

A Systematic Approach to Uncover Security Flaws in GUI Logic

Shuo Chen†, José Meseguer‡, Ralf Sasse† ‡, Helen J. Wang†, Yi-Min Wang†

† Systems and Networking Research Group
Microsoft Research

{shuochen,helenw,ymwang}@microsoft.com

‡ Department of Computer Science
University of Illinois at Urbana-Champaign

{meseguer,rsasse}@cs.uiuc.edu

Abstract

To achieve end-to-end security, traditional
machine-to-machine security measures are insufficient
if the integrity of the human-computer interface is
compromised. GUI logic flaws are a category of
software vulnerabilities that result from logic bugs in
GUI design/implementation. Visual spoofing attacks
that exploit these flaws can lure even security-
conscious users to perform unintended actions. The
focus of this paper is to formulate the problem of GUI
logic flaws and to develop a methodology for
uncovering them in software implementations.
Specifically, based on an in-depth study of key subsets
of Internet Explorer (IE) browser source code, we have
developed a formal model for the browser GUI logic
and have applied formal reasoning to uncover new
spoofing scenarios, including nine for status bar
spoofing and four for address bar spoofing. The IE
development team has confirmed all these scenarios
and has fixed most of them in their latest build.
Through this work, we demonstrate that a crucial
subset of visual spoofing vulnerabilities originate from
GUI logic flaws, which have a well-defined
mathematical meaning allowing a systematic analysis.

Keywords: Visual Spoofing, GUI Logic Flaw, Formal

Methods, HTML, End-to-End Security

1. Introduction

Today, the trustworthiness of the web relies on the
use of machine-to-machine security protocols (e.g.,
SSL or TLS) to provide authentication over the
Internet to ensure that the client software (i.e., the
browser) communicates with the intended server.
However, such trustworthiness can be easily shattered
by the last link between the client machine and its user.
Indeed, the user-interface trust should be considered as
a part of the trusted path problem in secure
communications [7][8][25].

The exposure of the weakness between computer
and human is not limited to non-technical social
engineering attacks where naive users are fooled into
clicking on an arbitrary hyperlink and download
malicious executables without any security awareness.

Even for a technology-savvy and security-conscious
user, this last link can be spoofed visually. As shown
in Figure 1(a), even if a user examines the status bar of
the email client before she clicks on a hyperlink, she
will not be able to tell that the status bar is spoofed and
she will navigate to an unexpected website, instead of
https://www.paypal.com. Furthermore, as shown in
Figure 1(b), even if a user checks the correspondence
between the URL displayed in the browser address bar
and the top level web page content, she will not realize
that the address bar is spoofed and the page comes
from a malicious web site. Indeed, the combination of
the email status bar spoofing and the browser address
bar spoofing can give a rather “authentic” navigation
experience to a faked PayPal page. Even SSL is not
helpful – as shown in Figure 1(b), the spoofed page
contains a valid PayPal certificate. Obviously, this can
result in many bad consequences, such as identity theft
(e.g. phishing), malware installation, and spreading of
faked news.

Status bar is spoofed and shows:
https://www.paypal.com

Figure 1(a): Status Bar Spoofing

Address bar spoofed:
https://www.paypal.com

SSL certificate spoofed:
PayPal Inc.

Figure 1(b): Address Bar Spoofing

Visual spoofing attack is a generic term referring
to any technique using a misleading GUI to gain trust
from the user. Design/implementation flaws enabling
such attacks are already a reality and have been
sporadically discovered in commodity browsers

[21][22][23], including IE, Firefox, and Netscape
Navigator. This paper focuses on a class of visual
spoofing attacks that exploit GUI logic flaws, which
are bugs in the GUI’s design/implementation that
allow the attacker to present incorrect information in
parts of the authentic GUI that the user trusts, such as
the email client status bar and the browser address bar.
Figure 1(a) and (b) are just two instances of many such
flaws that we discovered using the methodology
described in this paper.

A second class of visual spoofing attack, which
has been extensively discussed in previous research
work [6][8][24][25], is to exploit graphical similarities.
These attacks exploit picture-in-picture rendering [25]
(i.e., a faked browser window drawn inside a real
browser window), chromeless window (e.g., a window
without the address bar or the status bar [8][25]), pop-
up window covering the address bar, and symbol
similarity (e.g., “1” vs. “l”, “vv” vs. “w” [6], and non-
English vs. English characters). We do not consider
such attacks in this paper, but in Section 5 we briefly
discuss how the graphical similarity problems are
being addressed by researchers and browser vendors.

Our goal is to formulate the GUI logic problem
and to develop a systematic methodology for
uncovering logic flaws in GUI implementations. This
is analogous to the body of work devoted to catching
software implementation flaws, such as buffer
overruns, data races, and deadlocks, through the means
of static analysis or formal methods. Nevertheless, a
unique challenge in finding GUI logic flaws is that
these flaws are about what the user sees – user’s vision
and actions are integral parts of the spoofing attacks.
Thus, the modeled system should include not only the
GUI logic itself, but also how the user interacts with it.

In a nutshell, our methodology first requires
mapping a visual invariant, such as “the URL that a
user navigates to must be the same as that indicated on
the status bar when the mouse hovers over an element
in a static HTML page”, to a well-defined program
invariant, which is a Boolean condition about user state
and software state. This mapping is done based on an
in-depth understanding of the source code of the
software. Our goal is then to discover all possible
inputs to the software which can cause the visual
invariant to be violated. In the example of finding
status bar spoofing scenarios, we want to discover all
HTML document tree structures that can cause the
inconsistency between the URL indicated on the status
bar and the URL that the browser is navigating to upon
a click event; the resulting HTML tree structures can
be used to craft instances of status bar spoofing
attacks. To systematically derive these scenarios, we
employ a formal reasoning tool to reason about the
well-defined program invariant.

The methodology is applied to discover two
classes of important GUI logic flaws in IE. The first
class is the static-HTML-based status-bar spoofing.
Flaws of this class are critical because static-HTML
pages (i.e., pages without scripts) are considered safe
to be rendered in email clients (e.g., Outlook1 and
Outlook Express) and to be hosted on blogging sites
and social networking sites (e.g., myspace.com), and
the status bar is the only trustworthy information
source for the user to see the target of a hyperlink. The
second class of flaws we studied is address bar
spoofing, which allows a malicious website to hide its
true URL and pretend to be a benign site. In both case
studies, we use the Maude formal reasoning tool [2] to
derive these spoofing scenarios, taking as input the
browser GUI logic, program invariants, and user
actions.

We have discovered nine canonical HTML tree
structures leading to status bar spoofing and four
scenarios of address bar spoofing. The IE development
team has confirmed these scenarios and fixed eleven of
them in the latest build, and scheduled to fix the
remaining two in the next version. In addition to
finding these flaws, we made the interesting
observation that many classic programming errors,
such as semantic composition errors, atomicity errors
and race conditions are also manifested in the context
of GUI implementation. More importantly, this paper
demonstrates that GUI logic flaws can be expressed in
well-defined Boolean invariants, so finding these flaws
is done by inference about the violations of the
invariants.

The rest of the paper is organized as follows.
Section 2 gives an overview of our methodology.
Sections 3 and 4 present case studies on status bar
spoofing and address bar spoofing with IE. Section 5
presents discussions related to GUI security. Related
work is given in Section 6. Section 7 concludes the
paper.

2. Overview of Our Methodology

2.1 Our Analysis Approach
Figure 2 shows the major steps in our approach,

based on formal analysis techniques. Existing formal
analysis techniques have been successfully applied to
reasoning about program invariants, e.g., the
impossibility of buffer overrun in a program,

1 Outlook does not show the target URL on the status bar, but
on a small yellow tooltip near the mouse cursor. Because IE,
Outlook and Outlook Express use the same HTML engine,
most status bar spoofing scenarios can be transformed to
email format to spoof Outlook tooltip and Outlook Express
status bar.

guaranteed mutual exclusion in an algorithm, deadlock
freedom in a concurrent system, secrecy in a
cryptographic protocol, and so on. These program
invariants have well-defined mathematical meaning.
Uncovering GUI logic flaws, on the other hand,
requires reasoning about what the user sees. The
“invariant” in the user’s vision does not have an
immediately obvious mathematical meaning. For
example, the visual invariant of the status bar is that if
the user sees foo.com on the status bar before a mouse
click, then the click must navigate to the foo.com page.
It is important to map such a visual invariant to a
program invariant in order to apply formal reasoning,
which is shown as step (a) in Figure 2.

The mapping between a visual invariant and a
program invariant is determined by the logic of the
GUI implementation, e.g., a browser’s logic for mouse
handling and page loading. An in-depth understanding
of the logic is crucial in deriving the program
invariant. Towards this goal, we conducted an
extensive study of the source code of the IE browser to
extract pseudo code to capture the logic (shown as step
(b)). In addition, we needed to explicitly specify the
“system state” (shown as step (c)), including both the
browser’s internal state and possibly what the user
memorizes. Steps (d) and (e) depict the formalization
of the user’s action sequence and the execution context
as the inputs to the program logic. The user’s action
sequence is an important component in the GUI logic
problem. For example, the user may move and click
the mouse, or open a new page. Each action can
change the system state. Another input to specify is the
execution context of the system, e.g., a web page is an
execution context for the mouse handling logic – the
same logic and the same user action, when executed on
different web pages, can produce different results.

When the user action sequence, the execution
context, the program logic, the system state and the
program invariant are formally specified on the
reasoning engine, formal reasoning is performed to
check if the user action sequence applied on the system
running in the execution context violates the program
invariant. Each discovered violation is output as a
potential spoofing scenario, which consists of the user
action sequence, the execution context and the
inference steps leading to the violation. Finally, we
manually map each potential spoofing scenario back to
a real-world scenario (shown as step (f)). This involves
an effort to construct a webpage that sets up the
execution context and lures the user to perform the
actions. The mappings (a)(b)(f) between the real world
and the formal model are currently done manually,
some of which require significant effort. In this paper,
our contribution is mainly to formalize the GUI logic
problem. Reducing the manual effort is future work.

Execution
context

Execution
context

System stateSystem state

Program Logic
(pseudo code)

The modeled system

User’s action
sequence

User’s action
sequence

Program
invariant

Reasoning Engine

Visual
invariant

Source code
of browser GUI

Source code
of browser GUI

vi
ol

at
io

n

Potential
spoofing
scenarios

Potential
spoofing
scenarios

Real
spoofing
scenarios

Real
spoofing
scenarios

Real
world
Formal
world(d)

(e)
(c)

(a)

(b)

(f)

(instances of
execution
contexts that
lead to spoofs)

Figure 2: Overview of Our Methodology

2.2 Background: Formal Verification of
Invariants in Maude
We formalize this problem within the logical

framework of rewriting logic [12]. The corresponding
reasoning engine is the Maude system [2]. In this
paper, we use the term “Maude” to refer to both the
Maude system and the language understood by it2.

In Maude, the states of a system are represented
by symbolic expressions, and the system transitions are
specified by rewrite rules indicating how a state is
transformed into another. For example, if we want to
specify a 24-hour clock marking only the hours, we
can declare a state constructor operator clock so that,
say, clock(7) and clock(21) are two different
clock states. In this example there is only one rewrite
rule “ticking” the clock to the next hour. The clock
system is specified as follows3:

type CLOCK . var T : Int .
operator clock : Int -> CLOCK .
/* This rule specifies the “ticking” */
rule clock(T) => clock((T + 1) rem 24) .

where Int is the built-in data type of integers, a
new type CLOCK of clock states is defined, and the
state constructor clock is declared as an operator
that takes an Int and produces a CLOCK. The clock
"tick" transitions are specified by a rewrite rule
introduced with the rule keyword, which rewrites a
given clock marking time T to one marking time
((T+1) rem 24), that is, the remainder of (T+1)
divided by 24. For example, clock(23) will be
rewritten to clock(0).

Once a system is specified, Maude's search
command can be used to verify invariants. An
invariant is a predicate that holds of an initial state and

2 Similarly, people use the term “Perl” interchangeably for
the Perl interpreter and the Perl language.
3 In this paper, we use a syntax slightly different from
Maude’s.

of all states reachable from it. Suppose the initial state
is clock(0), and the invariant to verify is that the
times it marks will always be greater than or equal to 0
and strictly smaller than 24. An invariant is verified by
searching for any states violating it, i.e., for states
satisfying the negation of the invariant. For our
example, this can be done with the search command:

search clock(0)
=> clock(T) such that ((T < 0) or (T >= 24))

This search command responds: No solution.
Therefore, the invariant is verified. In case an invariant
is violated, the result will show a trace indicating the
series of transitions leading to the violation. For a toy
example like the one above, informal reasoning may
convince us that a given invariant holds. But for
complex situations, for example, the complex
interactions between a user and a web browser, formal
verification is needed in practice. This is exactly the
way Maude is used in our work. As we explain in
Sections 3.3 and 4.3, IE's status bar and address bar
logics are specified by rewrite rules and equations in
Maude, and the search command is used to search
for spoofing scenarios.

3. Case Study 1: Status Bar Spoofing
Based on Static HTML
Many web attacks, such as browser buffer

overruns, cross-site scripting attacks, browser cross-
frame attacks and phishing attacks, require the user to
navigate to a malicious URL. Therefore, it is important
for the user to know the target URL of a navigation,
which is displayed on the status bar before the user
clicks the mouse. Status bar spoofing is damaging if it
can be constructed using only static HTML (i.e.,
without any active content such as JavaScript),
because: (i) email clients, e.g., Outlook and Outlook
Express, render static HTML contents only, and email
is an important media to propagate malicious
messages; (ii) blogging sites and social networking
sites (e.g., myspace.com) usually sanitize user-posted
contents to remove scripts, but allow static HTML
contents.4

3.1 Background: Representation and Layout
of an HTML Page
Background knowledge about HTML

representation is a prerequisite for this case study. We
give a brief tutorial here. An HTML page is

4 A status bar spoof using a script is not a major security
concern - it gets into a chicken-and-egg situation: a well-
known site does not run an arbitrary script supplied from an
arbitrary source. If the victim user has already been lure to in
a malicious site, the goal of the spoofing has been achieved.

represented as a tree structure, namely a Document
Object Model tree, or DOM tree. Figure 3 shows an
HTML source file, its DOM tree, and the layout of the
page. The mapping from the source file (Figure 3(a))
to the DOM tree (Figure 3(c)) is straightforward –
element A enclosing element B is represented by A
being the parent of B in the DOM tree. The tree root is
an <html> element, which has a <head> subtree and
a <body> subtree. The <body> subtree is rendered in
the browser’s content area. Since status bar spoof is
caused by user interactions with the content area, we
focus on the <body> subtree in this case study.

(a) HTML Source File
<html>
 <head><title>Page</title></head>
 <body>

 <button> My button </button>
 </body>
</html>

(b) Element Layout

<body>

<a>
address bar

<button>

status barco
nt

en
t a

re
a

(c) DOM TREE

<html>

<head>

<title>

<body>

<a>

<button>

(d) Element Stacks

<body>
<a>

<button>

Toward the user

Figure 3: DOM Tree and Layout of an HTML Page

Figure 3(b) shows the layouts of elements from
the user’s viewpoint. In general, parent elements have
larger layouts to contain children elements.
Conceptually, these elements are stacked upwards
(toward the user), with <body> sitting at the bottom
(see Figure 3(d)). In HTML, <a> represents an anchor,
and represents an image.

3.2 Program Logic of Mouse Handling and
Status Bar Behavior
Mouse handling logic plays an important role in

status bar spoofs. We extracted the logic from the IE
source code. It is presented here using pseudo code,
which will be formalized in Section 3.3.
3.2.1 Central Logic

The mouse device can generate several raw
messages. When a user moves the mouse onto a
element and clicks on it, the sequence of raw messages
consists of several MOUSEMOVEs, an

LBUTTONDOWN (i.e., left button down), and then a
LBUTTONUP (i.e., left button up).

The core functions for mouse handling are
OnMouseMessage and SendMsgToElem, which
dispatch mouse messages to appropriate elements.
Every element has its specific virtual functions
HandleMessage, DoClick and ClickAction to
implement the element’s behaviors.

Each raw mouse message invokes an
OnMouseMessage call (pseudo code shown in Table
1). The parameter element is the HTML element
that is immediately under the mouse cursor. The
parameter message is the type of the message, which
can be either MOUSEMOVE, or LBUTTONDOWN,
or LBUTTONUP. An OnMouseMessage call can
potentially send three messages to HTML elements in
the DOM tree: (i) if element is different from
elementLastMouseOver, which is the element
immediately under the mouse in the most recent
OnMouseMessage call, then a MOUSELEAVE
message is sent to elementLastMouseOver; (ii)
the raw message itself (i.e., message) is sent to
element; (iii) if element is different from
elementLastMouseOver, a MOUSEOVER
message is sent to element.

OnMouseMessage(element,message) {
 if (element != elementLastMouseOver)
 SendMsgToElem(MOUSELEAVE,
 elementLastMouseOver)

 SendMsgToElem(message, element)

 if (element != elementLastMouseOver)
 SendMsgToElem(MOUSEOVER, element)
 elementLastMouseOver = element
}
SendMsgToElem(message,element) {
 btn = element.GetAncestor (BUTTON))
 if (btn != NULL && message == LBUTTONUP)
 element = btn
 repeat
 BubbleCanceled = loopElement
 -> HandleMessage(message)
 loopElement = loopElement->parent
 until BubbleCanceled or loopElement is tree root

 if (message == LBUTTONUP)
 element->DoClick() //handle the mouse click
}

body

e1

e2

e3

Bubble

Table 1: OnMouseMessage and SendMsgToElem
In the function SendMsgToElem(), btn is the

closest Button ancestor of element. If btn exists
and message is LBUTTONUP (i.e., a click), then
element becomes the button btn. It essentially
means that any click on a descendant of a button is
treated as a click on the button. Then, a message
bubbling loop begins – starting from element, the
virtual function HandleMessage of every element
along the DOM tree path is invoked. Each
HandleMessage call can cancel or continue the

bubble (i.e., break out of or continue the loop) by
setting a Boolean BubbleCanceled. After the
bubbling loop, a mouse click is handled by calling the
virtual function DoClick of element, when
message is LBUTTONUP.
3.2.2 HTML Element Behaviors

An object class is implemented for each type of
HTML element, such as Anchor, Form, Button,
InputField, Label, Image, etc. These object
classes inherit from the AbstractElement base
class. The three virtual functions of
AbstractElement, namely, HandleMessage,
DoClick and ClickAction, implement default
behaviors of real HTML elements.
AbstractElement::DoClick (i.e., function
DoClick of AbstractElement) implements a
loop to invoke ClickAction of each element along
the DOM tree path, similar to the bubbling in
SendMsgToElem. HandleMessage and
ClickAction of AbstractElement are
basically “placeholders” – they simply return in order
to continue the bubble.

Each HTML element class can override these
virtual functions of AbstractElement to
implement its specific behaviors. A subset of virtual
functions of the Anchor, Label and Image
elements is shown in Table 2. These examples
demonstrate the complexity in the mouse handling
logic due to the intrinsic behavioral diversity of
individual elements and the possible compositions. For
example, when the mouse is over an anchor, the target
URL of this anchor will be displayed on the status bar
by calling SetStatusBar, and the bubble continues,
as indicated in Anchor::HandleMessage. When
an anchor is clicked, FollowHyperlink is called to
jump to the target URL, and the bubble is canceled, as
indicated in Anchor::ClickAction. When the
mouse is over a label, there is no SetStatusBar
call, and the bubble is canceled. According to the
HTML specification, a label can be associated with
another element in the page, which is called
“ForElement”. Clicking on the label is equivalent to
clicking on ForElement, as shown in
Label::ClickAction. An image element can be
associated with a map, which associates different
screen regions on the image with different target
URLs. When the mouse is over a region, the URL of
the region is set to the status bar, as indicated in
Image::HandleMessage. When the mouse clicks
on the region, a FollowHyperlink call is made, as
indicated in Image::ClickAction. If an image is
not associated with a map, then the URL of the
containing anchor of the image (i.e., the closest
ancestor anchor of the image on the DOM) determines
the status bar text and the hyperlink to follow.

Table 2: Virtual Functions of Anchor, Label and Image Elements
Bool Anchor::HandleMessage(message) {
 switch (message)
 case LBUTTONDOWN
 or LBUTTONUP:
 return true; //cancel bubble
 case MOUSEOVER:
 SetStatusBar(targetURL)
 return false; //continue bubble
 Other:
 return false;
 }

Bool Anchor::ClickAction() {
 FollowHyperlink(targetURL);
 return true; // cancel bubble
}

Bool Label::HandleMessage(message) {
 switch (message)
 case MOUSEOVER
 or MOUSELEAVE:
 return true; //cancel bubble
 Other:
 return false;
}

Bool Label::ClickAction() {
 forElement = GetForElement()
 if (forElement != NULL)
 forElement->DoClick();
 return true;
}

Bool Image::HandleMessage(message) {
 if a map is associated with this image
 MapTarget = GetTargetFromMap();
 switch (message)
 case MOUSEOVER:
 SetStatusBar(MapTarget)
 return true;
}
Bool Image::ClickAction() {
 if a Map is associated with this image
 MapTarget = GetTargetFromMap();

 FollowHyperlink(MapTarget);
 else pAnchor=GetContainingAnchor();
 pAnchor->ClickAction();
 return true;
}

3.3 Formalization of Status Bar Spoofing
The visual invariant of the status bar is intuitively

that the target URL of a click must be identical to the
URL displayed on the status bar when the user stops
the mouse movement. The negation of this invariant
defines a spoofing scenario (Figure 4): First,
MOUSEMOVE messages on elements O1, O2, … , On
invoke a sequence of OnMouseMessage calls. When
the mouse stops moving, the user inspects the status
bar and memorizes benignURL. Then, an
LBUTTONDOWN and an LBUTTONUP messages
are received, resulting in a
FollowHyperlink(maliciousURL) call, where
maliciousURL is different from benignURL.

OnMouseMessage
(x1,y1,MOUSEMOVE)

OnMouseMessage
(x2,y2,MOUSEMOVE)

OnMouseMessage
(xn,yn,MOUSEMOVE)

OnMouseMessage
(xn,yn,LBUTTONDOWN)

OnMouseMessage
(xn,yn,LBUTTONUP)

…

benignURL is captured in
this status bar snapshot FollowHyperlink (maliciousURL)

Figure 4: Function Level View of Status Bar Spoof
We now apply the approach described in Figure 2.

(1) Specifying the user action sequence and the
execution context (Steps (d) and (e) in Figure 2). A
challenging question is how the spoofing possibilities
can be systematically explored, given that the web
page can be arbitrarily complex and the user’s action
sequence can be arbitrarily long. Canonicalization is a
common form of abstraction used in formal reasoning
practice to handle a complex problem space. For this
particular problem, our goal is to map a set of user
action sequences to a single canonical action
sequence, and map a set of web pages to a single
canonical DOM tree. Because any instance in the
original problem space only trivially differs from its
canonical form, we only need to explore the canonical
state space to find all “representative” instances.

(1.1) Canonicalization of the user action
sequence. In general the user action sequence consists
of a number of mouse moves, followed by a status bar

inspection, followed by a mouse click (button down
and up). In a canonical action sequence, the number of
mouse moves can be reduced to two. This is because,
although each MOUSEMOVE can potentially update
the status bar, the status bar is a memoryless object,
which means: (i) upon every mouse action, how to
update the status bar does not depend on any previous
update, but only on the DOM tree branch
corresponding to the current mouse coordinates; (ii)
the whole sequence of status bar updates is equivalent
to the last update. Thus, a canonical action sequence
from element O1 to element O2 can be represented by
the equation below, where the semicolon denotes
sequential composition, and the MOUSEOVER on O1
invokes the last update of the status bar before the
mouse arrives at O2 (O1 and O2 can be identical).
operator CanonicalActionSeq: Element Element -> ActionList .
equation CanonicalActionSeq (O1,O2)

 = [onMouseMessage(O1,MOUSEMOVE) ;
 onMouseMessage(O2,MOUSEMOVE) ;
 Inspection ;
 onMouseMessage(O2,LBUTTONDOWN);
 onMouseMessage(O2,LBUTTONUP)] .

Note here that we use an equation instead of a
rule. The difference between these is that an equation
specifies a functional computation while a rule
specifies a state transition.

(1.2) Canonicalization of the execution context
(i.e., DOM trees). In general a DOM tree may have
arbitrarily many branches, but we can restrict the
number of branches of a canonical DOM tree to at
most two. This is because the canonical action
sequence contains at most two MOUSEMOVEs – the
third branch of the DOM tree would be superfluous as
it would not receive any mouse message. Each HTML
element in the DOM tree is represented as an object
with a unique identifier, a class, a parent attribute
(specifying the DOM tree structure) and possibly other
attributes. We currently model Anchor, Button,
Form, Image, InputField and Label element
classes, plus a Body element always at the root. For
example, the term < O | class:anchor,

parent:O’> represents anchor element O whose
parent is O’. Our analysis is restricted to canonical
DOM trees of bounded size but sufficiently rich to
uncover useful scenarios. Currently we have analyzed
all one- and two-branch DOM trees with at most six
elements. We also specify rules so that all canonical
DOM trees satisfy the required HTML well-
formedness restrictions, e.g., an anchor cannot be
embedded in another anchor, an InputField can only
be a leaf node, etc.

(2) Specifying system state and state transitions
(Step (c) in Figure 2). System State includes the
browser state statusBar and the user state
memorizedURL. State transitions are triggered by
the SetStatusBar action and the user’s
Inspection action as below, where AL is an
arbitrary action list.

const Inspection : Action .
operator SetStatusBar : URL -> Action .
vars AL : ActionList . vars Url, Url’ : URL .
rule [SetStatusBar(Url) ; AL] statusBar(Url’)
 => [AL] statusBar(Url) .
rule [Inspection ; AL] statusBar(Url) memorizedURL(Url')
 => [AL] statusBar(Url) memorizedURL(Url) .

The first rule specifies the semantics of
SetStatusBar(Url): if the current action list
starts with a SetStatusBar(Url) action, and the
status bar displays Url’, then after this action is
completed, it disappears from the action list, and the
status bar is updated to Url. The second rule specifies
the Inspection action: if statusBar displays
Url, the memorizedURL is an arbitrary value
Url’, and the action list starts with Inspection,
then after the inspection is made, Inspection
disappears from the action list, and the URL on the
status bar is copied to the user’s memory, i.e.,
memorizedURL.

(3) Modeling the program logic (Step (b) in
Figure 2). Modeling the functions shown in Table 1
and Table 2 is straightforward using Maude, e.g.,
HandleMessage and ClickAction of the
Anchor element are specified in Table 3. Other
functions are modeled in a similarly manner.

Table 3: Rules to specify HandleMessage and
ClickAction of Anchor

equation [AnchorHandleMessage(O,M) ; AL] /* equation 1 */
 = [cancelBubble ; AL]
 if M == LBUTTONUP or M == LBUTTONDOWN .

rule [AnchorHandleMessage(O,M); AL] <O |targetURL: Url…>
 => [SetStatusBar(Url) ; AL] < O | targetURL: Url >
 if M == MOUSEOVER . /* rule 2 */

equation [AnchorHandleMessage(O,M) ; AL] /* equation 3 */
 = [no-op ; AL]
 if M • LBUTTONUP, LBUTTONDOWN or MOUSEOVER .

rule [AnchorClickAction(O) ; AL] < O | targetURL: Url … >
 => [FollowHyperlink(Url) ; cancelBubble ; AL]
 < O | targetURL: Url , … > . /* rule 4 */

It is easy to verify that these rules and equations
indeed faithfully specify the behaviors of an anchor
shown in Table 1: Equation 1 specifies that if an action
list starts with an AnchorHandleMessage(M,O)
action, this action should rewrite to a
cancelBubble, if M is LBUTTONUP or
LBUTTONDOWN. Rule 2 specifies that
AnchorHandleMessage(M,O) should rewrite to
SetStatusBar(Url) when handling
MOUSEOVER, where Url is the target URL of the
anchor. For any other type of message M,
AnchorHandleMessage(M,O) should rewrite to
no-op to continue the bubble, which is specified by
equation 3. Rule 4 rewrites AnchorClickAction
(O) to the concatenation of FollowHyperlink
(Url) and cancelBubble, where Url is the
target URL of the anchor.

(4) Specifying the program invariant (Step (a) in
Figure 2). The only remaining question is how to
define the negation of the program invariant to find
status bar spoofs. It is specified as the pattern searched
for in the search command:

const maliciousUrl , benignUrl , empty : URL .
vars O1, O2: Element Url: URL AL: ActionList .
search CanonicalActionSeq(O1,O2)
 statusBar(empty) memorizedUrl(empty)
 => [FollowHyperlink(maliciousUrl) ; AL]
 statusBar(Url) memorizedUrl(benignUrl) .
The command gives a well-defined mathematical

meaning to status bar spoofing scenarios: “the Maude
initial term CanonicalActionSeq(O1,O2)
statusBar(empty) memorizedUrl(empty)
can be rewritten to the term [FollowHyperlink
(maliciousUrl) ; AL] statusBar(Url)
memorizedUrl(benignUrl)”, which indicates
that the user memorizes benignURL, but
FollowHyperlink(maliciousUrl) is the next
action to be performed by the browser.
3.4 Scenarios Suggested by the Results

We found nine combinations of canonical DOM
trees and user action sequences that resulted in
violations of the program invariant. All are due to
unintended compositions of multiple HTML elements
features. This section presents four representative
scenarios in detail.

Shown in Figure 5, scenario 1 has an
InputField embedded in an anchor, and the
anchor is embedded in a form.

input
field

anchor

form

<form action="http://foo.com/" >

 <input type="image" src="faked.jpg">

</form>

Figure 5: Illustration of Scenario 1
When the mouse is over the InputField, the

HandleMessage of each element is called to handle

the MOUSEOVER message that bubbles up to the
DOM tree root. Only the anchor’s HandleMessage
writes its target URL paypal.com to the status bar, but
when the InputField is clicked, its
ClickAction method retrieves the target URL from
the form element, which is foo.com. This scenario
indicates the flaw in message bubbling – the
MOUSEOVER bubbles up to the anchor, but the
click is directly passed from the InputField to the
form, skipping the anchor.

Scenario 2 (Figure 6) is very different from
scenario 1: an img (i.e., image) associated with a map
ppl is on top of a button. The target URL of ppl is
set to paypal.com. When img gets a MOUSEOVER, it
sets the status bar to paypal.com and cancels the
bubble. When the mouse is clicked on img, because
img is a child of button, the click is treated as a
click on the button, according to the implementation of
SendMsgToElem(). The button click, of course,
leads to a navigation to foo.com. This scenario
indicates a design flaw – an element (e.g., button) can
hijack the click from its child, but it does not hijack
the MOUSEOVER message, and thus causes the
inconsistency.

img

button
form

<form action="http://foo.com/" >
 <button type=submit>

 </button>
</form>
<map name="ppl"><area href="http://paypal.com">
</map>

Figure 6: Illustration of Scenario 2
Scenario 3 contains a label embedded in an

anchor (Figure 7(a)). When the mouse is moved
toward the label, it must first pass over the anchor,
and thus sets paypal.com on the status bar. When the
label is clicked, the page is navigated to foo.com,
because the label is associated with an anchor of
foo.com. An opposite scenario shown as scenario 4 in
Figure 7(b) seems more surprising, which suggests an
outward mouse movement from a child to a parent.
Such a movement makes it feasible to spoof the status
bar using an img sitting on top of a label. Note that,
because HTML syntax only allows an img to be a leaf
node, such an outward mouse movement, which is
suggested by Maude, is critical in the spoofing attack.

label
anchor

(a)

Label’s target = foo.com
Anchor’s target = paypal.com

img

label

(b)

Img’s target = paypal.com
Label’s target = foo.com

Figure 7: (a) Scenario 3 and (b) Scenario 4
We also derived several scenarios with two-

branch DOM trees. They demonstrate the varieties of

DOM trees and layout arrangements that can be
utilized in spoofing, e.g., a spoof page places the two
leafs side-by-side, another page uses Cascading Style
Sheets (CSS) [16] to set element positions, etc.

4. Case Study 2: Address Bar Spoofing

Address bar spoofing is another category of
spoofing attack. It fools users into trusting the current
page when it comes from an untrusted source. The
combination of a status bar spoofing and an address
bar spoofing gives an end-to-end scenario to hide the
identity of the malicious site, and thus is a serious
security threat. In this section, we first introduce the
background knowledge about the address bar logic,
then present the Maude-based analysis technique and
real spoofing scenarios uncovered by the analysis.

4.1 Background: Address Bar Basics
An IE process can create multiple browsers. Each

one is implemented as a thread. A browser, built on
the OLE framework [17], is a container (including the
title bar, the address bar, the status bar, etc) hosting a
client document in the content area. Many types of
client documents can be hosted in IE, such as HTML,
Microsoft Word, Macromedia Flash and PDF. The
object to represent an HTML document is called a
renderer. A renderer can host multiple frames, each
displaying an HTML page downloaded from a URL.
An HTML page is stored as a markup data structure. A
markup consists of the URL and the DOM tree of the
content from the URL. The top level frame, i.e., the
one associated with the entire content area, is called
the primaryFrame of the renderer. Figure 8 shows a
browser displaying a page from http://MySite. The
renderer has three frames – PrimaryFrame from
MySite, Frame1 from PayPal.com and Frame2 from
MSN.com. Each frame is associated with a current
markup and, at the navigation time, a pending markup.
Upon navigation completion, the pending markup is
switched in and becomes the current markup.

Browser

Frame2 (MSN)

Frame1 (PayPal)

PrimaryFrame
from MySite

Current Markup Pending Markup

http://MySiteRenderer

Figure 8: Browser, Renderer, Frames and Markups

Informally, the program invariant of the address
bar correctness is that: (1) the content area is rendered

according to the current markup of primaryFrame;
and (2) the URL on the address bar is the URL of the
current markup of primaryFrame. In the example
shown in Figure 8, the address bar should display
“http://MySite”.

4.2 Overview of the HTML Navigation Logic
HTML navigation consists of multiple tasks –

loading HTML content, switching markup, completing
navigation and rendering the page. A renderer has an
event queue to schedule these tasks. The event queue
is a crucial mechanism for handling events
asynchronously, so that the browser is not blocked to
wait for the completion of the entire navigation. We
studied three types of navigation: (1) loading a page
into the current renderer; (2) traveling in the history of
the current renderer; (3) opening a page in a new
renderer. Due to space constraints, Figure 9 only
illustrates a small subset of functions involved in the
navigations.

Figure 9(a) shows the event sequence of loading a
page in the current renderer. It is initiated by a
FollowHyperlink, which posts a start navigation
event. Function PostMan is responsible for
downloading the new HTML content to a pending
markup. Event ready is posted to invoke
SetInteractive, to make the downloaded
contents effective. SetInteractive first invokes
SwitchMarkup to replace the current markup with
the pending markup, and calls
NavigationComplete. If the downloaded markup
belongs to primaryFrame, function

SetAddressBar is invoked to update its address
bar. An Ensure event is posted by SwitchMarkup,
which invokes EnsureView to construct a View
structure containing element layouts derived from the
current markup of primaryFrame. The OS periodically
posts an OnPaint event to paint the content area by
calling RenderView. Figure 9(b) shows the event
sequence of a history travel. History_Back and
Travel look up a history log to initialize the
navigation. PostMan, in this case, loads HTML
contents from a persistent storage in the hard disk,
rather than from the Internet. The remaining portion of
the sequence is similar to that of Figure 9(a).

Figure 9(c) shows the event sequence of loading a
new page into a new renderer. WindowOpen is the
starting point. It calls CreatePendingDocObject
to create a new renderer and then call
SetClientSite. SetClientSite prepares a
number of Boolean flags as the properties of the new
renderer, and calls InitDocHost to associate the
renderer with the browser (i.e., the container). The
new renderer at this moment is still empty. The
start-loading event invokes LoadDocument
which first calls SetAddressBar to set the address
bar and then calls Load which calls
LoadFromInfo. CreateMarkup and
SwitchMarkup are called from LoadFromInfo
before posting a download-content event to
download the actual content for the newly created
markup. Function PostMan does the downloading as
above. The remainder of the sequence is similar to
both prior sequences.

FollowHyperlink

start
navigation ready

PostMan

Ev
en

t
qu

eu
e

SetInteractive

NavigationComplete

SetAddressBar

SwitchMarkup

onPaint

(Posted by OS)

EnsureView

RenderView

ensure

(a) Loading a Page in
the Current Renderer

History_Back

start
navigation

ready

PostMan

E
ve

nt
qu

eu
e

SetInteractive

NavigationComplete

SetAddressBar

SwitchMarkup

Travel

LoadHistory

onPaint

(Posted by OS)

EnsureView

RenderView

ensure

(b) Traveling in the History
of the Current Renderer

CreatePendingDocObject

start-loading

LoadDocument

E
ve

nt
qu

eu
e

Load

CreateMarkup

SetAddressBar

LoadFromInfo

WindowOpen

onPaint

(Posted by OS)

PostMan
RenderView

download-
content

CreateRenderer
SetClientSite

InitDocHost SwitchMarkup

Posting an event

Calling a function
Invoking a handler

(c) Opening a Page
in a New Renderer

EnsureView

ensure

Figure 9: Logic of HTML Navigations

4.3 Formalization of the Navigations and the
Address Bar Behavior
(1) Modeling the system state (Step (c) in Figure

2). Because an address bar spoofing is by definition
the inconsistency between the address bar and the
content area of the same browser, “spoofability” is a
property of the logic of a single browser. This does not
mean that only one browser is allowed in a spoofing
scenario – there can be other browsers that create a
hostile execution context to trigger a logic flaw in one
particular browser. Nevertheless, we only need to
model the system as one browser and prove its logical
correctness (or uncover its flaws), and treat the overall
effect of other browsers as the context of this browser.

The system state of a browser includes the URL
displayed in the address bar, the URL of the View in
the content area, a travel log and the primary frame.
The Maude specification defines a set of Frames and a
set of Markups. For example, if Markup m1 is
downloaded from URL u1, and it is the
currentMarkup of Frame f1, we specify f1 and u1
as:

<f1 | currentMarkup: m1, pendingMarkup: …> <m1 |
URL: u1, frame: f1, …>

The system state also includes a function call
queue and an event queue. The function call queue is
denoted as [call1 ; call2 ; … ; calln], and
the event queue is denoted as {event1 ; event2
; … ; eventn}.

(2) Specifying the user action sequence (Step (d)
in Figure 2). In the scenario of an address bar
spoofing, the user’s only action is to access an
untrusted HTML page. The page contains a JavaScript
calling navigation functions FollowHyperlink,
HistoryBack and/or WindowOpen. The behavior
of the JavaScript is modeled by a rule that
conditionally appends a navigation call to the function
list. As explained in Figure 9, each navigation call
generates a sequence of events. It is guaranteed that all
possible interleavings of event sequences are
exhaustively searched, because Maude explores all
viable rewrite orders.

(3) Specifying the execution context (Step (e) in
Figure 2). Many Boolean conditions affect the
execution path, e.g., conditions to return from a
function and conditions to create a new frame. These
conditions constitute the execution context of the
system. We defined rules to assign both true and false
values to these conditions. Therefore the search
command explores both paths at each branch in the
pseudo code. The assignments of the Boolean
conditions, combined with the function call sequence,
constitute a potential spoofing scenario. These may
include false positive scenarios, in the sense that such

Boolean values cannot at the same time be attained by
different variables, and thus, as shown in Figure 2,
mapping a potential scenario back to the real-world is
important. It is a manual effort guided by the formally
derived potential scenarios. We discuss this in Section
4.4.

(4) Modeling Function Calls and Events (Step (b)
in Figure 2). There are three types of actions shown in
Figure 9: calling a function, invoking an event handler
and posting an event. A function call is implemented
as a term substitution in the function call queue. For
example, the function call SetInteractive is
specified by the following rule, where F is the frame
of Markup M, and SetInteractive(F) can
conditionally rewrite to SwitchMarkup(M,F) (if
BOOLEXP1 is false) followed by
NavigationComplete(F) (if BOOLEXP2 is true)

Table 4: Pseudo Code and Rewrite Rule of
SetInteractive

Pseudo Code
MARKUP::SetInteractive() {
 if (BOOLEXP1) return;
 this->frame->SwitchMarkup(this);
 if (BOOLEXP2) NavigationComplete(frame)
}

Rewrite Rule to Specify SetInteractive
var F: Frame M: Markup FQ: FunctionQueue
rule [SetInteractive(M) ; FQ] < M | frame: F , … >
 => [(if BOOLEXP1 ≠ true
 then SwitchMarkup(M,F) else noop fi) ;
 (if BOOLEXP2 == true
 then NavigationComplete(F) else noop fi) ;
 FQ] < M | frame: F , … >

Posting of an event happens by appending the
event to the event queue, for example,
FollowHyperlink is specified by removing itself
from the function queue and adding a startNavigation
event to the end of the event queue.

var U:Url F:Frame FQ: FunctionQueue EQ: EventQueue
rule [FollowHyperlink(U, F) ; FQ] { EQ }
 => [FQ] { EQ ; startNavigation(U, F) } .

The third type of action is the invocation of an
event handler. Any event can only be invoked when its
previous event handler returns. To model this
restriction, any rule of an event handler invocation
specifies that the first event in the event queue can be
dequeued and translated into a function call only when
the function queue is empty. Below is the rule to
specify the handling of the ready event, which
invokes the handler SetInteractive.

 var EQ: EventQueue
 rule [empty] { ready(M) ; EQ }
 => [SetInteractive(M)] { EQ }

5) Specifying the program invariant of address
bar correctness (Step (a) in Figure 2). A good state is
a state where the URL on the address bar matches the

URL of the View and is also the URL of the content
that is painted on the screen. In addition to that, the
URL is the URL of the currentMarkup of the
primaryFrame. Therefore the program invariant is
defined by the following goodState predicate:

 vars U: URL F: Frame M: Markup
 equation goodState (addressBar(U) urlOfView(U)
 urlPaintedOnScreen(U) primaryFrame(F)
 < F | currentMarkup: M , …> < M | url: U , …>)
 = true .

It is also important to specify the initial state for
the search command. In the initial state, both the event
queue and the function call queue are empty. The
primaryFrame is f1. The currentMarkup of f1 is m0.
The pendingMarkup of f1 is uninitialized. m0 is
downloaded from URL0. The address bar displays
URL0, the View is derived from URL0, and the View is
painted on the screen. The following equation
specifies initialState:
 const f1:Frame m0:Markup url0:URL empty:EventQueue
 equation initialState
 = { empty } [empty] primaryFrame(f1)
 < f1 | currentMarkup: m0 , pendingMarkup: nil >
 < m0 | url: url0 , frame: f1 > addressBar(url0)
 urlOfView(url0) urlPaintedOnScreen(url0) .

4.4 Uncovered Spoofing Scenarios
We used the search command to find all

execution paths in the model that start with the initial
state and finish in a bad state (i.e., denoted as “not
goodState” in Maude). The search was performed
on two navigations, i.e., two FollowHyperlinks,
two History_Backs, one FollowHyperlink
with one History_Back, and one WindowOpen
with one FollowHyperlink.

Each condition shown in Table 5 is present in at
least one execution context of a potential spoofing
scenario uncovered by Maude. Some function names
in the Location column were not shown in Figure 9,
because Figure 9 only shows a sketch of the logic of
navigation, while the actual model we implemented is
more detailed. The search result in Table 5 provides
a roadmap for a systematic investigation: (1) we have
verified that when each of these conditions is manually
set to true in the corresponding location using a
debugger, the real IE executable will be forced to take
an execution path leading to a stable bad state;
therefore, our investigation should be focused on these
conditions; (2) many other conditions present in the
pseudo code are not in Table 5, such as those
conditions in SwitchMarkup, LoadHistory and
CreateRenderer, therefore these functions do not
need further investigation.

The versions in our study are IE 6 and IE 7 Beta 1
through Beta 3. In the rest of this section, we will
focus on conditions No. 2, 9, 11 and 18, for which we
have succeeded in constructing real spoofing

scenarios. For the other conditions, we have not found
successful scenarios to make them real without the
debugger. They may be false positives due to the fact
that our model does not include the complete logic of
updating and correlating these conditions, but simply
assumes that each condition can be true or false at any
point during the execution. In this sense, our address
bar modeling is not exact (too permissive). Because of
the imprecision in modeling these Boolean conditions,
we need a considerable amount of effort to understand
their semantics. Constructing successful scenarios is
still a non-trivial “security hacking” task.
Nevertheless, Table 5 provides a valuable roadmap to
narrow down our investigations.
Table 5: Conditions of Potential Spoofing Scenarios
 Location Condition
1 FireNavigationComplete GetHTMLWinUrl() = NULL
2 FireNavigationComplete GetPFD(bstrUrl) = NULL
3 FireNavigationComplete ActivatedView = true
4 NavigationComplete DontFireEvents = true
5 NavigationComplete DocInPP = true
6 NavigationComplete ViewWOC = true
7 NavigationComplete ObjectTG = true
8 NavigationComplete CreateDFU = true
9 SetAddressBar CurrentUrl = NULL
10 SetClientSite QIClassID()= OK
11 LoadHistory HTMLDoc = NULL
12 CreateMarkup NewMarkup = NULL
13 SetInteractive pPWindowPrxy = NULL
14 SetInteractive IsPassivating = true or

IsPassivated = true
15 SetInteractive HtmCtx() = NULL
16 SetInteractive HtmCtx()->BindResult = OK
17 EnsureView IsActive() = false
18 RenderView RSFC = NULL

Scenarios based on condition 2 and condition 9
(silent-return conditions). For ease of presentation, we
assume there is a malicious site http://evil (or
https://evil) in this section. The function call traces
associated with condition 2 (i.e. GetPFD(url)=
NULL in FireNavigationComplete) and
condition 9 (i.e. CurrentURL = NULL in
SetAddressBar) indicate similar spoofing
scenarios: there are silent-return conditions along the
call stack of the address bar update. If any one of these
conditions is true, the address bar will remain
unchanged, but the content area will be updated.
Therefore, if the script first loads paypal.com and then
loads http://evil to trigger such a condition, the user
will see “http://paypal.com” on the address bar
whereas the content area is from http://evil.

We found that both condition 2 and condition 9
can be true when the URL of the page has certain
special formats. In each case, the function (i.e.,
FireNavigationComplete or SetAddressBar)

cannot handle the special URL, but instead of
asserting the failure condition, the function silently
returns when the condition is encountered. For
condition 9, we observed that all versions of IE are
susceptible; for condition 2, only IE 7 Beta 1 is
susceptible, in which case even the SSL certificate of
PayPal is present with the faked page, because the
certificate stays with the address bar. In other versions
of IE, although they have exactly the same silent-
returning statement, condition 2 cannot be triggered
because the special URL has been modified at an
earlier stage during the execution before GetPFD is
called. However, even for these seemingly unaffected
versions, having the silent-returning condition is still
problematic – IE must guarantee that such a condition
can never be true in order to prevent the spoofing.

These two examples demonstrate a new challenge
in graphical interface design – atomicity is important.
In the navigation scenarios, once the pending markup
is switched in, the address bar update should be
guaranteed to succeed. No “silent return” should be
allowed. Even in a situation where atomicity is too
difficult to guarantee, the browser should at least raise
an exception to halt its execution rather than leave it in
an inconsistent state.

Scenario based on condition 11 (a race
condition). Condition 11 is associated with a function
call trace which indicates a situation where two frames
co-exist in a renderer and compete to be the primary
frame. Figure 10 illustrates this scenario.

The malicious script first loads Page 1 from
https://evil. Then it intentionally loads an error page
(i.e., Page 2) in order to make conditional 11 true
when LoadHistory() is called later. The race
condition is exploited at time t, when two navigations
start at the same time. The following event sequence
results in a spoof: (1) the renderer starts to navigate to
https://paypal.com. At this moment, the primary frame
is f1; (2) the renderer starts to travel back in the

history log. Because condition 11 is true, i.e.,
HTMLDoc = NULL, a new frame f2 is created as the
primary frame. This behavior is according to the logic
of LoadHistory(); (3) the markup of https://evil in
the history is switched into f2; (4) the address bar is
updated to https://evil; (5) the downloading of the
paypal.com page is completed, so its markup is
switched into f1. Since f1 is not the primary frame
anymore, it will not be rendered in the content area;
(6) the address bar is updated to https://paypal.com
despite the fact that f1 is no longer the primary frame.
When all these six events occur in such an order, the
user sees http://paypal.com on the address bar, but the
https://evil page in the content area. The SSL
certificate is also spoofed because it gets updated with
the address bar.

This race condition can be exploited on IE 6, IE 7
Beta 1 and Beta 2 with a high probability of success:
in our experiments, the race condition could be
exploited more than half of the time. The exploit does
not succeed in every trial because event (5) and event
(6) may occur before event (3) and event (4), in which
case the users sees the address “https://evil” on the
address bar.

It is worth noting that race conditions are likely to
exist in the logic supporting the tab-browsing mode as
well, in which multiple renderers share and compete
for a single address bar.

Scenario based on condition 18 (a hostile
environment). Condition 2 and condition 9 trigger the
failures of address bar updates, while condition 18
(i.e., RSFC = NULL in RenderView) triggers the
failure of the content area update. We found that the
condition can be true when a certain type of system
resource is exhausted. A malicious script is able to
create such an environment by consuming a large
amount of the resource and then navigating the
browser from http://evil to http://paypal.com.

https://paypal.comhttps://evil

R
ac

e
co

nd
iti

on

ex
pl

oi
te

d
he

re

(3) Switch in the markup of https://evil to f2

(1) Start navigating to https://paypal.com
in the primaryFrame f1.

(2) Start history_back to https://evil. Because
condition 11 is true, f2 is created as the
primaryFrame.

(5) Switch in the markup of
https://paypal.com to f1

(4) Update the address bar (6) Update the address bar

The history log

Page 1 Page 2 Page 3t
Figure 10: Spoofing Scenario Due to a Race Condition

When the timing of the navigation is appropriate,
the browser will succeed to update the address bar and
fail to update the content area, leaving the http://evil
content and the paypal.com URL visible to the user.

Once again this example demonstrates the
importance of atomicity in graphical interface
implementations. In addition to the correctness of the
internal logic of a browser, this scenario emphasizes
the resilience against a hostile execution environment.

5. Discussions
In order to better put our work into perspective,

this section presents higher-level discussions about
possible defense techniques, other visual spoofing
flaws and various techniques for GUI logic analysis.

5.1 How to Defend Against GUI Logic Exploits
The most direct defense against spoofing attacks is

bug fixing. All scenarios that we have discovered have
been confirmed by the IE development team. In a build
after IE 7 Beta 3, all the status bar spoofing bugs and
two address bar bugs have been fixed. Two other
address bar bugs have been investigated, and their
fixes have been proposed.

In situations where the vendor’s patches are not
yet available, vulnerability-driven filtering can provide
fast and easy-to-deploy patch-equivalent protection. In
particular, we have explored the possibility of using
BrowserShield [18] to foil spoofing attacks. In
BrowserShield, web pages are intercepted at a browser
extension, which injects a script-rewriting library into
the pages and sends them to the browser. The rewriting
library is executed during page rendering at the
browser, and rewrites HTML pages and any embedded
scripts into safe equivalents. The equivalent safe pages
contain logic for recursively applying run-time checks
according to policies that detect and remove known
attack patterns that we described earlier. In our proof-
of-concept implementation, we authored policies for
both status-bar spoofing removal and address-bar
spoofing removal. The status bar policy is to inject
JavaScript code into static HTML contents to monitor
the status bar before the mouse click, and compare it
with the URL argument of the FollowHyperlink
call. One of the address bar policies is to inject
JavaScript code to check if a URL can cause a silent
failure of the address bar update.

5.2 Achieving GUI Integrity is Challenging
The objective of this paper is to bring the GUI

logic problem to the attention of the research
community, rather than claiming that the visual
spoofing problem as a whole can be solved in the short
term. In particular, the following two questions are not
addressed by this work.

(1) Is GUI-logic correctness important to users
that are security-unconscious and completely ignore
any security indicators? User-studies have raised the
concern that many average users still lack the
knowledge or the attention to examine the
information provided by security indicators, such as
the address bar, the status bar, SSL certificate and
security warning dialogs [6][24]. Many users readily
believe the authenticity of whatever is displayed in
the content area. We agree that this is the current fact,
and argue that a significant effort should be spent on
user education about secure browsing. But such an
education would be ineffective without the
trustworthiness of the security indicators – if their
information can be spoofed, even we, as computer
science professionals, do not know what to trust. The
success of anti-phishing must be achieved by a joint
effort between the browser vendors and the end users.
It is analogous to automobile-safety: drivers have the
responsibility to buckle up, and the automobile
manufacturers need to guarantee that the seat-belts
are effective.

(2) How to deal with other types of visual spoofs
that are not due to GUI logic flaws? In the
introduction, we listed a few visual spoofing
scenarios due to graphical similarities. These issues
have little to do with logic problems, so their
treatments are very different from the approach
presented in this paper. For example, the current
version of IE disallows a script from the Internet zone
to open a chromeless window (i.e., a window having
only the content area). It is also clearly specified in
design that the URL displayed on the address bar
should be left-justified after each address bar update,
and no pop-up window can stay “always-on-top”, etc.
SpoofStick is designed to interpret any confusing
URL on the address bar [20]; Dynamic Security Skins
[5] and Passpet [26] use trusted images to defeat
certain spoofing attacks. Ye and Smith proposed
several ideas to implement trusted paths for browsers
by disallowing the page content elements to forge the
page status elements [25]. Virtual machine
techniques have also been used to provide trusted
browser GUI elements, e.g., the Tahoma window
manager provides a virtual screen abstraction to each
browser instance [4]. Nevertheless, when the internal
GUI logic is flawed as shown in the paper, ensuring
unforgeable GUI elements is not a remedy.
Therefore, GUI logic flaw and graphic similarity can
be viewed as two different problems under the same
umbrella of visual spoofing.

5.3 A Broad Spectrum of Tools Can Be Used
for Systematic Exploration
The essence of our approach is that we

systematically explore GUI logic. Whether the

exploration is done by symbolic formal analysis (such
as theorem proving or model checking) or by
exhaustive testing is less important. As an example of
exhaustive testing, we used the binary instrumentation
tool Detours [10] to test the status bar logic. The basic
idea is that since we know the program invariant and
how to generate canonical user action sequences and
canonical DOM trees, we can generate actual
canonical HTML pages and actual mouse messages to
test the actual IE status bar implementation. The
advantage of the exhaustive testing approach is that it
does not require manual modeling of the behaviors of
each HTML element, and therefore can avoid the
potential inaccuracies in the logic model. Applying this
technique, we were able to find all spoofs derived from
our previous modeling.

Nevertheless, there is no fundamental difference
as to whether the exploration is done symbolically
(e.g., by Maude) or by exhaustive testing (e.g., by
Detours), because both techniques are based on the
same understanding of the search space and the test-
case construction. The main effort for the symbolic
exploration is to correctly specify the GUI logic in
sufficient detail. The exhaustive testing requires much
effort to drive the system’s internal state transitions.
For example, to test the address bar logic, we would
need to exhaustively enumerate all event interleaving
possibilities in an actual renderer, which is a non-
trivial task.

6. Related Work
The contributions of our work are: (1) the

formulation of GUI logic correctness as a research
problem, and (2) the proposal of a systematic approach
to uncover GUI logic flaws leading to visual spoofs.
There is little existing work related to our first
contribution, but a wealth of work is related to the
second – formal methods and program analysis
techniques have been successful in discovering
software reliability and security flaws. We summarize
a few techniques below.

The SLAM technique [1] uses theorem proving
and model checking tools to statically verify whether
or not predefined “API usage rules” are obeyed in
large programs. A static driver verifier is built on the
SLAM technique, and has been deployed for Windows
driver implementation correctness. Model checking
techniques are also developed to find file system bugs
[27] and security vulnerabilities [3] in large bodies of
legacy source code. Much research has been done in
formal verification of security protocols [15]. A static
analysis technique is used for detecting higher level
vulnerabilities such as SQL injections, cross-site
scripting, and HTTP splitting attacks [13]. Our work is
complementary to the existing research, because we
have focused on machine-user link trustworthiness.

Also related are research papers on phishing
attacks, e.g., PwdHash is a browser plug-in that
transparently produces a different password for each
site to prevent phishing sites from obtaining usable
passwords [19]. Florencio and Herley designed a
technique to detect password phishing by monitoring
password-reuse patterns between a well-known site
and an unfamiliar site [9].

7. Conclusions
GUI logic flaws are a real and pressing security

problem – these flaws can be exploited to lure even
security-conscious users to visit malicious web pages.
We have formulated GUI logic correctness as a new
research problem, and have proposed a systematic
approach to proactively uncover logic flaws in
browser GUI design/implementation that lead to
spoofing attacks.

Specifically, based upon an in-depth study of the
logic of key subsets of IE source code, we have
developed a formal model of the browser logic and
have applied formal reasoning to uncover important
new spoofing scenarios. This has been done for both
the status bar and the address bar. The knowledge
obtained from our approach offers an in-depth
understanding of potential logic flaws in the
graphical interface implementation. The IE
development team has confirmed that all thirteen
flaws reported by us are indeed exploitable, and has
fixed eleven of them in the latest build. Through this
work, we demonstrate the feasibility and the benefit
of applying a rigorous approach to GUI design and
implementation.

Despite the fact that the analysis approach is
systematic, it only provides relative completeness:
relative to the kind of spoofing scenarios being
considered, the IE code subset currently modeled,
and our search spaces. Therefore, an important task
ahead is to obtain a precise high-level specification of
more IE modules, and to extend our current formal
models and analyses to cover most IE functionality.
For example, the model should accommodate the tab
browsing logic and the hosting mechanisms for
document types other than HTML, such as PDF,
Microsoft Word, Macromedia Flash, etc. Our
methodology can be extended to tackling this
pending challenge in the future.

GUI logic flaws affect all web browsers, not just
IE. We believe that the methodology presented in this
paper can be equally applied to systematically
identify vulnerabilities in other browsers. More
broadly, non-browser applications, e.g., email clients
and digital identity management tools [14], have
similar graphical interface integrity issues. Thus,
ensuring GUI logic correctness is a research direction
with significant practical relevance.

Acknowledgements:
Many colleagues at Microsoft kindly provided

valuable comments to improve this work. We thank
Bill Bolosky, Brad Daniels, Rich Draves, Ulfar
Erlingsson, Tim Harris, Cormac Herley, Emre
Kiciman, Jim Larus, Madan Musuvathi, Shaz Qadeer,
Kevin Schofield, Dan Simon and Chad Verbowski
from Microsoft Research; Jeremy Dallman, Rob
Franco, Mike Friedman, Dean Hachamovitch, Vikram
Harinau, Li-Hsin Huang, Patrick Mann, Dan Plaster,
Christopher Vaughan, Chris Wilson, Tong Wynn, Yin
Xie, Zhenbin Xu and Geng Yang from the IE Team;
Steve Adegbite, Greg Hartrell, Steve Lipner, Rebecca
Norlander, Mike Reavey, David Ross, Dave Steeves
and Matt Thomlinson from the Security Business Unit.
Collin Jackson at Stanford University and Jun Xu at
North Carolina State University offered insightful
discussions. We received valuable comments from
anonymous reviewers. The work of José Meseguer and
Ralf Sasse has been supported in part by ONR Grant
N00014-02-1-0715 and NSF Grant CNS-05-24516.

References:
[1] Thomas Ball, Sriram K. Rajamani. “The SLAM

Project: Debugging System Software via Static
Analysis”, ACM Principles of Programming
Languages Conference, 2002.

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick
Lincoln, Narciso Martí-Oliet, at al. Maude:
specification and programming in rewriting logic.
Theoretical Computer Science, 285(2): 2002.

[3] Hao Chen, Drew Dean, and David Wagner. “Model
checking one million lines of C code”. Network and
Distributed System Security Symposium (NDSS), 2004.

[4] Richard S. Cox, Jacob G. Hansen, Steven D. Gribble,
and Henry M. Levy: "A Safety-Oriented Platform for
Web Applications," IEEE Symposium on Security and
Privacy, 2006

[5] Rachna Dhamija and J. D. Tygar. “The Battle Against
Phishing: Dynamic Security Skins,” Symposium on
Usable Privacy and Security (SOUPS), July 2005.

[6] Rachna Dhamija, J. D. Tygar and Marti Hearst. "Why
Phishing Works". Conference on Human Factors in
Computing Systems (CHI), 2006.

[7] Jeremy Epstein, John McHugh, Rita Pascale, Hilarie
Orman, Glenn Benson, et al, "A prototype B3 trusted X
Window System," Computer Security Applications
Conference, 1991.

[8] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan
S. Wallach. "Web Spoofing: An Internet Con Game,"
20th National Information Systems Security
Conference, 1996

[9] Dinei Florencio and Cormac Herley. “Stopping a
Phishing Attack, Even when the Victims Ignore
Warnings”. Microsoft Research MSR-TR-2005-142

[10] Galen Hunt and Doug Brubacher. "Detours: Binary

Interception of Win32 Functions," Proceedings of the
3rd USENIX Windows NT Symposium, pp. 135-143.
Seattle, WA, July 1999.

[11] Internet Explorer Window Loading Race Condition
Address Bar Spoofing. http://secunia.com/advisories/
19521/

[12] José Meseguer. “Conditional Rewriting Logic as a
United Model of Concurrency”. Theoretical Computer
Science, 96(1): 73-155, 1992.

[13] Benjamin Livshits, Monica S. Lam. "Finding Security
Vulnerabilities in Java Applications with Static
Analysis," USENIX Security Symposium, 2005.

[14] Microsoft Corporation. Microsoft's Vision for an
Identity Metasystem. http://msdn.microsoft.com/

[15] Catherine Meadows. Formal Verification of
Cryptographic Protocols: A Survey. Lecture Notes in
Computer Science, 917, 135-150, 1995, Springer.

[16] The MSDN Library. “Changing Element Styles”.
http://msdn.microsoft.com/

[17] The MSDN Library. “OLE Background,”
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/vccore/ html/_core_ole_background.asp

[18] Charles Reis, John Dunagan, Helen J. Wang, Opher
Dubrovsky, and Saher Esmeir. “BrowserShield:
Vulnerability-Driven Filtering of Dynamic HTML”.
Operating Systems Design and Implementation, 2006.

[19] Blake Ross, Collin Jackson, Nicholas Miyake, et al.
“Stronger Password Authentication Using Browser
Extensions”. Usenix Security Symposium, 2005.

[20] SpoofStick. http://www.spoofstick.com/
[21] Firefox Visual Spoofing Flaws. Bugtraq list,

http://securityfocus.com/bid. Bug IDs: 10532, 10832,
12153, 12234, 12798, 14526, 14919

[22] Internet Explorer Visual Spoofing Flaws. Bugtraq list,
http://securityfocus.com/bid. Bug IDs: 3469, 10023,
10943, 11561, 11590, 11851, 11855, 1254.

[23] Netscape Navigator Visual Spoofing Flaws. Bugtraq
list, http://securityfocus.com/bid. Bug IDs: 7564, 10389

[24] Min Wu, Robert C. Miller and Simson L. Garfinkel.
"Do Security Toolbars Actually Prevent Phishing
Attacks?" Conference on Human Factors in Computing
Systems (CHI), 2006.

[25] E. Ye, S.W. Smith. "Trusted Paths for Browsers." 11th
Usenix Security Symposium. August 2002.
(Also, E. Ye, Y.Yuan, S. W. Smith. “Web Spoofing
Revisited: SSL and Beyond,” Technical Report
TR2002-417, Dartmouth College. February 2002.)

[26] Ka-Ping Yee, Kragen Sitaker. “Passpet: Convenient
Password Management and Phishing Protection,”
Symposium on Usable Privacy and Security, 2006.

[27] Junfeng Yang, Paul Twohey, Dawson Engler,
Madanlal, Musuvathi. “Using model checking to find
serious file system errors”. USENIX Symposium on
Operating Systems Design and Implementation, 2004

