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Abstract 
 

To achieve end-to-end security, traditional 
machine-to-machine security measures are insufficient 
if the integrity of the human-computer interface is 
compromised. GUI logic flaws are a category of 
software vulnerabilities that result from logic bugs in 
GUI design/implementation. Visual spoofing attacks 
that exploit these flaws can lure even security-
conscious users to perform unintended actions. The 
focus of this paper is to formulate the problem of GUI 
logic flaws and to develop a methodology for 
uncovering them in software implementations. 
Specifically, based on an in-depth study of key subsets 
of Internet Explorer (IE) browser source code, we have 
developed a formal model for the browser GUI logic 
and have applied formal reasoning to uncover new 
spoofing scenarios, including nine for status bar 
spoofing and four for address bar spoofing. The IE 
development team has confirmed all these scenarios 
and has fixed most of them in their latest build. 
Through this work, we demonstrate that a crucial 
subset of visual spoofing vulnerabilities originate from 
GUI logic flaws, which have a well-defined 
mathematical meaning allowing a systematic analysis.  
 
Keywords: Visual Spoofing, GUI Logic Flaw, Formal 

Methods, HTML, End-to-End Security 

1. Introduction 

Today, the trustworthiness of the web relies on the 
use of machine-to-machine security protocols (e.g., 
SSL or TLS) to provide authentication over the 
Internet to ensure that the client software (i.e., the 
browser) communicates with the intended server. 
However, such trustworthiness can be easily shattered 
by the last link between the client machine and its user. 
Indeed, the user-interface trust should be considered as 
a part of the trusted path problem in secure 
communications [7][8][25].   

The exposure of the weakness between computer 
and human is not limited to non-technical social 
engineering attacks where naive users are fooled into 
clicking on an arbitrary hyperlink and download 
malicious executables without any security awareness. 

Even for a technology-savvy and security-conscious 
user, this last link can be spoofed visually. As shown 
in Figure 1(a), even if a user examines the status bar of 
the email client before she clicks on a hyperlink, she 
will not be able to tell that the status bar is spoofed and 
she will navigate to an unexpected website, instead of 
https://www.paypal.com. Furthermore, as shown in 
Figure 1(b), even if a user checks the correspondence 
between the URL displayed in the browser address bar 
and the top level web page content, she will not realize 
that the address bar is spoofed and the page comes 
from a malicious web site. Indeed, the combination of 
the email status bar spoofing and the browser address 
bar spoofing can give a rather “authentic” navigation 
experience to a faked PayPal page. Even SSL is not 
helpful – as shown in Figure 1(b), the spoofed page 
contains a valid PayPal certificate. Obviously, this can 
result in many bad consequences, such as identity theft 
(e.g. phishing), malware installation, and spreading of 
faked news. 

Status bar is spoofed and shows: 
https://www.paypal.com

 
Figure 1(a): Status Bar Spoofing 

Address bar spoofed:
https://www.paypal.com

SSL certificate spoofed:
PayPal Inc.

 
Figure 1(b): Address Bar Spoofing 

Visual spoofing attack is a generic term referring 
to any technique using a misleading GUI to gain trust 
from the user. Design/implementation flaws enabling 
such attacks are already a reality and have been 
sporadically discovered in commodity browsers 



 

   

[21][22][23], including IE, Firefox, and Netscape 
Navigator. This paper focuses on a class of visual 
spoofing attacks that exploit GUI logic flaws, which 
are bugs in the GUI’s design/implementation that 
allow the attacker to present incorrect information in 
parts of the authentic GUI that the user trusts, such as 
the email client status bar and the browser address bar. 
Figure 1(a) and (b) are just two instances of many such 
flaws that we discovered using the methodology 
described in this paper.  

A second class of visual spoofing attack, which 
has been extensively discussed in previous research 
work [6][8][24][25], is to exploit graphical similarities. 
These attacks exploit picture-in-picture rendering [25] 
(i.e., a faked browser window drawn inside a real 
browser window), chromeless window (e.g., a window 
without the address bar or the status bar [8][25]), pop-
up window covering the address bar, and symbol 
similarity (e.g., “1” vs. “l”, “vv” vs. “w” [6], and non-
English vs. English characters). We do not consider 
such attacks in this paper, but in Section 5 we briefly 
discuss how the graphical similarity problems are 
being addressed by researchers and browser vendors. 

Our goal is to formulate the GUI logic problem 
and to develop a systematic methodology for 
uncovering logic flaws in GUI implementations. This 
is analogous to the body of work devoted to catching 
software implementation flaws, such as buffer 
overruns, data races, and deadlocks, through the means 
of static analysis or formal methods. Nevertheless, a 
unique challenge in finding GUI logic flaws is that 
these flaws are about what the user sees – user’s vision 
and actions are integral parts of the spoofing attacks. 
Thus, the modeled system should include not only the 
GUI logic itself, but also how the user interacts with it.  

In a nutshell, our methodology first requires 
mapping a visual invariant, such as “the URL that a 
user navigates to must be the same as that indicated on 
the status bar when the mouse hovers over an element 
in a static HTML page”, to a well-defined program 
invariant, which is a Boolean condition about user state 
and software state. This mapping is done based on an 
in-depth understanding of the source code of the 
software. Our goal is then to discover all possible 
inputs to the software which can cause the visual 
invariant to be violated. In the example of finding 
status bar spoofing scenarios, we want to discover all 
HTML document tree structures that can cause the 
inconsistency between the URL indicated on the status 
bar and the URL that the browser is navigating to upon 
a click event; the resulting HTML tree structures can 
be used to craft instances of status bar spoofing 
attacks. To systematically derive these scenarios, we 
employ a formal reasoning tool to reason about the 
well-defined program invariant. 

The methodology is applied to discover two 
classes of important GUI logic flaws in IE. The first 
class is the static-HTML-based status-bar spoofing. 
Flaws of this class are critical because static-HTML 
pages (i.e., pages without scripts) are considered safe 
to be rendered in email clients (e.g., Outlook1 and 
Outlook Express) and to be hosted on blogging sites 
and social networking sites (e.g., myspace.com), and 
the status bar is the only trustworthy information 
source for the user to see the target of a hyperlink. The 
second class of flaws we studied is address bar 
spoofing, which allows a malicious website to hide its 
true URL and pretend to be a benign site. In both case 
studies, we use the Maude formal reasoning tool [2] to 
derive these spoofing scenarios, taking as input the 
browser GUI logic, program invariants, and user 
actions.  

We have discovered nine canonical HTML tree 
structures leading to status bar spoofing and four 
scenarios of address bar spoofing. The IE development 
team has confirmed these scenarios and fixed eleven of 
them in the latest build, and scheduled to fix the 
remaining two in the next version. In addition to 
finding these flaws, we made the interesting 
observation that many classic programming errors, 
such as semantic composition errors, atomicity errors 
and race conditions are also manifested in the context 
of GUI implementation. More importantly, this paper 
demonstrates that GUI logic flaws can be expressed in 
well-defined Boolean invariants, so finding these flaws 
is done by inference about the violations of the 
invariants. 

The rest of the paper is organized as follows. 
Section 2 gives an overview of our methodology. 
Sections 3 and 4 present case studies on status bar 
spoofing and address bar spoofing with IE. Section 5 
presents discussions related to GUI security. Related 
work is given in Section 6. Section 7 concludes the 
paper. 

2. Overview of Our Methodology   

2.1 Our Analysis Approach 
Figure 2 shows the major steps in our approach, 

based on formal analysis techniques. Existing formal 
analysis techniques have been successfully applied to 
reasoning about program invariants, e.g., the 
impossibility of buffer overrun in a program, 

                                                
1 Outlook does not show the target URL on the status bar, but 
on a small yellow tooltip near the mouse cursor. Because IE, 
Outlook and Outlook Express use the same HTML engine, 
most status bar spoofing scenarios can be transformed to 
email format to spoof Outlook tooltip and Outlook Express 
status bar. 



 

   

guaranteed mutual exclusion in an algorithm, deadlock 
freedom in a concurrent system, secrecy in a 
cryptographic protocol, and so on. These program 
invariants have well-defined mathematical meaning. 
Uncovering GUI logic flaws, on the other hand, 
requires reasoning about what the user sees. The 
“invariant” in the user’s vision does not have an 
immediately obvious mathematical meaning. For 
example, the visual invariant of the status bar is that if 
the user sees foo.com on the status bar before a mouse 
click, then the click must navigate to the foo.com page. 
It is important to map such a visual invariant to a 
program invariant in order to apply formal reasoning, 
which is shown as step (a) in Figure 2.   

The mapping between a visual invariant and a 
program invariant is determined by the logic of the 
GUI implementation, e.g., a browser’s logic for mouse 
handling and page loading. An in-depth understanding 
of the logic is crucial in deriving the program 
invariant. Towards this goal, we conducted an 
extensive study of the source code of the IE browser to 
extract pseudo code to capture the logic (shown as step 
(b)). In addition, we needed to explicitly specify the 
“system state” (shown as step (c)), including both the 
browser’s internal state and possibly what the user 
memorizes. Steps (d) and (e) depict the formalization 
of the user’s action sequence and the execution context 
as the inputs to the program logic. The user’s action 
sequence is an important component in the GUI logic 
problem. For example, the user may move and click 
the mouse, or open a new page. Each action can 
change the system state. Another input to specify is the 
execution context of the system, e.g., a web page is an 
execution context for the mouse handling logic – the 
same logic and the same user action, when executed on 
different web pages, can produce different results.  

When the user action sequence, the execution 
context, the program logic, the system state and the 
program invariant are formally specified on the 
reasoning engine, formal reasoning is performed to 
check if the user action sequence applied on the system 
running in the execution context violates the program 
invariant. Each discovered violation is output as a 
potential spoofing scenario, which consists of the user 
action sequence, the execution context and the 
inference steps leading to the violation. Finally, we 
manually map each potential spoofing scenario back to 
a real-world scenario (shown as step (f)). This involves 
an effort to construct a webpage that sets up the 
execution context and lures the user to perform the 
actions. The mappings (a)(b)(f) between the real world 
and the formal model are currently done manually, 
some of which require significant effort. In this paper, 
our contribution is mainly to formalize the GUI logic 
problem. Reducing the manual effort is future work. 
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Figure 2: Overview of Our Methodology 

2.2 Background: Formal Verification of 
Invariants in Maude 
We formalize this problem within the logical 

framework of rewriting logic [12]. The corresponding 
reasoning engine is the Maude system [2]. In this 
paper, we use the term “Maude” to refer to both the 
Maude system and the language understood by it2. 

In Maude, the states of a system are represented 
by symbolic expressions, and the system transitions are 
specified by rewrite rules indicating how a state is 
transformed into another. For example, if we want to 
specify a 24-hour clock marking only the hours, we 
can declare a state constructor operator clock so that, 
say, clock(7) and clock(21) are two different 
clock states. In this example there is only one rewrite 
rule “ticking” the clock to the next hour. The clock 
system is specified as follows3: 

type CLOCK .       var T : Int .      
operator clock : Int -> CLOCK . 
/*  This rule specifies the “ticking”  */ 
rule    clock(T)   =>     clock((T + 1) rem 24) .  

where Int is the built-in data type of integers, a 
new type CLOCK of clock states is defined, and the 
state constructor clock is declared as an operator 
that takes an Int and produces a CLOCK. The clock 
"tick" transitions are specified by a rewrite rule 
introduced with the rule keyword, which rewrites a 
given clock marking time T to one marking time 
((T+1) rem 24), that is, the remainder of (T+1) 
divided by 24. For example, clock(23) will be 
rewritten to clock(0). 

Once a system is specified, Maude's search 
command can be used to verify invariants. An 
invariant is a predicate that holds of an initial state and 

                                                
2 Similarly, people use the term “Perl” interchangeably for 
the Perl interpreter and the Perl language. 
3 In this paper, we use a syntax slightly different from 
Maude’s. 



 

   

of all states reachable from it. Suppose the initial state 
is clock(0), and the invariant to verify is that the 
times it marks will always be greater than or equal to 0 
and strictly smaller than 24. An invariant is verified by 
searching for any states violating it, i.e., for states 
satisfying the negation of the invariant. For our 
example, this can be done with the search command: 

search clock(0)  
=> clock(T) such that ((T < 0) or (T >= 24))  

This search command responds: No solution. 
Therefore, the invariant is verified. In case an invariant 
is violated, the result will show a trace indicating the 
series of transitions leading to the violation. For a toy 
example like the one above, informal reasoning may 
convince us that a given invariant holds. But for 
complex situations, for example, the complex 
interactions between a user and a web browser, formal 
verification is needed in practice. This is exactly the 
way Maude is used in our work. As we explain in 
Sections 3.3 and 4.3, IE's status bar and address bar 
logics are specified by rewrite rules and equations in 
Maude, and the search command is used to search 
for spoofing scenarios.  

3. Case Study 1: Status Bar Spoofing 
Based on Static HTML 
Many web attacks, such as browser buffer 

overruns, cross-site scripting attacks, browser cross-
frame attacks and phishing attacks, require the user to 
navigate to a malicious URL. Therefore, it is important 
for the user to know the target URL of a navigation, 
which is displayed on the status bar before the user 
clicks the mouse. Status bar spoofing is damaging if it 
can be constructed using only static HTML (i.e., 
without any active content such as JavaScript), 
because: (i) email clients, e.g., Outlook and Outlook 
Express, render static HTML contents only, and email 
is an important media to propagate malicious 
messages; (ii) blogging sites and social networking 
sites (e.g., myspace.com) usually sanitize user-posted 
contents to remove scripts, but allow static HTML 
contents.4  

3.1 Background: Representation and Layout 
of an HTML Page 
Background knowledge about HTML 

representation is a prerequisite for this case study. We 
give a brief tutorial here. An HTML page is 

                                                
4 A status bar spoof using a script is not a major security 
concern - it gets into a chicken-and-egg situation: a well-
known site does not run an arbitrary script supplied from an 
arbitrary source. If the victim user has already been lure to in 
a malicious site, the goal of the spoofing has been achieved.  

represented as a tree structure, namely a Document 
Object Model tree, or DOM tree. Figure 3 shows an 
HTML source file, its DOM tree, and the layout of the 
page. The mapping from the source file (Figure 3(a)) 
to the DOM tree (Figure 3(c)) is straightforward – 
element A enclosing element B is represented by A 
being the parent of B in the DOM tree. The tree root is 
an <html> element, which has a <head> subtree and 
a <body> subtree. The <body> subtree is rendered in 
the browser’s content area. Since status bar spoof is 
caused by user interactions with the content area, we 
focus on the <body> subtree in this case study.  

(a) HTML Source File 
<html> 
    <head><title>Page</title></head> 
    <body> 
        <a href="http://paypal.com"> 
               <img src="a.jpg">  

    </a> 
        <button> My button </button> 
    </body> 
</html> 

(b) Element Layout  

 

<img>
<body>

<a>
address bar

<button>

status barco
nt

en
t a

re
a

      
(c) DOM TREE 

<html>

<head>

<title>

<body>

<a>

<img>

<button>

 

(d) Element Stacks 

<body>
<a>

<img>
<button>

Toward the user

 
 
Figure 3: DOM Tree and Layout of an HTML Page 

Figure 3(b) shows the layouts of elements from 
the user’s viewpoint. In general, parent elements have 
larger layouts to contain children elements. 
Conceptually, these elements are stacked upwards 
(toward the user), with <body> sitting at the bottom 
(see Figure 3(d)). In HTML, <a> represents an anchor, 
and <img> represents an image. 

3.2 Program Logic of Mouse Handling and 
Status Bar Behavior 
Mouse handling logic plays an important role in 

status bar spoofs. We extracted the logic from the IE 
source code. It is presented here using pseudo code, 
which will be formalized in Section 3.3. 
3.2.1 Central Logic 

The mouse device can generate several raw 
messages. When a user moves the mouse onto a 
element and clicks on it, the sequence of raw messages 
consists of several MOUSEMOVEs, an 



 

   

LBUTTONDOWN (i.e., left button down), and then a 
LBUTTONUP (i.e., left button up).  

The core functions for mouse handling are 
OnMouseMessage and SendMsgToElem, which 
dispatch mouse messages to appropriate elements. 
Every element has its specific virtual functions 
HandleMessage, DoClick and ClickAction to 
implement the element’s behaviors.  

Each raw mouse message invokes an 
OnMouseMessage call (pseudo code shown in Table 
1). The parameter element is the HTML element 
that is immediately under the mouse cursor. The 
parameter message is the type of the message, which 
can be either MOUSEMOVE, or LBUTTONDOWN, 
or LBUTTONUP. An OnMouseMessage call can 
potentially send three messages to HTML elements in 
the DOM tree: (i) if element is different from 
elementLastMouseOver, which is the element 
immediately under the mouse in the most recent 
OnMouseMessage call, then a MOUSELEAVE 
message is sent to elementLastMouseOver; (ii) 
the raw message itself (i.e., message) is sent to 
element; (iii) if element is different from 
elementLastMouseOver, a MOUSEOVER 
message is sent to element. 

OnMouseMessage(element,message) { 
    if (element != elementLastMouseOver) 
              SendMsgToElem(MOUSELEAVE, 
                                            elementLastMouseOver) 

     SendMsgToElem(message, element) 

     if (element != elementLastMouseOver) 
             SendMsgToElem(MOUSEOVER, element) 
     elementLastMouseOver = element 
} 
SendMsgToElem(message,element) { 
   btn = element.GetAncestor (BUTTON)) 
   if (btn != NULL && message == LBUTTONUP ) 
                           element = btn 
   repeat 
        BubbleCanceled = loopElement 
                                   -> HandleMessage(message) 
        loopElement = loopElement->parent 
    until BubbleCanceled or loopElement is tree root 

    if (message == LBUTTONUP) 
       element->DoClick()  //handle the mouse click 
} 

body

e1

e2

e3

Bubble 

Table 1: OnMouseMessage and SendMsgToElem 
In the function SendMsgToElem(), btn is the 

closest Button ancestor of element. If btn exists 
and message is LBUTTONUP (i.e., a click), then 
element becomes the button btn. It essentially 
means that any click on a descendant of a button is 
treated as a click on the button. Then, a message 
bubbling loop begins – starting from element, the 
virtual function HandleMessage of every element 
along the DOM tree path is invoked. Each 
HandleMessage call can cancel or continue the 

bubble (i.e., break out of or continue the loop) by 
setting a Boolean BubbleCanceled. After the 
bubbling loop, a mouse click is handled by calling the 
virtual function DoClick of element, when 
message is LBUTTONUP. 
3.2.2 HTML Element Behaviors 

An object class is implemented for each type of 
HTML element, such as Anchor, Form, Button, 
InputField, Label, Image, etc. These object 
classes inherit from the AbstractElement base 
class. The three virtual functions of 
AbstractElement, namely, HandleMessage, 
DoClick and ClickAction, implement default 
behaviors of real HTML elements. 
AbstractElement::DoClick (i.e., function 
DoClick of AbstractElement) implements a 
loop to invoke ClickAction of each element along 
the DOM tree path, similar to the bubbling in 
SendMsgToElem. HandleMessage and 
ClickAction of AbstractElement are 
basically “placeholders” – they simply return in order 
to continue the bubble.  

Each HTML element class can override these 
virtual functions of AbstractElement to 
implement its specific behaviors. A subset of virtual 
functions of the Anchor, Label and Image 
elements is shown in Table 2. These examples 
demonstrate the complexity in the mouse handling 
logic due to the intrinsic behavioral diversity of 
individual elements and the possible compositions. For 
example, when the mouse is over an anchor, the target 
URL of this anchor will be displayed on the status bar 
by calling SetStatusBar, and the bubble continues, 
as indicated in Anchor::HandleMessage. When 
an anchor is clicked, FollowHyperlink is called to 
jump to the target URL, and the bubble is canceled, as 
indicated in Anchor::ClickAction. When the 
mouse is over a label, there is no SetStatusBar 
call, and the bubble is canceled. According to the 
HTML specification, a label can be associated with 
another element in the page, which is called 
“ForElement”. Clicking on the label is equivalent to 
clicking on ForElement, as shown in 
Label::ClickAction. An image element can be 
associated with a map, which associates different 
screen regions on the image with different target 
URLs. When the mouse is over a region, the URL of 
the region is set to the status bar, as indicated in 
Image::HandleMessage. When the mouse clicks 
on the region, a FollowHyperlink call is made, as 
indicated in Image::ClickAction. If an image is 
not associated with a map, then the URL of the 
containing anchor of the image (i.e., the closest 
ancestor anchor of the image on the DOM) determines 
the status bar text and the hyperlink to follow.



 

   

Table 2: Virtual Functions of Anchor, Label and Image Elements 
Bool Anchor::HandleMessage(message) { 
    switch (message) 
       case LBUTTONDOWN  
           or LBUTTONUP: 
             return true;     //cancel bubble 
       case MOUSEOVER: 
            SetStatusBar(targetURL) 
            return false;    //continue bubble 
       Other: 
            return false; 
 } 
 
Bool Anchor::ClickAction() { 
       FollowHyperlink(targetURL); 
       return true;       // cancel bubble 
} 

Bool Label::HandleMessage(message) { 
    switch (message) 
       case MOUSEOVER 
          or MOUSELEAVE: 
            return true; //cancel bubble 
       Other: 
           return false;  
} 
 
Bool Label::ClickAction() { 
   forElement = GetForElement() 
   if (forElement != NULL) 
        forElement->DoClick(); 
   return true; 
} 

Bool Image::HandleMessage(message) { 
   if a map is associated with this image 
       MapTarget = GetTargetFromMap(); 
       switch (message) 
          case MOUSEOVER: 
              SetStatusBar(MapTarget) 
              return true; 
} 
Bool Image::ClickAction() { 
    if a Map is associated with this image 
          MapTarget = GetTargetFromMap(); 

 FollowHyperlink(MapTarget); 
    else pAnchor=GetContainingAnchor(); 
          pAnchor->ClickAction(); 
    return true;  
} 

3.3 Formalization of Status Bar Spoofing  
The visual invariant of the status bar is intuitively 

that the target URL of a click must be identical to the 
URL displayed on the status bar when the user stops 
the mouse movement. The negation of this invariant 
defines a spoofing scenario (Figure 4): First, 
MOUSEMOVE messages on elements O1, O2, … , On 
invoke a sequence of OnMouseMessage calls. When 
the mouse stops moving, the user inspects the status 
bar and memorizes benignURL. Then, an 
LBUTTONDOWN and an LBUTTONUP messages 
are received, resulting in a 
FollowHyperlink(maliciousURL) call, where 
maliciousURL is different from benignURL. 

OnMouseMessage
(x1,y1,MOUSEMOVE)

OnMouseMessage
(x2,y2,MOUSEMOVE)

OnMouseMessage
(xn,yn,MOUSEMOVE)

OnMouseMessage
(xn,yn,LBUTTONDOWN)

OnMouseMessage
(xn,yn,LBUTTONUP)

…

benignURL is captured in 
this status bar snapshot FollowHyperlink (maliciousURL)  

Figure 4: Function Level View of Status Bar Spoof 
We now apply the approach described in Figure 2. 

(1) Specifying the user action sequence and the 
execution context (Steps (d) and (e) in Figure 2). A 
challenging question is how the spoofing possibilities 
can be systematically explored, given that the web 
page can be arbitrarily complex and the user’s action 
sequence can be arbitrarily long. Canonicalization is a 
common form of abstraction used in formal reasoning 
practice to handle a complex problem space. For this 
particular problem, our goal is to map a set of user 
action sequences to a single canonical action 
sequence, and map a set of web pages to a single 
canonical DOM tree. Because any instance in the 
original problem space only trivially differs from its 
canonical form, we only need to explore the canonical 
state space to find all “representative” instances.  

(1.1) Canonicalization of the user action 
sequence. In general the user action sequence consists 
of a number of mouse moves, followed by a status bar 

inspection, followed by a mouse click (button down 
and up). In a canonical action sequence, the number of 
mouse moves can be reduced to two. This is because, 
although each MOUSEMOVE can potentially update 
the status bar, the status bar is a memoryless object, 
which means: (i) upon every mouse action, how to 
update the status bar does not depend on any previous 
update, but only on the DOM tree branch 
corresponding to the current mouse coordinates; (ii) 
the whole sequence of status bar updates is equivalent 
to the last update. Thus, a canonical action sequence 
from element O1 to element O2 can be represented by 
the equation below, where the semicolon denotes 
sequential composition, and the MOUSEOVER on O1 
invokes the last update of the status bar before the 
mouse arrives at O2 (O1 and O2 can be identical). 
operator CanonicalActionSeq: Element Element -> ActionList . 
equation  CanonicalActionSeq (O1,O2)  

  = [    onMouseMessage(O1,MOUSEMOVE) ; 
          onMouseMessage(O2,MOUSEMOVE) ;      
          Inspection ;  
          onMouseMessage(O2,LBUTTONDOWN);    
          onMouseMessage(O2,LBUTTONUP) ] . 

Note here that we use an equation instead of a 
rule. The difference between these is that an equation 
specifies a functional computation while a rule 
specifies a state transition. 

(1.2) Canonicalization of the execution context 
(i.e., DOM trees). In general a DOM tree may have 
arbitrarily many branches, but we can restrict the 
number of branches of a canonical DOM tree to at 
most two. This is because the canonical action 
sequence contains at most two MOUSEMOVEs – the 
third branch of the DOM tree would be superfluous as 
it would not receive any mouse message. Each HTML 
element in the DOM tree is represented as an object 
with a unique identifier, a class, a parent attribute 
(specifying the DOM tree structure) and possibly other 
attributes. We currently model Anchor, Button, 
Form, Image, InputField and Label element 
classes, plus a Body element always at the root. For 
example, the term  < O | class:anchor, 



 

   

parent:O’> represents anchor element O whose 
parent is O’. Our analysis is restricted to canonical 
DOM trees of bounded size but sufficiently rich to 
uncover useful scenarios. Currently we have analyzed 
all one- and two-branch DOM trees with at most six 
elements. We also specify rules so that all canonical 
DOM trees satisfy the required HTML well-
formedness restrictions, e.g., an anchor cannot be 
embedded in another anchor, an InputField can only 
be a leaf node, etc.  

(2) Specifying system state and state transitions 
(Step (c) in Figure 2).  System State includes the 
browser state statusBar and the user state 
memorizedURL. State transitions are triggered by 
the SetStatusBar action and the user’s 
Inspection action as below, where AL is an 
arbitrary action list. 

const Inspection : Action .     
operator SetStatusBar : URL -> Action .    
vars    AL : ActionList .     vars Url, Url’ : URL . 
rule   [SetStatusBar(Url) ; AL ] statusBar(Url’)   
   =>   [AL] statusBar(Url)  . 
rule   [Inspection ; AL] statusBar(Url) memorizedURL(Url') 
   => [AL] statusBar(Url) memorizedURL(Url)  . 

The first rule specifies the semantics of 
SetStatusBar(Url): if the current action list 
starts with a SetStatusBar(Url) action, and the 
status bar displays Url’, then after this action is 
completed, it disappears from the action list, and the 
status bar is updated to Url. The second rule specifies 
the Inspection action: if statusBar displays 
Url, the memorizedURL is an arbitrary value 
Url’, and the action list starts with Inspection, 
then after the inspection is made, Inspection 
disappears from the action list, and the URL on the 
status bar is copied to the user’s memory, i.e., 
memorizedURL. 

(3) Modeling the program logic (Step (b) in 
Figure 2). Modeling the functions shown in Table 1 
and Table 2 is straightforward using Maude, e.g., 
HandleMessage and ClickAction of the 
Anchor element are specified in Table 3. Other 
functions are modeled in a similarly manner. 

Table 3: Rules to specify HandleMessage and 
ClickAction of Anchor 

equation  [AnchorHandleMessage(O,M) ; AL]   /* equation 1 */ 
    =  [cancelBubble ; AL]  
          if M == LBUTTONUP or M == LBUTTONDOWN .  

rule [AnchorHandleMessage(O,M); AL] <O |targetURL: Url…>  
  => [SetStatusBar(Url) ; AL]  < O | targetURL: Url  >  
       if M == MOUSEOVER .                                  /* rule 2 */ 

equation   [AnchorHandleMessage(O,M) ; AL]  /* equation 3 */ 
    =   [no-op ; AL]  
      if M • LBUTTONUP, LBUTTONDOWN or MOUSEOVER . 

rule  [AnchorClickAction(O) ; AL]    < O | targetURL: Url  … >   
   => [FollowHyperlink(Url) ; cancelBubble ; AL]  
          < O | targetURL: Url , … > .                        /* rule 4 */ 

It is easy to verify that these rules and equations 
indeed faithfully specify the behaviors of an anchor 
shown in Table 1: Equation 1 specifies that if an action 
list starts with an AnchorHandleMessage(M,O) 
action,  this action should rewrite to a 
cancelBubble, if M is LBUTTONUP or 
LBUTTONDOWN. Rule 2 specifies that 
AnchorHandleMessage(M,O) should rewrite to 
SetStatusBar(Url) when handling 
MOUSEOVER, where  Url is the target URL of the 
anchor. For any other type of message M, 
AnchorHandleMessage(M,O) should rewrite to 
no-op to continue the bubble, which is specified by 
equation 3. Rule 4 rewrites AnchorClickAction 
(O) to the concatenation of FollowHyperlink 
(Url) and cancelBubble, where  Url is the 
target URL of the anchor.  

(4) Specifying the program invariant (Step (a) in 
Figure 2). The only remaining question is how to 
define the negation of the program invariant to find 
status bar spoofs. It is specified as the pattern searched 
for in the search command:  

const maliciousUrl , benignUrl , empty : URL .        
vars O1, O2: Element   Url: URL   AL: ActionList . 
search CanonicalActionSeq(O1,O2) 
                    statusBar(empty)   memorizedUrl(empty)  
        => [FollowHyperlink(maliciousUrl) ; AL]   
                    statusBar(Url)   memorizedUrl(benignUrl) . 
The command gives a well-defined mathematical 

meaning to status bar spoofing scenarios: “the Maude 
initial term CanonicalActionSeq(O1,O2) 
statusBar(empty) memorizedUrl(empty) 
can be rewritten to the term [FollowHyperlink 
(maliciousUrl) ; AL] statusBar(Url) 
memorizedUrl(benignUrl)”, which indicates 
that the user memorizes benignURL, but  
FollowHyperlink(maliciousUrl) is the next 
action to be performed by the browser. 
3.4 Scenarios Suggested by the Results 

We found nine combinations of canonical DOM 
trees and user action sequences that resulted in 
violations of the program invariant. All are due to 
unintended compositions of multiple HTML elements 
features. This section presents four representative 
scenarios in detail.  

Shown in Figure 5, scenario 1 has an 
InputField embedded in an anchor, and the 
anchor is embedded in a form.  

input 
field

anchor

form  

<form action="http://foo.com/" > 
   <a href="http://paypal.com"> 
      <input type="image" src="faked.jpg"> 
   </a> 
</form> 

Figure 5: Illustration of Scenario 1 
When the mouse is over the InputField, the 

HandleMessage of each element is called to handle 



 

   

the MOUSEOVER message that bubbles up to the 
DOM tree root. Only the anchor’s HandleMessage 
writes its target URL paypal.com to the status bar, but 
when the InputField is clicked, its 
ClickAction method retrieves the target URL from 
the form element, which is foo.com. This scenario 
indicates the flaw in message bubbling – the 
MOUSEOVER bubbles up to the anchor, but the 
click is directly passed from the InputField to the 
form, skipping the anchor. 

Scenario 2 (Figure 6) is very different from 
scenario 1: an img (i.e., image) associated with a map 
ppl is on top of a button. The target URL of ppl is 
set to paypal.com. When img gets a MOUSEOVER, it 
sets the status bar to paypal.com and cancels the 
bubble. When the mouse is clicked on img, because 
img is a child of button, the click is treated as a 
click on the button, according to the implementation of 
SendMsgToElem(). The button click, of course, 
leads to a navigation to foo.com. This scenario 
indicates a design flaw – an element (e.g., button) can 
hijack the click from its child, but it does not hijack 
the MOUSEOVER message, and thus causes the 
inconsistency. 

img

button
form  

<form action="http://foo.com/" > 
   <button type=submit> 
      <img src="faked_link.jpg" USEMAP= "ppl"> 
   </button> 
</form> 
<map name="ppl"><area href="http://paypal.com"> 
</map> 

Figure 6: Illustration of Scenario 2 
Scenario 3 contains a label embedded in an 

anchor (Figure 7(a)). When the mouse is moved 
toward the label, it must first pass over the anchor, 
and thus sets paypal.com on the status bar. When the 
label is clicked, the page is navigated to foo.com, 
because the label is associated with an anchor of 
foo.com. An opposite scenario shown as scenario 4 in 
Figure 7(b) seems more surprising, which suggests an 
outward mouse movement from a child to a parent. 
Such a movement makes it feasible to spoof the status 
bar using an img sitting on top of a label. Note that, 
because HTML syntax only allows an img to be a leaf 
node, such an outward mouse movement, which is 
suggested by Maude, is critical in the spoofing attack.  

label
anchor

(a)

Label’s target = foo.com
Anchor’s target = paypal.com

img

label

(b)

Img’s target = paypal.com
Label’s target =  foo.com  

Figure 7: (a) Scenario 3 and (b) Scenario 4 
We also derived several scenarios with two-

branch DOM trees. They demonstrate the varieties of 

DOM trees and layout arrangements that can be 
utilized in spoofing, e.g., a spoof page places the two 
leafs side-by-side, another page uses Cascading Style 
Sheets (CSS) [16] to set element positions, etc.  

4. Case Study 2: Address Bar Spoofing  

Address bar spoofing is another category of 
spoofing attack. It fools users into trusting the current 
page when it comes from an untrusted source. The 
combination of a status bar spoofing and an address 
bar spoofing gives an end-to-end scenario to hide the 
identity of the malicious site, and thus is a serious 
security threat. In this section, we first introduce the 
background knowledge about the address bar logic, 
then present the Maude-based analysis technique and 
real spoofing scenarios uncovered by the analysis. 

4.1 Background: Address Bar Basics 
An IE process can create multiple browsers. Each 

one is implemented as a thread. A browser, built on 
the OLE framework [17], is a container (including the 
title bar, the address bar, the status bar, etc) hosting a 
client document in the content area. Many types of 
client documents can be hosted in IE, such as HTML, 
Microsoft Word, Macromedia Flash and PDF. The 
object to represent an HTML document is called a 
renderer. A renderer can host multiple frames, each 
displaying an HTML page downloaded from a URL. 
An HTML page is stored as a markup data structure. A 
markup consists of the URL and the DOM tree of the 
content from the URL. The top level frame, i.e., the 
one associated with the entire content area, is called 
the primaryFrame of the renderer. Figure 8 shows a 
browser displaying a page from http://MySite. The 
renderer has three frames – PrimaryFrame from 
MySite, Frame1 from PayPal.com and Frame2 from 
MSN.com. Each frame is associated with a current 
markup and, at the navigation time, a pending markup. 
Upon navigation completion, the pending markup is 
switched in and becomes the current markup. 

Browser

Frame2 (MSN)

Frame1 (PayPal)

PrimaryFrame
from MySite

Current Markup Pending Markup

http://MySiteRenderer

 
Figure 8: Browser, Renderer, Frames and Markups 

Informally, the program invariant of the address 
bar correctness is that: (1) the content area is rendered 



 

   

according to the current markup of primaryFrame; 
and (2) the URL on the address bar is the URL of the 
current markup of primaryFrame. In the example 
shown in Figure 8, the address bar should display 
“http://MySite”. 

4.2 Overview of the HTML Navigation Logic 
HTML navigation consists of multiple tasks – 

loading HTML content, switching markup, completing 
navigation and rendering the page. A renderer has an 
event queue to schedule these tasks. The event queue 
is a crucial mechanism for handling events 
asynchronously, so that the browser is not blocked to 
wait for the completion of the entire navigation. We 
studied three types of navigation: (1) loading a page 
into the current renderer; (2) traveling in the history of 
the current renderer; (3) opening a page in a new 
renderer. Due to space constraints, Figure 9 only 
illustrates a small subset of functions involved in the 
navigations. 

Figure 9(a) shows the event sequence of loading a 
page in the current renderer. It is initiated by a 
FollowHyperlink, which posts a start navigation 
event. Function PostMan is responsible for 
downloading the new HTML content to a pending 
markup. Event ready is posted to invoke 
SetInteractive, to make the downloaded 
contents effective. SetInteractive first invokes 
SwitchMarkup to replace the current markup with 
the pending markup, and calls 
NavigationComplete. If the downloaded markup 
belongs to primaryFrame, function 

SetAddressBar is invoked to update its address 
bar. An Ensure event is posted by SwitchMarkup, 
which invokes EnsureView to construct a View 
structure containing element layouts derived from the 
current markup of primaryFrame. The OS periodically 
posts an OnPaint event to paint the content area by 
calling RenderView. Figure 9(b) shows the event 
sequence of a history travel. History_Back and 
Travel look up a history log to initialize the 
navigation. PostMan, in this case, loads HTML 
contents from a persistent storage in the hard disk, 
rather than from the Internet. The remaining portion of 
the sequence is similar to that of Figure 9(a). 

Figure 9(c) shows the event sequence of loading a 
new page into a new renderer. WindowOpen is the 
starting point. It calls CreatePendingDocObject 
to create a new renderer and then call 
SetClientSite. SetClientSite prepares a 
number of Boolean flags as the properties of the new 
renderer, and calls InitDocHost to associate the 
renderer with the browser (i.e., the container). The 
new renderer at this moment is still empty. The 
start-loading event invokes LoadDocument 
which first calls SetAddressBar to set the address 
bar and then calls Load which calls 
LoadFromInfo. CreateMarkup and 
SwitchMarkup are called from LoadFromInfo 
before posting a download-content event to 
download the actual content for the newly created 
markup. Function PostMan does the downloading as 
above. The remainder of the sequence is similar to 
both prior sequences. 
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Figure 9: Logic of HTML Navigations 



 

   

4.3 Formalization of the Navigations and the 
Address Bar Behavior 
(1) Modeling the system state (Step (c) in Figure 

2). Because an address bar spoofing is by definition 
the inconsistency between the address bar and the 
content area of the same browser, “spoofability” is a 
property of the logic of a single browser. This does not 
mean that only one browser is allowed in a spoofing 
scenario – there can be other browsers that create a 
hostile execution context to trigger a logic flaw in one 
particular browser. Nevertheless, we only need to 
model the system as one browser and prove its logical 
correctness (or uncover its flaws), and treat the overall 
effect of other browsers as the context of this browser.   

The system state of a browser includes the URL 
displayed in the address bar, the URL of the View in 
the content area, a travel log and the primary frame. 
The Maude specification defines a set of Frames and a 
set of Markups. For example, if Markup m1 is 
downloaded from URL u1, and it is the 
currentMarkup of Frame f1, we specify f1 and u1 
as:  

<f1 | currentMarkup: m1,  pendingMarkup: …>  <m1 | 
URL: u1, frame: f1, …> 

The system state also includes a function call 
queue and an event queue. The function call queue is 
denoted as [call1 ; call2 ; … ; calln], and 
the event queue is  denoted as {event1 ; event2 
; … ; eventn}.  

(2) Specifying the user action sequence (Step (d) 
in Figure 2). In the scenario of an address bar 
spoofing, the user’s only action is to access an 
untrusted HTML page. The page contains a JavaScript 
calling navigation functions FollowHyperlink, 
HistoryBack and/or WindowOpen. The behavior 
of the JavaScript is modeled by a rule that 
conditionally appends a navigation call to the function 
list. As explained in Figure 9, each navigation call 
generates a sequence of events. It is guaranteed that all 
possible interleavings of event sequences are 
exhaustively searched, because Maude explores all 
viable rewrite orders. 

(3) Specifying the execution context (Step (e) in 
Figure 2). Many Boolean conditions affect the 
execution path, e.g., conditions to return from a 
function and conditions to create a new frame. These 
conditions constitute the execution context of the 
system. We defined rules to assign both true and false 
values to these conditions. Therefore the search 
command explores both paths at each branch in the 
pseudo code. The assignments of the Boolean 
conditions, combined with the function call sequence, 
constitute a potential spoofing scenario. These may 
include false positive scenarios, in the sense that such 

Boolean values cannot at the same time be attained by 
different variables, and thus, as shown in Figure 2, 
mapping a potential scenario back to the real-world is 
important. It is a manual effort guided by the formally 
derived potential scenarios. We discuss this in Section 
4.4. 

(4) Modeling Function Calls and Events (Step (b) 
in Figure 2). There are three types of actions shown in 
Figure 9: calling a function, invoking an event handler 
and posting an event. A function call is implemented 
as a term substitution in the function call queue. For 
example, the function call SetInteractive is 
specified by the following rule, where F is the frame 
of Markup M, and SetInteractive(F) can 
conditionally rewrite to SwitchMarkup(M,F) (if 
BOOLEXP1 is false) followed by 
NavigationComplete(F) (if BOOLEXP2 is true) 

Table 4: Pseudo Code and Rewrite Rule of 
SetInteractive 

Pseudo Code 
MARKUP::SetInteractive() { 
    if (BOOLEXP1)  return; 
    this->frame->SwitchMarkup(this); 
    if (BOOLEXP2)   NavigationComplete(frame) 
} 

Rewrite Rule to Specify SetInteractive 
var F: Frame   M: Markup    FQ: FunctionQueue 
rule [SetInteractive(M) ; FQ]  < M | frame: F , … > 
 => [(if BOOLEXP1 ≠ true  
               then SwitchMarkup(M,F) else noop fi) ; 
        (if BOOLEXP2 == true  
               then NavigationComplete(F) else noop fi) ;  
         FQ]    < M | frame: F , … > 

Posting of an event happens by appending the 
event to the event queue, for example, 
FollowHyperlink is specified by removing itself 
from the function queue and adding a startNavigation 
event to the end of the event queue.  

var  U:Url F:Frame  FQ: FunctionQueue   EQ: EventQueue 
rule [FollowHyperlink(U, F) ; FQ] { EQ }  
 =>  [FQ] { EQ ; startNavigation(U, F) } . 

The third type of action is the invocation of an 
event handler. Any event can only be invoked when its 
previous event handler returns. To model this 
restriction, any rule of an event handler invocation 
specifies that the first event in the event queue can be 
dequeued and translated into a function call only when 
the function queue is empty. Below is the rule to 
specify the handling of the ready event, which 
invokes the handler SetInteractive. 

 var  EQ: EventQueue  
 rule [empty]  { ready(M)  ;  EQ }  
  => [SetInteractive(M)] { EQ }  

5) Specifying the program invariant of address 
bar correctness (Step (a) in Figure 2). A good state is 
a state where the URL on the address bar matches the 



 

   

URL of the View and is also the URL of the content 
that is painted on the screen. In addition to that, the 
URL is the URL of the currentMarkup of the 
primaryFrame. Therefore the program invariant is 
defined by the following goodState predicate: 

 vars U: URL   F: Frame    M: Markup  
 equation   goodState (addressBar(U) urlOfView(U) 
                 urlPaintedOnScreen(U) primaryFrame(F) 
                 < F | currentMarkup: M , …>   < M | url: U , …>)  
             =   true . 

It is also important to specify the initial state for 
the search command. In the initial state, both the event 
queue and the function call queue are empty. The 
primaryFrame is f1. The currentMarkup of f1 is m0. 
The pendingMarkup of f1 is uninitialized. m0 is 
downloaded from URL0. The address bar displays 
URL0, the View is derived from URL0, and the View is 
painted on the screen. The following equation 
specifies initialState: 
 const f1:Frame   m0:Markup    url0:URL    empty:EventQueue 
 equation   initialState  
         =  { empty } [ empty ] primaryFrame(f1)  
            < f1 | currentMarkup:  m0 , pendingMarkup: nil > 
            < m0 | url: url0 , frame: f1 > addressBar(url0) 
            urlOfView(url0) urlPaintedOnScreen(url0) . 

4.4 Uncovered Spoofing Scenarios 
We used the search command to find all 

execution paths in the model that start with the initial 
state and finish in a bad state (i.e., denoted as “not 
goodState” in Maude). The search was performed 
on two navigations, i.e., two FollowHyperlinks, 
two History_Backs, one FollowHyperlink 
with one History_Back, and one WindowOpen 
with one FollowHyperlink.  

Each condition shown in Table 5 is present in at 
least one execution context of a potential spoofing 
scenario uncovered by Maude. Some function names 
in the Location column were not shown in Figure 9, 
because Figure 9 only shows a sketch of the logic of 
navigation, while the actual model we implemented is 
more detailed. The search result in Table 5 provides 
a roadmap for a systematic investigation: (1) we have 
verified that when each of these conditions is manually 
set to true in the corresponding location using a 
debugger, the real IE executable will be forced to take 
an execution path leading to a stable bad state; 
therefore, our investigation should be focused on these 
conditions; (2) many other conditions present in the 
pseudo code are not in Table 5, such as those 
conditions in SwitchMarkup, LoadHistory and 
CreateRenderer, therefore these functions do not 
need further investigation.  

The versions in our study are IE 6 and IE 7 Beta 1 
through Beta 3. In the rest of this section, we will 
focus on conditions No. 2, 9, 11 and 18, for which we 
have succeeded in constructing real spoofing 

scenarios. For the other conditions, we have not found 
successful scenarios to make them real without the 
debugger. They may be false positives due to the fact 
that our model does not include the complete logic of 
updating and correlating these conditions, but simply 
assumes that each condition can be true or false at any 
point during the execution. In this sense, our address 
bar modeling is not exact (too permissive). Because of 
the imprecision in modeling these Boolean conditions, 
we need a considerable amount of effort to understand 
their semantics. Constructing successful scenarios is 
still a non-trivial “security hacking” task. 
Nevertheless, Table 5 provides a valuable roadmap to 
narrow down our investigations. 
Table 5: Conditions of Potential Spoofing Scenarios 
 Location Condition 
1 FireNavigationComplete GetHTMLWinUrl()  = NULL 
2 FireNavigationComplete GetPFD(bstrUrl)  = NULL 
3 FireNavigationComplete ActivatedView = true 
4 NavigationComplete DontFireEvents = true 
5 NavigationComplete DocInPP = true 
6 NavigationComplete ViewWOC = true 
7 NavigationComplete ObjectTG = true 
8 NavigationComplete CreateDFU  = true 
9 SetAddressBar CurrentUrl = NULL 
10 SetClientSite  QIClassID()= OK 
11 LoadHistory HTMLDoc = NULL 
12 CreateMarkup NewMarkup = NULL 
13 SetInteractive pPWindowPrxy = NULL 
14 SetInteractive IsPassivating = true or  

IsPassivated = true 
15 SetInteractive HtmCtx() = NULL 
16 SetInteractive HtmCtx()->BindResult = OK     
17 EnsureView IsActive() = false 
18 RenderView RSFC = NULL 

Scenarios based on condition 2 and condition 9 
(silent-return conditions). For ease of presentation, we 
assume there is a malicious site http://evil (or 
https://evil) in this section. The function call traces 
associated with condition 2 (i.e. GetPFD(url)= 
NULL in FireNavigationComplete) and 
condition 9 (i.e. CurrentURL = NULL in 
SetAddressBar) indicate similar spoofing 
scenarios: there are silent-return conditions along the 
call stack of the address bar update. If any one of these 
conditions is true, the address bar will remain 
unchanged, but the content area will be updated. 
Therefore, if the script first loads paypal.com and then 
loads http://evil to trigger such a condition, the user 
will see “http://paypal.com” on the address bar 
whereas the content area is from http://evil.  

We found that both condition 2 and condition 9 
can be true when the URL of the page has certain 
special formats. In each case, the function (i.e., 
FireNavigationComplete or SetAddressBar) 



 

   

cannot handle the special URL, but instead of 
asserting the failure condition, the function silently 
returns when the condition is encountered. For 
condition 9, we observed that all versions of IE are 
susceptible; for condition 2, only IE 7 Beta 1 is 
susceptible, in which case even the SSL certificate of 
PayPal is present with the faked page, because the 
certificate stays with the address bar. In other versions 
of IE, although they have exactly the same silent-
returning statement, condition 2 cannot be triggered 
because the special URL has been modified at an 
earlier stage during the execution before GetPFD is 
called. However, even for these seemingly unaffected 
versions, having the silent-returning condition is still 
problematic – IE must guarantee that such a condition 
can never be true in order to prevent the spoofing.   

These two examples demonstrate a new challenge 
in graphical interface design – atomicity is important. 
In the navigation scenarios, once the pending markup 
is switched in, the address bar update should be 
guaranteed to succeed. No “silent return” should be 
allowed. Even in a situation where atomicity is too 
difficult to guarantee, the browser should at least raise 
an exception to halt its execution rather than leave it in 
an inconsistent state. 

Scenario based on condition 11 (a race 
condition). Condition 11 is associated with a function 
call trace which indicates a situation where two frames 
co-exist in a renderer and compete to be the primary 
frame. Figure 10 illustrates this scenario.   

The malicious script first loads Page 1 from 
https://evil. Then it intentionally loads an error page 
(i.e., Page 2) in order to make conditional 11 true 
when LoadHistory() is called later.  The race 
condition is exploited at time t, when two navigations 
start at the same time. The following event sequence 
results in a spoof: (1) the renderer starts to navigate to 
https://paypal.com. At this moment, the primary frame 
is f1; (2) the renderer starts to travel back in the 

history log. Because condition 11 is true, i.e., 
HTMLDoc = NULL, a new frame f2 is created as the 
primary frame. This behavior is according to the logic 
of LoadHistory(); (3) the markup of https://evil in 
the history is switched into f2; (4) the address bar is 
updated to https://evil; (5) the downloading of the 
paypal.com page is completed, so its markup is 
switched into f1. Since f1 is not the primary frame 
anymore, it will not be rendered in the content area; 
(6) the address bar is updated to https://paypal.com 
despite the fact that f1 is no longer the primary frame. 
When all these six events occur in such an order, the 
user sees http://paypal.com on the address bar, but the 
https://evil page in the content area. The SSL 
certificate is also spoofed because it gets updated with 
the address bar. 

This race condition can be exploited on IE 6, IE 7 
Beta 1 and Beta 2 with a high probability of success: 
in our experiments, the race condition could be 
exploited more than half of the time. The exploit does 
not succeed in every trial because event (5) and event 
(6) may occur before event (3) and event (4), in which 
case the users sees the address “https://evil” on the 
address bar.  

It is worth noting that race conditions are likely to 
exist in the logic supporting the tab-browsing mode as 
well, in which multiple renderers share and compete 
for a single address bar.  

Scenario based on condition 18 (a hostile 
environment). Condition 2 and condition 9 trigger the 
failures of address bar updates, while condition 18 
(i.e., RSFC = NULL in RenderView) triggers the 
failure of the content area update. We found that the 
condition can be true when a certain type of system 
resource is exhausted. A malicious script is able to 
create such an environment by consuming a large 
amount of the resource and then navigating the 
browser from http://evil to http://paypal.com. 
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(3) Switch in the markup of https://evil to f2 

(1) Start navigating to https://paypal.com
in the primaryFrame f1.
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Figure 10: Spoofing Scenario Due to a Race Condition 



 

   

When the timing of the navigation is appropriate, 
the browser will succeed to update the address bar and 
fail to update the content area, leaving the http://evil 
content and the paypal.com URL visible to the user.  

Once again this example demonstrates the 
importance of atomicity in graphical interface 
implementations. In addition to the correctness of the 
internal logic of a browser, this scenario emphasizes 
the resilience against a hostile execution environment. 

5. Discussions 
In order to better put our work into perspective, 

this section presents higher-level discussions about 
possible defense techniques, other visual spoofing 
flaws and various techniques for GUI logic analysis. 

5.1 How to Defend Against GUI Logic Exploits  
The most direct defense against spoofing attacks is 

bug fixing. All scenarios that we have discovered have 
been confirmed by the IE development team. In a build 
after IE 7 Beta 3, all the status bar spoofing bugs and 
two address bar bugs have been fixed. Two other 
address bar bugs have been investigated, and their 
fixes have been proposed. 

In situations where the vendor’s patches are not 
yet available, vulnerability-driven filtering can provide 
fast and easy-to-deploy patch-equivalent protection. In 
particular, we have explored the possibility of using 
BrowserShield [18] to foil spoofing attacks. In 
BrowserShield, web pages are intercepted at a browser 
extension, which injects a script-rewriting library into 
the pages and sends them to the browser. The rewriting 
library is executed during page rendering at the 
browser, and rewrites HTML pages and any embedded 
scripts into safe equivalents. The equivalent safe pages 
contain logic for recursively applying run-time checks 
according to policies that detect and remove known 
attack patterns that we described earlier. In our proof-
of-concept implementation, we authored policies for 
both status-bar spoofing removal and address-bar 
spoofing removal. The status bar policy is to inject 
JavaScript code into static HTML contents to monitor 
the status bar before the mouse click, and compare it 
with the URL argument of the FollowHyperlink 
call. One of the address bar policies is to inject 
JavaScript code to check if a URL can cause a silent 
failure of the address bar update. 

5.2 Achieving GUI Integrity is Challenging 
The objective of this paper is to bring the GUI 

logic problem to the attention of the research 
community, rather than claiming that the visual 
spoofing problem as a whole can be solved in the short 
term. In particular, the following two questions are not 
addressed by this work. 

(1) Is GUI-logic correctness important to users 
that are security-unconscious and completely ignore 
any security indicators? User-studies have raised the 
concern that many average users still lack the 
knowledge or the attention to examine the 
information provided by security indicators, such as 
the address bar, the status bar, SSL certificate and 
security warning dialogs [6][24]. Many users readily 
believe the authenticity of whatever is displayed in 
the content area. We agree that this is the current fact, 
and argue that a significant effort should be spent on 
user education about secure browsing. But such an 
education would be ineffective without the 
trustworthiness of the security indicators – if their 
information can be spoofed, even we, as computer 
science professionals, do not know what to trust. The 
success of anti-phishing must be achieved by a joint 
effort between the browser vendors and the end users. 
It is analogous to automobile-safety: drivers have the 
responsibility to buckle up, and the automobile 
manufacturers need to guarantee that the seat-belts 
are effective. 

(2) How to deal with other types of visual spoofs 
that are not due to GUI logic flaws? In the 
introduction, we listed a few visual spoofing 
scenarios due to graphical similarities. These issues 
have little to do with logic problems, so their 
treatments are very different from the approach 
presented in this paper. For example, the current 
version of IE disallows a script from the Internet zone 
to open a chromeless window (i.e., a window having 
only the content area). It is also clearly specified in 
design that the URL displayed on the address bar 
should be left-justified after each address bar update, 
and no pop-up window can stay “always-on-top”, etc. 
SpoofStick is designed to interpret any confusing 
URL on the address bar [20]; Dynamic Security Skins 
[5] and Passpet [26] use trusted images to defeat 
certain spoofing attacks. Ye and Smith proposed 
several ideas to implement trusted paths for browsers 
by disallowing the page content elements to forge the 
page status elements [25]. Virtual machine 
techniques have also been used to provide trusted 
browser GUI elements, e.g., the Tahoma window 
manager provides a virtual screen abstraction to each 
browser instance [4]. Nevertheless, when the internal 
GUI logic is flawed as shown in the paper, ensuring 
unforgeable GUI elements is not a remedy. 
Therefore, GUI logic flaw and graphic similarity can 
be viewed as two different problems under the same 
umbrella of visual spoofing.  

5.3 A Broad Spectrum of Tools Can Be Used 
for Systematic Exploration 
The essence of our approach is that we 

systematically explore GUI logic. Whether the 



 

   

exploration is done by symbolic formal analysis (such 
as theorem proving or model checking) or by 
exhaustive testing is less important. As an example of 
exhaustive testing, we used the binary instrumentation 
tool Detours [10] to test the status bar logic. The basic 
idea is that since we know the program invariant and 
how to generate canonical user action sequences and 
canonical DOM trees, we can generate actual 
canonical HTML pages and actual mouse messages to 
test the actual IE status bar implementation. The 
advantage of the exhaustive testing approach is that it 
does not require manual modeling of the behaviors of 
each HTML element, and therefore can avoid the 
potential inaccuracies in the logic model. Applying this 
technique, we were able to find all spoofs derived from 
our previous modeling.  

Nevertheless, there is no fundamental difference 
as to whether the exploration is done symbolically 
(e.g., by Maude) or by exhaustive testing (e.g., by 
Detours), because both techniques are based on the 
same understanding of the search space and the test-
case construction. The main effort for the symbolic 
exploration is to correctly specify the GUI logic in 
sufficient detail. The exhaustive testing requires much 
effort to drive the system’s internal state transitions. 
For example, to test the address bar logic, we would 
need to exhaustively enumerate all event interleaving 
possibilities in an actual renderer, which is a non-
trivial task.  

6.  Related Work 
The contributions of our work are: (1) the 

formulation of GUI logic correctness as a research 
problem, and (2) the proposal of a systematic approach 
to uncover GUI logic flaws leading to visual spoofs. 
There is little existing work related to our first 
contribution, but a wealth of work is related to the 
second – formal methods and program analysis 
techniques have been successful in discovering 
software reliability and security flaws. We summarize 
a few techniques below. 

The SLAM technique [1] uses theorem proving 
and model checking tools to statically verify whether 
or not predefined “API usage rules” are obeyed in 
large programs. A static driver verifier is built on the 
SLAM technique, and has been deployed for Windows 
driver implementation correctness. Model checking 
techniques are also developed to find file system bugs 
[27] and security vulnerabilities [3] in large bodies of 
legacy source code. Much research has been done in 
formal verification of security protocols [15]. A static 
analysis technique is used for detecting higher level 
vulnerabilities such as SQL injections, cross-site 
scripting, and HTTP splitting attacks [13]. Our work is 
complementary to the existing research, because we 
have focused on machine-user link trustworthiness.  

Also related are research papers on phishing 
attacks, e.g., PwdHash is a browser plug-in that 
transparently produces a different password for each 
site to prevent phishing sites from obtaining usable 
passwords [19]. Florencio and Herley designed a 
technique to detect password phishing by monitoring 
password-reuse patterns between a well-known site 
and an unfamiliar site [9].  

7. Conclusions 
GUI logic flaws are a real and pressing security 

problem – these flaws can be exploited to lure even 
security-conscious users to visit malicious web pages. 
We have formulated GUI logic correctness as a new 
research problem, and have proposed a systematic 
approach to proactively uncover logic flaws in 
browser GUI design/implementation that lead to 
spoofing attacks.  

Specifically, based upon an in-depth study of the 
logic of key subsets of IE source code, we have 
developed a formal model of the browser logic and 
have applied formal reasoning to uncover important 
new spoofing scenarios. This has been done for both 
the status bar and the address bar. The knowledge 
obtained from our approach offers an in-depth 
understanding of potential logic flaws in the 
graphical interface implementation. The IE 
development team has confirmed that all thirteen 
flaws reported by us are indeed exploitable, and has 
fixed eleven of them in the latest build. Through this 
work, we demonstrate the feasibility and the benefit 
of applying a rigorous approach to GUI design and 
implementation. 

Despite the fact that the analysis approach is 
systematic, it only provides relative completeness: 
relative to the kind of spoofing scenarios being 
considered, the IE code subset currently modeled, 
and our search spaces. Therefore, an important task 
ahead is to obtain a precise high-level specification of 
more IE modules, and to extend our current formal 
models and analyses to cover most IE functionality. 
For example, the model should accommodate the tab 
browsing logic and the hosting mechanisms for 
document types other than HTML, such as PDF, 
Microsoft Word, Macromedia Flash, etc. Our 
methodology can be extended to tackling this 
pending challenge in the future. 

GUI logic flaws affect all web browsers, not just 
IE. We believe that the methodology presented in this 
paper can be equally applied to systematically 
identify vulnerabilities in other browsers. More 
broadly, non-browser applications, e.g., email clients 
and digital identity management tools [14], have 
similar graphical interface integrity issues. Thus, 
ensuring GUI logic correctness is a research direction 
with significant practical relevance. 



 

   

Acknowledgements: 
Many colleagues at Microsoft kindly provided 

valuable comments to improve this work. We thank 
Bill Bolosky, Brad Daniels, Rich Draves, Ulfar 
Erlingsson, Tim Harris, Cormac Herley, Emre 
Kiciman, Jim Larus, Madan Musuvathi, Shaz Qadeer, 
Kevin Schofield, Dan Simon and Chad Verbowski 
from Microsoft Research; Jeremy Dallman, Rob 
Franco, Mike Friedman, Dean Hachamovitch, Vikram 
Harinau, Li-Hsin Huang, Patrick Mann, Dan Plaster, 
Christopher Vaughan, Chris Wilson, Tong Wynn, Yin 
Xie, Zhenbin Xu and Geng Yang from the IE Team; 
Steve Adegbite, Greg Hartrell, Steve Lipner, Rebecca 
Norlander, Mike Reavey, David Ross, Dave Steeves 
and Matt Thomlinson from the Security Business Unit. 
Collin Jackson at Stanford University and Jun Xu at 
North Carolina State University offered insightful 
discussions. We received valuable comments from 
anonymous reviewers. The work of José Meseguer and 
Ralf Sasse has been supported in part by ONR Grant 
N00014-02-1-0715 and NSF Grant CNS-05-24516. 

References: 
[1] Thomas Ball, Sriram K. Rajamani. “The SLAM 

Project: Debugging System Software via Static 
Analysis”, ACM Principles of Programming 
Languages Conference, 2002. 

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick 
Lincoln, Narciso Martí-Oliet, at al. Maude: 
specification and programming in rewriting logic. 
Theoretical Computer Science, 285(2): 2002. 

[3] Hao Chen, Drew Dean, and David Wagner. “Model 
checking one million lines of C code”. Network and 
Distributed System Security Symposium (NDSS), 2004. 

[4] Richard S. Cox, Jacob G. Hansen, Steven D. Gribble, 
and Henry M. Levy: "A Safety-Oriented Platform for 
Web Applications," IEEE Symposium on Security and 
Privacy, 2006 

[5] Rachna Dhamija and J. D. Tygar. “The Battle Against 
Phishing: Dynamic Security Skins,” Symposium on 
Usable Privacy and Security (SOUPS), July 2005. 

[6] Rachna Dhamija, J. D. Tygar and Marti Hearst. "Why 
Phishing Works". Conference on Human Factors in 
Computing Systems (CHI), 2006. 

[7] Jeremy Epstein, John McHugh, Rita Pascale, Hilarie 
Orman, Glenn Benson, et al, "A prototype B3 trusted X 
Window System," Computer Security Applications 
Conference, 1991. 

[8] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan 
S. Wallach. "Web Spoofing: An Internet Con Game," 
20th National Information Systems Security 
Conference, 1996 

[9] Dinei Florencio and Cormac Herley. “Stopping a 
Phishing Attack, Even when the Victims Ignore 
Warnings”. Microsoft Research MSR-TR-2005-142 

[10] Galen Hunt and Doug Brubacher. "Detours: Binary 

Interception of Win32 Functions," Proceedings of the 
3rd USENIX Windows NT Symposium, pp. 135-143. 
Seattle, WA, July 1999. 

[11] Internet Explorer Window Loading Race Condition 
Address Bar Spoofing. http://secunia.com/advisories/ 
19521/ 

[12] José Meseguer. “Conditional Rewriting Logic as a 
United Model of Concurrency”. Theoretical Computer 
Science, 96(1): 73-155, 1992. 

[13] Benjamin Livshits, Monica S. Lam. "Finding Security 
Vulnerabilities in Java Applications with Static 
Analysis," USENIX Security Symposium, 2005. 

[14] Microsoft Corporation. Microsoft's Vision for an 
Identity Metasystem. http://msdn.microsoft.com/ 

[15] Catherine Meadows. Formal Verification of 
Cryptographic Protocols: A Survey. Lecture Notes in 
Computer Science, 917, 135-150, 1995, Springer. 

[16] The MSDN Library. “Changing Element Styles”. 
http://msdn.microsoft.com/  

[17] The MSDN Library. “OLE Background,” 
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/vccore/ html/_core_ole_background.asp 

[18] Charles Reis, John Dunagan, Helen J. Wang, Opher 
Dubrovsky, and Saher Esmeir. “BrowserShield: 
Vulnerability-Driven Filtering of Dynamic HTML”. 
Operating Systems Design and Implementation, 2006.  

[19] Blake Ross, Collin Jackson, Nicholas Miyake, et al. 
“Stronger Password Authentication Using Browser 
Extensions”. Usenix Security Symposium, 2005. 

[20] SpoofStick. http://www.spoofstick.com/ 
[21] Firefox Visual Spoofing Flaws. Bugtraq list, 

http://securityfocus.com/bid. Bug IDs: 10532, 10832, 
12153, 12234, 12798, 14526, 14919 

[22] Internet Explorer Visual Spoofing Flaws. Bugtraq list, 
http://securityfocus.com/bid. Bug IDs: 3469, 10023, 
10943, 11561, 11590, 11851, 11855, 1254.   

[23] Netscape Navigator Visual Spoofing Flaws. Bugtraq 
list, http://securityfocus.com/bid. Bug IDs: 7564, 10389 

[24] Min Wu, Robert C. Miller and Simson L. Garfinkel. 
"Do Security Toolbars Actually Prevent Phishing 
Attacks?" Conference on Human Factors in Computing 
Systems (CHI), 2006. 

[25] E. Ye, S.W. Smith. "Trusted Paths for Browsers." 11th 
Usenix Security Symposium. August 2002.  
(Also, E. Ye, Y.Yuan, S. W. Smith. “Web Spoofing 
Revisited: SSL and Beyond,” Technical Report 
TR2002-417, Dartmouth College. February 2002.) 

[26] Ka-Ping Yee, Kragen Sitaker. “Passpet: Convenient 
Password Management and Phishing Protection,” 
Symposium on Usable Privacy and Security, 2006. 

[27] Junfeng Yang, Paul Twohey, Dawson Engler, 
Madanlal, Musuvathi. “Using model checking to find 
serious file system errors”. USENIX Symposium on 
Operating Systems Design and Implementation, 2004 

 


