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ABSTRACT
Network protocol design is usually an informal process where de-
bugging is based on successive iterations of a prototype implemen-
tation. The feedback provided by a prototype can be indispensable
since the requirements are often incomplete at the start. A draw-
back of this technique is that errors in protocols can be notoriously
difficult to detect by testing alone. Applying formal methods such
as theorem proving can greatly increase one’s confidence that the
protocol is correct. However, formal methods can be tedious to use,
rarely support successive design iterations and prototyping, are dif-
ficult to scale to entire designs, and typically require a clear under-
standing of requirements in advance. We investigate how formal
simulation based on Maude executable specifications overcomes
many of these hurdles. We apply this technique in the early stages
of the design of a new security protocol, known as Layer 3 Ac-
counting (L3A), aimed at protecting known vulnerabilities in the
wireless accounting infrastructure. The protocol sets up a collec-
tion of IPsec security associations that provide the necessary pro-
tection. We demonstrate how formal simulation uncovered prob-
lems in several successive iterations of the L3A protocol design.

1. INTRODUCTION
Protocols usually begin their life on a blackboard. The require-

ments are rarely complete until late in the design process. In prac-
tice, the design and requirements often evolve together. Prototypes
written in C or Java are frequently employed to provide feedback as
the system evolves. Prototypes usually undergo many revisions be-
fore the requirements and design become stable. Because protocols
must be highly reliable, it has become increasingly popular to sub-
ject them to formal analysis. Due to the complexity of even simple
protocols, tool support in the form of an automated theorem prover
or model checker [12] is usually required [6, 7]. Discrete event sim-
ulation has also been used to support the formal validation of proto-
cols [4, 5]. Formal methods have been effective in exposing subtle
design flaws, but the requirements usually need to be fairly well
understood before they can be applied. Formal techniques that can
be employed earlier in the process, before the design and require-
ments are stable, would clearly be desirable. Executable specifi-
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cation languages based on rewriting logic [27] and its membership
equational sublogic [10] such as Maude [15, 14, 13] allow us to do
just that. Instead of building our prototypes in general-purpose lan-
guages such as C or Java it is possible to construct a formal proto-
type that reflects both the design and the essential properties of the
system. Although far more abstract than a C program, the model is
executable and therefore can provide the same useful feedback as a
traditional prototype. We often refer to executable specifications of
system designs as formal prototypes. The Maude system can also
perform an exhaustive search of the state space starting at an initial
state and returning all possible results. This feature is useful when
debugging a formal prototype. Together, we refer to the execution
of formal prototypes and exhaustive search as formal simulation.

To the best of our knowledge formal simulation has been ap-
plied to existing protocols [16] and protocols late in their develop-
ment [17], but not to the design of a new protocol. The purpose
of this paper is to demonstrate the role of formal simulation in the
design of a new protocol intended to secure the wireless account-
ing infrastructure at the network layer. We call our new protocol
the Layer 3 Accounting (L3A) Protocol. It is accepted wisdom that
removing errors as early as possible reduces both the cost and the
effort expended to arrive at a correct solution. Our work on L3A
has shown that protocols that set up a collection of security asso-
ciations are subject to race conditions that result in control traffic
getting stuck in partially set up associations. Eliminating these race
conditions can require significant changes to the design. Formal
simulation turned out to be an effective aid in this process.

The next section provides the reader with the necessary moti-
vation and background material before we proceed with our dis-
cussion on the development of the L3A protocol. In Section 3 we
present a skeleton of the protocol. This skeleton will be refined in
successive sections of the paper into different versions of the proto-
col. We then describe the architecture of our formal prototype. The
following sections of the paper illustrate how the protocol design
evolves as formal simulation exposes problems that need to be cor-
rected and new requirements are introduced that result in changes
to the design, which in turn introduce new errors that need to be cor-
rected. Finally, we briefly compare Maude with other formalisms
and tools that have been used to model security protocols.

2. MOTIVATION AND BACKGROUND
In this section we provide background material needed in the

rest of the paper. First, a brief survey of security issues related to
wireless accounting motivates the need for a new protocol. We also
arrive at a set of requirements that must be satisfied by our new pro-
tocol. This is followed by a short introduction to the IPsec security
architecture. Finally, we present the X.509 key-exchange protocol
and show how it can be modified to satisfy our requirements.



2.1 Accounting
All commercial Internet access vendors charge their customers

for service. While most conventional wired Internet service
providers charge customers a flat monthly charge, the wireless
links are sometimes deemed too valuable for such a flat service
fee. Vendors typically prefer having the option of charging cus-
tomers a flat fee or to bill based on the services actually used.
Accounting devices are often embedded in the network infras-
tructure to enable wireless providers to track how much service a
user consumes. Emerging protocols for wireless Internet access
such as CDMA2000 [18] have accounting components. RADIUS
servers [30] are designed to provide accounting services for pro-
tocols such as GPRS. Accounting information is reported to the
billing system for computation of the user’s charge [22]. It is im-
portant that the accounting infrastructure not be compromised oth-
erwise a vendor may not be able to defend itself against a customer
challenging his bill. This is a case where profits depend upon hav-
ing sufficient security in place. The dependence on the integrity of
the accounting infrastructure for billing makes it an inviting target
for hackers.

Consider the 802.11 wireless network given in Figure 1. In this
figure a client is attempting to securely communicate with a server
via a wireless network. The network infrastructure, including some
accounting device, is represented by an oval, and access to the In-
ternet is provided by a Network Access Server (NAS). Note that
we refer to traffic exiting the wireless network as egress traffic,
and traffic entering the wireless network as ingress traffic. Egress
traffic should be authenticated in order to prevent an attacker from
spoofing the client and stealing service. In an 802.11 network, the
link layer Wireless Encryption Protocol (WEP) is a popular mech-
anism for providing such protection. End-to-end security in such
situations is often provided by SSL between the client and server.
Security based on this combination of protocols is common today.

This combination of protocols leaves a vunerability in the au-
thentication of ingress traffic, which is typically viewed as response
traffic to communications established through the NAS to the Inter-
net. However, this traffic is not explicitly authenticated, so, in cer-
tain circumstances, an adversary could supply false response pack-
ets. Since these are not detected as they traverse the NAS, they will
be added to the accounting and charged to the wireless network
user. There are essentially three kinds of attackers:

1. Attackers that are not on the communication path to the
server.

2. Attackers other than the server that are on the communication
path to the server.

3. A compromised or malicious server.

It is possible to address the first case in practical terms by estab-
lishing enough state on the NAS to make it difficult to guess the
connection parameters well enough to spoof a response that will
traverse the NAS. For instance, if there is a circuit firewall there, it
may be necessary for the attacker to guess TCP sequence numbers;
this may require substantial resources from the attacker if large
numbers of incorrect guesses can be discarded quickly. The third
case can be addressed only by preventing compromises in the first
palce, avoiding or detecting malicious servers, or otherwise miti-
gating their effectiveness. The second case is the most interesting
and is the focus of our attention in this paper. To address attackers
on the communication path we propose establishing a tunnel be-
tween the NAS and the server to secure the ingress traffic as part
of a protocol that coordinates the accounting with the end-to-end
guarantees of confidentiality and integrity.

Examining the the vulnerabilities highlighted in the above dis-
cussion we derive four requirements that must be met in order to
provide sufficient protection for the wireless accounting infrastruc-
ture. These requirements are as follows:

• The traffic traveling end-to-end should be encrypted and au-
thenticated.

• All of the user’s traffic should travel in DoS resistant security
associations.

• Security associations should be set up using DoS resistant
protocols.

• Both ingress and egress traffic should be authenticated.

We do not claim that attacks against the wireless accounting in-
frastructure are common at this time nor can we predict whether
they will become a problem in the future, but it is a security vulner-
ability never the less. We propose a solution in the form of a new
protocol that establishes a collection of security associations that
provide sufficient protection to meet our requirements.

2.2 IPsec
Security based on composing link layer and application layer se-

curity protocols has vulnerabilities. Most of the existing link layer
protocols have security flaws. That SSL is vulnerable to DoS at-
tacks is well known. It seems that there should be a more cohe-
sive approach to meeting our requirements than cobbling together
a solution from different protocols. In fact, IPsec could be used
to protect both the connection to the wireless access point as well
as the end-to-end connection. Before we can present the details of
the protocol some necessary background material on IPsec must be
introduced.

lPsec is a security architecture for the Internet specified in RFC
2401 [21] that provides authentication and encryption for IP pack-
ets. Loosely speaking, IPsec is implemented between network and
transport layers of the protocol stack, but the detailed interaction
with the IP stack is slightly more complex. The operation of IPsec
critically depends on the existence and maintenance of virtual se-
cure channels and policies governing the use of these channels. Se-
curity associations (SA) define a collection of cryptographic trans-
forms that are applied to each IP packet belonging to that associ-
ation and create a virtual secure channel. Security policies direct
traffic into security associations based on selection criteria such as
source and destination. Figure 2 illustrates a security association
between a client and a server. The security association provides
a secure communication path through the untrusted subnetwork.
Both the server and the client must have security policies directing
the flow of traffic between these two nodes into the proper associ-
ation. IPsec does not provide a mechanism to set up associations
and policies, but instead relies on external key-exchange protocols
like IKE [20]. In this paper we will design a high-level protocol,
L3A, that will use key-exchange protocols to set up a collection of
IPsec security associations.

Client Server

SA

Untrusted Subnet

Figure 2: Security Associations
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Figure 1: Example Network

An IP packet can be written as ip(src, dest, data) where the
header contains source (src) and destination (dest). IPsec en-
hances IP by adding authentication and encryption at the network
layer. To this end, IPsec augments the IP header with an AH or
an ESP header. AH and ESP stand for authentication header and
encapsulated security payload, respectively, the former providing
authentication only and the later providing authentication with op-
tional encryption, but in this paper we are concerned with the au-
thentication aspect only. IPsec headers also contain a security pol-
icy index (SPI), which, together with the destination dest, uniquely
identifies a security association. An IPsec packet is written as

ip(src, dest, sec(spi, data)),

meaning that it consists of (possibly encrypted) application data
data equipped with an AH or ESP header sec(spi, . . .), and
this piece of information is in turn equipped with an IP header
ip(src, dest, . . .). A security association defines shared param-
eters between nodes (cryptoprotocol parameters and secret key).
Each node maintains this information in its security association
database (SADB). The decision about which security association
to use for communication is determined by security policies. These
policies are stored in a security policy database (SPDB) that is
maintained at each node. To understand how these databases work,
consider an outgoing packet undergoing IPsec processing. The pol-
icy database is checked to see if there is any policy governing the
packet. If so, the security association database is consulted to ob-
tain the proper SPI and cryptographic transforms to apply. The
appropriate transforms are applied and the IPsec header is added.
At the destination, the packet’s SPI is used to look up in the SADB
the correct key and transformations to apply to the packet in order
to obtain the original message. The decision whether the packet,
possibly secured by an entire bundle of security associations, can
be accepted is made again on the basis of the SPDB. The correct
and consistent maintenance of these databases is a nontrivial task
for which the L3A protocol has been designed.

We slightly simplify the presentation of IPsec by not considering
the UDP layer, which is placed above the IPsec layer in the protocol
stack. Although in practice L3A uses UDP, we identify it with IP
for the purpose of this paper, because port numbers and fragmen-
tation are irrelevant for our analysis. Furthermore, L3A uses both
tunnel mode and transport mode. Although both modes are used
in the implementation, we uniformly use tunnel mode for simplic-
ity sake. In tunnel mode IPsec encapsulates the original IP packet
with IPsec headers and adds an outer IP header. Tunnel mode IPsec
packets are of the form:

ip(src, dest, sec(spi, ip(src′, dest
′

, data))).

A typical use of tunnel mode is when security is provided by a
node that did not initiate the packet as illustrated in Figure 3. In
this case, the IPsec header ip(src, dest, sec(spi, . . .))) is added
and removed by the two security gateways.

IPsec security associations may be composed to yield different
patterns of protection than those provided by a single association.
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Figure 3: Tunneling
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Figure 4: Nesting

The first form of association composition is concatenation. The
concatenation of associations is an appropriate configuration when
a user needs to securely send data to a particular destination, but
several organizations on the path have policies requiring that they
inspect all traffic entering or exiting their domain. The second form
of composing associations is nesting. This is illustrated in Figure 4
where a client has an association with a server and the security
gateways of each organization also have an association between
them. The association between the gateways is nested inside the
end-to-end association. In the case of nesting the full IPsec packet
has the form

ip(src, dest, sec(spi, ip(src′, dest
′

, sec(spi
′

, data)))).

Here the client and server both act as additional security gateways,
which will be responsible for adding and removing the inner IPsec
header ip(src′, dest′, sec(spi′, . . .)))). L3A will make use of both
forms of security association composition.

IPsec security associations can be set up by negotiating the se-
curity parameters (secret key, etc.) on the basis of a Public Key
Infrastructure (PKI). Hence, a security association from A to B can
be set up if A is trusted by B, i.e. the root certificate authority of A
is among those trusted by B. L3A will use the trust relation induced
by the PKI.

2.3 Key Exchange
To avoid manual key configuration, the symmetric key used by

IPsec is usually established by a key-exchange protocol. The IETF
designed the Internet Key Exchange (IKE) [20] protocol for just
this purpose. The IKE protocol is rather complex in that there are
several rounds of negotiation to support the most general use. Such
a complexity is not needed for our purposes. A logical alternative



would be JFK [3], which aimed at simplifying the establishment of
IPsec associations. Yet JFK has its own complexities such a subtle
model of perfect forward secrecy. Moreover, we found the need
to add additional support for IPsec tunnels into the key exchange.
Hence we decided to design our own key-exchange protocol by
starting with the X.509 three-pass protocol [26] and adding a few
needed features. We called this protocol the Simplified Internet
key-exchange (SIKE) protocol.

Before discussing our key-exchange protocol we shall present
the version of the L3A three-pass protocol that served as a starting
point for our work on a key-exchange protocol. We assume famil-
iarity with digital certificates Γ and hope the notation is sufficiently
self-explanatory. We assume that there are public and private keys
associated with Γ denoted pub(Γ) and priv(Γ) respectively. Let S

be a public key signature function, P a public key encryption func-
tion, and H be a one-way hash. To improve the readability of our
presentation we define

S
∗(k, M)

def
= (M, S(k, H(M))),

to denote a message together with a public key signature.
We use a common informal notation for presenting protocols.

For instance, we write

A → B : S
∗(priv(ΓA), (ipB , M))

to indicate that A sends to B a message containing the IP address
of B, a piece of data M, and a signature. Principal B processes
this message by first checking the signature using the public key in
ΓA. The the message is said to be valid if this condition is true.
Otherwise, the message is discarded.

Protocol: X.509 three-pass

Initiation The protocol has two principals A (initiator) and B (responder);
Principal A has the private key for a certificate ΓA that is trusted by
the other principals; Principal B has the private key for a certificate
ΓB. Principal A generates a nonce rA and sends a message of the
form

Msg 1 A → B : S∗(priv(ΓA), (ΓA, ipB, rA))

If B gets a message of this form, it checks the signature using
pub(ΓA). If the signature is valid, B extracts the nonce rA. B then
generates the key K that it will share with A and encrypts it using
A’s public key. Principal B then sends the message

Msg 2 B → A : S∗(priv(ΓB), (ΓB, rB, ipA, rA, P (pub(ΓA), K)))

If A gets a message of this form, it checks the signature using
pub(ΓB). If the signature is valid, the plain text identifier ipA is
correct, and the nonce rA matches the value sent in Msg 1, then A
extracts the nonce rB and sends the message:

Msg 3 A → B : S∗(priv(ΓA), (rB, ipB)))

If B gets a message of this form, the signature is checked using
pub(ΓA). If signature is valid, the plain text identifier ipB is correct,
and the nonce rB matches the value sent in Msg 2, then message is
verified.

Due to encryption the key is secure when it arrives at principal
A. The nonces protect the exchange from replay attacks. Unfortu-
nately, the responder remains vulnerable to DoS attacks. In particu-
lar, attacks that exhaust state and CPU of the responder by flooding
it with session initiation requests from forged IP addresses. It is
possible to decrease the effectiveness of this attack by having the
responder use minimal CPU resources and commit no state until
it knows that the initiator can receive packets at the address from
which it claims to be sending them. This is the fundamental idea
behind a cookie. In order to thwart such attacks we extend the pro-
tocol given above by adding cookies.

The three-pass X.509 protocol given above terminates with a
symmetric key shared between two parties, but this is not suffi-
cient information to establish an association. In our discussion of
IPsec, we described how each association must have a unique iden-
tifier called the SPI that allows the party receiving an IPsec packet
to determine to which association the packet belongs. Without a
unique identifier, the receiver of a packet would not have any idea
what transforms to apply to a packet. The fact that the SPI must be
unique to the destination of the association means that the destina-
tion must generate this unique identifier. In order to be as general
as possible, each node in the exchange generates a SPI value. This
accommodates either node being a destination of an association.
We incorporate this feature into our key-exchange protocol.

The protocol that results from adding cookies and SPI generation
to the X.509 three-pass protocol is given as follows:

Protocol: X.509 three-pass with SPI and cookies

Initiation The protocol has two principals A (initiator) and B (responder).
Principal A generates a nonce rA, a SPI value n for an association
having destination A, and sends the message

Msg 1 A → B : rA, SPI(n, 0)

If B gets a message of this form, it generates a nonce rB, a SPI value
m for an association having destination B, and a cookie

cookieA = version, H(rA, rB, ipA, secret)

where secret is a private secret of the responder that is updated pe-
riodically; since the secret is periodically updated, each secret has an
associated version identifier version included in the message; the
address of A is denoted ipA, and rA and rB are the nonces of A and
B, respectively. Principal B sends the message

Msg 2 B → A : rA, rB, SPI(n, m), ΓB, cookieA

If A receives a message of this form, it sends the message

Msg 3 A → B :
S∗(priv(ΓA), (ΓA, cookieA, rA, rB, ipB, SPI(n, m)))

If B gets a message of this form, it checks the signature using
pub(ΓA). If the signature is valid, the plain text identifier ipB is
correct, and the nonce rB matches the value sent in Msg 2, then
node B extracts the nonce rA. B then generates the key K that it
will share with A and encrypts it using A’s public key. Principal B
then sends the message

Msg 4 B → A :
S∗(priv(ΓB), (rA, rB, ipA, SPI(n, m), P (pub(ΓA), K)))

If A receives a message of this form, it checks the signature using
pub(ΓB). If the signature is valid, the plain text identifier ipA is
correct, and the nonce rA matches the value sent in Msg 3, then
node A decrypts the shared key.

IPsec associations are unidirectional so we have to ask if a single
execution of our key exchange should establish a single unidirec-
tional association that only protects the flow of information in one
direction or should it establish two associations that protect the flow
of information in both directions. We considered both possibilities
in the course of our research. The protocol given above can be
modified to accommodate either case. The first model of SIKE that
we shall present will set up unidirectional associations while the
second model of SIKE will set up bidirectional associations.

Whenever we create an association from principal A to principal
C we must update the SADB with an A → C entry. We assume
that an association being created from A to C will have an accom-
panying policy saying that all traffic flowing from A to C will go
into the association A → C. To support nested tunnels we enforce
the following rule. Suppose that there is no association A → C, but
there exists a policy in the SPDB on node A that directs all traffic
flowing from principal A to principal C into the tunnel A → B.
When creating an association A → C, the existing policy on node



A is updated so that all traffic flowing from principal A to principal
C is first be placed in the newly created A → C association and
then in the A → B association. The resulting outgoing packet has
the form

ip(ipA, ipB, sec(spiAB, ip(ipA, ipC, sec(spiAC, data)))).

It is left to the designer of the higher level protocol setting up the
associations to ensure that all restrictions regarding the nesting of
tunnels are obeyed.

We must decide when the SADB and SPDB are updated. One
choice is to return information exchanged in the protocol and let the
databases be modified at a higher level. This breaks modularity of
the system and reduces the information that can be known by each
side upon termination. Suppose both nodes participating in the key
exchange simply updated their data bases after they had completed
the four messages, then upon termination of the protocol neither
party would be sure that an association has been established. Fig-
ure 5 shows a second option where the responder writes the infor-
mation for the A → B association to the databases before sending
the fourth message. As a consequence, the initiator can be assured
that the A → B association is established when the protocol at
the initiator terminates. A third option adds an additional acknowl-
edgment from the initiator to the responder. This message is sent
after the initiator has completed all of its database updates. Upon
termination of the protocol, the initiator knows that the A → B

association is established and the responder knows that both asso-
ciations are established. (The initiator does not know whether the
responder has completed updating its databases for the B → A as-
sociation.) Adding a second acknowledgment from the responder
to the initiator results in both parties knowing all security associ-
ations are established upon termination. We selected the second
option, because it provides some knowledge about the state of of
the databases, and at the same time provides the weakest guarantee
of the three acceptable choices with a minumum number of mes-
sages. A protocol specification that was correct using this choice
would remain correct if the weaker key exchange protocol were
replaced by one offering stronger guarantees.
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Figure 5: Write after message three.

3. PROTOCOL
Now that the necessary background has been established we turn

our attention to the development of the L3A protocol. We start by
elaborating what security associations are needed. A skeleton of
the protocol is presented that will be refined in later sections. We

then explain the architecture of the formal prototype used to model
the protocol.

3.1 L3A
The L3A protocol sets up a collection of IPsec associations that

are intended to protect the wireless accounting infrastructure as
well as the user from a myriad of attacks. Recall our system config-
uration. A wireless client that needs to securely communicate with
a server. The client gains access to the Internet via a Network Ac-
cess Server (NAS) that belongs to a vendor that charges the client
based on the volume of data going over the link. In this section we
develop a general skeleton of the L3A protocol that will later be
refined as we build successive prototypes of the model.

The first question to be answered in designing our protocol is
what security associations are needed. The requirements tell us that
there should be an association between the client and the server to
protect traffic going from end to end. In practice, this would be
an IPsec transport mode association providing both encryption and
authentication. To simplify the formal model we will uniformly
use tunnel mode associations. Another of our requirements states
that all egress and ingress traffic must be authenticated by the NAS.
This dictates that there be an IPsec tunnel mode association from
the client to the NAS performing authentication and a similar tunnel
from the server to the NAS. The resulting situation is one where the
end-to-end association must tunnel through the two authentication
tunnels. This configuration of associations can be seen in Figure 6.

Laptop
 Server

NAS


Auth  SA
 Auth SA


Encrypt  SA


Figure 6: Base SA configuration

The client has a relationship with both the server and the NAS
and must authenticate itself with each of these nodes during dif-
ferent stages of the protocol. We have already established that
there will be an authentication association between the client and
the NAS, an authentication association between the NAS and the
server, and an association providing both authentication and en-
cryption between the client and the server. It is clear that the client
will authenticate itself to the NAS during the key exchange. Sim-
ilarly, the client will authenticate to the server as part of a key ex-
change. It is less clear how the NAS will authenticate itself to the
server, since it needs to communicate to the server that it is es-
tablishing an association on behalf of the client. We resolve this
problem by having the client send the NAS a credential that the
NAS will present to the server on behalf of the client. If the server
verifies that the credential is from a valid user, then it allows the
association between the NAS and server to be established.

We can now give an outline of the L3A protocol.

Skeleton of L3A Protocol

Client initiates protocol The client identifies the server that it desires to
communicate with and the NAS that will deliver access to the In-
ternet. The client then invokes SIKE to establish an association be-
tween the client and the NAS. The client must pass to the NAS the
credential that the NAS will present to the server as well as the ad-
dress of the server.

Establish NAS-server SA Upon notification that the client-NAS SIKE ex-
change is complete, the NAS gets the address of the server and the
credential. The NAS then invokes SIKE to establish an association
between the NAS and the server. The NAS presents the credential to



the server. If the credential is not valid, then the protocol is termi-
nated.

Establish server-client SA Upon notification that the NAS-server SIKE
exchange is complete, the server invokes a key exchange with the
client.

3.2 Architecture of the Formal Model
We constructed formal models of the L3A and SIKE protocols

early in the design phase. Maude supports the specification of com-
plete designs in a modular way. We were able to model the IPsec
and IP network layers in addition to the components of the L3A
protocol. In modeling such a large system, it is important to keep in
mind to only model those aspects of the system that are of interest.
For example, we only model routing and message delivery in IP.
Details such as fragmentation are ignored. Being able to construct
such complete models is particularly useful when modeling proto-
cols that rely on lower layer protocols since the interaction between
the layers may be a source of errors. Modeling IPsec was neces-
sary since the L3A and SIKE protocols can only be judged correct
if they correctly set up the desired IPsec security associations and
policies. In order to model IPsec, we needed to model IP to a cer-
tain degree. We now turn our attention towards the architecture of
the formal model.

In keeping with good software engineering practices, the design
of our formal model is modular and constructed as a hierarchy of
abstractions reflecting the structure of the system being modeled.
Figure 7 shows the components of our model and how they are
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Figure 7: Architecture of the model

related. Note that the lightly shaded horizontal lines separate the
different layers of the model hierarchy. The lowest layer mod-
els the sending and receiving of IP messages. Routing is mod-
eled at this layer. At the next layer the IPsec module models a
significant part of IPsec. It does not model IPsec transport mode
since the differences between tunnel mode and transport mode are
not significant enough to affect our analysis. We do not attempt

to provide a concrete model of encryption since we are only con-
cerned about ensuring that the proper headers are applied and not
with the concrete cryptographic transformations that get applied
to the packets once they arrive at their destination. On the other
hand, we must model the IPsec databases, because their state de-
fines the security associations and policies. At the level of the
key exchange we include a module setkey that provides the SIKE
modules with an interface to the IPsec databases. This module en-
capsulates the updating of both the SADB and SPDB databases.
The PKI module provides a limited public key infrastructure. Two
of the authors worked on building this model simultaneously dur-
ing the early phases of this project. One author worked on model-
ing L3A while the other worked on SIKE. We constructed a stub
key exchange module SIKE-abstract that allowed L3A develop-
ment to progress in parallel with the development of SIKE. The
full SIKE protocol is modeled by the module SIKE-concrete,
which is a refinement of SIKE-abstract. The L3A protocol is
formally modeled by the module L3A. Observing the diagram we
see lines from both L3A and setkey to the SPDB, but only setkey

has a connection to the SADB. This is because policies are created
and modified at both the level of the key exchange and L3A, while
the security associations are only created by SIKE. The l3a-test
modules import all the other modules and define the system con-
figuration. The abstract and concrete versions of l3a-test differ
in that the abstract version imports the abstract version of SIKE,
while the concrete version imports the actual SIKE protocol mod-
ule. Constructing different test cases is facilitated by the module
l3a-client-app. A bonus of the modular nature of our design
is that we can reuse portions of the model when designing other
protocols.

The SIKE protocol module is composed of two processes. The
SIKE component handles all the processing on the initiator side
and is invoked with parameters such as the address of the initiator
and the address of the responder. The processing at the responder
is performed by a daemon SIKED. Each node in the system must
start its SIKED daemon before the protocol may be executed. The
L3A protocol given above is decomposed into three processes—
one process at each of the nodes (client, server, NAS). The protocol
is started by some higher level (l3a-client-app) module at the
client. The L3A processing at the NAS and server is performed
by daemons. These daemons wait for notification from the SIKED
daemon that a key exchange has completed. After receiving such a
notification, the process executes its portion of the L3A protocol.

To analyze the specification using Maude we need to specify a
concrete initial state, which contains information about the nodes
(which can act as hosts or security gateways) and an enumeration of
all subnets representing the network topology. We use the network
topology given in Figure 8. Furthermore, the initial state contains,
for each node its: network interfaces, its routing table, information
about trusted certificate authorities, the initial security association
database and the initial security policy database. All this constitutes
a multiset.

Since Maude specifications are executable, we were able to con-
stantly test and refine the design in much the same way that we
would debug a program. This immediate feedback allowed for
quick turnaround as the design evolved. The design process went
as follows. First, we coded our design in Maude; secondly, we
would execute our model to check if there existed a correct so-
lution (i.e. an expected execution of the protocol). After several
iterations, we would arrive at a design that we deemed correct.
We would then utilize Maude’s search capabilities by executing
search initial =>! state : State. The system performs an
exhaustive search of the state space returning all possible solutions
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Figure 8: Model network topology.

(i.e. executions leading to a state in which no further protocol rules
can be applied). Our protocols are deterministic so there should
only be one solution when we run an exhaustive search on our
test cases. In practice, it took several iterations to eliminate all
the incorrect solutions. L3A is a distributed protocol running on
three nodes and like most distributed systems the errors arose form
unforeseen concurrent interleaving of statements. Even extensive
testing often fails to replicate the errors that can be found through
exhaustive search.

Representative samples of the Maude model can be found in the
Appendix. For the full formal specification of each model we refer
the reader to http://formal.cs.uiuc.edu/stehr/l3a/l3a.

html.

4. L3A PROTOTYPES AND FORMAL SIM-
ULATION

The previous sections have provided background material on
IPsec and on the methodology employed during the development
of our protocol. We have also presented the basic structure of both
SIKE and L3A. In this section we refine the skeletal solutions given
above into the first prototype of the protocol. We then demonstrate
how formal simulation was used to debug the prototype. We then
show how this process is repeated several more times before arriv-
ing at a stable design.

4.1 First Prototype
We now precede with the design of L3A and SIKE by refining

the protocol skeleton given above. The first issue to be addressed
is what traffic should the protected by the associations. This will
determine if SIKE should establish a single unidirectional key ex-
change or establish a pair of associations protecting traffic flowing
in both directions. We will also need to determine what if any addi-
tional data needs to be sent as part of the key exchange and address
the possibility that additional messages need to be sent in L3A.

To ensure privacy between the client and the server we must
have associations performing encryption and authentication going
in both directions. It is not so clear what should be done in the case
of the tunnels that ensure all traffic entering the NAS is authenti-
cated. It is clear that there must be security associations flowing
from the client to the NAS and flowing from the server to the NAS.
Otherwise, the traffic is authenticated by the end-to-end association
so there does not appear to be a need to have associations going the
opposite direction. Since we do not always need security associ-
ations going in both directions, the key-exchange protocol should
only set up a single association.

We have already established that the client must pass a credential
as well as the address of the server to the NAS and the NAS must

then pass this credential to the server. To accommodate this data we
add a payload field to the third message of the SIKE protocol. Since
the SIKE exchange will create a single association and this associ-
ation need not flow from initiator to responder, the SIKE exchange
needs to include a field indicting whether the security association
flows from the initiator to responder or visa-versa. Another conse-
quence of establishing only a single association is that each node
only needs to update its SADB and SPDB once.

The first version of the SIKE protocol is given as follows:

SIKE V 1.0
Initiation The protocol has two principals A (initiator) and B (responder).

Principal A generates a nonce rA, a SPI value n for an association
having destination A, and sends the message

Msg 1 A → B : rA, SPI(n, 0)

If B gets a message of this form, it generates a nonce rB, a SPI value
m for an association having destination B, and a cookie

cookieA = version, H(rA, rB, ipA, secret)

where secret is a private secret of the responder that is updated pe-
riodically; since the secret is periodically updated, each secret has an
associated version identifier version included in the message; the
address of A is denoted ipA. The nonces of A and B are denoted rA

and rB respectively. Principal B sends the message

Msg 2 B → A : rA, rB, SPI(n, m), ΓB, cookieA

If A receives a message of this form, it forms a pair (s, d) indicating
the source s and destination d of the SA. A then sends the message

Msg 3 A → B : S∗(priv(ΓA),
(ΓA, cookieA, rA, rB, ipB, SPI(n, m), dir(s, d), payload))

If B gets a message of this form, it checks the signature using
pub(ΓA). If the signature is valid, the plain text identifier ipB is
correct, and the nonce rB matches the value sent in Msg 2, then
node B extracts the nonce rA and the payload. If B is the destination
of the SA, then the SADB and SPDB are updated. B then generates
the key K that it will share with A and encrypts it using A’s public
key. Principal B then sends the message

Msg 4 B → A :
S∗(priv(ΓB), (rA, rB, ipA, SPI(n, m), P (pub(ΓA), K)))

If B is the source of the SA, then the SADB and SPDB are updated.
If A receives a message of this form, it checks the signature using
pub(ΓB). If the signature is valid, the plain text identifier ipA is
correct, and the nonce rA matches the value sent in Msg 3, then
node A decrypts the shared key. The SADB and SPDB is updated
according to the direction of the SA.

A message sequence chart representation of the SIKE protocol
can be seen in Figure 9.

It is now possible to refine the basic skeleton of the L3A pro-
tocol into the first version of the protocol. The L3A protocol will
use SIKE to establish the four security associations illustrated in
Figure 10. As each node invokes the key-exchange protocol, it will
have to pass as parameters the direction of the association as well as
any payload. The protocol is always started at a client. The client
calls SIKE to establish the C → NAS tunnel. The NAS then calls
SIKE to establish the S → NAS tunnel. The server and client then
create tunnels S → C and C → S respectively.

Version one of the L3A protocol follows and is illustrated by
Figure 10.

L3A Protocol V 1.0
Client initiates protocol The client C identifies the server S that it desires

to communicate with and the NAS that will provide access to the
Internet. The client then invokes SIKE to establish an association
from the client to the NAS with the parameters: payload = cred, S
and dir = dir(C, NAS). When the key exchange at the client has
terminated it updates its SPDB with a policy saying that all traffic
from the client to the server should flow through the C → NAS
association.
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Where CookieA = VersionSecret | Hash([rA,rB,IPA, SPI(n,m)],Secret)
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Figure 9: SIKE V 1.0
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Figure 10: L3A V 1.0

Establish Server-to-NAS SA Upon notification that a key exchange with
the client is complete, the NAS extracts the address of the server
and the credential. It then it updates its SPDB with a policy say-
ing that all traffic from the client to the server should flow through
the C → NAS SA. The NAS then invokes SIKE to establish an
SA from the NAS to the server. The two parameters to SIKE are:
payload = cred and dir = dir(S, NAS). Upon termination of the
key exchange, the NAS updates its policy database to reflect the fact
that all traffic flowing from the server to the client should travel in
the S → NAS association.

Establish Server-to-Client SA Upon notification that a key exchange with
the NAS has occurred, the server extracts the credential that had been
passed by the client. If the credential is valid, the server updates its
SPDB with a policy saying that all traffic flowing from the server
to the client should travel in the S → NAS association. The server
then invokes SIKE to set up an association from the server to the
client. The two parameters to SIKE are: payload = emty and
dir = dir(S, C).

Establish Client-to-Server SA Upon notification that the SIKE exchange
with the server has occurred, the client invokes SIKE to create an
association from the client to the server. The parameters to SIKE
are: payload = empty and dir = dir(C, S).

Given the simple topology in Figure 8 we ran a state space ex-
ploration that yields three different solutions. We now look at each
of the solutions in more detail.

• Solution 1.

The NAS SADB has no entry for the association S → NAS

while the server SADB does have an association S → NAS

entry. As a consequence the fourth message of the S → NAS

SIKE exchange gets caught in the partially set up tunnel S →

NAS. The first message of the S → C SIKE exchange also
gets caught in the partially set up S → NAS association.

• Solution 2.

The first message of the S → C SIKE exchange gets caught
in a partially set up S → NAS association. Both the pol-
icy databases and the association databases look correct, but
further analysis shows that this was misleading. There is a
concurrency problem. The SADB on the NAS was not up-
dated until after the packet arrived.

• Solution 3. At each node the entries in the SADB and SPDB
correspond to the associations and polices given in the re-
quirements. For example, at the client there are entries in
the SADB for the C → NAS, C → S, and S → C asso-
ciations. There are policies that say that all traffic flowing
from the client to the NAS travels in the C → NAS associ-
ation; all traffic flowing from the client to the server travels
in the C → S association, which is tunneled through the
C → NAS association; all traffic flowing from the server to
the client travels in the S → C association. The server and
the NAS have similar entries reflecting their policies and the
security polices active at each node. Since the SADB and
SPDB at each node have the correct entries as dictated by the
requirements, we consider the solution to be correct.

In the next section we shall revise the protocol in an attempt to
correct the problems uncovered by the exhaustive search.

4.2 Revising the Prototype
The first version of our protocol exhibited several errors. The er-

rors uncovered in formal analysis seemed to (at least partially) stem
from the fact that the server has updated its SADB/SPDB before the
NAS. The first solution produced by exhaustive search seemed to us
rather vexing. The fourth SIKE message gets caught in a partially
set up tunnel.

Analysis revealed that the problem was not caused by the pro-
tocol itself, but by the way we modeled communication. It turned
out that our model of IP and IPsec semantics was too weak. The
actual semantics for sending a message is that the send function
does not return until the message is completely processed by IPsec.
We checked the code! Our model allowed the sender of an IPsec
message to continue processing as soon as the send call was made
while the message was processed concurrently by IPsec. Conse-
quently, the additional concurrency in our model resulted in cases



where the association is set up on the responder side before mes-
sage 4 is actually out of the door. As a result of this behavior, the
association is applied to the outgoing message, but there is no entry
in the association initiator’s SADB. We corrected our models of IP
and IPsec to match the actual semantics. Given that the previous
version of the protocol had been tested with an unrealistic model
for IP and IPsec, it seems reasonable to limit our corrections to this
problem to see if fixing the model solved all of our problems.

Performing an exhaustive search of the state space yields four
solutions. It may seem like things are now worse since there are
more solutions than the first version of the protocol. The first three
solutions are all incorrect because the first message of the S → C

SIKE exchange gets caught in a partially set up S → NAS associ-
ation. The problem is due to the fact that the S → NAS is set up
on the server side and the server goes ahead with the S → C SIKE
exchange before the NAS has set up the association on its side. The
fourth solution is correct.

4.3 Second Revision
The problem with the previous revision to the protocol seems

due to the fact that the server can finish processing setting up the
S → NAS and begin the S → C SIKE exchange before the NAS
has set up the S → NAS association on its side. As a consequence,
the first message of the S → C key exchange gets caught in a
partially set up tunnel. The obvious solution to this problem is to
force the server to wait until the NAS has completed its processing.
We add a single message that the NAS sends to the server when it
has completed its half of the SIKE protocol. The server waits to
receive this message before it continues with any processing. The
revised protocol is illustrated in Figure 11. Performing a search of
the state space now yields only the correct solution.
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Figure 11: L3A V 2.0

5. FURTHER EVOLUTION
Formal simulation continued to be beneficial as the protocol un-

derwent revision. The acknowledgment sent from the NAS to the
server eliminated undesirable concurrent interleavings of the sys-
tem, but the message does not travel in an authenticated DoS re-
sistant security association. This violates one of the primary re-
quirements of the protocol. Furthermore, it was also pointed out
to us that the NAS would need to send maintenance traffic to the
client and server. This traffic would need to travel in authenticated
security associations as well. As a result of these requirements we
revised our design. It now seemed obvious that the key exchange
should establish a pair of security associations with one going in
each direction. This would bring our protocol in line with IKE,
which also sets up a pair of security associations.

As we modified SIKE and L3A we continued running logical
simulations on a variety of scenarios. As we ran different test cases
during development we found that the client could finish setting

up the C ↔ S association before the server. One possibility was
to ignore this fact and assume that an L3A user would just back
off and retry later if they discovered that the protocol was not yet
set up. Given our previous problems with interleaving concurrency
and the fact that the protocol was still evolving we decided to add a
Fin message that would let the client know when the protocol had
terminated. For consistency and uniformity we added an acknowl-
edgment from the client to the NAS after the client had finished
the C ↔ NAS key exchange. This allowed us to remove the pay-
load field from SIKE and include that information as part of the
acknowledgments. The direction field is no longer needed since
each SIKE invocation establishes a pair of associations. The new
version of SIKE is illustrated in Figure 12.

In the updated L3A design, the client begins by performing a
key exchange with the NAS. After the SIKE exchange between the
client and the NAS has terminated, the client sends a Req message
to the NAS containing the credential and server address. The NAS
does not start the key exchange with the server until after receiving
this message. Once the key exchange between the NAS and the
server is complete, the NAS sends the server an Ack message with
the credential. If the credential is valid, the server initiates a key
exchange with the client to establish the two associations (S → C

and C → S). Upon termination of this key exchange, the server
sends a Fin message to the client indicating that the protocol has
terminated. The modified protocol is illustrated in Figure 13.
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Figure 13: L3A V 3.0

The protocol underwent further modifications to accommodate
reuse of security associations. For example, suppose several clients
gain access to the network via the same NAS and all go to the
same server. The NAS ↔ S associations can be shared among
the clients. Similarly, the C ↔ NAS can be reused when a client
connects to multiple servers. Getting the prototype right took a lot
of debugging of tricky details that are typically ignored in mathe-
matical models. At each node, processing for establishing security
associations is now structured as a set of conditional blocks with
each block handling a different case. For example, the NAS has
to consider cases where its first action of the protocol is process-
ing a Req message, because the client is reusing an association.
Alternatively, the NAS first action could be the notification that a
key exchange with the client has occurred. Sample Maude code
for the client and NAS is included in the Appendix. This type of
processing is not particularly difficult, but it is easy to miss a case,
get the boolean conditions wrong, or to introduce new race condi-
tions. Had the model not been executable we may have postponed
the verification of such details to the implementation.

6. RELATED WORK
In this section we review several alternative formalisms and tools

that we could have chosen instead of Maude. We briefly compare
their suitability for use as a platform for prototyping the L3A pro-
tocol to Maude.
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Figure 12: SIKE V 2.0

The methodology employed in this paper (executable specifica-
tion and logical simulation) is not necessarily tied to Maude. Pop-
ular model checking tools such as SPIN [19] and SMV [24] could
be tailored to support the same process. So one may wonder what
advantage we felt was gained from using Maude. One advantage is
that Maude’s language of multiset rewriting with equational logic
is somewhat more abstract than the languages usually employed in
model checking tools. In order to sufficiently test our protocol, we
had to model many of the underlying layers of the protocol stack
that our system was dependent upon. In particular, we had to model
the key exchange protocol, IPsec, and IP routing. A downside of
such detail is the danger of state explosion. We made extensive use
of Maude’s equational logic in modeling these portions of the sys-
tem. Maude’s equational theories are assumed to be confluent and
terminating. This helped keeping the size of the model in check. In
contrast to purely operational approaches to protocol specification,
e.g. based on variations of coventional programming languages, the
logical nature of Maude not only provides a higher level of abstrac-
tion, but at the same time it reduces the gap between the executable
model and its mathematical treatment, as witnessed by it’s simple
algebraic model-theoretic semantics.

Process algebras have a long history of being applied to the anal-
ysis of protocols and in the last decade they have become a pop-
ular vehicle for expressing and analyzing cryptographic protocols.
Hoare’s CSP [11, 31] and the associated FDR model checker were
first used to discover an error in the Needham-Schroeder protocol
a decade ago [23] and have continued to enjoy success in this ap-
plication domain. More recently, several versions of the π-calculus
have been developed to reason about cryptographic protocols [2, 8].
The ProVerif tool [9] provides sophisticated automated assistance
to reason about secrecy properties of a protocol written in the π-
calculus. This tool has been applied to the analysis of the JFK [1]
key exchange protocol. Unfortunately, ProVerif lacks the kind of
simulation capability that we found so useful for prototyping pro-
tocols. Given the success of applying process algebras to security
protocols they may seem like a preferred alternative to rewriting
logic. Yet L3A is a little different from traditional security proto-
cols. The state of the databases at each node is a critical element
of the protocol and must be part of any formal model. Although it
would be possible to encode the databases within a process algebra,
it would be quite a cumbersome exercise. We do not view this as
a deficiency of process algebras, but as an indication of the need to
match the formalism with the problem.

Logic-based tools such as automated theorem proving provide
another alternative to Maude’s term rewriting logic. Paulson has

applied inductive techniques to a number of cryptographic proto-
cols [28, 29]. The NRL protocol analyzer (NPA) [25] is a logic-
based tool customized for analyzing security protocols. One veri-
fies a protocols by feeding into NPA a state machine representation
of the protocol, attack scenarios, and the machine starts at the at-
tack state and executes the protocol backwards to see if an initial
state can be reached. If so, the attack is successful. Logic based
tools are an excellent choice when a protocol reaches a degree of
stability to commit resources to apply heavy-weight formal meth-
ods. Formal simulation tools such as Maude allow the design to be
debugged in a process that is similar to program debugging, but at
a higher layer of abstraction. Now that we feel that we have rela-
tively stable protocol, applying heavy-weight logic-based tools for
a more through verification would be an appropriate next step.

7. CONCLUSION
We have used formal simulations to analyze a network layer ac-

counting protocol from its earliest design stages to a mature spec-
ification. At the outset we were aware of requirements not met by
existing protocols, such as the need to authenticate ingress traffic
as well as egress traffic, but formal simulation revealed other issues
of significant concern. In particular, we found that a naive proto-
col design included cases in which race conditions could create in-
complete tunnels. There were also challenges in understanding the
model, and our early versions of the IP model did not account for
important but subtle properties. Our formulation led to a better un-
derstanding of these issues, their resolution, and the maintenance of
the desired properties though a series of refactoring steps based on
other changes in requirements and design. This case study shows
the feasibility of using formal simulations to aid early stages of a
protocol design. We are also able to contribute infrastructure for
future protocols that concern the configuration of IPsec tunnels.
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APPENDIX

A. MAUDE SAMPLES
Maude [15, 14, 13] is an executable specification language based

on rewriting logic [27] and its membership equational sublogic
[10]. Maude also refers to its high-performance implementation,
that is a rewriting engine that allows us to execute and analyze
system specifications. The significance of rewriting logic is that
distributed systems (and especially networking protocols) perform
local state transitions, which can be naturally presented as rewrite
rules that operate locally on a symbolic and mathematically precise
representation of the system state.

A specification in the basic version [27] of rewriting logic is a
triple (Σ, E, R), where Σ is an algebraic signature, E is a set of
equations over Σ and R is a set of rules over Σ. Typically, (Σ, E)
is an equational specification that makes precise the static aspects
of the system. This includes especially the algebraic structure of
the state space, which in our case is a multiset, i.e. a commutative
monoid, of local state elements. The dynamics of the system is then
given by the rewrite rules R, which operate modulo the equations
E, and in our case correspond to multiset rewrite rules. Hence,
we can visualize the state of the distributed system as a ‘soup’ of
local state elements which are transformed by local state transitions
represented by rewrite rules.

The Maude formalization of the protocols given above is quite
involved. We present several examples of how the informal de-
scriptions are transformed into Maude. First, a note on notation.
Maude allows two types of rewrite rules: basic and conditional.
The basic rewrite rule has the form:

rl r1r2 . . . rn ⇒ l2l2 . . . lm.

When terms r1, r2 . . . rn are all present in the soup, the rule fires
sending terms l1, l2 . . . lm into the soup. Conditional rewrite rules



take the following form:

crl r1r2 . . . rn ⇒ l2l2 . . . lm if B.

If the boolean condition B is true and the terms r1, r2 . . . rn are all
present in the soup, the rule fires sending terms l1, l2 . . . lm into the
soup.

A.1 PKI
In this section we give the Maude equations for the basic cryp-

tographic operations encryption, decryption, digital signatures, and
signature verification. As ordinary mathematical functions they can
be naturally specified in terms of equational logic and executed by
equational rewriting. We assume that the secret and public keys are
maintained as a keypair. If data d was encrypted using the public
key pk, then decrypting using the secret key sk should return the
original data. Digital signatures are modeled as an ordered pair.
The first element being the private key used to generate the sig-
nature and the second element being the data. The data operator
acts as a projection function on the signature. The verify opera-
tor takes a public key and verifies that the signature was generated
using the corresponding private key.

sort Data .
op encrypt : PubKey Data -> Data .
op decrypt : SecKey Data ~> Data .
op keypair : SecKey PubKey -> Prop .
var d : Data .

ceq decrypt(sk, encrypt(pk,d)) = d
if keypair(sk,pk) : True .

op sign : SecKey Data -> Data .

op data : Data ~> Data .
eq data(sign(sk,d)) = d .

op verify : PubKey Data -> Prop .
cmb verify(pk, sign(sk,d)) : True

if keypair(sk,pk) : True .

A.2 SIKE Daemon
We now give the rules for the final version of the SIKE daemon.

The SIKE daemon at each node waits for the first SIKE message
from the initiator. The responder generates a nonce, SPI, and forms
the cookie. This data is then sent to the initiator in the second
message msg2 of the SIKE exchange.

crl [SikedStart] :
siked-start(nodeB)
pki-info(nodeB, seckey’, pubkey’, cert’)
fresh(m)
ipsec-delivered(nodeB, rinterB, attrs, sabundle,

ip(addrA, addrB, msg1(rA, spi(spi-A,0)))) =>
fresh(s m)
pki-info(nodeB, seckey’, pubkey’, cert’)
siked-phase-1(nodeB, addrB, cert’, seckey’,

random(m),spi(spi-A,0), rA, addrA)
if not(contains(attrs,discard)) .

rl [SikedPhase-1] :
fresh(m)
fresh-spi(nodeB, n’)
siked-phase-1(nodeB, addrB, cert’, seckey’,

secret, spi(spi-A,0), rA, addrA) =>
fresh(s m)
fresh-spi(nodeB, s n’)
siked-waiting(nodeB, addrB, cert’, seckey’,
secret, spi(spi-A, n’), rA, addrA, random(m))

ipsec-send-req(siked(nodeB), nodeB,
ip(addrB, addrA,

msg2(rA, random(m), spi(spi-A,n’), cert’,
cookie(versec, hash(secret,
cookiedat(rA, random(m), addrA)))))) .

The daemon waits for the third message in the exchange. The
cookie is first verified and if valid, the signature is checked. The
SADB and SPDB are updated to include the A → B association.

crl [SikedWaiting] :
ipsec-send-ack(siked(nodeB), nodeB)
siked-waiting(nodeB, addrB, cert’, seckey’,

secret, spi, rA, addrA, rB)
ipsec-delivered(nodeB, rinterB, attrs, sabundle,

ip(addrA, addrB,
msg3(cert, cookieb,signeddataA))) =>

siked-phase-2(nodeB, addrB, cert’, seckey’,
secret, spi, rA, addrA, rB, cert)

if not(contains(attrs,discard)) /\
cookieb == cookie(versec, hash(secret,

cookiedat(rA, rB, addrA))) /\
verify(certkey(cert), signeddataA) : True /\

msg3data(rA, rB, addrB, spi) := data(signeddataA) .

rl [SikedPhase-2] :
interfaces(nodeB, interfaces’)
fresh(m)
siked-phase-2(nodeB, addrB, cert’, seckey’,

secret, spi, rA, addrA, rB, cert) =>
interfaces(nodeB, interfaces’)
fresh(s m)
siked-expect-setkey-term(nodeB, addrB, cert’,

seckey’, secret, spi, rA, addrA, rB,
cert, sharedkey(random(m)))

setkey-start(nodeB, addrA, addrB,
spival-resp(spi), IN-SPD) .

The fourth message is formed and sent to the initiator. Once
processing has completed for that message, the SADB and SPDB
are updated to include the B → A association.

rl [Siked-Send-MSG4] :
siked-expect-setkey-term(nodeB, addrB, cert’,

seckey’, secret, spi,rA, addrA, rB, cert,
sharedkey(random(m)))

setkey-terminate(nodeB,addrA,addrB,spi-B,inout) =>
siked-sent-msg4(nodeB, addrB, cert’, seckey’,

secret,spi, rA, addrA, rB, cert,
sharedkey(random(m))

ipsec-send-req(siked(nodeB), nodeB,
ip(addrB, addrA,

msg4( sign(seckey’,
msg4data(rB, addrA, rA, spi,

encrypt(certkey(cert),
sharedkey(random(m)))))))) .

rl siked-sent-msg4(nodeB, addrB, cert’, seckey’,
secret, spi, rA, addrA, rB, cert,

sharedkey(random(m)))
ipsec-send-ack(siked(nodeB), nodeB) =>

siked-expect-setkey-term’(nodeB, addrB, cert’,
seckey’, secret,spi, rA, addrA, rB, cert,

sharedkey(random(m)))
setkey-start(nodeB, addrB, addrA,

spival-init(spi), OUT-SPD) .

rl [sikedPhase3] :
siked-expect-setkey-term’(nodeB, addrB, cert’,

seckey’,secret, spi, rA, addrA, rB, cert,
sharedkey(random(m)))

setkey-terminate(nodeB,addrB,addrA,spi-A,inout) =>
siked-term(nodeB, addrB, cert’, seckey’, secret,

rA, addrA, rB, cert, spi,
sharedkey(random(m)))

siked-notify(nodeB, addrA, addrB, spi)



siked-restart(nodeB, addrB, cert’,seckey’,secret,
spi, rA, addrA, rB, cert, sharedkey(random(m))) .

crl [SikedRestart] : interfaces(nodeB, interfaces’)
siked-restart(nodeB, addrB, cert’, seckey’,

secret, spi, rA, addrA, rB, cert,
sharedkey(random(m))) =>

interfaces(nodeB, interfaces’)
siked-start(nodeB)

if contains(interfaces’, addrB) .

A.3 L3A
The informal description of L3A says that after the server re-

ceives notification from SIKE that key exchange with the NAS is
complete, it checks the credential and begins a key exchange with
the client to establish the association between the server and client.
Once this exchange is complete, the policy is updated and the Fin
message is sent. This is formalized by the following rewrite rules,
which are executed sequentially.

rl l3a-server-start(node)
siked-notify(node, nas, server, server-nas-spi) =>
l3a-server-expect-ack(node, nas,server,

server-nas-spi) .

crl l3a-server-expect-ack(node,nas,server,
server-nas-spi)

spdb(node, spindb,spoutdb)
ipsec-delivered(node,rinterface,attrs,sabundle,

ip(nas,server,ack(ccert,client-cred,New) )) =>
spdb(node,spindb, sSPList(sp(src-dest-pattern(
server,certaddr(ccert)), sSAList(sa(server,nas

,spival-init(server-nas-spi))))) spoutdb)
l3a-server-check-cred(node,nas,server,

client-cred, ccert, server-nas-spi)
if not(contains(attrs,discard)) .

crl l3a-server-check-cred(node,nas,server,
client-cred, ccert, server-nas-spi) =>
l3a-server-activated(node,certaddr(ccert),
nas,server,client-cred,ccert, server-nas-spi)

if verify(certkey(ccert), client-cred) : True /\
reqdata(tlive,nas) := data(client-cred) .

rl l3a-server-activated(node,client,nas,server,
client-cred,ccert, server-nas-spi)

pki-info(node, seckey, pubkey, cert) =>
l3a-server-expect-sike-ack(node,client,

nas,server,client-cred,ccert, server-nas-spi)
pki-info(node, seckey, pubkey, cert)
sike-start(node,server,client,cert,seckey) .

rl l3a-server-expect-sike-ack(node,client,nas,
server,client-cred,ccert, server-nas-spi )
sike-ack(node, server, client,

server-client-spi) =>
l3a-server-send-fin(node,client,nas,server,

client-cred,ccert,server-nas-spi, server-client-spi)

rl l3a-server-send-fin(node,client,nas,server,
client-cred,ccert, server-nas-spi,

sderver-client-spi ) =>
ipsec-send-req(server(node),node,

ip(server,client,fin) )
l3a-server-expect-ipsec-send-ack(

node,client,nas,server,client-cred,
ccert, server-nas-spi, server-client-spi) .

A.3.1 Reusing Tunnels
We shall now illustrate some of the rules involving tunnel reuse

that were given informally in Section 5. The first time the client

uses L3A the client invokes SIKE to set up a tunnel between the
client and the NAS and then sends the Req message. The protocol
assumes that all further interaction will be through the same NAS.
So when the first invocation of L3A is finished, the protocol moves
into the l3a-client-restart mode. If L3A is invoked in this
state, the Req message is sent, but there is no SIKE exchange with
the NAS. The client’s rules are given as follows.

rl l3a-client-start(node,client)
l3a-client-req(node,client,nas,server)
pki-info(node,seckey,pubkey,cert) =>
l3a-client-expect-sike-ack-1(node,client

,nas,server)
pki-info(node,seckey,pubkey,cert)
sike-start(node, client, nas,cert, seckey) .

rl l3a-client-expect-sike-ack-1(node,client,nas,server)
sike-ack(node, client, nas, client-nas-spi) =>
l3a-client-send-req-new(node,client,nas,server,

client-nas-spi) .
.....

rl l3a-client-restart(node,client,nas, client-nas-spi)
l3a-client-req(node, client,nas, server) =>
l3a-client-send-req-reuse(node,client,nas,

server,client-nas-spi) .

rl l3a-client-send-req-reuse(node,client,nas,server,
client-nas-spi)

pki-info(node,seckey,pubkey,cert)
spdb(node,spindb,spoutdb) =>
pki-info(node,seckey,pubkey,cert)
ipsec-send-req(client(node),node,ip(client,nas,

req(cert,sign(seckey,reqdata(Timelive,nas)),
server,Reused) ) )

spdb(node, spindb, sSPList(sp(src-dest-pattern(
client,server), sSAList(sa(client, nas,
spival-resp(client-nas-spi) )))) spoutdb)

l3a-client-expect-ipsec-send-ack(node,client,
nas,server,client-nas-spi).

If the NAS is in the start state and receives notification that a
key exchange has taken place it waits for the Req message. On
the other hand, there may already be a tunnel with the client so
the NAS would receive a Req message instead of a key exchange
occurring. In both cases, the policy database must be updated with
a rule saying that all traffic from the client to the server involved in
this L3A invocation must travel in the client-NAS tunnel.

rl l3a-nas-start(node)
siked-notify(node,client,in-nas,client-nas-spi) =>
l3a-nas-got-notify(node,client,in-nas,

client-nas-spi) .

crl l3a-nas-got-notify(node,client,in-nas,
client-nas-spi)

routetab(node,routelist)
spdb(node, spindb,spoutdb)
ipsec-delivered(node,rinterface,attrs,sabundle,

ip(client,in-nas,req(initiator-cert,
client-cred,server,New))) =>

spdb(node, sSPList(sp(src-dest-pattern(
client,server), sSAList(sa(client,in-nas,

spival-resp(client-nas-spi))))) spindb, spoutdb)
routetab(node,routelist)
l3a-nas-phase2(node,client,in-nas,

get-interface-to-dest(routelist,server),
server,initiator-cert, client-cred, client-nas-spi)
if not(contains(attrs,discard)) .

crl l3a-nas-start(node)
sadb(node,sadb)
ipsec-delivered(node,rinterface,attrs,sabundle,
ip(client,in-nas,req(initiator-cert,client-cred,

server,Reused))) =>



sadb(node,sadb)
l3a-nas-reuse-cn(node,client,in-nas,server,
initiator-cert,client-cred, spi(getspi(sadb,

in-nas,client),getspi(sadb,client,in-nas)))
if not(contains(attrs,discard)) /\

fetch(sadb,client,in-nas) =/= nullsa /\
fetch(sadb,in-nas,client) =/= nullsa .

rl spdb(node,spindb,spoutdb)
routetab(node,routelist)
l3a-nas-reuse-cn(node,client,in-nas,server,

initiator-cert,client-cred,client-nas-spi) =>
routetab(node,routelist)
spdb(node,sSPList(sp(src-dest-pattern(
client,server), sSAList(sa(client, in-nas,
spival-init(client-nas-spi))))) spindb, spoutdb)

l3a-nas-phase2(node,client,in-nas,
get-interface-to-dest(routelist,server),
server,initiator-cert,client-cred,client-nas-spi) .


