since an attacker will not be able to, in our exam-
ple, access the HVAC or other building functionality. The
risks of vulnerabilities on the gateway are mitigated by the
fact that it exports a narrow, static interface for interacting
with the outside world, and this interface is only available
to the application server.

5.2 Related Work
A common approach to mitigate vulnerabilities is sand-

boxing. Sandboxing restricts an application’s interaction
with its environment according to some policy. The pol-
icy is usually designed with the principle of least privilege
in mind, so that the sandbox policy allows an application
to perform only those operations needed for it to function.
Sandboxing has been used extensively on the system call
interface for an operating system [1, 6, 14, 13, 5] and in exe-
cution environments such as Java [8], but we could imagine
connecting the application server directly to the BAS server
with a sandbox limiting the types of commands that are al-
lowed. The sandbox would limit the scope of damage that an
application could cause, but still permits more access than
necessary. For example, the sandbox would prevent a door
opening application from modfiying the HVAC settings in a
building, but it would not restrict the compromised applica-
tion from unlocking arbitrary doors, unlike our design with
redundant authentication.

An alternative to sandboxing is privilege separation [15].
This technique relies on splitting an application into two
components: a privileged one and an unprivileged one, with
a communication pathway between the two. This technique
has been successfully shown to contain faults and attacks on
the unprivileged components and prevent them from dam-
aging the privileged process. In a sense, privilege separation
can be seen as technique for splitting an application into
multiple tiers, either manually or automatically [2].

Privilege separation has three disadvantages as compared
with our approach. First, each new application must be sep-
arated into two components; therefore, with N applications,
there will be N separate privileged components installed on
the system; whereas our architecture defines reusable inter-
faces and components. Second, separation must be applied
judiciously to improve the security of the system; for exam-
ple, two trivial partitioning schemes — moving all the func-
tionality either into the privileged or the unprivileged com-
ponent and making the other a simple shim — produces no
security benefit. Finally, separation may make it impossible
to simultaneously satisfy the goals of keeping the privileged
component simple and tolerating errors in the unprivileged
component. For example, in the delegate access application,
authentication and authorization of delegation commands
should be done within the privileged component, otherwise
there are no meaningful restrictions on what a compromised
unprivileged component may do. However, this means in-
troducing complicated logic to maintain an auxiliary policy
and store the associated state inside a privileged component,
contradicting the goal of simplicity.

Intrusion detection is a third technique that may be used
to mitigate damage. For example, an intrusion detection
system on a building automation system might look for se-
quences of commands that look suspicious (e.g. many se-

quential door unlock commands) and alert building security.
Intrusion detection, however, tends to have a limited view;
in particular, it would not have the redundant authentica-
tion information that is used to make authorization decisions
in the gateway. Also, intrusion detection is more frequently
used to look for anomalies or particular attacks, rather than
enforce policy constraints, as the gateway does. However,
intrusion detection systems can interoperate well with our
proposed architecture: an intrusion detection system might
receive audit records from the gateway that carry with them
non-repudiable authentication, and thus be in a better po-
sition to detect and respond to failures. In future work, we
intend to explore the issue of intrusion detection in tiered
security architectures in general and building automation
systems in particular.

The redundant authentication token issued by the authen-
tication proxy can be seen as a capability authorizing the
application to act on the behalf of the authenticated user.
This functionality could be implemented by a real capability
using an operating system such as EROS [17]. The Asbestos
OS [3] can also use labeling of event processes to implement
similar functionality. We chose to use a commodity operat-
ing system for our implementation for ease of deployment
and to make the critical components simpler and easier to
analyze.

An alternate approach to redundant authentication would
be to follow an approach for single sign on, like that sug-
gested by the Liberty Alliance [18]. In this case, the au-
thentication proxy would provide the necessary wrapper to
be an approved identity provider and both the application
server and proxy would be service providers. As with re-
dundant authentication, the application server would ask
the authentication proxy to authenticate the user and would
be returned a token proving the authentication. Unlike our
proposed process, though, the gateway would also ask the
authentication proxy directly to authenticate the user. How-
ever, this would require the gateway to have a communi-
cation channel with the authentication proxy. Despite the
fact that the authentication proxy is a trusted component,
the additional channel of communication with the gateway
makes it more vulnerable and complex than we believe is
strictly necessary.

6. CONCLUSIONS
We presented the concept of redundant authentication as

a method to secure multi-tier web systems. When acting on
behalf of a user, higher-tiers are required to provide non-
repudiable evidence that the user authenticated recently to
lower-tiers. Using this evidence, the lower-tier system is able
to enforce its own security policies based on the currently
authenticated user. The policy can greatly limit the power
of an attacker on a compromised higher-tier system.

In order to validate redundant authentication, we pre-
sented a pair of applications that make use of information
stored in a Building Automation System (BAS). Because the
BAS is a sensitive system, we developed a lower-tier system,
called the gateway, that is responsible for interfacing with
the BAS. The gateway redundantly authenticates the users
so that it can enforce its own security policy. In develop-
ing these applications for the Siebel Center, we developed
an authentication proxy, which interfaces with enterprise
authentication systems and provides the applications with
non-repudiable tokens which are then used by the gateway

to redundantly authenticate the user.

Acknowledgements
This work was supported in part by NSF CNS05-5170 CNS05-
09268 CNS05-24695, ONR N00014-04-1-0562 N00014-02-1-
0715, DHS 2006-CS-001-000001 and a grant from the MacArthur
Foundation. The views expressed are those of the authors
only. Ragib Hasan is supported by NSF Award number
0331707 and 0331690.

7. REFERENCES
[1] A. Acharya and M. Raje. MAPbox: Using

parameterized behavior classes to confine untrusted
applications. In USENIX Security Symposium, 2000.

[2] D. Brumley and D. Song. Privtrans: Automatically
partitioning programs for privilege separation. In
USENIX Security Sympoisum, Aug. 2004.

[3] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazieres,
F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system. In
Symposium on Operating Systems Principles, 2005.

[4] P. Ehrlich and T. Considine (Chairs). Open Building
Information Exchange (oBIX) version 1.0. OASIS
Committee Specification, December 2006.
http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=obix.

[5] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
delegating architecture for secure system call
interposition. In Network and Distributed System
Security Symposium, 2004.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A
secure environment for untrusted helper applications.
In USENIX Security Symposium, July 1996.

[7] P. P. Griffiths and B. W. Wade. An authorization
mechanism for a relational database system. ACM
Transactions on Database Systems (TODS),
1(3):242–255, September 1976.

[8] Java. http://java.sun.com/.

[9] E. Kubaitis. Bluestem overview. Web Page, August
2000. https://www-s4.uiuc.edu/bluestem-notes/.

[10] K. Lawrence and C. Kaler (Chairs). Web Services
Security (WS-Security) X.509 Certificate Token
profile 1.1. OASIS Standard Specification, February
2006. http://docs.oasis-open.org/wss/v1.1/
wss-v1.1-spec-os-x509TokenProfile.pdf.

[11] Microsoft. Active directory overview. Web Page,
Janurary 2005. http://technet2.microsoft.com/
windowsserver/en/library/

7c981583-cf41-4e6c-b1f6-5b8863475ede1033.mspx?

mfr=true.

[12] OPC Task Force. OPC overview. OPC White Paper,
October 1998.
http://www.opcfoundation.org/DownloadFile.

aspx/General/OPC\%20Overview\%201.00.pdf?RI=1.

[13] D. S. Peterson, M. Bishop, and R. Pandey. A flexible
containment mechanism for executing untrusted code.
In USENIX Security Symposium, Aug. 2002.

[14] N. Provos. Improving host security with system call
policies. In USENIX Security Symposium, Aug. 2003.

[15] N. Provos, M. Friedl, and P. Honeyman. Preventing
privilege escalation. In USENIX Security Symposium,
Washington, DC, Aug. 2003.

[16] RSA Laboratories. Public-key cryptography standards
(PKCS) #7: Cryptographic message syntax standard
version 1.6. RSA Laboratories Technical Note, May
1997.
http://www.rsa.com/rsalabs/node.asp?id=2129.

[17] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS:
A fast capability system. In Symposium on Operating
Systems Principles, 1999.

[18] T. Wason, S. Cantor, J. Hodges, J. Kemp, and
P. Thompson. Liberty ID-FF architecture overview,
2005.

APPENDIX
A. APPLICATION SCREENSHOTS

Figure 6: Unlock Door page of the web interface.

Figure 7: Grant/Revoke Access page of the web interface.

