
Completeness of Discovery Protocols

Alwyn E. Goodloe
National Institute of Aerospace

Carl A. Gunter
University of Illinois at Urbana-Champaign

ABSTRACT
Tunnel-complex protocols construct topologies of security
tunnels by directing tunnel-establishment protocols to set
up pair-wise tunnels, where the resulting collection of tun-
nels achieves an overall security objective. Such protocols
ease the burden on network managers, but their design ex-
hibits subtleties relating to functional correctness that can
benefit from formal analysis. A class of tunnel-complex pro-
tocols that are of special interest are discovery protocols that
discover security gateways and set up tunnels to negotiate
their traversal by delivering the requisite credentials to sat-
isfy the policies at security gateways on the dataflow path.
We present a case study of a discovery protocol that sets up a
concatenated sequence of tunnels. We then propose the con-
cept of a theorem for discovery protocols that expresses the
completeness of the protocol’s credential distribution mech-
anism. The theorem is parameterized for different proto-
cols. We show how it is instantiated for the protocol in our
case study and discuss how specific instances of the theorem
characterize different classes of discovery protocols.

Categories and Subject Descriptors
C.2 [Computer and Communication Networks]: Secu-
rity and Protection; F.3 [Theory of Computation]: Log-
ics and Meanings of Programs; D.2.4 [Software/Program
Verification]: Formal Methods.

General Terms
Security, Theory, Verification.

Keywords
IPsec, Formal Methods, Certificates, Security Gateways, Dis-
covery Protocols.

1. INTRODUCTION
Security gateways guard administrative domains by en-

forcing polices that control the principals allowed to traverse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’09,November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-778-3/09/11 ...$10.00.

the boundary defined by the gateway. Organizations often
have two or three layers of nesting of administrative domains
so there may be as many as six gateways to traverse before
two hosts can communicate. Security tunnel protocols, such
as IPsec [25], protect information traveling over an insecure
communication path. In order to ensure that ingress and
egress traffic is authenticated and authorized, gateways can
require all such traffic arrive in a security tunnel. The re-
sulting complex of tunnels forms a virtual private network
(VPN).

The administrative tasks involved in configuring a VPN
are considerable and the process is error prone. For instance,
while tunnel establishment protocols such as the Internet
Key Exchange protocol (IKE V2) [24] are employed to cre-
ate the cryptographic information used by a security asso-
ciation, many parameters remain to be configured by the
administrator. As the number of security gateways grows
and the overlay topology becomes more complex, the bur-
den on the administrator grows. It is especially burdensome
if administrators need to react to the addition or removal of
a gateway by updating configurations throughout the net-
work. A common solution is to limit the complexity of the
topology, but even simple topologies are not trivial to ad-
minister. This difficulty has led to the development of sup-
port protocols that coordinate the construction of a tunnel
complex, which we designate as tunnel-complex protocols.
Scalability is limited if all the gateways on a given dataflow
path need to be known beforehand, since different organi-
zations may not communicate each time they change their
gateway topology. This situation is akin to the early days of
the Internet when forwarding tables were manually config-
ured. A solution lies in the form of discovery protocols that
discover the gateways, negotiate their traversal, and config-
ure tunnels dynamically to form a virtual topology where
the traffic flow is governed by the gateway policies.

The tunnel-complex protocols that have been deployed
to date are relatively simple, but given the need for more
sophisticated topologies, support protocols to create them
are likely to follow. Since tunnel-complex protocols auto-
matically configure security gateways, an error in the pro-
tocol can either allow unauthorized principals to traverse a
gateway or fail to deliver available credentials, consequently,
denying service. Our aim in this paper is to consider one
property that can be asserted about candidate discovery
protocols, forming a starting point for their systematic anal-
ysis. The property, which we call ‘completeness’, says that
the protocol assures that all of the necessary credentials are
communicated as part of the the discovery protocol. That

is, if there is a set of credentials that will enable a communi-
cation, then these are passed to the nodes that need to have
them. We illustrate the idea by presenting the design of a
discovery protocol that dynamically constructs a complex of
concatenated tunnels and proving a completeness theorem
for this protocol.

In the next section, we present a formal treatment of poli-
cies, credentials, and tunnels. An overview of discovery pro-
tocols follows. We then give an example of a discovery pro-
tocol that constructs a collection of concatenated tunnels.
Next, we formulate a general theory of completeness for dis-
covery protocols and prove our concatenated discovery pro-
tocol does indeed satisfy this criteria. Finally, we discuss
related works and conclude.

2. POLICIES AND TUNNELS
Security gateways enforce polices governing what princi-

pals are allowed to traverse the gateway. The policies are
satisfied only if some requisite collection of credentials are
presented to the gateway. If a principal can produce the
necessary credentials, then a tunnel can be setup with the
gateway to ensure that all traffic entering or exiting the gate-
way’s administrative domain is both authenticated and au-
thorized. To formulate our notions of discovery and com-
pleteness we must be more precise when speaking about
policies, credentials, and tunnels. Our intent is not to model
a specific standard or product, such as SPKI/SDSI, but to
formally capture essential concepts needed later in our pre-
sentation.

2.1 Policies and Credentials
We assume gateway polices specify those principals that

are allowed specific traffic flows. For instance, a policy at a
gateway may say that Alice, represented as principal KA, is
allowed to communicate between the address a1 and an ad-
dress a2. We formalize this as Pol〈KA : a1 ↔ a2〉. Suppose
a discovery protocol is invoked to enable communication be-
tween a1 and a2 and encounters a gateway enforcing this
policy, then the protocol must deliver the credential KA to
the gateway; otherwise, the protocol will fail. Generally,
gateway policies have the format θ = Pol〈K1, . . . , Kn : η〉
specifying a list of (root) principals K1, . . . , Kn that are
authorized by a gateway to communicate between the ad-
dresses given in the selector η. We assume each gateway
maintains a list of policies Θ = Pols[θ1, . . . , θn] that it en-
forces. For simplicity, we assume that the policies at each
gateway have disjoint traffic selectors. Hence, there is at
most one policy at a gateway for a given traffic flow. In
talking about the execution of a discovery protocol enabling
communication between two specific nodes, we often need
to reference the gateway policy that is enforced during this
run. We write Θη @ a to denote the policy at node a that
matches the selector η.

Although the details of most standard credential systems
are rather intricate, we simply view a credential as express-
ing a relationship between two principals or delegating au-
thority from one principal to another. For instance, Al-
ice may have a credential that says she belongs to Acme
Inc. Formalizing this concept, we say a credential ξ =
Cred〈KS , KI〉 defines a relation such as: KI ‘delegates’ to
KS , or KS ‘is a member of’ KI , or KS ‘speaks for’ KI .
Principal KI is called the issuer and KS the subject. Given
a credential that says KS speaks for KI , we often write

KS ⇒ KI . A collection of credentials Ξ is called a creden-
tial set. We shall later see that discovery protocols deliver a
credential set to each gateway on the path in order to obtain
permission to traverse that gateway.

To satisfy a gateway policy one must verify that a given
credential set contains a key listed in the policy. For in-
stance, if the policy at gateway G3 says KM is allowed to
traverse the gateway and a discovery protocol initiated by
Alice delivers the credential KA ⇒ KM saying she belongs
to principal M , then the policy is satisfied, but to ensure
integrity we require that there be a delegation chain from
G3 to A such as

KG3
⇒ KG2

⇒ KG1
⇒ KA ⇒ KM .

It remains to formalize this concept. Let T (Ξ) be the forest
of delegation trees formed from the credentials in Ξ. Given
the policy Θη for the traffic flow η and a credential set Ξ,
the satisfaction relation

Ξ |=Ka
Θη

is defined to be true if there exists a chain in T (Ξ) rooted
at Ka that contains one of the keys in Θη. The relation is
defined to be false otherwise. We assume that there exists
some mechanism that performs the task of computing Ξ |=ka

Θη, which returns ↑ GWPol(u, true) if successful, where u is
a unique identifier that will be described in more detail later
in the paper.

2.2 Security Tunnels and Establishment
From a high-level perspective, a security tunnel can be

viewed ‘type-theoretically’ as follows. A node a communi-
cates with a node g by wrapping each message m it sends
to g within a constructor C. Node g holds a corresponding
destructor C−, which it applies to get the message m. The
constructor C represents the bulk protocol between a and g.
The behavior of the constructor and destructor pair consti-
tute the essence of a security association. Node a may have
a security policy that acts as a filter indicating all messages
sent to g must be wrapped in C and node g may have a
policy that messages it receives from a must be wrapped in
C.

Tunnel establishment is the process of setting up a bidirec-
tional tunnel between two nodes. In type-theoretical terms,
a tunnel-establishment protocol causes the tunnel endpoints
to obtain the constructor C and destructor C− respectively
in such a way that they authenticate each other, authorize
the use of the constructor, and assure that they are the only
parties that have these operators. Tunnel-establishment forms
the core component of tunnel-complex protocols. We as-
sume that any establishment protocol employed in a tunnel-
complex protocol has the following three features. First,
the two parties exchange credentials and a newly discov-
ered gateway invokes a policy evaluation mechanism to ver-
ify that the credentials received satisfy the gateway’s poli-
cies. We assume that if principal B is the newly discov-
ered gateway participating in establishment with principal
A, then the protocol passes a collection of credentials to A
along with a delegation KB ⇒ KA. Secondly, we assume
that the establishment protocol installs security policy en-
tries. For instance, a tunnel being set up between nodes
C and D may have a policy installed saying that all traffic
flowing between nodes A and B should travel in the newly
created tunnel. Third, the establishment of shared crypto-

graphic keys for the associations by way of a key exchange
protocol [9, 28]. Depending on the specific tunnel-complex
protocol, IKE V2’s [24] traffic selection convention may not
be sufficient to satisfy the second requirement. It may be
possible to push the policy updates up to the tunnel-complex
protocol, but the resulting designs are much messier. For
further discussion of an establishment protocol intended for
use in tunnel-complex protocols see [17].

3. OVERVIEW OF DISCOVERY
Having introduced the necessary background and defini-

tions, we shall now focus on discovery protocols. Consider
the situation depicted in Figure 1. Alice, who works at

GW1 GW2 GW3 BobAlice

ACME Inc.

Coyote Co.

Accounting

Figure 1: Example Topology

ACME, wishes to communicate with Bob’s server, located in
the accounting department at Coyote Corporation. Alice is
located in the administrative domain of ACME’s corporate
network gateway GW1 while Bob is located behind Coyote’s
corporate gateway GW2 and is also inside the administra-
tive domain of the accounting department’s gateway GW3.
In order for Alice to communicate with Bob, she must tra-
verse all three of these gateways.

Although one can conceive of many different discovery
protocols, all of the discovery protocols considered here have
the same basic skeleton. We shall assume each run of a dis-
covery protocol has an associated unique identifier u called
a session identifier. A node a initiates discovery session u to
establish communication with a node b. The initiating host
a sends the distinguished packet P(a, b, Dis(a, u)) toward b,
containing the session identifier as well as the address a,
which is the node with which the intercepting gateway will
initiate establishment. The first gateway on the dataflow
path, GW1, intercepts this packet and the discovery proto-
col invokes tunnel establishment to setup a tunnel with a.
When this tunnel has been set up, GW1 releases the discov-
ery packet. The address in the discovery packet will vary
depending on the complex being created. For instance, if
the gateway releases the packet P(a, b, Dis(GW1, u)), then
the next intercepting gateway will set up a tunnel to GW1;
on the other hand, if the packet released had been
P(s, d, Dis(a, u)), then the next intercepting gateway will set
up a tunnel to a that is nested inside of the tunnel between
a and GW1. To prevent the tunnel complex from being
too great a burden on network communication, the tunnels
to the gateways only perform authorization and authenti-
cation. The process continues until the discovery process
reaches the destination node b, at which point an end-to-
end tunnel performing encryption is established to secure
communication between a and b.

Suppose the gateways depicted in Figure 1 are assumed
to have the following polices:

Gateway Policy
GW1 Pol〈KACME, dom(GW1) ↔ dom(GW2)〉
GW2 Pol〈KCoyote, KCoyoteSub,

dom(GW1) ↔ dom(GW2)〉
GW3 Pol〈KAlice, dom(GW1) ↔ dom(GW3)〉

where dom(GW) denotes all the addresses in the domain of
GW. Assume that Alice initiates communication with Bob.
The above policies say that in order to traverse GW1, the
gateway must be presented credentials from ACME. In or-
der to traverse GW2, this gateway must be presented cre-
dentials from Coyote directly or proof that it is a subcon-
tractor. Gateway GW3 requires credentials from Alice in
order to gain entry to its administrative domain.

Each node c executing a discovery protocol is assumed
to have a credential set Ξc that defines a relation with at
least one other entity. For instance, hosts and gateways
will have credentials defining the administrative domains to
which they belong. In the situation illustrated in Figure 1,
Alice and GW1 both belong to ACME, but gateway GW1
also contains a credential saying that ACME is a subcon-
tractor of Coyote corporation. Gateways GW2, GW3, and
Bob belong to Coyote Corp. In addition, both GW3 and
Bob also belong to Coyote’s accounting department. The
credentials defining this relationship are given in the follow-
ing table:

Node Credential Contents

Alice ΞA KA ⇒ KACME

GW1 ΞGW1 KGW1 ⇒ KACME ⇒ KCoyoteSub

GW2 ΞGW2 KGW2 ⇒ KCoyote

GW3 ΞGW3 KGW3 ⇒ KAcct ⇒ KCoyote

Bob ΞB KB ⇒ KAcct ⇒ KCoyote

We make no assumptions as to how credentials get initialized
at the nodes.

The host that initiates discovery may not have the req-
uisite credentials to traverse all the gateways on the path.
On the other hand, some of the gateways on the path may
possess the needed credentials. In the case of our example,
Alice possess the necessary credentials to traverse GW1 and
GW3, but not GW2. Yet GW1 does possess the requisite
credentials. Suitably designed discovery protocols can col-
lect credentials at the gateways on the path. Different proto-
col designs will deliver different credential sets. In the next
section, we shall focus on one such protocol and illustrate
how it delivers credentials to enable Alice to communicate
with Bob.

4. CONCATENATED DISCOVERY
Given the topology depicted in Figure 1 with the afore-

mentioned gateway policies and credentials, there are a num-
ber of different tunnel complexes that would enable Alice to
communicate with Bob. Perhaps the simplest topology con-
ceptually is a complex composed of a collection of concate-
nated tunnels connecting the gateways with an end-to-end
tunnel such as the one depicted in Figure 2.

A skeleton for the structure of our concatenated discovery
protocol is given as follows. A host sends out a discov-
ery packet that gets intercepted by the next gateway on the

GW1 GW2 GW3
Bob

Alice

ACME Inc.

Coyote Co.

Accounting

Figure 2: Concatenated Tunnel Complex

dataflow path. Establishment is invoked at the newly discov-
ered gateway to set up a pair of associations between itself
and the node that last released the discovery packet. When
the establishment initiator indicates that it has terminated,
this node sends the establishment responder an acknowl-
edgment ACK1 and receives an ACK2 acknowledgment in
turn. If the newly discovered node is not the destination
node, then the discovery packet is released and the estab-
lishment responder is invoked to set up a tunnel to the next
node on the path. If the most recently discovered node is
the destination, then upon the termination of establishment
and the receipt of the ACK2 message, establishment is in-
voked to set up an end-to-end tunnel. When this instance of
establishment completes, a FIN message is sent to the host
that initiated the discovery protocol.

GW1 GW2 GW3 BobAlice

ACME Inc.

Coyote Co.

Accounting

Disc(A,u) Disc(GW1,u) Disc(GW2,u) Disc(GW3,u)

Ack1 Ack1 Ack1 Ack1

Ack2 Ack2 Ack2 Ack2

Fin

Figure 3: Concatenated Discovery Execution

Figure 3 illustrates the execution of session u of our con-
catenated discovery protocol on the Alice-Bob example in
Figure 2. The protocol messages are displayed as black
lines and the establishment messages are displayed as dotted
black lines. Alice releases a discovery packet P(A, B, Dis(A, u))
destined for Bob. The packet is intercepted by gateway
GW1, which invokes establishment with Alice. The gate-
way then sends Alice an acknowledgment message
P(GW1, A, ACK1) in the newly created association flowing
from GW1 to Alice. Alice responds by sending an acknowl-
edgment P(A, GW1,ACK2) in the association flowing from
Alice to gateway GW1. Upon receiving this message, GW1
releases the discovery packet P(A, B, Dis(GW1, u)), where
the address A is replaced by GW1. The process repeats
until Bob has set up a tunnel with GW3, after which, Bob
initiates establishment with Alice to set up the end-to-end
tunnel. When this tunnel has been set up, Bob sends Alice
a Fin message.

We now show how the protocol delivers credentials to the
gateways using the example given in Figure 3. Assume that
the gateway polices and credentials at nodes are as given in
the tables above. Each session maintains its own credential

set Ξu, which is initialized to ΞA at the start of the protocol.
During the execution of establishment between Alice and
GW1, Alice sends the credential set

{KGW1 ⇒ KA} ∪ Ξu

to GW1, which invokes a mechanism to determine if these
credentials satisfy its policies. The the credential set deliv-
ered to GW1 says KGW1 ⇒ KA ⇒ KAcme, which satisfies
the policy at that gateway, whence the authorization mech-
anism returns ↑ GWPol(true). At this point GW1 adds it’s
credentials ΞGW1 to Ξu. In setting up the tunnel between
GW1 and GW2, the establishment protocol delivers to GW2
the credential set Ξu, composed of ΞA and ΞGW1 as well as
credentials saying that GW1 speaks for Alice and that GW2
speaks for GW1. These credentials form the chain

KGW2 ⇒ KGW1 ⇒ KA ⇒ KAcme ⇒ KCoyoteSub.

Since this satisfies the policy at GW2, the protocol adds
ΞGW2 to Ξu and continues executing. During the exchange
between GW2 and GW3 the protocol delivers Ξu to GW3,
which is composed of ΞA, ΞGW1, ΞGW2, and credentials say-
ing GW1 speaks for Alice, GW2 speaks for GW1, GW3
speaks for GW2, thus it possible to form the chain

KGW3 ⇒ KGW2 ⇒ KGW1 ⇒ KA ⇒

KAcme ⇒ KCoyoteSub,

which satisfies the applicable policy at GW3 and the proto-
col adds ΞGW3 to Ξu and continues executing. Notice that
the protocol collected credentials at each gateway as it exe-
cutes and presents them to the next gateway on the path.

We shall now present the concatenated discovery protocol
in more detail by describing the actions of each of the prin-
cipals. We first present the the actions of the initiating host
s, we then present the actions performed by a gateway a on
the path, finally we present the actions at the destination
host d.
Initiating Host

Initiate Protocol The protocol is invoked at initiating host s

to communicate with principal d. Principal s generates a
unique protocol session identifier u and initializes the cre-
dential set Ξu to Ξs.

Send Discovery Message The initiator sends the message

P(s, d, Dis(s, u)).

The initiator then awaits the intercepting node to initiate
establishment.

Exchange Acknowledgments Upon termination of the estab-
lishment protocol with the first gateway on the path a, the
host awaits the receipt of the message P(a, s, ACK1). This
acknowledgment indicates that the intercepting gateway a

has installed security polices directing all traffic flowing be-
tween s and d to travel in the newly established tunnel
between s and a. The host sends back a similar acknowledg-
ment P(s, a, ACK2) indicating that establishment has ter-
minated and the corresponding security policies have been
installed.

The host then awaits establishment to be initiated by d.

Await Fin Upon termination of establishment of the end-to-end
tunnel between s and d, the host awaits receipt of a FIN ac-
knowledgment indicating that the policy database at d were
written and when this is received, the protocol terminates.

Gateway on Path We assume the gateway under consid-
eration is designated as a and that it intercepts a discovery
packet sent from node b. In the case of the first intercepting
gateway on the path, b = s.

Intercept Discovery Message If gateway a receives a message
of the form P(s, d, Dis(b, u)), it initiates establishment with
node b.

Exchange Acks When establishment has successfully terminated,
node a sends node b the message P(a, b, ACK1). The node
then awaits the arrival of an acknowledgment from b.

Release Discovery Packet Upon receipt of a message of the
form P(b, a, ACK2), the gateway releases the discovery packet
P(s, d, Dis(a, u)), where node a has replaced b in the discov-
ery message. The gateway awaits the next node e on the
path to initiate establishment.

Exchange Acks When establishment has successfully terminated
and a message of the form P(e, a, ACK1) has been received
gateway a replies with a message of the form P(a, e, ACK2).

Destination Host

Intercept Discovery Message If the destination d receives a
message of the form P(s, d, Dis(b, u)), it initiates establish-
ment with node b.

Exchange Acks When establishment has successfully terminated,
node d sends the message P(d, b, ACK1). Node d then awaits
the receipt of an acknowledgment from node b.

Set up End-to-End Tunnel Upon receipt of a message of the
form P(b, d, ACK2), node d initiates establishment with s.

When establishment has successfully terminated, it sends
the message P(d, s, FIN) to indicate that the tunnel complex
enabling communication between s and d has been setup.

5. FORMALIZING DISCOVERY
Although space limitations have prevented us from being

too formal in our presentation, in order to formulate our
completeness theorem in the next section, we need to assume
a greater degree of formalization when talking about the
protocols. Following the presentation in [17], we assume that
a discovery protocol is expressed as a set of rewrite rules, but
limit our presentation to only those aspects needed in this
paper. Our rewrite rules take the form

t1 @ a1, . . . , tn @ an −→ t
′
1 @ a

′
1, . . . t

′
m @ a

′
m,

where ti are terms and the ai represent the address at which
the term is located. The application of a rule L −→ R to
the multiset M rewrites to the multiset M ′ = M − L′ ∪ R′,
where L′ is a multiset of terms in M matching L and R′ is
a multiset matching the pattern R. The sequential appli-
cation of a collection of rules yields a sequence of multisets
M1, M2, . . . , Mn+1 called a trace and provides a view of the
multiset representing the network state as the protocol ex-
ecutes. Each change to the network state results in a new
multiset being added to the trace sequence. For instance, if
the policy evaluation mechanism returns true, then we as-
sume that the trace records a ↑ GWPol(u, true) term having
been written.

In this presentation, we are primarily concerned with an-
alyzing how credentials migrate during the execution of dis-
covery protocols and whether these credentials satisfy the
polices at the gateways. Since credentials get moved in
messages we need to consider how message transmission is
recorded in a trace. Consider a packet P(b, c, msg) @ a, with
source address b, destination address c, and payload msg,
located at node a. We model the movement of the packet
from one node to another using the rewrite rule

P(b, c, msg) @ a −→ P(b, c, msg) @ f(a),

where the function f represents a forwarding table lookup.
The execution of this rule rewrites the term P(b, c, msg) @ a

in M to P(b, c, msg) @ f(c) in M ′. As we have seen, discov-
ery protocols move credentials from one node to another
as they execute by including them in tunnel-establishment
protocol messages. Hence Ξu

@ a becomes Ξu
@ b as the pro-

tocol moves the credentials from node a to node b.
Consider a trace T = M1, . . . , Mn, of the execution of a

discovery protocol, we say Mi ∈ T if Mi is identical to Mi

in T and we say that for a term t, t ∈ T if there exists a
multiset Mi ∈ T such that t ∈ Mi. We denote the set of
elements appearing in a multiset M as L(M).

If the gateway policies or the credentials defining the en-
tities to which gateways belong change during execution of
the discovery, then our notion of completeness is problem-
atic. Consequently, we need to qualify the theorem with
an assertion that the theorem holds for a fixed set of gate-
way polices and gateway credentials. This is formalized as
follows. Suppose T = M1, . . . , Mn is a trace recording the
execution of a discovery protocol, where a1, . . . , am are the
nodes on the dataflow path. We say that the gateway polices
and node credentials are fixed in T if for all i (1 ≤ i ≤ m)
and for all j, k (1 ≤ j, k ≤ n),

if Ξai ∈ Mj and (Ξ′)ai ∈ Mk, then Ξai = (Ξ′)ai

if Θ@ ai ∈ Mj and Θ′
@ ai ∈ Mk, then Θ = Θ′

.

Let G(M) denote the multiset where the credentials at
each node in M are distributed to each node in the network
of M . This is formalized as follows. Denote the nodes in the
network of M as a1, . . . , an. The multiset G(M) is defined
to be the same as M, but with each Ξai is replaced by.

[

1≤k≤n

Ξak .

It is assumed that when a discovery protocol is run in G(M)
that the mechanism that determines whether credentials sat-
isfy a gateway’s policies uses the credentials that reside at
the node where authorization is invoked. It is assumed that
one protocol session cannot interfere with another. Suppose
a discovery protocol always executes to completion if invoked
in G(M). This means that the protocol will always run to
completion if the requisite credentials are delivered to the
proper gateways on the dataflow path.

6. COMPLETENESS THEOREM
The case study in Section 4 illustrates how one particu-

lar protocol delivers credentials to gateways on the path in
order to enable the traversal of the said gateways. A sim-
plistic view of discovery protocol correctness would be to say
that if the credentials necessary to traverse a gateway on the
path are available either at the initiating host or at previous
gateways on the path, then the protocol will deliver them.
Yet this is somewhat presumptuous given that there may be
valid reasons to restrict access to a gateway’s credential set.
Rather than exclude such protocols, we formulate a param-
eterized theorem that accommodates a variety of discovery
protocols. The gist of our notion of completeness is that if
the credentials that are supposed to be delivered to gate-
ways on the path do indeed satisfy the gateway’s policies,
then the protocol delivers those credentials.

We view a defining characteristic of a discovery proto-
col to be the credential set it delivers to each node on the
path. If setting up the complex of nested tunnels depicted

Bob

GW2

Coyote
Corp

Alice

GW1

Accounting

Figure 4: Nested Tunnel Complex

in Figure 4, the most obvious protocol would release a dis-
covery packet that gets intercepted by GW1. The security
gateway invokes tunnel establishment with Alice who sends
her credentials to GW1. Upon termination of the establish-
ment protocol, the discovery protocol releases the discov-
ery packet, where Alice is still the given tunnel endpoint.
Gateway GW2 intercepts this message and initiates estab-
lishment with Alice. In this simple protocol, the credentials
from GW1 are not propagated back to Alice so unlike the
concatenated protocol presented in Section 4, GW2 receives
Alice’s credentials, but not those from GW1. This models a
common situation where road warriors must provide pass-
words and other credentials to set up VPNs to each of gate-
way on the path in order to establish communication with
a corporate server.

Having seen that different discovery protocols have differ-
ent credential delivery patterns, we define a protocol’s char-
acterizing credential set C as the credentials delivered to
each node by a specific protocol. In the case of the nested
protocol given above, the characterizing credential set is
Cai

= {Kai
⇒ Ka} ∪ Ξa, where a is the initiating host

and node ai was the last discovered node. In the case of the
concatenated protocol presented in Section 4, the character-
izing credential set is more subtle, the protocol delivers to
node ai the credentials from previously discovered gateways
a1, . . . , ai−1. This is formalized as

Cai
=

[

1≤l<i

({Kl+1 ⇒ Kl} ∪ Ξal). (1)

It is possible for different protocols to possess the same char-
acterizing credential set. For instance, one can construct a
protocol that sets up the nested tunnels in Figure 4 where
the credentials at gateways are propagated back to the ini-
tializing host and used to set up the next tunnel. This would
have the same characterizing credential set as our concate-
nated protocol.

We can now formulate a general completeness theorem
defining correctness in terms of credential delivery. The the-
orem is stated in terms of the execution trace of a specific
session u of the protocol in question. Recall that the ses-
sion identifier is assumed to be unique. To ensure that the
trace records the initialization of session u we insist that u

not appear in first multiset of the trace. In order to keep
the focus on credential delivery, we assume that the pro-
tocol would execute successfully if every node had all the
credentials needed. The theorem states that if the creden-
tial set that is supposed to be delivered to a node on the
path satisfies that node’s policies, then the trace records
that the credential evaluation mechanism returns an affir-
mative judgment for that node. The theorem is formalized
as follows.

Theorem 1. Given a discovery protocol P with charac-
terizing credential set Cai

, let T = M1, . . . , Mn be a trace of
the execution of session u of P initiated at node a1 (= s) to
communicate with node an (= d) and the gateway policies
and node credentials are assumed fixed in T, where u is a
unique identifier. Assume u 6∈ L(M1) and that the forward-
ing tables indicate that the nodes on the dataflow path are
a2, . . . , an−1. Assume that a protocol session u always runs
successfully when initiated in G(M1). For each i (2 ≤ i ≤ n)
there exists a term ↑ GWPol(u, true)@ ai such that the fol-
lowing statement holds: if

Cai
|=ai

Θa1↔an @ ai

then

↑ GWPol(u, true) @ ai ∈ T.

To apply the theorem to a specific protocol, one must for-
malize the characterizing credential set and then prove the
theorem for that protocol. We illustrate this for the con-
catenated protocol described in Section 4, using the charac-
terizing credential is given in Equation 1.

Proof. Proof is by induction on the number of gateways.
For the base case there are no intermediate gateways only

source a1 and destination a2. Consider the execution of
the concatenated discovery protocol. Node a1 releases the
discovery packet and invokes the establishment responder.
Upon receiving the discovery packet, node a2 invokes the
establishment protocol initiator to set up a pair of asso-
ciations between a1 and a2. The establishment protocol
responder sends Ξu = Ξa1 ∪ {Ka2

⇒ Ka1
} to a2 in the

establishment response message. Upon receiving this mes-
sage, the protocol invokes the policy evaluation mechanism
with the credentials received . Since it was assumed that
(Ξ @ a1 ∪ {Ka2

⇒ Ka1
}) |=a2

Θa1↔a2 @ a2, we can con-
clude that the policy evaluation mechanism returns true so
the trace records a term ↑ GWPol(u, true) @ a2 and thus the
base case is satisfied.

Suppose the statement is true for i gateways, we show it
is true for i + 1 gateways. It follows from the induction hy-
pothesis that the discovery protocol ran to the point that it
had successfully set up tunnels between aj and aj+1, where
1 ≤ j < i. It remains to show that the protocol success-
fully sets up the pair of associations between ai and ai+1.
Gateway i is not the final destination, hence it releases the
discovery packet. Upon receiving this message, gateway ai+1

executes invokes the establishment protocol to set up a pair
of associations between ai and ai+1. The establishment pro-
tocol responder sends Ξu = Ξu ∪ Ξai ∪ {Kai+1

⇒ Kai
} to

ai+1. It follows from the induction hypothesis, that autho-
rization succeeded at nodes a1, . . . , ai and consequently the
credential sets from these nodes are passed to the next node
on the path as the protocol executes; so the credential set
sent from ai to ai+1 is

[

1≤l≤i

(Ξ @ al ∪ {Kal+1
⇒ Kal

}).

Upon receiving the establishment response message, the pro-
tocol invokes the policy evaluation mechanism. Since it was
assumed that

[

1≤l≤i

(Ξ @ al ∪ {Kal+1
⇒ Kal

}) |=ai+1
Θa1↔an @ ai+1,

we can conclude that the policy evaluation mechanism re-
turns true so the trace records a term ↑ GWPol(u, true)@ ai+1.
The theorem follows from induction.

The concatenated protocol sets up a fixed topology, conse-
quently the formulation of the characterization credentials as
well as the completeness proof is straightforward, but more
dynamic protocols can be subtle. For instance, a protocol
that dynamically sets up a less uniform tunnel complex can
create a tunnel that in effect hides gateways so that their cre-
dentials are not available to present to the latest discovered
gateways [16]. Formalization and proof of the completeness
theorem for such a protocol is nontrivial.

7. RELATED WORK
A popular VPN configuration in use today is the hub and

spoke model where a collection of branch offices connect to
a central ‘hub’ office. Cisco’s Dynamic Multipoint VPN
(DMVPN) [11] protocol can be viewed as a basic tunnel-
complex protocol aimed at this topology. DMVPN alleviates
the burden on the hub by setting up direct spoke-to-spoke
IPsec tunnels. The spokes typically have dynamic addresses,
but maintain a tunnel to the hub. The hub acts as a next
hop resolution protocol server (NHRP) [27] with a static IP
address. A spoke router learns the address of another spoke
from the NHRP hub. If Alice is a host located in spoke A
and she wishes to communicate with host Bob located in
spoke B, Alice will notify the DMVPN spoke router, which
in turn sends a NHRP resolution request to the hub. The
hub then sends a resolution request on to spoke B. Spoke
B then initiates IKE tunnel establishment with spoke A.
When a DMVPN process terminates, an IPsec tunnel is set
up directly between spokes A and B through which Alice
and Bob communicate.

The Layer 3 Accounting (L3A) protocol [18] is a tunnel-
complex protocol that sets up a complex of tunnels to pro-
tect a network’s accounting infrastructure from DoS attacks.

Cisco’s Tunnel Endpoint Discovery (TED) [15] is a dis-
covery protocol that assumes only a single gateway in each
organization. The protocol works as follows. Host A sends a
packet to Host B. A router acting as a gateway to the domain
where host A dwells intercepts the packet and checks to see
if there is an existing association with a matching policy. If
so, the packet is sent to its destination. Otherwise, a dis-
covery probe is sent to the packet’s destination. A gateway
protecting Host B intercepts the probe and sends back a re-
ply. The tunnel-establishment protocol IKE is then invoked
to set up an IPsec tunnel between the two gateways. More
complex discovery protocols are needed in order to traverse
nested gateway structures.

Cisco’s Group Encrypted Transport VPN (GET VPN) [10]
takes a different approach to the one advocated in this doc-
ument in that it employs a centralized key server holding all
polices relating to tunnels. Gateways download security po-
lices and security association configuration information from
the central server. All members in the GET VPN use the
same shared key. The GODI group key management proto-
col [3] is employed to manage the shared keys. Although this
approach may work well within an organization, it does not
easily scale to facilitate VPNs that cross enterprise bound-
aries.

The concatenated protocol defined in Section 4 can be
viewed as a generalization of TED to more than two gate-

ways and the protocol sketched in Section 6 to set up the
nested tunnel complex illustrated in Figure 4 generalizes and
automates a common configuration used by road warriors to-
day. Our models and implementations [18] have assumed a
simple network infrastructure. In practice, discovery pro-
tocols may encounter problems interacting with existing in-
frastructure such as Multiprotocol Label Switching Archi-
tecture (MPLS) [30]. Network route changes may break a
tunnel complex requiring the protocol to be rerun. Further
research is required to model such interactions.

In order to traverse a security gateway, a principal must
be authenticated and authorized to perform the requested
action. In the case of discovery protocols, we also require
gateways to authenticate themselves. Within our frame-
work, authorization is performed using distributed creden-
tials and assumes the existence of some public key infras-
tructure. Tunnel-complex protocols are responsible for de-
livering the credentials that satisfy a particular node’s pol-
icy. There is a large body of work on distributed creden-
tials that we took inspiration from. Rivest and Lampson
proposed a public-key infrastructure called the Simple Dis-
tributed Security Infrastructure (SDSI) [29]. SDSI princi-
ples are identified with public keys and only things signed
by the corresponding private key are recognized. Ellison and
Franz, et al. developed the Simple Public Key Infrastructure
(SPKI) that provides a mechanism for authorization. SPKI
uses authorization certificates to delegate a specific author-
ity from an issuer to a subject. The two efforts have been
merged and there is currently a SPKI/SDSI working group
in the IETF that has produced several RFCs [12–14]. The
tunnel calculus authorization layer can be viewed as simi-
lar to, but simpler, than SPKI/SDSI. There is a substantial
body of research dedicated to giving a formal semantics to
SPKI/SDSI [1, 20, 21, 26], and [23]. The trust management
approach [5] to authorization seeks to create an application
independent component to verify if a request is authorized
to take some action. Given the local security policy, a set
of credentials, and a request, the trust engine returns a de-
cision as to the whether or not the request complies with
the policy. PolicyMaker [6, 7] and Keynote [8] are notable
examples of this approach. The Query Certificate Manager
(QCM) [19] is closely related to completeness for discovery
protocols because it combines verification with protocols for
transporting certificates to the needed verifier. Our model
for credentials can be viewed as an abstraction inspired by
SPKI and our model of policies are admittedly simple com-
pared to what some others have proposed, but both are suf-
ficient for our purposes. Rather than model the, necessarily
complex, machinery used in a specific technology for verify-
ing that a credential set satisfies a given policy, we simply
define a relation that acts as a specification that could be
satisfied by many of aforementioned proposals.

The π-calculus based ProVerif tool [4] provides sophisti-
cated automated assistance to reason about secrecy prop-
erties and has been applied to the analysis of the JFK [2]
key exchange protocol. State machines have long been used
to represent protocols. Guttman, Herzog, and Thayer [22]
model IPsec tunnels using state machines and formalize au-
thentication and confidentiality properties.

8. CONCLUSION
The design of discovery protocols has been a difficult pro-

cess. Despite the clear benefits of a more dynamic way to

configure tunnels and gateways and the existence of flexi-
ble base protocols that should be good building blocks for
tunnel complex construction and a number of attempts to
advance standards for them, discovery protocols still seem
more a dream for the future than a current-day reality. De-
veloping an appropriate theoretical foundation can play a
valuable role in exploring the design space. In this paper we
advance one important type of result: the completeness of
a discovery protocol. We have shown how at least one ma-
jor type of discovery protocol, one based on concatenated
tunnels, can be shown complete. This step may show the
way to further theoretical advances that lead to a scientific
foundations for the design of practical discovery protocols.

Acknowledgments
This work was supported in part by NSF CNS 07-16626,
NSF CNS 07-16421, NSF CNS 05-24695, ONR N00014-08-
1-0248, NSF CNS 05-24516, NSF CNS 05-24695, DHS 2006-
CS-001-000001, and grants from the MacArthur Foundation
and Boeing Corporation. The views expressed are those of
the authors only.

9. REFERENCES
[1] M. Abadi. On SDSI’s Linked Local Name Spaces.

Journal of Computer Security, 6(1-2):3–21, 1998.

[2] M. Abadi, B. Blanchet, and C. Fournet. Just Fast
Keying in the Pi calculus. In D. Schmidt, editor,
European Symposium on Programming (ESOP),
Lecture Notes in Computer Science 2618.
Springer-Verlag, 2004.

[3] M. Baugher, B. Weis, T. Hardjono, and H. Harney.
The Group Domain of Interpretation (GDOI). RFC
3547, IETF, 2003.

[4] B. Blanchet. Automatic Proof of Strong Secrecy for
Security Protocols. In Proceedings of the 25th Annual
IEEE Symposium on Security and Privacy (Oakland
04), pages 86–100. IEEE, 2004.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The Role of Trust Management in
Distributed Systems Security. In Secure Internet
Programming, Lecture Notes in Computer Science
1603. Springer-Verlag, 1999.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
Trust Management. In Proceedings of Symposium on
Security and Trust Management, pages 164–173, 1996.

[7] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance
Checking in Policy Maker. In Proceedings of Financial
Cryptography, Lecture Notes in Computer Science
1465, pages 254–274. Springer-Verlag, 1998.

[8] M. Blaze, J. Ioannidis, and A. Keromytis. Trust
Management in IPsec. ACM Transactions on
Information and System Security, 32:1–24, 2002.

[9] C. Boyd and A. Mathuria. Protocols for Authentication
and Key Establishment. Springer-Verlag, 2003.

[10] Cisco. Group Encrypted Transport VPN (GET VPN):
Design and Implementation Guide. Document V1.0,
August 2008.

[11] Dynamic Multipoint VPN (DM VPN). Cisco White
Paper.

[12] C. Ellison. SPKI Requirements. RFC 2692, IETF,
1999.

[13] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. Simple Public Key
Certificate. Technical report, IETF, 1999.

[14] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
RFC 2693, IETF, 1999.

[15] S. Fluhrer. Tunnel endpoint discovery. Internet Draft
draft-fluhrer-ted-00.txt, IETF, 2001.

[16] A. Goodloe, M. McDougall, M.-O. Stehr, and C. A.
Gunter. Design and Analysis of Sectrace: A Protocol
to Set up Security Associations and Policies in IPsec
Networks. September 2004.

[17] A. E. Goodloe and C. A. Gunter. Reasoning About
Concurrency for Security Tunnels. In Proceedings of
20th IEEE Computer Security Foundations (CSF 07),
pages 64–78. IEEE, 2007.

[18] A. E. Goodloe, M. Jacobs, G. Shah, and C. A. Gunter.
Proceedings of the L3A: A protocol for layer three
accounting. In Proceedings of Secure Network Protocols
(NPSec ’05), Boston, MA, November 2005. IEEE.

[19] C. A. Gunter and T. Jim. Policy-Directed Policy
Certificate Retrieval. Software: Practice and
Experience, 30(15):1609–1640, September 2000.

[20] J. Halpren and R. van de Meyden. A Logic for SDSI’s
Linked Local Name Space. Journal of Computer
Security, 9(1):47–74, 2001.

[21] J. Halpren and R. van de Meyden. A Logical
Reconstruction of SPKI. Journal of Computer
Security, 11(4):581–614, 2003.

[22] J. Guttman and A. Herzog and F. Javier Thayer.
Authentication and Confidentiality via IPsec. In F.
Cuppens and Y. Deswarte and D. Gollmann and M.
Waidner , editor, Proceedings of the 6th Annual
European Symposium on Research in Computer
Security (ESORICS), Lecture Notes in Computer
Science 1895, pages 255–272. Springer-Verlag, 2000.

[23] S. Jha and T. Reps. Analysis of SPKI/SDSI
Certificated Using Model Checking. In Proceedings of
15th IEEE Computer Security Foundations Workshop
(CSF 02), pages 129–144. IEEE, 2002.

[24] C. Kaufman. Internet Key Exchange (IKE V2)
protocol. RFC 4306, IETF, 2005. Obsoletes: 2407,
2408, 2409.

[25] S. Kent and K. Seo. Security architecture for the
internet protocol. RFC 4301, IETF, 2005. Obsoletes:
2401.

[26] N. Li and J. Mitchell. Understanding SPKI/SDSI
Using First Order Logic. In IEEE Computer Security
Workshop, pages 89–103, 2003.

[27] J. Luciani, D. Katz, D. Piscitello, B. Cole, and
N. Doraswamy. Next Hop Routing Protocol (NHRP).
Technical report, IETF, 1998. RFC.

[28] A. J. Menezs, P. C. van Oorchot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[29] R. Rivest and B. Lampson. SDSI - A Simple
Distributed Security Infrastructure, 1996.

[30] E. Rosen, A. Viswanathan, and R. Callon.
Multiprotocol Label Switching Architecture. RFC
3031, IETF, 2001.

