
Modular Preservation of Safety Properties by
Cookie-Based DoS-Protection Wrappers?

Rohit Chadha, Carl A. Gunter, Jose Meseguer,
Ravinder Shankesi and Mahesh Viswanathan

Dept. of Computer Science, University of Illinois at Urbana-Champaign

Abstract. Current research on verifying security properties of communication
protocols has focused on proving integrity and confidentiality using models that
include a strong Man-in-the-Middle (MitM) threat. By contrast, protection mea-
sures against Denial-of-Service (DoS) must assume a weaker model in which an
adversary has only limited ability to interfere with network communications. In
this paper we demonstrate a modular reasoning framework in which a protocolP
that satisfies certain security properties can be assured to retain these properties
after it is “wrapped” in a protocolW[P] that adds DoS protection. This modular
wrapping is based on the “onion skin” model of actor reflection. In particular, we
show how a common DoS protection mechanism based on cookies can be applied
to a protocol while provably preserving safety properties (including confidential-
ity and integrity) that it was shown to have in a MitM threat model.

1 Introduction

System security has many aspects, including secrecy, authentication, access control,
availability, and many target sub-systems such as hardware, network protocols, operat-
ing system, application software, and so on. Security properties are typically verified
of sub-systems, for example, by showing that a network protocol correctly uses cryp-
tography to preserve a secret. But what we care about is theend-to-endsecurity of the
whole system, noting that it is a complex combination of its sub-systems. Modularity
constructs and modular reasoning about properties are crucial to obtaining such end-
to-end security guarantees. In this paper we present some modularity techniques and
preservation results of this nature about two quite different kinds of sub-systems and
properties, namely, an underlying communication protocol that may enjoy somesafety
properties, either related to security or to broader requirements, and a sub-system pro-
tecting against Denial of Service (DoS), which ensures someavailability properties.

In actual practice, DoS protection mechanisms are not described and implemented
in a modular way: typically an underlying protocol is changed in an ad-hoc way. For
example, the TCP protocol can be defended against SYN attacks using SYN cook-
ies [8], but requirements such as the need to assure compatibility with clients running
diverse versions of TCP prevent a modular addition of this strategy. In particular, the
TCP solution cannot be applied directly to other protocols, because it is inter-woven

? In: IFIP Formal Methods for Open Object-based Distributed Systems (FMOODS ’08), Oslo,
Norway, June 2008.

in a non-modular way with the specifics of TCP. Our first contribution in this paper
is to consider a common DoS protection mechanism based on cookies, provided and
described in a modular way as a generic “wrapper” that can be applied to an under-
lying protocol under minimal assumptions. In this way, a DoS protection mechanism
becomes highly reusable and modular: one can develop its generic DoS wrapper once
and for all. The wrapper then provides the desired DoS protection regardless of the
underlying protocol it is applied to (under minimal assumptions): no changes to the un-
derlying protocol are required. Specifically, we leverage ideas from distributed object
reflection, where a distributed object can be wrapped by a “meta-object” that mediates
its communication, with no required changes to the code of the underlying object. In
our treatment we use a simplified version of the “onion skin” model of actor reflec-
tion [2], formalized as rewrite theories [13, 32]. We specify in rewriting logic and study
in detail a generic wrapper for cookies like the strategy used in TCP SYN cookies. To
illustrate this modularity, we sketch how it can be applied to a protocol like Internet Key
Exchange (IKE) as was done in IKEv2. Although, our modular approach is applied to
cookie mechanism in this paper, we believe that our techniques will apply to other DoS
protection mechanisms such as those described in [20, 25].

Our second contribution is to prove that the system composition obtained by adding
a cookie-based protection wrapper to a protocol preserves all the safety properties en-
joyed by the original protocol. That is, the new availability properties enjoyed by the
wrapped protocol are obtainedwithout losingany of the safety properties. We obtain
this result by specifying the given protocol, the wrapper, and the wrapped protocol as
rewrite theories, and proving that: (1) a suitable stuttering simulation exists between
the wrapped protocol and the original one; and (2) such simulations preserve all safety
properties satisfied by the original protocol. The stuttering simulation constructed as a
homomorphic map between the rewrite theories of the protocol with the cookie-wrapper
and the original protocol essentially “forgets” the cookies used for DoS protection.
We point out here that there is no simulation of the original protocol by the wrapped
protocol. This is because the presence of the DoS protection necessarily implies that
“malicious” service requests from illegitimate clients, which would be serviced in the
absence of the DoS protection, must be ignored by the server . The dropping of the ma-
licious service requests by the server wrapper also implies that we have to assume that
the protocols are executed in a lossy environment, which allows the underlying protocol
to simulate the dropping of the service requests by loss of messages.

Note that the availability properties enjoyed by the DoS protection mechanism (in
this case the cookie mechanism) are, by definition, those of the wrapped protocol. That
is, they areemergentproperties of the corresponding wrapped composition, which typ-
ically did not exist in the original protocol. In this paper, weassume that these avail-
ability properties are analyzed separatelyby existing methods [30, 28, 1, 4]. The main
result of our paper then ensures that: (i) if the underlying protocol, sayP, satisfies a
setΓ of safety properties; and (ii) if the applicationW[P] of the cookie wrapperW to
protocolP satisfies a set∆ of availability properties,thenW[P] satisfiesboth∆ and
the safety propertiesΓ .

In the case of security-related safety propertiesΓ , such as secrecy and authenti-
cation properties, enjoyed by a protocolP, such properties are not just enjoyed byP

itself: they are enjoyed byP in the contextof a malicious environment that includes a
Man-in-the-Middle (MitM) threat, which we can specify with a separate rewrite theory
I. That is, the security-related safety propertiesΓ are satisfied by theunionof theories
P ∪ I. To cover also these security-related safety properties, we prove a second ver-
sion of our main theorem corresponding to safety properties that involve a MitM threat,
against which the original protocol had been proved secure. We show that such an at-
tacker cannot violate any of the already-proved safety properties for the cookie-wrapped
extension of the protocol. Since the assumptions on the underlying protocol are really
minimal, our result applies to the preservation of security-related safety properties for a
wide range of cryptographic protocols. Therefore, proofs of such properties do not have
to be redone after such protocols are subsequently hardened against DoS attacks by a
cookie mechanism. Furthermore, since the MitM attacker in the paper is parametrized
by an equational theory, our preservation result also applies to safety properties proved
in the presence of a MitM attacker that can exploit algebraic properties of the crypto-
graphic constructs used in protocol messages. We discuss one example application of
our main result to a concrete protocol, namely, IKEv2 and its cookie mechanism.

The main technical challenge in proving the existence of the stuttering simulation in
presence of the MitM threat is that the simulation can no longer be a homomorphic map
that just “forgets” cookies. This is because the MitM attacker can intercept the cookies
and generate new messages such as embedding the intercepted cookies within encrypted
messages. Since the wrappers only perform a check of the accompanying cookies, these
encrypted messages may lead to protocol executions which will not be captured by a
simulation that forgets the cookies. This issue is resolved by exploiting the capability of
the MitM attacker to generate cookies – cookie generation by the wrappers is simulated
by the MitM attacker generating and storing new cookies.

The paper is organized into seven sections. Section 2 describes some preliminary
concepts. Section 3 describes the underlying protocol semantics. Section 4 describes
the stuttering simulation and preservation results for the cookie wrapper. Section 5 de-
scribes the MitM intruder model and how safety properties are preserved for the appli-
cation of the wrapper. Section 6 discusses future work and Section 7 gives conclusions
and sketches related work.

2 Preliminaries

The aim of this paper is to formalize, in a modular way, a simple cookie wrapper and to
show that its use in transforming an underlying protocol does not invalidate the safety
properties the underlying protocol enjoyed in a MitM model. The semantics of the un-
derlying protocol and the protocol with the cookie wrapper are described using Kripke
structures. A next-free safety fragment [36] of the logic LTL is used to specify safety
properties. The preservation of safety properties is shown by exhibiting a stuttering sim-
ulation between the wrapped protocol and the underlying protocol. The Kripke struc-
tures are generated using rewrite theories.

2.1 Cookie-Based DoS Protection

A cookie is used in many network protocols (such as HTTP [16]), by one communicat-
ing partyA to store some persistent information atB. A cookiek, when presented by
B to A, gives a weak guarantee thatB has communicated withA at least once before to
get the cookie. This guarantee is weak, because the cookie could be eavesdropped by
a MitM intruder, who could impersonateB. However, in a typical (Distributed) Denial
of Service flooding attack, the attacker tries to overwhelm a server’s limited resources
(such as memory or processing power) by sending, with little overhead, a large num-
ber of requests using different faked source IP address (see for e.g., [35]). If the cookie
mechanism is used the attacker will not receive the cookies sent to the fake IP addresses
unless it has a MitM ability. An adversary with MitM ability has already won, so DoS
defense mechanisms target to protect against weaker adversaries.

Client

request
--
Server

response

mm Client

request

##

cookie,request

44 Server

cookie

tt

response

dd

For instance, a simple request-response protocol can be made DoS-resistant by us-
ing cookies and the communication pattern shown in the right of the above figure. The
basic protocol is modified so that, when first contacted, the server sends a cookie to be
stored at the client’s side. The server simultaneously retains the ability to retrieve the
cookie-value corresponding to that client. From then on, every client request is accom-
panied by the cookie, that the server can validate before committing any resources to
that request. The server can reject all requests without the right cookies, with little over-
head (see for e.g., [8]). Since the attacker uses spoofed addresses, it will not receive the
cookie response from the server and thus cannot make any resource-intensive requests,
thereby preventing the attack.

2.2 Kripke Structures, Safety Properties and Stuttering Simulation

The semantics of the underlying and wrapped protocols are defined using Kripke struc-
tures. Given a set of propositionsAP, anAP-Kripke structureA is a tuple(A,→A, LA)
where the setA is the set of configurations of the protocol, the transition relation
(→A⊆ A× A) describes the temporal evolution of the configurations, and the labeling
functionLA : A → 2AP describes the set of propositions true in a configuration.

The safety-properties that we shall consider in this paper are expressed in the follow-
ing next-free safety fragment [36] of the logicLTL(AP) (henceforth calledSafety\©).
The syntax of the fragmentSafety\© in BNF notation is:

ψ = (p) 8 (¬p) 8 (ψ ∨ ψ) 8 (ψ ∧ ψ) 8 (ψW ψ) 8 (� ψ)

wherep ∈ AP. Here, the modalitiesW and� are the usual weak-until and always
modalities ofLTL. We refer the reader to [36] for a formal definition. Please note that
we could have also used other characterizations of safety properties such as the syntactic
characterization using past operators [27] or the semantic characterization of safety [5].

As discussed above, we shall show that the safety properties are preserved by a
wrapped protocol by exhibiting a stuttering simulation between the wrapped protocol
and the underlying protocol. Intuitively, a systemA is simulated by a systemB if every
execution step ofA can be matched by an execution step ofB. Since we are primarily
interested in a next-free fragment ofLTL, we require that an execution step ofA is
matched by zero or more execution steps ofB. Formally,

Definition: Given twoAP-Kripke structuresA = (A,→A, LA) andB = (B,→B, LB)
a relationH ⊆ A × B is said to be astuttering simulationif for all a, b such thataHb,
the following hold: LA(a) = LB(b), and ifa→A a′ then there exists a natural number
0 ≤ j and elementsb0, b1, . . . , bj such that

1. b0 = b
2. bl →B bl+1 for all 0 ≤ l < j, and
3. there is a0 ≤ k ≤ j such thataHbl for all 0 ≤ l ≤ k anda′Hbl for all k < l ≤ j.

The Kripke structureA is said to be stuttering simulated byB if there exists a stuttering
simulationH ⊆ A× B.

Stuttering simulations reflect satisfaction ofSafety\© properties.

Proposition 1 Given twoAP-Kripke structuresA = (A,→A, LA) andB = (B,→B

, LB) , a stuttering simulationH ⊆ A × B, configurationsa, b such thataHb and a
next-free safety formula,ψ ∈ Safety\©, we haveB, b |=B ψ ⇒ A, a |=A ψ.

2.3 Rewriting Logic

We specify the configurations of a protocol as the algebraic data type associated to
an order-sorted equational theory(Σ,E) [17], where the signatureΣ specifies the
sorts, a subsort relation interpreted as subset inclusion in the algebras, and the constants
and function symbols, and whereE is a set ofΣ-equations. The algebraic data type
associated to(Σ,E) is the initial algebra TΣ/E [17]. In our protocols, the signature
Σ will contain a sortConf of object and message configurations as the chosen sort of
configurations, so that the set of protocol configurations is the setTΣ/E,Conf . The theory
(Σ,E) only specifies thestaticsof a protocol. A protocolP, including itsdynamics,
is specified as arewrite theoryP = (Σ,E,R) [31], where the order-sorted equational
theory specifies the configurations as explained above, and whereR is a set ofrewrite
rules of the form t −→ t′ specifying the protocol concurrent transitions, that is, the
protocol’s “dynamics.”

A setAP of atomic propositions for the configurations of a protocolP = (Σ,E,R)
can be easily specified as equationally-defined Boolean predicates in(Σ,E). The
atomic propositionsAP , plus the choice of the sortConf as the sort of configurations
define aKripke structureK(P) (see [10]), whose configurations are those ofP, whose

transitions are the one-state rewrites withR modulo the equationsE, and whose la-
beling function maps a state to all the atomic propositions that are provable true in
that state. In this paper we allow deadlock configurations, and therefore the transition
relation ofK(P) is not required to be total.

In our modular reasoning we will use equational and rewrite theoryinclusions
(Σ,E) ⊆ (Σ,E), and(Σ,E,R) ⊆ (Σ,E,R), with the obvious meaning:Σ ⊆ Σ′,
E ⊆ E′, andR ⊆ R′; and also theoryunions(Σ,E) ∪ (Σ,E), and (Σ,E,R) ∪
(Σ,E,R), also with the obvious meaning:Σ ∪Σ′, E ∪ E′, andR ∪R′.

3 Underlying Protocol

We use rewriting logic to express both an underlying, generic protocol satisfying min-
imal requirements, and the enhancement of such a protocol with DoS protection. The
rewrite theories of both the underlying protocol and the enhancement of it with DoS
protection shall assume that there is an equational theoryM = (ΣM, EM) which
specifies the messages exchanged between clients and servers, withΣM a signature
declaring sorts, subsorts and function symbols andEM a set ofΣ-equations. Further-
more, we make the following assumptions:

– There is a sortMsgCnts that describes the contents of a message. We hereafter use
m,m1,m2, etc., as variables of sortMsgCnts.

– There is a sortCookie for cookies. The sortCookie is a subsort of sortMsgCnts.
We usek, k′, etc., as variables of sortCookie.

– There is a function symbol(,) : MsgCnts ×MsgCnts → MsgCnts. Intuitively,
the term(m1,m2) is the pair that consists of two messagesm1 andm2.

– There is a sortSeed, a subsort ofMsgCnts, which is used by a unary function
rand : Seed → Cookie, to generate a new cookie. There is a constant1 of sort
Seed and a unary functionnext : Seed → Seed for incrementing the seed. As
we shall see, the server wrapper stores a seed for cookie generation. The wrapper
increments the seed each time it generates a fresh cookie. We shall usel, l′ as
variables of sortSeed. It will also be convenient to have a binary function symbol
Rnd : Seed → MsgCnts such thatRnd(l) = (next(l), rand(l)).

– There are sortsCId andSId which stand for the identifiers for the clients and the
servers. There is a sortId with CId andSId as subsorts. The sortId is a subsort of
MsgCnts. We useC,C1, etc., as variables of sortCId, S, S1, etc., as variables of
sortSId andid, id1, etc., to refer to variables of sortId.

– There is a sortMsg and a ternary function symbol(to , from) : Id×MsgCnts×
Id → Msg. The term(to id1,m from id2) stands for a messagem sent byid2 for
id1. We shall usemsg ,msg ′ as variables of sortMsg.

– There is also a constantconnect of sortMsgCnts. The term(to S, connect from C)
is the connect request sent byC to S.

– There is sortConf along with a constantnull of sortConf. The sortMsg is a sub-
sort ofConf. There is also a binary symbol function; : Conf × Conf → Conf
which intuitively stands for multiset union. Properties of associativity, commuta-
tivity and the identity (null) of ; are enforced in the set of equationsEM. Later,
we shall extendConf to include the state of clients, servers and the intruder. A term

of sortConf will stand for protocol configurations and contain the messages, state
of clients, servers and the intruder.

There might be other sorts and equations depending on the underlying protocol. For
example, if the protocol uses symmetric encryption then there will be sorts for keys and
two binary function symbols, sayenc anddec, for encryption and decryption respec-
tively. Furthermore,EM will contain the equationdec(key, enc(key,m)) = m.

The messages on the network are represented as multisets of messages. Formally, a
multiset of messagesis a ground term of sortConf defined recursively as follows:

1. If id1, id2 are ground terms of sortId andm is a ground term of sortMsgCnts then
(to id1, m from id2) is a multiset of messages.

2. If B1 andB2 are multisets of messages thenB1; B2 is a multiset of messages.

For example, the multiset(to S,m from C); (to C,m′ from S) represents two messages
– m sent by (or some entity claiming to be) the clientC meant for the serverS andm′

sent by (or some entity claiming to be) the serverS meant for the clientC.
Given the message equational theoryM = (ΣM, EM), the underlying protocol is

given using a rewrite theoryP = (ΣP , EP , RP) with ΣM ⊆ ΣP andEM ⊆ EP . The
signatureΣP in addition toΣM must contain the following sorts.

– There are sortsCIntState andSIntState which describe the internal states of the
clients and servers respectively.

– There is a sortCConf, subsort ofConf, and a binary function symbol〈 , 〉c :
CId× CIntState → CConf. We useX as variable of sortCConf. For example, the
term 〈C,CIntState〉c represents a client whose unique identifier isC and whose
internal state isCIntState.

– There is a sortSConf, subsort ofConf, and a binary function symbol〈 , 〉s :
SId× SIntState → SConf. We useY as variable of sortSConf.

We shall assume thatP ensures that the operator(,) : MsgCnts × MsgCnts →
MsgCnts is a free constructor and that the operator; : Conf×Conf → Conf is a free
constructor modulo associativity, commutativity and identity ofnull.

We distinguish ground terms that represent configurations possibly reachable in
a protocol execution. The reachable configurations consist of a multiset of messages,
client states and server states. Furthermore, each client and server is represented by a
unique term. The set ofgood configurationsis defined inductively as follows.

– null is a good configuration.
– If Conf is a good configuration andB is a multiset of messages thenConf; B is a

good configuration.
– If Conf is a good configuration,C andCIntState are ground terms of sortCId

and CIntState respectively, thenConf; 〈C,CIntState〉c is a good configuration
providedConf does not have any subterm for the form〈C,CIntState′〉c for some
CIntState′.

– If Conf is a good configuration,S andSIntState are ground terms of sortSId and
SIntState respectively thenConf; 〈S,SIntState〉S is a good configuration provided
Conf does not have any subterm of the form〈S,SIntState′〉s for someSIntState′.

The set of good configurations shall henceforth be calledGoodConf. The execution of
the protocol theory is given by a transition relation→P .Given two good configurations
Conf1 andConf2, we writeConf1 →P Conf2 iff Conf2 can be obtained fromConf1
by a one-step rewrite with a rule inRP .

For example, the configuration〈C,CIntState〉; 〈S,SIntState〉; (to S,m from C)
represents a configuration in which a clientC has sent a messagem intended for server
S. If the server reads the messagem and changes its internal state toSIntState′ then
we shall have〈C,CIntState〉; (to S,m from C); 〈S,SIntState〉 →P 〈C,CIntState〉;
〈S,SIntState′〉.

4 Cookie Wrapper and its Preservation Properties

Given the underlying protocol theoryP = (ΣP , EP , RP), the cookie wrapper is de-
fined as a theory transformationP 7→ W[P]. The theoryW[P] = (ΣW[P], EW[P]

, RW[P]) extendsP and is constructed as follows. The signatureΣW[P] extendsΣP
with the following new sorts:

1. There is a sortCStoredCookiePair along with a binary function symbol(,) :
SId × Cookie → CStoredCookiePair. Intuitively, the pair(S, k) will be stored by
the client wrapper and it uses cookiek when sending requests to serverS.

2. There is a sortCStoredCookies for the set of cookie pairs stored at the client
site. There is a constant∅ which stands for the empty set, along with a function
symbol { } : CStoredCookiePair → CStoredCookies that make a term of sort
CStoredCookiePair into a set and a function symbol∪ that stands for the union op-
erator. For example, the set{(S, k)}∪{(S′, k′)} stored at client siteC means that the
clientC shall use the cookiesk andk′ while sending messages toS andS′ respec-
tively. There is also a binary function symbolSIn : SId×CStoredCookies → Bool.
The functionSIn(S,CPc) returnstrue, if ∃k s.t. (S, k) ∈ CPc andfalse otherwise.
For example, the functionSIn(S1, {(S, k)} ∪ {(S′, k′)}) returnstrue if and only if
S1 is eitherS or S′.

3. There are sortsSStoredCookiePair andSStoredCookies along with the binary func-
tion CIn : CId × SStoredCookies → Bool for managing the cookies at server side
similar to the ones at the client side.

4. There is a sortWrappedCConf for the wrapped client configuration along with a4-
ary function symbol[, , ,]c : CId × CStoredCookies × Msg × CConf →
WrappedCConf. The term[C,CPc, (to S,m from C), X] stands for the client
wrapper for the clientC, whereCPc is the set of cookie pairs stored at clientC,
m is a message (destined for serverS) that is stored while a connection toS is
being established, andX is the underlying protocol configuration for the clientC,
together with messages sent byC or addressed toC.

5. There is a sortWrappedSConf along with a4-ary function symbol[, , ,]s :
SId × SStoredCookies × Seed × SConf → WrappedSConf for wrapped server
configurations.

6. The sortsWrappedSConf andWrappedCConf are subsorts ofConf.

Client Wrapper Rules.
ConnectReq: [C ,CPc, null, (to S , m from C);X]c → [C ,CPc, (to S , m from C),X]c;

(to S , connect from C) if SIn(S ,CPc) = false
SetCookie: (to C , k from S); [C , CPc, (to S ,m from C) ,X]c →

(to S , (k ,m) from C); [C , {(S , k)} ∪ CPc, null,X]c
if SIn(S ,CPc) = false

MsgToServer:[C , {(S , k)} ∪ CPc, null, (to S ,m from C);X]c →
[C , {(S , k)} ∪ CPc, null,X]c; (to S , (k ,m) from C)

AcceptReply:(to C ,m1 from S); [C ,CPc,msg ,X]c →
[C ,CPc,msg , (to C ,m1 from S);X]c if not m1 : Cookie

Service Wrapper Rules.
CookieGeneration:(to S , connect from C); [S ,CPs, l ,Y]s → (to C , rand(l) from S)

[S , {(C , rand(l))} ∪ CPs, next(l),Y]s; if CIn(C ,CPs) = false
ResendCookie: (to S , connect from C); [S , {(C , k)} ∪ CPs, l ,Y]s →

[S , {(C , k)} ∪ CPs, l ,Y]s; (to C , k from S)
ForwardRequest: (to S , (k ,m) from C); [S , {(C , k)} ∪ CPs, l ,Y]s →

[S , {(C , k)} ∪ CPs, l , (to S ,m from C); Y]s
DropRequest1: (to S , (k ,m) from C); [S ,CPs, l ,Y]s →

[S ,CPs, l ,Y]s if CIn(C ,CPs) = false
DropRequest2: (to S , (k ,m) from C); [S , {(C , k ′)} ∪ CPs, l ,Y]s →

[S , {(C , k ′)} ∪ CPs, l ,Y]s if (k 6= k ′)
ForwardReply: [S ,CPs, l , (to C ,m from S);Y]s → [S ,CPs, l ,Y]s; (to C ,m from S)

Table 1.Cookie Wrapper Rewrite Rules

The setEW[P] extendsEP with equations required in the definition of new sorts. The
setRW[P] extendsRP by adding new rules for the wrapper which are given in Table 1
and discussed below.

The client wrapper ruleConnectReq allows the wrapper to initiate a connection
request to the serverS if the connection is not already established and the underlying
client wants to send a messageM to S. The messageM is held until the connection
is established. The ruleSetCookie, triggered upon receiving a cookie fromS, allows
the wrapper to complete the connection and releaseM . The cookie is stored by the
wrapper and the ruleMsgToServer ensures that all future service requests toS contain
this cookie. The ruleAcceptReply allows the wrapper to forward any future replies
from S to the underlying client.

The server wrapper ruleCookieGeneration, triggered when a serverS receives a
connection request from a clientC for the first time, allowsS to reply to the request
with a freshly generated cookie. The cookie is stored and resent using the ruleResend-
Cookie in reply to any further connection requests byC. The stored cookie is also used
by ruleForwardRequest, which forwards service requests toS only if accompanied
by the right cookie. The wrapper drops any service requests, if either the cookie mis-
matches or if there is no connection established, by using the rulesDropRequest1 and
DropRequest2 respectively. The ruleForwardRequest allows the wrapper to forward
any client request (with the proper cookie) to the underlying server configuration. Fi-

nally, the ruleForwardReply allows the wrapper to forward any reply by its underlying
server configuration to the client.

As in the case of a protocol theory, we need to identify the set ofgood wrapped
configurationswhich represent the set of reachable configurations of the protocol with
the DoS protection. In order to define good wrapped configurations we shall first de-
fine well-formed unwrapped and wrapped client configurations. A well-formed un-
wrapped client configuration for a clientC is a ground term of sortConf that con-
tains a (unique) client configuration forC as well as messages sent by or sent toC. A
well-formed wrapped client configuration for a clientC consists of a ground term of
sortWrappedCConf which “wraps” a well-formed unwrapped client configuration for
clientC. Formally,

Definition: Given a ground termC of sortCId, a well-formed unwrapped client con-
figuration forC is defined recursively as follows;

1. If Cis is a ground term of sortCIntState, then 〈C,Cis〉c is a well-formed un-
wrapped client configuration.

2. If Conf is well-formed unwrapped client configuration forC andm, S are ground
terms of sortMsgCnts and SId respectively, thenConf; (to S,m from C) and
Conf; (to C,m from S) are well-formed unwrapped client configurations.

If C,CPc, S,m are ground terms of the sortCId,CStoredCookies,SId and MsgCnts
respectively, andConf is a well-formed unwrapped client configuration forC then
[C,CPc, (to S,m from C),Conf]c is awell-formed wrapped client configuration.

The well-formed unwrapped and wrapped server configurations can be defined analo-
gously to their client counterparts.

We can now identify the set of good wrapped configurations which represent possi-
ble reachable configurations of the protocol with the cookie wrapper. A good wrapped
configuration consists of a multiset of messages and well-formed wrapped client and
server configurations with the restriction that any given client or server appears at most
once. For lack of space, we do not provide a formal definition here. The set of good
wrapped configurations shall henceforth be calledGoodWrappedConf.

As before, we define the execution of the wrapped protocol by a one-step transition
relation→W[P]⊆ GoodWrappedConf×GoodWrappedConf.Given two good wrapped
configurationsW1 andW2, we writeW1 →W[P] W2 if W2 can be obtained fromW1

by a one-step rewrite with a rule inW[P]. For example, the good wrapped configuration
[C, ∅, (to S,m from C), X]c ; (to S, connect from C) ; [S, ∅, 1, Y]s represents a config-
uration in which the client wrapper forC has sent aconnect request to the serverS. The
server accepts the connect request using the rewrite ruleCookieGeneration and hence
we have[C, ∅, (to S,m from C), X]c; (to S, connect from C); [S, ∅, 1, Y]s →W[P]

[C, ∅, (to S,m from C), X]c; (to C, rand(1) from S); [S, {(C, rand(1))} , next(1) ,Y]s.
We are almost ready to show that each execution of the wrapped protocol can be

stuttering simulated by the unwrapped one. We shall however require one more def-
inition. Consider the server wrapper rulesDropRequest1 andDropRequest2. The
server wrapper drops service requests if the cookie attached to the request mismatches
the cookie stored at its site. This is not reflected in the underlying protocol as there is no

such check of the service requests. However, if we consider protocols in the presence
of a lossy environment, we can mimic the dropping of these requests by a message loss.

Given the equational theoryM = (ΣM, EM), a lossy environmentis defined as
the rewrite-theoryL = (ΣL, EL, RL), whereΣL = ΣM, EL = EM andRL consists
of the single rewrite rule:(to id1,m from id2) → null. Similar to the way we have
defined→P overGoodConf and→W[P] overGoodWrappedConf, we can define the
transition relations→P∪L overGoodConf and→W[P]∪L overGoodWrappedConf.

4.1 Simulation

We shall show that the safety properties of the underlying protocol are preserved when
we add the cookie-based DoS protection wrapper by giving a stuttering simulation map
Hfgt: GoodWrappedConf → GoodConf between the set of good wrapped configura-
tionsGoodWrappedConf and the set of good configurationsGoodConf.

The key idea in the construction of the simulation mapHfgt is that the connect
requests and messages with cookies are used only by the DoS wrappers, and are not
observed by the underlying protocols. The simulation map uses the auxiliary functionh
(given below), which maps a multiset of messages onto another multiset of messages by
essentially forgetting all messages whose contents are only cookies or connect requests.
Furthermore, in case the message consists of a cookie as the first part of the contents,
the maph also forgets the cookie part. Formally,

(a)h((to id1, k from id2)) = null
(b) h((to id1, (k ,m) from id2)) = (to id1,m from id2)
(c) h((to id1, connect from id2)) = null
(d) h(M) = M if M is not (a), (b) or (c)
(e)h(M ;X) = h(M) ; h(X)

Please note that we should read the above equations as working on equivalence classes
of messages. For example, the equationh((to id1, k from id2)) = null means that any
message which can be proved equal to(to id1, k from id2) (using the set of equations
Ep) also gets mapped tonull. The well-definedness of equations will follow from the
fact that the function(,) : MsgCnts × MsgCnts → MsgCnts is a free constructor
and the function ; : Conf × Conf → Conf is a free constructor modulo associativity,
commutativity and identity ofnull.

We are now ready to define our simulation mapHfgt. Please note that our descrip-
tion of GoodWrappedConf implies that the good wrapped configurations are multisets
which contain well-formed wrapped client configurations, well-formed wrapped server
configurations, and a multiset of messages. The functionHfgt “unwraps” the client and
server configurations, and maps the multisets of messagesB to h(B). The messages
that are held in the client wrapper waiting for the server reply are “released”.

Definition: Given the set of good configurationsGoodConf and good wrapped config-
urationsGoodWrappedConf, the functionHfgt: GoodWrappedConf → GoodConf is
defined as follows.

Hfgt ([C1, CP 1
c ,M

1, X1
c]c; . . . ; [Cq, CP q

c ,M
q, Xq

c]c;
[S1, CP 1

s , l
1, X1

s]s; . . . ; [Sr, CP r
s , l

r, Xr
s]s;B) =

X1
c , . . . X

q
c ;X1

s , . . . X
r
s ;h(B);M1; . . . ; . . .Mq

For example, the configuration[C, ∅, (to S,m from C), X]c ; (to S, connect from C)
; [S, ∅, 1, Y]s in which the client wrapper forC has sent aconnect request to the server
S gets mapped byHfgt toX; (to S,m from C);Y .

Please recall that the transition systems(GoodConf,→P) and(GoodWrappedConf
,→W[P]) describe the evolution of unwrapped and wrapped protocol configurations
respectively. In order to talk about safety properties, we need to define Kripke structures.
Towards this end, we shall assume that there is a set of propositionsAP and a labeling
functionLP : GoodConf → 2AP which labels the good configurations of the underlying
protocol.1

Theorem 1 (Stuttering simulation and safety preservation)LetP be a protocol
rewrite theory and letW[P] be the rewrite theory obtained by adding the cookie wrap-
per. LetL be the rewrite theory of a lossy environment. LetAP∪L = (GoodConf,→P∪L
, LP∪L) be the Kripke structure generated from the good configurations ofP ∪ L and
AW[P]∪L = (GoodWrappedConf,→W[P]∪L, LW[P]∪L) be the Kripke structure gener-
ated from the good wrapped configurations ofW[P] ∪ L such thatLW[P]∪L =Hfgt

◦LP∪L.
Then{(W,Hfgt (W))|W ∈ GoodWrappedConf} is a stuttering simulation. Fur-

thermore, given aSafety\© formulaψ and anyW ∈ AW[P]∪L,

Hfgt (W) |=AP∪L ψ ⇒ W |=AW[P]∪L ψ.

Proof. (Sketch.) We have to show that ifW1 →W[P]∪L W2 then it is matched by a
stuttering transition ofHfgt (W1).

The transitionW1 →W[P]∪L W2 can be obtained from one of the three theories: (i)
a one-step application of a rewrite rule in the setRP of the underlying protocol theory,
(ii) an application of the new transition rules inRW[P], and (iii) an application of the
message drop rule inL. In the first and third cases, the transition is trivially matched. For
the second case, the rulesConnectReq, MsgToServer, SetCookie, AcceptReply,
ResendCookie, ForwardRequest, CookieGeneration and ForwardReply can be
shown to stutter.

The more interesting cases are the rulesDropRequest1 andDropRequest2. In
these cases the server wrapper drops messages if the cookies mismatch (or the server
doesn’t have any cookie corresponding to the client). This is simulated by a message
loss transition of the environment.

Formally, ifW2 is obtained fromW1 by the application of eitherDropRequest1
or DropRequest2, then the multisetW1 contains a server configuration[S ,CPs, l ,
SConf]s and a messaget1 = (to S , (k ,m) from C). Furthermore,(C , k) is not in
the setCPs. The wrapped configurationW2 is obtained fromW1 by replacingt1 by
null. By definition,W1 = W ′; t1, W2 = W ′, Hfgt (W1) =Hfgt (W ′);Hfgt (t1) and
Hfgt (W2) =Hfgt (W ′). NowHfgt (t1) is a message. Due to the message loss rule in
L, we getHfgt (W1) →P∪LHfgt (W2). ut

Please note that, due to the absence of an intruder, this result doesn’t apply to cryp-
tographic security properties of the protocol. However, it is still useful as we may be

1 Such atomic propositions and labeling function can, for example, be equationally defined in a
conservative (”protecting”) extension of the protocol theoryP (see for e.g., [10]).

concerned with other correctness properties of the protocol expressed as safety proper-
ties. This theorem ensures that any such properties regarding the protocol are still valid
when we apply the cookie wrapper.

5 Security with a Man-in-the-Middle Intruder

The standard assumptions of a MitM model give the intruder the ability to intercept
messages, store messages, and send messages on the network. It also has the ability to
apply cryptographic functions available to the protocol ‘users’ (for instance decrypting
an encrypted message using a key it already knows). We now give the rewrite theory
for a Dolev-Yao intruder, a common MitM model, and later prove a stuttering simula-
tion between a protocol and its cookie-based wrapped version, in the presence of this
intruder, ensuring the preservation of safety properties. Please note that the Dolev-Yao
intruder considered herein is parametrized by an equational theory which implies that
our preservation result also applies to safety properties in the presence of an intruder
that can exploit algebraic properties of the constructs (such as xor and modular expo-
nentiation) used in protocol messages.

5.1 Rewrite Theory for the Dolev-Yao Intruder

Given the equational theoryM = (ΣM, EM), the capabilities of the Dolev-Yao in-
truder are defined in terms of a rewrite theoryI = (ΣI , EI , RI). The signatureΣI
extendsΣM and the equationsEI extendEM, with the following additional sorts and
equations (recall that we already have defined sortsConf, MsgCnts andSeed as well as
symbolsnext, rand, Rnd in the message equational theoryM).

– There is sortSetMsgCnts along with a constantnull of sort SetMsgCnts. The
sortMsgCnts is a subsort ofSetMsgCnts. The sortSetMsgCnts stands intuitively
for a set of terms of the sortMsgCnts. There is a binary function symbol; :
SetMsgCnts× SetMsgCnts → SetMsgCnts which intuitively stands for set union.

– There is a sortIntruderKnowledge, subsort ofConf, along with a unary function
symbol[]i : SetMsgCnts → IntruderKnowledge. Intuitively, the term[X]i stands
for the intruder’s knowledge,i.e., the intruder knows the set of termsX. For exam-
ple, the term[key,m, enc(key,m)]i represents an intruder who knows a plain-text
messagem, a keykey and the encryption ofm under the keykey.

– There is a set of function symbolsF which represent the cryptographic function-
ality available to the intruder.F is assumed to contain at least the0-ary function
symbolconnect, and the unary function symbolRnd : Seed → MsgCnts which
satisfies the equationRnd(l) = (next(l), rand(l)) as before.

The rewrite rulesRI given in Table 2 describe the actions that the Dolev-Yao intruder
can perform. The setEI contains the equationsEM, equations that makeSetMsgCnts
a set, and the equationCoupling-Decoupling given in Table 2. Furthermore,EI may
contain any equations that express the algebraic properties of functions inF .

The equationCoupling-Decoupling allows the intruder to decompose a pair into
its parts and allows pairs to be formed using two terms of sortMsgCnts. The rule

Equation.
Coupling-Decoupling[(m1,m2);Y]i = [m1;m2;Y]i

Rewrite rules.

MsgCreation : [m; id1; id2; Y]i → [m; id1; id2;Y]i; (to id1,m from id)
MsgInterception: [Y]i; (to id1,m from id)→ [m;Y]i
MsgDrop: [Y]i; (to id1,m from id)→ [Y]i
CryptoFunctionality:[m1; . . . ;mn;Y]i → [f(m1, . . . ,mn);m1; . . . ;mn;Y]i if f ∈ F

Table 2.Dolev-Yao Equations and Rules

MsgCreation allows the intruder to send messages. The ruleMsgInterception allows
the intruder to intercept messages, and the ruleMsgDrop allows the intruder to drop a
message without storing any knowledge about its contents. Finally, the rule
CryptoFunctionality allows the intruder to compute the cryptographic functionsf ∈ F .
Please note that the Dolev-Yao intruder is powerful enough to exploit any algebraic
properties specified in the equationsEI .

P ∪ I andW[P] ∪ I represent the rewrite-theories for the protocol and cookie-
wrapped version of the protocol extended by the Dolev-Yao intruder. Analogous to
GoodConf andGoodWrappedConf defined in Section 3, we represent reachable con-
figurations in these extended protocols by using setsGoodExtConf and
GoodExtWrappedConf. Intuitively, an element ofGoodExtConf stands for a possible
reachable configuration of the unwrapped protocol; and is a ground term of sortConf
that represents, client and server configurations, the messages on the network, and in-
truder knowledge represented by a term[I]i of sort IntruderKnowledge. We assume
that the identifies of all clients and servers are included in the knowledge of the intruder.
Similarly, an element ofGoodExtWrappedConf represents a reachable configuration of
the wrapped protocol in the presence of the Dolev-Yao intruder, again represented by a
term of sortIntruderKnowledge. Furthermore, we shall require that the cookie-stores in
the client, server wrappers are “well-formed”. That is, the cookie-stores of each client,
server wrappers contain a multiset of cookie pairs of the type(Id, k), wherek is a
ground term of sortCookie. We shall also require that the seed in each server is of the
form, l = nextn(1), i.e., n successive applications of the functionnext on constant1.

5.2 Simulation

We shall now show that the safety properties of a protocol in the presence of the Dolev-
Yao intruder are preserved when we add the cookie-based DoS protection by exhibit-
ing a stuttering simulationHISim: GoodExtWrappedConf → GoodExtConf between
the set of good extended configurationsGoodExtConf and the set of good extended
wrapped configurationsGoodExtWrappedConf.

Please note that the simulation mapHfgt used in Theorem 1, which simply drops
cookies from messages, will not suffice for our purpose. This is because we need to
simulate all the actions that the intruder can do when cookie-based DoS protection is

being used. In particular, the intruder in the wrapped theory (sayIw represented by a
ground term of sortIntruderKnowledge) can intercept messages with cookies and then
generate new messages with the intercepted cookies. For example,Iw can embed the
intercepted cookie within some encrypted message. The intruder in the unwrapped the-
ory (sayIu, a ground term of sortIntruderKnowledge), however does not have access
to these cookies, since there is no cookie generation by the server in the unwrapped pro-
tocol. However, the intruderIu can use its cryptographic functionalityRnd to generate
cookies, which allows us to simulate all ofIw ’s transitions.

The simulation map,HISim, is defined using four auxiliary functions. The first
auxiliary function,h, is the same as the one defined earlier in Section 4. The second
function,ck, maps a multiset of messages to a term of sortSetMsgCnts. Given a mes-
sageM , the functionck picks out a cookie if either the message contents ofM is just
the cookie or if the message contents ofM is a pair, the first component of which is a
cookie. The other functionsckc andcks similarly collect cookies inCStoredCookies
and SStoredCookies by picking out the cookie part of every cookie pair stored in
CStoredCookies, SStoredCookies. They are formally defined as follows:

(a) ck((to id1, k from id2)) = k
(b) ck((to id1, (k ,m) from id2)) = k
(c) ck(M) = null if M is not (a) or (b)
(d) ck(M ;X) = ck(M) ; ck(X)
(e) ckc(∅) = null
(f) ckc({(C , k)} ∪ CPc) = {k} ∪ ckc(CPc)
(g) cks(∅) = null
(h) cks({(S , k)} ∪ CPs) = {k} ∪ cks(CPs)

We are now ready to define our simulation mapHISim. Please note that our descrip-
tion of GoodExtWrappedConf implies that the good extended wrapped configurations
are multisets which contain well-formed wrapped client configurations, well-formed
wrapped server configurations, an intruder state, and a multiset of messages. The func-
tion HISim “unwraps” the client and server configurations, and maps the multiset of
messagesB to h(B). The messages that are held in the client wrapper waiting for the
server reply are “released”. Finally, the intruder state inHISim (W) has more facts
than the intruder state inW , which allows it to mimic all actions of the intruder inW .
In addition to all the facts available to the intruder inW , HISim (W) also has cook-
ies stored at client and server wrappers and in messages over the network. Please note
that we are not giving the intruder access to the storage at these wrappers (there are no
wrappers inHISim (w)). The condition is trivially satisfied at an “initial” state where
the cookie stores are empty. The definition allows us to avoid an induction on reachable
configurations. Furthermore, the intruder also has all the seeds that the server wrapper
has, along with all the seeds that the server might have used in the past.

Definition: Given the set of good extended configurationsGoodExtConf and the set of
good extended wrapped configurationsGoodExtWrappedConf; the functionHISim:

GoodExtWrappedConf → GoodExtConf is defined as follows.

HISim ([C1, CP 1
c ,M

1, X1
c]c; . . . ; [Cq, CP q

c ,M
q, Xq

c]c];
[S1, CP 1

s , l
1, X1

s]s; . . . ; [Sr, CP r
s , l

r, Xr
s]s]; [Y]i;B) =

X1
c , . . . X

q
c ;X1

s , . . . X
r
s ;h(B);M1; . . . ; . . .Mq

[Y ; 1; next(1); next2(1) . . . ; l1; . . . ; 1; next(1); next2(1) . . . lr;
ckc(CP 1

c); . . . ; ckc(CP q
c); cks(CP 1

s); . . . ; cks(CP r
s); ck(B)]i.

For example, consider the configurationConf = [C, {S, k}, null, Xc]c; [S, {(C, k)},
next(1), Xs]s; (to S, (k,m) from C) ; [C,S]i in which the client has established a con-
nection with the serverS (with cookiek) and has sent a service request. The intruder has
the identities of the client and the server. By definition,HISim “unwraps” the client,
the server, the service request, and stores the cookiek in the intruder memory. Formally,
HISim (Conf) = Xc;Xs; (to S,m from C); [C,S, 1, next(1), k]i.

We have the second result of the paper.

Theorem 2 Let P ∪ I be the rewrite theory for the protocolP in the presence of a
Dolev-Yao intruder, andAP∪I = (GoodExtConf,→P∪I , LP∪I) be the Kripke struc-
ture generated from the good extended configurations. LetW[P]∪I be the rewrite the-
ory for the cookie wrapped protocolW[P] in the presence of a Dolev-Yao intruder, and
AW[P]∪I = (GoodExtWrappedConf,→W[P]∪I , LW[P]∪I) be the Kripke struture gen-
erated from the good extended wrapped configurations, such that,LW[P]∪I =HISim

◦LP∪I .
Then for anySafety\© formulaψ and anyW ∈ AW[P]∪I ,

HISim (W) |=AP∪I ψ ⇒ W |=AW[P]∪I ψ.

Proof. (Sketch.) It suffices to show that{(W,HISim (W))|W ∈ GoodWrappedConf}
is a stuttering simulation,i.e., whenever,W1 →W[P]∪I W2, then it is matched by a
stuttering transition ofHISim (W1).

The transitionW1 →W[P]∪I W2 can either be a transition obtained by a one-step
application of a rewrite rule of the underlying protocol theoryP, or a transition obtained
by an application of the new transition rules of the wrapperW, or a transition obtained
by an application of the transition rules in the intruder theory. In the first case, the tran-
sition is trivially matched. For the second case, the rulesConnectReq, MsgToServer,
SetCookie, AcceptReply, ResendCookie, ForwardRequest andForwardReply
can be shown to stutter. The rulesDropRequest1, DropRequest2 can be simulated
by theMsgDrop rule of the intruder.

If W2 is obtained fromW1 by the application ofCookieGeneration resulting in
some server wrapper generating a cookiek, then this step is matched by the intruder
using the its crypto functionalityRnd to generate the same cookiek.

Now, assume thatW2 is obtained fromW1 by the application of a rule inRI . Please
observe that the set of facts that the intruder possesses inW1 is contained in the set of
facts that the intruder possesses inHISim (W1). Hence, “crypto functionality” can be
simulated exactly. Message creation ofM can be simulated by “message creation” of
h(M). Please note thath(M) creation requires less information. The “message inter-
ception” ofM is simulated by interception ofh(M). The missing information (cookie)
is already in the possession of the intruder inHISim (W1). ut

5.3 Modular reasoning with cookies in IKEv2

In this section we describe how the cookie-wrapper can be applied to a practical pro-
tocol vulnerable to a DoS attack. Using the results in this paper, we can show that any
Safety\© properties that have been verified on the original protocol (in the presence
of a Dolev-Yao intruder) still apply to the cookie-wrapper version of the protocol (in
the presence of a Dolev-Yao intruder). In effect, we get the added benefit of some DoS
protection without having to prove earlier safety properties again.

IPSec is a suite of protocols used to provide authentication and encryption on top of
IP. The Internet Key Exchange (IKE) protocol is a part of the IPSec suite that allows two
communicating parties to, among other things, securely generate session keys as well as
exchange cryptographic parameters. IKEv2 ([24]) is the current version of the protocol.
Since IPSec runs on top of theconnectionlessprotocol UDP, there is no guarantee
that an initiation request for an IKE session from a client has come from a valid IP
address. This creates a DoS vulnerability as an attacker can send a large number of IKE
initiation requests to a server with spoofed IP addresses. In fact, an earlier version of
IKE (IKEv1[34, 29, 22]) was susceptible to this attack and protecting against such an
attack was part of the motivation for IKEv2.

AVISPA ([6]) is an automated tool for verification of Internet protocols and applica-
tions. It has been used to verify various security protocols in the IPSec suite including
the variants of IKEv2. In particular, it has been used to prove the secrecy of session keys
exchanged in the key-exchange sub-protocol (IKEv2-DS[6]) which is vulnerable to a
DoS attack. It follows from our results in this paper that the cookie-enhanced version
of this protocol has the same guarantees.2

6 Related Work

Modular specification and reasoning has attracted a lot of attention in formal analysis
of distributed systems and communication protocols. The advantage of this approach is
to allow verification of individual sub-systems without worrying aboutall interactions
between different layers. Towards this end, the “onion skin” modular model of actor
reflection has been proposed in [2, 13, 32]. Our formalization of the cookie-based DoS
protection mechanism can be seen as an instance of this formalism in which we are
trying to develop the program we discussed in [3]. Ultimately we would like to be able
to provide a formal modular treatment of protocols like Adaptive Selective Verification
(ASV) based on the shared channel model [20, 25].

The modular framework for reasoning about a stack of protocols for security prop-
erties is less common. The security protocols are generally specified and analyzed in-
dividually. Recently, a modular proof of correctness (under Dolev-Yao assumptions) of
the IEEE 802.11i and TLS suite of protocols was given in [23] using the Protocol Com-
position Logic [14]. Formal analysis of the VoIP protocol stack is carried out in [21]
and the tunnel calculus is used to model security tunnels in stacks in [19]. Finally, there

2 Note that IKEv2 has its own cookie-based mechanism for prevention of such an attack which
has a slightly different implementation. Therefore, our claim applies to a modular wrapper-
based implementation of cookies.

is a large body of work on compositional reasoning of cryptographic protocols. The
primary focus of this line of research is to show that if some protocol is secure under
the Dolev-Yao assumption of black-box cryptography, then the protocol remains secure
when the black-box cryptographic functions are instantiated with their cryptographic
realizations (see,e.g.[7]). Compositional reasoning is also the technique used in Proto-
col Composition Logic [14, 11], where, the correctness of a single protocol is derived by
proving assertions about individual actions of honest participants. These compositional
reasoning principles focus on safety properties and therefore complement the modular
reasoning methods explored in this paper, which focus on the preservation of safety
properties when DoS protection mechanisms are added.

The availability properties of the cookie-based mechanism is not the focus of our
work, but there are several works in the literature which analyze availability proper-
ties. A general cost-based framework for analyzing protocols for DoS resistance has
been proposed in [30] and is based on the fail-stop model in [18]. DoS-resistance is
stated using an information flow property in a cost-based framework in [26]. Observa-
tion equivalence and a cost-based framework is used in [1] to analyze the availability
properties of the JFK protocol. Other works on formal analysis of availability properties
use branching-time logics [37, 28] and continuous stochastic logic [4].

Finally, we observe that rewriting logic has a well-established tradition in specifica-
tion and analysis of security protocols [9, 33, 15, 12].

7 Conclusions and Future Work

We have proposed a modular approach to both the specification of DoS protection
mechanisms as generic wrappers, and the preservation of safety properties of protocols
when hardened by such wrappers. We have discussed how a cookie-based mechanism
can be specified this way; and how safety properties of the underlying protocol are pre-
served by the cookie wrapper with and without the presence of a Dolev-Yao intruder.

This work represents a step toward capabilities we described in [4]. In that work we
showed how a DoS-hardened protocol could be formally analyzed for its DoS protec-
tion capabilities by examining probabilistic guarantees for selective verification [20], a
DoS protection mechanism based on the use of bandwidth limitations. The current work
shows how to prove invariant properties between the MitM model and a model for DoS
protection. However, the target DoS protection model is non-probabilistic (based on
cookies). A next step along this path is to show this invariance for a system in which the
DoS protection mechanism is probabilistic as in [4]. As an intermediate step, the results
presented here about preservation of safety properties should be extended to preserva-
tion of properties definable in the more general logicACTL∗ minus the next operator.
Another intermediate step is to more completely formalize a protocol like IKEv2, so
that the results of the paper can be more completely applied. A more ambitious topic
worth investigating is the verification ofgeneric availability propertiesof a given wrap-
per. That is, given a wrapperW, can we reason about the availability properties thatW
will provide for anyprotocolP under minimal assumption onP? Yet another topic for
future research is the development of automated formal reasoning methods for proving

preservation of a given class of properties of an underlying protocolP when such a
protocol is composed with a given wrapperW.

AcknowledgmentsThe authors thank Catherine Meadows, Omid Fatemieh, and Fariba
Khan for their suggestions. We also benefited from comments by anonymous review-
ers. Rohit Chadha was supported in part by NSF CCF04-29639 and NSF CCF04-48178.
Carl Gunter was supported in part by NSF CNS05-24516 CNS05-5170 CNS05-09268
CNS05-24695 CNS07-16421, DHS 2006-CS-001-000001, ONR N00014-04-1-0562
N00014-02-1-0715, and a grant from the MacArthur Foundation. Jose Meseguer was
supported in part by NSF CNS05-24516 and NSF CNS07-16638. Ravinder Shankesi
was supported in part by NSF CNS05-24516. Mahesh Viswanathan was supported in
part by NSF CCF04-48178 and NSF CCF05-09321. Views expressed in the paper are
those of the authors.

References

1. M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the Pi Calculus. InProgram-
ming Languages and Systems: 13th European Symposium on Programming, volume 2986 of
LNCS, pages 340–354, 2004.

2. G. Agha, S. Frolund, R. Panwar, and D. Sturman. A Linguistic Framework for Dynamic
Composition of Dependability Protocols.IEEE Parallel and Distributed Technology: Sys-
tems and Applications:, 1:3–14, 1993.

3. G. Agha, M. Greenwald, C. A. Gunter, S. Khanna, J. Meseguer, K. Sen, and P. Thati. For-
mal modeling and analysis of dos using probabilistic rewrite theories. InFoundations of
Computer Security (FCS ’05), 2005.

4. G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati. For-
mal Modeling and Analysis of DoS using Probabilistic Rewrite Theories. InWorkshop on
Foundations of Computer Security, 2005.

5. B. Alpern and F.B. Schneider. Defining Liveness.Information Processing Letters,
21(4):181–185, 1985.

6. A. Armando et al. The Avispa Tool for the Automated Validation of Internet Security Pro-
tocols and Applications. In17th Int. Conf. on Computer Aided Verification, volume 3576 of
LNCS, pages 281–285, 2005.

7. M. Backes, B. Pfitzmann, and M. Waidner. A Composable Cryptographic Library with
Nested Operations. In10th ACM conference on Computer and Communications Security,
pages 220–230, 2003.

8. D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html, 1996.
9. I. Cervesato, N. A. Durgin, P. Lincoln, J.C. Mitchell, and A. Scedrov. A meta-notation for

protocol analysis. In12-th IEEE Computer Security Foundations Workshop, pages 55–69,
1999.

10. M. Clavel, F. Duŕan, S. Eker, J. Meseguer, P. Lincoln, N. Martı́-Oliet, and C. Talcott.All
About Maude – A High-Performance Logical Framework, volume 4350. LNCS, 2007.

11. A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A Derivation System and Compositional
Logic for Security Protocols.J. Comput. Secur., 13(3):423–482, 2005.

12. G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and Analysis in Maude. In
Workshop on Formal Methods and Security Protocols, 1998.

13. G. Denker, J. Meseguer, and C. Talcott. Rewriting Semantics of Meta-Objects and Compos-
able Distributed Services. In3rd. Intl. Workshop on Rewriting Logic and its Applications,
2000.

14. N. Durgin, J. C. Mitchell, and D. Pavlovic. A Compositional Logic for Proving Security
Properties of Protocols.J. Comput. Secur., 11(4):677–721, 2004.

15. S. Escobar, C. Meadows, and J. Meseguer. A Rewriting-Based Inference System for the
NRL Protocol Analyzer: Grammar Generation. InFormal Methods in Security Engineering,
pages 1–12, 2005.

16. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.RFC 2068: Hypertext
Transfer Protocol – HTTP/1.1. Internet Society, 1997.

17. J.A. Goguen and J. Meseguer. Order-sorted Algebra I: Equational Deduction for Multiple
Inheritance, Overloading, Exceptions and Partial Operations.Theoretical Computer Science,
105(2):217–273, 1992.

18. L. Gong and P. Syverson. Fail-stop Protocols: An Approach to Designing Secure Protocols.
In 5th International Working Conference on Dependable Computing for Critical Applica-
tions, pages 44–55, 1995.

19. A.E. Goodloe and C. A. Gunter. Reasoning about Concurrency for Security Tunnels. In
IEEE Computer Security Foundations (CSF ’07), 2007.

20. C.A Gunter, S. Khanna, K. Tan, and S.S. Venkatesh. DoS Protection for Reliably Authenti-
cated Broadcast. InNetwork and Distributed System Security Symposium, 2004.

21. A. Gupta and V. Shmatikov. Security Analysis of Voice-over-IP Protocols.Computer Secu-
rity Foundations Symposium, 00:49–63, 2007.

22. D. Harkins and D. Carrel.The Internet Key Exchange(IKE). Internet Society, 1998.
23. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A Modular Correctness

Proof of IEEE 802.11i and TLS. In12th ACM conference on Computer and Communications
Security, pages 2–15, 2005.

24. C. Kaufman.RFC 4306: Internet Key Exchange (IKEv2) Protocol. Internet Society, 2005.
25. S. Khanna, S. S. Venkatesh, O. Fatemieh, F. Khan, and C. A. Gunter. Adaptive Selective

Verification. InIEEE Conference on Computer Communications (INFOCOM ’08), 2008.
26. S. Lafrance and J. Mullins. An Information Flow Method to Detect Denial of Service Vul-

nerabilities.Journal of Unified Computer Science, 9(11):1350–1369, 2003.
27. O. Lichtenstein, A. Pnueli, and L.D. Zuck. The Glory of the Past. InConference on Logic of

Programs, pages 196–218, 1985.
28. A. Mahimkar and V. Shmatikov. Game-based Analysis of Denial-of-Service Prevention Pro-

tocols. In18th IEEE workshop on Computer Security Foundations, pages 287–301, 2005.
29. D. Maughan, Schertler, M. M., Schneider, and J. Turner.Internet Security Association and

Key Management Protocol(ISAKMP). Internet Society, 1998.
30. C. Meadows. A Formal Framework and Evaluation Method for Network Denial of Service.

In 12th IEEE workshop on Computer Security Foundations, 1999.
31. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.Theor. Com-

put. Sci., 96(1):73–155, 1992.
32. J. Meseguer and C. Talcott. Semantic Models for Distributed Object Reflection. In16th

European Conference on Object-Oriented Programming, pages 1–36. Springer-Verlag, 2002.
33. J. Mitchell N. Durgin, P. Lincoln and A. Scedrov. Multiset Rewriting and the Complexity of

Bounded Security Protocols.Journal of Computer Security, 12(2):247–311, 2004.
34. D. Piper.The Internet IP Security Domain Of Interpretation for ISAKMP. Internet Society,

1998.
35. C.L. Schuba, I.V. Krsul, M.G Kuhn, E.H Spafford, A. Sundaram, and D. Zamboni. Analysis

of a Denial of Service Attack on TCP. InIEEE Symposium on Security and Privacy, pages
208–223, 1997.

36. A.P. Sistla. Safety, Liveness and Fairness in Temporal Logic.Formal Asp. Comput.,
6(5):495–512, 1994.

37. C.-F. Yu and V.D. Gligor. A Specification and Verification Method for Preventing Denial of
Service.IEEE Transactions on Software Engineering, 16(6):581–592, 1990.

