
A FOUNDATION FOR TUNNEL-COMPLEX
PROTOCOLS

Alwyn E. Goodloe

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2008

Carl A. Gunter
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

COPYRIGHT

Alwyn E. Goodloe

2008

Acknowledgements

I would like to thank my parents who supported me with encouragement, food, and at
times with money. Without them, the whole process would have been much rougher.
I would like to also think my sister who paid for my cell phone and constantly fed
me the latest stories from ‘the big house’.

I would like to acknowledge professors L. Brian Lawrence and Philippe Lous-
taunau who during my time as a masters student in the George Mason University
mathematics department taught me many of the skills I needed to survive the Ph.D.
program at Penn as well as encouraging me in my crazy idea to abandon a steady
six-figure income and live in poverty in the pursuit of science.

I have encountered many amazing students in the CIS department at Penn. I
was especially like to acknowledge the friendship of Andrew Schein; the Johnson to
my Boswell [52]. Michael McDougall was a wonderful office-mate for many years
and I enjoyed our joint research efforts. I would also like to acknowledge the support
others working in my research group. In particular, Karthik Bhargavan, Michael
J. May, Matt Jacobs, and Gaurav Shah. I could not imagine that I would have
survived grad school if it were not for the friendship of Vladimir Gapeyev, and Swarat
Chaudhuri. Kurt Heidelberg, Albert Montillo, T.J. Smith and Steven Weber also
provided much needed support. At times Mark-Oliver Stehr served as a surrogate
adviser and his friendship kept me from going stir-crazy during a prolonged stay in
Urbana-Champaign. I would also like to thank Elsa, George, and Richard Gunter
for hosting me on my many subsequent visits to Urbana.

I must also acknowledge Prof. Benjamin C. Pierce for teaching me many things
about programming languages and more importantly helping me to become a better
writer. I would also like to acknowledge professors Jean Gallier, Rajeev Alur, Insup
Lee, Andre, Schedrov, Peter Freyd, and Stephanie Werich for the many lessons
learned in their classes and seminars. I would like the thank the Penn PL Club for
including me in their seminars and activities during my time at Penn.

All of my committee members have supported me in this effort. I would especially
like to thank Catherine Meadows for encouraging my investigations into tunnel-
complex protocols and inviting me to visit NRL. I would also like to give special
thanks to Steve Zdancewic who took time to listen to my ideas and provided funding
without which I may never have finished. I would also like to acknowledge Joshua
Guttman, and other the members of the protocol eXchange group that encouraged

iii

my investigations into tunnel-complex protocols.
Above all, I would like to acknowledge the support of Carl A. Gunter for acting

as my adviser. The roots of this work began with experiments we carried out on
authenticated SYN traversal almost six years ago, morphed into interests in security
tunnels, and finally we hit upon the idea of studying tunnel-complex protocols.
Without Carl’s guidance and insight this dissertation would not have been possible.

iv

ABSTRACT
A FOUNDATION FOR TUNNEL-COMPLEX PROTOCOLS

Alwyn E. Goodloe
Carl A. Gunter

Tunnel-complex protocols construct different tunnel topologies by directing tunnel-
establishment protocols to set up pair-wise tunnels between different nodes, where
the resulting tunnel complex satisfies some security requirement such as negotiating
a defense in depth. Such protocols ease the burden on network managers deploy-
ing innovative solutions involving tunnel complexes to secure communication and
protect networks. Tunnel-complex protocols exhibit subtleties relating to functional
correctness and Denial of Service (DoS) that can benefit from formal analysis. We
introduce a formalism called the tunnel calculus, which provides an operational se-
mantics for a protocol stack incorporating the structures that maintain tunnel state
as well the packet header transformations carried out by security tunnels. All subse-
quent analysis is based on this formalism. The tunnel calculus is applied to analyz-
ing functional properties of both tunnel-establishment protocols and tunnel-complex
protocols. The formalism is used to exhibit a situation where establishment protocol
execution interacts with the state being installed so as to cause a deadlock. Non-
interference and progress properties are formulated and proved in our framework
showing the absence of this deadlock in a revised protocol. The utility of the tunnel
calculus is illustrated in a number of case studies of discovery protocols that discover
security gateways and set up tunnels to negotiate their traversal. For each protocol,
we prove a functional completeness property that characterizes how the protocol de-
livers credentials to gateways as part of the negotiation process. We consider the the
effectiveness of specific DoS protections for discovery protocols using a cost model
for the tunnel calculus. In addition, we formulate and prove a theorem that says
a particular class of attackers cannot induce the DoS-resistant protocol to perform
high-cost activities.

v

Contents

Acknowledgements iii

1 Introduction 1
1.1 Background . 2
1.2 Motivation . 6
1.3 Problem Statements . 10
1.4 Related Work . 12

1.4.1 Existing Tunnel-Complex Protocols 12
1.4.2 Reasoning About Tunnel Complexes 13
1.4.3 Formal Analysis of Tunnel Establishment Protocols 14
1.4.4 Distributed Credentials . 14
1.4.5 Formal Treatments of Deadlock 15
1.4.6 DoS . 15
1.4.7 Alternate Formalisms . 16

1.5 Contributions . 17

2 Layer Three Accounting 19
2.1 Accounting and Cramming Attacks 19
2.2 Requirements . 22
2.3 Protocol Overview . 23
2.4 Architecture of the Formal Model . 26
2.5 Formal Simulation . 28

2.5.1 First Prototype . 28
2.5.2 Revising the Prototype . 33
2.5.3 Second Revision . 33
2.5.4 Further Evolution . 34

2.6 L3A Tear Down . 36
2.7 Implementation . 39
2.8 Conclusion . 41

3 Modeling Tunnels 42
3.1 Abstract Foundations . 42
3.2 Establishment for Discovery . 45

vi

3.3 Interference . 47
3.4 Conclusion . 51

4 Tunnel Calculus 52
4.1 Grammar and Structure . 52
4.2 Core Layers of the Tunnel Calculus 59

4.2.1 Forwarding Layer . 59
4.2.2 Secure Processing Layer . 60
4.2.3 Authorization Layer . 64
4.2.4 Establishment Layer . 68

4.3 Trace Theory . 72
4.4 Putative Properties . 73
4.5 Conclusion . 78

5 Noninterference and Progress 79
5.1 Independence Between Sessions . 79
5.2 Session Matching Property . 83
5.3 Trace Equivalence . 84
5.4 Simulation . 85
5.5 Observational Commutativity . 86
5.6 Independence Within a Session . 89
5.7 Noninterference . 90
5.8 Progress . 91
5.9 Conclusion . 93

6 Discovery Protocols 94
6.1 Overview of Discovery . 94
6.2 Concatenated Discovery Protocol . 98

6.2.1 Rules for Concatenated Discovery 103
6.2.2 Completeness Theorem for Concatenated Discovery 108

6.3 Nested Tunnels Discovery Protocol 110
6.3.1 Rules for Nested Discovery . 113
6.3.2 Completeness Theorem for Nested Discovery 117
6.3.3 Modified Nested Discovery . 118
6.3.4 Rules for Modified Nested Discovery 120
6.3.5 Completeness Theorem for Modified Nested Discovery 123

6.4 Conclusion . 125

7 Denial of Service Threats 126
7.1 DoS Attacks . 126
7.2 Modified Establishment Protocol . 128
7.3 Logical Attacks on Establishment Layer 133

7.3.1 Attacks on DoS Request . 134

vii

7.3.2 Attacks on DoS Reply . 136
7.3.3 Attacks on Establishment Request 139
7.3.4 Attacks on Establishment Reply 141
7.3.5 Composing Attacks on Establishment 143

7.4 Attacks on Discovery Protocols . 144
7.4.1 Logical Attacks on a Tunnel Complex 146

7.5 Resource-Exhaustion Attacks . 147
7.5.1 Message Cost Functions . 148
7.5.2 Evaluating the Cost of Attacks 151

7.6 Resource-Exhaustion Theorems . 158
7.7 Conclusion . 167

8 Conclusion 169
8.1 Overview . 169
8.2 Assessment . 170
8.3 Future Work . 173

viii

List of Tables

4.1 Tunnel Calculus Types . 53
4.2 Tunnel Calculus Elements . 54
4.3 Tunnel Calculus Terms . 55
4.4 Tunnel Calculus Rewrite Rules . 57

7.1 Classification of Attacks . 128
7.2 Costs Incurred During Establishment Attacks 155
7.3 Costs Incurred During Discovery Attacks 157

ix

List of Figures

1.1 Security Tunnel Acting on a Message 2
1.2 Basic Road Warrior Scenario . 3
1.3 Single Gateway . 5
1.4 Nested Security Domains . 5
1.5 Defense in Depth . 6
1.6 Virtual Private Network . 7
1.7 Road Warrior Scenario Variant . 7
1.8 Hub and Spoke . 9

2.1 Cramming Attack . 20
2.2 Base SA configuration . 23
2.3 Write after message three. 25
2.4 Architecture of the model . 26
2.5 Model network topology. 28
2.6 Estab V 1.0 . 29
2.7 L3A V 1.0 . 31
2.8 L3A V 2.0 . 34
2.9 Estab V 2.0 . 35
2.10 L3A V 3.0 . 36
2.11 L3A Tear Down . 37
2.12 Throughputs . 40
2.13 Latencies . 41

3.1 Nested Tunnels 1 . 44
3.2 Nested Tunnels 2 . 44
3.3 Nested Tunnels 3 . 45
3.4 Road Warrior . 46
3.5 Deadlock Scenario . 48

6.1 Example Topology . 95
6.2 Concatenated Tunnel Complex . 99
6.3 Acknowledgments in Concatenated Discovery 100
6.4 Concatenated Discovery Execution 101
6.5 Nested Tunnel Complex . 110

x

6.6 Nested Discovery Execution . 112
6.7 Modified Nested Discovery Execution 119

xi

Chapter 1

Introduction

Security tunnels protect information traveling between two hosts over an insecure
network. A collection of security tunnels can be composed to provide more so-
phisticated security guarantees. Yet the difficulty of configuring tunnel complexes
has been a limiting factor in practice. Support protocols can be employed to set
up sophisticated tunnel complexes, but designing such protocols is a difficult and
error-prone task that is poorly understood. If the underlying network topology is
unknown, the design issues become even more formidable. This dissertation is the
first formal study of protocols that coordinate the construction of a tunnel complex,
which we designate as tunnel-complex protocols. Our focus is primarily on two issues
confronting the designer of tunnel-complex protocols. The first issue is functional
correctness, in particular, deadlocks, which we have found can arise in even seem-
ingly simple protocols. The second issue is Denial-of-Service (DoS) threats against
both the protocols and the tunnel configuration itself. A formalism called the tunnel
calculus is introduced that has been engineered for expressing and reasoning about
tunnel protocols. A particular strength of the tunnel calculus is the ability to reason
about the interactions between executing protocols and the state being installed at
the nodes as the protocol sets up tunnels, which can give rise to deadlocks unless
care is taken. In addition, we use the formalism to study protocols that discover
security gateways and negotiate their traversal by setting up security tunnels. The
effectiveness of countermeasures used to protect tunnel-complex protocols against
DoS attacks are also analyzed using the tunnel calculus.

The remainder of this chapter is organized as follows: we first provide background
material on security tunnels and security gateways; a discussion motivating the need
for tunnel-complex protocols follows; we then summarize the functional correctness
and availability issues that are our primary focus; a survey of related work places the
dissertation in relation to existing research; finally, we highlight the contributions
made in this dissertation.

1

Alice
Bob

Hello HelloHello HDR

Apply
Crypto

Transforms
Invert Crypto
Transforms

Figure 1.1: Security Tunnel Acting on a Message

1.1 Background

As Internet use has become ubiquitous, its public networks have become the conduit
for exchanging extremely sensitive information, for instance, credit card transactions.
Unless secured by additional means, traffic flowing over the Internet is subject to
eavesdropping. Adversaries can also assume someone else’s identity since authen-
tication and authorization are not part of the basic suite of protocols that carry
the majority of Internet traffic. The science of cryptography provides the means to
secure messages from prying eyes via encryption and to ensure that a message actu-
ally does originate from the purported sender via digital signatures. These functions
could be built into applications, but given the widespread need to protect sensitive
information, a standardized device for protecting selected traffic is preferred. Se-
curity tunnels provide a solution to protecting private data traveling over a public
network. Security tunnels are a mechanism where two nodes share state that enable
them to apply cryptographic transformations to messages to ensure that they are
secure and authenticated, resulting in a secure virtual communication channel. As
each message enters a tunnel, a cryptographic operation is performed to encrypt
and/or digitally sign the message and a special header is added. At the other end
of the tunnel the digital signature is verified to ensure that the message actually
originated at the purported origin and the message is decrypted. This processing
is illustrated in Figure 1.1. Among the many standardized tunneling products in
use today are the Point-to-Point Tunnel Protocol (PPTP) [63], which works at the
link layer, Transport Layer Security (TLS) [36], which works at the transport layer,
Secure Shell (SSH) [117, 116], which works at the application layer, and IP security
(IPsec) [80, 79, 78], which works at the network layer. In this dissertation, we chose
to model tunnels at the network layer because of the flexibility it affords and borrow
terminology and basic structures from the IPsec, but are not wedded to a specific
standard.

The primary components of our model for security tunnels are as follows. Secu-
rity associations (SA) define the shared parameters between the tunnel end-points

2

Untrusted Network

Bob
 Alice

Figure 1.2: Basic Road Warrior Scenario

such as the cryptoprotocol parameters and secret keys that define the cryptographic
transforms applied to each message traveling in a tunnel. Both nodes maintain
this information in their Security Association Database (SADB). Each association
possesses a unique identifier called the Security Parameter Index. Security mecha-
nisms filter and direct traffic into the proper security associations. Such filters are
sometimes referred to as security policies, but we prefer to distinguish these from
high-level security policies. Security mechanisms are maintained in a Mechanism
Database (MDB) at both nodes. Security tunnels are typically composed of a pair of
unidirectional associations securing communication flowing in each direction. Differ-
ing technologies may or may not be structured in this fashion and may use different
terminology.

Probably the most common application of security tunnels is when someone act-
ing as a client employs a tunnel to secure communication to a server. This may be
to secure a financial transaction such as buying a book over the Internet or to secure
sensitive information, such as an employee communicating with a company server
while away from the office. This scenario is often called the Road-Warrior scenario
and is depicted in Figure 1.2.

The state at each tunnel endpoint can be manually configured. This requires
that state either be preinstalled when the hardware is delivered or be distributed to
the administrators who then install the keys and other information manually. Both
choices are error prone making the secret keys vulnerable to an attacker. Tunnel-
establishment protocols automate the most burdensome aspects of this task by cre-
ating the shared cryptographic keys used by the security association. The crypto-
graphic keys are typically created using a Diffie-Hellman key-exchange [37, 93, 19].
The shared keys along with other information is installed in the SADB and the MDB
may also be updated. Given that organizations may not want to allow just anyone
to form a connection to their computers, tunnel-establishment protocols typically
perform some form of authentication and authorization before creating a tunnel.
This process may be as simple as requiring a password or as sophisticated as using
digitally signed credentials such as SPKI/SDSI [44, 46] certificates. IKEv2 [76] is an
example of a standardized tunnel-establishment protocol developed to set up IPsec

3

tunnels.
Consider a corporate network providing no security. It resembles a public high-

way in that any packet may travel over the corporate network, where the sole burden
for defense lies at the host. Virus scanners, spyware detectors, and similar software
are necessary layers of defense that must reside at the host. Software based firewalls
can be deployed at the hosts to block hostile traffic. Given that firewalls can be
inconvenient, the administrators at each host are tempted to alter to firewall rules.
Users may even disable the firewall unaware of the consequences to the security of
their system. Hence host-based security complicates an administrator’s ability to
centrally formulate and enforce a corporate security policy. Another drawback to
placing all the security at the hosts is that it offers no protection to the network
infrastructure. If no mechanism is in place to regulate traffic flowing into an organi-
zation’s network, attackers are given the freedom to probe every host and router for
vulnerabilities as well as to flood a network with packets in a DoS attack. A solution
is to push some of the burden for security into the network itself so as to control
who is allowed to perform specified actions on a corporate network.

An integral part of incorporating security into the network is the placement of
a security gateway at the perimeter of the corporate network, dividing the network
into an untrusted network outside of the gateway and a trusted network behind the
gateway. The gateway enforces policies governing the flow of data into and out of
its administrative domain. It also centralizes security policy management providing
protection for all elements within its protective zone. Packet filtering firewalls pro-
vide some protection by blocking access to all but specified ports and services, but do
not provide authentication services. Since the responsibility for authentication and
authorization remains at the hosts, the primary burden for preventing unauthorized
activity remains at the hosts. A defense-in-depth philosophy advocates pushing more
of the responsibility for security into the network. For instance, security gateways
that perform authentication and authorization transform the network from a pub-
lic highway into a gated community by only allowing authorized traffic to pass. A
principal must present valid credentials in order to authenticate itself to the gateway
before being allowed to pass. Since we want all traffic authorized and authenticated,
but do not want to have to repeat the credential verification and authorization pro-
cedure for each packet, the process is integrated with the establishment of a security
tunnel. Hence, gateways and tunnels naturally complement each other as gateways
can enforce their policy during tunnel establishment. Once the tunnel is set up,
all traffic traversing the gateway via the tunnel is ensured to be authenticated and
authorized as satisfying the gateway’s policies.

A wide range of attacks can be thwarted by a single gateway placed at an outer
perimeter of a corporate network as illustrated in Figure 1.3. Yet this configuration
is often referred to as a brittle outer shell defense because once it has been pene-
trated, only the defenses of the host remain. Thirty-nine percent of the responders to
the 2006 FBI/CSI survey [56] indicate that more than twenty percent of their losses

4

Host

Attacker
Gateway

Figure 1.3: Single Gateway

Sales

Finance

Engineering

ACME Inc

Figure 1.4: Nested Security Domains

were due to insiders. For example, an unscrupulous company salesperson attempting
to gain access to financial records or a visitor who has been allowed network access
by one department need not worry about the gateway and is given access to attack
every host on the network. A more subtle attack could be carried out by a principal
that is authorized to communicate with a host in one department, but takes over
that machine and uses it to attack machines containing more sensitive data. These
threats are increasingly being recognized in regulations that protect patient medical
records or corporate financial data. For instance, the Health Insurance Portability
and Accountability Act (HIPPA) (164.308(a)(4)(i), 164.308(a)(4)(ii)(A)) [115] re-
quires polices and procedures that separate patient records from other operations as
well as procedures to ensure that all access is authorized. Sensitive information is
rarely contained on a single computer today, but distributed among the severs and
workstations within an organization. In many cases, auditors insist a particular de-
partment be isolated from the rest of the organization. Failure to do so would subject
every machine in the corporation to stringent and costly regulations. Partitioning
the corporate network into domains protected by a security gateway as illustrated
in Figure 1.4 allows for fine-grained access control. Figure 1.5 depicts the networks
of two organizations who have adapted a defense-in-depth philosophy.

Consider the case of an organization composed of a collection of separate cam-
puses. Each campus network is typically protected by a gateway and tunnels are
used to connect the campuses to form a virtual private network (VPN) as seen in

5

b

GW

GW

GW

GW

GW

GW

GW

GW

GW

GW

GW

GW

GW

Figure 1.5: Defense in Depth

Figure 1.6. This is one of the more commonly deployed tunnel topologies and has a
relatively straightforward configuration. Yet configuring tunnels to each gateway on
the communication path in a network with many levels of nesting such as the one
illustrated in Figure 1.5 is nontrivial. Nesting tunnels offers many benefits, but can
complicate configuration. In the next section, we shall discuss how a special class of
protocols can mitigate the difficulties in setting up such a collection of tunnels.

1.2 Motivation

Security tunnels can be composed to create a complex of tunnels that collectively
provide a specific security guarantee. To illustrate this, consider the variant of the
road warrior scenario presented in Figure 1.7. In order to communicate with Bob’s
server located back at Coyote corporation, Alice must authenticate to a wireless ac-
cess port to gain access to the Internet, authenticate to the Coyote Corp corporate
gateway to gain entrance to the company network, and finally authenticate to Bob.
The end-to-end communication between Alice and Bob should be secured using en-
cryption. Alice can satisfy this requirement by setting up tunnels to each of these
nodes. A common solution is to set up the tunnel complex seen in Figure 1.7, where
the end-to-end tunnel labeled C is nested inside of the tunnel labeled B flowing be-
tween Alice and the gateway, which is nested inside of the tunnel labeled A flowing
between Alice and the wireless access point. Typically, this is set up in an ad hoc
fashion with each tunnel using a different technology. For instance, tunnel A may
be a PPTP link-layer tunnel, tunnel B a network-layer IPsec tunnel, and tunnel

6

GW

GW

GW

Figure 1.6: Virtual Private Network

BobGWA
B
C

Coyote
Corp

Alice

Figure 1.7: Road Warrior Scenario Variant

7

C a transport-layer TLS tunnel, where each tunnel performs both authentication
and encryption even though only the end-to-end tunnel need encrypt. Given that
data is being encrypted three times, users may experience significant performance
degradation. A more coordinated solution would be to employ a support proto-
col to coordinate the configuration of the tunnels. In the case of the road-warrior
example in Figure 1.7, the support protocol would configure three nested tunnels
with an authentication tunnel to the access port, an authentication tunnel to the
gateway, and an end-to-end tunnel that performs both encryption and authentica-
tion. Performing all of this at the network layer eases the burden of coordination.
We designate this class of protocols as tunnel-complex protocols. These protocols
use tunnel-establishment protocols as basic components and direct them to set up a
tunnel between two nodes. Tunnel-complex protocols create different topologies by
invoking establishment at different nodes with varying parameters.

As we have seen, tunnels and gateways are used to create secure virtual networks.
The configuration of these networks is commonly done using a router command
line interface. Tools such as Solsoft’s Policy Manager [112] facilitate centralized
management by allowing the network manager to specify and distribute policies
to network devices throughout the organization. A more sophisticated approach
to centralized VPN management generates tunnel mechanisms from a high-level
specification and includes sophisticated algorithms to check the consistency of the
generated database entries [50, 51]. Given that centralized administration of VPNs
is often error prone and not practical in situations where the topology can change,
dynamic VPN configuration is a desirable feature, and one that has not been ignored
by industry.

The VPN depicted in Figure 1.6 forms a complete graph. Another popular VPN
configuration in use today is the hub and spoke model where a collection of branch
offices connect to a central ‘hub’ office as illustrated in Figure 1.8. In this topology,
all traffic between different spokes must travel through the headquarters hub. Cisco’s
Dynamic Multipoint VPN (DMVPN) [28] protocol can be viewed as a basic tunnel-
complex protocol aimed at this topology. DMVPN alleviates the burden on the hub
by setting up direct spoke-to-spoke IPsec tunnels. The spokes typically have dynamic
addresses, but maintain a tunnel to the hub. The hub acts as a next hop resolution
protocol server (NHRP) [86] with a static IP address. A spoke router learns the
address of another spoke from the NHRP hub. If Alice is a host located in spoke A
and she wishes to communicate with host Bob located in spoke B, Alice will notify
the DMVPN spoke router, which in turn sends a NHRP resolution request to the
hub. The hub then sends a resolution request on to spoke B. Spoke B then initiates
IKE tunnel establishment with spoke A. When DMVPN process terminates, an
IPsec tunnel is set up directly between spokes A and B through which Alice and
Bob communicate.

We have established that hierarchically arranged security gateways enforcing po-
lices to protect their administrative domain can provide defense in depth and that

8

Branch Office
Spoke

Branch Office
Spoke

Branch Office
Spoke

Headquaters
HUB

Figure 1.8: Hub and Spoke

security tunnels can be used to ensure that all the traffic that traverses the gate-
ways is authenticated and authorized by the gateway. Tunnel-complex protocols
help to automate this process. Any solution is unlikely to scale if the gateways on
the dataflow path need to be known beforehand since two different organizations
are not likely to communicate each time they change their gateway topology. This
situation is akin to the early days of the Internet when forwarding tables were man-
ually configured. A solution is to have the tunnel-complex protocol discover the
gateways, negotiate gateway traversal by presenting any credentials needed to sat-
isfy the policies at the gateway, and to configure the tunnels to the gateway so as to
form a virtual topology where the traffic flow is governed by the gateway policies.
We designate such protocols discovery protocols. Cisco’s Tunnel Endpoint Discov-
ery (TED) [48] is a discovery protocol that assumes only a single gateway in each
organization. The protocol works as follows. Host A sends a packet to Host B. A
router acting as a gateway to the domain where host A dwells intercepts the packet
and checks to see if there is an existing association with a matching policy. If so, the
packet is sent to its destination. Otherwise, a discovery probe is sent to the packet’s
destination. A gateway protecting Host B intercepts the probe and sends back a
reply. The tunnel-establishment protocol IKE is then invoked to set up an IPsec
tunnel between the two gateways. More complex discovery protocols are needed in
order to traverse nested gateway structures such as the one depicted in Figure 1.5.

9

1.3 Problem Statements

Tunnel-complex protocols coordinate the creation of a complex of security tun-
nels in order to satisfy some security policy. This is achieved by invoking tunnel-
establishment at different nodes so as to direct the construction of the desired tunnel
configuration. Ensuring the functional correctness of these protocols involves ver-
ifying that the correct tunnel complex gets constructed. The protocols must also
satisfy the traditional security guarantees of integrity, confidentially, and availabil-
ity. Each of these issues needs to be addressed, yet tunnel-complex protocols have
not been subjected to formal analysis and the absence of such foundations will likely
encumber attempts to design sophisticated protocols.

Security tunnels are defined by the state of the association and mechanism
databases at the tunnel endpoints. The primary functional correctness criteria for
tunnel-complex protocols is that they terminate with the association and mechanism
databases at selected nodes in a state so as to define the desired tunnel complex.
The resulting topology must also be verified as enforcing the intended security pol-
icy. If creating the tunnel configuration in Figure 1.7, the protocol must terminate
with the association and mechanism databases at the wireless access point, com-
pany gateway, and Bob’s server each having entries for a pairwise tunnel with Alice.
Alice’s databases should reflect a nested composition of three tunnels. It would
seem that in order to discharge this proof obligation, one need only prove that the
tunnel-complex protocol invokes establishment at the proper node with the correct
parameters. Yet unexpected interactions between the executing protocols and the
state being installed can give rise to problems. In case studies reported in Chapters 2
and 3, we found that these interactions can result in traffic being placed in partially-
set-up tunnels creating deadlocks. Such ‘friendly fire’ incidents where systems are
harmed by their own security mechanisms are often appreciated in practical oper-
ations. A recent NIST report [114] on Supervisory Control And Data Acquisition
(SCADA) security includes a list of documented security incidents (see Section 3.7),
which contains as many incidents arising from faults in security protection measures
as ones arising from deliberate attacks by adversaries; thereby reinforcing the need
to address functional correctness along with traditional security guarantees.

Discovery protocols locate security gateways on the dataflow path and negotiate
their traversal. Locating the gateways is a function of the reliability of the network
forwarding tables, but gateway traversal is more subtle. A completeness theorem for
a discovery protocol would characterize how it delivers the information needed to
negotiate gateway traversal and would be a critical correctness criteria. The desired
property, and how we formalize it, is an open question, yet one that is central to
understanding discovery.

DoS attacks are an attack on the availability of hosts, gateways, and the network
itself. An attacker may flood the network with packets in order to consume band-
width, to entice a node to allocate state in order to consume memory, or to trick

10

a node into performing expensive computations. The TCP SYN attack may have
been the first DoS attack generally acknowledged to have affected many Internet
users. This attack works as follows, an attacker sends a node a TCP SYN packet
with a spoofed return address. The protocol sends an acknowledgement message to
the spoofed address, allocates state for the connection, and awaits an acknowledge-
ment, but this will never arrive. Given that it will be a while before connection
times out and that the number of connections for a given port are limited, the SYN
flooding attack can be used to block a port. Bernstein [10] introduced a counter-
measure known as SYN Cookies. The idea is to not allocate state until a round-trip
communication is performed with the advertised address. Upon receiving a SYN, a
node sends a ‘cookie’ containing a time-dependent counter, the maximum segment
size, and a twenty-four bit value obtained by applying a cryptographic function to
the connection four-tuple and time counter. The initiator is expected to send back
the cookie and only then is state for the connection allocated. Tunnel-establishment
protocols perform costly operations to generate the keys as well as verify signatures
and credentials. Such computationally expensive operations can be exploited in a
DoS attack similar to the SYN attack. Consequently, cookies are included in many
protocols such as IKEv2 to prevent these operations from being performed until
after the protocol has verified that the return address is the principal requesting
the tunnel. Given that tunnel-establishment protocols form an essential compo-
nent of tunnel-complex protocols, a DoS attack on the component is an attack on
the tunnel-complex protocol itself. Consider the TED protocol discussed above. A
distinguished discovery packet arriving at a TED-enabled gateway triggers estab-
lishment. Unless sufficient safeguards are in place, a DoS attacker could send the
discovery packet followed by the a bogus establishment message in order to entice a
gateway to perform costly operations or commit state. Distributed Denial-of-Service
(DDoS) attacks often do not depend on address forgery, but instead hijack many
nodes, which are in turn used to carry out the attack, making these attacks harder
to thwart. One proposed countermeasure is to use client puzzles [72, 6] that force
the attacker to solve a small cryptographic puzzle requiring some computational ex-
pense. A bot performing many attacks will likely either take too long to solve the
puzzle so that the server side times out or the slowness of the system will alert a
user that their system has been compromised. Another countermeasure to DDoS
attacks uses information theoretic techniques [110] to protect bandwidth so that an
increasing amount of work is required to consume a given amount of bandwidth.

Once a tunnel complex has been set up, it should protect the network from
unauthorized traffic and therefore protect against DoS attacks. Yet in Chapter 2,
we demonstrate how a commonly deployed tunnel complex is subject to a form of
DoS attack that we call a cramming attack. Here an adversary takes advantage of an
‘open ended’ tunnel to flood the protected network with packets. Even though the
spurious packets are dropped at a tunnel endpoint, unauthorized packets can flood
the network, which can have deleterious effects such as undermining the integrity of

11

network accounting systems.
The integrity and security of messages traveling in a tunnel complex is guaran-

teed by the individual tunnels. These properties must be ensured by the tunnel-
establishment protocol that sets up the tunnel. The secrecy and integrity of the
shared keys created during tunnel establishment have been the subject of extensive
study and we do not address this topic here.

In order to perform a formal analysis addressing the issues raised above, one
needs to select a formalism that can express tunnel-complex protocols and reason
about properties of interest. Care must be taken in choosing a formalism that can
naturally represent essential tunnel structures such as the mechanism and security
association databases. Messages traveling from one node to another in a tunnel can-
not instantaneously move between nodes as in many formalisms, but must undergo
processing as it enters and exits the tunnel. The literature survey given in the next
section examines several possible alternatives.

1.4 Related Work

The related work can be broadly classified into the following categories:

• Existing tunnel-complex protocols.

• Reasoning about tunnel-complexes.

• Formal analysis of tunnel-establishment protocols.

• Formal treatments of deadlock.

• Distributed credentials for authorization.

• DoS vulnerabilities of network protocols.

• Alternate formalisms that may be used to analyze tunnel-complex protocols.

In the remainder of this section we shall examine each of these categories and place
the related work in relation to the work performed in this document.

1.4.1 Existing Tunnel-Complex Protocols

Tunnel-complex protocols are a relatively recent concept. Although most practical
efforts have been dedicated to to the development of centralized management tools
such as Solsoft’s Policy Manager [112], tunnel-complex protocols are being deployed
in products. As we discussed above, Cisco’s DMVPN [28] provides the basic func-
tionality of a tunnel-complex protocol that configures a tunnel between two spokes in
a hub-and-spoke topology. Discovery protocols have their roots in protocols such as

12

traceroute, which sends out a packet that gets intercepted by nodes on the dataflow
path in order to identify the route taken by packets in a network. In the case of
discovery protocols, there is a distinguished discovery packet that gets intercepted by
security gateways on the dataflow path. Cisco has deployed the aforementioned dis-
covery protocol TED [48]. TED is a great deal simpler than the discovery protocols
that we introduce in Chapter 6. Industry seems to avoid complex tunnel topologies
due to the difficulty in configuration and both DMVPN and TED are aimed at con-
figuring relatively simple topologies. This conservative approach may, in part, be to
due to a recognition that these protocols are poorly understood. We are unaware of
any published studies of formal analysis of tunnel-complex protocols.

Tunnel-complex protocols are signaling protocols because they install state at
nodes on the dataflow path. Another example of a signaling protocol is the Resource
ReSerVation Protocol (RSVP) [20]. This protocol has been subject to several for-
mal treatments. The Specification and Description Language (SDL) was used to
formalize a portion of RSVP and to study the interaction been RSVP and routing
protocols [49]. The model has two layers, an IP layer modeling routing and message
forwarding and a layer modeling the route re-establishment functionality in RSVP.
Simulation and state exploration were employed to study how RSVP recovers from
link failures. The approach employed in this paper is similar to the one we use in
Chapter 2 to model the L3A protocol. On the other hand, the protocols themselves
are quite different, which is reflected in the fact that they must model routing, but
we elide this detail while modeling the packet header transformations performed by
security tunnels. A process algebra is used to model RSVP nodes in [102] as a com-
position of processes using a number of clever encoding tricks. The primary focus of
this work is on modeling arbitrary topologies within a process algebraic framework
and proving functional correctness properties. It is interesting to note that the au-
thors speculate that complex signaling protocols could give rise to deadlocks, but do
not pursue the issue further.

1.4.2 Reasoning About Tunnel Complexes

Once a tunnel complex has been set up it is necessary to prove that the entire complex
satisfies certain security properties. Authentication and confidentiality properties
of IPsec tunnels have been formally analyzed in [68]. Confidentiality properties
are proved using system invariants and an ‘unwinding set’ is developed to prove
authentication properties. Given that this work already addressed this issue, we
chose not to address this topic in order to focus our attention on functional and
availability properties of tunnel-complex protocols. Yet we believe that the tunnel-
calculus could be used as a framework for studying these topics as well.

13

1.4.3 Formal Analysis of Tunnel Establishment Protocols

Tunnel-establishment protocols are an important component of tunnel-complex pro-
tocols. Tunnel-complex protocols invoke tunnel-establishment protocols at different
nodes with varying parameters to create the desired tunnel complex. This reflects
a natural evolution in computing where a commonly used algorithm or protocol
becomes a component in a more complex software system. Tunnel-establishment
protocols have been subjected to extensive formal analysis for over a decade. Authen-
tication in key-exchange protocols were rigorously investigated in [38, 8, 7] and [23].
Two establishment protocols intended for use in the IPsec suite of protocols, IKE [76]
and Just Fast Keying (JFK) [4], have been formally analyzed [92, 24], and [2]. Re-
cently, Pavlovic and Meadows have analyzed secrecy properties of establishment
protocols using a customized logic for deriving cryptographic protocols [100]. All of
these papers are primarily focused on verifying the secrecy and integrity properties
that must be preserved during key establishment. Recent research [21, 22, 90] has
shown that composing security tunnels can result in unexpected interactions that
can compromise the cryptographic keys in one or more of the tunnels; and ongoing
research is being performed to address this issue. Our approach elides the details of
the key exchange in order to focus on functional correctness issues that arise when
tunnel-establishment protocols are used as components in tunnel-complex protocols.
We are unaware of any other formal analysis focusing on functional properties of
establishment protocols.

1.4.4 Distributed Credentials

In order to traverse a security gateway, a principal must be authenticated and au-
thorized to perform the requested action. In the case of discovery protocols, we
also require gateways to authenticate themselves. Within our framework, authoriza-
tion is performed using distributed credentials and assumes the existence of some
public key infrastructure. Tunnel-complex protocols are responsible for delivering
the credentials that satisfy a particular node’s policy. There is a large body of
work on distributed credentials that we took inspiration from. Rivest and Lampson
proposed a public-key infrastructure called the Simple Distributed Security Infras-
tructure (SDSI) [106]. SDSI principles are identified with public keys and only things
signed by the corresponding private key are recognized. Ellison and Franz, et al. de-
veloped the Simple Public Key Infrastructure (SPKI) that provides a mechanism for
authorization. SPKI uses authorization certificates to delegate a specific authority
from an issuer to a subject. The two efforts have been merged and there is currently a
SPKI/SDSI working group in the IETF that has produced several RFCs [44, 46, 45].
The tunnel calculus authorization layer can be viewed as similar to, but simpler,
than SPKI/SDSI. There is a substantial body of research dedicated to giving a for-
mal semantics to SPKI/SDSI [1, 61, 62, 85, 29], and [69]. The trust management

14

approach [15] to authorization seeks to create an application independent compo-
nent to verify if a request is authorized to take some action. Given the local security
policy, a set of credentials, and a request, the trust engine returns a decision as to
the whether or not the request complies with the policy. PolicyMaker [16, 17] and
Keynote [18] are notable examples of this approach. The Query Certificate Manager
(QCM) [60, 58, 75, 59] is another system that verifies policies based on certificates.
Our model for credentials can be viewed as an abstraction inspired by SPKI and
our model of policies are admittedly simple compared to what some others have pro-
posed, but both are sufficient for our purposes. Rather than model the, necessarily
complex, machinery used in a specific technology for verifying that a credential set
satisfies a given policy, we simply define a relation that acts as a specification that
could be satisfied by many of aforementioned proposals.

1.4.5 Formal Treatments of Deadlock

Deadlocks in tunnel-complex protocols are exposed in Chapters 2 and 3 and the tun-
nel calculus is used to show the absence of a particular deadlock in Chapter 5. The
study of deadlocks is almost as old as computer science itself. Early pioneers that in-
troduced concurrent processes into operating systems also introduced machinery such
as semaphores and monitors to control access to shared resources [39, 40, 41, 65], but
since these mechanisms prevented processes from gaining access to the resource, they
gave rise to the possibility that all processes competing for the resource could dead-
lock. The Dinning Philosophers problem [42] is a classic example of this problem.
Concurrency and deadlocks have been studied in the formal methods community for
many years. Axiomatic approaches are usually rooted in the Gries-Owiki [57, 70, 71]
proof technique. The proof techniques introduced for reasoning about deadlock in the
context of concurrent systems can be extended to reason about distributed systems.
The texts [5, 109, 27] and [47] contain excellent treatments of reasoning about dead-
lock in the context of concurrent and distributed programs. Model checking [30, 31]
verifies that a transition system is a model for a temporal logic specification. In
many cases it is possible to specify the absence of deadlocks as a safety property in
temporal logic and use a model checker to find such bugs. Model checking is generally
used as a debugging tool where our focus is on proofs of correctness. An alternate
approach has its origins in Reynolds’ Syntactic Control of Interference [103, 104].
The goal of this program is the design of a powerful Algol-like language in which
interference is possible, but syntactically detectable. None of the above approaches
have been applied to security tunnels.

1.4.6 DoS

The L3A protocol studied in Chapter 2 creates a tunnel complex to protect the
wireless accounting infrastructure from cramming attacks. The basics of accounting

15

and billing for network services is described in [82]. Accounting and billing for Global
System for Mobile (GSM) is discussed in [66] and requirements for accounting for
Code Division Multiple Access (CDMA) are discussed in [64]. Attacks targeting
wireless billing and accounting are a recognized threat. In the so called ‘overbilling’
attack on the General Packet Radio Service (GPRS) [81, 73], an attacker acting as
a mobile station hijacks the IP address of a legitimate mobile station and begins
a download from a server on the Internet. The attacker ends the session once the
download begins, but since the requested datastream flows to the victim, which gets
billed for services that were never requested. This threat arises because the GPRS
Transfer Protocol (GTP) provides no security to protect communications between
GPRS networks. Several manufactures of firewalls, VPNs, and other equipment
advertise that they thwart this attack [74, 101, 67].

Formal methods have been applied to analyze both a protocol’s vulnerability
to DoS attacks as well as the effectiveness of countermeasures. Abadi, Blanchet,
and Fournet perform limited analysis of cookies employed in JFK [2], where they
prove that the protocol responder does not commit state until a round-trip has
been performed with the initiator. Game theory has also been applied to analyzing
DoS countermeasures [87, 9]. Meadow’s [89] cost based approach attaches specific
values to protocol operations allowing one to analyze the cost of various attacks.
This technique has been applied to the Station to Station protocol [89] as well as
JFK [111]. Lafrance and Mullins [83] formalize protocols and attackers in a process
algebra that incorporates a cost model for cryptographic operations. Assuming that
successful DoS attacks are a consequence of a single flaw in a protocol, the authors
present a technique for showing whether a single attacker performing only low-cost
operations can interfere with the defender’s high-cost operations. The problem is
formulated in terms of an information flow property. In particular, a theorem that
says an attacker’s low-cost operations do not interfere with the defender’s high-cost
operations if the high-cost operations in the system formed from the composition of
the defender and attacker simulates those when the defender executes alone. We do
not develop a new methodology for studying DoS attacks, but apply Meadow’s cost
model to analyzing an exhaustive range of attacks. We also state and prove a theorem
similar to that in Lafrance and Mullins that says a particular countermeasures are
effective against a specific class of attacks.

1.4.7 Alternate Formalisms

Many formalisms have been successfully used to express and reason about security
protocols. We now look at a representative sample of these formalisms and discuss
why they were are not well suited for reasoning about tunnel-complex protocols.
Process algebras such as Communicating Sequential Processes (CSP) [25, 108] and
the π-calculus [94, 3, 13] have a long history of being applied to the analysis of
protocols and in the last decade they have become a popular vehicle for expressing

16

and analyzing cryptographic protocols. The π-calculus based ProVerif tool [14] pro-
vides sophisticated automated assistance to reason about secrecy properties and has
been applied to the analysis of the JFK [2] key exchange protocol. Multiset rewriting
(MSR) [26, 26] logic is a strongly typed specification language for expressing security
protocols and is another possible choice. Processes algebras and and MSR abstract
away the details of the communication network and concentrate on the exchange
of cryptographic messages. This makes them ideal to analyze if an attacker can
gain access to information during an exchange of messages in a cryptographic pro-
tocols. Tunnel-complex protocols can be viewed as signaling protocols in that they
install state in the SADB and MDB on nodes on the dataflow path. The functional
properties that are our focus require us reason about the state of these databases.
Consequently, the details that these systems abstract away are those that are needed
to express and reason about the class of protocols under study. State machines have
long been used to represent protocols. Guttman, Herzog, and Thayer [68] model
IPsec tunnels using state machines and formalize authentication and confidentiality
properties. On the other had, the databases that are of interest to us are difficult
to express in this notation. Logic based approaches have also been applied to proto-
cols. Paulson has applied inductive techniques in HOL to a number of cryptographic
protocols [98, 99]. The NRL protocol analyzer (NPA) [91, 92] is another logic-based
tool customized for analyzing security protocols. Both the NRL protocol analyzer
and the HOL models abstract away the details of communication processing simi-
lar to process algebras. A logical approach has also been used to produce detailed
and rigorous specification of TCP and UDP [12], but no model of a security tunnel
mechanism, such as IPsec, was constructed and the level of detail related to the im-
plementation can be overwhelming if not needed. A custom compositional logic for
deriving security protocols and proving secrecy properties has recently been proposed
by Mitchell and Pavlovic et al [33, 43]. Given that we do not address those topics,
our work would not benefit from the more novel features of this logic. None of the
approaches surveyed provides a ready-made framework for expressing and reasoning
about tunnel-complex protocols. Leaving us with the option of either customizing
an existing formalism or designing a new formalism.

1.5 Contributions

This dissertation contains the first formal treatment of tunnel-complex protocols and
discovery protocols in particular. The primary contributions are as follows:

1. The first demonstration of the threat posed by cramming attacks to the wire-
less accounting infrastructure and a countermeasure in the form of the L3A
protocol. (Chapter 2.)

17

2. A demonstration that formally analyzed tunnel-complex protocols can be im-
plemented on top of the existing Internet security framework and achieve ac-
ceptable performance. (Chapter 2.)

3. The introduction of the first formalism designed for expressing tunnel-complex
protocols and also designed for reasoning about their functional correctness
properties. (Chapters 3 and 4.)

4. The first formal treatment of deadlock issues that arise in tunnel-complex pro-
tocols. In particular the following contributions:

(a) Logical simulations are used to uncover deadlocks in the L3A protocol.
(Chapter 2.)

(b) The tunnel calculus is used to expose a deadlock in a tunnel-establishment
protocol. (Chapter 3.)

(c) Noninterference and progress theorems are formulated and proved show-
ing absence of the aforementioned deadlock for a modified
tunnel-establishment protocol. (Chapter 5.)

5. The first demonstration of a completeness property for tunnel-complex proto-
cols. (Chapter 6.)

6. The first study of DoS threats to tunnel-complex protocols and an analysis of
countermeasures. (Chapter 7.)

18

Chapter 2

Layer Three Accounting

The aim of this chapter is to produce a case study of a simple, but realistic, tunnel-
complex protocol that went “end-to-end” starting with requirements, then using
formal prototypes to debug the design, and finally building an implementation and
collecting performance information. Such a controlled study gives us better un-
derstanding of the unique demands placed on tunnel-establishment protocols when
used as a component of tunnel-complex protocols. Understanding the fundamental
difficulties encountered when constructing simple protocols serves to focus further
research. The implementation is intended to demonstrate that it is possible to con-
struct tunnel complex protocols using existing computing systems while achieving
acceptable performance. The object of this study is a protocol that sets up a col-
lection of tunnels to protect the wireless accounting infrastructure. We begin with
an overview of accounting and introduce a form of DoS that can compromise the
integrity of the accounting system. We then exhibit a composition of tunnels that
we argue thwarts this attack. This is followed by an overview of the Layer 3 Ac-
counting (L3A) protocol that sets up this tunnel complex. The analysis of several
iterations of the protocol design is presented. We also present a tear-down protocol.
Both L3A and its tear-down protocol were implemented yielding performance that
exceeds the standard solution for protecting wireless accounting. The work reported
in this chapter appeared in [55] and [54].

2.1 Accounting and Cramming Attacks

All commercial Internet access vendors charge their customers for service. While
most conventional wired Internet service providers charge customers a flat monthly
charge, the wireless links are sometimes deemed too valuable for such a flat service
fee. Vendors typically prefer having the option of charging customers a flat fee or
to bill based on the services actually used. Accounting devices are often embed-
ded in the network infrastructure to enable wireless providers to track how much
service a user consumes. Emerging protocols for wireless Internet access such as

19

S D

Pr ofe ss ion al Wo rk sta tio n 6 00 0

PR O

NAS

Client Server

Attacker

E2E Tunnel

Client2NAS
Tunnel

Cramming
Traffic

Figure 2.1: Cramming Attack

CDMA2000 [64] have accounting components. RADIUS servers [105] are designed
to provide accounting services for protocols such as GPRS. Accounting information
is reported to the billing system for computation of the user’s charge [82]. It is im-
portant that the accounting infrastructure not be compromised otherwise a vendor
may not be able to defend itself against a customer challenging his bill. This is a case
where profits depend upon having sufficient security in place. The dependence on
the integrity of the accounting infrastructure for billing makes it an inviting target
for hackers.

A common accounting system is to associate traffic with specific clients on an
access network and use a Network Access Server (NAS) to gain access to the net-
work. The NAS is placed at a network bottleneck, such as a wireless access point or
router, where it monitors traffic to and from the clients who will be charged for net-
work access. The NAS is typically supported by an authentication and accounting
system such as a RADIUS server and collects information about parameters such as
throughput of the client, the number of sessions it runs, the duration of its access,
or anything else it is able to record. To ensure proper attribution, a tunnel can
be placed between the client and the NAS so that each packet from the client is
authenticated. Such tunnels are often placed at link layer, but could be placed at
virtually any network layer. The client uses its connection through the NAS to visit
various sites in the Internet where it finds servers. Clients often secure the link to the
server with an additional tunnel, which stretches end-to-end between the client and
the server through the NAS. This tunnel provides privacy from, among other things,
the NAS itself. As the client makes requests to the server and the server sends its
responses through the NAS, the NAS does its accounting. Such a configuration is
illustrated in Figure 2.1

The architecture of Figure 2.1 suffers from a gap in its protection of the NAS
accounting system. The NAS is able to authenticate all traffic coming from the client
and will (typically) drop traffic it receives from any other source on the client-side
interface that purports to come from the client but is not authenticated. By contrast,

20

response traffic from the server is unauthenticated by the accounting system. This
raises a threat that a node on the Internet could direct false response traffic into the
NAS. Since the NAS does not authenticate traffic on the server-side interface, it will
typically dispatch this traffic on to the client. The client will probably discard the
traffic since it will not match its tunnel to the server, but by the time this traffic
reaches the client, it has been attributed to it by the NAS thus compromising the
integrity of the accounting database. This constitutes a form of DoS, but instead of
being denied service, clients are billed for service that was never used. We refer to
this form of attack as a cramming attack.

The actual details of the cramming attack depend on the network architecture
and details of the accounting mechanism. The seriousness of the threat depends on
how response traffic is forwarded to the client by the NAS. For networks that use
globally routable network IP addresses and allow arbitrary services to be run on the
clients (i.e. outside hosts can initiate connections to these services), the cramming
attack is easy to perform in the absence of additional firewalling mechanism at the
NAS. Firewalling on the client side may still be in use, but as the NAS will not be
aware of it, it will forward any packet (and account for it) on to the client host.

If Network Address Translation (NAT) is being used, a cramming attack is more
complicated. For purposes of this discussion we only consider the TCP protocol:
details for UDP are similar. As NAT is used to share one globally routable address
with hosts having private addresses, an incoming packet will only be forwarded if
the NAT router determines it to be a part of an existing connection initiated earlier
by a client. Connections are identified by a 4-tuple which response packets must
use. As the destination IP in the response packets will be that of the NAS address,
three remaining values need to be determined by the attacker: the IP address of the
server, the server port number, and the client port number. Guessing these values
for a particular client’s connection is challenging for an off-path attacker (that is, an
attacker that is not on the routing path between the NAS and the server).

However, some tricks can be used to make the network vulnerable to cramming
attacks against random clients. For networks that support a large number of clients,
many users are likely to be connected to relatively popular services on the web such
as popular search engines and portals (e.g. google.com), instant messaging services
(e.g. AIM), IMAP and POP mail access (e.g. gmail.com, yahoo.com), and so on.
Thus, the attacker has a large number of fixed server IP/port pairs to choose from
as possible endpoints for different connections a NAT NAS might be tracking. Only
the client port information needs to be guessed. Client ports are often chosen from
a fixed set of ranges (ephemeral port ranges) whose exact values are dependent
on the particular OS and configuration. By using different client port ranges and
sending out packets with different client port values picked from probable ranges,
it is possible to get response packets past the NAS and hence successfully perform
the cramming attack. There are some NAT implementations that make this a very
effective approach. For instance, if port numbers are allocated sequentially and

21

there is an insider behind the NAS, then an active port number can be guessed
easily. Even if there is no such edge, a brute force attack can achieve some success.
On a Pentium 4 running Linux 2.6.10 at 2.4 GHz with 1GB of RAM we were able
to send packets with a 1.4Kb payload and varying port values at a rate of around
10,000 packets/second with code that had no optimizations and no changes to the
drivers or the kernel. Thus, a brute force attack on the client port numbers can be
performed in a small amount of time. Any technique for telling if a cramming packet
‘hit’ a client would make such an attack quite effective. For instance, in monitoring
link-layer communication one might be able to detect if a cramming packet was
consumed by a device.

The time window in which the attack is successful depends on the length of
the time period for which the NAT router maintains state information for each
connection. As this state information is the one that is used to ascertain whether to
forward a certain response packet to a client, it is maintained for at least the period
of the connection. For connections that only last momentarily (e.g. HTTP), it is
important that the attack take place in the period when the NAT router still has this
state information stored. The NAT standard [113] recommends that the NAT router
maintain state for at least another 4 minutes (2 * Maximum Segment Lifetime) after
it thinks that the connection has terminated. As a NAT router can never be sure
whether the connection tear-down packets it saw on the wire actually reached the
destination host, it continues to forward packets for that connection for a little while
after the observed tear down (to enable retransmissions). Our experiments with a
Linksys wireless router doing NAT showed that connection state was maintained for
7 more minutes after the actual connection was terminated. Thus it was possible to
cram packets into this connection after its actual termination for another 7 minutes.
These factors contribute to increasing the length of the vulnerability time window
and hence give plenty of time to the attacker for a brute force attack.

2.2 Requirements

Having shown that the tunnel configuration most commonly used to protect the
wireless accounting infrastructure is vulnerable to cramming attacks, we embark
on the design of a tunnel-complex protocol that sets up a tunnel configuration to
protect the NAS from cramming attacks. Given that the protection stems from
design decisions made about the tunnel composition, we would like these decisions
to be guided by some design principles. We now introduce several properties that
fulfill this role.

If all egress traffic flowing from inside to outside a node’s administrative domain
must be be authenticated and authorized, then we say that the node enforces the
egress authenticated traversal property. If all traffic flowing from outside to inside
a node’s administrative domain must be authenticated and authorized, then we say
that the node enforces the ingress authenticated traversal property. If both properties

22

Laptop
Server

NAS

Auth SA Auth SA

Encrypt SA

Figure 2.2: Base SA configuration

are satisfied, then we say that the nodes satisfy the authenticated traversal property.
In the tunnel configuration displayed in Figure 2.1, the NAS satisfies the egress
authenticated traversal property, but fails to satisfy ingress authenticated traversal
and this is the source of the cramming attack.

In order to satisfy the authenticated traversal property the NAS should require
all egress traffic to be authenticated via an association flowing from the client to the
NAS and all ingress traffic to be authenticated via an association flowing from the
server to the NAS. To preserve end-to-end security an association should encrypt
traffic flowing between the client and the NAS. The resulting situation is one where
the end-to-end association must tunnel through the two authentication tunnels. This
configuration of associations can be seen in Figure 2.2.

2.3 Protocol Overview

Recall the following facts from Chapter 1. Security associations define a collection of
cryptographic transforms that are applied to each packet traveling in that association
and create a virtual secure channel. Security associations are kept in the SADB at
each node. Security mechanisms direct traffic into security associations based on
selection criteria such as source and destination address. These filters are maintained
in each node’s MDB. A tunnel is set up using a tunnel-establishment protocol that
establishes symmetric keys used to encrypt and authenticate traffic. In this chapter
we develop a tunnel-establishment protocol called Estab that is similar to IKEv2 [76],
but with several significant differences. Estab is designed with the intention of being
used as a component in a tunnel-complex protocol. This means that it installs
entries in the SADB as well as entries in the MDB as directed by the tunnel-complex
protocol. In contrast, IKE is typically invoked if a packet matches matches a filter
in the MDB and there is no existing association. Another difference is that the
Estab protocol accommodates nested tunnels in the following way. If there is an
existing entry in the mechanism database for traffic flowing from a to b and the
Estab is directed to create a new association with the same MDB entries, then the
new association is assumed to be nested inside of the existing association.

Associations are unidirectional so we have to ask if a single execution of our
key exchange should establish a single unidirectional association that only protects
the flow of information in one direction or should it establish two associations that

23

protect the flow of information in both directions. We considered both possibilities in
the course of our research. The first model of Estab that we shall present will set up
unidirectional associations while the second model of Estab will set up bidirectional
associations.

We must also decide when the SADB and MDB are updated. There are three
options that we consider. The first option is to return information exchanged in the
protocol and let the databases be modified at a higher level. This breaks modularity
of the system and reduces the information that can be known by each side upon
termination. Suppose both nodes participating in the key exchange simply updated
their databases after they had completed sending messages, then upon termination
of the protocol neither party would be sure that an association has been established.
The second option is illustrated in Figure 2.3 where the responder writes the infor-
mation for the I → R association to the databases before sending the final message.
As a consequence, the initiator can be assured that the I → R association is es-
tablished when the protocol at the initiator terminates. The third option adds an
additional acknowledgment from the initiator to the responder. This message is sent
after the initiator has completed all of its database updates. Upon termination of
the protocol, the initiator knows that the I → R association is established and the re-
sponder knows that both associations are established. (The initiator does not know
whether the responder has completed updating its databases for the R → I associa-
tion.) Adding a second acknowledgment from the responder to the initiator results
in both parties knowing all security associations are established upon termination.
We selected the second option, because it provides some knowledge about the state
of the databases, and at the same time provides the weakest guarantee of the three
acceptable choices with a minimum number of messages. A protocol specification
that was correct using this choice would remain correct if the weaker key exchange
protocol were replaced by one offering stronger guarantees.

The tunnel configuration shown in Figure 2.1 can be set up by having the client
initiate establishment with the NAS and then initiate establishment with the server.
Setting up the tunnel configuration displayed in Figure 2.2 is not as easy because the
client cannot directly set up the tunnel between the NAS and the server. A solution
is to design a tunnel-complex protocol that sets up the desired tunnel complex.

It is assumed that the client knows the identity/address of both the NAS and the
server. In Chapter 6 we present protocols that discover the nodes with which they
set up tunnels and see that this introduces additional complexities.

Note that the client has a relationship with both the server and the NAS and must
authenticate itself with each of these nodes during different stages of the protocol. We
have already established that there will be an authentication association between the
client and the NAS, an authentication association between the NAS and the server,
and an association providing both authentication and encryption between the client
and the server. It is clear that the client will authenticate itself to the NAS during
the key exchange. Similarly, the client will authenticate to the server as part of a key

24

I R

Update SADB. I->R

Update MDB.I->R

Update SADB. R->I
Update MDB. R->I

Update SADB.I->R

Update MDB.I->R

Update SADB.R->I
Update MDB.R->I

Msg 1

Msg 2

Msg 3

Msg 4

Figure 2.3: Write after message three.

exchange. It is less clear how the NAS will authenticate itself to the server, since it
needs to communicate to the server that it is establishing an association on behalf of
the client. We resolve this problem by having the client send the NAS a credential
that the NAS will present to the server on behalf of the client. If the server verifies
that the credential is from a valid user, then it allows the association between the
NAS and server to be established.

We can now give an outline of the L3A protocol.

Skeleton of L3A Protocol

Client initiates protocol The client identifies the server that it desires to communicate
with and the NAS that will deliver access to the Internet. The client then invokes
Estab to establish an association between the client and the NAS. The client must
pass to the NAS the credential that the NAS will present to the server as well as the
address of the server.

Establish NAS-server SA Upon notification that the client-NAS Estab exchange is
complete, the NAS gets the address of the server and the credential. The NAS
then invokes Estab to establish an association between the NAS and the server. The
NAS presents the credential to the server. If the credential is not valid, then the
protocol is terminated.

Establish server-client SA Upon notification that the NAS-server Estab exchange is
complete, the server invokes a key exchange with the client.

25

2.4 Architecture of the Formal Model

Prototypes of the L3A and Estab protocols were constructed early in the design
phase. The prototypes were constructed in Maude [32, 34]. Maude supports the
specification of complete designs in a modular way. In modeling such a large system,
it is important to keep in mind to only model those aspects of the system that are
of interest. For example, we only model message forwarding and message delivery
in IP. Details such as fragmentation are ignored. Modeling tunnels was necessary
since the L3A and Estab protocols can only be judged correct if they correctly set
up the desired security associations and mechanisms. The Estab and L3A protocols
are built on top of this framework. Being able to construct such complete models is
particularly useful when modeling protocols that rely on lower layer protocols since
the interaction between the layers may be a source of errors. We now turn our
attention towards the architecture of the formal model.

In keeping with good software engineering practices, the design of our formal
model is modular and constructed as a hierarchy of abstractions reflecting the struc-
ture of the system being modeled. Figure 2.4 shows the components of our model

IP

routing-table IP-message

tunnel

mechanism

security-assoc

estab-concrete setkey

PKI

estab-abstract

l3a-test-concrete

l3a-client-app

l3a-test-abstract

L3A

Figure 2.4: Architecture of the model

26

and how they are related. Note that the lightly shaded horizontal lines separate the
different layers of the model hierarchy. (In the discussion that follows, the names of
software modules are given in typewriter font.) The lowest layer of our system, IP,
models the sending and receiving of IP messages. Routing is modeled at this layer.
At the next layer the tunnels module models network layer security tunnels that
behave similar to IPsec. We do not attempt to provide a concrete model of encryp-
tion since we are only concerned about ensuring that the proper headers are applied
and not with the concrete cryptographic transformations that get applied to the
packets once they arrive at their destination. On the other hand, we must model the
databases that maintain state of the security associations and mechanisms, because
their state defines the security associations and mechanisms. At the level of the key
exchange we include a module setkey that provides an interface to the databases.
This module encapsulates the updating of both the SADB and MDB databases.
The PKI module provides a limited public key infrastructure. The stub key ex-
change module estab-abstract allows L3A development to be performed in parallel
with the development of Estab. The full Estab protocol is modeled by the module
estab-concrete, which is a refinement of estab-abstract. The L3A protocol is for-
mally modeled by the module L3A. Observing the diagram we see lines from both L3A

and setkey to the mechanism module, which defines the MDB, but only setkey has
a connection to the security-assoc module, which defines the SADB. This is be-
cause mechanisms are created and modified by both estab-concrete and L3A, while
the security associations are only modified by estab-concrete via the setkey mod-
ule. Constructing different test cases is facilitated by the module l3a-client-app.
At the top level the l3a-test-concrete and l3a-test-abstract modules import
the other modules and define the system configuration. The abstract and concrete
versions differ in that the abstract version imports estab-abstract, while the con-
crete version imports estab-concrete. A bonus of the modular nature of our design
is that we can reuse portions of the model when designing other protocols.

The module estab-concrete is composed of an initiator processes and a respon-
der daemon. Each node in the system must start its responder daemon before the
protocol may be executed. The L3A module defines three processes—one process
to be run at each of the nodes (client, server, NAS). The L3A module is invoked by
the l3a-client-app module at the client, but the processes at the NAS and the
server are run as daemons. These daemons wait for notification from the establish-
ment responder daemon. After receiving such a notification, the process executes its
portion of the L3A protocol.

To analyze the specification using Maude we need to specify a concrete initial
state, which contains information about the nodes (which can act as hosts or security
gateways) and an enumeration of all subnets representing the network topology. We
use the network topology given in Figure 2.5. Furthermore, the initial state con-
tains, for each node: the network interfaces, the routing table, the trusted certificate
authorities, the initial SADB state, and the initial MDB state. All this constitutes

27

Laptop
1

NAS

Laptop
2

Server 1

Server
2

Figure 2.5: Model network topology.

a multiset.

2.5 Formal Simulation

This section records the evolution of the L3A tunnel-complex protocol. Each design
presented in this section was implemented in the Maude framework described above.
At each stage in the evolution of the protocol’s design we describe both the design
and the results of running logical simulation.

2.5.1 First Prototype

The L3A tunnel-complex protocol is dependent on the Estab protocol to set up
tunnels. Therefore, our first task is to design the Estab protocol based on the de-
sign decisions made above. The Estab protocol design is driven by the demands of
the higher-level tunnel-complex protocol. Does the L3A protocol demand that its
establishment protocol set up a bidirectional pair of security associations or will a
single unidirectional association suffice? Recall that the requirements demand a tun-
nel complex that provide the following protections. To ensure privacy between the
client and the server we must have associations performing encryption and authenti-
cation going in both directions. To satisfy the requirements there must be a security
association flowing from the client to the NAS and a security association flowing from
the server to the NAS. The traffic is authenticated by the end-to-end association so
there does not appear to be a need to have associations going the opposite direction.
Consequently, it seems that it would suffice to have the establishment protocol set
up a single association.

The client must pass a credential as well as the address of the server to the NAS
and the NAS must then pass this credential to the server. To accommodate this

28

I
R

Update SADB:I->R
Update MDB:I->R

Update SADB:R->I
Update MDB:R->I

Update SADB:I->R
Update MDB:I->R

Update SADB:R->I
Update MDB:R->I

1. SPI-i,0,KE-i,n-i

2. SPI-i,SPI-r KE-r, n-r

3. SPI-i,SPI-r, E*(Sk-r,M)

where
M = ID-i,ID-r,Cert-i,Auth-i,dir(s,d),Payload

4. SPI-i, SPI-r, E*(SK-r,N)

where N = ID-i, Cert-r, Auth-r

if I = s then

else

if R= s then

if R =d then

Figure 2.6: Estab V 1.0

data we add a payload field to the third message of the Estab protocol. Since the
Estab exchange will create a single association and this association need not flow
from initiator to responder, the Estab exchange needs to include a field indicting
whether the security association flows from the initiator to responder or visa-versa.
Another consequence of establishing only a single association is that each node only
needs to update its SADB and MDB once.

The first version of the Estab protocol is given as follows: Let K be a symmetric
key. We write S(K,M) for a signature function (such as HMAC) and E(K,M)
for an encryption function (such as triple DES). Assuming Ka and Ke are keys for
authentication and encryption respectively, we abbreviate:

S∗(Ka,M)
def
= M,S(Ka,M)

E∗((Ka, Ke),M)
def
= S∗(Ka, E(Ke,M)).

The Estab protocol is illustrated in Figure 2.6. Details of the protocol description
are as follows.

Estab Protocol V 1.0

29

Initiation The protocol has two principals: an initiator I and a responder R. Principal
I generates a nonce nI, a SPI value SPII for the R → I association, and the Diffie-
Hellman value KEI. The initiator then sends the message

Msg 1 I → R : SPII, 0,KEI, nI

If R gets a message of this form, it generates a SPI value SPIR for the I → R

association, a nonce nR, and a Diffie-Hellman value KER. The responder then sends
the message

Msg 2 R → I : SPII,SPIR,KER, nR

Generate Keys Both sides can now generate SKEYSEED from which all the crypto-
graphic keys for the resulting SAs are derived. Separate keys for authentication and
encryption are computed for both directions. These keys are known as SK I

e, SK I
a,

SKR
e , and SKR

a for the encryption and authentication of the initiator and responder
tunnels. When missing the subscript, SK I and SKR denote a pair of authentication
and encryption keys.

Notice that we generate two key pairs, one for each direction, even though the proto-
col only sets up a unidirectional tunnel. Given that the direction of the association
is not known at this point of the protocol execution, we generate a pair for each
possible direction and discard the unused pair once the direction is known. This
design decision was, in part, to follow standard protocols such as IKE and, in part,
to accommodate future modifications to the protocol.

The initiator now fetches its certificate ΓI. It also generates

AuthI = S(SK I

a, (Msg1, nR, S(SK I

a, IDI))),

where IDI is the identity of the initiator. This proves the initiator’s knowledge of the
secret corresponding to IDI and integrity protects the contents of the first message.
The mechanism selectors for the resulting SAs are also generated. The initiator then
forms a pair (s,d) indicating the source s and destination d of the SA and sends the
message

Msg 3 I → R : SPII,SPIR, E∗(SKR,M)

where M = (IDI, IDR,ΓI,AuthI,dir(s, d), payload)). Upon receiving a message of
this form, the responder checks the signature of the message, decrypts the message,
and verifies AuthI. If R is the destination of the association, then the MDB and
SADB are updated.

The responder then fetches its certificate ΓR. It also generates

AuthR = S(SKR

a , (Msg2, nI, S(SKR

a , IDR))),

where IDR is the identity of the responder. The responder then sends the message

Msg 4 R → I : SPII,SPIR, E∗(SKI, (IDI,ΓR,AuthR))

30

Laptop Server
NAS

1. Auth SA 2. Auth SA

3. Encrypt SA

4. Encrypt SA

Figure 2.7: L3A V 1.0

If R is the source of the association, then the SADB and MDB databases are updated
for the R → I association.

If I receives a message of this form, it checks the signature, decrypts the message,
and verifies AuthR. The MDB and SADB are updated according to the direction of
the SA.

Having designed the establishment component, we now refine the basic skeleton
of the L3A tunnel-complex protocol given above into the first version of the protocol.
The L3A tunnel-complex protocol is invoked at a client. The L3A protocol invokes
Estab at the client to set up the C → NAS tunnel. The L3A protocol invokes Estab
at the NAS set up the S → NAS tunnel. The protocol invokes Estab at the server
and client to create tunnels S → C and C → S respectively. The direction of the
association being set up as well as the payload are passed as parameters from the
tunnel-complex protocol to the establishment protocol.

Version one of the L3A protocol follows and is illustrated by Figure 2.7.

L3A Protocol V 1.0

Client initiates protocol The client C identifies the server S that it desires to commu-
nicate with and the NAS that will provide access to the Internet. The client then
invokes Estab to establish an association from the client to the NAS with the pa-
rameters: payload = cred,S and dir = dir(C,NAS). When the key exchange at the
client has terminated it updates its MDB with a filter saying that all traffic from the
client to the server should flow through the C → NAS association.

Establish Server-to-NAS SA Upon notification that a key exchange with the client is
complete, the NAS extracts the address of the server and the credential. It then
updates its MDB with an entry saying that all traffic from the client to the server
should flow through the C → NAS SA. The NAS then invokes Estab to establish an
SA from the NAS to the server. The two parameters to Estab are: payload = cred

and dir = dir(S,NAS). Upon termination of the key exchange, the NAS updates its
mechanism database to reflect the fact that all traffic flowing from the server to the
client should travel in the S → NAS association.

31

Establish Server-to-Client SA Upon notification that a key exchange with the NAS
has occurred, the server extracts the credential that had been passed by the client.
If the credential is valid, the server updates its MDB with an entry saying that all
traffic flowing from the server to the client should travel in the S → NAS association.
The server then invokes Estab to set up an association from the server to the client.
The two parameters to Estab are: payload = empty and dir = dir(S,C).

Establish Client-to-Server SA Upon notification that the Estab exchange with the
server has occurred, the client invokes Estab to create an association from the client
to the server. The parameters to Estab are: payload = empty and dir = dir(C,S).

We now look at each of the solutions produced by logical simulation of the pro-
tocol in some detail.

• Solution 1.

The NAS SADB has no entry for the association S → NAS while the server
SADB does have an association S → NAS entry. This means that a message
sent from the server to the NAS would have a header applied at the server, but
there is there no corresponding entry in the NAS SADB; so the message will
be dropped. We refer to the phenomena where packets get dropped because
the state for a tunnel is only installed at one of the two nodes of the pair-wise
tunnel as a ‘partially set up tunnel’. In this case, the fourth message of the
S → NAS Estab exchange gets caught in the partially set up tunnel S → NAS.
The first message of the S → C Estab exchange also gets caught in the partially
set up S → NAS association.

• Solution 2.

The first message of the S → C Estab exchange gets caught in a partially set
up S → NAS association. Both the mechanism databases and the association
databases look correct, but further analysis shows that this was misleading.
There is a concurrency problem. The SADB on the NAS was not updated
until after the packet arrived. Consequently, that packet arrived in a partially
set up tunnel as was dropped.

• Solution 3. At each node the entries in the SADB and MDB correspond to
the associations and mechanisms given in the requirements. For example, at
the client there are entries in the SADB for the C → NAS, C → S, and S → C

associations. There are filters that say that all traffic flowing from the client to
the NAS travels in the C → NAS association; all traffic flowing from the client
to the server travels in the C → S association, which is tunneled through the
C → NAS association; all traffic flowing from the server to the client travels in
the S → C association. The server and the NAS have similar SADB and MDB

32

entries. Since the SADB and MDB at each node have the correct entries as
dictated by the requirements, we consider the solution to be correct.

In the next section we shall revise the protocol in an attempt to correct the
problems uncovered by the exhaustive search.

2.5.2 Revising the Prototype

The first version of our protocol exhibited several errors. The errors uncovered in
formal analysis seemed to (at least partially) stem from the fact that the server has
updated its SADB/MDB before the NAS. The first solution produced by exhaustive
search seemed to us rather vexing. The fourth Estab message gets caught in a
partially set up tunnel.

Analysis revealed that the problem was not caused by the protocol itself, but by
the way we modeled communication. It turned out that our model of IP semantics
was too weak. The actual semantics for sending a message is that the send function
does not return until the message is completely processed by IP. We checked the
code! Our model allowed the sender of an IP message to continue processing as
soon as the send call was made while the message was processed concurrently by IP.
Consequently, the additional concurrency in our model resulted in cases where the
association is set up on the responder side before message 4 is actually out of the
door. As a result of this behavior, the association is applied to the outgoing message,
but there is no entry in the association initiator’s SADB. We corrected our models
of IP to match the actual semantics. Given that the previous version of the protocol
had been tested with an unrealistic model for IP, it seems reasonable to limit our
corrections to this problem to see if fixing the model solved all of our problems.

Performing an exhaustive search of the state space yields four solutions. It may
seem like things are now worse since there are more solutions than the first version
of the protocol. The first three solutions are all incorrect because the first message
of the S → C Estab exchange gets caught in a partially set up S → NAS association.
The problem is due to the fact that the S → NAS is set up on the server side and
the server goes ahead with the S → C Estab exchange before the NAS has set up
the association on its side. The fourth solution is correct.

2.5.3 Second Revision

The problem with the previous revision to the protocol seems due to the fact that
the server can finish processing setting up the S → NAS and begin the S → C Estab
exchange before the NAS has set up the S → NAS association on its side. As a
consequence, the first message of the S → C key exchange gets caught in a partially
set up tunnel. The obvious solution to this problem is to force the server to wait
until the NAS has completed its processing. We add a single message that the NAS
sends to the server when it has completed its half of the Estab protocol. The server

33

Laptop Server
NAS

1. Auth SA 2. Auth SA

4. Encrypt SA

5. Encrypt SA

3. Ack

Figure 2.8: L3A V 2.0

waits to receive this message before it continues with any processing. The revised
protocol is illustrated in Figure 2.8. Performing a search of the state space now
yields only the correct solution.

2.5.4 Further Evolution

Further refinements of the protocol can be made. The acknowledgment sent from the
NAS to the server eliminated undesirable concurrent interleavings of the system, but
the message does not travel in an authenticated DoS resistant security association.
This violates one of the primary requirements of the protocol. Furthermore, it was
also pointed out to us that the NAS would need to send maintenance traffic to
the client and server. This traffic would need to travel in authenticated security
associations as well. As a result of these requirements we revise our design. It now
seems obvious that the key exchange should establish a pair of security associations
with one going in each direction. This would bring our protocol in line with protocols
such as IKE.

As we modify Estab and L3A we continue running logical simulations on a variety
of scenarios. We find that the client could finish setting up the C ↔ S association
before the server. One possibility is to ignore this fact and assume that an L3A
user would just back off and retry later if they discovered that the protocol was
not yet set up. Given our previous problems with interleaving concurrency, we
choose to add a Fin message that would let the client know when the protocol had
terminated. For consistency and uniformity we add an acknowledgment from the
client to the NAS after the client had finished the C ↔ NAS key exchange. This
allows us to remove the payload field from Estab and include that information as part
of the acknowledgments. The direction field is no longer needed since each Estab
invocation establishes a pair of associations. The new version of Estab is illustrated
in Figure 2.9.

In the revised L3A design, the client begins by performing a key exchange with the
NAS. After the Estab exchange between the client and the NAS has terminated, the

34

I
R

Update SADB:I->R
Update MDB:I->R

Update SADB:R->I
Update MDB:R->I

Update SADB:I->R
Update MDB:I->R

Update SADB:R->I
Update MDB:R->I

1. SPI-i,0,KE-i,n-i

2. SPI-i,SPI-r KE-r, n-r

3. SPI-i,SPI-r, E*(Sk-r,M)

where
M = ID-i,ID-r,Cert-i,Auth-i

4. SPI-i, SPI-r, E*(SK-r,N)

where N = ID-i, Cert-r, Auth-r

Figure 2.9: Estab V 2.0

client sends a Req message to the NAS containing the credential and server address.
The NAS does not start the key exchange with the server until after receiving this
message. Once the key exchange between the NAS and the server is complete, the
NAS sends the server an Ack message with the credential. If the credential is valid,
the server initiates a key exchange with the client to establish the two associations
(S → C and C → S). Upon termination of this key exchange, the server sends a
Fin message to the client indicating that the protocol has terminated. The modified
protocol is illustrated in Figure 2.10.

The L3A protocol design can be modified to accommodate reuse of security as-
sociations. For example, suppose several clients gain access to the network via the
same NAS and all go to the same server. The NAS ↔ S associations can be shared
among the clients. Similarly, the C ↔ NAS can be reused when a client connects
to multiple servers. At each node, processing for establishing security associations
is now structured as a set of conditional blocks with each block handling a differ-
ent case. For example, the NAS has to consider cases where its first action of the
protocol is processing a Req message, because the client is reusing an association.
Alternatively, the NAS first action could be the notification that a key exchange
with the client has occurred.

35

Laptop Server
NAS

1. Auth SA 3. Auth SA

5. Encrypt SA

2. Req(cred,server) 4.Ack(cred)

6. Fin

Figure 2.10: L3A V 3.0

2.6 L3A Tear Down

The L3A protocol installs state at the client, NAS, and server as it sets up the tunnel
complex. When communication between the client and the server ends, the system
should tear down the tunnels and clean up any state from the unused connection to
prevent resources from being exhausted. Given that tunnels may be shared among
different connections, care must be taken to ensure that tunnels that are used by
other connections are not also torn down. In this section, we develop a tear-down
protocol that tears down a tunnel complex that had been set up by L3A. An alter-
native solution, would have been to have each node autonomously tear down used
tunnels based on timeouts. The design decision to engineer a protocol to perform
this task was primarily driven by a desire to better understand tunnel-complex pro-
tocols and the realization that we needed such a protocol to perform the latency
experiments reported in the next section. We do not consider tear-downs in the
remaining of dissertation.

There are two primary requirements that the protocol must satisfy. The first
requirement is that the tear-down protocol preserves tunnels shared with other con-
nections. The second requirement is that all commands to delete a tunnel arrive in
the tunnel being deleted. As with L3A, the design of the tear-down protocol was
prototyped and debugged in Maude.

The steps of the protocol are illustrated in Figure 2.11. Note that each association
has a label a - f . In step 1 the client initiates the protocol sending a message to the
server to delete the association flowing from the client to the server (labeled e). The
server removes this and sends a message to the client to remove both associations
flowing between the client and server (labeled e and f). When this message has
been sent the server removes association f . The client then sends the NAS a request
to tear-down the associations between the NAS and the server (step 3). The NAS
then initiates the tear down of associations e and f (steps 4 and 5). When these
associations have been removed the NAS sends an acknowledgement to the client
(step 6) and the client initiates a tear down of the associations flowing between the

36

e
b d

f

1.delete(e)

remove e

remove f

2.delete(e,f)

3.TD-Req(n-s)

6.TD-Ack(n,s)

4.delete(c)

5.delete(c,d)

remove c

remove e, f

remove dremove c, d

remove a

remove bremove a, b

7.delete(a)

8.delete(a,b)

a c

Client NAS

Server

Figure 2.11: L3A Tear Down

37

client and the NAS (steps 7 and 8).
A sketch of the protocol follows. We label the associations a-f as in the figure.

In practice, these identifiers would be the SPIs for each association. The protocol
works as follows.

Tear Down Protocol V 1.0

Client initiates protocol The client initiates the protocol by sending to the server

Msg1 C → S : delete(e) Upon receiving a message of this form, the server deletes the
association and mechanism for e and sends the message

Msg2 S → C : delete(e, f) and removes the association and mechanism for f . Upon
receiving a message of this form, the client deletes the e and f associations as well
as their mechanisms. The client then sends the message

Msg3 C → NAS : TDReq(NAS,S) Upon receiving a message of this form, the NAS sends
a message

Msg4 NAS → S : delete(C, c) Upon receiving a message of this form, the server removes
the mechanism for all traffic flowing from S → C. If there are no MDB entries for
other clients, the association is deleted. The server sends the message

Msg5 S → NAS : delete(C,S, c, d) If the c association was removed, the d association is
now removed. Upon receiving this message the NAS removes the mechanism for
S → C and removes c and d if the tunnel is not in use by another client. The NAS
then forms the following message

Msg6 NAS → C : TDAck(n, s) Upon receiving a message of this form, the client checks if
there are sessions with other servers and if not, then the client forms

Msg7 C → NAS : delete(a) Upon receiving a message of this form, the NAS deletes the
association and mechanism for e and sends the message

Msg8 NAS → C : delete(a, b) and removes the association and mechanism for b. Upon
receiving a message of this form, the client removes the a and b associations as well
as their MDB entries.

The command tear-down request might seem like an obvious vulnerability. The
first line of defense, is that all tear-down commands must arrive in a tunnel and
are thus authorized and authenticated. It remains to demonstrate that a principal
acting as the endpoint of a tunnel cannot tear down a tunnel connecting two other
principals. Suppose Alice has set up a tunnel complex to communicate with Bob and
Ted is connected to Carol through the same NAS, and Ted launches a DoS attack
against the Alice-Bob connection by sending a command to the NAS to tear-down
the connection between the NAS and Alice. If Ted attempts to spoof Alice’s address

38

the authentication tunnel will reject the message at the NAS. Otherwise, the message
arrives with a header saying it is from Ted and the NAS sends Bob a message to
remove the mechanism for the Ted to Bob connection, yet since there is no such
mechanism entry the command is ignored. If there were such a connection, then the
NAS-Bob association would not be removed since Alice still has a connection to that
node.

2.7 Implementation

In order to demonstrate the practicality of tunnel complex protocols, an implemen-
tation of L3A and Estab was built. The implementation was written in C and
structured as a collection of processes running on the client, NAS, and server. The
cryptographic operations of L3A are performed using the standard OpenSSL library.
Our implementation uses IPsec tunnels that are set up with our Estab protocol. Up-
dates to the kernel’s SADB made by L3A are communicated through the PF KEY
Key Management API, as described in RFC 2367 [88]. Interestingly, this RFC does
not completely describe the manipulation of the MDB, so a trial and error approach
was required in order to interface with L3A correctly.

We implemented the three principals of L3A (client, NAS, server) on three dif-
ferent machines, each running FreeBSD 4.8 and connected with a megabit/second
network link. In our testbed, the client and server both are Micron 600MHz Pentium
IIIs with 128MB of memory, and the NAS is a Dell 1.3 GHz Pentium IV with 256MB
of memory.

The experiments run on our testbed were designed to give performance results of
the L3A protocol that can be compared to the performance of other solutions to the
accounting problem. The first set of tests measures the raw throughput of client-
server communication in 4 cases. The first case, Base, is a baseline, with no IPsec at
all, in order to quantify the maximum possible throughput of the connection. The
second, End-to-end, utilizes IPsec end-to-end encryption and authentication, without
accounting guarantees. The third case, labeled as Typical, is the configuration of
tunnels seen in most current accounting systems. The client maintains an encrypted
tunnel with both the NAS and the server. The final case, L3A, uses the tunnels
set up by L3A. This entails three tunnels rather than the two used in the Typical
case, but encryption is performed only end-to-end. The second set of tests measures
the latency of the tunnel set up. Three cases are considered in these tests. In the
simplest case, End-to-end, just the client-server tunnel is set up. The next case, L3A
w/ Reuse, reflects the common case, where a client-NAS tunnel already exists, and
the remaining NAS-server and client-server tunnels are created and torn down by
L3A, leaving the client-NAS tunnel for another L3A session. The final case, L3A
w/o Reuse, describes the latency of L3A when the client-NAS tunnel is not reused,
and all three tunnels are created and torn down by L3A.

The results of the throughput tests appear in Figure 2.12. The Base case where

39

0

10

20

30

40

50

60

70

80

90

Base End-to-end Typical L3A

M
b

/s

79.7

25.4

9.6

19.3

Figure 2.12: Throughputs

data is sent in the clear has the best performance as expected. In the End-to-end
case, encryption has a significant impact on throughput, reducing it to barely a third
of the unencrypted rate. This is particularly pronounced in the third case, Typical,
where double encryption degrades performance to about a third of the End-to-end
case because of the double encryption burden it places on the client. In the case
of L3A only the end-to-end tunnel performs encryption and the other two perform
authentication. The graph reflects the fact that the cost of an authenticated tunnels
is much less than that of a tunnel that performs encryption. Consequently, the
throughput performance of L3A is 101% better than that of the Typical configuration
and only 32% lower than the case with no accounting. We did not measure the case
where there are large numbers of clients, but in our tests with one client, the NAS
was only lightly loaded.

The results from the latency tests appear in Figure 2.13. For each scenario, the
data reflects the time taken to both set up and tear down all appropriate tunnels.
The latency cost of establishing tunnels for accounting is 142% greater than that of
end-to-end protection alone, but in the most common case, when there is already a
tunnel between the client and NAS, it will be only 48% longer.

Our experiments show that L3A accounting costs about 160ms for both set up
and tear down. This is about 2.4 times more than the same operations for an IPsec
tunnel alone. However, tunnel reuse in L3A reduces this to a factor of 1.5 in the
common case where the client-to-NAS tunnel already exists. On the other hand,
L3A improves bulk traffic performance by 100% over a naive (but typical) approach
to accounting where accounting uses an encrypted tunnel to the NAS. From these
results we conclude that tunnel complex protocols can be efficiently implemented
using the existing IP security infrastructure.

40

0

20

40

60

80

100

120

140

160

180

End-to-end L3A w/ Reuse L3A w/o Reuse

T
im

e
(m

s)

66

97.9

159.5

Figure 2.13: Latencies

2.8 Conclusion

In this chapter we introduced a form of DoS attack against the wireless accounting
infrastructure that we call cramming attacks and argue that it is possible for an
attacker to effectively succeed using such an attack. We presented the design and
implementation of the L3A protocol that sets up a tunnel complex that thwarts
cramming attacks as well as a corresponding tear-down protocol. During the course
of this investigation we found that nontrivial functional correctness issues were the
predominant concern. In particular, deadlocks that arose from unexpected inter-
actions between the protocol execution and the state being installed at the nodes.
Although logical simulations were quite helpful in debugging the protocols, it would
also be useful to formulate and prove various functional correctness properties as
well as reason about availability, yet we found existing formalisms lacking when it
came to reasoning about the interaction of state at a node and an executing protocol.
This observation lead to the research that is presented in the next several chapters.

41

Chapter 3

Modeling Tunnels

This chapter introduces an abstract model of tunnels. The proposed model includes
the fundamental structures that define the state of a tunnel as well as the header
processing performed by tunnels. On the other hand, the details of cryptographic
operations performed by the tunnels are elided in order to focus on functional cor-
rectness and DoS properties. We sketch the design of a tunnel-establishment protocol
intended for use as a component in tunnel-complex protocols operating in an envi-
ronment where authenticated traversal is enforced. We demonstrate the utility of
our approach to formalizing tunnels by exhibiting a deadlock that can arise when the
establishment protocol is used in a peer-to-peer fashion. After considering several
possible techniques for avoiding the deadlock, we introduce the notion of a ‘session’
distinguished by a unique identifier and explain how our model of tunnels can be
modified to accommodate this concept and argue that establishment deadlock is
avoided in the resulting system. The discussion is kept rather informal throughout
this chapter in order to keep the focus on key concepts; a formal calculus incorpo-
rating these ideas is presented in the next chapter.

3.1 Abstract Foundations

From a high-level perspective, a tunnel protocol can be viewed ‘type-theoretically’ as
follows. A node a communicates with a node g by wrapping each message m it sends
to g within a constructor C. Node g holds a corresponding destructor C−, which
it applies to get the message m. The constructor C represents the bulk protocol
between a and g.The behavior of the constructor and destructor pair constitute the
essence of a security association. Node a may have a policy that all messages sent to
b must be wrapped in C and node g may have a policy that messages from a must be
wrapped in C. To set this up, there is a tunnel-establishment protocol that causes
a and g to obtain C and C− respectively in such a way that they authenticate each
other, authorize the use of the constructor, and assure that they are the only parties
that have these operators. Although this level of abstraction is sufficient to model

42

the basic concept of a tunnel, a somewhat more concrete refinement is needed for
our purposes.

A packet can be modeled as a term formed by applying the constructor P to a
triple (a, b, y), where a is the source address, b is the destination address, and y is the
payload. This is written formally as P(a, b, y). We do not model the cryptographic
transforms performed by a security association, but instead assume that any term
encapsulated in an S constructor has undergone such a transformation. The S con-
structor is applied to each packet entering the tunnel and a destructor removes it at
the other end. A security association is defined to be a constructor and destructor
pair. Each association has a security parameter index ι that serves as a unique iden-
tifier for the association. Associations are assumed to act in ‘tunnel’ mode, meaning
that a packet entering the association has the S constructor applied and becomes
the payload of a packet traveling from the association’s source to its endpoint. For
example, suppose packet P(a, b, y) is to be placed in an association flowing from c

to d with SPI ιd. The constructor is applied and the result encapsulated in a packet
represented by the term P(c, d, S(ιd,P(a, b, y))). The association flowing from node c
to node d having SPI ιd is represented at node c by the term Out(d, ιd) and at node d
by the term In(c, ιd). The association database Σ defines the associations active at a
node and is modeled as a set of constructors and destructors that get applied at that
node. The inbound and outbound security mechanism databases Πi and Πo contain
entries of the form Mech(ψ : β), where ψ is a packet filter and β is a list of security
associations called a bundle. When an outbound packet matches a filter entry ψ, the
packet is directed into the security associations listed in the bundle. That is, the
constructor for each association in the bundle is applied to the packet. An inbound
packet is checked against the entries in Πi to ensure that the packet is traveling in
the proper associations and the destructors are applied to the encapsulated packet.

An association flowing from node a to node b with identifier ι is characterized
by a pair composed of a constructor Out(b, ι) residing in the association database
at node a and a destructor In(a, ι) residing in the association database at b. To
convey the behavior of these operators we shall informally describe the operation
of constructors and destructors as follows. The constructor Out(b, ι) applied to the
packet P(c, d, y) @a will create a secure packet as given in the equation

Out(b, ι)(P(c, d, y)) = P(a, b, S(ι,P(c, d, y))),

where all free variables are assumed to be universally quantified. The destructor
In(a, ι) applied to a packet created by the application of the constructor Out(b, ι)
will remove the secure header yielding the original packet. This means that the
destructor can be viewed as being the inverse of the constructor so

In(a, ι)(Out(b, ι)(p)) = p,

where all free variables are assumed to be universally quantified.

43

GW1 GW2
Bob

Alice

Figure 3.1: Nested Tunnels 1

GW1 GW2
Bob

Alice

Figure 3.2: Nested Tunnels 2

Tunnels may be nested inside of one another as illustrated in Figures 3.1 and 3.2.
A packet at Alice traveling to Bob in the tunnel configuration depicted in Figure 3.1
will first have the constructor for the Alice-Bob association applied. The resulting
packet will then have the constructor for the Alice-GW2 association applied, and
finally, the constructor for the Alice-GW1 constructor is applied. The entry in the
mechanism database at Alice would be

A −→ B : [Out(B, ι1),Out(GW2, ι2),Out(GW1, ι3)],

where ι1, ι2, and ι3 are valid SPI values for the associations in question. Applying
this bundle to the packet P(A,B, y) yields

P(A,GW1, S(ι3,P(A,GW2, S(ι2,P(A,B, S(ι1,P(A,B, y))))))).

Applying the destructor at GW1 strips off the outer header yielding

P(A,GW2, S(ι2,P(A,B, S(ι1,P(A,B, y))))),

and applying the destructor at GW2 yields

P(A,B, S(ι1,P(A,B, y))),

and applying the destructor at Bob yields the original packet P(A,B, y). A packet
traveling in the tunnel configuration depicted in Figure 3.2 will first have a construc-
tor for the Alice-Bob association applied at Alice. When the packet arrives at GW1
a constructor is applied for the GW1-GW2 association. So the Alice-Bob tunnel is
nested inside of the GW1-GW2 tunnel. At GW2 a destructor is applied yielding

44

GW1 GW2
Bob

Alice

Figure 3.3: Nested Tunnels 3

a packet traveling only in the Alice-Bob association. Finally, a destructor applied
at Bob for the inner tunnel yields the original packet. Figure 3.3 illustrates an ill-
formed tunnel since neither tunnel completely encompasses the other. To see why
this is undesirable notice that a packet traveling in this tunnel complex would enter
the Alice-GW2 tunnel and then at GW1 would enter the GW1-Bob tunnel so the
packet arrives at GW2 and is forwarded to Bob where the header for the GW2-Bob
tunnel is removed, but the resulting packet is destined for GW2 and the packet is
dropped because the destination is not Bob.

3.2 Establishment for Discovery

Tunnel establishment has the following components: the authorization and authen-
tication of the tunnel at both nodes, the creation of the association, the updating of
the association and mechanism databases, and the establishment of shared crypto-
graphic keys by way of a key exchange protocol. The focus of our model is on the
first three components, and given that our formalism abstracts away the details of
the cryptography, we do not model the key exchange process. Tunnel establishment
is modeled using two messages that contain credentials for authorization, the SPI
values identifying the associations, and filter entries for the mechanism database
entry. In practice, establishment messages are distinguished by an identifier in the
packet header. This is modeled by wrapping establishment messages in a constructor
X.

Our establishment protocol is assumed to be triggered by a tunnel-complex pro-
tocol. In particular, a discovery protocol that will discover gateways on the dataflow
path and set up tunnels to negotiate their traversal. We have seen in Chapter 2 that
enforcing the ingress authenticated traversal property can protect networks from the
unexpected consequences of allowing unauthenticated/unauthorized traffic to tra-
verse a gateway and enter a seemingly protected network. This seems to comply
with the general notion that network administrators should control what traffic they
allow on their networks. Enforcing the egress authenticated traversal property helps
prevent extrusion attacks. Hence our design should be compatible with the authen-
ticated traversal property. Since the protocol is intended to be used as a discovery
protocol component, we require that the establishment protocol deliver credentials

45

needed to negotiate the traversal of the gateway. In addition, the newly discovered
gateway is not trusted, so discovery protocols should deliver credentials that prove
that a newly discovered gateway belongs to a trusted administrative entity.

a g b

Figure 3.4: Road Warrior

Let us illustrate the basic ideas with the road warrior scenario shown in Figure 3.4,
not including the end-to-end tunnel between a and b. Suppose Alice a is an employee
away from the office and needs access to the Bob’s server b. The corporate network is
protected by a gateway g that requires all traffic to be authenticated and authorized
with respect to a policy Θ enforced by g. So Alice must present a credential Ξ to the
gateway in order to demonstrate that she satisfies the policy. The gateway must also
present its credentials Ξ′ to Alice to prove that it belongs to a trusted administrative
entity. If the polices at both nodes are satisfied, the establishment protocol will
terminate after creating a pair of associations and updating the SADB and MDB
at both a and g. Although we have elided the cryptographic operations performed
by the tunnels, it is necessary to include digital signatures in the establishment
messages for when we analyze DoS threats in Chapter 7. Here are the main steps of
the protocol.

Req Sent: The initiator a generates a SPI value ιa identifying the association
flowing from the responder g to the initiator. The initiator then forms a message
composed of the SPI, the credential Ξ, and the filter selectors a and b. This message
is formally expressed as a term P(a, g,X(Req(a, b, ιa,Ξ, Sig))), where Sig is a digital
signature.

Req Received: Upon receiving a message of this from, the responder verifies
the signature and calls an oracle that verifies that the credential Ξ satisfies the
responder’s policy Θ.

Rep Sent: If the oracle returns true, then the responder generates a SPI value ιg
identifying the association flowing from the initiator to the responder. The responder
updates the state of its association database Σ by adding the association flowing from
the initiator to responder Σ ∪ In(a, ιg). A packet filter is added to the responder’s
inbound mechanism database Πi indicating that all traffic from a to b should arrive
at the responder in this association:

Mech(a→ b : Bndl[In(a, ιg)]) ⊗ Πi.

46

The responder then forms a reply message containing the mechanism filters, both
SPIs, and the responder’s credentials Ξ′. This message is formally expressed as a
term P(g, a,X(Rep(a, b, ιa, ιg,Ξ

′, Sig ′))), where Sig ′ is a digital signature.
Write State: After the reply message has been sent, the responder writes the

state for the association flowing from the responder to the initiator.

Σ ∪ Out(a, ιa)

Mech(b→ a : Bndl[Out(a, ιa)]) ⊗ Πo.

Rep Received: Upon receiving the reply message, the initiator verifies the signa-
ture and calls upon an oracle to verify that Ξ′ satisfies its policy Φ and if so writes
entries to the association and mechanism databases for both associations.

Upon termination, a pair of associations is established between Alice and the
gateway. When Alice sends a packet P(a, b, y) to the server, the filters in the mecha-
nism database direct it into the association ιg, and a constructor is applied yielding
P(a, g, S(ιg,P(a, b, y))). When this packet arrives at g the destructor is applied and
the decapsulated packet P(a, b, y) is sent on towards the server.

In the above model, the responder will verify the signature on any request message
it receives and the initiator will verify the signature on any reply message purported
to come from the responder. The verification of digital signatures and credentials
are relatively costly operations that can be exploited by an adversary executing a
denial-of-service attack. For instance, an attacker could simply send many bogus
response messages to the responder processes, forcing the node to perform costly
operations denying resources to legitimate users. This issue will be addressed in
some depth in Chapter 7.

3.3 Interference

Using the model for packets, tunnels, and tunnel establishment given above, we
demonstrate a situation where two different runs of the establishment protocol in-
terleave to prevent messages from successfully being delivered, leaving both protocol
instances in a deadlocked state. After considering several possible solutions, we in-
troduce a new syntactic class called a ‘session identifier’ to prevent such harmful
interactions.

The establishment initiator and responder may run concurrently at a node. Both
processes operate on the association and mechanism databases. Given that both the
initiator and responder add packet filters to the mechanism databases, there is the
possibility that messages sent in one establishment session get captured by the filters
installed by the other establishment session. The following scenario illustrates how
this can lead to both establishment sessions becoming deadlocked. Suppose nodes a
and b both initiate establishment with the other simultaneously. These nodes each
act as both initiator and responder in these sessions of the establishment protocol.

47

Node a DB @ a Node b DB @ b

1 P(a, b, Σ = ∅ P(b, a, Σ = ∅
X(Req(a, b, ιa))) Πi = ∅, Πo = ∅ X(Req(b, a, ι′

b
))) Πi = ∅, Πo = ∅

2 P(b, a, · · · P(a, b, · · ·
X(Req(b, a, ι′

b
))) X(Req(a, b, ιa)))

3 Σ = In(b, ι′
a
) Σ = In(a, ιb)

Πi = Πi =
b −→ a : [In(b, ι′a)] a −→ b : [In(a, ιb)]

Πo = ∅ Πo = ∅
4 P(a, b, · · · P(b, a, · · ·

X(Rep(b, a, ι′
b
, ι′a))) X(Rep(a, b, ιa, ιb)))

5 P(b, a, · · · P(a, b, · · ·
X(Rep(a, b, ιa, ιb))) X(Rep(b, a, ι′

b
, ι′

a
)))

6 drop message drop message

Figure 3.5: Deadlock Scenario

Table 3.5 demonstrates a particular interleaving of the execution of two sessions
of the establishment protocol and illustrates how their interaction prevents either
from terminating successfully. To conserve space, credentials and signatures in the
messages are not included in the table. In the first row of the table, the association
and mechanism databases are empty and establishment request messages are sent by
both principals. The messages arrive at their respective destinations in the second
row, and the databases are updated in the third row. The filter at a now says all
traffic flowing from b to a should be traveling in association ι′a, and the filter at b
now says that all traffic flowing from a to b should be traveling in association ιb. The
reply messages are formed in the fourth row of the table and arrive at their respective
destinations in row five. These messages are not sent in associations, but the filters at
their destinations indicate that they should have been. Hence both reply messages
are dropped in the sixth line of the table. The two establishment sessions are in
essence deadlocked. Consequently, neither instance of the establishment protocol
terminates successfully.

Is it necessary to eliminate this risk of deadlock? It is possible to detect it, tear
down the partially set up tunnels, back off, and run the protocol again hoping the
deadlock does not reoccur. The overhead and complexity of this solution might be
acceptable if the problem is rare, and there are no stringent latency requirements.
Yet history has shown that situations thought to be exceptional during design can
become commonplace when systems are used in unexpected ways, and, in this case
at least, one would rather avoid problems by design rather than attempt to recover
from them. Here are a few ideas about how to do this.

• Limit the establishment protocol to set up a series of unidirectional associations
rather than the bidirectional ones in the given scheme. A trace similar to that
given above can be produced demonstrating the same deadlock.

48

• Change the ordering of state changes and message sends and receives. Having
the responder write state for the association flowing from the initiator to the
responder after the reply message is sent does not eliminate the problem.

• Insist that the system obey a client/server assumption so nodes do not simul-
taneously act as both a initiator and responder. This might solve the deadlock
problem, but is overly constraining in a context where peer-to-peer communi-
cations are important.

• Use locks to eliminate the problem by coordinating the activities of the estab-
lishment initiator and responder processes at the nodes. This might prevent
deadlock in the establishment protocol, but it has the effect of simply pushing
the problem to the higher-layer protocols that invoked establishment.

• Use a transaction protocol. It is typical to avoid this type of complexity in
protocols at the network layer. One hopes for a simpler solution.

• Exempt tunnel establishment packets from processing by filters. This indeed re-
solves the problem, but a blanket application of this approach violates authen-
ticated traversal. A restricted variation engineers the packet filter processing
mechanism so that it only exempts establishment traffic traveling between the
initiator and responder from flowing in an association directly between them.
This results in a complex packet processing mechanism.

Our proposed solution is to introduce a new syntactic class called a ‘session
identifier’ that uniquely identifies a complex of tunnels set up during the execution
of a protocol. This is similar to the idea of unique protocol identifiers employed
in [77] to prevent messages from one protocol from being used in another. The
session identifier is similar to a SPI, but rather than identifying a single association
it identifies a complex of tunnels established during the session bearing that session
identifier. The initiator of the session is assumed to generate the session identifier
using the new operator, which guarantees its uniqueness. The session identifier is
incorporated into the mechanism database packet filters. An entry in the mechanism
database at node a directing all traffic from s to d in session v into association ι

flowing from a to b is written as s −→ d : v : [Out(b, ι)]. A packet matches a filter
only if they both possess the same source, destination, and session identifier. A
term representing a secure packet now has the form P(a, b, S(v, ι,P(s, d, y)), where
the secure header identifies both the session v and the association ι. The messages
sent during establishment must contain the session identifier.

Suppose the proposed solution is applied in the above scenario. Alice initiates
the establishment protocol for session v and Bob initiates the establishment pro-
tocol for session u. The first message sent by Alice is represented by the term
P(a, b,X(Req(a, b, v, ιa))) and includes the session identifier. The filter installed at

49

node b during session v would have the form a −→ b : v : [In(a, ιb)]. When the es-
tablishment reply message P(a, b,X(Rep(b, a, u, ι′b, ι

′
a))) for session u arrives at node

b, the packet will not match the filter installed in session v and the packet does not
get dropped. The same logic applies to processing at node a.

Traffic belonging to a session will have the same session identifier as it travels
in different associations belonging to that session’s complex. On the other hand,
associations may be shared across sessions to improve efficiency. The SPI is bound
to the association not the session. In which case, packets belonging to different
sessions traveling in a single association will have the same SPI but different session
identifiers.

An observant reader may notice that our solution allows a pair of tunnels (each
belonging to a different session) to be set up between a and b. In practice, this would
not be a problem as traffic could safely travel in either, where the session identifier
would be used to select the tunnel in which traffic would travel. On the other hand,
from a general policy standpoint it might be deemed undesirable to maintain two
associations flowing in each direction. One could detect if such a pair of tunnels was
set up and change one of the mechanism entries at each node so that both sessions
use the same association and tear down the unneeded association.

While the are many similarities between the IPsec architecture and the model for
security tunnels presented in this chapter, there are also several differences. In the
IPsec architecture, IKE is triggered when an outbound packet matches a filter entry
in the mechanism database (IPsec policy database) and the corresponding associa-
tions (bundle entries) have yet to be set up. The expectation is that mechanism filter
entries are set up by an administrator ahead of time, although, they may be altered
during IKE execution. Our system presupposes the existence of tunnel-complex pro-
tocols that invoke tunnel-establishment protocols to set up pairwise tunnels and it
is the establishment protocol that installs mechanism database entries. In IPsec,
IKE traffic is exempted from the mechanism (IPsec policy) filters in order to pre-
vent an infinite loop of calls to IKE. In order to accommodate the enforcement of
authenticated traversal, our model does not exempt establishment traffic from the
filter mechanisms. IPsec seems moving away from directly supporting nested tun-
nels and IKE does not support the construction of nested tunnels. Yet many useful
tunnel complexes are formed from such a composition of tunnels. Therefore, we not
only incorporate support for nested tunnels, but, as presented in the next chapter,
our tunnel-establishment protocol also supports nested tunnel creation. By elid-
ing the details of the cryptographic transformations performed by the tunnels, we
need not perform a key exchange as part of establishment. As a result, our tunnel-
establishment protocol has only two messages rather than the four seen in IKE. We
had included these messages in the L3A establishment protocol, but seeing that key
secrecy and integrity is not the focus of our study, the added messages were viewed
as extraneous and were best abstracted away. Our decision not to produce an exact
model of IPsec was due to the fact that we felt a more significant contribution would

50

result if we focus on tunnel-complex protocols and were not encumbered by the con-
straints imposed by an existing standard; so we constructed a model for security
tunnels that supports tunnel-complex protocols, which could inform the evolution of
future protocols.

3.4 Conclusion

This chapter presented an overview of a scheme for modeling security tunnels that
abstracts away cryptographic details, but models the databases (SADB and MDB)
that define the state of the tunnels. A tunnel establishment protocol is illustrated
that acts at the same level of abstraction. We demonstrate that the model can aid
in uncovering errors that arise from interactions between tunnel-complex protocols
and the state they install at nodes. The presentation in this chapter was kept
at a rather high-level avoiding details of packet processing and authorization. In
the next chapter, our model for tunnels becomes the foundation of a formalism
called the tunnel calculus. In Chapter 5, the tunnel calculus is used prove that our
modified establishment protocol does indeed avoid deadlock. The work reported in
this chapter appeared in [53].

51

Chapter 4

Tunnel Calculus

In this chapter, we build upon the model for tunnels given above to construct a
formalism called the tunnel calculus. The tunnel calculus is a domain specific for-
malism for expressing tunnel-complex protocols, reasoning about their functional
correctness, and analyzing their vulnerability to DoS attacks. The semantic under-
pinnings of the tunnel calculus are similar to the Chemical Abstract Machine [11].
The core of the tunnel calculus is composed of the following four layers: the lowest
layer models packet forwarding, the next layer models the state of tunnels at a node
as well as the packet header processing performed by security tunnels, the next layer
specifies how authorization is performed using distributed credentials, the top layer
models tunnel-establishment. A precise definition of each of these layers is given in
this chapter. The semantics of the tunnel calculus gives rise to a trace theory used
for formal reasoning. The tunnel-calculus presented in this chapter is the foundation
upon which the rest of this dissertation is built.

This chapter is organized into four sections: the first section defines the structure
of and the grammar of the tunnel calculus, the second section presents the rewrite
rules and semantic functions that define the operational semantics of the core layers
of the tunnel calculus, the third section we defines a trace theory induced by the
operational semantics, and the fourth section presents a collection of propositions.

4.1 Grammar and Structure

The tunnel calculus is formally defined in terms of a tuple (D,S, T,N,E,R), where
D is a set of types, S is a set of basic syntactic elements, T is a set of terms built
from the elements and types, N is a set of node terms representing the terms located
at a node, E is a set of semantic functions over the elements and types, and R is
a set of rules over N . Typically, (D,S,E) is an equational specification that makes
precise the static aspects of the system. This includes the algebraic structure of the
state space, which in our case is a multiset, i.e. a commutative monoid, of local state
elements. The dynamics of the system is then given by the rewrite rules R, which

52

operate modulo the equations E, and in our case correspond to multiset rewrite
rules. Hence, we can visualize the state of the distributed system as a ‘soup’ of
local state elements which are transformed by local state transitions represented by
rewrite rules [11]. The tunnel calculus is obtained by instantiating the tuple with
specific types, elements, terms, equations, and rules.

The types of the calculus are given in Table 4.1. The basic types include the ad-

Node a ∈ Node Domains d ∈ Domain
Message m ∈ Msg Session u ∈ Session + −∞
Forwarding Table f ∈ Addr Addr Booleans B ∈ Boolean
Pub/Priv Key K,K−1 ∈ Key Request Ident k ∈ Identifier
Signature g ∈ Sig Security ι ∈ SPI

Parameter Index

Table 4.1: Tunnel Calculus Types

dresses of nodes in the network a, generic messages m, SPI values ι, and Booleans B.
Although we generally elide cryptography in this dissertation, we do include digital
signatures on establishment messages for the purposes of analyzing DoS threats in
Chapter 7 and hence we include a type digital signatures g. Public key cryptography
is used both to identify principals and to generate and verify signatures so types are
included for public keys K and private keys K−1. The type Domain represents an
address range d. The forwarding table f is a partial function () from the destina-
tion address to the address of the next hop. A variable denoting the session identifier
u may be either of type Session or have the value −∞ indicating that no session
identifier has been assigned to that variable.

The syntactic class of elements is specified in Table 4.2. The elements are the
basic structures used to model packets, messages, associations, and mechanisms.
Establishment messages contain addresses, SPI values, session identifiers, a set of
credentials, and a digital signature to ensure that the message is authenticated.
Discovery messages contain an address and a session identifier. The discovery and
establishment messages must undergo special processing and are distinguished by
the X and C constructors. A packet P(a, a, y) is a triple composed of source address,
destination address, and payload. The payload y can be a message m, a secure
message S(u, ι, p), or a distinguished message χ. An association constructor has the
form Out(a, ι) and an association destructor has the form In(a, ι). The association
database Σ is the set of associations active at a node. There are distinguished mech-
anisms for inbound πi and outbound πo traffic. A mechanism is a triple consisting
of a packet filter ψ, a session identifier u, and a bundle of associations. A bundle is
a list of inbound βi or outbound βo associations. An inbound mechanism database
Πi is a list of inbound security mechanisms πi and an outbound security mechanism
database is a list of outbound security mechanisms πo. Together, Σ,Πi, and Πo

53

Est Req/Rep κ ::= Req(a, a, u, ι,Ξ, g) | Rep(a, a, u, ι, ι,Ξ, g)
Disc δ ::= Disc(a, u)
Distinguish χ ::= C(δ) | X(κ)
Sec s ::= S(u, ι, p)
Payload y ::= m | s | χ
Packet p ::= P(a, a, y)
Assoc In σi ::= In(a, ι)
Assoc Out σo ::= Out(a, ι)
Assoc DB Σ ::= Assoc({σi, . . . , σi} ∪ {σo

1
, . . . , σo

m
})

Bundle In βi ::= Bndl[σi, . . . , σi]
Bundle Out βo ::= Bndl[σo, . . . , σo]
Pattern ω ::= a | d | ∗
Selector ψ ::= ω → ω

Mech In πi ::= Mech(ψ : u : βi)
Mech Out πo ::= Mech(ψ : u : βo)
Mech DB In Πi ::= MechIn[πi

1, . . . , π
i
n]

Mech DB Out Πo ::= MechOut[πo
1, . . . , π

o
m]

Key List K ::= K,K, . . . , K

Policy Selector η ::= ω ↔ ω

GW Policy θ ::= Pol〈∗, η〉 | Pol〈K, η〉
Policies Θ ::= Pols[θ, . . . , θ]
Disc Pol φ ::= Disc〈K | K〉
Disc Pols Φu ::= Discs{φ1, . . . , φn}

u

Credential ξ ::= Cred〈K,K〉
Credentials Ξ ::= Creds{ξ, . . . , ξ}a | Creds{ξ, . . . , ξ}u

Resumption z ::= β | a | p | ι | k
Resumption Term Z ::= 〈〉 | 〈z, . . . , z〉

Table 4.2: Tunnel Calculus Elements

54

define the state of tunnels at a node. Gateway policies θ have the form of a list of
public keys and a selector. Each node maintains a list of polices in the structure
Θ. Discovery policies φ take the form of a pair formed from a public key and a list
of keys. Each session maintains a set of discovery policies Φ. Credentials ξ formed
form a pair of two public keys. Both nodes and sessions maintain credential sets
that are represented as Ξa and Ξu. Although credentials and discovery polices would
likely contain digital signatures, this is elided for the sake of conciseness and the fact
that doing so does not alter our treatment of the topic. Resumption terms hold the
state of a protocol execution and are used to control the order of execution of rewrite
rules.

The terms of the tunnel calculus are specified in table 4.3. Packets p, resumption

Term t ::= p | Z | Σ | Πi | Πo | Θ | Φ | Ξ |
To/Ack/From Fwd ↓ip(k) p | ↑ip(k) | ⇑ip p |
To/Ack/From Sec ↓sec(u,k) p | ↑sec(k) | ⇑sec(u) p |
To/Ack Establish ↓est(u,k) E(a, a, a) | ↑est(k) |
To/Ack Est Resp ↓eresp(u,k) | ↑eresp(k) R(a)
To/Ack Authorization ↓auth(u,k) Ai(a, a, a, a,Θ,Ξ) |

↑auth(k) GWPol(u,B) |
↓auth(u,k) Ar(a, a, a, a, φ,Ξ) |
↑auth(k) DisPol(u,B) |

To/Ack Discovery ↓dis(u,k) D(a, a) | ↑dis(k)

Node Term nt ::= t@ a

Table 4.3: Tunnel Calculus Terms

terms Z, the association database Σ, the mechanism databases Πi and Πo, discovery
policies Φ, gateway policies Θ, and credential sets Ξ are terms. The other terms
represent interfaces. For instance, a packet p is sent down the IP stack by writing a
↓ip(k) p term; and a packet traveling up the stack from the IP layer is given by the
term ⇑ip . The ↑ip(k) term acknowledges that the forwarding layer has completed
processing.

Node terms have a grammar nt ::= t@ a, where t is a term located at node a.
Each node in the network will have a collection of node terms representing the state
at that node. The state of the entire network is represented as a multiset of node
terms. Every node in the network must contain node terms specifying the forwarding
table, association database, and mechanism databases. Protocols modeled as rewrite
rules update this state as they execute.

55

A rewrite rule has the form

t1 @ a1, . . . , tn @ an −→ t′1 @ a′1, . . . t
′
m @ a′m if E

if E ′ then id = z else (z | is new)

where t′′ = h

new u | ι | k

where id is and identifies, E and E ′ are Boolean expressions, and h is a semantic
function. If the rule has the optional if E, then the rule only fires if E evaluates to
true. If the rule has an optional

if E ′ then id = z1 else (z2 | is new),

then the value of identifier id in the rule will take on the value of element z1 if the
predicate E ′ is true and if E ′ is false, the identifier id takes on the value given by
element z2 or generates a new value. If the rule contains the optional

where t′′ = h,

then unification is performed matching the term t′′ against the value returned by the
semantic function h. Suppose the rule contained

where Y (var1, var2) = h.

If h did not return a term that could unify against Y (var1, var2), then the rule would
not be executed. If h returns Y (c, d), then var1 and var2 will be assigned the values
c and d respectively. The new operator generates a unique value, which is formally
stated as follows: if x = new u, then then x is not a subterm of any term previously
written to the multiset and

x = new u and y = new v =⇒ x 6= y.

Variables appearing on the right-hand side of a rule must also appear on the left-
hand side of the rule or have their values randomly generated using the new operator.
Given a multiset of node terms M and a rule of the form above, the left-hand side
of the rule is matched (unified) against the node terms in M and rewritten to the
pattern on the right-hand side of the rule.

Recall that rules in our system have the form

t1 @ a1, . . . , tn @ an −→ t′1 @ a′1, . . . , t
′
m @ a′m.

To prevent the rules from being too cumbersome to read, the following notational
conventions are employed. When all the node terms in a rule are located at the same
node a we drop the @ a on each node term and write the rule as

`a t1, . . . , tn −→ t′1, . . . , t
′
m,

56

where the node’s address is a subscript to the turnstile. If terms are used in a rule,
but not consumed, then then they are written to the left of the turnstile

t1 @ a1, . . . , ti @ ai ` ti+1 @ ai+1, . . . , tn @ an −→ t′1 @ a′1 . . . , t
′
m @ a′m.

Many rules combine these two shorthand notations and have the form

t1, . . . , ti `a ti+1, . . . , tn −→ t′1 . . . , t
′
m.

terms t ::= t1, . . . , tn
node terms nt ::= nt1, . . . , ntm
basic rule br ::= [nt] ` nt −→ nt

| [t] `a t −→ t

rewrite rule rr ::= br [if E]
[if E ′ then id = z else (z | is new)]
[where t = h]
[new (u | ι | k)]

Table 4.4: Tunnel Calculus Rewrite Rules

A formal grammar for the rewrite rules is given in table 4.4.
If more than one rule is ready for dispatch, then their order of execution is non-

deterministic. This means that there is no natural ordering built into the model,
so if we want a set of rules to be executed sequentially, then the rules themselves
must enforce the ordering. Another feature of rewriting logic is that state must
be explicitly passed from one rule to the next when executing a sequence of rules.
Both issues are resolved using the syntactic construct we call a resumption term.
A resumption term is an n-tuple of elements 〈ele1, ele2, . . . , elen〉 that holds state.
Consider the example

1) t1 @ a −→ t2 @ a, 〈x1, x2〉@ a.

2) 〈x1, x2〉@ a, t3 @ a −→ t4 @ a, 〈x3〉@ a.

3) 〈x3〉@ a, t5 @ a −→ t6 @ a.

The term t3 contains elements x1 and x2 and the term t5 contains the element x3.

The first rule writes a resumption term 〈x1, x2〉. The second rule will not execute
until such a term appears in the multiset. The fact that t3 contains the elements
x1 and x2 means that the rule consumes two node terms both containing x1 and
x2. So the resumption term produced in 1) is consumed in 2) and the order of
execution of the two rules is determined. The values of x1 and x2 should be chosen
so that only the desired instance of t3 may possess them. Session identifiers and

57

acknowledgment identifiers are good choices in that they are unique to a particular
run of the protocol. Given these constraints, we can deduce that the execution of
the second rule has been ordered to come after the execution of the first. Similarly,
the execution third rule is delayed until the resumption term 〈x3〉 appears in the
multiset along with a term t5 containing element x3.

Each rule in the tunnel calculus is accompanied by a label given in bold face of
the form Rule X.Y.Z, where X is a letter denoting the layer, Y is 1 if it is an
initiator rule and 2 if it is a responder rule, Z is a numerical label for that rule. For
instance, the first rule of the secure processing layer responder is labeled S.2.1.

The tunnel calculus is structured in layers that form a set of primitives that are
used to express a tunnel-complex protocol. Each layer of the calculus is intended
to abstractly model some layer or module in the network stack. The lowest layer is
the forwarding layer (ip) modeling the movement of packets performed by IP. The
secure layer (sec) models the tunnel processing described in Chapter 3. The au-
thorization layer (auth) verifies that a set of credentials satisfy a given policy. The
establishment layer (est, eresp) is an abstraction of establishment protocols such as
IKE and establishes a bidirectional tunnel between two nodes and updates the as-
sociation and mechanism databases accordingly. The forwarding, secure processing,
and establishment layers are structured as having an initiator and a responder pro-
cess. The forwarding and secure layer responder processes run as a daemon. The
authorization layer behaves like a function and does not have a responder. These
layers form a foundation upon which tunnel-complex protocols are built.

The first rule of an initiator (and the establishment responder) always has the
form of a rewrite rule with ↓I on the left of the arrow, where I = {ip, sec, auth, eresp,
est}. The last rule of an initiator always has the form of a rewrite rule with ↑I on the
right side of the arrow. The initiator will remove the ↓I term from the multiset when
it begins executing and write an ↑I term to acknowledge termination. Responder
processes await the reception of a message from the initiator before performing any
action. If a responder is running as a daemon, information is passed to a higher
level by writing an ⇑I term. Otherwise, information is passed in an ↑I term. Each
↓I and ↑I term is annotated with a unique identifier k so that a rule with an ↑I

on the left of the arrow can be assured that it matches the ↓I that was intended.
This prevents confusion that may result from many ↑I terms being in the multiset.
In the forwarding layer, these terms have the form ↓ip(k) and ↑ip(k) . The ↓ terms
of the remaining layers are also annotated with the session identifier. To see how
the layers interact consider what happens when a packet p@ a is sent to node b via
the secure processing layer. The secure layer applies the appropriate constructors
to the packet and sends it to the forwarding layer; the forwarding layer forwards it
to the next node where it gets processed by the forwarding layer responder, which
passes it up to be processed by the secure processing layer responder, which applies
the appropriate destructors and passes the packet up for processing. At node a this

58

sequence of operations will add the terms:

↓sec(u,k1) p@ a, ↓ip(k2) p
′
@ a, ↑ip(k2) @ a, ↑sec(k1) @ a

and at node b they will add the terms:

⇑ip p
′
@ b, ⇑sec(u) p@ b.

The send/acknowledgment structure of messages models the processing in the IP
stack where a send does not return until the message has traversed the stack [55].

The following two assumptions hold throughout the remainder of this disserta-
tion. The first assumption is that all messages sent at layers higher than the secure
processing layer are sent via the secure processing layer. The second assumption is
that session identifiers are always introduced using the new operator, ensuring their
uniqueness.

4.2 Core Layers of the Tunnel Calculus

In this section we give a precise definition of each of the four core layers of the tunnel
calculus. In the case of the authorization layer, we give a relation defining what it
means a credential set to satisfy a policy. For the other three layers, a collection of
rewrite rules are defined, which define the operational semantics of the layer.

4.2.1 Forwarding Layer

The forwarding layer models the movement of packets based on a forwarding table
and serves as an abstraction of the IP layer. We do not attempt to model packet
fragmentation or routing. The semantics of this layer is concisely expressed using
two rules.

Rule F.1.1 F(f) @ a ` ↓ip(k) P(b, c, y) @a −→ P(b, c, y) @ f(c), ↑ip(k) @ a.

The forwarding table appears to the left of the ` indicating that it can be used in
the rule, but is not removed from the multiset. If a packet from b to c is ready for
dispatch at a, then it is sent to the node f(c) obtained from the forwarding table at a.
An acknowledgment of this dispatch is provided at a. This is not an acknowledgment
of delivery at f(c), however. The forwarding layer responder daemon is specified by
the rule.

Rule F.2.1 `a p −→ ⇑ip p

If a packet p has been received at a node, the forwarding layer rewrites to ⇑ip p,
indicating that the message has been received.

59

4.2.2 Secure Processing Layer

The secure processing layer performs the packet processing associated with tunnels.
When the secure processing layer is invoked (↓sec(u,k) p) to send a packet to its des-
tination, the secure processing layer initiator performs the following actions: it first
consults the outbound mechanism database Πo to obtain a bundle of associations, it
then applies the constructors in the bundle to the packet, and, finally, it dispatches
the resulting packet to the forwarding layer to move it to the other end of the tunnel.
The initiator must await the forwarding layer acknowledgment before writing the ac-
knowledgment that it has completed processing. The secure layer responder daemon
is more complex. A packet arriving at a node may be a distinguished message such
as a discovery or establishment packet, a packet legitimately arriving in the clear, or
a packet traveling in one or more security associations. If the packet is arriving in
a security association, then the responder strips off and verifies the secure headers
for all associations terminating at that node. The inbound mechanism database is
consulted to verify that the incoming message arrived in the proper associations.
This processing models the application of destructors. If the decapsulated packet is
a distinguished packet, then it is passed to higher layers for further processing. If
the decapsulated packet p is destined for this node, then a ⇑sec p term is written to
the multiset. If a packet arrives at a gateway in a tunnel and the gateway is not
the final destination, then a ↓sec(u,k) p term is written in order to send the packet
towards its destination.

The following two rewrite rules express the semantics of the secure processing
layer initiator.

Rule S.1.1 Πo `e ↓sec(u,k) P(b, c, y) −→
↓ip(k′) Nest(BndlSel(b, c, u,Πo), e, u,P(b, c, y)), 〈k, k′, u〉
new k′ .

The outbound mechanism database Πo appears to the left of the turnstile indicating
it can be used in the rule, but not consumed. If a secure layer message is ready
for dispatch, the semantic function BndlSel is invoked to determine the security
association(s) that apply to the packet. The semantic function Nest applies the
appropriate constructors and encapsulates the packet in the proper headers creating
a packet p′. The term ↓ip(k′) p

′ is written to the multiset indicating that the packet
is ready for dispatch by the forwarding layer with the acknowledgment identifier
k′ generated by the new operator. A resumption term is written to the multiset
containing the session identifier u and the two acknowledgment identifiers k and k′.

Rule S.1.2 `e 〈k, k′, u〉, ↑ip(k′)−→ ↑sec(k)

If a forwarding layer acknowledgment term is in the multiset and that term possesses
the acknowledgment identifier k′ (matching the resumption term), then this rule
rewrites a secure layer acknowledgment indicating that the message has been sent
to its destination; however, it is not an acknowledgment of delivery.

60

The secure layer inbound processing rules call Strip to process any messages
arriving in a tunnel and the rule that gets executed depends on the shape of the
returned value. If a packet is a control packet or an establishment packet, then it gets
passed up for processing. If the packet is traveling in an invalid security association,
there is no matching pattern and the packet is effectively dropped. A valid packet
destined for this node is passed up for processing. A valid packet destined for a
different node is sent on toward its destination.

The following six rules define the processing performed by the secure layer re-
sponder.

Rule S.2.1

Σ,Πi `e ⇑ip p −→

⇑sec(u) P(b, c,X(κ))

where Exchange(P(b, c,X(κ)), β) = Strip(Σ, e,−∞, p,Bndl[])

if Mech(b→ c : u : β) ∈ Πi or

(6 ∃β ′ 6= [].Mech(b→ c : u : β ′) ∈ Πi and β = []).

If the decapsulated packet is an establishment message and there is a matching entry
in the mechanism database, which indicates it arrived in a valid tunnel, or there is
no matching entry and an empty bundle value has been returned by Strip, which
indicates that the packet arrived in the clear, then pass the exchange packet up for
further processing.

Rule S.2.2

Σ,Πi `e ⇑ip p −→

⇑sec(u) P(b, c,X(κ))

where ConMsg(P(b, c,X(κ)), β) = Strip(Σ, e,−∞, p,Bndl[])

if Mech(b→ c : u : β) ∈ Πi or

(6 ∃β ′ 6= [].Mech(b → c : u : β ′) ∈ Πi and β = []).

The processing for control packets is the same as for establishment packets.

Rule S.2.3

Σ `e ⇑ip p −→ 〈p′, β, u〉

where (p′, u, β) = Strip(Σ, e,−∞, p,Bndl[]).

61

Decapsulates a packet that is neither a control packet nor an establishment packet.

Rule S.2.4

Πi `e 〈P(b, c, y), β, u〉 −→ ⇑sec(u) P(b, c, y)

if e = c and Mech(b→ c : u : β) ∈ Πi.

If the packet was traveling in a valid association and it is destined for this node, then
pass the packet up for further processing.

Rule S.2.5

Πi `e 〈P(b, c, y), β, u〉 −→ ↓sec(u,k1) P(b, c, y), 〈u, k1〉

if e 6= c and Mech(b→ c : u : β) ∈ Πi

new k1.

If the packet was traveling in a valid association and it is not destined for this node,
then invoke the secure layer to send the packet towards its destination.

Rule S.2.6

`e 〈u, k1〉, ↑sec(k1) → ·

Upon receiving the acknowledgment that the message has been sent, the protocol
terminates.

Semantic Functions

The secure processing layer makes use of several auxiliary semantic functions. The
secure layer initiator rules are made concise by the using the functions BndlSel and
Nest to wrap a packet in the proper header. The secure layer responder uses the
function Strip to apply destructors to traffic arriving in an association. The precise
definitions are given below.

When processing an outbound packet, the function BndlSel consults the out-
bound mechanism database Πo to determine what, if any, bundle to apply to the
packet.

BndlSel : Addr × Addr × Session× Policies Bundle

BndlSel(b, c, u,Πo) = β

if Mech(b→ c : u : β) ∈ Πo

BndlSel(b, c, u,Πo) = Bndl[] otherwise

This function takes as parameters the packet’s source and destination addresses,
the session identifier, and the outbound mechanism database. It fetches from the
mechanism database the bundle from the mechanism entry having a matching packet

62

filter and session identifier. If there are no matching entries, the message is sent in
the clear.

When a bundle is applied to an outbound packet, a new packet is created, which
is composed of nested packets. For instance, if the bundle

Bndl[Out(c2, ι2),Out(c1, ι1)]

is applied to the packet p = P(b, c, y) at node a in session u, then the following packet
is generated:

P(a, c1, S(u, ι1,P(a, c2, S(u, ι2,P(b, c, y))))).

This action is performed by the Nest function.

Nest : Bundle× Addr × Session× Packet→ Packet

Nest(Bndl[], e, u, p) = p

Nest((Out(d, ι) :: β), e, u, p) = Nest(β, e, u,P(e, d, S(u, ι, p)))

The parameters are the bundle β that is to be applied to the packet, the address e
of the current node, the session identifier u, and the packet p to which the bundle is
applied. The function applies the bundle Out(d, ι) :: β to the packet p in a recursive
manner by taking the head of the bundle list Out(d, ι), and creating a new packet
with source address e, destination address d, and a secure message with session u

and SPI ι. The function is then called again with the newly created packet as a
parameter. If the bundle is empty, the function just returns the packet.

The secure layer responder uses a semantic function Strip to remove and verify
secure packet headers. When Strip is initially called the session number is unknown
and the parameter is assumed to be set to −∞. Control and exchange packets
contain the session number even if not traveling in a tunnel. The function strip
Strip returns −∞ if called with a packet that is not a control packet, an exchange
packet, or a packet traveling in a tunnel.

Strip : Associations× Addr × Packet× Bundle

Packet× Sessions×Bundle + Exchange(Packet× Bundle)
+ ConMsg(Packet×Bundle)

Strip(Σ, e, u′,P(b, c,C(u,m)), β) = ConMsg(P(b, c,C(u,m)), β).
Strip(Σ, e, u′,P(b, c,X(u,m)), β) = Exchange(P(b, c,X(u,m)), β).

Strip(Σ, e, u′,P(b, c, S(u, ι, y)), β) = Strip(Σ, e, y, u, In(b, ι) :: β)
if e = c and In(b, ι) ∈ Σ.

Strip(Σ, e, u′,P(b, c, S(u, ι, y)), β) is undefined
if e = c and In(b, ι) 6∈ Σ.

Strip(Σ, e, u′,P(b, c, y), β) = (P(b, c, y), u′, β)
otherwise.

63

The first equation says that if the packet is a control packet, then return

ConMsg(p, β).

The second equation returns Exchange(p, β) if the message is an exchange packet.
The third equation removes the outer secure header and checks to see if the destina-
tion given in the outer header is the same as e (the node doing the processing). If
so and the association is valid (a member of Σ), then recursively call Strip with the
association of the header that was just removed added to the bundle. The fourth
equation covers the case where the header has an invalid association and the packet is
just dropped. The fifth equation simply returns the packet because either all the se-
cure headers have been removed or the outer header indicates a different destination
address.

The tunnel calculus is designed to accommodate nested tunnels. In the context
of tunnel-complex protocols, there must be a design decision made as to when one
tunnel is nested inside another. The tunnel calculus implements the assumption
that if session u creates a tunnel, but there already exists a entry in the mechanism
database for that selector, then the newly created tunnel is nested inside of the
existing tunnel. This assumption is built into the ⊗ operator that defines how a
mechanism entry gets added to a mechanism database. Consider the situation where
the mechanism Mech(a→ b : u : Bndl[Out(b, ιb)] is added to the outgoing mechanism
database Πo. If there is no entry in Πo with selector a → b and session identifier
u, then simply add the entry to the database. This is reflected in the first equation
below. If there is an entry already in Πo with selector a→ b and session identifier u,
then we do not want to add a new entry. Instead, the association Out(b, ib) is added
to the bundle of the existing entry to create nested tunnels. Note that this action is
not performed if the association is already in the bundle.

Mech(ψ : u : Bndl[σ]) ⊗ Π = Mech(ψ : u : Bndl[σ]) :: Π

if not (∃π = Mech(ψ′ : u′ : β ′) ∈ Π. (ψ = ψ′ and u = u′))

Mech(ψ : u : Bndl[σ]) ⊗ Π = Mech(ψ : u : (σ :: β ′)) :: (Π − π)

if ∃π = Mech(ψ′ : u : β ′) ∈ Π. (ψ = ψ′ and u = u′ and σ 6∈ β ′)

4.2.3 Authorization Layer

Security gateways are presumed to enforce policies governing the flow of ingress traffic
into its administrative domain and egress traffic exiting its administrative domain.
The authenticated traversal property states that all ingress and egress traffic should
be authenticated and authorized as satisfying the policy at a gateway. Gateway
policies precisely define the principals that are allowed to undertake specific traffic
flows.

64

Consider a discovery protocol that has just discovered a gateway on the dataflow
path. The gateway protects its administrative domain against unauthorized egress
or ingress traversal; so the discovery protocol must present credentials that satisfy
the gateway’s policies in order to traverse this gateway. But should the protocol
trust this unknown gateway. Assume that the gateway is malicious and that it has
inserted itself as a man-in-the middle, if no end-to-end encryption is employed in
the final tunnel configuration, then the attacker can listen in on subsequent commu-
nication. If end-to-end encryption is used, then the attacker can still monitor the
traffic flow, which is undesirable in and of itself. To prevent this from occurring we
have introduced the notion of discovery policy. A discovery policy is simply the list
of administrative entities with which a protocol session is willing to communicate.
The host initiating discovery is assumed to initialize the session discovery policy as
part of normal protocol execution and the protocol can add to the list of acceptable
administrative entities as the protocol executes.

Distributed credentials are used to satisfy both discovery polices and gateway
policies. Tunnel-complex protocols are responsible for delivering the proper creden-
tials to a node. When a tunnel-complex protocol begins execution it only has avail-
able to it the credentials available at the node that initiated the protocol. Additional
credentials may be obtained as new gateways on the dataflow path are discovered.
In this sense, tunnel-complex protocols can be viewed as credential delivery mecha-
nisms.

In this section, we give a precise definition of gateway policies, discovery polices,
and credentials as well as what it means for a credential set to satisfy a policy.
Collectively these definitions determine the tunnel calculus authorization layer. We
assume a public key infrastructure, but elide the details. The resulting calculus is
similar to SPKI/SDSI [46] in content and objective, but is simplified and specialized
to this application to make its description self-contained.

Gateway Policies

A gateway policy θ = Pol〈K1, . . . , Kn : η〉 specifies a list of principals K1, . . . , Kn

that is authorized by a gateway to communicate between the addresses given in the
selector η. To illustrate the purpose of a gateway policy, consider the case where
a tunnel-complex protocol has been employed to enable communication between s

and d. Assume a gateway on the dataflow path between s and d has the policy
Pol〈Kx, s ↔ d〉. If the protocol delivers a credential for Kx to the gateway, then
a tunnel is set up allowing traffic flowing between s and d to tunnel through the
gateway. Policies can restrict communication to be bidirectional a ↔ b or unidirec-
tional a 7→ b. For instance, a policy at a gateway may say that Alice represented as
principal KA is allowed to communicate between the address a1 and an address a2.
This is formalized as Pol〈KA : a1 ↔ a2〉. A more liberal policy may state that any
principal can communicate between these same address ranges, and would be written

65

as Pol〈∗ : a1 ↔ a2〉. Each gateway maintains a list of policies Θ = Pols[θ1, . . . , θn]
that it enforces. For simplicity, we assume that the policies at each gateway have
disjoint traffic selectors. Hence, there is at most one policy at a gateway for a given
traffic flow. We write Θη @ a to denote the policy at node a that matches the selector
η.

We could have employed a naming system similar to the one in SPKI/SDSI to
avoid explicit mention of address ranges by binding them to domain names. This
would allow us to write policies such as Pol〈KA : Ka1

↔ Ka2
〉. However, it is essential

for policies to be expressed in terms of address ranges ultimately since a packet
encrypted from end-to-end shows little else on which policy could be based.

Discovery Policies

Gateway discovery poses the quandary of whether a newly-discovered gateway should
be trusted. To counter the threat of rouge gateways, discovery protocols verify that
a newly discovered gateway is trusted to continue executing the protocol by checking
a list of administrative entities trusted by the protocol. These entities are defined
by the discovery policy maintained at each host. A discovery policy φ says that
principal K is willing to communicate with principals K1, . . . , Kn. This is formalized
as Disc〈K | K1, . . . , Kn〉.. The structure Φu contains the set of discovery policies for
session u. The discovery policy at node a is often denoted φa. It is left to the
discovery protocol designer to define who gets to contribute to a session’s discovery
policy. For instance, in a very restrictive design, each gateway on the path must
belong to one of the administrative entities listed in the protocol initiator’s discovery
policy. A more liberal design would allow gateways on the path to contribute to
the session’s discovery policy. In this case, a newly discovered gateway would be
acceptable if it were listed in the discovery policy of the initiating host or in the
discovery policy of any previously discovered gateways.

The set of discovery policies Φu for session u is typically initialized to the set of
policies at the initiating node when the protocol begins executing. Depending on
the protocol, the set may grow as newly discovered nodes are approved.

A fuller authorization system may require a more sophisticated structure for
discovery policies than that provided in the current system, which may be inadequate
for cases where the trusted gateways would be inferred from a delegation chain,
general attributes, or a similar technique, but we choose to avoid that complexity
here.

Credentials

Credentials specify a relationship between two principals or delegate authority from
one principal to another. For instance, Alice may have a credential that says she
belongs to Acme Inc. A credential ξ = Cred〈KS, KI〉 defines a relation such as: KI

‘delegates’ to KS, or KS ‘is a member of’ KI , or KS ‘speaks for’ KI . Principal KI

66

is called the issuer and KS the subject. Given a credential that says KS speaks
for KI , we often write KS ⇒ KI . The credential set for node a is denoted Ξa.
The credential set presented to gateways during an execution of discovery protocol
session u is denoted Ξu.

Given a credential set defining Kn ⇒ Kn−1, and Kn−1 ⇒ Kn−2, and Kn−2 ⇒
Kn−3, and Kn−3 ⇒ Kn−4, and . . ., K3 ⇒ K2 ⇒ K1, and K3 ⇒ Km, and K2 ⇒ Km′ ,
one can from a tree

⇒ Km

Ξ ` Kn ⇒ Kn−1 ⇒ Kn−2 ⇒ · · · ⇒ K3 ⇒ K2 ⇒ K1.

⇒ Km′

The tree formed from the credential set Ξ is denoted T (Ξ). Given T (Ξ), a chain is
defined as a path from the root of the tree (term closest to the `) to a leaf. Whenever
a tree if formed we assume that a signature on the credentials are checked to verify
the integrity of the credentials, but this has been elided in the current treatment.

Satisfaction

Having defined gateway policies, discovery policies, and credentials, it is now possi-
ble to define what it means for a given credential set to satisfy a given gateway or
discovery policy. The authorization layer is treated as a function call by the estab-
lishment layer. Instead of giving a set of rewrite rules for this layer, a satisfaction
relation is given specifying what it means for a credential set to satisfy a given policy.
The case of discovery policies and gateway polices are considered separately.

To satisfy a gateway policy one must verify that a given credential set contains
a key listed in the policy. For instance, if the policy at a gateway G3 says KM

is allowed to traverse the gateway and the protocol initiated by Alice delivers the
credential KA ⇒ KM saying she belongs to principal M , then the policy is satisfied,
but to ensure integrity we require that there be a delegation chain from G3 to A

such as
KG3

⇒ KG2
⇒ KG1

⇒ KA ⇒ KM .

It remains to formalize this concept. Given the policy Θη for the traffic flow η and
a credential set Ξu, the satisfaction relation

Ξu |=Ka
Θη

is defined to be true if there exists a chain in T (Ξu) rooted at Ka that contains one
of the keys in Θη. The relation is defined to be false otherwise.

The interface for the authorization layer for gateway policies is defined as

↓auth(u,k) Ai(a, b, s, d,Θ,Ξu),

67

where a is the address of the establishment initiator, b is the address of the establish-
ment responder, and s and d are the address used to select the policy that applies
to this traffic flow. The authorization layer returns ↑auth(k) GWPol(u, true) if

Ξu |=Ka
Θs↔d

and ↑auth(k) GWPol(u, false) otherwise.
In order for node a to prove that it satisfies the discovery policy Φu at node b, node

a must send its credential set Ξa to b. These credentials define the administrative
domain to which the node belongs. For instance, a may belong to the accounting
department (KN) of Coyote corporation (KC) and so the credential set can form the
chain Ka ⇒ KN ⇒ KC . If the discovery policy contains KC , then it is satisfied by
the given credential chain. Satisfaction for discovery policies is formalized as follows.
Given a set of discovery policies

Φu = Discs{Disc〈KI | K1, . . . , Kn〉, . . . ,Disc〈KG | K ′
1, . . . , K

′
m〉}

and a set of credentials Ξa from node a, the satisfaction

Ξa |=Ka
Φu

is defined to be true if T (Ξa) is a tree rooted at Ka that contains a chain that
contains one of the keys listed in the discovery policies in Φu. The relation is defined
to be false otherwise.

The interface for the authorization layer for discovery policies is given as

↓auth(u,k) Ar(a, b, s, d,Φu,Ξa),

where a is the address of the establishment initiator, b is the address of the estab-
lishment responder, and s is the originating source and d is the destination addresses
of the protocol. The authorization layer returns ↑auth(k) DisPol(u, true) if

Ξa |=Kb
Φu

and ↑auth(k) DisPol(u, false) otherwise.

4.2.4 Establishment Layer

Tunnel establishment is the process of setting up a bidirectional tunnel between
two nodes. Tunnel establishment has the following components: the authorization
and authentication of the tunnel at both nodes, the updating of the association and
mechanism databases, and the establishment of shared cryptographic keys for the
associations by way of a key exchange protocol [93, 19]. The focus in this disser-
tation is on the first two components, therefore, we elide the key exchange process.
Tunnel establishment is modeled using two messages that contain credentials for

68

authorization, the SPI values identifying the associations, and filter entries for the
mechanism database entry. The protocol is only successful if both participants can
present credentials that satisfy the policy at the other.

This protocol has been designed with the intention that it will be used as a
component in discovery protocols. The discovery protocol is assumed to invoke the
establishment responder when it sends out a distinguished discovery packet and the
gateway that intercepts the packets invokes the establishment initiator process.

The establishment layer messages are digitally signed to ensure their integrity.
Although it has been our preference throughout this dissertation to elide crypto-
graphic operations whenever practical, in this case we need to make them explicit
to facilitate the analysis of DoS threats performed in Chapter 7. The function
Sign(K−1

a) produces a signature of the message sent in the given rule. The function
CheckSig(Kb, g) is defined by the equation

{
CheckSig(Ka, Sign(K−1

a , p)) = true
Otherwise false.

Assume that node a is the establishment initiator, node b is the establishment
responder, the session identifier is u, and that the protocol will install packet filters
s and d. The tunnel establishment protocol works as follows. The establishment
initiator a generates a SPI ιa to identify the association flowing from the responder to
the initiator and forms an establishment request message Req(s, d, u, ιa,Ξ

a, g), where
Ξa is the initiator’s credential set and g is a signature generated using the private key
of a. Upon receiving a message of this form, the responder b calls the authorization
layer to verify that Ξa satisfies the discovery policy Φu. If so, the responder generates
a SPI ιb to identify the association flowing from a to b and makes the appropriate
entries in the association and inbound mechanism database for this association. The
responder then forms an establishment response message Rep(s, d, u, ιa, ιb,Ξ

u, g′),
where Ξu is the credential set for protocol session u and g′ is a signature generated
using the private key of b. Once the establishment response message has been sent,
the responder adds entries in the association and outbound mechanism database
for the association flowing from the responder to the initiator. Upon receiving the
establishment response message, the initiator a calls the authorization layer to verify
that Ξu satisfies its policy Θs↔d. If so, entries for the two associations are added to
the association and mechanism databases.

The rules for the establishment initiator process are given as follows.

69

Rule E.1.1

Ξa `a ↓est(u,k1) E(b, s, d) −→

↓sec(u,k2) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))),

〈u, a, b, s, d, k1, k2, ιa〉

if ∃In(b, ιx) ∈ Σ then ιa = ιx else ιa is new

new k2

where g = Sign(K−1
a).

The initiator a invokes the establishment layer by writing a ↓est(u,k) E(b, s, d) term,
where b is the responder and s and d are the packet filters to be installed in the
mechanism database. If there is an existing association flowing from b to a, then use
the existing association. Otherwise, generate a new SPI value ιa. The initiator then
sends a signed establishment request message to node b. The semantic function sign
produces a signature of the message being sent using the private key of a.

Rule E.1.2

Θ `a 〈u, a, b, s, d, k1, k2, ιa〉,

↑sec(k2) ,⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) −→

↓auth(u,k3) Ai(a, b, s, d,Θ,Ξu),

〈u, a, b, s, d, k1, k3, ιa, ιb〉

new k3

if CheckSig(Kb, g
′).

Upon receiving the establishment response message, the initiator a verifies the sig-
nature and invokes the authorization layer to verify that the credential Ξu satisfies
the gateway policy Θa↔b. We define CheckSig(K, Sign(K−1)) as true.

Rule E.1.3

`a 〈u, a, b, s, d, k1, k3, ιa, ιb〉,

Σ,Πi,Πo, ↑auth(k3) GWPol(u, true) −→

Σ ∪ {Out(b, ιb)}, Mech(d→ s : u : Bndl[Out(b, ιb)]) ⊗ Πo,

Σ ∪ {In(b, ιa)}, Mech(s→ d : u : Bndl[In(b, ιa)]) ⊗ Πi, ↑est(k1) .

If the authorization layer returns true, then update the association and mechanism
databases for both associations and write the establishment acknowledgment term.

The establishment responder rules are given below are in some sense the mirror

70

image of the initiator rules.

Rule E.2.1

Φu `b ↓eresp(u,k1) ,

⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g)) −→

↓auth(u,k2) Ar(a, b, s, b,Φu,Ξa),

〈u, a, b, s, d, ιa, k1, k2〉

new k2

if CheckSig(K−1
a , g).

Upon the arrival of an establishment request message, the signature is verified and
the authorization layer is invoked to verify that the initiator’s credential Ξa satisfies
the discovery policy Φu.

Rule E.2.2

Ξb, Ξu `b 〈u, a, b, s, d, ιa, k1, k2〉,

↑auth(k2) DisPol(u, true), Σ, Πi −→

Σ ∪ In(a, ιb),

Mech(d→ s : u : Bndl[In(a, ιb)]) ⊗ Πi,

↓sec(u,k3) P(b, a,

X(Rep(s, d, u, ιa, ιs,Ξ
u ∪ Ξb ∪ {Ka ⇒ Kb}, g

′))),

〈u, a, b, s, d, ιa, ιb, k1, k3〉

new k3

if ∃In(a, ιx) ∈ Σ then ιb = ix else ιb is new

where g = Sign(K−1
b).

Rule E.2.2 only executes if the authorization layer verifies that the discovery policy
is satisfied. If there is an existing association flowing from the initiator to the re-
sponder, then it gets reused. Otherwise, a new association is generated. Entries are
then added to the association and mechanism databases for the association flowing
from a to b and the establishment reply message is sent.

Rule E.2.3

`b 〈u, a, b, s, d, ιa, ιb, k1, k3〉,Σ,Π
o, ↑sec(k3) −→

↑eresp(k1) R(a), Σ ∪ {Out(a, ιa)},

Mech(s→ d : u : Bndl[Out(a, ιa)]) ⊗ Πo.

Upon acknowledgment that the reply has been sent, entries are made in the associ-
ation and mechanism databases for the association flowing from b to a.

71

4.3 Trace Theory

Our analysis requires a certain amount of trace theory, which we now describe.
The application of Rule X : L −→ R to the multiset M rewrites to the multiset
M ′ = M − L′ ∪ R′, where L′ is a multiset of terms in M matching L and R′ is a
multiset matching the pattern R. We call L′ the redux and R′ the contractum. To
indicate that M −→M ′ is an application of Rule X at node a executing in session
u with redux L′ and contractum R′ we often write Rule X(u)(L′, R′)(a) or

M
X(u)(L′ ,R′)(a)

−→ M ′.

When the context is clear we drop the redux, contractum, and node. If all the rules
belong to the same session, then we drop the session identifier as well and just write

M
X

−→M. The sequential application of Rules X1(u1), . . . ,Xn(un) to the multiset
M1 is written as

M1
X1(u1)
−→ M2

X2(u2)
−→ · · ·Mn

Xn(un)
−→ Mn+1.

The sequence of multisets M1,M2, . . . ,Mn+1 is called a trace of the execution of rules
X1(u1), . . . ,Xn(un) and provides a view of the multiset representing the network
state as the protocol executes. Each change to the network state results in a new
multiset being added to the trace sequence.

A virginal network state is defined as a multiset where the only terms in the
multiset are the forwarding tables that define the topology (terms of the form F(f)).

Given a trace T = M1, . . . ,Mn of the execution of a discovery protocol. The
trace is said to record a complete session if it contains both the ↓ and ↑ terms for
the protocol session and all invocations of establishment terminate successfully.

Suppose T = M1, . . . ,Mn, we say Mi ∈ T if Mi is identical to Mi in T and we
say that for a term t, t ∈ T if there exists a multiset Mi ∈ T such that t ∈ Mi. We
denote the set of elements appearing in a multiset M as L(M).

Consider the execution of the tunnel calculus establishment protocol between two
nodes. If one only observed the actions at a single node, there is only one possible
trace for a successful execution of a protocol. Yet the protocol is executing on a
distributed network of nodes. A trace of the establishment protocol must record
that the establishment initiator has sent the request message before it records that
the message has been received at the establishment responder and it must record
that the reply has been sent by the establishment responder and received by the
establishment initiator before the establishment initiator writes state. This is due to
the causal ordering induced by the messages [84]. No such ordering exists between
the writing of state for the two associations at the initiator and the writing of state
at the responder for the association flowing from the responder to the initiator.
Hence there is more than one possible trace for the execution of the establishment
protocol. This has been formalized in Mazurkiewicz trace theory [35] via the concept
of an independence relation between actions that captures possible concurrency. For

72

instance, if Rule X and Rule Y are independent of each other, the trace may record

Mi
X
−→Mi+1

Y
−→Mi+2 or M ′

i

Y
−→M ′

i+1
X

−→M ′
i+2. The formalization of independence

that follows is similar to that found in [95]. State shared among different sessions at
a node is maintained in the forwarding table, association database, and mechanism
databases at a node. Let H(a) be the infinite multiset of all terms representing
shared state at node a. This is formally stated as

H(a) = {|F (f) @a,Σ @ a,Πi
@ a,Πo

@ a|},

where F (f),Σ,Πi, and Πo represent all possible terms of that form. The infinite
multiset of all the state elements is defined as

H =
⋃

a

H(a).

Consider an application of Rule X having redux L1 and contractum R1 and an
application of Rule Y having redux L2 and contractum R2. Define an ordering on
the application of rules as X ≺ Y if and only if

(R1 −H) ∩ (L2 −H) 6= ∅.

Define the principal ideal of an application of Rule X as X̌ = {Y | Y ≺ X}. The
application of rules X and Y are said to be dependent if X ∈ Y̌ or Y ∈ X̌ or
(L1 − H) ∩ (L2 − H) 6= ∅. If an application of rules X and Y are not dependent,
then they are said to be independent and we write X ‖Y.

4.4 Putative Properties

In this section, we formulate and prove a collection of propositions that express
properties of the tunnel calculus that we would expect to be true. Throughout this
section, we assume that none of the nodes act maliciously, but obey the rules of the
protocol.

The first property asserts the uniqueness of acknowledgment identifiers and fol-
lows from inspecting the rules of the tunnel calculus and observing that acknowledg-
ment operators are always generated by the new operator.

Proposition 4.1 (Uniqueness of Identifiers) Consider a trace T = M1,M2,. . .,
Mn. Let t be a term that begins with ↓I(u,k) or ↓ip(k), where I = {sec, auth, eresp, est}.
If t 6∈ Mi−1 and t ∈ Mi and t′ has the form ↓ip(k′) or ↓I(u,k′), where t′ ∈ Mj(j > i)
and t′ 6∈ Mj−1, then k′ 6= k. �

In the tunnel calculus, all messages contain session identifiers. This restriction
could have been weakened to accommodate traffic existing outside of our convention
that all traffic travels in a tunnel or is part of a protocol setting up a tunnel, but at
a cost in complexity that we felt obscured the focus of the work.

73

Proposition 4.2 (Messages Contain Session Identifiers.) Consider a trace T
= M1, . . ., Mn that records the execution of any of our tunnel calculus rules. If
packet p ∈ T and p 6∈ L(M1), then there exists a session identifier u such that u ∈ p.
That is, u appears in packet p.

Proof: From inspection of the rules we can see that all messages sent in an associ-
ation contain a session identifier in the header. Establishment packets do not travel
in an association, but both the establishment request and establishment response
messages contain the session identifier. Discovery packets also contain the session
identifier. Since these are the only packets allowed in our system, the theorem holds.
�

The following property shows that there is a one-to-one relationship been the
rules and a step in the trace. A consequence of this result is that it is possible to
formulate many of the functional correctness properties that interest us in terms of
a protocol’s trace. Note that this is not the case for rewrite systems in general, but
the tunnel calculus was designed with such analysis in mind.

Lemma 4.3 If M−→M ′, then there exists only one rule X whose application to M

(M
X

−→M ′) could have produced M ′.

Proof: Recall that M ′ = M − L ∪R where L and R are the redux and contractum
of the rule in question. Knowing M and M ′ allows us to discern both the redux and
contractum. All that remains to show is that the redux and contractum pair can
only match one possible rule.

In many cases, the left-hand side of a rule has a pattern that distinguishes it
from all the other rules. In such cases, one can deduce the rule that was applied in
M −→ M ′ by observing the term(s) that were removed from M in the application
of the rule.

Rules F.1.1, S.1.1, and E.1.1 all have the form of a left-hand side with a single
↓-term of the form ↓ip(k) , ↓sec(u,k) , or ↓est(u,k) . No other rules have these terms on
the left-hand side. If M −→M ′ removes one of these terms, then we know the rule
that was applied respectively.

Rule F.2.1 is the only rule with a packet on the left-hand side. If M −→ M ′

removes a packet from M , then we know that it was an application of Rule F.2.1.
Rule E.2.1 is the only rule with a ↓eresp(u,k) term and a ⇑sec(u) term on the left

hand side. If M −→M ′ removes two terms of this form, then it is an application of
Rule E.2.1.

The left-hand side of Rule E.1.2 is a resumption term of type

Session × Addr × Addr × Addr × Addr × Identifier × Identifier × SPI ,

a ↑sec(k) term, and a ⇑sec(u) term. Although Rule E.2.2 also has an eight-tuple on
the left-hand side, this tuple has a different type. The other terms on the left-hand

74

of Rule E.2.2 differ from those in Rule E.1.2. No other rule has a pattern on the
left-hand side that is similar to that of Rule E.1.2. Consequently, if M −→ M ′

removes three terms of the form in Rule E.1.2 from M , then we can conclude that
it is an application of that rule.

The reasoning for Rules E.1.3, E.2.2, S.1.2, S.2.6 and E.2.3 is similar to that
for the previous rule.

The four rules that compose the secure layer responder are more complex than
the others we have considered. Rules S.2.1, S.2.2, and S.2.3 each have the term
⇑ip p on the left of the arrow. Although each rule also contains terms on the left
of the turnstile, these terms are not actually removed from the multiset and thus
cannot be of help in identifying the rule that was applied. Conditionals and pattern
matching determine the rule that gets executed. If the only term removed from
the multiset in M −→ M ′ is of the form ⇑ip p, we can determine the rule that was
applied by the shape of the packet p.

• If p is an establishment packet, then it was an application of Rule S.2.1.

• If p is a control packet, then it was an application of Rule S.2.2.

• Otherwise, it was an application of Rule S.2.3.

Rules S.2.4 and S.2.5 both have a left-hand side consisting of a single resump-
tion term composed of a packet, a bundle, and a session identifier. So it is not
possible to determine the rule that was invoked by solely observing the term that
was removed from the multiset. Since the right-hand side of the two rules are suffi-
ciently different, one can deduce the rule that was applied, but observing both the
terms removed and added by M −→M ′. If the resumption term is removed from the
multiset and a ⇑sec(u) term is added the multiset, then M −→M ′ is an application
of Rule S.2.4. If the resumption term is removed from the multiset and a ↓sec(u,k)

term is added to the multiset, then M −→M ′ is an application of Rule 2.5. �

Given a trace T = M1,M2, . . . ,Mn, in which term t appears. Define T † (t) to be
the index of the multiset in which the term t first appears. We assume that T † (t)
asserts the existence of t ∈ T . Define the preorder t1 ≺T t2 on terms as follows:

t1 ≺T t2
def
= t1, t2 6∈M1 and T † (t1) < T † (t2) and t1 6∈Mj,

where j = T † (t2). This says that the first occurrence of term t1 in a trace occurs
before the first occurrence of term t2 and that t1 was consumed before t2 was pro-
duced. We drop the subscript and write t1 ≺ t2 instead of t1 ≺T t2 when the context
is clear.

The following is a property of the forwarding layer and says that if a forwarding
layer packet is received at a node, then it was sent from some node and that the
↓ip(k) term is consumed before the corresponding acknowledgment and receive terms
appear in the trace.

75

Proposition 4.4 Consider a trace T = M1, . . . ,Mn, if T † (⇑ip p@ b) = j+1, then
the following holds:

↓ip(k) p@ a ≺T p@ b (4.1)

p@ b ≺T ⇑ip p@ b (4.2)

↓ip(k) p@ a ≺T ↑ip(k) @ a, (4.3)

where ↓ip(k) p@ a, p@ b, ⇑ip p@ b, ↓ip(k) p@ a 6∈ L(M1).

Proof: It follows from the assumption and inspection of the rules that Mj −→Mj+1

must be an application of Rule F.2.1 (Mj
F.2.1
−→Mj+1), which consumes a p@ b ∈Mj

and rewrites a ⇑ip p@ b term in Mj+1; hence, the ordering expressed in (4.2) holds.
It also follows from the tunnel calculus rules that an application of Rule F.1.1 must
have been occurred to produce the p@ b term and that this must have occurred in a

prefix of M1, . . . ,Mj, say at Mi
F.1.1
−→Mi+1 (i < j), where a term of the form ↓ip(k) p@ a

was removed from the multiset and a term of the form p@ b was written to the
multiset along with a ↑ip(k) @ a term. Hence, we can conclude that the orderings
(4.1) and (4.3) are true. �

We now examine two properties of the secure processing layer. The first property
says that the system is constructed so that if a destructor was applied to a packet,
then the corresponding constructor must have been applied.

Proposition 4.5 Consider a trace T = M1, . . . ,Mn, where M1 is a virgin network.
If the trace records the application of a destructor In(a, ι) to packet p′ at node b via the

application of a rule Mi
Xi−→Mi+1, where Xi is Rule S.2.1, S.2.2, or S.2.3, then

the trace must have recorded Mj
S.1.1
−→Mj+1 that applies the corresponding Out(b, ι)

constructor, where j < i.

Proof: Rules S.2.1, S.2.2, and S.2.3 all call the strip function. The third equa-
tion of the strip function must have been applied because this is the only rule that
actually applies a destructor. This equation only executes if the packet has a secure
header with SPI value ι and the matching destructor is in the mechanism database.
Consequently, the matching constructor must have been applied, but inspecting the
rules of the tunnel calculus we see that only can only be done by the application of
the bundle and nest functions called in Rule S.1.1. �

The second secure layer property says that if a secure message is received at a node,
then it was sent from some node at some point in the past and that the ↓sec(u,k) term
is consumed before the corresponding acknowledgment and receive terms appear in
the trace.

76

Proposition 4.6 Consider a trace T = M1, . . . ,Mn, if T † (⇑sec(u) p@ b) = j + 1,
then the following holds:

↓sec(u,k) p@ a ≺T ⇑sec(u) p@ b (4.4)

↓sec(u,k) p@ a ≺T ↑sec(k) @ a, (4.5)

where ↓sec(u,k) p@ a, ⇑sec(u) p@ b, ↑sec(k) @ a 6∈ L(M1).

Proof: It follows from inspection of the rules that Mj−→Mj+1 must be an appli-
cation of Rules S.2.1, S.2.2, or S.2.4. Rules S.2.1 and S.2.2 directly consume
a ⇑ip p

′ term and produce the ⇑sec(u) p@ b term, where p is the packet returned by
calling strip on p′. If Mj−→Mj+1 is an application of Rule S.2.4, then it must
have consumed a resumption term produced by some previous application of Rule
S.2.3, which consumed a ⇑ip p

′, where p is the packet returned by calling strip on
p′. So in each of these three cases ⇑ip p

′ ≺T ⇑sec(u) p. From proposition 4.4, we can
conclude that there had to have been a ↓ip(k′) p

′ @ a term written to the multiset such
that ↓ip(k′) p

′ @ a ≺T ⇑ip p
′ @ b. Given that we have assumed that all messages are

sent via the secure processing layer, we can conclude that the trace must record an
instance Rule S.1.1 producing the aforementioned ↓ip(k′) p

′ @ a term and consuming
a ↓sec(u,k) p@ a term so

↓sec(u,k) p@ a ≺T ↓ip(k′) p
′
@ a.

Hence
↓sec(u,k) p@ a ≺T ↓ip(k′) p

′
@ a ≺T ⇑ip p

′
@ b ≺T ⇑sec(u) p@ b,

and the ordering (4.4) follows from transitivity.
Given that Rule S.1.1 will have removed the ↓sec(u,k) p@ a term from the multiset

when the packet is sent down to the forwarding layer and the ↑sec(k) @ a term is not
produced in Rule S.1.2 until after the forwarding layer has sent the packet. Whence
the term ↑sec(k) @ a is not produced until after the ↓sec(u,k) p@ a is consumed; and
we can conclude that the ordering (4.5) h. �

The following is a property of the establishment layer and says that if establish-
ment request is received at a node, then it must have been sent by some node; and
that if the establishment reply is received at a node, then an establishment reply
was sent from a node that previously received an establishment request.

Proposition 4.7 Suppose T = M1, . . . ,Mn records the execution of the establish-
ment protocol with node a as initiator and node b as the responder executing in

session u, where M1 is a virginal network and M1
E.2.1(u)(b)
−→ M2 and M2

E.1.1(u)(a)
−→ M3. If

T † (⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ b) = i+ 1,

77

then the following holds:

↓sec(u,k) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ a

≺T ⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ b. (4.6)

If
T † (⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ

u, g′))) @ a) = j + 1,

then the following holds:

⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ b

≺T ↓sec(u,k′) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) @ b (4.7)

≺T ⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) @ a. (4.8)

where
↓sec(u,k) P(a, b,X(Req(s, d, u, ιa,Ξ

a, g))) @a

⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ b

↓sec(u,k′) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) @ b

⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) @ a

6∈ L(M1).

Proof: It follows from inspection of the rules that Mi −→ Mi+1 and Mj −→ Mj+1

must have been applications of Rules E.2.2 and E.1.2 respectively. The ordering
(4.6) follows directly from proposition 4.6. It follows from inspection of the rules
that Rule E.2.1 must be executed before Rule E.2.2 is executed. That is the
establishment request must have been received before the establishment reply is sent
so the ordering (4.7) holds. The ordering (4.8) follows from proposition 4.6. �

4.5 Conclusion

In this chapter, we have presented a formal definition of the tunnel calculus, which
provides an operational semantics for a protocol stack including the processing asso-
ciated with security tunnels. Among the layers of the tunnel calculus are an autho-
rization layer, providing a SPKI like calculus for expressing polices, credentials, and
satisfaction, and an establishment layer that models the up a pair-wise tunnel. We
also introduced a trace theory induced by the tunnel-calculus semantics. In addition
to the descriptive part of the chapter, we prove a number of basic propositions about
the system. With the exception of the authorization layer and several of the putative
properties, the work reported in this chapter appeared in [53].

Although we asserted in Chapter 3 that session identifiers prevent establishment
deadlock, there was no mathematical proof that this was indeed true. This is carried
out in the next chapter using the machinery of the tunnel calculus developed here.
Subsequent chapters apply the tunnel calculus for reasoning about the functional
correctness properties of discovery protocols and reasoning about their vulnerability
to denial of service.

78

Chapter 5

Noninterference and Progress

The tunnel calculus presented in the previous chapter incorporates the concept of
session identifier that we introduced in Chapter 3 in order to avoid establishment
deadlock. In this chapter, we prove that the deadlock in question is indeed avoided.
The chapter is organized as follows. We first prove that the application of two rules
in distinct sessions are independent in the sense that we defined in the previous
chapter. Next, we formulate and prove the session matching property that says that
the packet filters in the MDB only match packets in the specified session. This is
followed by a simulation lemma, which enables us to prove the equivalence of traces.
We then introduce noninterference and progress theorems that together say that the
execution of an establishment protocol in one session does not interfere with the
sending and receiving of messages in another establishment session.

5.1 Independence Between Sessions

In this section we demonstrate a lemma that says that the redux and contractum of
the application of rules executing in different sessions are disjoint. A consequence
of this lemma is the independence between sessions theorem that says that two
operations executing in different sessions are independent.

Let Rule X(u) and Rule Y(v) denote any two rules in the tunnel calculus
executing in sessions u and v respectively.

Lemma 5.1 Let u and v be distinct session identifiers. Let T = M1, . . . ,Mn be
a trace. Suppose Mi −→ Mi+1 is an application of Rule X(u)(L1, R1)(a), and
Mj −→Mj+1 is an application of Rule Y(v)(L2, R2)(b). Then

(L1 −H(a)) ∩ (L2 −H(b)) = ∅ and (5.1)

(L1 −H(a)) ∩ (R2 −H(b)) = ∅. (5.2)

That is, neither the execution of Rule X(u) nor Rule Y(v) will consume terms
that would otherwise have been consumed by the execution of the other unless those

79

terms represent shared state. The proof that follows is composed of two components
that correspond to the case where a 6= b and the case where a = b. In the first case,
only the rules of the forwarding layer need be considered. In the second case, each
of the rules must be considered.

Proof: Assume that a 6= b. If neither X(u)(a) nor Y(v)(b) is an instance of Rule
F.1.1, then the node terms in their reduxes and contractums are located at different
nodes and are hence disjoint, and (5.1) and (5.2) hold. Consequently, we need only
be concerned about the case where at least one of Mi −→Mi+1 or Mj −→Mj+1 is an

application of Rule F.1.1. Suppose Mj

Y(v)(b)
−→ Mj+1 is an application of Rule F.1.1.

If X(u)(a) is not a rule in the forwarding layer, then the redux and contractum of
X(u)(a) is disjoint from the redux and contractum of Y(v)(b) and (5.1) and (5.2)
hold. If X(u)(a) is also an instance of Rule F.1.1, then their redux are disjoint since
a 6= b, and thus (5.1) holds. The right-hand side of Rule F.1.1 is just a packet and
has a pattern that is distinctly different from the from the left-hand side of the same
rule so (5.2) holds. Suppose X(u)(a) is an instance of Rule F.2.1. If the application
of Y(Rule F.1.1(v)(b)) moves the packet to a node other than a, then (5.1) and (5.2)
hold. Otherwise, it is possible that an application of X(Rule F.2.1(u)(a)) consumes
the packet produced by an application of Y(Rule F.1.1(v)(b)). From proposition
4.2 the packet that gets consumed must contain the session identifier v. Since the
session identifier in R2 is v, the term must belong to session v, but this contradicts
the assumption that X (Rule F.2.1(u)(a)) is executing in session u. Hence the
lemma holds if a 6= b.

Assume a = b. The proof proceeds by case analysis on the rules of the tunnel
calculus. Let

L′
1 = L1 −H(a)

R′
1 = R1 −H(a)

L′
2 = L2 −H(a)

R′
2 = R2 −H(a).

Rather than inspect each rule we analyze the structure of L′
1 and demonstrate that

for all L′
2 that may be consumed by Mj −→Mj+1 in v, L′

1 ∩L
′
2 = ∅. It is also shown

that L′
1 ∩ R

′
2 = ∅, where R′

2 is any contractum produced by the application of rule
Y in session v.

Consider the case where L′
1 is of the following form:

↓ip(k) (Rule F.1.1). If Mj

Y(v)
−→Mj+1 is not an application of Rule F.1.1, then

L′
1∩L

′
2 = ∅ since no other rule has a ↓ip(k) term on the left-hand side. We must

show that terms that would otherwise have been consumed by Mj

F.1.1(v)
−→ Mj+1

are not consumed by Mi

F.1.1(u)
−→ Mi+1 and vice versa. Now Mi

F.1.1(u)
−→ Mi+1 can

80

only consume terms containing session identifier u. If Mj

Y(v)
−→Mj+1 is an in-

stance of Rule F.1.1, then the two have a left-hand side of the same form.
From proposition 4.2, the packets in the respective ↓ip p terms contain their
respective session identifiers. If Mi −→ Mi+1 were to consume a ↓ip(k) term
containing session identifier v, then the term would belong to session v and

Mi

F.1.1(u)
−→ Mi+1 would be executing in session v, contradicting the assumption

that it is executing in session u. Likewise, Mj

F.1.1(v)
−→ Mj+1 will not consume a

↓ip(k) term for session u. So L′
1 ∩ L

′
2 = ∅ and (5.1) holds.

To show that (5.2) holds we only need consider the case where Mj

Y(v)
−→Mj+1

is an instance of Rule S.1.1. This rule produces a ↓ip(k) p term that may
be consumed by Mi −→ Mi+1. But given that the packet must contain the

session identifier, if Mi

F.1.1(u)
−→ Mi+1 consumes a ↓ip(k) p term from session v,

then Mi

F.1.1(u)
−→ Mi+1 would be executing in session v, contradicting the fact

that Mi

X(u)
−→Mi+1 is in session u. Whence L′

1 ∩R
′
2 = ∅ and (5.2) holds.

↓I(u,k), where I = {sec, est} (Rules S.1.1 and E.1.1). In order to show L′
1∩L

′
2 =

∅, we need only consider the case where Mi

X(u)
−→Mi+1 and Mj

Y(v)
−→Mj+1 both

consume terms of this form. If Mi −→ Mi+1 were to consume a ↓I(v,k) term
containing session identifier v, then the term would belong to session v and

Mi

X(u)
−→Mi+1 would be executing in session v contradicting the assumption that

it is executing in session u. Likewise, Mj

Y(v)
−→Mj+1 will not consume a ↓I(u,k)

term. So L′
1 ∩ L

′
2 = ∅ and (5.1) holds. Session v cannot produce a term with

session identifier u due to the uniqueness of session identifiers and because
such a term would belong to session u if it were produced. So session v cannot
have produced a term ↓I(u,k) containing session identifier u and consumed by
Mi −→Mi+1 in u. It follows that L′

1 ∩R
′
2 = ∅ and (5.2) holds.

p@ a (Rule F.2.1). The reasoning for this case is similar to the previous case.

↓eresp(u,k) ,⇑sec(u) p (Rule E.2.1). The reasoning for this case is similar to the pre-
vious cases.

〈P(b, c, y), β, u〉 (Rule S.2.4, S.2.5). Terms of this form are produced by the se-
mantic functions, not by any rewrite rule, but assume that such a term was
produced in v. If it had been consumed in L′

1, then that rule would have
executed in session v since that session identifier is part of the term. This
contradicts the assumption that Mi −→ Mi+1 executes in session u. Hence,
L′

1 ∩R
′
2 = ∅ and (5.2) holds.

Suppose both Mi

X(u)
−→Mi+1 and Mj

Y(v)
−→Mj+1 are both an instance of one of the

rules under consideration, then it is possible that an application of one could

81

consume the term intended for the other, but the term contains the session

identifier and then Mi

X(u)
−→Mi+1 would be in session u or Mj

Y(v)
−→Mj+1 would

be in session u contradicting our assumption that Mi −→ Mi+1 is executing
in session u and Mj −→ Mj+1 is executing in session v. Hence L′

1 ∩ L′
2 = ∅

and (5.1) holds.

⇑ip p.(S.2.1, S.2.2, S.2.3). Although the forwarding layer has no concept of ses-
sion, each of the messages sent in a session does contain a session identifier as
shown in proposition 4.2. We have assumed Mi −→ Mi+1 is in session u and
Mj −→ Mj+1 is in v. Suppose Mi −→ Mi+1 consumes a ⇑ip p term belonging
to session v, then Mi −→ Mi+1 must be in session v, but this contradicts our
assumption that it was in session u. Similarly Mj −→ Mj+1 cannot consume
a term belonging to u. Hence L1 ∩ L2 = ∅ and (5.1) holds. Rule F.2.1 is
the only rule that produces a ⇑ip p. From proposition 4.2 we know that the
term produced by an application of the rule contains the session identifier v.

So if Mi

X(u)
−→Mi+1 consumes the ⇑ip p term, then Mi −→ Mi+1 is executing in

session v rather than in session u, which contradicts our assumption. Hence
L1 ∩R2 = ∅ and (5.2) holds.

〈. . .〉, l2, . . . , ln (Rules S.1.2, S.2.6, E.1.2, E.1.3, E.2.2, E.2.3.) Among the ele-
ments in the resumption term are the session identifier and one or more ac-
knowledgment identifiers. The li terms on the left side of the rule have the
form ↑I(k),Ξ,Θ, or ⇑sec(u) p, where I = {ip, sec, auth, eresp, est}. We must show
li ∩ L

′
2 = ∅ and li ∩ R

′
2 = ∅.

In the following, we only examine the case where li =↑I(k). Inspecting the
rules we see that ↑I(k) terms only appear in conjunction with resumption terms
that contain both the session identifier and the acknowledgment identifier k.
For a match to occur the value of session identifier k in the ↑I(k) term must
match the value in the resumption term. It follows from the Uniqueness of
Acknowledgment Identifiers 4.1 that sessions u and v cannot generate the same
acknowledgement identifier value and hence no term produced in session v will
contain an acknowledgment identifier matching k. So li ∩ R′

2 = ∅ and (5.2)
holds. From the Uniqueness of Acknowledgment Identifiers 4.1 we can conclude
that the acknowledgment identifiers appearing in the resumption terms in the

redux of Mj

Y(v)
−→Mj+1 must differ from those that appear in the resumption

term in Mi

X(u)
−→Mi+1. Consequently, ↑I(k) terms are only consumed by rules

executing in the session that generated the acknowledgment identifier. Hence
li ∩ L

′
2 = ∅ and (5.1) holds.

The lemma follows from the above case analysis. �

The following is implied by Lemma 5.1, the definition of ≺ and the definition of
independence.

82

Corollary 5.2 (Independence Between Sessions) Let u and v be distinct ses-
sion identifiers. Let T = M1, . . . ,Mn be a trace. Let a and b be nodes. Suppose
Mi −→ Mi+1 is an application of Rule X(u)(a), and Mj −→ Mj+1 is an applica-
tion of Rule Y(v)(b). Then X(u)(a) ‖Y(v)(b). �

To understand these two results, consider the application of rules X1(u), X2(u),
and X3(u) in session u and Y1(v), Y2(v), and Y3(v) in session v. Suppose the rules
have the following dependencies:

X1(u) ≺ X2(u) ≺ X3(u)

Y1(v) ≺ Y2(v) ≺ Y3(v).

Although Xi ‖Yj for i, j ∈ {1, 2, 3}, any legal trace must respect the ordering
within the session. So a trace may record these rules being applied in the order
X1,Y1,Y2,Y3,X2,X3 or Y1,X1,X2,Y2,Y3,X3, but not X2,X1,Y3,X3,Y2,Y1.

5.2 Session Matching Property

Recall that the defect exposed in Section 3.3 arose because packets from one session
match the packet filters installed during establishment for another session. The
modifications to the session layer incorporated into the tunnel calculus purportedly
prevented this from occurring. The session matching property demonstrates that
this is indeed so.

Lemma 5.3 (Session Matching Property) Let T = M1, . . . ,Mn be a trace and
assume session u is active in T . Suppose Mi −→ Mi+1 is an application of Rule

S.1.1(u), where the outbound message being processed is the term

↓sec(u,k) P(b, c, y) @a.

If the semantic function BndlSel produces a match in the outbound mechanism
database Πo @ a, then the matching database entry must have the form Mech(ψ :
u : βo).

Suppose Mi −→Mi+1 is an application of one of the following:

• Rule S.2.1(u), where the inbound message is the term P(b, c,X(u,m))

• Rule S.2.2(u), where the inbound message is the term P(b, c,C(u,m))

• Rule S.2.4(u), where the inbound message is the term P(b, c, S(u, ι, p))

• Rule S.2.5(u), where the inbound message is the term P(b, c, S(u, ι, p)).

83

If the rule executes due to a matching entry in the inbound mechanism database Πi,
then the matching database entry must have the form

Mech(ψ : u : βi),

where b −→ c ∈ ψ.

Proof: Consider the case of inbound and outbound traffic separately.
Outbound traffic. Suppose the term ↓sec(u,k) P(b, c, y) is in the multiset at Mi and

consumed by an application of the specified rule at Mi −→Mi+1, where message y is
a control packet, an exchange, or a regular data packet. Rule S.1.1 uses the semantic
function BndlSel to produce the bundle that is applied to the outgoing message. The
function BndlSel will return the bundle β of an entry Mech(b → c : u : β) ∈ Πo. If
there is no entry with a matching session number, then BndlSel returns Bndl[], but
since there was no match the property does not apply.

Inbound traffic. Suppose the term ⇑ip p@ e is in the multiset Mi and consumed
by one of the specified rules at Mi −→ Mi+1. The semantic function Strip removes
the headers with destination field e. It also checks that these are valid associations.
The value returned by strip will determine what rule executes.

Suppose strip returns Exchange(P(b, c,X(u,m)), β). Rule S.2.1 applies, but it
will only execute if either there is an entry in Πi with source-destination field b −→ c

and session u or the value β returned was [] and there is no matching entry in Πi.
The first disjunct ensures that a packet arriving in a tunnel has a matching filter
entry in Πi and that the source, destination, and session identifiers match. Thus
there will be no match if the packet and mechanism entry do not have a matching
session identifier. The second disjunct ensures that an establishment packet arriving
at a node and not traveling in a tunnel gets processed anyway, as expected, but it is
not processed as belonging to a different session; so the property still holds.

Suppose strip return ConMsg(P(b, c,C(u,m)), β), then Rule S.2.2 applies. This
case is similar to that for exchange packets.

Suppose that strip returns (P(b, c, y), u, β), then either rule S.2.4 or S.2.5 will
execute. In either case, the rule only executes if there is an entry Mech(b → c : u :
β) ∈ Πi.

The property follows from the cases shown above. �

This result tells us that the tunnel calculus was designed so that a message in
one session will not be processed by a different session’s MDB entry.

5.3 Trace Equivalence

We define what it means for two terms and two multisets to be equivalent. Since
acknowledgment and SPI values are generated via an application of the new operator,
these values will differ in every trace. Instead, the observer must verify that the two

84

traces record the same messages sent and delivered for u up to α-equivalence of SPI
and acknowledgment identifier values. Given terms t and t′, we define the relation
t ∼ t′ if and only if there exists a substitution ρ of SPI and acknowledgment identifier
values in t such that tρ ≡ t′. Given a multiset M , Mρ = {|tρ|t ∈M |} and M1 ∼ M2

if and only if there exists a substitution ρ such that M1ρ = M2.
Let M denote a sequence of multisets M = M1, . . . ,Mn. Let intersection dis-

tribute over a sequence of multisets so that M ∩V = M1 ∩V, . . . ,Mn ∩V for some
multiset of terms V.

Noninterference among sessions is defined in terms of ‘observable’ activity. In
this case, the observables are the secure messages sent and received during a ses-
sion. Define Q(u) to be the infinite set of terms of the form ↓sec(u,k) P(a, b, y) and
⇑sec(u) P(a, b, y) containing session identifier u. The values of a, b, y, and k can take
any legal value.

Consider the situation where the order of application of two operations in different
sessions is swapped

M1
X(u)
−→M2

Y(v)
−→M3

and

M ′
1

Y(v)
−→M ′

2

X(u)
−→M ′

3,

where M1 ∼ M ′
1. Suppose the traces T = M1,M2,M3 and T ′ = M ′

1,M
′
2,M

′
3 both

record the same v messages modulo the aforementioned α-equivalence. If a term

t ∈ Q(v) was produced by M2
Y(v)
−→M3 and a corresponding term t′ was produced by

M ′
1

Y(v)
−→M ′

2, where t′ ∼ t, then T ∩Q(v) = {|t|} and T ′ ∩Q(v) = {|t′|}, {|t′|} because
the t′ term must still be in the multiset M ′

3 since the application of a rule in session
v will not remove a u term. Although this satisfies our notion of the two traces
containing the same messages in Q(v), {|t|} 6∼ {|t′|}, {|t′|}. The introduction of the
filter operator rectifies this problem by removing duplicate entries in a sequence
of multisets. Given a sequence of multisets M , the filter operator (|M |) removes
empty sets from the sequence and removes duplicate subsequences. For example,
(|∅, {|1, 2, 2|}, {|1, 2, 2|}, {|3, 4|}|) = {|1, 2, 2|}, {|3, 4|}. So two traces are said to be v-
observationally equivalent if (|T ∩Q(v)|) ∼ (|T ′ ∩Q(v)|).

5.4 Simulation

The next lemma gives us a useful tool to apply when proving two traces are seman-
tically the same.

Lemma 5.4 (Simulation Lemma) If M1
X

−→M2 and M1 ∼ M ′
1, then there exists

M ′
2 such that M2 ∼M ′

2 and M ′
1

X
−→M ′

2.

Proof: Apply Rule X(u)(a) to M ′
1 yielding M ′

2. Recall that the variables on the
right-hand side of a rule must either appear in the left-hand side of a rule or the

85

values must be generated using a new command. Given that M1 ∼M ′
1 and the fact

that SPIs and acknowledgment identifiers are generated by new, we can conclude that
M ′

2 only differs from M2 in the SPI and acknowledgment identifier. Consequently,
M2 ∼ M ′

2. �

5.5 Observational Commutativity

We have established that the operations that occur during two distinct sessions are
independent. This means that if a session u runs concurrently with another session
v, then there may be many possible legal traces reflecting different interleavings of
the execution of two traces. If the session v does not interfere with session u, then
from the point of view of an observer, session u should send and receive the same
messages regardless of the interleaving of the activity in session u. Formulating this
in terms of traces, we say that traces representing different interleavings of the two
sessions record the same messages sent and received in session u.

We start by considering the case in which the trace records the execution of only
two rules, where each rule is executing in a distinct session. This is generalized to a
case where we only consider the first two operations in a longer trace. Finally, the
general observational commutativity theorem is presented.

Lemma 5.5 Suppose u and v are distinct session identifiers and

M1
X(u)
−→M2

Y(v)
−→M3

and M1 ∼M ′
1. Then there exist M ′

2,M
′
3 such that

M ′
1

Y(v)
−→M ′

2

X(u)
−→M ′

3

and
(|(M1,M2,M3)∩Q(v)|) ∼ (|(M ′

1,M
′
2,M

′
3)∩Q(v)|).

Proof: Let T = M1,M2,M3 and T ′ = M ′
1,M

′
2,M

′
3 where M1 ∼M ′

1.
Assume that terms representing shared state do not appear in Rule X(u) and

Rule Y(v). It follows from Lemma 5.1 that the application of Rule X(u) will not
consume terms in the redux of an application of Rule Y(v) and vice versa. Nor
is any term in the contractum of an application of Rule X(u) in the redux of an
application of Rule Y(v). It follows from Independence Between Sessions 5.2 that
X(u) ‖ Y(v).

Recall that the rules of the tunnel calculus have the structure where all variables
on the right-hand side of a rule appear on the left-hand side or have their values
generated by the new operator. Given that M1 ∼ M ′

1, we can conclude that Q(v)
terms in T and T ′ only differ by SPI and acknowledgement identifier values.

86

We now consider the situation where shared state is involved. First consider the
case where sessions u and v interact by way of the association database. Suppose
in trace T , X(u) writes state to the association database and Y(v) is an instance
of Rule E.1.1 or Rule E.2.2 that reuses the SPI written by X(u). When the
order of execution is swapped in T ′, rule Y will not reuse the SPI. So in one case,
the SADB Σ has the single entry, say, In(a, ι), and in the other case, Σ would have
entries In(a, ι) and In(a, ι′), but since these elements only differ by SPI value and the
SADB is represented as a set, we can conclude that

{In(a, ι)} ∼ {In(a, ι), In(a, ι′)}.

The reasoning for other cases where shared state involves the SADB is similar. Con-
sequently, Q(v) terms in T and T ′ will only differ by SPI and acknowledgement
identifiers.

We now examine the case where the two sessions may interact by sharing the
MDB. These databases only get updated via an application of Rule E.1.4, E.2.3,
or E.2.4. Suppose Rule X or Rule Y is an application of one of these rules. It
follows from reasoning similar to that above, if Q(v) terms appear in both T and T ′,

then they only differ by SPI and acknowledgement identifiers. It remains to show
that swapping the order of execution of X(u) and Y(v) will not interfere with the
sending and receiving of messages in v. Assume that term t′ ∈ Q(v) appears in
T ′ = M ′

1,M
′
2,M

′
3, but no corresponding term t (t ∼ t′) appears in T = M1,M2,M3.

This means that a mechanism entry for session u has prevented a message from being
sent or received in session v, but the Session Matching Property 5.3 prevents such
‘interference’. The case where a term t ∈ Q(v) appears in T , but a corresponding
term does not appear in T ′ is similarly averted.

Having established that the two trace sequences M1,M2,M3 and M ′
1,M

′
2,M

′
3

contain Q(v) terms differing only in SPI and acknowledgment identifiers we can
apply the following

(|M1,M2,M3 ∩Q(v)|) = M1 ∩Q(v),M3 ∩Q(v)

and
(|M ′

1,M
′
2,M

′
3 ∩Q(v)|) = M ′

1 ∩Q(v),M ′
2 ∩Q(v).

to conclude
(|M1,M2,M3 ∩Q(v)|) ∼ (|M ′

1,M
′
2,M

′
3 ∩Q(v)|).

�

The following absorption property is useful. Its proof is a straightforward appli-
cation of the definition.

(|M1, . . . , (|Mi, . . . ,Mj|), . . . ,Mn|)

= (|M1, . . . ,Mi, . . . ,Mj, . . . ,Mn|).�

The next result generalizes the previous lemma to a longer trace.

87

Lemma 5.6 Let T = M1, . . . ,Mn be a trace

M1
X1(u1)
−→ M2

X2(u2)
−→ M3

X3(u3)
−→ · · ·

Xn−1(un−1)
−→ Mn,

where u1 6= u2. Then there is a trace T ′ = M ′
1, . . . ,M

′
n, where M1 ∼ M ′

1, that has
the form

M ′
1

X2(u2)
−→ M ′

2

X1(u1)
−→ M ′

3

X3(u3)
−→ · · ·

Xn−1(un−1)
−→ M ′

n,

where (|T ∩Q(u2)|) ∼ (|T ′ ∩Q(u2)|).

Proof:

(|T ∩Q(u)|)

Expanding definitions and filter absorption

= (|(|M1,M2,M3 ∩Q(u2)|),M4, . . . ,Mn ∩Q(u2)|)

Swap X1(u1) and X2(u2)

then apply Lemma 5.5 and the Simulation Lemma 5.4 as needed.

∼ (|(|M ′
1,M

′
2,M

′
3 ∩Q(u2)|),M

′
4, . . . ,M

′
n ∩Q(u2)|)

Definitions and filter absorption

= (|T ′ ∩Q(u2)|).

�

We now present the Observational Commutativity Theorem that generalizes the
previous result.

Theorem 5.7 (Observational Commutativity) Let T = M1, . . . ,Mn be a trace

M1
X1(u1)
−→ M2

X2(u2)
−→ M3

X3(u3)
−→ · · ·

Xi−1(ui−1)
−→ Mi

Xi(ui)
−→

Mi+1
Xi+1(ui+1)

−→ · · ·
Xn−1(un−1)

−→ Mn,

where ui 6= u1, . . . , ui−1. Then there is a trace T ′ = M ′
1, . . . ,M

′
n, where M1 ∼ M ′

1

and

M ′
1

Xi(ui)
−→M ′

2

X1(u1)
−→ M ′

3

X2(u2)
−→ · · ·

Xi−2(ui−2)
−→ M ′

i

Xi−1(ui−1)
−→

M ′
i+1

Xi+1(ui+1)
−→ · · ·

Xn−1(un−1)
−→ M ′

n,

where (|T ∩Q(ui)|) ∼ (|T ′ ∩Q(ui)|).

Proof: By induction on i.
Base case i = 2 is covered by Lemma 5.6.

88

Assume that the for k − 1 show it holds for k. Let

T = M1
X1(u1)
−→ M2

X2(u2)
−→ M3

X3(u3)
−→ · · ·

Xk−1(uk−1)
−→ Mk

Xk(uk)
−→ Mk+1

Xk+1(uk+1)
−→ · · ·

Xn−1(un−1)
−→ Mn.

Applying the induction hypothesis we can transform the T into

T ′′ = M ′′
1

X1(u1)
−→ M ′′

2

Xk(uk)
−→ M ′′

3

X2(u2)
−→ · · ·

Xk−2(uk−2)
−→ M ′′

k

Xk−1(uk−1)
−→ M ′′

k+1

Xk+1(uk−1)
−→ · · ·

Xn−1(un−1)
−→ M ′′

n ,

where M1 ∼ M ′′
1 and M2 ∼ M ′′

2 . The trace T ′ is produced by an application of
Lemma 5.6 and the result follows. �

5.6 Independence Within a Session

We have seen that within a session there are rules that may execute at different
nodes that are independent. For instance, the application of Rules E.1.3 and
E.2.3. The following result says that this does not affect the semantics of the trace
of the establishment protocol.

Lemma 5.8 (Independence within a Session) Suppose the trace T = M1, . . .,
Mn records the execution of a complete session of establishment protocol session u,

where u 6∈ L(M1), Mi

Xi(u)
−→Mi+1

Xi+1(u)
−→ Mi+2, and

Xi(u)(Li, Ri)(a) ‖Xi+1(u)(Li+1, Ri+1)(b)

and a 6= b and M1 ∼M ′
1. Then there exists a trace

T ′ = M1, . . . ,Mi,M
′
i+1,M

′
i+2, . . . ,M

′
n,

where

Mi

Xi+1(u)
−→ M ′

i+1

Xi(u)
−→M ′

i+2

and
Mj ∼M ′′

j (i+ 2 ≤ j ≤ n)

and
(|T ∩Q(u)|) ∼ (|T ′ ∩Q(u)|).

Proof: If the redux and contractum in Xi are all located at node a and the redux and
contractum in Xi+1 are all located at node b, then no terms consumed or produced
by the one will be consumed by the other. It follows from inspection of the rules and
the fact that the two operations are independent that Mi+2 ∼ M ′

i+2. We can apply
the Simulation lemma 5.4 to get Mi+3 ∼M ′

i+3, . . . ,Mn ∼M ′
n and the result follows.

89

The only rule where where all node terms are not located on the same node is
Rule F.1.1. From inspection of the establishment layer rules we see that if Xi

is an instance of this rule, then the only rule that could have consumed a term
in the redux is Rule F.2.1, but that violates our assumption of the rules being
independent. Whence we conclude that the lemma holds. �

5.7 Noninterference

In this section, we formulate a noninterference theorem that says the following.
Consider a trace T = M1,M2, . . . ,Mn that records a complete session u. The trace
can record the activities of many other establishment sessions or no other sessions.
Suppose T ′ also records a complete session of establishment session u, where T ′ may
have recorded the execution of possibly many other establishment sessions executing.
If we restrict the two traces to Q(u), then, regardless of the activity performed by
other session, the two traces are the same up to α-equivalence.

Theorem 5.9 (Noninterference) Let T = M1, . . . ,Mn be a trace that records
the complete execution of establishment session u, where u 6∈ L(M1). Let T ′ =
M ′

1, . . . ,M
′
l be a trace that records the complete execution of establishment session u,

where M1 ∼M ′
1. Then the following relation holds true:

(|T ∩Q(u)|) ∼ (|T ′ ∩Q(u)|).

Proof: Suppose the execution of session u in T has the application of i session u

rules in X1(u), . . . ,Xi(u).
Apply Observational Commutativity 5.7 transform T into

T ′′ = M ′′
1

X1(u)
−→M ′′

2

X2(u)
−→ · · ·

Xi(u)
−→M ′′

i+1 −→ · · · −→M ′′
n ,

where M1 ∼M ′′
1 and

(|T ∩Q(u)|) ∼ (|T ′′ ∩Q(u)|).

So T ′′ has all of the u operations moved to the front.
There are operations within session u that may be independent and therefore

may occur in different order in the traces T and T ′ while preserving the dependencies
imposed by the sequential operation of the initiator and responder process as well
as the messages. Apply Independence Within in a Session lemma 5.8 to rearrange
T ′ so that the independent operations occur in the same order as in T while still
preserving the desired relation.

As above, apply Observational Commutativity 5.7 as well as Independence in a
Session 5.8 to transform T ′ into

T ′′′ = M ′′′
1

X1(u)
−→M ′′′

2

X2(u)
−→ · · ·

Xi(u)
−→M ′′′

i+1 −→ · · · −→M ′′′
l ,

90

where the all the session u operations are moved to the front, all the independent
operations in T ′′′ occur in the same order as in T and M ′

1 ∼M ′′′
1 , and

(|T ′ ∩Q(u)|) ∼ (|T ′′′ ∩Q(u)|).

Since M1 ∼ M ′
1 ∼ M ′′

1 ∼ M ′′′
1 , we can apply the Simulation Lemma 5.4 to conclude

that M ′′
2 ∼M ′′′

2 , . . . ,M
′′
i ∼M ′′′

i . Given that

(|M ′′
1 , . . . ,M

′′
i , . . .M

′′
n ∩Q(u)|) = (|M ′′

1 , . . . ,M
′′
i ∩Q(u)|).

and
(|M ′′′

1 , . . . ,M
′′′
i , . . .M

′′′
l ∩Q(u)|) = (|M ′′′

1 , . . . ,M
′′′
i ∩Q(u)|)

we can conclude from the previous fact that

(|M ′′
1 , . . . ,M

′′
i ∩Q(u)|) ∼ (|M ′′′

1 , . . . ,M
′′′
i ∩Q(u)|).

and the result follows. �

The noninterference theorem is dependent on the two traces T and T ′ being
complete. In remains to show that this complete session is obtainable.

5.8 Progress

The progress theorem that states that if communication between two parties is pos-
sible, then it is possible to extend any other to complete the communication.

Theorem 5.10 (Progress) Consider the trace T = M1,. . .,Mn and among the
active sessions in the trace is session u and u 6∈ L(M1), where

u complete
︷ ︸︸ ︷

M1 −→
∗ Mn .

Suppose there exists N1 −→∗ Nm, where N1 ∼ M1 in which session u is among the
active sessions.Then there exists Nm −→∗ Nl such that

N1 −→
∗ Nm −→∗ Nl

︸ ︷︷ ︸

u complete

,

where
(|M1, . . . ,Mn ∩Q(u)|) ∼ (|N1, . . . , Nm, . . . , Nl ∩Q(u)|).

91

Proof: The trace T records a complete run of session u, but the trace W = N1,
. . ., Nm records a run of session u that has yet to complete. Furthermore, there are
operations that may be independent which may occur in different order in the two
sequences while preserving the dependencies imposed by the sequential operation of
the initiator and responder process as well as the messages. Some prefix of T records
the application of the same rules as W , but with independent operations possibly
recorded as executing in a different order. Applying the Independence in a Session
lemma 5.8, W may be transformed into W ′ = N ′

1,. . .,N
′
m, where the independent

operations occur in the same order as they did in T and

(|W ∩Q(u)|) ∼ (|W ′ ∩Q(u)|).

Applying the Noninterference Theorem 5.9, T can be transformed into T ′ where
all the activity for sessions other than u begin after session u has completed execution.
So T ′ = M ′

1, . . . ,M
′
l ,M

′
l+1, . . . ,M

′
n, where M1 ∼ M ′

1, and only session u operations
appear in the prefix M ′

1, . . . ,M
′
l and establishment session u is complete in this prefix.

In addition, (|T ∩Q(u)|) ∼ (|T ′ ∩Q(u)|). By the same logic, W ′ = N ′
1,. . .,N

′
m can be

transformed into W ′′ = N ′′
1 , . . . , N

′′
j , N

′′
j+1, . . . , N

′′
m, where N1 ∼ N ′

1 ∼ N ′′
1 and only

session u operations occur in N ′′
1 , . . . , N

′′
j . In addition, (|W ′ ∩Q(u)|) ∼ (|W ′′ ∩Q(u)|).

Since M1 ∼M ′
1 ∼ N1 ∼ N ′′

1 , the Simulation lemma 5.4 can be applied to conclude
that M ′

2 ∼ N ′′
2 , . . .M

′
j ∼ N ′′

j . It remains to show a completion for W ′′, but we do
have

M ′
j

Xj(u)
−→M ′

j+1

Xj+1(u)
−→ · · ·

Xl−1(u)
−→ M ′

l .

Given the fact that M ′
j ∼ N ′′

j , we can apply the Simulation lemma 5.4 l− j times to
yielding

N ′′
1 −→ · · · −→ N ′′

j

Xj(u)
−→N ′′

j+1 −→ · · · , N ′
l−1

Xl−1(u)
−→ N ′

l ,

where M ′
j+1 ∼ N ′′

j+1, . . . ,M
′
l ∼ N ′′

l and

(|N ′′
1 , . . . , N

′′
j , . . . , N

′′
l ∩Q(u)|) ∼ (|M ′

1, . . .M
′
l ∩Q(u)|).

Given that there is no activity in session u recorded after Ml

(|M ′
1, . . .M

′
l ∩Q(u)|) = (|M ′

1, . . .M
′
l , . . . ,M

′
n ∩Q(u)|).

Similarly

(|N ′′
1 , . . . , N

′′
l ∩Q(u)|) = (|N ′′

1 , . . . , N
′′
l , . . . , N

′′
m+l−j ∩Q(u)|).

It follows that

(|M ′
1, . . .M

′
i , . . . ,M

′
n ∩Q(u)|) ∼ (|N ′′

1 , . . . , N
′′
j , . . . , N

′′
i , N

′′
j+1, . . . , N

′′
m+(l−j) ∩Q(u)|).

Hence the theorem holds. �

92

5.9 Conclusion

Having proven a number of results, let us now return to a concrete example to
illustrate the utility of the theory developed in this chapter. Consider two nodes
a and b and assume that both gateway and discovery policies are set to allow any
connection. Suppose a initiates an establishment session u with b and b initiates an
establishment session v with a. Assume that the execution of these two protocols
reaches a point where the global state records that the request message for session u
has arrived at b and the request message for session v has arrived at a. Expressing
this in terms of our formalism, we say that at Mi the trace T = M1, . . . ,Mi of this
activity records

⇑sec(u) P(a, b,X(Req(a, b, u, ιa,Ξ
a))) @ b ∈Mi

and
⇑sec(v) P(b, a,X(Req(b, a, v, ιb′ ,Ξ

b))) @ a ∈Mi.

It follows from Independence Between Sessions (corollary 5.2) that operations per-
formed in sessions u and v are independent. From the Observational Commutativity
Theorem 5.7 it follows that neither an operation in session u nor an operation in
session v will affect the messages sent in the other session. Finally the Noninterfer-
ence Theorem 5.9 informs us that regardless of the interleaving of the operations of
the two sessions, they will terminate with their respective tunnels set up. Since no
assumptions were made about the initial state in which establishment is run, any
failures in the state of the tunnel complex can be addressed by simply rerunning the
protocol with new a new session identifier.

This chapter focused on the functional correctness of tunnel establishment, which
is a key building block of any tunnel-complex protocol. In the chapters that follow,
our focus shifts to tunnel-complex protocols, in particular, discovery protocols. The
techniques developed in this chapter continue to be useful when applied to functional
properties of discovery protocols and analyzing denial of service.

93

Chapter 6

Discovery Protocols

Recall that discovery protocols are tunnel-complex protocols that discover security
gateways on the dataflow path, deliver distributed credentials required to negotiate
gateway traversal, and construct a tunnel complex, where the traffic flow in the en-
suing virtual topology is governed by high-level polices at the gateways. Discovery
protocols are intended to ease the burden of setting up tunnel complexes associated
with defense-in-depth protection schemes. A diversity of security requirements en-
tails the need for a variety of tunnel complexes. As we shall see later in this chapter,
different discovery protocol designs can be employed to create a wide range of tunnel
complexes. In this chapter, we apply the tunnel calculus to the study of discovery
protocols and several case studies of discovery protocols are presented. The func-
tional correctness of discovery protocols are characterized in terms of a completeness
theorem, which we shall formulate and prove for each of our examples.

The remainder of this chapter is organized as follows. The next section provides
an overview of discovery protocols. This includes a discussion of discovery policies,
gateway policies, and credentials, which were all introduced in Chapter 4, but we now
elaborate more on their role in discovery protocols. We also introduce a completeness
criteria for discovery protocols that acts as a critical functional correctness property.
This is followed by the presentation of a protocol that constructs a tunnel complex
composed of concatenated tunnels. Finally, we study protocols that construct a
tunnel complex composed of nested tunnels.

6.1 Overview of Discovery

In order to prepare the reader for the case studies that occupy the remainder of this
chapter, we give a brief overview of our discovery protocols including a discussion of
credentials, gateway policies, and discovery policies.

In the tunnel calculus, discovery protocols are invoked by writing a ↓dis(u,k) term
to the multiset. In order to ensure the uniqueness of the session identifier we enforce
the following restrictions on the tunnel-calculus rules defining discovery protocols:

94

GW1 GW2 GW3 BobAlice

ACME Inc.

Coyote Co.

Accounting

Figure 6.1: Example Topology

• The rule that invokes establishment has form

. . . −→ ↓dis(u,k) . . . new k, u.

• The ↓dis(u,k) term contains no session identifiers other than u.

• The rules defining a discovery-protocol process only contain one session iden-
tifier variable, but a single rule may contain many instances of that session
identifier variable.

These restrictions ensure that the session identifier is unique and that one session
does not possess another’s session identifier.

Although one can conceive of many different discovery protocols, all of the dis-
covery protocols considered here have the same basic skeleton. A node s initiates
discovery session u to establish communication with a node d. The initiating host s
sends the distinguished packet P(s, d,C(Dis(s, u))) toward d, containing the session
identifier as well as the address s, which is the node with which the intercepting gate-
way will initiate establishment. The first gateway on the dataflow path, say GW1,
intercepts this packet and the discovery protocol invokes the establishment layer to
set up a tunnel with s. When this tunnel has been set up, GW1 releases the discovery
packet. The address in the discovery packet will vary depending on the complex be-
ing created. For instance, if the gateway releases the packet P(s, d,C(Dis(GW1, u))),
then the next intercepting gateway will set up a tunnel to GW1; on the other hand, if
the packet released had been P(s, d,C(Dis(s, u))), then the next intercepting gateway
will set up a tunnel to s that is nested inside of the tunnel between s and GW1. The
process continues until the discovery process reaches the destination node d, at which
point an end-to-end tunnel is established to secure communication between s and d.
As demonstrated with the L3A protocol, additional acknowledgment messages may
be needed depending on the discovery protocol in question.

Recall that each node a executing a discovery protocol is assumed to have a
credential set Ξa that defines a relation with at least one other entity. For instance,

95

hosts and gateways will have credentials defining the administrative domains to
which they belong. In the situation illustrated in Figure 6.1, Alice and GW1 both
belong to ACME, but gateway GW1 also contains a credential saying that ACME
is a subcontractor of Coyote corporation. Gateways GW2, GW3, and Bob belong to
Coyote Corp. In addition, both GW3 and Bob also belong to Coyote’s accounting
department. The credentials defining this relationship are given in the following
table:

Node Credential Contents
Alice ΞA KA ⇒ KACME

GW1 ΞGW1 KGW1 ⇒ KACME ⇒ KCoyoteSub

GW2 ΞGW2 KGW2 ⇒ KCoyote

GW3 ΞGW3 KGW3 ⇒ KAcct ⇒ KCoyote

Bob ΞB KB ⇒ KAcct ⇒ KCoyote

These credentials will latter be used in examples illustrating how specific discovery
protocols satisfy discovery polices and gateway polices. We make no assumptions as
to how credentials are initialized at the nodes.

The fact that discovery protocols discover unknown gateways eases the admin-
istrative burden, but opens up a possible vulnerability because a hostile gateway
could be placed on the dataflow path and either refuse to run the protocol, which
will be noticed by the initiating principal, or execute the protocol as expected and
monitor traffic flow, which may not be detected by the communicating parties. Dis-
covery policies, introduced in Chapter 4, are designed to thwart such attacks under
the assumption that trusted gateways behave honestly. Discovery policies define
the administrative entities with which the discovery protocol is willing to commu-
nicate. Recall from Chapter 4 that discovery policies for node a are denoted as φ
and have the form Disc〈Ka|Kb1, . . . , Kbn

〉, saying a is willing to communicate with
b1, . . . , bn. The discovery policy enforced for session u is denoted Φu and has the form
Discs{φ@ a1, . . . , φ@ an}

u. The node s initiating discovery session u is assumed to
initialize the discovery policies Φu to its set of trusted entities φ@ s. Depending on
the protocol, trusted gateways executing protocol session u can add their discovery
polices to Φu, thus increasing the number of nodes that are allowed to participate in
the protocol session. The discovery protocol is responsible for migrating the discov-
ery policy for a session to each participating node as the protocol executes.

Consider the situation depicted in Figure 6.1. Assume that the discovery polices
at each node are configured to allow communication as follows:

96

Node Discovery Policy
Alice ACME, Bob
GW1 ACME, Coyote
GW2 Coyote, Accounting
GW3 Coyote, Accounting

Suppose Alice initiates discovery to Bob. The discovery policy is initialized to
Φu = Discs{Disc〈KA|KACME, KB〉}. If ACME’s outer gateway GW1 intercepts the
discovery packet and invokes establishment with Alice, then the establishment re-
quest message contains the credential set ΞGW1, which says GW1 belongs to ACME
(KGW1 ⇒ KACME); hence, ΞGW1 |=KA

Φu. Following our template for discov-
ery protocols, GW1 releases the discovery packet, which gets intercepted by GW2,
which contains credentials saying that it belongs to Coyote. The discovery polices φ
at GW1 authorize communication with Coyote corporation, but Alice’s do not. If
the discovery protocol allows trusted principal GW1 to add its discovery polices to
those of Alice (Φu ∪ φ@GW1), then the protocol succeeds; otherwise, the protocol
fails.

Consider the execution of discovery session u that sets up a tunnel complex to
enable communication between s and d. Gateways on the dataflow path intercept
the discovery packet and demand that the protocol demonstrate that it can satisfy
the gateway’s policy governing the flow of traffic between s and d (Θs↔d) before
establishment is allowed to set up the tunnel required to traverse the gateway. The
discovery protocol is responsible for collecting distributed credentials and delivering
them to the newly discovered gateways. Each session u has a designated credential
set Ξu that is initialized to Ξs when the discovery protocol begins executing. The
credential sets for each protocol session are only modified by the session to which they
belong. We have seen in Chapter 4 that the establishment protocol sends Ξu in the
establishment-reply message sent to the establishment initiator, which is typically
the most recently discovered node. Included in Ξu is a credential that says that the
initiator speaks for the responder. The establishment initiator executing in session
u only proceeds if Ξu |= Θs↔d. Depending on the protocol design, credentials may or
not migrate from a previously discovered node to the most recently discovered node
on the path.

Consider the example of the topology given in Figure 6.1, where all nodes are
assumed to have the credentials given in the table above. Suppose the polices at the
gateways are given as follows:

Gateway Policy
GW1 Pol〈KACME, dom(GW1) ↔ dom(GW2)〉.
GW2 Pol〈KCoyote, KCoyoteSub, dom(GW1) ↔ dom(GW2)〉.

GW3 Pol〈KAlice, dom(GW1) ↔ dom(GW3)〉.

97

If Alice initiates establishment session u to communicate with Bob, then Ξu is initial-
ized to ΞA. Gateway GW1 intercepts the discovery packet and invokes establishment
with Alice, which sends GW1 the credential set Ξu = ΞA∪{KGW1 ⇒ KA}. Since the
credential set forms a chain saying that Alice belongs to ACME and the gateway’s
discovery policy governing this traffic flow says that communication is allowed by
any host belonging to ACME, the credentials presented to GW1 by Alice satisfy
GW1′s gateway policy. The discovery packet is next intercepted by GW2, which
invokes establishment with a previously discovered node. The establishment respon-
der is determined by the topology of the tunnel complex being constructed. The
gateway policy at GW2 is satisfied if the protocol presents to GW2 the credential
set located at GW1, which says that GW1 is a subcontractor to Coyote, but fails if
the protocol only delivers Alice’s credentials to GW2 because Alice’s credentials fail
to define a relationship to Coyote Corp. If the tunnel being set up flows between
GW1 and GW2, it is easy to deliver GW1′s credentials to GW2, but if the tunnel
being set up is between Alice and GW2, then the protocol must take additional
action to migrate the credentials from GW1 to Alice so they can be presented to
GW2 during establishment. The protocol designer must be cognizant that different
designs deliver different credential sets to the gateways and the consequences that
arise from different design decisions.

The discussion above leads us to view discovery protocols from the perspective
of a credential delivery mechanism. From this viewpoint, functional correctness can
be characterized as a property that says that if the credentials needed to satisfy
a gateway’s policies are initially located at specified nodes on the dataflow path,
then the protocol delivers them to gateways on the dataflow path. As we have
seen, different discovery protocol designs may restrict what nodes contribute to the
credential set as the protocol executes. Hence, there is not a universal correctness
criteria in this sense. Viewing our notion of correctness more formally, we express
the concept of ‘credentials located at specific node satisfying a gateway’s policy’ in
terms of the semantic relation Ξ |= Θ. We express the fact that a protocol delivers
the credentials in terms of the rules of the tunnel calculus. Hence, the property says
that if a semantic relation is satisfied, then an operational property should hold.
Thus, the desired correctness property is a completeness theorem for the protocol.
We now turn our attention to concrete examples of discovery protocols. For each
of the discovery protocol case studies presented below, we shall formulate and prove
a completeness theorem, which can be seen as characterizing the structure of the
protocol.

6.2 Concatenated Discovery Protocol

The L3A protocol developed in Chapter 2 creates the tunnel complex depicted in
Figure 2.10 with tunnels between the client and the NAS, the NAS and the server,
and an end-to-end tunnel between the client and the server. This can be viewed

98

GW1 GW2 GW3
Bob

Alice

ACME Inc.

Coyote Co.

Accounting

Figure 6.2: Concatenated Tunnel Complex

as a tunnel complex composed of two concatenated tunnels and an end-to-end tun-
nel nested inside of the other two tunnels. The host initiating the L3A protocol
is assumed to know the address of both the network access server (NAS) as well
as the server with which it is initiating communication. Recall that this configura-
tion supports the enforcement of both the ingress and egress authenticated traversal
property because all traffic arriving or exiting the NAS must do so in a tunnel. In
this section, a discovery protocol is derived that can be seen as a generalization of
the L3A protocol in that it discovers the gateways on the path and sets up a similar
complex of concatenated tunnels while supporting authenticated traversal. The sec-
tion concludes with the presentation and proof of a completeness theorem for this
protocol.

Consider the situation depicted in Figure 6.2, where Alice, who works at ACME,
wishes to communicate with Bob’s server, located in the accounting department at
Coyote Corporation. Alice is located in the administrative domain of ACME’s corpo-
rate network gateway GW1 while Bob is located behind Coyote’s corporate gateway
GW2 and is also inside the administrative domain of the accounting department’s
gateway GW3. In order for Alice to communicate with Bob, she must traverse all
three of these gateways. Building on our experience with L3A, a composition of
concatenated tunnels can be set up to gateways enforcing authenticated traversal.
The resulting tunnel complex is depicted in Figure 6.2.

Before embarking on the design of this protocol, recall that the analysis of L3A
given in Section 2.5 revealed the need for acknowledgments to prevent the traffic
setting up the end-to-end tunnel from getting caught in partially set up tunnels.
Care must be taken to ensure that the problem does not reappear in the more
general setting. Examine Figure 6.3, where discovery protocol messages are displayed
as solid black lines and establishment messages are displayed as dotted black lines.
Following the template sketched for discovery protocols in the previous section, node
B releases a discovery packet that is intercepted by node A, which in turn initializes
establishment with node B. Node B writes state for the A −→ B association
before sending the reply message back to A, after which, it writes state for the
B −→ A tunnel. Upon receiving the reply message, node A writes the state for
both associations. At this point in the execution, node A knows that the association

99

B A
Disc(B,u)

Req

Rep

Write A--->B
Write B-->A

Write A-->B

Write B-->A

ACK1

ACK2(Disc Pol)

Figure 6.3: Acknowledgments in Concatenated Discovery

from A −→ B is set up, but A has no knowledge of the state of the B −→ A

association at node B; hence, the end-to-end tunnel should not be set up until
the destination node knows that the B −→ A association has been set up at all
the intermediate nodes on the path. As with L3A, we employ acknowledgment
messages to prevent the problem from ever arising. After establishment at node A
has terminated, it sends an acknowledgment to node B in the A −→ B association.
Upon termination of establishment at B, the discovery protocol waits for the arrival
of the acknowledgment from A and responds in kind with an acknowledgment. The
second acknowledgment serves the duel purpose of being both an acknowledgment
and the vehicle for transmitting the discovery policy for the session to A. The
acknowledgments could have been included in the establishment protocol, but, as we
shall see, there are protocols that will not need all the acknowledgments required by
the concatenated protocol and it seems best to eliminate superfluous messages.

A skeleton for our concatenated discovery protocol is given as follows. A node
(starting with the node that initiates the protocol) sends out a discovery packet that
gets intercepted by the next gateway on the dataflow path. Establishment is invoked
at the newly discovered gateway to set up a pair of associations between itself and
the node that last released the discovery packet. When the establishment initiator
writes the term indicating that it has terminated, this node sends the establishment
responder an acknowledgment ACK1 and receives an ACK2 acknowledgment in turn.
The ACK2 acknowledgment contains the discovery policy Φu for the session. If
the initiator is not the destination, then the discovery packet is released and the
establishment responder is invoked to set up a tunnel to the next node on the path.
If the most recently discovered node is the destination, then upon the termination
of establishment and the receipt of the ACK2 message, establishment is invoked to

100

GW1 GW2 GW3 BobAlice

ACME Inc.

Coyote Co.

Accounting

Disc(A,u) Disc(GW1,u) Disc(GW2,u) Disc(GW3,u)

Ack1 Ack1 Ack1 Ack1

Ack2 Ack2 Ack2 Ack2

Fin

Figure 6.4: Concatenated Discovery Execution

set up the end-to-end tunnel. When this instance of establishment completes, a FIN
message is sent to the host that initiated the discovery protocol.

Figure 6.4 illustrates the execution of the concatenated discovery protocol on the
Alice-Bob example in Figure 6.2. The protocol messages are displayed as black lines
and the establishment messages are displayed as dotted black lines. Alice releases a
discovery packet P(A,B,C(Dis(A, u))) destined for Bob. The packet is intercepted
by gateway GW1, which invokes establishment with Alice. The gateway then sends
Alice an acknowledgment message P(GW1, A,ACK1) in the newly created asso-
ciation flowing from GW1 to Alice. Alice responds by sending an acknowledgment
P(A,GW1,ACK2(Φu)) in the association flowing from Alice to gateway GW1. Upon
receiving this message, GW1 releases the discovery packet P(A,B,C(Dis(GW1, u))),
where the address A is replaced by GW1. The process repeats until Bob has set up
a tunnel with GW3, after which, Bob initiates establishment with Alice to set up
the end-to-end tunnel. When this tunnel has been set up, Bob sends Alice a Fin
message. We now examine, in turn, how the protocol handles discovery and gateway
policies.

Suppose we execute session u of the concatenated discovery protocol using our
example in Figure 6.4, where the discovery policies are as given above. The discov-
ery policy for the session Φu is initialized at Alice to Discs{φ@A}, which says Alice
is willing to communicate with anyone who can prove that they belong to ACME
Inc or Bob. Gateway GW1 sends its credential saying KGW1 ⇒ KACME to Alice,

101

which satisfies Φu so the protocol is willing to communicate with GW1 and there-
fore continues execution. The protocol then passes Φu along to GW1 in the ACK2
acknowledgment, which adds its own discovery policy φ@GW1 to Φu, saying that
GW1 is willing to communicate with any member of Acme or Coyote Corporation.
The discovery packet is released and gets intercepted by gateway GW2. Gateway
GW2 sends its credential set ΞGW2, saying that GW2 belongs to Coyote Corpora-
tion, to GW1 during establishment. Since these credentials satisfy the discovery
policy Φu at node GW1, the protocol continues to execute, sending Φu to GW2 in
the ACK2 acknowledgment, where GW2 adds its discovery policy φ@GW2 to Φu,

saying that GW2 is willing to communicate with anyone belonging to ACME, Coy-
ote Corporation, or Coyote’s accounting department. The discovery packet is then
intercepted by gateway GW3, which invokes establishment with GW2. During this
process GW3 sends its credential set to GW2, saying that GW3 belongs to Coyote
Corporation’s accounting department. Since these credentials satisfy Φu @GW2,
the protocol continues executing setting up the end-to-end tunnel. Note that the
discovery policy used by Alice in setting up the end-to-end tunnel is Φu = φ@A

because the Φu that gets delivered to Bob is never migrated back to Alice. Whence
there is an implicit assumption that the initiating host will always include the final
destination in the discovery policy.

We now show how the protocol delivers credentials to the gateways using the
example given in Figure 6.4. Assume that the gateway polices and credentials at
nodes are as given in the tables above. During the execution of establishment between
Alice and GW1, Alice delivers the credential KGW1 ⇒ KA ⇒ KAcme to GW1,
which satisfies the policy at that gateway. In setting up the tunnel between GW1
and GW2, the establishment protocol delivers the credential set Ξu from GW1 to
GW2 that is composed of the credential sets located at Alice (ΞA) and GW1 (ΞGW1)
as well as credentials saying that GW1 speaks for Alice and that GW2 speaks for
GW1. These credentials form the chain

KGW2 ⇒ KGW1 ⇒ KA ⇒ KAcme ⇒ KCoyoteSub.

Since this credential set satisfies the policy atGW2, the protocol continues executing.
The credential set delivered toGW3 is composed of the credentials delivered toGW2,
GW2′s credential set ΞGW2, and a credential saying GW3 speaks for GW2. These
credentials form the chain

KGW3 ⇒ KGW2 ⇒ KGW1 ⇒ KA ⇒ KAcme ⇒ KCoyoteSub,

which satisfies the applicable policy at GW3 and the protocol continues executing.
Notice that the protocol, in essence, collected credentials as it executed and presents
them to the next gateway on the path. This idea will be made precise when we
formulate the completeness theorem.

102

6.2.1 Rules for Concatenated Discovery

The concatenated discovery protocol is composed of an initiator and responder pro-
cesses. The initiator process runs only at the host that initiates discovery and the
responder processes run at the remaining nodes. We now define both processes using
the notation of the tunnel calculus.

The initiator sends out the first discovery packet and invokes the establishment
responder. When the tunnel is set up with the first gateway on the path, the initia-
tor awaits the arrival of the ACK1 acknowledgment message and responds with the
ACK2 acknowledgment message containing the discovery policy Φu. The initiator
then invokes the establishment responder once again to set up the end-to-end tun-
nel. Once this tunnel is set up, the initiator awaits the arrival of the Fin message
indicating that the discovery protocol has completed. The initiator is composed of
the following three rules.

Rule CD.1.1

φ, Ξa `s ↓dis(u,k1) D(s, d) −→

↓sec(u,k2) P(s, d,C(Dis(s, u))),

↓eresp(u,k3) , Discs{φ}u, Ξu,

〈s, d, u, k1, k2, k3〉

new k2, k3

where Ξu = Ξa.

The discovery protocol session u is initiated at node s to communicate with
node d by writing a ↓dis(u,k1) D(s, d) term to the multiset. Rule CD.1.1 sends a
discovery packet toward d and invokes the establishment-responder processes, with
session identifier set to u, to set up a tunnel with the newly discovered gateway. The
discovery policy Φu is initialized to φ@ s, which is the discovery policy of node s;
and the credential set for the session Ξu is initialized to Ξs, which is the credential
set of node s.

Rule CD.1.2

Φu `s 〈s, d, u, k1, k2, k3〉, ↑sec(k2) ,

↑eresp(k3) R(a), ⇑sec(u) P(a, s,ACK1) −→

↓sec(u,k4) P(s, a,ACK2(Φu)), ↓eresp(u,k5) ,

〈s, d, u, k1, k4, k5〉

new k4, k5.

103

If the discovery message has been sent, the establishment responder has com-
pleted set up of the tunnel with the first gateway on the path a, and an acknowl-
edgment message has been received in the newly set up tunnel, then reply with an
acknowledgment message that contains the discovery policy Φu that was initialized
in the previous rule. The establishment responder is invoked again to set up the
end-to-end tunnel between s and d.

Rule CD.1.3

`s 〈s, d, u, k1, k4, k5〉, ↑sec(k4) , Ξu,

↑eresp(k5) R(d), ⇑sec(u) P(d, s, F in) −→ ↑dis(k1) .

If the acknowledgment for the ACK2 message has been written to the multiset
and the establishment responder returns indicating that the tunnel between s and d
has been set up and a Fin message is received from d, then write the acknowledgment
that the concatenated discovery session u has successfully terminated. Note that the
credential set for the session is removed to clean up the multiset upon termination.

The responder process executes the protocol on all nodes other than the node
that initiated the protocol. Upon arrival of the discovery message, the responder
invokes establishment to set up a tunnel with the node that last released the dis-
covery packet. Once this tunnel is set up, the ACK1 acknowledgment is sent inside
of the newly set up tunnel to the node that last released the discovery packet. The
action taken upon receiving the ACK2 acknowledgment depends on whether or not
the current node is the final destination. If the node is the final destination, then the
protocol invokes establishment to set up the end-to-end tunnel. When the establish-
ment process completes, a FIN message is sent to the host that initiated discovery.
If the node is not the discovery destination, then the discovery packet is released
with the current node’s address as the last node to process the packet and the es-
tablishment responder is invoked to set up the next tunnel. When the establishment
responder returns, indicating that the next tunnel has been set up, and an ACK1
acknowledgment message has been received, the protocol sends an ACK2 acknowl-
edgment containing the discovery policy Φu. We now examine the ten rules that
comprise the concatenated discovery responder in some detail.

Rule CD.2.1

`a ⇑sec(u) P(s, d,C(Dis(b, u))) −→ ↓est(u,k1) E(b, (s, b), (d, a)), 〈a, b, s, d, u, k1〉

new k1.

Upon receiving a discovery message released by node b, the concatenated discov-
ery protocol invokes the responder to set up a tunnel between a and b.

104

The filters passed to the establishment in Rule CD.2.1 have the form (a, b),(c, d),
which are read as the filter a −→ c, b −→ d. We view this as a disjoint address range.
Establishment will install filters (s, b) −→ (d, a), which matches traffic flowing from
s to d and from b to a, and (d, a) −→ (s, b), which matches traffic flowing from d

to s and from a to b. This is necessary to ensure that both the end-to-end traffic as
well as the acknowledgments travel in tunnels.

Rule CD.2.2

`a 〈a, b, s, d, u, k1〉 ↑est(k1) −→ ↓sec(u,k2) P(a, b, ACK1), 〈a, b, s, d, u, k2〉

new k2.

When establishment has terminated at the intercepting node it sends an acknowl-
edgment message to b.

Rule CD.2.3

`a 〈a, b, s, d, u, k2〉, Φu,

↑sec(k2) , ⇑sec(u) P(b, a, ACK2(Φu)) −→ ↓est(u,k3) E(s, s, d), 〈a, b, s, d, u, k3〉

new k3

if a = d.

This rule will only execute if the intercepting node is the discovery packet’s
final destination. Upon receiving an acknowledgment message from b containing the
discovery policy for session u, the protocol can be sure that the a–b tunnel has been
set up. It then invokes establishment to set up the end-to-end tunnel.

Rule CD.2.4

`a 〈a, b, s, d, u, k3〉, ↑est(k3) −→ ↓sec(u,k4) P(d, s, F IN), 〈a, b, s, d, u, k4〉

new k4

if a = d.

This rule will only execute if the intercepting node is the discovery packet’s final
destination. When the end-to-end tunnel has been set up, the protocol sends a FIN
message to the host that initiated discovery.

105

Rule CD.2.5

〈a, b, s, d, u, k4〉, ↑sec(k4) −→ ·

if a = d.

This rule fires if the intercepting node is the discovery packet’s final destination.
If the secure layer has written a term indicating that the FIN message has been sent,
the protocol run ends.

Rule CD.2.6

φ `a 〈a, b, s, d, u, k2〉, ↑sec(k2) , ⇑sec(u) P(b, a, ACK2(Φu)) −→

↓sec(u,k5) P(s, d,C(Dis(a, u))), Φu ∪ {φ}, ↓eresp(u,k6) ,

〈a, b, s, d, u, k5, k6〉

new k5, k6

if a 6= d.

This rule only executes if the intercepting node is not the packet’s final destina-
tion. Upon receiving an acknowledgment message containing the discovery policies
for session u, this rule releases the discovery packet and invokes the establishment
responder for session u. The discovery policy for the node a is added to the discovery
policy for the session and written to the multiset.

Rule CD.2.7

Φu `a 〈a, b, s, d, u, k5, k6〉, ↑sec(k5) ,

↑eresp(k6) R(c), ⇑sec(u) P(c, a, ACK1) −→

↓sec(u,k7) P(a, c, ACK2(Φu)), 〈a, b, s, d, u, k7〉

new k7

if a 6= d.

This rule only executes if the intercepting node is not the packet’s final destina-
tion. If the establishment responder has written a term indicating that a tunnel has
been set up, the secure layer has acknowledged that the discovery message has been
sent, and the secure layer has written a term indicating that an ACK1 acknowledg-
ment has been received, then send the newly discovered node an acknowledgment
message that includes the discovery polices for session u.

106

Rule CD.2.8

`a 〈a, b, s, d, u, k7〉,

⇑sec(u) P(d, s,X(Req(s, d, u, ιd,Ξ
d, g))), Ξu, ↑sec(k7) −→

↓sec(u,k8) P(d, s,X(Req(s, d, u, ιd,Ξ
d, g))), 〈a, b, s, d, u, k8〉

new k8

if a 6= d.

This rule only executes if the current node is not the final destination d. When the
secure layer acknowledges that the ACK2 message has been sent and the establish-
ment request for the end-to-end tunnel arrives, this rule relays that establishment
message toward its destination. A copy of the credentials Ξu have already been
passed along to the next node on the path so we can clean up by removing them
from this node.

Rule CD.2.9

`a 〈a, b, s, d, u, k1, k8〉,

⇑sec(u) P(s, d,X(Rep(s, d, u, ιs,Ξ
′u, g))), ↑sec(k8) −→

↓sec(u,k9) P(s, d,X(Rep(s, d, u, ιs,Ξ
′u, g))),

〈a, b, u, s, d, k1, k9〉

new k9

if a 6= d.

This rule only executes if the current node is not the final destination d. If the
secure layer has acknowledged that the establishment request for the end-to-end
tunnel has been forwarded and the corresponding establishment reply message has
arrived, then forward that message on to its destination.

Rule CD.2.10

`a 〈a, b, u, s, d, k9〉, Ξu, ↑sec(k9) −→ ·

if a 6= d.

This rule only executes if the current node is not the final destination d. If the
secure layer has acknowledged that the establishment reply for the end-to-end tunnel
has been forwarded, then remove the credential set that has been left behind and
terminate.

107

6.2.2 Completeness Theorem for Concatenated Discovery

We now formulate and prove a completeness theorem for concatenated discovery pro-
tocols that says the following. Assume that if every node possessed every credential,
then the discovery protocol would run successfully and that the discovery policies are
always satisfied. Consider the trace of the concatenated discovery protocol. Suppose
node ai is the last node discovered by the protocol, then if the credentials located
at a1, . . . , ai−1 satisfy the gateway policy at ai, the trace should record the autho-
rization layer returning true at this node. There remains some work to do before we
can formalize and prove the desired theorem.

The following proposition follows directly from the restrictions on the format of
rules defining discovery protocols.

Proposition 6.1 Let T = M1, . . . ,Mn be a trace of the execution of discovery pro-
tocol session u, where u 6∈ L(M1). If for some i (1 ≤ i ≤ n) t ∈ Mi is a node term
where session identifiers u ∈ t and v ∈ t, then u = v

If the gateway policies or the credentials defining the entities to which gateways
belong change during execution of the discovery, then our notion of completeness is
problematic. Consequently, we need to qualify the theorem with an assertion that
the theorem holds for a fixed set of gateway polices and gateway credentials. This is
formalized as follows. Suppose T = M1, . . . ,Mn is a trace recording the execution of
a discovery protocol, where a1, . . . , am are the nodes on the dataflow path. We say
that the gateway polices and node credentials are fixed in T if for all i (1 ≤ i ≤ m)
and for all j, k (1 ≤ j, k ≤ n),

if Ξai ∈Mj and (Ξ′)ai ∈Mk, then Ξai = (Ξ′)ai

if Θ @ ai ∈Mj and Θ′
@ ai ∈Mk, then Θ = Θ′.

Let G(M) denote the multiset where the credentials at each node in M are
distributed to each node in the network of M . This is formalized as follows. Denote
the nodes in the network of M as a1, . . . , an. The multiset G(M) is defined to be
the same as M, but with each Ξai is replaced by.

⋃

1≤k≤n

Ξak .

It is assumed that when a discovery protocol is run in G(M) that the authorization
layer uses the credentials that reside at the node where authorization is invoked.
It follows from proposition 6.1 and the noninterference and progress theorems of
Chapter 5 that one session of a discovery protocol cannot affect the execution of
another. Assume that the authorization layer always returns true when verifying
a discovery policy. Suppose a discovery protocol always executes to completion if

108

invoked in G(M). This means that the protocol will always run to completion if the
requisite credentials are delivered to the proper gateways on the dataflow path.

Given this machinery we can now formulate the completeness theorem for the
concatenated discovery protocol.

Theorem 6.2 Let T = M1, . . . ,Mn be a trace of the execution of the concatenated
discovery protocol session u initiated at node a1 (= s) to communicate with node
an (= d) and the gateway policies and node credentials are assumed fixed in T .
Assume u 6∈ L(M1) and that the forwarding tables indicate that the nodes on the
dataflow path are a2, . . . , an−1. Assume that the concatenated protocol session u

always runs successfully when initiated in G(M1) and that the authorization layer
always returns true when checking a discovery policy in T . For each i (2 ≤ i ≤ n)
there exists a node term ↑auth(k) GWPol(u, true) @ ai such that the following statement
holds: if

⋃

1≤l<i

({Kl+1 ⇒ Kl} ∪ Ξal) |=ai
Θa1↔an @ ai

then
↑auth(k) GWPol(u, true) @ ai ∈ T

Proof: Proof is by induction on the number of gateways.
For the base case there are no intermediate gateways only source a1 and destina-

tion a2. Consider the execution of the concatenated discovery protocol. At node a1

Rule CD.1.1 releases the discovery packet and invokes the establishment responder.
Upon receiving the discovery packet, node a2 executes Rule CD.2.1, which invokes
the establishment-layer initiator to set up a pair of associations between a1 and a2.
The establishment-layer responder (Rule E.2.2) sends Ξu = Ξa1 ∪ {Ka2

⇒ Ka1
}

to a2 in the establishment response message. Upon receiving this message, Rule
E.1.2 invokes the authorization layer. Since it was assumed that (Ξ @ a1 ∪ {Ka2

⇒
Ka1

}) |=a2
Θa1↔a2 @ a2, we can conclude that the authorization layer returns true

and the base case is satisfied.
Suppose the statement is true for i gateways, we show it is true for i+1 gateways.

It follows from the induction hypothesis that the discovery protocol ran to the point
that it had successfully set up tunnels between aj and aj+1, where 1 ≤ j < i. It re-
mains to show that the protocol successfully sets up the pair of associations between
ai and ai+1. Gateway i is not the final destination so, Rule CD.2.6 releases the
discovery packet and invokes the establishment reply. Upon receiving this message,
gateway ai+1 executes Rule CD.2.1 that invokes the establishment-layer initiator
to set up a pair of associations between ai and ai+1. The establishment-layer re-
sponder (Rule E.2.2) sends Ξu = Ξu ∪ Ξai ∪ {Kai+1

⇒ Kai
} to ai+1. It follows

from the induction hypothesis, that authorization succeeded at nodes a1, . . . , ai and
consequently the credential sets from these nodes are passed to the next node on the

109

Bob

GW2

Coyote
Corp

Alice

GW1

Accounting

Figure 6.5: Nested Tunnel Complex

path as the protocol executes; so the credential set sent from ai to ai+1 is

⋃

1≤l≤i

(Ξ @ al ∪ {Kal+1
⇒ Kal

}).

Upon receiving the establishment response message, Rule E.1.2 invokes the autho-
rization layer. Since it was assumed that

⋃

1≤l≤i

(Ξ @ al ∪ {Kal+1
⇒ Kal

}) |=ai+1
Θa1↔an @ ai+1,

we can conclude that the authorization layer returns true.
The theorem follows from induction. �

6.3 Nested Tunnels Discovery Protocol

The concatenated discovery protocol presented in the previous section can be viewed
as a generalization of the L3A protocol. The road-warrior example presented in
Chapter 1 often employees a nested complex of tunnels to secure communication as
illustrated in Figure 6.5, where each pair-wise tunnel has a one end anchored at a
host. Recall that, although this configuration is commonly deployed, its setup is typ-
ically poorly coordinated, often involving multiple technologies, sometimes affecting
performance. In this section, we investigate discovery protocols that create a nested
tunnel complex. For the sake of simplicity, we assume that the host that initiates
the discovery protocol is not behind a gateway.

Examine the nested topology depicted in Figure 6.5, there are tunnels between
Alice and GW1, between Alice and GW2, nested in the Alice–GW1 tunnel, and be-
tween Alice and Bob, nested in the other two tunnels, but there is no tunnel between
GW1 to GW2 and no tunnel between GW2 and Bob. This raises the question how
GW1 should treat traffic flowing from GW2 to Alice and how GW2 should treat

110

traffic flowing from Bob to Alice? The structural nature of the topology of this tunnel
complex means that both gateways must allow the traffic to pass unchecked, hence
neither GW1 nor GW2 can enforce the egress authenticated traversal property, al-
though the ingress authenticated traversal property is enforced. Consequently, this
topology can be subjected to cramming attacks originating from within an organiza-
tion, although, this may be seen as less of a threat than an attack originating from
the Internet and vigilant network administrators may be able to more readily de-
ter cramming attacks originating from within their organization. In addition, nested
protocols may have advantages over concatenated protocols, such as consuming fewer
gateway resources, which may outweigh failing to enforce egress authenticated traver-
sal. It is the very structure of the topology that precludes the egress authenticated
traversal from being enforced and this weakness must be considered when choosing
to deploy such a topology.

Suppose we apply our basic discovery protocol skeleton to the construction of
the tunnel complex depicted in the example of Figure 6.5. Consider the state of the
protocol once the tunnel between Alice and GW1 has been set up. Gateway GW1′s
mechanism database needs to be configured so that traffic traveling in the association
flowing from GW2 to Alice is allowed to pass unauthenticated and be placed in
the association flowing from GW1 to Alice, but at this point in the execution, the
protocol executing at gateway GW1 has no knowledge of gateway GW2. Our solution
is to release the discovery packet and update the mechanism database when the
establishment request message traveling from Alice to GW2 arrives at GW1.

As with the concatenated discovery protocol, we must consider the need for
acknowledgments. Suppose we were to set up the tunnel complex illustrated in Fig-
ure 6.5 and Alice sends out a discovery message that gets intercepted by GW1. The
establishment responder sends an establishment request message and upon arrival
at Alice the protocol writes state for association flowing from GW1 to Alice and
sends the reply back to GW1. Once the reply has been sent, the protocol writes
state for the association flowing from Alice to GW1. Upon receiving the reply mes-
sage, gateway GW1 writes state for both associations. At this point gateway GW1
knows that the association flowing from GW1 to Alice has been set up, but knows
nothing of the status of the Alice to GW1 association at Alice. The protocol releases
the discovery packet after establishment at GW1 has terminated; thus we can be
assured that when the discovery packet arrives at GW2, state for both associations
flowing between Alice and GW1 have been written at GW1, but the Alice to GW1
association may not be set up if Alice has not yet written state. So when GW2
invokes establishment to Alice, it can be assured that it will safely travel in the
GW1 to Alice association. Since Alice will not invoke the establishment-responder
process that handles establishment with GW2 until after establishment has writ-
ten state for the Alice to GW1 association, the establishment reply message sent to
GW2 will safely travel in the Alice to GW1 association. Consequently, no additional
acknowledgments are needed for this protocol.

111

Bob

GW2

Coyote
Corp

Alice

Disc(A,u)

GW1

Disc(A,u)

Disc(A,u)

FIN

Accounting

Figure 6.6: Nested Discovery Execution

Let us now illustrate how our nested discovery protocol works using the example
from above. Alice sends out a discovery packet P(A,B,C(Dis(A, u))) that gets inter-
cepted by gateway GW1, which invokes establishment with Alice. The mechanism
filters installed at both ends of the tunnel say that all traffic in session u flowing
between Alice and any node in the administrative domain of GW1 should travel in
the newly created associations flowing between Alice and GW1. When establishment
at GW1 has terminated, the discovery packet is released and intercepted by GW2,
which invokes establishment to set up the tunnel between Alice and GW2. When the
establishment request message from GW2 to Alice arrives at GW1, the secure layer
passes it up for processing. There is no establishment-responder processes waiting
to process this message, instead, the discovery protocol writes entries in the mech-
anism database saying all traffic in session u arriving from GW2 will not be in a
tunnel. The establishment request message is then sent on to Alice in the associa-
tion flowing from GW1 to Alice. Note that the establishment response message will
arrive at GW1 in the association flowing from Alice to GW1 and will hence be au-
thenticated, but like the establishment request message, this message gets passed up
and the discovery protocol relays it toward its destination. When establishment at
GW2 has terminated, the discovery packet is released and intercepted by Bob, who
invokes establishment with Alice to set up the end-to-end tunnel. Just as before,
the establishment request message arriving at GW2 is passed up to the discovery
protocol and the mechanism database is updated indicating that traffic from Bob
can pass even though it is not authenticated in a tunnel. The establishment request
is then sent on to Alice in the association flowing from GW2 to Alice. Note that this

112

message arrives at GW1 traveling in the GW2 to Alice association so GW1 never
sees the header and this message is simply relayed toward Alice without being passed
up to the discovery layer. The establishment response message arrives at GW1 in
the Alice to GW1 tunnel, so it is authenticated, the outer header is stripped off,
and the message is relayed toward its destination and arrives at GW2 in the Alice
to GW2 association so it too is authenticated, the header is stripped off, and seeing
that it is an establishment message, it is passed up to the discovery layer that relays
it to its destination and the establishment response message arrives at Bob in the
clear. When establishment at Bob has terminated, Bob sends a Fin message to Alice
indicating that the protocol has successfully terminated at Bob. This process is de-
picted in Figure 6.6, where the solid lines represent the discovery protocol messages
and the dotted lines represent establishment messages.

This protocol has a different structure than the concatenated protocol in that each
gateway on the path invokes establishment with the initiating host, but intermediate
nodes do not communicate with other nodes and consequently discovery polices and
credentials will not be gathered up and passed along as they did the concatenated
protocol given above. So each gateway on the path must be in the discovery policy of
the initiating host. Similarly, the initiating host’s credentials must be able to satisfy
the policies of all the gateways on the dataflow path.

6.3.1 Rules for Nested Discovery

The nested discovery protocol is composed of an initiator process that executes on
hosts initiating discovery and a responder process that is executed on all other nodes.
We now express the rules for the nested discovery protocol using the notation of the
tunnel calculus.

The initiator sends out a discovery packet that will be intercepted by the first
node on the path and invokes the establishment responder. Upon notification that
the establishment responder has terminated, the initiator takes one of two actions.
If establishment has not set up a tunnel with the final destination, then invoke the
establishment responder again and repeat the process. If the establishment protocol
has set up a tunnel with the final destination, then the initiator waits for the Fin
message to arrive in the tunnels that have been set up and terminates. We now
examine in detail the four rules that comprise the nested discovery protocol initiator.

113

Rule ND.1.1

φ,Ξa `s ↓dis(u,k1) D(s, d) −→

↓sec(u,k2) P(s, d,C(Dis(s, u)))

↓eresp(u,k3) , Discs{φ}u, Ξu,

〈s, d, u, k1, k2, k3〉

new k2, k3

where Ξu = Ξa.

The discovery protocol session u that constructs a nested tunnel complex to
facilitate secure communication with node d is invoked at node s by writing a
↓dis(u,k1) D(s, d) term to the multiset. Rule ND-1.1 sends a discovery packet to-
ward d and invokes the establishment-responder processes, with session identifier u,
to set up a tunnel with the newly discovered gateway. The discovery policy Φu is
initialized to φ@ s, which is the discovery policy of node s; and the credential set for
the session Ξu is initialized to Ξs, the credential set of node s.

Rule ND.1.2

`s 〈s, d, u, k1, k2, k3〉, ↑sec(k2) −→ 〈s, d, u, k1, k3〉.

This rule simply processes the acknowledgment from the secure-processing layer
indicating that the discovery message has been sent.

Rule ND.1.3

`s 〈s, d, u, k1, k3〉, ↑eresp(k3) R(c) −→ ↓eresp(u,k3) , 〈s, d, u, k1, k3〉

new k3

if c 6= d.

This rule is only executed if the tunnel has not been set up with the destination
node d. The establishment responder writes a term indicating that a tunnel has been
set up with a gateway c rather than with the host d. So the initiator invokes the
establishment responder again as there is at least one more tunnel to set up in the
complex.

Rule ND.1.4

`s 〈s, d, u, k1, k3〉, ↑eresp(k3) R(d), ⇑sec(u) P(d, s,Fin),

Mech(e −→ s : u : βi) ⊗ Πi, Mech(s −→ e : u : βo) ⊗ Πo −→

↑dis(k1) , Mech(d −→ s : u : βi) ⊗ Πi, Mech(s −→ d : u : βi) ⊗ Πo.

114

This rule is only executed if the tunnel has been set up with the destination node
d. The establishment responder has written an acknowledgment indicating that the
last tunnel in the complex has been set up with host d and host d has sent a Fin
indicating that the tunnel is set up at d. The filters installed during establishment
of the first tunnel are s −→ dom(GW1) and dom(GW1) −→ s, which is a bit too
permissive, whence we restrict the filters to s −→ d and d −→ s.

The establishment responder runs as a daemon at all nodes on the dataflow path.
Upon arrival of a discovery packet, the responder invokes the establishment layer to
set up a tunnel with the host that initiated the protocol. Upon notification from the
establishment layer that this tunnel has been set up, the protocol takes one of two
actions. If the current node is not the final destination, then the protocol releases the
discovery packet sending it toward its destination. The protocol then waits for the
establishment reply message to arrive from the next node on the path and updates
the mechanism database to ‘open a hole’ allowing traffic from this node to exit the
gateway. The protocol then waits for the arrival of the establishment responder from
the initiating host. If the current node is the final destination, then a Fin message
is sent to the initiating host indicating that the protocol has terminated at the final
node on the path. We now examine the six rules that comprise the establishment
responder.

Rule ND.2.1

`a ⇑sec(u) P(s, d,C(Dis(s, u))) −→ ↓est(u,k1) E(s, s, dom(a)), 〈a, s, d, u, k1〉

new k1.

A discovery packet arrives, triggering a call to the establishment layer to set up
a tunnel with the initiating host s. Note that the filters installed by establishment
will be s −→ dom(a) because, as explained above, it has to allow traffic from nodes
that have yet to be discovered.

Rule ND.2.2

`a 〈a, b, s, d, u, k1〉, ↑est(k1) −→

↓sec(u,k2) P(s, d,C(Dis(s, u))), 〈a, s, d, u, k2〉

new k2

if a 6= d.

This rule is executed if the node a is not the final destination d. Upon notification
that the establishment protocol has completed, release the discovery packet.

115

Rule ND.2.3

`a 〈a, s, d, u, k2〉, ⇑sec(u) P(c, s,X(Req(s, e, u, ιc,Ξ
c, g))), ↑sec(k2) −→

↓sec(u,k3) P(c, s,X(Req(s, e, u, ιc,Ξ
c, g))),

Mech(c→ s : u : Bndl[]) ⊗ Πi, Mech(s→ c : u : Bndl[]) ⊗ Πo,

〈a, s, d, u, c, e, k3〉

new k3

if a 6= d.

This rule is executed if the node a is not the final destination d. When the
establishment request arrives from the next node discovered, the secure layer by
default passes it up for processing. Since there is no establishment responder waiting,
the discovery layer examines the packet to find out the address of this node and
updates the mechanism databases to allow the traffic from the newly discovered
node to arrive, but not in a tunnel. Thus any node spoofing the newly discovered
node can perform a cramming attack.

Rule ND.2.4

`a 〈a, s, d, u, c, e, k3〉, ⇑sec(u) P(s, c,X(Rep(s, e, u, ιs,Ξ
u, g))), ↑sec(k3) −→

↓sec(u,k4) P(s, c,X(Rep(s, e, u, ιs,Ξ
u, g))), 〈a, s, d, u, k4〉

new k4

if a 6= d.

This rule is only executed if the node a is not the final destination d. If the
secure layer acknowledges that the establishment request has been relayed and an
establishment reply has been received, then the establishment reply is relayed toward
its destination.

Rule ND.2.5

`a 〈a, s, d, u, k1, k2〉, ↑est(k1) −→ ↓sec(u,k2) P(d, s,Fin), 〈a, s, d, u, k2〉

new k2

if a = d.

This rule is only executed if a is the final destination d. Upon notification that
the tunnel between d and s has been set up, the protocol sends the FIN message to
the initiating host s indicating that state for the s↔ d tunnel has been installed at
d.

116

Rule ND.2.6

`a 〈a, s, d, u, k2〉, ↑sec(k2) −→ ·.

This rule simply consumes the acknowledgment from the secure layer, indicating
that either the establishment reply message originating at the next node on the path
has been sent or the Fin message has been sent.

6.3.2 Completeness Theorem for Nested Discovery

The completeness theorem for this protocol differs from that of the concatenated
protocol in that the node that initiated discovery must possess credentials to satisfy
the policies of all the nodes on the dataflow path. The theorem is formally stated as
follows.

Theorem 6.3 Let T = M1, . . . ,Mn be a trace of the execution of the nested discov-
ery protocol session u initiated at node a1 (= s) to communicate with node an (= d)
and the gateway policies and node credentials are assumed to be fixed in T. Assume
u 6∈ L(M1) and that the forwarding tables indicate that the nodes on the dataflow
path are a2, . . . , an−1 respectively. Assume that nested discovery protocol session u

always runs successfully when initiated in G(M1) and that the authorization layer
always returns true when checking a discovery policy in T. For each i (2 ≤ i ≤ n)
there exists a node term ↑auth(k) GWPol(u, true) @ ai such that the following statement
holds: if

if ({Kai
⇒ Ka1

} ∪ Ξa1) |=ai
Θa1↔an @ ai, then ↑auth(k) GWPol(u, true) @ ai ∈ T.

Proof: The proof proceeds by induction on the number of gateways.
For the base case, there are no intermediate gateways, only source a1 and destina-

tion a2. Consider the execution of the discovery protocol. At node a1 Rule ND.1.1
releases the discovery packet and invokes the establishment responder. Upon receiv-
ing the discovery packet, Rule ND.2.1 invokes the establishment-layer initiator to
set up a pair of associations between a1 and a2. The establishment-layer responder
(Rule E.2.2) sends Ξu = Ξa1 ∪ {Ka2

⇒ Ka1
} to a2 in the establishment response

message. Upon receiving this message, Rule E.1.2 invokes the authorization layer.
Since it was assumed that Ξa1 ∪ {Ka2

⇒ Ka1
} |=a2

Θa1↔a2 @ a2, we can conclude
that the authorization layer returns true and the base case holds.

Assume the theorem is true for i gateways and show it holds for i+ 1 gateways.
From the induction hypothesis we know that tunnels were set up that authenticate
the packet at the gateways a2, . . . , ai. Gateway i is not the final destination so at
ai rule Rule ND.2.2 executes, releasing the discovery packet. Upon receiving this

117

message, gateway ai+1 executes Rule ND.2.1, which invokes the establishment-layer
initiator to set up a pair of associations between a1 and ai+1. When the establishment
request message arrives at ai, Rule ND.2.3 allows it to pass, sending it onto a1 in
the association flowing from ai to a1.When the establishment request message arrives
at a1, the establishment-layer responder (Rule E.2.2) sends Ξa1 ∪ {Kai+1

⇒ Ka1
}

to ai+1. Since it was assumed that

{Kai+1
⇒ K1} ∪ Ξa1 |=ai+1

Θa1↔an @ ai+1,

we can conclude that the authorization layer returns true and the theorem holds for
i+ 1 gateways. The theorem follows from induction. �

Although the nested discovery protocol satisfies its completeness theorem, the
correctness criteria is somewhat limiting in comparison to the completeness theo-
rem for the concatenated protocol. For instance, suppose Alice does not posses
the credentials to traverse GW2, but GW1 does, then the concatenated protocol
will succeed while the nested protocol fails. We next consider how to modify our
nested discovery protocol so that it satisfies the same completeness theorem as the
concatenated protocol.

6.3.3 Modified Nested Discovery

The protocol presented above for constructing a nested tunnel complex fails in situa-
tions where the concatenated protocol succeeds because it fails to collect credentials
as it executes in the fashion of our concatenated discovery protocol. In this sec-
tion, we modify our nested tunnel protocol so that it satisfies the same completeness
theorem as the concatenated protocol.

Recall that when the concatenated protocol executes, each newly discovered gate-
way invokes establishment to set up a tunnel with the previously discovered node
and that the establishment response message passes session u’s credentials along with
that node’s credentials and a new credential stating that the newly discovered node
speaks for the establishment responder. Credentials are collected at each node and
migrated to successive nodes on the path. During the exchange of acknowledgments,
the node that had acted as the establishment responder sends the newly discovered
node the cumulative discovery policies belonging to the host that initiated discovery
as well as those of the previously discovered nodes. In the case of the nested discovery
protocol given above, each node invokes establishment with the host that initiated
discovery; hence, there is not the opportunity to ‘collect’ credentials and discovery
policies as the protocol executes. To transform our nested gateway protocol into one
that succeeds under the same circumstances as the concatenated discovery protocol,
we modify the protocol so that credentials at each newly discovered gateway get
migrated back to the initiating host.

We now illustrate our revised protocol using the example from above. Alice sends
out a discovery packet P(A,B,C(Dis(A, u))) that gets intercepted by gateway GW1,

118

Bob

GW2

Coyote
Corp

Alice

Disc(A,u)

GW1
Disc(A,u)

Disc(A,u)

Fin

Accounting

PolInfo(DiscPol, Cred Set)

PolInfo(DiscPol, Cred Set)

Figure 6.7: Modified Nested Discovery Execution

which invokes establishment with Alice. The mechanism filters at both ends of the
tunnel say that all traffic belonging to session u flowing between Alice and any node
in the administrative domain of GW1 is directed into the associations being set up.
When establishment at GW1 has terminated, GW1 appends its credentials ΞGW1 to
the credential set Ξu obtained from Alice during establishment and sends a message
to Alice containing GW1′s discovery policy ΦGW1 and the updated credential set Ξu.
Recall that the tunnel flowing from GW1 to Alice is guaranteed to have been set
up when the establishment layer writes the ↑ term so this message will safely travel
in the GW1 to Alice association. Note that the credential set sent in this message
is composed of ΞA, ΞGW1, and {KGW1 ⇒ KA}. The discovery packet is released
and gets intercepted by GW2. Gateway GW2 then invokes establishment to set up
the tunnel between Alice and GW2. When the establishment request message from
GW2 to Alice arrives at GW1, the secure layer passes it up for processing since it is
an establishment message. There is no establishment-responder processes waiting to
process this message, instead the discovery protocol writes entries in the mechanism
database saying all traffic in session u arriving from GW2 will not be in a tunnel.
The establishment request message is then sent on to Alice in the association flow-
ing from GW1 to Alice. Note that the establishment response message will arrive
at GW1 in the association flowing from Alice to GW1 and will hence be authenti-
cated. When establishment at GW2 has terminated, GW2 appends its credentials
ΞGW2 to the credential set Ξu obtained from Alice during establishment and sends a

119

message to Alice containing the discovery policy ΦGW2 and the updated credential
set Ξu. In this case, the credential set that gets sent is composed of ΞA, ΞGW1,ΞGW2

KGW1 ⇒ KA, and KGW2 ⇒ KA. The discovery packet is released and intercepted
by Bob. From this point on the protocol execution is the same as with the original
nested discovery protocol. The revised protocol is depicted in Figure 6.7, where the
solid lines represent the discovery protocol messages and the dotted lines represent
establishment messages.

6.3.4 Rules for Modified Nested Discovery

The rules for the modified nested discovery protocol are similar to those of the
original protocol except that after a tunnel is setup between Alice and a gateway on
the dataflow path, the newly discovered gateway sends its discovery policy as well
as its credentials back to the initiating host in the recently setup tunnel.

The four rules that make up the modified nested discovery initiator are given as
follows.

Rule MND.1.1

φ,Ξa `s ↓dis(u,k1) D(s, d) −→

↓sec(u,k2) P(s, d,C(Dis(s, u))),

↓eresp(u,k3) , Discs{φ}u, Ξu,

〈s, d, u, k1, k2, k3〉

new k2, k3

where Ξu = Ξa.

The discovery protocol session u is initiated at node s to communicate with
node d by writing a ↓dis(u,k1) D(s, d) term to the multiset. Rule MND.1.1 sends a
discovery packet toward d and invokes the establishment responder processes, with
session identifier u, to set up a tunnel with the newly discovered gateway. The
discovery policy Φu is initialized to φ@ s, which is the discovery policy of node s;
and the credential set for the session Ξu is initialized to Ξs, the credential set of node
s.

Rule MND.1.2

`s 〈s, d, u, k1, k2, k3〉, ↑sec(k2) −→ 〈s, d, u, k1, k3〉

This rule processes the acknowledgment from the secure processing layer that the
discovery message has been sent.

120

Rule MND.1.3

Φu `s 〈s, d, u, k1, k3〉, Ξu, ⇑sec(u) P(c, s,PolInfo(φ′,Ξ′u)) ↑eresp(k3) R(c) −→

Φu ∪ φ′, Ξ′u, ↓eresp(u,k3) , 〈s, d, u, k1, k3〉

new k3

if c 6= d.

The establishment responder has written an acknowledge met indicating that
a tunnel has been set up with a gateway c rather than with the host d. The old
credential set is removed. A message has arrived containing the discovery policy at
c and the a new credential set Ξ′u and the discovery policy from c, which is added
to the discovery policy at s. The initiator also invokes the establishment responder
again as there is at least one more tunnel to set up in the complex.

Rule MND.1.4

`s 〈s, d, u, k1, k3〉, ↑eresp(k3) R(d), ⇑sec(u) P(d, s,Fin),

Mech(e −→ s : u : βi) ⊗ Πi, Mech(s −→ e : u : βo) ⊗ Πo −→

↑dis(k1) , Mech(d −→ s : u : βi) ⊗ Πi, Mech(s −→ d : u : βi) ⊗ Πo.

The establishment responder has written an acknowledgment indicating that the
last tunnel in the complex has been set up with host d and host d has sent a Fin
indicating that the tunnel is set up at d. Note that the filters installed during
establishment of the first tunnel are s −→ dom(GW1) and dom(GW1) −→ ↓dis(k) ,

so we now restrict the filters to s −→ d and d −→ s.

The six rules that comprise the modified nested discovery protocol are given as
follows.

Rule MND.2.1

`a ⇑sec(u) P(s, d,C(Dis(s, u))) −→ ↓est(u,k1) E(s, s, dom(a)), 〈a, s, d, u, k1〉

new k1.

A discovery packet arrives, triggering a call to the establishment layer to set up
a tunnel with the initiating host s. Note that the filters installed by establishment
will be s −→ dom(a) because, as explained above, it has to allow traffic from nodes
that have yet to be discovered.

121

Rule MND.2.2

φc,Ξu `a 〈a, s, d, u, k1〉, ↑est(k1) −→

↓sec(u,k2) P(s, d,C(Dis(s, u))),

↓sec(u,k3) P(c, s,PolInfo(φc,Ξu ∪ Ξa)),

〈a, s, d, u, k2, k3〉

new k2, k3

if a 6= d.

This rule is executed if the node a is not the final destination d. Upon notification
that the establishment protocol has completed, the protocol sends a message to s

containing the discovery policy at a as well as the credential set Ξu received during
establishment joined with the credential set Ξa from gateway a. The discovery packet
is sent on its way.

Rule MND.2.3

`a 〈a, s, d, u, k2, k3〉

⇑sec(u) P(c, s,X(Req(s, e, u, ιc,Ξ
c, g))) ↑sec(k2) , ↑sec(k3) −→

↓sec(u,k4) P(c, s,X(Req(s, e, u, ιc,Ξ
c, g))),

Mech(c→ s : u : Bndl[]) ⊗ Πi, Mech(s→ c : u : Bndl[]) ⊗ Πo,

〈a, s, d, u, c, e, k4〉

new k4

if a 6= d.

This rule is executed if the node a is not the final destination d. When the
establishment request arrives from the next node discovered, the secure layer by
default passes it up for processing. Since there is no establishment responder waiting,
the discovery layer examines the packet to find out the address of this node and
updates the mechanism databases to allow the traffic from the newly discovered
node to arrive, but not in a tunnel. Thus any node spoofing the newly discovered
node can perform a cramming attack.

122

Rule MND.2.4

`a 〈a, s, d, u, c, e, k4〉,

⇑sec(u) P(s, c,X(Rep(s, e, u, ιs,Ξ
u, g))), ↑sec(k3) −→

↓sec(u,k5) P(s, c,X(Rep(s, e, u, ιs,Ξ
u, g))))

〈a, s, d, u, k4〉

new k5

if a 6= d.

This rule is only executed if the node a is not the final destination d. If the
secure layer acknowledges that the establishment request has been relayed and a
establishment reply has been received, then rely the establishment reply is relayed
toward its destination.

Rule MND.2.5

`a 〈a, s, d, u, k1, k2〉, ↑est(k1) −→ ↓sec(u,k2) P(d, s,Fin), 〈a, s, d, u, k2〉

new k2

if a = d.

This rule is only executed if a is the final destination d. Upon notification that
the tunnel between d and s has been set up, the protocol sends the FIN message to
the initiating host s indicating that state for the s↔ d tunnel has been installed at
d.

Rule MD.2.6

`a 〈a, s, d, u, k3〉, ↑sec(k3) −→ ·.

This rule simply consumes the acknowledgment from the secure indicating that
either the establishment reply message originating at the next node on the path has
been sent or the Fin message has been sent.

6.3.5 Completeness Theorem for Modified Nested Discovery

Our goal in developing the modified nested discovery protocol was to have a protocol
that satisfied the same completeness theorem as the concatenated protocol. Recall
that this theorem says the following. Assume that if every node possessed every

123

credential, then the discovery protocol would run successfully and that the discovery
policies are always satisfied. Suppose node ai is the last node discovered by the
protocol, then if the credentials located at a1, . . . , ai−1 satisfy the gateway policy at
ai the trace should record the authorization layer returning true at this node.

Theorem 6.4 Let T = M1, . . . ,Mn be a trace of the execution of the modified nested
discovery protocol session u initiated at node a1 (= s) to communicate with node
an (= d) and the gateway policies and node credentials are assumed fixed in T .
Assume u 6∈ L(M1) and that the forwarding tables indicate that the nodes on the
dataflow path are a2, . . . , an−1. Assume that modified nested discovery protocol ses-
sion u always runs successfully when initiated in G(M1) and that the authoriza-
tion layer always returns true when checking a discovery policy in T . For each
i (2 ≤ i ≤ n) there exists a node term ↑auth(k) GWPol(u, true) @ ai such that the
following statement holds: if

⋃

1≤l<i

({Kl+1 ⇒ K1} ∪ Ξal) |=ai
Θa1↔an @ ai

then
↑auth(k) GWPol(u, true) @ ai ∈ T.

Proof: The proof proceeds by induction on the number of gateways.
For the base case there are no intermediate gateways only source a1 and destina-

tion a2. Consider the execution of the modified nested discovery protocol. At node
a1, Rule MND.1.1 releases the discovery packet and invokes the responder process.
Upon receiving the discovery packet, Rule MND.2.1 invokes establishment to set
up a pair of associations between a1 and a2. The establishment layer responder
(Rule E.2.2) sends Ξu (= Ξa1 ∪ {Ka2

⇒ Ka1
}) to a2 in the establishment response

message. Upon receiving this message Rule E.1.2 invokes the authorization layer.
Since it was assumed that (Ξa1 ∪ {Ka2

⇒ Ka1
}) |=a2

Θa1↔a2 @ a2, we can conclude
that the authorization layer returns true.

Suppose the statement is true for i gateways we show it is true for i+1 gateways.
It follows from the induction hypothesis that the discovery protocol ran to the point
that it had successfully set up tunnels between a1 and aj, where 2 ≤ j ≤ i. It remains
to show that the protocol successfully sets up the pair of associations between a1

and ai+1. Rule MND.2.2 executes at gateway ai and releases the discovery packet.
Upon receiving this message, node ai+1 executes Rule MND.2.1 that invokes the
establishment-layer initiator to set up a pair of associations between a1 and ai+1. The
establishment-layer responder (Rule E.2.2) sends Ξu = Ξu ∪ Ξai ∪ {Kai+1

⇒ Ka1
}

to ai+1. It follows from the induction hypothesis that the authorization succeeded
at a2, . . . , ai hence the discovery polices and credential sets at these nodes have been
migrated from these nodes to a1. So the credential set sent from a1 to ai+1 is

⋃

1≤l≤i

(Ξal ∪ {Kal+1
⇒ Ka1

}).

124

Upon receiving the establishment response message, Rule E.1.2 invokes the autho-
rization layer. Since it was assumed that

⋃

1≤l≤i

(Ξal ∪ {Kal+1
⇒ Ka1

}) |=ai+1
Θa1↔an @ ai+1,

we can conclude that the authorization layer returns true. The theorem follows from
induction. �

6.4 Conclusion

In this chapter, we have introduced a class of tunnel-complex protocol called dis-
covery protocols are that designed to aide in the construction of tunnel complexes
by discovering gateways and setting up point-to-point tunnels that form the desired
tunnel-complex. We have also introduced the role of discovery policies in safeguard-
ing the process. In addition, we discussed the role of the discovery protocols in
delivering credentials needed to satisfy the policies at the gateways. We developed
concrete discovery protocols that set up a complex of concatenated tunnels and that
set up a complex of nested tunnels. Completeness theorems that characterize the
functional correctness of the protocols were introduced. In the case of the nested
tunnel complex, we saw that a simple discovery protocol seemed ‘weaker’ than the
concatenated protocol because it delivered fewer credentials to the gateways than did
the concatenated tunnel protocol, which was reflected in their respective complete-
ness theorems. A modified nested discovery protocol was presented that satisfied the
same completeness theorem as the concatenated discovery protocol. This illustrates
how slightly different protocols can have significantly different behavior. For simplic-
ity’s sake, we have assumed only one of these protocols will be active in the network
at one time. Adding either an additional field to the discovery message or having dis-
tinguishing constructors would allow us it execute each of them simultaneously. We
recognize that we could have developed a soundness theorem that is the dual to our
completeness theorem and similar soundness and completeness theorems could have
been developed for discovery polices, but we believe that our completeness theorem
for credentials is the basic functional correctness criteria that characterizes discovery
protocols. Discovery protocols are a nascent area of investigation, which lead us to
concentrate our attention on relatively simple discovery protocols with the hope that
the current effort can serve as a foundation for future work. In the next chapter, our
attention shifts from functional correctness to DoS threats.

125

Chapter 7

Denial of Service Threats

Discovery protocols ease the burden of configuring tunnel complexes. Once set up, a
tunnel-complex can protect nodes from DoS threats as we saw with L3A in Chapter 2.
Having been thwarted from attacking one target, an adversary may choose to target
the discovery protocols themselves. If the attacker can prevent the protocol from
setting up the tunnel complex or coerce it into constructing an ill-formed tunnel
through which communication cannot proceed, then service is denied. Another way
to deny service is by overwhelming resources at the gateways, for instance, filling
up databases that may be located in memory or consuming CPU resources. In this
chapter, we analyze the vulnerability of our discovery protocols to DoS threats.

The remainder of this chapter is organized as follows. In the first section, we in-
troduce a classification of threats and attacker capabilities that informs our analysis.
In the second section, we introduce a version of the tunnel calculus establishment
layer that had been modified to include a DoS protection scheme. In the third sec-
tion, we use the tunnel calculus to model and analyze attacks targeted at tunnel
establishment. In section four, we model and analyze attacks against discovery pro-
tocols. In section five, we apply a cost model to analyze the previously introduced
attackers in terms of attacks targeting computational resources. In section six, we
formulate and prove a theorem saying that a specific collection of attackers can-
not succeed in exploiting an executing discovery protocol by forcing it to perform
high-cost operations.

7.1 DoS Attacks

Examining the discovery protocols in Chapter 6, we see that gateways respond to
the arrival of a discovery packet by invoking the establishment layer, which writes
to the association and mechanism databases. In practice, the database structures
are usually kept in memory for performance reasons. This exposes the system to
attacks that exhaust these resources by filling the structures with bogus entries.
An attack can also deny service by forcing a gateway to write state that breaks

126

the tunnel complex or forces a discovery protocol into a state where the protocol
cannot progress. The establishment protocol incorporates protections that place
barriers in front of an attacker before state is written. These protections take the
form of digital signatures and credential verification, but an attacker can exploit the
computational expense of performing these operations and consume CPU resources
resulting in degraded gateway performance. To facilitate our analysis, we designate
classifications that distinguish attacks and attacker capabilities.

Throughout this chapter, we shall say nodes are honest if they execute the discov-
ery protocol and tunnel calculus layers as defined. The credentials and keys stored
on honest nodes are assumed to be secure. An attacker is assumed to only be able to
affect an honest node by sending it messages. Only honest gateways are presumed to
possess the proper credentials to traverse gateways. We shall not consider the case
where an honest gateway is corrupted and uses its credentials for malicious purposes.

We classify attacks into two broad categories. Logical attacks attempt to deny
service by breaking protocol execution or by writing bogus tunnel state to the as-
sociation or mechanism databases. Although there may be a small amount of state
associated with executing discovery and establishment, it is the databases that con-
stitute the state of interest. In our rewriting logic, many terms may be written to a
multiset, but only the databases will viewed as ‘state’ in this chapter. In particular,
a failed attack may result in unconsumed terms being left in a multiset, but this does
not constitute writing of state as it does not affect the databases. For instance, an at-
tacker that forces the establishment responder into writing state with a different SPI
than the establishment initiator will create a broken tunnel. Another way to break a
tunnel complex and deny service would be to force the tunnel complex into creating
an invalid nesting of tunnels. The second form of attacks are resource-exhaustion
attacks that attempt to force a target to perform a large number of computation-
ally costly operations in order to tax the CPU on the target and consequently deny
service to honest users. An attack aimed at forcing a gateway to allocate state can
also be resource-exhaustion attack in that it may fill a table to capacity, but from
the point of view of our analysis, it is similar to a logical attack and so we treat
it as such. An attack can often be viewed from both the perspective of a logical
attack and a resource-exhaustion attack. For instance, suppose a protocol receives
a message, performs one or more actions to verify the integrity of the message, and
writes state. If the attacker can overcome the integrity checks and force the target
to write state, then it succeeds from the view of a logical attacker. If, on the other
hand, the integrity checks prove costly, the attacker can flood the node with these
messages and exhaust computational resources.

We now classify the capabilities of the attackers under consideration. A Dolev-
Yao attacker has control of the network and by definition can simply intercept any
message, and therefore always succeeds in denying service. Such a strong attacker
model is necessary for proving that key-establishment protocols preserve secrecy and
integrity of cryptographic keys in the face of any possible attack, but in analyzing

127

Logical Attacks Exhaustion Attacks
Off-Path Attacker Exposed Exposed

Spoofed Spoofed
On-Path Attacker Exposed Exposed

Spoofed Spoofed

Table 7.1: Classification of Attacks

DoS attacks, we must simply admit the futility of preventing an attacker that can
simply drop all messages. Instead, we assume that all attackers can synthesize proto-
col messages, that no attacker possesses the credentials authorizing communication,
and that the public-key cryptography is secure. Attackers are classified as either On-
Path attackers that are able to observe traffic on the network or Off-Path attackers
that cannot observe traffic on the network, but can synthesize messages. We shall
see that on-path attackers can succeed in situations where off-path attackers fail.

Another differentiating factor between attackers is that some attackers use spoofed
addresses, signatures, and credentials where others use their actual address. An ob-
jective of a DoS attack is to force the target to perform high-cost operations at little
cost to the attacker; so sending the target a spoofed address and signature makes
sense. For instance, in the TCP SYN attack, an attacker spoofs the source address
on a SYN packet and sends it to the target, which responds to the spoofed address.
No further effort is required by the attacker. We classify such attackers as spoofed
attackers. On the other hand, bots acting as DDoS attackers often do expose their
address, which is done without exposing the address of the node that originally
launched the attack. Since these nodes are victims as well, the original attacker is
not affected if the bots consume resources while performing an attack, although it is
better if the attack does not draw the attention of the user of the machine that has
been compromised. We classify such attackers as exposed attackers.

Table 7.1 summarizes our classification of attacks. This table will guide us in
the analysis performed later in this chapter. In particular, for each protocol message
that can be exploited, we shall construct exposed and spoofed on-path attackers as
well as exposed and spoofed off-path attackers. Each attack is analyzed from the
perspective of both logical attacks and resource-exhaustion attacks.

7.2 Modified Establishment Protocol

Consider the discovery protocols defined in the previous chapter. Each gateway exe-
cutes the discovery protocol responder and upon the arrival of a discovery message,
the discovery-layer responder invokes the establishment-layer initiator to set up a
tunnel with a node advertised in the discovery message. The node advertised in the

128

discovery packet is presumed to be executing the establishment-layer responder. The
first rule of the establishment initiator sends a signed establishment-request message
to that advertised node. This opens the possibility that the attacker can force the
gateway to perform a costly cryptographic operation by simply sending it a discovery
message advertising a spoofed address much as the TCP SYN attack does. Proto-
cols such as IKE have incorporated cookies to protect against this kind of attack.
The idea is to require that a round trip be performed before committing state or
performing costly operations. Puzzles are a variation on this theme that not only
require a round trip, but demand that the other node perform a costly computational
task, where the objective is to provide protection against an exposed attacker such
as bots launching a DDoS attack. In this section, we present a modified version of
the establishment layer, incorporating a DoS-protection scheme that is intended to
protect gateways from DoS attacks. When a gateway receives a discovery message
and invokes the establishment initiator, the establishment initiator now requires a
round trip between the establishment initiator running at the newly discovered gate-
way and the establishment responder running at the node advertised in the discovery
message. This exchange must be succeed before the establishment initiator performs
a costly operation such as generating a digital signature. This is achieved through
the addition of two messages to the establishment protocol defined in Chapter 4.
Our modified establishment protocol works as follows. The establishment responder
is invoked for a specific session and it awaits the arrival of a DoS-request message
in that same session. This provides proof that a round trip has been made between
the two nodes. When the establishment initiator is invoked, it sends a DoS-request
message, containing the session identifier, to the node that is advertised in the dis-
covery message. This node should be running the establishment-responder process,
which processes the DoS-request message and sends a DoS-reply message back to
the establishment initiator. Upon receiving this message, the establishment initiator
verifies that it is valid, from which it concludes that a round trip has been performed
between the two nodes. From this one can conclude that the discovery message in-
tercepted by the gateway advertises a valid address and attacks similar to the TCP
SYN attack are thwarted.

We do not define the details of the DoS-protection scheme, but specify that the
DoS-request message has format DoSReq(u, f(a,K−1

a)) and the DoS-reply message
has the format DoSRep(u, h(f(a,K−1

a))), where f and h are suitable functions. The
DoS-reply message is verified by the DoSCheck proposition that verifies the DoS-
reply message in a rule and is defined by the equation

{
DosCheck(DoSRep(u, h(f(a,K−1

a)))) = true
Otherwise false.

Recall that digital signatures are employed to ensure that the establishment mes-
sages originate from their purported origin. Also recall that the function Sign(K−1

a)
produces a signature of the message sent in the given rule and that the function

129

CheckSig(Kb, g) is defined by the equation

{
CheckSig(Ka, Sign(K−1

a , p)) = true
Otherwise false.

The four rules that comprise the modified establishment responder are defined
as follows.

Rule ME.1.1

`a ↓est(u,k1) E(b, s, d) −→

↓sec(u,k1) P(a, b,X(DoSReq(u, f(a,K−1
a))))

〈u, a, b, s, d, k1, k2〉

new k2.

The discovery layer responder process invokes the establishment layer initiator at
node a by writing a ↓est(u,k) E(b, s, d) term, where b is the responder and s and d are
the packet filters to be installed in the mechanism database.

Rule ME.1.2

Ξa `a 〈u, a, b, s, d, k1, k2〉, ↑sec(k2) ,

⇑sec(u) P(b, a,X(DoSRep(u, h(f(a,K−1
a))))) −→

↓sec(u,k3) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))),

〈u, a, b, s, d, k1, k3, ιa〉

if ∃In(b, ιx) ∈ Σ then ιa = ιx else ιa isnew

new k3

where g = Sign(K−1
a)

if DoSCheck().

This rule executed upon the arrival of a valid DoS-reply message. If there is an
existing association flowing from b to a, then use the existing association. Otherwise,
generate a new SPI value ιa. The initiator then sends a signed establishment-request
message to node b. The semantic function sign() produces a signature of the message
being sent using the private key of a.

130

Rule ME.1.3

Θ `a 〈u, a, b, s, d, k1, k3, ιa〉,

↑sec(k3) ,⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιb,Ξ
u, g′))) −→

↓auth(u,k4) Ai(a, b, s, d,Θ,Ξu),

〈u, a, b, s, d, k1, k4, ιa, ιb〉

new k4

if CheckSig(Kb, g
′).

Upon receiving the establishment-response message, the initiator a verifies the signa-
ture and invokes the authorization layer to verify that the credential set Ξu satisfies
the gateway policy Θa↔b.

Rule ME.1.4

`a 〈u, a, b, s, d, k1, k4, ιa, ιb〉,

Σ,Πi,Πo, ↑auth(k4) GWPol(u, true) −→

Σ ∪ {Out(b, ιb)}, Mech(d→ s : u : Bndl[Out(b, ιb)]) ⊗ Πo,

Σ ∪ {In(b, ιa)}, Mech(s→ d : u : Bndl[In(b, ιa)]) ⊗ Πi, ↑est(k1) .

If the authorization layer returns true, then update the association and mechanism
databases for both associations and write the establishment acknowledgment term.

The rules that comprise the responder of the modified establishment layer are
given as follows.

Rule ME.2.1

↓eresp(u,k1) `b ⇑sec(u) P(a, b,X(DoSReq(u, f(a,K−1
a)))) −→

↓sec(u,k1) P(a, b,X(DoSRep(u, h(f(a,K−1
a)))))

new k2 .

This rule executes if the establishment responder has been invoked and a DoS request
possessing possessing the session identifier u is received. The DoS reply is constructed
and sent back to the establishment initiator. Observe that the ↓eresp(u,k) term is not
consumed here in order to prevent an attacker from breaking protocol execution by
simply sending a valid DoS-request message to the node. This term is only consumed
in the next rule when a valid establishment-request message arrives. Although, we
recognize that this issue is typically handled by timestamps, we would rather not
introduce time into the picture a this point. So to facilitate analysis, we incorporated
this into the rules.

131

Rule ME.2.2

Φu `b ↓eresp(u,k1) , ↑sec(k2) , ⇑sec(u) P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) −→

↓auth(u,k3) Ar(a, b, s, b,Φu,Ξa),

〈u, a, b, s, d, ιa, k1, k3〉

new k3

if CheckSig(K−1
a , g).

Upon the arrival of an establishment-request message, the signature is verified and
the authorization layer is invoked to verify that the initiator’s credential Ξa satisfies
the discovery policy Φu.

Rule ME.2.3

Ξb, Ξu `b 〈u, a, b, s, d, ιa, k1, k3〉,

↑auth(k3) DisPol(u, true), Σ, Πi −→

Σ ∪ In(a, ιb),

Mech(d→ s : u : Bndl[In(a, ιb)]) ⊗ Πi,

↓sec(u,k4) P(b, a,

X(Rep(s, d, u, ιa, ιs,Ξ
u ∪ Ξb ∪ {Ka ⇒ Kb}, g

′))),

〈u, a, b, s, d, ιa, ιb, k1, k4〉

new k4

if ∃In(a, ιx) ∈ Σ then ιb = ix elseιb is new

where g = Sign(K−1
b).

Rule ME.2.3 only executes if the authorization layer verifies that the discovery
policy is satisfied. If there is an existing association flowing from the initiator to the
responder, then it gets reused. Otherwise, a new association is generated. Entries are
then added to the association and mechanism databases for the association flowing
from a to b and the establishment-reply message is sent.

Rule ME.2.4

`b 〈u, a, b, s, d, ιa, ιb, k1, k4〉,Σ,Π
o, ↑sec(k4) −→

↑eresp(k1) R(a), Σ ∪ {Out(a, ιa)},

Mech(s→ d : u : Bndl[Out(a, ιa)]) ⊗ Πo.

Upon acknowledgment that the reply has been sent, entries are made in the associ-
ation and mechanism databases for the association flowing from b to a.

Note that the discovery protocols presented in the previous chapter will require
slight modification to accommodate the additional DoS messages. Everywhere there

132

are rules for relaying establishment request and reply messages, there must be addi-
tional rules added for relaying the DoS request and reply messages as well.

7.3 Logical Attacks on Establishment Layer

In this section we analyze logical attacks on the modified establishment protocol
presented in the previous section. We assume that attackers lack the perquisite
credentials to satisfy gateway policies, otherwise, they would be honest users rather
than attackers, but attackers can synthesize protocol messages and address them
to any node. Consider the rules for the establishment protocol given above. If an
attacker can construct establishment request messages that pattern match, possess
a valid signature, and possess valid credentials, then the message is accepted by a
node’s establishment responder, whence the attacker has succeeded in forcing its
target into writing state. Similarly, if an attacker can construct establishment-reply
messages that pattern match, possess a valid signature, and possess valid credentials,
then it too has succeeded in forcing its target into writing state. An attack on the
establishment initiator may need to overcome the DoS protections that have been
added. Rather than a general Dolev-Yao like attacker, we define a collection of
attackers targeting the messages of the modified establishment protocol. For each
establishment-layer message, we consider the following four archetypal attackers:
on-path exposed, on-path spoofed, off-path exposed, and off-path spoofed. In this
section, we shall evaluate the effectiveness of each of these as logical attacks.

Each of our attackers will be defined in a rule having a ↓at(k) ATK term on the
left-hand side and possibly having parameters indicating the target of the attack.

A on-path attacker is able to observe messages being sent, but is not able to
control the network. Recall that the tunnel calculus forwarding-layer rules defined
in Chapter 4 does not model a communication medium. Instead, a message at one
node is rewritten to another node in Rule F.1.1 and Rule F.2.1 consumes the
message at the destination node. In this case, the multiset acts as the medium
connecting the two nodes. This raises the question as to how we should model an
attacker that can observe traffic on the network. One option would have been to add
additional rules to the forwarding layer that mimicked a communication medium,
but this is not actually necessary simply to model an attacker ‘observing’ a message.
Instead, we view the application of Rule F.1.1 as sending the message and allow
attackers to ‘observe’ a message before it is consumed by Rule F.2.1. The on-path
attacker uses the tunnel calculus t ` convention, where t is a term representing a
message before it is consumed by Rule F.2.1; so an attacker observers message t,
but does not consume the term. On-path attackers typically take the form

133

P(s, d,m))) @a ` ↓at(k1) ATK() @ e −→

↓sec(u,k2) p@ e

new k2.

Both a term invoking the attacker ↓at(k1) ATK() and a term indicating a message of
a particular format has been sent to node a are in the multiset. The ↓at(k1) ATK()
is removed from the multiset and a term is rewritten sending a message from the
attacker and the original message P(s, d,m))) @a also remains in the multiset. The
decision to model on-path attackers in this fashion was primarily driven by the desire
to preserve the basic forwarding layer defined in Chapter 4.

Attackers use the tunnel calculus new operator to spoof addresses and other
information needed to create a message. Recall that values generated by the new
operator are assumed to be unique. In general, the on-path exposed attackers spoof
the least amount of information in their attack and off-path spoofed attackers spoof
the most amount of information in an attack. To keep the presentation concise, we
do not include rules that only process acknowledgments from the secure processing
layer.

7.3.1 Attacks on DoS Request

The establishment responder is invoked during execution of a discovery protocol to
set up the ‘next’ tunnel in the complex. The establishment-responder processes both
a DoS-request message and an establishment-request message before writing state.
We shall now investigate attacks targeted at the DoS-request message. The first
attacker to be considered is an off-path spoofed attacker that spoofs its address,
the session identifier, and the DoS-request value. The attacker then forms a DoS-
request message and sends it towards the target address. Recall that when we spoof
an address it means we have generated it using the tunnel calculus new operator
which means that it is unique. We do not consider the case where an attacker may
have guessed a valid address or simply used a valid address such as yahoo.com. The
rule for our attacker is given as follows:

`e ↓at(k1) ATK(b) −→

↓sec(u,k2) P(c, b,X(DoSReq(u, f(c,K−1
c))))

new u, c, f(c,K−1
c), k2.

Off-Path spoofed DoS Request 7.1

134

Suppose node b is executing the establishment responder session v, then upon
receiving the DoS-request message from the attacker, the multiset will contain terms

↓eresp(v,k) @ b

⇑sec(u) P(c, b,X(DoSReq(u, f(c,K−1
c)))) @ b

Since the session identifiers do not match, the DoS-request message is not consumed
and the protocol continues normal execution. Consequently, the attack cannot pre-
vent progress or force the target to write state.

An off-path attacker willing to expose itself is identical to the spoofed case, but
uses its own address. Since the attacker does not posses the information to form
a valid DoS reply, this information is spoofed as well. The rule for our attacker is
given as follows:

`e ↓at(k1) ATK(b) −→

↓sec(u,k2) P(e, b,X(DoSReq(u, f(e, K−1
e

))))

new u, k2, f(e, K−1
e

).

Off-Path Exposed DoS Request 7.2

As with the previous case, this attack will not succeed because the attacker does not
have access to the session identifier.

The off-path attackers failed because they did not possess the requisite session
identifier. We now consider on-path attackers that can read discovery messages that
have been sent. Since discovery messages contain both the session identifier and
the address of the node running the establishment responder, the on-path attacker
can obtain the information needed to form the DoS-request message by observing
the discovery messages in the network. If the attacker only obtained a valid session
identifier and has not also obtained an address where that session is running, then
the attack would have the same outcome as the off-path attack because the message
from the attacker will not contain the expected session identifier. Consequently, all
of our on-path attackers are constructed to obtain both a session identifier and the
address where that session is executing. The rule for our on-path spoofed attacker
is given as follows:

P(s, d,C(D(b, u))) @a ` ↓at(k1) ATK() @ e −→

↓sec(u,k2) P(c, b,X(DoSReq(u, f(c,K−1
c)))) @ e

new c, k2.

On-Path Spoofed DoS Request 7.3

135

Suppose b is executing an instance of session v, then, upon receiving the DoS
request message from this attacker, the multiset will contain terms

↓eresp(v,k)

⇑sec(v) P(c, b,X(DoSReq(v, f(c,K−1
c)))).

Since this is a valid DoS-request message, the attacker forces Rule ME.2.1 to fire,
forming a DoS-reply message and sending it to the spoofed addresses. Notice that
no tunnel state is written, but forming the DoS-reply message may require some
computational effort. An on-path attacker can send any number of these messages
at the node and it will not ‘break’ the protocol because the state machine responds
to any DoS-request message until a valid establishment request message is received.

Our on-path exposed attacker behaves similarly to the spoofed attacker, but uses
its own address. The rule for our attacker is given as follows:

P(s, d,C(D(b, u))) @a ` ↓at(k1) ATK() @ e −→

↓sec(u,k2) P(e, b,X(DoSReq(u, f(e, K−1
e

)))) @ e

new k2.

On-Path Exposed DoS Request 7.4

In this case, the attacker has sent the establishment responder the DoS-request
message containing a valid session identifier as well as the attacker’s address, and
Rule ME.2.1 responds by forming a DoS-reply message to the attacker. In and
of itself, this attack does not break the protocol or force it to write state unless
followed by a valid establishment request from the attacker that arrives before an
establishment-request message arrives from an honest node.

7.3.2 Attacks on DoS Reply

The first action taken by the modified establishment initiator is to send the responder
a DoS-request message. Upon receiving a DoS-reply message, the establishment
initiator performs a verification of the message via a call to the DoSCheck command.
Rule M.1.2 will not execute unless a valid DoS-reply message is received. In this
section, we examine attackers targeted at the DoS-reply message. These attackers
generate and send DoS-reply messages with the goal of having them accepted by the
establishment initiator as valid.

An off-path spoofed attack on the DoS-reply message cannot obtain the infor-
mation in a DoS-request message and instead spoofs the required information and
sends it to the establishment initiator. Our attacker is defined by the following rule:

136

`e ↓at(k1) ATK(a) −→

↓sec(u,k2) P(c, a,X(DoSRep(u, h(f(a,K−1
a)))))

new u, h(f(a,K−1
a)), c, k2.

Off-Path Spoofed DoS Reply 7.5

Suppose a is executing an instance of session v, then upon receiving the DoS-reply
message from the attacker, the multiset will contain terms

〈v, a, b, s, d, k0, k1〉

⇑sec(u) P(c, b,X(DoSRep(u, h(f(a,K−1
a))))) @ a.

Since the source address and the session identifier are spoofed, the message will
not pattern match. Hence Rule ME.1.2 does not execute and consequently, this
attacker neither interrupts progress nor forces its target to write state.

An off-path exposed attacker performs the same actions as the previous case,
but uses its own address rather than a spoofed address. Our attacker is defined as
follows:

`e ↓at(k1) ATK(a) −→

↓sec(u,k2) P(b, e,X(DoSRep(u, h(f(e, K−1
e

)))))

new u, k2, h(f(e, K−1
e

)).

Off-Path Exposed DoS Reply 7.6

As with the previous case, the attack has failed to produce a message containing
the expected session identifier and expected source address.

If the initiator is awaiting a DoS reply, then it has sent a DoS-request message to
a node. A on-path attacker can observe DoS-request messages in the network and use
the information in the message to form a DoS reply. For on-path DoS-reply attacks,
we define a spoofed attacker as one who is unwilling reveal its address and is also
unwilling to generate a DoS-reply message. Instead, the attacker uses the address in
the DoS-request message that it has observed. In the case where the DoS-protection
mechanism would require this node to perform some computational activity, as do
puzzles, it is understandable that an attacker would not wish to commit its own
resources. Our attacker is defined as follows:

P(a, b,X(DoSReq(u, f(a,K−1
a)))) @ b `

↓at(k1) ATK() @ e −→

↓sec(u,k2) P(b, a,X(DoSRep(u, h(f(a,K−1
a))))) @ e

new k2, h(f(a,K−1
a))

137

On-Path Spoofed DoS Reply 7.7

Upon receiving the DoS-reply message from the attacker, the establishment ini-
tiator’s multiset has the terms

〈v, a, b, s, d, k0, k1〉@a

↑sec(k1) @ a

⇑sec(v) P(b, a,X(DoSRep(v, h(f(a,K−1
a))))) @ a,

but Rule ME.1.2 will not execute since the DoS-reply message is invalid. Hence
the attacker fails to prevent progress or force tunnel state to be written.

Our exposed on-path attacker performs the same actions as the spoofed attacker,
but is willing to generate the DoS reply. Note that the attacker does not use its
own address in the message because it knows that the target is expecting a specific
address, instead, the phrase ‘exposed’ is used here to mean that the attacker is willing
to compute a DoS reply using its own resources. The rule for our attacker is given
as follows:

P(a, b,X(DoSReq(u, f(a,K−1
a)))) @ b `

↓at(k1) ATK() −→

↓sec(u,k2) P(b, a,X(DoSRep(u, h(f(a,K−1
a))))) @ e

new k2.

On-Path Exposed DoS Reply 7.8

Upon receiving the DoS-reply message from the attacker, the establishment ini-
tiator’s multiset has terms

〈v, a, b, s, d, k0, k1〉@a

↑sec(k1) @ a

⇑sec(v) P(b, a,X(DoSRep(v, h(f(a,K−1
a))))) @ a.

In this case, the attacker has generated a valid response and hence the establishment
initiator would execute Rule ME.1.2, sending the establishment-request message
containing a signature. If a DoS-reply message originating at an honest node arrives
at this node at some later point in time, then it will be ignored. The net effect is that
while the attacker has forced itself past the DoS protections, it does not, in and of
itself, halt protocol progress or force tunnel state to be written. Note that a different
variation of the protocol may handled this differently that would have allowed the
protocol to recover. On the other hand, had we could have assumed that the stale
sate would expire and the protocol rerun, but we have not modeled this behavior
here.

138

7.3.3 Attacks on Establishment Request

If an attacker can get the establishment responder to accept his request message, then
that node will write the state as indicated in the malicious message and hence could
break the tunnel complex. A message arriving from an honest source at a later point
in time will be ignored. The attacks considered here are aimed at the establishment-
request message and assume that the establishment-responder processes is in a mode
waiting for an establishment-request message to arrive possessing a specific session
identifier.

Our off-path spoofed attacker generates all of the fields of the establishment-
request message as well as spoofing a source address and session identifier and sends
the result toward a designated target. Our attacker is defined in the following rule:

`e ↓at(k1) ATK(b) −→

↓sec(u,k2) P(c, b,X(Req(s, d, u, ιc,Ξ
c, g)))

new u, c, s, d, ιc, Ξc, k2, g.

Off-Path Spoofed Establishment Request 7.9

Suppose the establishment responder has been invoked in session v and sent a
DoS reply. Upon receiving the establishment-request message from the attacker, the
multiset will contain terms

↓eresp(v,k)

⇑sec(u) P(c, b,X(Req(s, d, u, ιc,Ξ
c, g))).

Since u 6= v, the attacker’s message will not be consumed by an execution of Rule
ME.2.1. Hence, this attacker fails to interrupt progress or to force the target to
write state.

Our off-path exposed attacker behaves similarly to the spoofed attacker above,
but will use its own address and credentials. Our attacker is defined in the following
rule.

Ξe `e ↓at(k1) ATK(b, s, d) −→ ↓sec(u,k2) P(e, b,X(Req(s, d, u, ιe,Ξ
e, g)))

new u, s, d, ιe, k2, g.

Off-Path Exposed Establishment Request 7.10

The establishment responder reacts the same as it did with the spoofed attacker
because no off-path attacker has the capability of obtaining the session identifier.

139

A on-path attacker can observe traffic and can therefore possesses the session
identifier. Specifically, a on-path attacker can observe a DoS-reply message being
sent by a node and send an establishment-request message. If successful, the attacker
will force its target to write the wrong state for the tunnel.

Our on-path spoofed attacker observes the DoS-reply message and sends its es-
tablishment message to that node containing spoofed filter entries as well as spoofed
credentials. Rather than use a spoofed reply address, the attacker can use the ad-
dress in the DoS-reply message, which is the expected address. On the other hand,
it uses spoofed credentials. Since the attacker is not using its own address, it cannot
produce a valid signature so this too must be spoofed.

P(b, a,X(DoSRep(u, h(f(a,K−1
a))))) @ b `

↓at(k1) ATK() @ e −→

↓sec(u,k2) P(a, b,X(Req(s, d, u, ιc,Ξ
a, g))) @ e

new k2, s, d, ιa, Ξa, g.

On-Path Spoofed Establishment Request 7.11

When the establishment request arrives at the target, the message possesses the
expected session identifier, but fails the signature check and hence Rule ME.2.2 is
not executed and the attack fails. Hence the attacker fails to interrupt progress or
to force the target to write state.

Our on-path exposed attacker is similar to the previous case except that it is
willing sign the message, and use its credentials.

Ξe,P(b, a,X(DoSRep(u, h(f(a,K−1
a))))) @ b `

↓at(k1) ATK() @ e −→

↓sec(u,k2) P(c, b,X(Req(s, d, u, ιe,Ξ
e, g))) @ e

new k2, s, d

where g = Sign(K−1
e

).

On-Path Exposed Establishment Request 7.12

The establishment responder does not retain the address of the node that sent
the DoS request so the attacker can send an establishment request with its own
address as the source. When the attacker’s establishment-request message arrives at
the target, it possesses the correct session identifier as well as a valid signature so
Rule ME.2.2 is executed, invoking the authorization layer with the credentials from

140

the attacker. Since we have assumed that the attacker does not possess credentials
to satisfy the policies, we can conclude that the authorization layer returns false;
therefore, Rule ME.2.3 fails to execute and tunnel state is not written. On the
other hand, the protocol is now in a state where it cannot respond to the arrival of
an establishment-request message from an honest principal.

7.3.4 Attacks on Establishment Reply

The establishment reply message can be subject to logical attacks similar to the
establishment request message. Suppose the establishment initiator has sent a
DoS-request message and received a valid DoS-reply message and then sent an
establishment-request message. If an attacker sends this node an establishment-
request message that is accepted, it can cause the node to write state for an invalid
tunnel.

An off-path spoofed attacker cannot view traffic and can only guess that a request
message has been sent and the attacker cannot obtain the session identifier or the
SPI that was sent from the initiator to the responder or any of the other information
in the establishment-request message. Our attacker generates its advertised address,
the fields in the establishment reply messages, and a signature; the attacker then
forms a message and sends it toward its target. The rule for this attacker is given
as follows:

`e ↓at(k) ATK(a) @ e −→

↓sec(u,k′) P(c, a,X(Rep(s, d, u, ι, ι′,Ξu, g′)))

new c, s, d, u, k′ ι, ι′, Ξu, g′.

Off-Path Spoofed Establishment Reply 7.13

Upon receiving the attacker’s message, the multiset has

〈v, a, b, s′, d′, k1, k2, ιa〉@a

⇑sec (P(c, a,X(Rep(s, d, u, ι, ι′,Ξu, g′′)))) @a,

but the initiator is waiting on a message of the form

⇑sec (P(b, a,X(Rep(s′, d′, v, ιa, ιx,Ξ
v, g′)))) @a.

The off-path attacker has no way of obtaining the session identifier v or the nonce ιa
nor does this message originate from the expected node; so Rule ME.1.3 does not
execute and the protocol ignores this message. Hence the protocol does not interfere
with progress or cause state to be written.

Our off-path exposed attacker performs the same actions as the spoofed attacker,
but uses its own address and credentials and produces a valid signature. The rule
for this attacker is given as follows:

141

Ξe `e ↓at(k) ATK(a) @ e −→

↓sec(u,k′) P(e, a,X(Rep(s, d, u, ι, ι′,Ξe, g′)))

new c, a, b, u, k′, ι, ι′

where g = Sign(K−1
e

)

where Ξu = Ξe.

Off-Path Exposed Establishment Reply 7.14

This attacker exposes its address, but is unsuccessful for the same reasons as the
attacker unwilling to expose its address.

If the establishment initiator is to accept an establishment-reply message, then
the message must possess information that was sent in the establishment request as
well as a valid signature and valid credentials. An on-path attacker can obtain the
information from the request message. The spoofed attacker will not expose itself
by using its own credentials and will spoof the signature as well. The rule for this
attacker is given as follows:

P(a, b,X(Req(s, d, u, ιa,Ξ
a, g))) @ b `

↓at(k) ATK() @ e −→

↓sec(v,k′) P(b, a,X(Rep(s, d, u, ιa, ιe,Ξ
u, g′))) @ e

new k′, ιe, Ξu, g′.

On-Path Spoofed Establishment Reply 7.15

Upon arrival at the responder, the following terms are in the multiset

〈u, a, b, s, d, k1, k3, ιa〉@a

⇑sec(u) P(b, a,X(Rep(s, d, u, ιa, ιe,Ξ
u, g′))) @ a

Rule ME.1.3 fails to execute because the message does not contain a valid signature.
Hence the attacker fails to interrupt the progress of the protocol or to force state to
be written.

The on-path exposed case is similar to the previous case, but is willing to use its
credentials and sign the message. The rule for this attacker is given as follows:

Ξe, P(e, b,X(Req(s, d, u, ιa,Ξ
b, g))) @ b `

↓at(k) ATK() @ e −→

↓sec(u,k′) P(b, a,X(Rep(s, d, u, ιa, ιe,Ξ
u, g′))) @ e

new k′, ιe, Ξu

where g′ = Sign(K−1
e

)

where Ξu = Ξe.

142

On-Path Exposed Establishment Reply 7.16

When the attacker’s message arrives at its target, it contains the correct session
identifier, but not a valid signature since the attacker e is presumed not to be able to
produce a valid signature for the establishment responder b; consequently, no state
is written.

7.3.5 Composing Attacks on Establishment

Having studied attacks on each of the establishment-layer messages, we now consider
how the attackers defined above can be composed to achieve the maximum effect.
Observing that on-path-exposed attacks seem to make the most progress, we restrict
our analysis to these attacks. The attacker rules and detailed analysis presented
above are not reproduced here, but we do give a brief description of the attack and
an analysis of its effectiveness. Attacks on the establishment responder and the
establishment initiator are considered separately.

Our on-path exposed attack on the establishment-responder process is formed
from the composition of the attackers On-Path Exposed DoS Request 7.4 and On-
Path Exposed Establishment Request 7.12. First, On-Path Exposed DoS Request
observes a discovery message and sends a DoS-request message to the node advertised
in the discovery message. This node will be executing the establishment-responder
process. Since the attacker possesses the session identifier, the responder node exe-
cutes Rule ME.2.1 and sends a DoS reply message. On-Path Exposed Establish-
ment Request observes the DoS-reply message sent by the establishment-responder
process in response to the previous attack message, but does not verify the DoS
reply. The attacker then forms an establishment-request message and sends it to
the establishment responder. This message possesses a valid signature, but does not
possess credentials that will satisfy the discovery policy, and consequently the attack
fails to force the target to write tunnel state. On the other hand, once the attacker
has forced the target into this state, progress is halted for that particular session.
Suppose a DoS request from an honest node arrives, then the protocol is in a state
where it does not respond.

Our on-path exposed attack on the establishment initiator is formed from the
composition of the attackers On-Path Exposed DoS Reply 7.8 and On-Path Ex-
posed Establishment Reply 7.16. First, On-Path Exposed DoS Reply observes a
DoS-request message and generates a valid DoS-reply message. On-Path Exposed
Establishment Reply observes the establishment-request message sent by the estab-
lishment initiator in response to the first message sent by the attacker and forms an
establishment-reply message. The attacker willing to expose itself in the sense that
it signs messages and uses its own credential set, but the signature is not valid so
the target does not write state. The attack has forced the target into a state where
it is expecting a valid establishment-reply message, and if an honest node running
establishment responder sends this message, then progress continues.

143

7.4 Attacks on Discovery Protocols

The attacks studied in the previous section are directed at the establishment layer,
where the attackers sent only establishment-layer messages. The focus of this section
are attacks that target the discovery layer. These attacks are targeted at gateways on
the path running the discovery-responder process and aim to either force the target to
write state or to prevent progress of a currently executing protocol. Our discovery
layer attackers all have the same basic skeleton. The attacker sends a discovery
message to a gateway. The discovery protocol reacts by sending a DoS-request
message. The attacker will then send establishment-layer messages in order to force
the target to write state or that interrupts the progress of an already executing
discovery session. The discovery attackers under investigation have the range of
capabilities defined in Table 7.1.

Several of our attackers make use of a modified version of the establishment
responder atk eresp that performs all the same actions as the legitimate attacker,
except that it does not verify the signature on the establishment-request message.
The attacker does not verify the credentials contained in the establishment-request
message and it commits no state. We will not write out these rules since they
are basically the same as the establishment responder minus the aforementioned
signature verification and writing of state. An attacker executing this will generate
a valid DoS-reply message as well as send an establishment-reply containing valid
address, credentials, as well as a valid signature.

Our off-path spoofed attacker will generate an address and session identifier and
send the target a discovery message with the spoofed address. The rule for this
attacker is given as follows:

`e ↓at(k1) ATK(a) −→ ↓sec(u,k2) P(b, a,C(Dis(b, u)))

new k2, u, b.

Off-Path Spoofed Discovery 7.17

The target gateway will respond by sending a DoS-request message to the spoofed
address b. Since b is generated by the new operator, it is ensured to be unique and
thus the message is sent to a nonexistent node, but even if the node did exist and
were running a discovery session, no reply will ever be sent due to the fact that
the session identifier is spoofed and hence distinct from any other in the system.
Therefore, no state is written on the target.

Our off-path-exposed attacker on discovery is willing to expose itself and calls
the attacker establishment responder atk eresp. The rule for this attacker is given
as follows:

144

`e ↓at(k1) ATK(a) −→ ↓sec(u,k2) P(b, a,C(Dis(e, u))), ↓atk eresp(u,k3)

new k2, k3, u, b.

Off-Path Exposed Discovery 7.18

Upon receiving the discovery message, the target will send the attacker a DoS-
request message and the attacker sends back a valid DoS-reply to the target, which
replies with an establishment request message. The attacker sends an establishment-
reply message that possesses the correct information taken from the establishment-
request message and it also has a valid signature, but the attacker cannot produce
a valid credential set; hence, the target will not write state.

An on-path-spoofed attacker targeting the discovery layer could detect a discovery
packet released at say node b and send another discovery packet to, say, node c.
(Possibly using the forwarding table to direct the packet to the desired node.) Node
c then responds as if it were the next node on the path. In the ideal case, the attacker
sends it to a node that may have the correct credentials.

P(s, d,C(D(b, u))) @a `e ↓at(k1) ATK(c) −→ ↓sec(u,k2) P(s, d,C(D(b, u)))

new k2.

On-Path Spoofed Discovery 7.19

The attack detects a discovery packet in session u advertising node b and sends
a discovery packet to its target c with those same values. Suppose node d is the
next node on the path that will receive and process the discovery message. Hence,
there will be two DoS-request messages (from c and d) that arrive at b. There is the
possibility that node b will execute establishment with c or d or both. If the exchange
between b and d terminates successfully before the establishment request from c

arrives and the establishment responder is not invoked again so that establishment
with c never begins, then the attack does no harm. If the establishment between b

and c successfully terminates and establishment responder is not invoked again so
that establishment with d never begins, then the attack creates a different tunnel
complex that includes gateways that would otherwise have not been included in
the complex, but if there is a path to the destination and these gateways satisfy
the protocol session’s discovery policy and that the credentials that are delivered are
satisfactory to traverse the gateways on this new path, then the attack does no harm.
If c does not possess credentials to satisfy the discovery policy at b, then progress
may be interrupted. If like the nested protocols, b invokes establishment responder
and one session terminates, then it could be the case that tunnels are set up between

145

b and c as well as between b and d. In this case, the attack succeeds in breaking the
tunnel complex.

A on-path exposed attacker can obtain the session identifier of a discovery proto-
col session in progress and send a discovery message to a target on the path to force it
to run establishment with it rather than the node advertised in a discovery message
sent by an honest node. If this attack were successful, state would be written at the
target for the session in question breaking the tunnel complex.

P(s, d,C(D(b, u))) @a `e ↓at(k1) ATK() −→

↓sec(u,k2) P(s, d,C(D(e, u))), ↓atk eresp(u,k3)

new k2, k3.

On-Path Exposed Discovery 7.20

The discovery packet arrives at the target and establishment is invoked with the
attacker. The attacker generates and sends a DoS-reply message that is valid. In
response to receiving the establishment reply, the attacker generates and sends an
establishment-response message that contains valid source address, session identifier,
and signature, but the attacker does not contain valid credentials and the protocol
fails to write state.

7.4.1 Logical Attacks on a Tunnel Complex

Suppose that a discovery protocol has successfully set up a tunnel complex. A logical
attack against the tunnel complex could break the tunnel complex by coercing one
or more nodes in a complex to alter their association or mechanism database entries.
Consider a case where a tunnel has been set up between nodes a and b. Suppose
node a has entries In(b, ιa) and Out(b, ιb) in the association database and entries

Mech(s −→ d : u : Bndl[In(b, ιa)])

and
Mech(d −→ s : u : Bndl[Out(b, ιa)]

in the inbound and outbound mechanism databases. If a new entry In(b, ιx) gets
added to the association database, no problem will arise because the In(b, ιa) entry is
still in the database and that is the association pointed to in the inbound mechanism
database. Suppose an adversary has obtained the session identifier u and the filter
entry s −→ d and the attack aims to set up a a pair of associations between e and
b. If the attack is successful, the inbound mechanism database entry becomes

Mech(s −→ d : u : Bndl[In(b, ιa)In(e, ιa′)])

146

due to the assumption that a new entry is nested inside of existing associations. As
a result, a packet arriving at a in the proper tunnel is dropped.

Exposed On-Path Discovery 7.20 can be employed in such an attack, but we have
seen that they are destined to fail if the proper credentials are lacking.

7.5 Resource-Exhaustion Attacks

The focus of the previous two sections was whether or not a specific collection of
attackers succeeds from the perspective of a logical attack. In the remainder of
this chapter, we analyze the same attackers to determine whether they succeed as
resource-exhaustion attacks. This will allow us to better judge the effectiveness of
the DoS protections that were incorporated into the establishment protocol in Sec-
tion 7.2. The analysis is performed using a cost model in the spirit of Meadows [89].
We note that JFK has been subjected to a similar analysis [111] and no claim is
made as to the novelty of our analysis technique. Instead, the novelty lies in the ap-
plication of the method to discovery protocols. The analysis performed here informs
the development of the theory presented in the next section.

The cost incurred when executing a protocol is obtained by summing the costs of
individual operations being performed. Therefore, in order to perform our analysis,
it is necessary to define the cost of each operation. Before assigning specific costs
to specific events, we briefly discuss the guiding principles behind the assignment.
The high-cost operations of interest occur at the establishment and authorization
layers. We will attach no cost to sending and receiving a message thus no cost
is assigned to operations performed at the secure processing and forwarding lay-
ers. The tunnel calculus new operator is also assumed to be cost free. A small
cost is assigned to pattern matching performed on messages at the discovery and
establishment layer. Generating a cryptographic signature or performing signature
verification typically consumes some CPU resources. The tunnel-calculus establish-
ment layer employs asymmetric cryptography, which is usually less efficient than
symmetric cryptography. With some asymmetric cryptosystems, signature genera-
tion can take much longer than signature verification. For instance, benchmarks for
1024-bit Rivest-Shamir-Adleman (RSA) [107] have measured 10.0ms for signing and
0.5ms for signature verification on a 1GHz processor [96]. Different cryptographic
systems make different trade-offs, for instance, [96] measures Digital Signature Algo-
rithm (DSA) [97] signature verification at 6.2ms, signature generation at 5.1ms, and
signature generation with precomputation of message independent values at 3.0µs.
In our cost model, we shall assume performance similar to RSA, with the cost of
signature generation an order of magnitude greater than signature verification. Only
negligible cost is attached to generating a discovery DoS-request message or verify-
ing the DoS-reply message. The cost of DoS reply generation can vary. Cookies,
for example, exact little cost on the node generating the DoS-reply message while
cryptographic puzzles impose a high cost on the node generating the DoS reply. We

147

shall consider both cases and designate the low-cost operation as Option-L and the
high-cost option as Option-H. Credential verification is the most costly operation in
our model due to the complexities involved. With this strategy in place, we assign
specific cost values to specific operations.

Let the cost set be the set of naturals N. We Define a cost function as follows:

G : Events −→ N,

where the events in question are operations in the tunnel calculus.

G(e) =

10 if e = message pattern match values (session identifier, SPI, etc.)
20 if e = DoS Req Generation
20 if e = DoS Rep Generation (Option-L)
1000 if e = DoS Rep Generation (Option-H)
20 if e = DoS Rep Verification
2000 if e = Signature Generation
200 if e = Signature Verification
6000 if e = Credential Set Verification
0 otherwise

The specific values were not chosen based on any quantitative analysis, but the
process was guided by the strategy outlined above. Cheap operations have a cost
less than 100, high-cost operations have a cost greater than 1000, while mid-rage
operations have a cost that falls between 100 and 1000. Pattern matching, DoS
request generation, DoS reply verification are all cheap, while the cost of DoS reply
generation varies between low and high depending on which option the protocol uses.
Signature generation cost is high, where verification is of medium cost. Credential
set verification is assigned a cost that is three times that of signature generation
because of the complexity of the operations performed by the authorization layer
such as forming the credential chain and verifying many credentials.

An intruder cost function similarly maps the cost of the actions of an intruder
to the their cost. Since our intruders perform the same action, we assume that the
cost function is the same for the intruder.

7.5.1 Message Cost Functions

When a message arrives at a node, one or more message verification operations, often
referred to as message verification events, are performed before a message is accepted.
In most cases, verification events are those things that must be true before a rule
fires. This may only involve performing pattern matching to verify that a message
contains an expected session identifier or some other data. On the other hand, some
rules also verify a DoS-reply message or verify a signature. Although it appears on
the right-hand side of rules, the establishment layer invokes the authorization layer
to verify that credentials satisfy policy and failure halts progress of the protocol.

148

Each of these activities is classified as a verification event. As a design philosophy,
we prefer to perform the message acceptance checks that incur the smallest cost
before those that involve a higher cost. For instance, when an establishment-request
message arrives, it must pattern match, and if that is successful, the signature is
verified, and if that is successful, the costly credential verification is performed.

For each establishment message and discovery message that is received, we define
a message processing cost function G ′ that defines the cost of reaching and performing
a particular verification event. Stating this formally, if verification events V1, . . . , Vn

are performed after the arrival of a message, then, for each verification event Vj,

G ′(Vj) = G(V1) + · · · + G(Vj).
We now compute the message processing cost for each verification event per-

formed when processing a discovery message, DoS-request message, DoS-reply mes-
sage, establishment-request message, and the establishment-reply message.

• Discovery. Pattern matching is employed to verify that the message is of the
correct form.

– G ′(ptrn-mtch) = 10.

• DoS request.(ME.2.1) Pattern matching is employed to verify that the mes-
sage format and that it possesses the expected session identifier.

– G ′(ptrn-mtch) = 10.

• DoS reply. (ME.1.2) Pattern matching is employed to verify the message
format and session identifier. If successful, the DoS-reply message is verified.

– G ′(ptrn-mtch) = 10.

– G ′(DoS-check) = 30.

• Establishment request. (ME.2.2) Pattern matching verifies the message for-
mat and that the message has the correct session identifier. Signature verifica-
tion is then performed. If the signature is correct, then the authorization layer
is invoked to verify credentials.

– G ′(ptrn-mtch) = 10.

– G ′(sig-chk) = 210.

– G ′(cred-chk) = 6210.

• Establishment reply. (ME.1.3) Pattern matching verifies the message format
and that the message has the correct session identifier and contains the SPI
value sent in the request. If this is successful, then signature verification is then
performed. If the signature is correct, then the authorization layer is invoked
to verify credentials.

149

– G ′(ptrn-mtch) = 10.

– G ′(sig-chk) = 210.

– G ′(cred-chk) = 6210.

The message acceptance cost measures the cost of a verifying that a message is
valid. The protocol engagement cost function

E : Event −→ N

is defined as the sum of the cost of events performed at a node after the receipt
of a message (⇑sec) until the next message is sent (↓sec(k)). This represents the
cost of successfully accepting a message and the cost of any events that result from
accepting the message. The protocol engagement cost for each of the messages
considered above is given as follows.

• Discovery Message. Performs pattern matching and invokes establishment,
which generates a DoS-request message.

E(Disc) = 30.

• DoS Request. Pattern matching is performed to verify that the message pos-
sesses the correct session identifier and a DoS-reply message is generated and
sent. Recall that there are two options for the cost of DoS reply generation
and we consider both here.

E(DoS Request Option-L) = 30

E(DoS Request Option-H) = 1010

• DoS Reply. Pattern match, verify the DoS-reply message, and generate an
establishment request message, which requires a signature be generated.

E(Dos Reply) = 2030.

• Establishment Request. Before the message is accepted, it must pass a pattern
match, signature verification, and credential verification. Upon acceptance of
this message, the establishment reply is generated and sent, which requires a
digital signature be generated.

E(Establishment Request) = 8210.

• Establishment Reply. The verification events are pattern matching, signature
verification, and credential verification. Depending on the higher layer proto-
col, other actions may follow, but are not considered here, so the engagement
cost is the same as the message acceptance cost.

E(Establishment Reply) = 6210.

150

7.5.2 Evaluating the Cost of Attacks

Our objective is to evaluate DoS protections by comparing the cost incurred by an
attacker against the cost incurred by their targets. To facilitate our analysis, we
introduce a tolerance relation that will serve as a metric to judge the effectiveness
of an attack. We then use this relation to analyze the DoS resistance of each estab-
lishment layer message. Finally, we examine each of our attackers, and compute the
cost incurred by both the target and attacker and apply the tolerance relation to
judge the success or failure of the attack.

The intruder cost function A : Events −→ N maps an event to the cost borne
by an intruder to force this event to succeed. We say that a protocol is fail-stop
with respect to A(E) if an attacker sends a message that arrives before E, then the
attacker should have to bear the cost of at least A(E) to force E to occur.

DoS resistance is defined in terms of a tolerance relation T ⊂ N∗ × N∗ that is a
subset of the protocol and attacker costs. The relation is defined as follows.

T (x, y) =

0 ≤ x < 100 and 0 ≤ y

100 ≤ x < 1000 and 100 ≤ y

1000 ≤ x and 1000 ≤ y,

where x and y range over the naturals. This relation says that an attacker forcing its
target to perform an operation having the message processing cost in the range of x
is acceptable if the attacker incurs a cost in the range of y. The values chosen reflect
the philosophy that a DoS attacker is successful if it can cause higher-cost operations
to be performed at significantly less cost to itself. In order to determine whether a
specific verification event is DoS resistant, we must perform the following analysis.
Consider the verification events that follow the delivery of a secure layer message to
the establishment or discovery layers. Suppose action E1 precedes verification action
E2 in the execution of a rule, then we must verify that

(G ′(E2),A(E1)) ∈ T .

This means that the cost borne by the attacker in forcing the event E1 to succeed
in relation to the cost of executing E2 at the target is within tolerance. If E is the
final verification action for a message, then we must verify that

(E(E),A(E)) ∈ T .

This means that the cost borne by the attacker to force the target to successfully
perform E in relation to the cost incurred at the target in performing E, as well as
successive operations until the next message is sent, is within tolerance. The idea
behind the metric and our relation T is that if the cost to an attacker to force an
operation to occur is at least the same magnitude as the cost borne by the target,
then it is within tolerance. We now apply this metric to analyze the DoS resistance
of the establishment layer.

151

The establishment initiator is the first to be analyzed. There are no verification
events in Rule ME.1.1, but since this rule is usually invoked in response to the
arrival of a discovery message, we consider the verification operations performed on
this message. An attacker can generate and send a spoofed discovery message at no
cost to itself, hence

(G ′(ptrn-match) = 10,A(Disc msg del) = 0) ∈ T .

(Although a slight abuse of notation, we include the operation whose cost we are
evaluating by say op = cost.) This is also a message-accept event, so we need to
consider the protocol engagement cost that include the cost to generate the DoS-
request message. In this case

(E(ptrn-match) = 30,A(ptrn-match) = 0) ∈ T .

Rule ME.1.2 first performs pattern matching on the DoS-reply message and the
preceding action is message delivery, which an attacker can induce at no cost to
itself. Hence,

(G ′(ptrn-match) = 10,A(DoS rep msg del) = 0) ∈ T .

The next event verifies that the DoS-reply message is valid and if so, generates a
signed message. An attacker able to obtain the correct session identifier can succeed
at passing this check at no cost to itself. Therefore

(G ′(verify DoS Rep) = 30,A(ptrn-match) = 0) ∈ T .

This is a message-accept event so we must also consider the protocol engagement
cost that includes the cost of generating the signature on the establishment request.
Attackers are considered for both DoS-reply message generation costs. In the case of
Option-L DoS reply generation, the attacker willing to generate DoS-reply message
can force the target to perform a high-cost action at little cost to itself. Yielding

(E(verify DoS Rep) = 2030,A(verify DoS Rep) = 20) 6∈ T

and hence is outside of the acceptable tolerance. In the case of Option-H DoS
reply generation, the attacker cannot force the DoS-reply message generation without
performing a high-cost operation itself. Hence,

(E(verify DoS Rep) = 2030,A(verify DoS Rep) = 1000) ∈ T .

Since the attacker must perform a high-cost operation in order to force one, the
relation is within tolerance. Rule ME.1.3 first performs pattern matching, followed
by signature verification, and finally credential verification. Since an attacker can
force message delivery at no cost to itself,

(G ′(ptrn-match) = 10,A(est repl msg del) = 0) ∈ T .

152

A on-path attacker can obtain the information required to successfully pattern-match
at no additional cost to itself. Hence,

(G ′(sig-verify) = 210,A(ptrn-match) = 0) 6∈ T .

A on-path attacker willing to generate a signature can force the target to verify the
credentials, but only at a high cost to itself.

(G ′(Cred. Verify) = 6210,A(sig gen) = 2000) ∈ T ,

which is within tolerance. Since we have assumed that no attacker can possess the
credentials necessary to satisfy policy, we assign A(Cred Verify) = ∞. Given that
there are no messages sent after the establishment reply is accepted,

(E(Cred Verify) = 6210,A(Cred Verify) = ∞) ∈ T .

We now analyze the establishment-responder messages. Rule ME.2.1 verifies
that the session number is correct using pattern matching. The preceding action is
the receipt of a message, which a on-path attacker can generate at no cost to itself.

(G ′(ptrn-mtch) = 10,A(DoS request msg del) = 0) ∈ T .

This is a message-accept event so we need to consider the protocol engagement
values as well. Given that the next event is the generation of a DoS-reply message,
we consider both the case of low-cost DoS reply generation and high-cost DoS reply
generation. A on-path attacker can obtain the information to force the target to
pattern match at no cost to itself. In the case of Option-L DoS reply generation, the
relation is

(E(ptrn-mtch) = 30,A(ptrn-match) = 0) ∈ T ,

which is within tolerance. In the case of Option-H DoS reply generation, the relation
is

(E(ptrn-mtch) = 1010,A(ptrn-match) = 0) 6∈ T ,

which is not within tolerance. We see that, although the high-cost operation is in-
tended to protect the establishment initiator against attacker bots willing to cheaply
generate DoS-reply messages, it opens up an avenue of attack against the establish-
ment responder. In a traditional DoS analysis we are concerned the cost to one node,
namely the cost borne by a server rather than the client initiating the protocol, but
in our case, both nodes may be gateways, so we must be concerned with both the
discovery initiator and discovery responder. Rule ME.2.2 has three verification
events. The first is a pattern match, the second is a signature verification, and the
third is a credential verification. An attacker can force message delivery at no cost
to itself. Hence,

(G ′(ptrn-mtch) = 10,A(estab req msg del) = 0) ∈ T .

153

A on-path attacker can, at no cost to itself, obtain the information to force the
pattern match to succeed and consequently force the signature verification to occur.
Hence,

(G ′(Sig verify) = 210,A(ptrn-match) = 0) 6∈ T .

A on-path attacker willing to generate a signature can force credential verification.
Hence,

(G ′(Cred. Verify) = 6210,A(Sig Verify) = 2000) ∈ T ,

which is within tolerance because the attacker too must perform a high-cost opera-
tion. Since we have assumed that no attacker can possess the credentials necessary
to satisfy policy, we assign A(Cred Verify) = ∞. Given that no messages are sent
after the establishment request is accepted,

(E(Cred Verify) = 6210,A(Cred Verify) = ∞) ∈ T .

The tolerance relation gave us an indication of what attackers will succeed; our
attention now turns to analyzing the specific attackers defined above. For each of our
attackers, we shall compute the cost incurred by both an attacker and its target. The
cost to the attacker is obtained by summing the cost of the operations performed
by an attacker. We compute the cost to the target by summing the cost of the
operations performed in response to the attacker’s messages. The exact operations
performed by the target are detailed in the analysis performed above. The results
of our computations are given in tabular form, which makes it easy to see what
attackers fall within our desired tolerance.

Table 7.2 gives the costs incurred by both attacker and target for each of the
establishment layer attacks defined above. We provide a brief description of the
actions performed by the attacker and target, from which it should be possible to
reproduce the calculations that produced the values shown in each row of the table.
Off-Path Spoofed DoS Request simply sends a spoofed message and the target only
performs a pattern match. Off-Path Exposed DoS Request forms a DoS-request
message, but the target only performs a pattern match. Both on-path DoS request
attackers possess the session identifier and can therefore force the target to generate
a DoS reply. We compute the cost for both the case where the cost to generate the
DoS reply is negligible and the case where cost to generate this message is high.
The two off-path DoS reply attackers lack the session identifier, therefore, the target
only performs a pattern match. On-Path Spoofed DoS Reply sends a spoofed DoS
reply and consequently forces the target to both pattern match and verify the DoS
reply, but since DoS-reply verification fails, there is no signature generated. On-Path
Exposed DoS Reply generates a valid DoS reply and forces the target to generate a
signed establishment reply. We consider both the cases where the cost to generate
the DoS reply is low cost and the case where the cost is high. Both of the off-path
establishment request attackers simply generate messages at no cost to themselves
and the target only performs pattern matching. On-Path Spoofed Establishment

154

Attack Label Cost to Attacker Cost to Target

Off-Path Spoof DoS Req 7.1 0 10
Off-Path Exposed DoS Req 7.2 20 10
On-Path Spoof DoS Req 7.3 0 30
Option-L
On-Path Spoof DoS Req 7.3 0 1010
Option-H
On-Path Exposed DoS Req 7.4 20 30
Option-L
On-Path Exposed DoS Req 7.4 20 1010
Option-H
Off-Path Spoof DoS Rep 7.5 0 10
Off-Path Exposed DoS Rep 7.6 0 10
On-Path Spoof DoS Rep 7.7 0 30
On-Path Exposed DoS Rep 7.8 20 2030
Option-L
On-Path Exposed DoS Rep 7.8 1000 2030
Option-H
Off-Path Spoof Est Req 7.9 0 10
Off-Path Exposed Est Req 7.10 0 10
On-Path Spoof Est Req 7.11 0 210
On-Path Exposed Est Req 7.12 2000 6210
Off-Path Spoof Est Rep 7.13 0 10
Off-Path Exposed Est Rep 7.14 2000 10
On-Path Spoof Est Rep 7.15 0 210
On-Path Exposed Est Rep 7.16 2000 210

Table 7.2: Costs Incurred During Establishment Attacks

155

Request can obtain the session identifier and other information from the DoS-reply
message and force the target to perform a signature verification. On-Path Exposed
Establishment Request is willing to produce a signed message; hence, forcing the
target to pattern match, perform a signature verification, and perform a creden-
tial check. Off-Path Spoofed Establishment Reply only forces the target to pattern
match. Off-Path Exposed Establishment Attacker generates a signature, but the
target only pattern matches because the attacker lacks the requisite session identi-
fier. On-Path Spoofed Establishment Reply possesses the expected session identifier,
but does not generate a valid signature; hence, the target does not verify creden-
tials. Exposed Establishment Reply gets the session identifier and other information
needed to pattern match by observing the establishment-request message, but the
attacker cannot use its own address if it wants to make the most progress possible,
but instead uses the address that is expected, but this means it cannot produce
the expected signature and consequently the target pattern matches and verifies the
signature, but does not verify credentials.

Examining table 7.2, we see that the following attackers succeed in the sense that
the costs incurred by the attacker in comparison to those incurred by the target fall
outside of our threshold.

• On-Path Spoofed DoS Request Option-H.

• On-Path Exposed DoS Request Option-H.

• On-Path Exposed DoS Reply Option-L.

• On-Path Spoofed Establishment Request.

• On-Path Spoofed Establishment Reply.

The fact that the most serious threats come from on-path attackers corresponds with
the intuition of the capability of an intruder that can observe traffic.

Table 7.3 gives the costs incurred by both the attacker and target in our attacks
on discovery. The computation of the costs are a somewhat more subtle than the
in the previous table so we are more explicit here as to how we obtained the values
given in each row of the table. Off-Path Spoofed Attacker simply sends a discovery
message to the target at no cost to itself and the target pattern matches (10) and
then generates and sends a DoS request (20). Off-Path Exposed Discovery partici-
pates in the protocol by sending a discovery message, generating a valid DoS reply
message, as well as a signed establishment reply. Note that the successful attacker
must pattern match the DoS request (10) and establishment request messages (10),
and generate both the DoS-reply message (20 or 1000) and the establishment reply
(2000). The target must pattern match the discovery message (10), DoS-reply mes-
sage (10), and the establishment reply (10), generate the DoS request (20), generate
an establishment request (2000), and verify the DoS reply (20), verify the signature

156

Attack Label Cost to Attacker Cost to Target

Off-Path Spoof Disc 7.17 0 30
Off-Path Exposed Disc 7.18 2040 8270
Option-L
Off-Path Exposed Disc 7.18 3020 8270
Option-H
On-Path Spoof Disc 7.19 0 2060
On-Path Exposed Disc 7.20 2040 8270
Option-L
On-Path Exposed Disc 7.20 3020 8270
Option-H

Table 7.3: Costs Incurred During Discovery Attacks

on the establishment reply(200), and verify the credentials in the establishment re-
ply (6000). On-Path Spoofed Attacker detects a node that is running a discovery
session and sends the discovery message to its target using the session identifier and
address advertised in the discovery message; this is done at no cost to the attacker.
Since the node advertised in the attacker is running the establishment-responder
process, when the target sends a DoS-request message it will be processed and a
valid DoS reply sent back. The target then generates an establishment-request mes-
sage with a signature. In this case, we assume that the target does not possess
valid credentials to satisfy the discovery policy at the establishment responder so
the target does never receives an establishment-reply message. Consequently, the
cost incurred by the responder is the cost to perform two pattern matches (20), DoS
request generation (20), DoS reply verification (20), and signature generation (2000)
totals 2060. On-Path Exposed Discovery is carries out a complete exchange with
the target. Hence the attacker must pattern match the DoS-request message (10)
and establishment-request message (10), generate a DoS-reply message (20 or 1000)
and generate a signature (2000). The target must pattern match discovery, DoS
reply, and establishment reply messages (30), generate a DoS-request message (20),
verify a DoS reply (20), sign an establishment-request message (2000), verify a sig-
nature (20), and verify credentials (6000). From the table, we see that only On-Path
Spoofed Discovery falls outside of our original tolerance relation in that the attacker
can force the target to perform a high-cost operation at little cost to itself. On the
other hand, we see that only Off-Path Spoofed Discovery does not force the target
to perform a high-cost operation. Yet this is really just a consequence of the fact
that an attacker willing and able to send a valid DoS-reply message will negate the
DoS protection. So we feel these results hold for most protocols using cookies as for
DoS protections. Note that it may be of some interest to investigate other tolerance

157

relations. For instance a tolerance relation in which an attacker is not allowed to
force its target to perform a high-cost operation regardless of the cost incurred by
the attacker.

7.6 Resource-Exhaustion Theorems

Earlier in this chapter, we introduced a modified version of the establishment pro-
tocol that incorporates DoS protection, the tunnel-calculus was used to model a
collection of attackers, and we analyzed the effectiveness of the attacks from both
the perspective logical attacks and resource-exhaustion attacks. Informed by the
knowledge gained from these efforts, we formulate a theory that says a selected sub-
set of attackers cannot exploit honest nodes executing discovery protocols by forcing
them to execute high-cost operations.

The cost analysis performed above showed that several attacks can force an honest
node executing our discovery protocols to perform high-cost operations. In particu-
lar, on-path attackers are able to obtain information by observing messages sent by
executing protocols and can use this to thwart built in protections. In this section,
we only consider the subset of attackers that do not succeed in forcing high-cost op-
erations to be performed. Our choice is guided by the results presented in tables 7.2
and 7.3. In our current analysis, we do not consider attacks whose success depend
on whether on not the cost of generating a DoS request operation is low or high.
The specific attacks we shall consider are given as follows:

• Off-Path Spoofed Discovery 7.17.

• Off-Path Spoofed DoS Request 7.1.

• Off-Path Exposed DoS Request 7.2.

• Off-Path Spoofed DoS Reply 7.5.

• Off-Path Exposed DoS Reply 7.6.

• On-Path Spoofed DoS Reply 7.7.

• Off-Path Spoofed Establishment Request 7.9.

• Off-Path exposed Establishment Request 7.10.

• On-Path Spoofed Establishment Request 7.11.

• Off-Path Spoofed Establishment Reply 7.13.

• Off-Path Exposed Establishment Reply 7.14.

• On-Path Spoofed Establishment Reply 7.15.

158

• On-Path Exposed Establishment Reply 7.16.

Any mention of attacks or attackers in the remainder of this section refers to the
attackers listed above.

High-cost operations are defined as those having cost greater or equal to 1000.
The rules defining our three discovery protocols do not perform high-cost operations
per se, but each discovery protocol invokes the establishment layer that does perform
several high-cost operations. The specific establishment-layer rules that perform
high-cost operations are:

ME.1.2 Generates a signature if the DoS-reply message is valid.

ME.1.3 Verifies credentials if the signature on the establishment reply is valid.

ME.2.1 Generates a DoS-reply message if Option-H is in effect.

ME.2.2 Verifies credentials if the signature is valid on the establishment request
message.

ME.2.3 Generates a signature on the establishment reply if the credentials checked
in Rule ME.2.2 are valid.

Our objective is to show that our discovery protocols possess sufficient protections
against the above attackers. So if a high-cost operation is performed, it was not due
to the actions of one of the attackers.

The remainder of this section makes use of the following notational conventions.
Let Z denote the set of labels on rules whose execution involve a high-cost action.
Let D(u) denote the infinite set of all terms of the form ↓dis(u,k) D(s, d), which are
employed to invoke discovery with session identifier u. The set DC(u) is the set of
terms denoting the invocation of the concatenated protocol. The set DN (u) is the
set of terms representing the invocation of the nested protocol. Let R(u) denote the
infinite set of all terms of the form ↓eresp(u,k) . Note that the ↓atk eresp(u,k) term used
to invoke the attacker’s establishment responder is distinct from terms in R(u).

The off-path attackers all generate a session identifier using the tunnel calculus
new operator. The next three results combine to show that our off-path attackers
cannot exploit an executing establishment responder. The first result says that an
off-path attacker will generate session identifiers distinct from those of any executing
discovery protocol. We then show that the attacker’s session identifier must also be
distinct from the session identifier of the establishment-responder processes executing
in the network.

Proposition 7.1 Suppose the trace T = M1, . . . ,Mn records the execution of pos-
sibly many discovery protocol sessions and trace T also records the execution of
an attacker that generates a session identifier u using the new u operator, where
u 6∈ L(M1). Then D(u) ∩ T = ∅. (That is, the trace does not record a discovery
session invoked with the session identifier u.)

159

Proof: Suppose the proposition is false. Then the trace records a ↓dis(u,k) term,
where u was produced by an attacker using the new operator. Observe that none of
the attackers under consideration rewrites a term of the form in D(u) so the term
must have been produced by an honest node that invoked discovery with session
identifier u. Recall that we assume that discovery protocols are always invoked with
a rule of the form

. . . −→ ↓dis(v,k) . . . new k, v.

This rule is not executed in response to any message sent by our attackers so session
identifier u must have been generated by the new operator when discovery was
invoked. Therefore, two distinct invocations of the new operator must have returned
the same value, which contradicts the uniqueness of values generated by the new
operator. Hence, the proposition must hold. �

Discovery protocols invoke the establishment-responder process by rewriting a
↓eresp(u,k) term. The discovery message advertises the node where the responder
process is waiting to set up the next tunnel in the complex. This process awaits
the arrival of a DoS-request message possessing session identifier u. An attacker
possessing this session identifier will succeed in forcing its target to generate a DoS
reply, which in our model may or may not be a high-cost operation. The next two
results say that if the attackers under consideration spoof session identifier u, then
the trace will not record any establishment-responder processes executing with that
same session identifier. We consider the case of nested and concatenated protocols
separately.

Lemma 7.2 Assume that the only discovery protocol that nodes may execute are
the nested discovery protocol and the modified nested discovery protocol. Suppose
that the trace T = M1, . . . ,Mn records the execution of possibly many discovery
protocol sessions as well as the execution of any of the attackers that generate their
own session identifier using the tunnel calculus new operator. If the trace records
an attacker that generates session identifier u, where u 6∈ L(M1), then T ∩R(u) = ∅.

Proof: Inspecting the rules of the discovery protocols as well as the attackers, we
see that there are no ↓eresp terms in the attacker rules, but it remains to show that
no action taken by the attackers could have resulted in establishment being invoked
with the same session identifier as the attacker itself.

It follows from proposition 7.1 that DN(u) ∩ T = ∅. Hence, the trace does not
record any discovery protocol having the same session identifier as the attacker. Ob-
serving the rules defining both the nested and the modified nested discovery protocol,
we see that the establishment-responder process is only invoked at the initiating host
s and only after the discovery message is sent. The establishment responder is first
invoked in Rule ND.1.1/MND.1.1 using the same session identifier as the dis-
covery session, which we know to be distinct from the attacker. The establishment

160

responder is later repeatedly invoked in Rule ND.1.3/MND.1.3 using the session
identifier in the rule’s resumption terms, which is the discovery session identifier,
which we know is distinct from attacker’s session identifier. Whence we can con-
clude that T ∩R(u) = ∅. �

The case of the concatenated discovery protocol is somewhat more complex be-
cause each gateway on the path invokes the establishment-responder process.

Lemma 7.3 Assume that the only discovery protocol that nodes may execute is the
concatenated discovery protocol. Suppose T = M1, . . . ,Mn records the execution
of possibly many discovery protocol sessions as well as any of the attackers that
generate their own session identifier using the tunnel calculus new operator. If the
trace records an attacker that generates session identifier u, where u 6∈ L(M1), then
T ∩R(u) = ∅.

Proof: Inspecting the rules that define the concatenated discovery protocol as well
as the attackers, we see that there are no ↓eresp terms in the attacker rules, but
it remains to show that no action taken by the attackers could have resulted in
establishment being invoked with the same session identifier as the attacker itself. It
follows from proposition 7.1 that DC(u) ∩ T = ∅. Hence, the trace does not record
any discovery protocols invoked with the same session identifier as the attacker.
We consider the concatenated discovery initiator and responder processes and show
that they will not invoke the establishment responder using the attackers session
identifier.

Assume that the trace records the execution of a concatenated discovery protocol
that was invoked at a node by rewriting a ↓dis(v,k) term. The establishment responder
is invoked twice at this node during execution of the concatenated-discovery-initiator
process. Rule CD.1.1 invokes the establishment message using the session identifier
in the discovery ↓dis(v,k) term appearing on the left-hand side of the rule. It follows
from proposition 7.1 that v is distinct from the session identifier of the attacker u.
The establishment responder is again invoked in Rule CD.1.2, but this time using
the session identifier located in the resumption term appearing on the left-hand
side of the rule, but this is the session identifier for the discovery protocol not the
attacker. Whence the result holds for the cases where establishment responder is
invoked during execution of the concatenated discovery initiator.

The concatenated discovery protocol responder process runs as a daemon at
each node and reacts to the arrival of a discovery message. During execution, the
discovery-responder process sets up a tunnel with the node advertised in the discov-
ery message and then releases the discovery packet and invokes the establishment
responder, in Rule CD.2.6, in order to set up a tunnel with the next node on the
path. If the concatenated discovery-responder process is executing session v, then
the establishment-responder process will be invoked with the session identifier v con-
tained in the resumption term on the left-hand side of the rule. On the other hand,

161

we must consider the case where the discovery responder is executing in response
to an attacker having sent a discovery message, advertising session u, and hence
the discovery-responder process itself is executing in session u. Of the attackers
under consideration, only Off-Path Spoofed Discovery exhibits this behavior. Re-
call that this attacker spoofs both the session identifier and the address advertised
in the discovery message. The proof for this case is carried out by induction on
the length of the trace. The base case of length zero is clear. Suppose the trace

records Mi

CD.2.6(u)
−→ Mi+1 invoking establishment responder for session u. Inspecting

the concatenated discovery responder rules, we can infer that Rule CD.2.1 must
have executed and the establishment initiator must have successfully executed prior
to executing Rule CD.2.6. Therefore, the trace must have recorded

M1 −→ · · · −→Mj

CD.2.1(u)
−→ Mj+1 −→ · · · −→Mk

ME.1.1(u)
−→ Mk+1 −→ · · · −→

Ml

ME.1.4(u)
−→ Ml+1 −→ · · · −→Mi

CD.2.6(u)
−→ Mi+1.

Although we have assumed that the new operator always generates a unique value,
in this case, it is useful to consider situations where the address generated by the
new operator may be the same as an existing address. Therefore, we consider the
following three cases:

• If the spoofed address in discovery message consumed in Rule CD.2.1 does
not correspond to an actual node in the network, no DoS-reply message will
ever be received and consequently Rule ME.1.4(u) cannot have ever been
executed. Therefore, Rule CD.2.6 cannot have been executed.

• If the advertised address is an actual node in the network and not running
the establishment responder, then it will not respond the DoS request so the
DoS-reply message is never received and and consequently Rule ME.1.4(u)
cannot have ever been executed. Therefore, Rule CD.2.6 will have not been
executed.

• If the advertised address is an actual node in the network and is running a re-
sponder processes, then for the DoS-request message to have been processed by
the responder, both the DoS-request message and the establishment responder
process must have the same session identifier. So the trace must have recorded
some earlier invocation of the establishment responder with that session iden-
tifier, but it follows from the induction hypothesis that this did not happen.
Therefore, Rule CD.2.6 will have not been executed.

In each case, the targeted node never receives the DoS reply and consequently,
progress halts and Rule CD.2.6 is never executed.

Since the property holds for both the concatenated discovery initiator and the
concatenated discovery responder, we can conclude that the result follows. �

162

We are now in a position to prove that the attackers under consideration do not
interfere with the execution of discovery protocols by forcing the execution of high-
cost operations. The case of the discovery attacker is considered separately from
attackers targeting the establishment-layer messages.

Recall that the discovery responder runs as a daemon at nodes on the dataflow
path. Upon arrival of a discovery message advertising a session identifier and an
address, the discovery responder invokes the establishment layer to set up a tunnel
with the advertised address. As we have seen, discovery layer attackers exploit
this behavior by sending discovery messages at their target. The next result says
that Off-Path Spoofed Discovery 7.17 cannot force its target to perform high-cost
operations.

Theorem 7.4 Assume that the nodes in the network may execute the concatenated,
nested, or modified nested discovery protocols. Assume that the only type of attacker
allowed is Off-Path Spoofed Discovery 7.17. Suppose that trace

T = M1
X1−→M2

X2−→M3 · · ·−→Mn−1
Xn−1

−→Mn

records the execution of discovery protocols as well as attackers. If an attacker gen-
erates session u, where u 6∈ L(M1), and the trace records the application of a rule
Xi(u) @ a, where 1 ≤ i < n, then Xi 6∈ Z (this is not a high-cost operation).

Proof: From inspection of the rules, we see that Off-Path Spoofed Discovery itself
does not perform any high-cost operation, but it remains to show that the attacker
cannot force its target to execute high-cost operations.

The attacker spoofs an address as well as the session identifier u. These values
are advertised in a discovery message that is sent to an honest node that is execut-
ing a discovery protocol. The discovery packet at a gateway triggers the discovery
protocol responder daemon to begin execution of protocol session u and invoke the
establishment initiator. We must show that the attack could not have caused a
high-cost operation to occur that would not have occurred otherwise.

Given that session identifier u was created by the attacker using the new operator,
it follows from proposition 7.1 that D(u)∩ T = ∅. So the session identifier is unique
from that of any executing discovery protocol recorded by the trace. Lemmas 7.2
and 7.3 inform us that there is no establishment responder executing for process u.

The proof precedes by induction on the length l of the trace. The base case
l = 0 is trivial. Consider the case where l = i. For the induction step assume

Mi

Xi(u)(a)
−→ Mi+1 is a high-cost operation. We examine each of the high-cost rule that

a discovery protocol can execute and show that it could not have executed in response
to actions taken by the attacker.

DoS reply generation option-H (Rule ME.2.1). This is an establishment re-
sponder rule. The attacker only sends a discovery message, which is processed

163

by a discovery responder, which invokes the establishment initiator. Hence, the
only way for the particular attacker in question to succeed is to send a discovery
message to some node b with the payload D(a, u) so that the protocol reacts by
running establishment with a. Yet the a is generated by the new operator and
consequently guaranteed to be unique so this message would never arrive at an
existing node and the consequently the Rule ME.2.1(u) @ a would never be
executed. For the sake of argument, let us assume that a is an existing node,
then node b would have sent a DoS-request message to node a having session
identifier u. Yet if follows from lemmas 7.2 and 7.3 that the session identifier of
the establishment responder process executing at node a will be distinct from
u and consequently Rule ME.2.1(u) @ a would have never executed.

Credential verification (Rule ME.2.2). This is an establishment responder rule
and would have only executed if the node that received the discovery message
got to the point where it generated an establishment-request message with a
valid signature and session identifier. So the trace must have recorded

Ml

ME.1.2(u)
−→ Ml+1,

where l < i, yet this is a high-cost action and it follows from the induction
hypothesis that this could not have happened.

Signature generation (Rule ME.2.3) This rule would only execute if

Ml

ME.2.2(u)
−→ Ml+1,

where l < i, has been recorded earlier in the trace, yet this is a high-cost action
and it follows from the induction hypothesis that this could not have happened.

Signature Generation (Rule ME.1.2). This rule only executes if a valid DoS
reply has been received, which means that the node dispatching the DoS reply
had processed the DoS-request message from session u. Yet we have already
seen that this cannot be the case since the establishment-response process is
expecting a message having a different session identifier.

Credential Verification (Rule ME.1.3). This rule would only execute if

Ml

ME.1.2(u)
−→ Ml+1,

where l < i, has been recorded earlier in the trace, yet this is a high-cost action
and it follows from the induction hypothesis that this could not have happened.

Having shown that the attacker cannot force either the initiator or the responder
to perform a high-cost operation, the theorem holds. �.

164

We now treat cases where the attacker targets a running discovery protocol’s
establishment layer messages. The following result says that if a high-cost operation
occurred in the presence of an attacker, then it occurred absent the presence of an
attacker. This means that the attacker did not force a high-cost operation to occur
that would not have occurred otherwise.

Theorem 7.5 Suppose the trace

T = M1
X1−→M2

X2−→· · ·Mn−1
Xn−1

−→Mn

records the complete execution of session u of the nested, modified nested, or con-
catenated discovery protocol, where u 6∈ L(M1). Suppose

T ′ = M ′
1

X′

1−→M ′
2

X′

2−→· · ·M ′
m−1

X′

m−1

−→M ′
m

records the execution of protocol session u, where M1 ∼ M ′
1 and u 6∈ L(M ′

1) and T ′

also records the following attackers:

7.1 Off-Path Spoofed DoS Request.

7.2 Off-Path Exposed DoS Request.

7.5 Off-Path Spoofed DoS Reply.

7.6 Off-Path Exposed DoS Reply.

7.7 On-Path Spoofed DoS Reply.

7.9 Off-Path Spoofed Establishment Request.

7.10 Off-Path Exposed Establishment Request.

7.11 On-Path Spoofed Establishment Request.

7.13 Off-Path Spoofed Establishment Reply.

7.14 Off-Path Exposed Establishment Reply.

7.15 On-Path Spoofed Establishment Reply.

IfM ′
i

X′

i(u)(a)
−→ M ′

i+1 is the first occurrence of an application of X′
i(u) in T ′, where X′

i ∈ Z

and a is an honest node, then ∃j such Mj

X′

i(u)(a)
−→ Mj+1 in T .

165

Proof: Since T is assumed to be a trace of a complete session, the execution of the
discovery protocol terminates successfully. It follows from the noninterference and
progress theorems that absent the presence of attackers, T ∩ Q(u) ∼ T ′ ∩ Q(u). If
the theorem is false, then it must have been the action of an attacker that forces a
high-cost operation to occur in T ′ that did not occur in T.

The proof is by induction on the length l of the trace T ′. If l = 0, then the

property holds. Consider the case of M ′
i

X
′

i(u)(a)
−→ M ′

i+1, where X′
i ∈ Z. We apply case

analysis to each of the rules performing high-cost operations and analyze whether
the attackers could have forced the rule in question to execute. The goal is to show
that the attackers under consideration could not have induced the rule to execute
and therefore it must have executed as part of a run of the protocol and consequently
would occur in the trace without the attackers.

Rule ME.1.2 An attacker could have triggered this rule to execute if it sent a valid
DoS-reply message to the node. Off-Path Spoofed DoS Reply 7.5 and Off-Path
Exposed DoS Reply 7.6 both lack the expected session identifier so they could
not have sent a message causing the rule to execute. On-Path Spoofed DoS
Reply 7.7 does not generate a valid DoS-reply message, and therefore could
not have caused the rule to execute.

There remains the possibility that Off-Path Spoofed DoS Request 7.1 and
Off-Path Exposed DoS Request 7.2 could have previously forced a node to
executing establishment responder session u to execute Rule ME.2.1, which
sends valid DoS reply that triggered the Rule ME.1.2 to execute. Yet it
follows from lemmas 7.2 and 7.3 that these attackers lack the expected session
identifier to succeed.

Consequently, the attackers did not cause this rule to execute.

Rule ME.2.1 Option-H In this case, we assume that DoS-reply message gener-
ation is a high-cost operation. The attacker would have to send a DoS-request
message to a node running the establishment responder session u. The only
attackers under consideration that could accomplish this are Off-Path Spoofed
DoS Request 7.1 and Off-Path Exposed DoS Request 7.2, it follows from lem-
mas 7.2 and 7.3 that these attackers lack the expected session identifier to
succeed, and therefore, could not have caused this rule to execute.

Consequently, the attackers cannot have forced this rule to execute.

Rule ME.1.3 This rule executes upon arrival of an establishment reply message
that possesses a valid signature. Off-Path Spoofed Establishment Reply 7.13
and Off-Path Exposed Establishment Reply 7.14 cannot gain access to the
session identifier u so neither of these attackers could have forced the node
to execute the command. On-Path Spoofed Establishment Reply 7.15 cannot
generate a valid signature, and therefore did not force the rule to execute.

166

Suppose one of the attackers under consideration had previously performed
an action forcing some honest node running protocol session u to send a

valid establishment-reply message. Hence the trace records M ′
l

ME.2.3(u)(a)
−→ M ′

l+1,
where l < i, which is a high-cost operation, but it follows from the induction
hypothesis that this could not have happened.

Consequently, the attackers cannot have forced this rule to execute.

Rule ME.2.2 This rule executes upon arrival of an establishment-request message
with a valid signature. Both the Off-Path Spoofed Establishment Request 7.9
and Off-Path Exposed Establishment Request 7.10 spoof the session identifier
and send an establishment-request message to a node running establishment
responder session u, but if follows from lemmas 7.2 and 7.3 that the attacker
does not possess the expected session identifier and consequently does not
succeed.

Suppose one of the attackers under consideration had previously performed
an action forcing some honest node running protocol session u to send a

valid establishment-request message. Hence the trace records M ′
l

ME.1.2(u)
−→ M ′

l+1,
where l < i, which is a high-cost operation, but it follows from the induction
hypothesis that this could not have happened.

Consequently, the attackers cannot have caused this rule to execute.

Rule ME.2.3 This rule executes only if Rule ME.2.2 has executed. Therefore,
an attacker is only successful at forcing Rule ME.2.3 to execute if it had
previously been successful at forcing Rule ME.2.2 to execute. Hence the

trace records M ′
l

ME.2.2(u)
−→ M ′

l+1, where l < i, which is a high-cost operation, but
it follows from the induction hypothesis that this could not have happened.

Consequently, the attackers cannot have caused this rule to execute.

We have shown that for each high-cost operation appearing in a trace T ′ of session
u, with the presence of attackers, that the attackers did not force the operation to
occur. Hence, the application of a high-cost rule in T must have also been recorded
in T ′.

7.7 Conclusion

This chapter is a study of DoS threats to discovery protocols. A modified version of
the establishment layer was given that incorporates a DoS protection scheme. This is
intended to protect gateways on the dataflow path from attackers that would direct
discovery messages at them in hopes of forcing the gateway to consume resources.
The tunnel calculus was used to express a collection of attackers that attempt to

167

exploit possible vulnerabilities in order to deny service to legitimate users. We an-
alyzed the effectiveness of our attackers from the point of view of logical attacks.
A cost-based analysis was applied to determine the effectiveness of the DoS protec-
tions against our attackers. This analysis highlighted those attacks which succeed
in forcing its target to perform high-cost operations and those that fail. Finally, we
consider only those attacks that the previous analysis had deemed to fail in forcing
their target to execute a high-cost operation and prove several theorems that say
that, indeed, these attackers fail in forcing a running discovery protocol to perform
high-cost operations.

168

Chapter 8

Conclusion

In summary, this dissertation has developed a foundation for analyzing tunnel-
complex protocols. The cornerstone of our treatment is the tunnel calculus, which is
used to express tunnel-complex protocols and reason about their correctness. There
are four primary components to our work: the formal definition of the tunnel cal-
culus, its application to reason about deadlocks, its use in defining tunnel-complex
protocols and proving their functional correctness, and its application to reasoning
about DoS threats to discovery protocols.

The remainder of this chapter is structured as follows. The first section gives
a brief overview and summary of the dissertation. The second section provides an
assessment of the work. The third section discusses future work.

8.1 Overview

In Chapter 2, we expose the danger posed by cramming attacks and derive the L3A
tunnel-complex protocol that constructs a tunnel complex that protects against the
said attacks. Logical simulation showed how deadlocks can arise in tunnel-complex
protocols and motivates the need for employing formal techniques to ensure their
absence.

Chapter 3 provides an informal introduction to the tunnel calculus, where it is
used to uncover deadlocks in a tunnel-establishment protocol. We introduce the
notion of a session identifier as a means to prevent these deadlocks. In Chapter 4,
we give a formal definition of the tunnel calculus that may be viewed as an opera-
tional semantics of a protocol stack. The tunnel calculus is composed of layers that
model packet forwarding, security tunnels, authorization, and tunnel establishment.
Tunnel-complex protocols are developed on top of these layers. The rewriting logic
used to define the operational semantics gives rise to a trace theory that we apply
to specifying and reasoning about functional correctness and DoS threats. In Chap-
ter 5, we prove a noninterference theorem 5.9, which says one establishment session
will not interfere with the messages sent another session. We also prove a progress

169

theorem 5.10, which says if communication between two parties is possible, then it is
possible to extend any other to complete the communication. These results depend
on a simulation lemma 5.4 that tells us when two traces are semantically the same.

Our goal in creating the tunnel calculus was to develop a framework that could
be used to express and reason about tunnel-complex protocols. In Chapter 6, the
tunnel calculus is applied to the design of three discovery protocols, which discover
security gateways on the dataflow path, deliver credentials needed to negotiate their
traversal, and set up tunnels for a specific topology. We also introduce a notion of
completeness for discovery protocols, which acts as a functional correctness prop-
erty. Discovery protocol completeness says if the credentials needed to traverse the
gateways are located at specified locations on the path, then the protocol will deliver
these credentials to the gateways. Our first discovery protocol constructs a concate-
nated tunnel complex that can be viewed as a generalization of the tunnel complex
set up by the L3A protocol. The second discovery protocol constructs a nested tun-
nel complex that can be viewed as a generalization of a typical road-warrior scenario.
The completeness theorem for this protocol is far more restrictive with regards to the
placement of credentials than the concatenated case. The third discovery protocol
presented was a modification of the second that allows a more liberal placement of
the credentials on the dataflow path so that its completeness theorem is essentially
the same as for the concatenated case.

In Chapter 7, we apply the tunnel calculus to the study of DoS threats to dis-
covery protocols. We distinguish between logical and resource-exhaustion attackers.
Attacker capabilities are further classified as off-path, on-path, exposed, and spoofed.
This classification forms the basis of the methodology we employ to analyze DoS
threats. First, for each message that could be the target of attack, the tunnel calcu-
lus was used to construct attackers possessing each of the capabilities. Reasoning,
in terms of rewrites performed on the multiset, about the execution of discovery
protocols in the presence of each of the attackers allows us to evaluate whether the
attacker would succeed from the point of view of a logical attack. A cost model
applied to the same protocols and attackers allows us to evaluate their effectiveness
from the point of view of a resource-exhaustion attack. Finally, we proved several
theorems showing that our discovery protocols are resistant to resource-exhaustion
attacks launched by a particular subset of our attackers.

8.2 Assessment

The tunnel calculus may seem too large and too complicated, especially in com-
parison to a formalism such as the λ−calculus, CSP, or the π−calculus. Consider
the π−calculus, its basic model for communication corresponds to the tunnel calcu-
lus forwarding layer rather than the secure-processing layer. In order to augment
the π−calculus with security tunnels (our secure processing layer), one must cre-
ate structures that correspond to those in our model. Directly modeling persistent

170

structures such as the association and mechanism databases is not easy in processes
algebras and one is forced to choose between a model that is very convoluted or
bolting on structures similar to those in the tunnel calculus. There are ample exam-
ples of key-exchange protocols expressed in variants of the π−calculus and these do
not seem any simpler than expressing them in the tunnel-calculus, except that, in
the tunnel calculus, establishment is a fundamental component of the network stack.
We believe that using a ‘simpler’ formalism to model our protocol stack becomes
an exercise in making rock-soup. Although one initially starts out with something
that is arguably simpler, in order to construct a corresponding protocol stack, one
eventually winds up with a system that is at least as complex as the tunnel calculus
because the complexity is intrinsic in the subject being modeled.

Adding session identifiers to our model of security tunnels resolved many prob-
lems, but these may be seen as bound to the application that invoked the tunnel-
complex protocol. Should not all applications on a host be able to use a tunnel
complex that has been constructed to facilitate communication between it and an-
other node without rerunning discovery? Can this be done without reengineering
the tunnel calculus mechanism filter processing? The short answer to both ques-
tions is yes. We can add a rule that acts as an interface between the secure layer
and higher-layer protocols. For instance,

Πo ` ↓sec−inter(k1) P(b, c, y) −→ ↓sec(u,k2) P(b, c, y)
where Mech(b −→ c : u : βo) ∈ Πo.

This rule simply selects a session having the same traffic filter and sends a message
in that tunnel complex. Once this interface has been constructed, rules for a higher-
layer protocol can be written without any need to know about session identifiers.

The primary focus in this dissertation has been the functional correctness of
tunnel-complex protocols. Namely, deadlocks at the establishment layer and com-
pleteness for discovery protocols. We have abstracted away questions of secrecy and
integrity to the greatest degree possible. This stands in contrast to most studies
of security protocols that focus on secrecy and integrity. The conditions that give
rise to the deadlocks are due to the very nature of installing state that in turn can
affect the traffic. In practice this is often avoided by having the mechanism filters in-
stalled before establishment is run and exempting the establishment traffic from the
filters. This approach was rejected as we preferred to support both gateways enforc-
ing ingress and egress authenticated traversal (all ingress/egress traffic traversing a
gateway must be authenticated). This is a case where weaker security guarantees can
eliminate functional errors and has led us to wonder whether strengthening security
guarantees leads to a greater likelihood of functional errors in other protocols.

The discovery protocols developed in this dissertation set up relatively simple
tunnel complexes. As a consequence, their completeness theorems were relatively
straightforward. One could argue that for these relatively simple protocols, ex-
perimentation and informal techniques would suffice. Yet history has shown such

171

techniques inadequate whenever concurrency is involved. In addition, one of the pri-
mary reasons for focusing on relatively simple discovery protocols was a succession
of failed attempts to construct more sophisticated designs for which we were not able
to formulate a completeness theorem. This led to the realization that we needed to
master simple protocol designs before embarking on more sophisticated cases.

As it is currently designed, the tunnel calculus has proved sufficient to analyze
functional correctness and DoS threats that were the focus of this dissertation, but
in its current form, it would not be sufficient for analyzing secrecy and integrity
properties of key establishment protocols. On the other hand, only minimal changes
would be necessary to apply the tunnel calculus to analyzing the secrecy and integrity
of messages traveling in the tunnels. In addition, the fact that, at the lowest level,
communication is modeled as packet forwarding based on a forwarding table should
make it possible to perform future studies on how discovery protocols interact with
route changes.

We used the tunnel calculus to model a collection of DoS attackers and studied
their interaction with the chosen target by examining rewrites performed by both.
The processes was admittedly tedious, but rather mechanical, which suggests that
if you have the attacker and the protocol, then the analysis could be mechanized.
Probably the biggest downside to our specific approach was the need to write down
so many rules to model the attackers. An alternative would be to design a more
general attacker that would subsume the specific cases given above, but we would
expect this to be a nontrivial task and best left for future work.

In our study of discovery protocols, we designed protocols that constructed a
concatenated tunnel complex as well as protocols that constructed a nested tunnel
complex. The nested protocols were somewhat limited in that they presumed that
the host initiating the protocol is not behind a gateway. This is a consequence of
our preference to have gateways enforce ingress authenticated traversal so that all
traffic passing a gateway must be authenticated in a tunnel. Our investigations have
revealed that the nested tunnel complex where each tunnel is rooted at one endpoint
is not compatible with the authenticated traversal property because establishment
traffic must be allowed to pass through the gateways protecting the host that an-
chors the tunnel complex unauthenticated by a tunnel. As mentioned in the next
section, in the future, we hope to investigate protocols that set up other nested tun-
nel complexes that are compatible with gateways enforcing the ingress authenticated
traversal property. We believe that an argument can be made favoring the concate-
nated tunnel-complex since it allows gateways to enforce the authenticated-traversal
properties while being set up by a relatively simple protocol.

The analysis of DoS threats was purely theoretical no experimental validation
has been performed. On the other hand, we do feel that the our models are suffi-
ciently precise to enable a developer to implement the attacks. We speculate that the
attacks against the discovery protocol would be the easiest to carry out in practice
since the target need not be in a state waiting for a particular establishment-layer

172

message. We also speculate that specific implementations will be vulnerable to log-
ical attacks that were not considered here, but are specific to that implementation.
Resource exhaustion of memory or storage resources depends to some extent on the
implementation, and in our analysis, we only focused on the mechanism and associ-
ation databases and it remains to see if that is sufficient for a given implementation.
In the case of CPU exhaustion attacks, we believe that experimental evidence would
support our theoretical analysis, but having precise numbers would allow us better
gauge the utility of the analysis.

Most tunnel complexes found in practice are relatively simple. Yet managing even
the hub-and-spoke topology has driven Cicso to build a tunnel-complex protocol
DMVPN that automates its configuration. Similar concerns have motivated the
development of the discovery protocol TED. So there is evidence that tunnel-complex
protocols solve a recognized problem, but their future remains an open question. If
gateways are deployed in a defense-in-depth and tunnels are used to authenticate
traffic, then the complexity of managing them will likely lead to more sophisticated
discovery protocols than currently exist. If this is indeed the case, then, based on our
experience, formal analysis will be needed detect flaws and unexpected interactions
that could arise in practice, but elude testing of prototype implementations. On the
other hand, if defense in depth schemes composed of security gateways and security
tunnels are not viewed as viable, then we would not expect to see the development
of more sophisticated discovery protocols that this research supports.

We believe that the approach developed in this dissertation is applicable beyond
the context of tunnel-complex protocols. For instance, web services and Voice Over
IP (VOIP) are also characterized by many interacting protocol layers and there is
great interest in analyzing both functional correctness and security properties for
such protocols. Our technique for modeling the operational semantics of a protocol
stack could prove quite useful in such domains. We also believe that our approach
to studying DoS threats could be applied to VOIP and similar protocols that are
current interest.

8.3 Future Work

There are a number of topics that we would like to pursue in the future. In its
current form, the tunnel calculus is a piece of mathematics, but since the operational
semantics is given in terms of a rewriting logic, an executable version built in the
Maude framework, similar to the one built for L3A, would give the tunnel-complex
protocol designer a valuable debugging tool that can be used to perform both logical
simulations as well as model checking.

Additional discovery protocols are an obvious avenue for future work. The nested
protocols presented in Chapter 6 assume one of the nodes is not located behind any
gateway. This simplified the task of designing a discovery protocol that would satisfy
the ingress authenticated traversal property. We would like to extend this work to

173

a protocol where both end hosts are located behind multiple gateways. Protocols
that perform more complex gateway negotiations also warrant further study. In
addition, we would like to create implementations in order to gather performance
measurements as we did with L3A.

In Chapter 7, we constructed a collection of DoS attackers that served as the
object of our analysis. In future work, we would like to build upon the knowledge
gained in this effort to construct a general attacker along the lines of a Dolev-Yao
attacker. If successful, one should be able to instantiate the general model to each
of our concrete attacks. In addition, some experimental validation of our theoretical
analysis would be useful as discussed in the previous section.

Throughout this dissertation, we have assumed a network topology where each
administrative domain has a single gateway and we also assumed each node has
a fixed forwarding table (i.e no routing is performed). Relaxing these strictures
would provide ample ground for future research. For instance, new theories may
be needed to characterize the correctness of establishment protocols if messages can
enter and exit different gateways. If a route changes, under what conditions does
this break a tunnel-complex protocol? Under what conditions would a route change
break a tunnel complex that has already been set up? Can route changes suddenly
expose information that is believed to be protected? These and many other questions
regarding the effects of route changes remain to be addressed.

174

Bibliography

[1] M. Abadi. On SDSI’s Linked Local Name Spaces. Journal of Computer Secu-
rity, 6(1-2):3–21, 1998.

[2] M. Abadi, B. Blanchet, and Cedric Fournet. Just Fast Keying in the Pi cal-
culus. In D. Schmidt, editor, European Symposium on Programming (ESOP),
Lecture Notes in Computer Science 2618. Springer-Verlag, 2004.

[3] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The SPI
Calculus. Information and Computation, 148(1):1–70, 1999.

[4] W. Aiello, S. Bellovin, M. Blaze, R. Caetti, J. Ioannidis, A. Keromytis, and
O. Reingold. Just fast keying: Key agreement in a hostile internet. ACM
Transactions on Information System Security, 7(2):242–273, 2004.

[5] G. Andrews. Concurrent Programming: Principles and Practice. Addison
Wesley, 1991.

[6] T. Aura, P. Nikander, and J. Leiwo. DoS Resistant Authentication with Client
Puzzles. In Revised Papers from the 8th International Workshop on Security
Protocols, Lecture Notes in Computer Science 2133, pages 170–177. Springer-
Verlag, 2001.

[7] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. In Proceedings
of the 30th Annual ACM Symposium on the Theory of Computing (STOC’98),
pages 419–423. ACM, 1998.

[8] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
D. Stinson, editor, Proceedings of 13th Annual Advances in Cryptology (Crypto
93), Lecture Notes in Computer Science 773, pages 232–249. Springer-Verlag,
1994.

[9] B. Bencsath, I. Vajda, and L. Buttyan. A Game Based Analysis of the Client
Puzzle Approach to Defend Against DoS Attacks. In Proceedings of the IEEE
Conference on Software, Telecommunications and Computer Networks (Soft-
Com 03). IEEE, 2003.

175

[10] D. J. Bernstein. SYN cookies.

[11] G. Berry and G. Boudol. The chemical abstract machine. In Principals of
Programming Languages, pages 81–94. ACM, 1989.

[12] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough.
Rigorous specification and conformance testing techniques for network proto-
cols, as applied to TCP, UDP, and Sockets. In Proceedings of ACM Conference
on Computer Communication (SIGCOMM 2005), pages 265–276. ACM, 2005.

[13] B. Blanchet. From Secrecy to Authenticity in Security Protocols. In M.
Hermenegildo and G. Puebla, editor, Proceeding of 9th International Static
Analysis Symposium (SAS’02), Lecture Notes In Computer Science 2477, pages
342–359. Springer-Verlag, 2002.

[14] B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In
Proceedings of the 25th Annual IEEE Symposium on Security and Privacy
(Oakland 04), pages 86–100. IEEE, 2004.

[15] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Role of Trust
Management in Distributed Systems Security. In Secure Internet Programming,
Lecture Notes in Computer Science 1603. Springer-Verlag, 1999.

[16] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In
Proceedings of Symposium on Security and Trust Management, pages 164–173,
1996.

[17] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in Policy
Maker. In Proceedings of Financial Cryptography, Lecture Notes in Computer
Science 1465, pages 254–274. Springer-Verlag, 1998.

[18] M. Blaze, J. Ioannidis, and A. Keromytis. Trust Management in IPsec. ACM
Transactions on Information and System Security, 32:1–24, 2002.

[19] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

[20] R. Branden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-
Vation Protocol (RSVP). RFC 2205, IETF, 1997.

[21] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In Proceedings of the 42nd IEEE Symposium on Foundations
of Computer Science, pages 136–145. IEEE, 2001.

[22] R. Canetti. Security and Composition of Cryptographic Protocols: A Tutorial.
ACM SIGACT News , 37(3,4), 2006.

176

[23] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In Proceedings of Advances in Cryptol-
ogy (Eurocrypt 01), Lecture Notes in Computer Science 2045, pages 453–474.
Springer-Verlag, 2001.

[24] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-based Key-
Exchange Protocol. In Proceedings of Advances in Cryptology - Crypto 2002,
Lecture Notes In Computer Science 2442, pages 127–142. Springer-Verlag,
2002.

[25] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[26] I. Cervesato. Typed MSR: Syntax and examples. In V.I. Gorodetski, V.A. Sko-
rmin, and L.J. Popyack, editors, Workshop on Mathematical Methods, Models,
and Architectures for Computer Network Security, pages 159–176. Springer-
Verlag, 2001. 159–176.

[27] K. Chandy and J. Misra. Parallel Program Design. Addison Wesley, 1988.

[28] Dynamic Multipoint VPN (DM VPN). Cisco White Paper.

[29] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest.
Certificate Chain Discovery in SPKI/SDSI. Journal of Computer Security,
9(4):285–322, 2001.

[30] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions of
Programming Languages, 8(2):244–263, 1986.

[31] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[32] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. Quesada. Maude: specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187–243, 2002.

[33] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A Derivation System and
Compositional Logic for Security Protocols. Journal of Computer Security,
13:423–482, 2005.

[34] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in
Maude. In Proceedings of Workshop on Formal Methods and Security Protocols,
1998.

[35] V. Dieker and G. Rozenberg, editors. The Book of Traces. World Scientific,
1994.

177

[36] T. Dierks and E. Rescorla. The TLS Protocol. RFC 4346, IETF, 2006. Obso-
letes: 2246.

[37] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[38] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated
Key Exchanges. Designs, Codes, and Cryptography, 2:107–125, 1992.

[39] E.W. Dijkstra. Solution of a Problem in Concurrent Programming. Commu-
nication of the ACM, 8(9):569, 1965.

[40] E.W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Pro-
gramming Languages, pages 43–112. Academic Press, 1968.

[41] E.W. Dijkstra. The Structure of the THE Multiprogramming System. Com-
munication of the ACM, 11(5):341–346, 1968.

[42] E.W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Informat-
ica, 1:115–138, 1971.

[43] N. Durgin, J. Mitchell, and D. Pavlovic. A Compositional Logic for Proving
Security Properties of Protocols. Journal of Computer Security, 11:677–721,
2004.

[44] C. Ellison. Spki requirements. RFC 2692, IETF, 1999.

[45] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
Simple Public Key Certificate. Technical report, IETF, 1999.

[46] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI Certificate Theory. RFC 2693, IETF, 1999.

[47] W.H.J Feijn and A.J.M. Van Gasteren. On A Method of Multi-Programming .
Springer-Verlag, 1999.

[48] S. Fluhrer. Tunnel endpoint discovery. Internet Draft draft-fluhrer-ted-00.txt,
IETF, 2001.

[49] X. Fu, D. Hogrefe, and C. Werner. Modeling Route Change in Soft State
Signaling Protocols Using SDL: a Case of RSVP. In A.Prinz, R. Reed, and
J. Reed, editors, Proceedings of the 12th SDL Forum (SDL 2005), Lecture
Notes in Computer Science 3530, pages 174–186. Springer-Verlag, 2005.

[50] Z. Fu, S.Wu, H. Haung, K. Loh, F. Gong, I. Baldine, and C. Xu. IPsec/VPN
Security Policy: Correctness and Conflict Resolution. In M. Sloman, J. Lobo,
and E. Lupu, editors, IEEE Policy Workshop, pages 39–56, 2001.

178

[51] Z. Fu and S. Wu. Automatic Generation of IPsec/VPN Security Policies in and
Intra-Domain Environment. In O. Festor and A. Pras, editors, International
Workshop on Distributed Systems: Operations and Management (DSCM), Lec-
ture Notes in Computer Science 1995, pages 279–290, Nancy, France, October
2001.

[52] A. E. Goodloe. The Life and Times of Andrew I. Schein. In Progress.

[53] A. E. Goodloe and C. A. Gunter. Reasoning About Concurrency for Security
Tunnels. In Proceedings of 20th IEEE Computer Security Foundations (CSF
07), pages 64–78. IEEE, 2007.

[54] A. E. Goodloe, M. Jacobs, G. Shah, and C. A. Gunter. Proceedings of the
L3A: A protocol for layer three accounting. In Proceedings of Secure Network
Protocols (NPSec ’05), Boston, MA, November 2005. IEEE.

[55] A.E. Goodloe, M.-O. Stehr, and C. A. Gunter. Formal prototyping in early
stages of protocol design. In Proceedings of the 4th Workshop on Issues in the
Theory of Security (WITS ’05), Long Beach, CA, January 2005. IFIP.

[56] L. Gordon, M. Loeb, W. Lucyshyn, and R. Richardson. CSI/FBI Computer
Crime and Security Survey. Technical report, Computer Security Institute,
2006.

[57] D. Gries and S. Owicki. An Axiomatic Proof Technique for Parallel Programs.
Acta Informatica, 6:319–340, 1976.

[58] C. A. Gunter and T. Jim. Design of an Application-Level Security Infras-
tructure. In Proceedings of the DIMACS Workshop on Design and Formal
Versification of Security Protocols, 1997.

[59] C. A. Gunter and T. Jim. Policy-Directed Policy Certificate Retrieval. Soft-
ware: Practice and Experience, 30(15):1609–1640, September 2000.

[60] C. A. Gunter and T. Jim. What is QCM. Technical report, University of
Pennsylvania, 2000.

[61] J. Halpren and R. van de Meyden. A Logic for SDSI’s Linked Local Name
Space. Journal of Computer Security, 9(1):47–74, 2001.

[62] J. Halpren and R. van de Meyden. A Logical Reconstruction of SPKI. Journal
of Computer Security, 11(4):581–614, 2003.

[63] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and W. Little. Point-
to-Point Tunneling Protocol (PPTP). RFC 2537, IETF, 1999.

179

[64] T. Hiller, P. Walsh, X. Chen, M. Munson, G. Dommety, S. Sivalingham,
B. Lim, P. McCann, H. Shiino, B. Hirschman, S. Manning, R. Hsu, , M. Lip-
ford, P. Calhoun, C. Lo, E. Jaques, E. Campbell, Y. Xu, S. Baba, T. Ayaki,
T. Seki, and A. Hammed. CDMA2000 Wireless Data Requirements for AAA.
RFC 3141, IETF, 2001.

[65] C.A.R Hoare. Monitors: An Operating System Structuring Concept. Commu-
nication of the ACM, 17(10):549–557, 1974.

[66] Evolution of Charging and Billing Models for GSM and Future Mobile Internet
Services, 2000.

[67] Computing System Innovations. Security Systems Innovations. White Paper.

[68] J. Guttman and A. Herzog and F. Javier Thayer. Authentication and confi-
dentiality via ipsec. In F. Cuppens and Y. Deswarte and D. Gollmann and M.
Waidner , editor, Proceedings of the 6th Annual European Symposium on Re-
search in Computer Security (ESORICS), Lecture Notes in Computer Science
1895, pages 255–272. Springer-Verlag, 2000.

[69] S. Jha and T. Reps. Analysis of SPKI/SDSI Certificated Using Model Check-
ing. In Proceedings of 15th IEEE Computer Security Foundations Workshop
(CSF 02), pages 129–144. IEEE, 2002.

[70] C. B. Jones. Tentative Steps Towards a Development Method for Interfer-
ing Programs. ACM Transactions on Programming Languages and Systems,
5(4):576–619, 1983.

[71] C. B. Jones. Accommodating Interference in the Formal Design of Concurrent
Object-Based Programs. Formal Methods in System Design, 8(2), 1996.

[72] A. Juels and J. Brainard. Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks. In Proceedings of IEEE Network and
Distributed System Security Symposium (NDSS) 1999, pages 151–165. IEEE,
1999.

[73] GPRS Threats and Recommendations. Juniper Networks White Paper.

[74] Infrastructure Security Gateway for GPRS Networks. Juniper Networks White
Paper.

[75] P. Kakkar, M. McDougall, C. A. Gunter, and T. Jim. Credential Distribution
with Local Autonomy . In The Second International Working Conference on
Active Networks, 2000.

[76] C. Kaufman. Internet Key Exchange (IKE V2) protocol. RFC 4306, IETF,
2005. Obsoletes: 2407, 2408, 2409.

180

[77] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen
protocol attack. In Proceedings of the 5th International Workshop on Security
Protocols, Lecture Notes in Computer Science 1361, pages 91–104. Springer-
Verlag, 1998.

[78] S. Kent. IP Authentication Header (AH). RFC 4302, IETF, 2005. Obsoletes:
2402.

[79] S. Kent. IP Encapsulating Security Payload (ESP). RFC 2406, IETF, 2005.
Obsoletes: 2406.

[80] S. Kent and K. Seo. Security architecture for the internet protocol. RFC 4301,
IETF, 2005. Obsoletes: 2401.

[81] Guy Kewney. Official: Hackers Have Broken into GPRS Billing. newswire-
less.net, October 2003.

[82] M. Koutsopoulou, A. Kaloxylos, A. Alonistioti, L. Merakos, and K. Kawamura.
Charging, Accounting, and Billing Management Schemes in Mobile Telecom-
munications Networks and the Internet. IEEE Communications Surveys, 6(1),
2004.

[83] S. Lafrance and J. Mullins. An Information Flow Method to Detect Denial of
Service Vulnerabilities. Journal of Universal Computer Science, 9(11):1350–
1369, 2003.

[84] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978.

[85] N. Li and J. Mitchell. Understanding SPKI/SDSI Using First Order Logic. In
IEEE Computer Security Workshop, pages 89–103, 2003.

[86] J. Luciani, D. Katz, D. Piscitello, B. Cole, and N. Doraswamy. Next Hop
Routing Protocol (NHRP). Technical report, IETF, 1998. RFC.

[87] A. Mahimkar and V. Shmatikov. Game-Based Analysis of Denial-of-Service
Prevention Protocols. In Proceedings of the 15th Annual IEEE Computer Se-
curity Foundations (CSF 05), pages 287–301. IEEE, 2005.

[88] D. McDonald, C. Metz, and B. Phan. PF KEY Key Management API, Version
2. RFC 2367, IETF, 1998.

[89] C. Meadows. A Formal Framework and Evaluation Method for Network Denial
of Service. In Proceedings of the 12th Annual Computer Security Foundations
Workshop (CSFW99), pages 4–13, 1999.

181

[90] C. Meadows and D. Pavlocic. Deriving, attacking, and defending the GDOI
protocol. In Proceedings of 10th Annual European Symposium on Research in
Computer Security (ESORICS 04), Lecture Notes in Computer Science 3193,
pages 53–72. Springer-Verlag, 2004.

[91] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of
Logic Programming, 19:1–19, 1994.

[92] Catherine Meadows. Analysis of the internet key exchange protocol using the
NRL protocol analyzer. In Proceeding of the IEEE Symposium on Security and
Privacy (Oakland 99), pages 216–231. IEEE, 1999.

[93] A. J. Menezs, P. C. van Oorchot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[94] R. Milner. Communicating and Mobile Systems: the π-Calculus. The Cam-
bridge University Press, 1999.

[95] R. Morin. On regular message sequence chart languages and relationships to
mazurkiewicz trace theory. In F. Honsell and M. Miculan, editors, Foundations
of Software Science and Computation Structures (FOSSACS), Lecture Notes
in Computer Science 2030. Springer-Verlag, 2001.

[96] D. Nicol, S. Smith, and M. Zhao. Evaluation of Efficient Security for BGP
Route Announcements using Parallel Simulation. Simulation and Practice and
Theory Journal, 12(3-4):187–216, 2004.

[97] National Institute of Standards and Technology (NIST). Digital Signature
Standard (DSS). Technical report, 1994.

[98] L. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. J.
Computer Security, 6:85–128, 1998.

[99] L. Paulson. Inductive Analysis of the Internet Protocol TLS. ACM Transac-
tions on Computer and System Security, 2(3):332–351, 1999.

[100] D. Pavlovic and C. Meadows. Deriving Secrecy in Key Establishment Pro-
tocols. In Proceedings of 12th Annual European Symposium on Research in
Computer Security (ESORICS 06), Lecture Notes in Computer Science 4189,
pages 384–403. Springer-Verlag, 2006.

[101] Ariff Premji. Deploying Enhanced NAT Services in GPRS Networks: Mitigat-
ing Overbilling Attack. Juniper Networks White Paper.

182

[102] J. Reed, D. Jackson, B. Deianov, and G. Reed. Automated Formal Analysis
of Networks: FDR Models of Arbitrary Topologies and Flow-Control Mecha-
nisms. In Fundamental Approaches to Software Engineering, Lecture Notes in
Computer Science 1382. Springer-Verlag, 1998.

[103] J. Reynolds. Syntactic control of interference. In Proceeding of Fifth Sympo-
sium ACM on Principle of Programming Languages, pages 39–46, 1978.

[104] J. Reynolds. Syntactic control of interference, part 2. In Proceedings of the 16th
International Colloquium on Automata, Languages and Programming, volume
372 of Lecture Notes in Computer Science, pages 704–722. Springer-Verlag,
1989.

[105] C. Rigney. RADIUS Accounting. RFC 2866, IETF, 2000.

[106] R. Rivest and B. Lampson. SDSI - A Simple Distributed Security Infrastruc-
ture, 1996.

[107] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures in Public-Key Cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[108] P. Ryan and S. Schneider. Modeling and Analysis of Security Protocols.
Addison-Wesley, 2001.

[109] F. Schneider. On Concurrent Programming. Springer-Verlag, 1997.

[110] M. Sherr, M. Greenwald, C. A. Gunter, S. Khanna, and S. Venkatesh. Miti-
gating DoS Attack Through Selective Bin Verification. In Proceedings of the
IEEE Workshop on Secure Network Protocols (NPsec ’05), pages 7–12. IEEE,
2005.

[111] J. Smith, J.M. Gonzalez-Nieto, and C. Boyd. Modelling Denial of Service
Attacks on JFK with Meadow’s Cost-Based Framework. In Proceedings of
Fourth Australasian Information Security Workshop (AISW-NetSec 06), 2006.

[112] Solsoft Policy Server: Better Management for Network Security. Solsoft White
Paper, 2003.

[113] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Termi-
nology and Considerations. RFC 2663, IETF, 1999.

[114] Keith Stouffer, Joe Falco, and Karen Kent. Guide to Supervisory Control and
Data Acquisition (SCADA) and Industrial Control Systems Security. Technical
Report Special Publication 800-82, NIST, September 2006.

183

[115] U.S. Department of Health and Human Services. Security Standards for the
Protection of Electronic Protected Health Information. Code of Federal Reg-
ulations, 2005. 45CFR164.308.

[116] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol.
RFC 4252, IETF, 2006.

[117] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251, IETF, 2006.

184

