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Abstract- In a shared channel model for internet links,
bandwidth is shared by principled users who abide by
communal principles for sharing and using bandwidth and
unprincipled scofflaws who seek to commandeer as much
of the bandwidth as possible to effect disruptions such as
spam and DoS attacks. Attacks are magnified by the spread
of bots that surreptitiously take over the functioning of
legitimate users. In such settings the natural filtering by
router policies at ingress nodes and the rate of growth
of link capacities towards the backbone play key roles in
determining what fraction of the bandwidth is eventually
commandeered. These considerations are presented in detail
for a tree topology with users scattered at the leaves and
with varying link capacity assignments and idealised router
policies.

I. FROM THE DOLEV-YAO MODEL TO THE SHARED
CHANNEL MODEL AND BEYOND

Threats to the integrity and confidentiality of com-
munications have traditionally been studied in the now
classical Dolev-Yao framework [1] in which an adversary
is assumed to be able to exercise complete control over
the communication network. The key result of these
studies is that cryptographic guarantees can provide a
level of immunity to these twin threats even under this
draconian model of adversarial control of the communi-
cation infrastructure. With the rapid proliferation of the
Internet, however, a new security threat has emerged:
denial of service (DoS) attacks seek not to eavesdrop
on or spoof communications but are content merely
with disrupting interactions by making it impossible to
communicate to select users. The classical cryptographic
approaches to providing integrity and confidentiality do
not provide much guidance on how to deal with this
new threat.

It is clear that the Dolev-Yao model cedes too much
power to an adversary in this setting. Certainly, if an
adversary has control of the network and can con-
sequently select and drop packets at will he is al-
ready assured a DoS capability. The shared channel model
proposed in recent work of the authors [2], [3] is an
effort to relax some of the Dolev-Yao provisions while
still permitting adversaries substantial, but bounded,
resources. The model assumes that a legitimate user
and an attacker share a packet communication channel

to a receiver. While the details of the model are not
important for our purposes here, two key features are
relevant: a (single) adversary is assumed to have large,
but bounded, resources in terms of computation and
access to channel bandwidth; and each legitimate user is
assumed to have access to a certain minimum bandwidth
even in the worst case of an all out attack by the adver-
sary. It seems reasonable to presuppose these conditions
in a network model for the investigation of DoS attacks
and defences as the violation of either of these will result
in a prima facie DoS capability for the adversary. Within
the framework of the shared channel model, the results
of the studies [2], [3] were encouraging in so far as it
was shown that in some settings DoS attacks could be
thwarted at low cost.
Even a cursory consideration of any real network

suggests, however, that the shared channel model, for
all its appeal, is somewhat simplistic in its blithe allo-
cation of bandwidth. Nor does it take into account a
possible plethora of inimical sources, zombies, and bots
who take over unwary legitimate users. In such settings
the natural filtering by router policies at ingress nodes
and the rate of growth of link capacities towards the
backbone play key roles in determining what fraction
of the bandwidth is eventually commandeered. These
considerations are presented in detail here for a tree
topology with users scattered at the leaves and with
varying link capacity assignments and idealised router
policies. We present a framework, in a somewhat sani-
tised and idealised setting, in which one can analyse how
the density of bots affects the fraction of the available
bandwidth that adversarial traffic can commandeer. For
the tree structure considered here, as we shall see, exact
results and prescriptions can be obtained with a mod-
icum of effort. Our longer term goal is to understand
how to apply our results to more general settings.

II. A REGULAR TREE TOPOLOGY

Networks are built with arbitrarily complex topolo-
gies. However, we may want to look at the network from
the point of view of a single server, considering only
the subgraph consisting of paths from the clients to the
server. In the Internet, at any instant in time, the shape of
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such a subgraph is generally a tree. (In the common case,
packets are routed based on their destination address.
Thus, two packets from distinct sources that "meet"
anywhere in the network, will share the remainder of
their paths to the server. The shape of the subgraph is
then a tree, with the server at the root.)

Accordingly, consider a tree topology consisting of
an edge-weighted, regular d-ary tree of depth u. The
dk vertices at depth k in the tree form the vertices at
generation k, with the root of the tree identified with
generation 0 and the terminating d' vertices forming the
leaves of the tree at generation n. We identify the internal
vertices of the tree with routers. The sources (or users)
are all arrayed in the leaves of the tree with information
flowing upwards from the leaves towards the root. Thus,
each internal vertex of the tree has d incoming edges, one
from each of its d children, and one outgoing edge to its
parent. An outgoing edge is also attached to the root of
the tree which may be considered to be the gateway to,
say, a backbone or a sink.

Fig. 1. The dark vertices among the leaves denote compromised
users (bots). The lightly shaded vertices show the routers that are
contaminated.

We associate a positive edge weight Ck with the
outgoing edge of each vertex in generation k. These
weights represent link capacities. (We may impose the
natural majorisation Co > C1 > ... > C,1 > C, with
routers possessing larger and larger capacities the closer
they get to the backbone, though this kind of monotone
relation between link capacities is not essential for our
results.)
Each legitimate (or uncompromised) user offers a (mean)

load of f (per unit time) to its parent vertex in generation
u -1. We may suppose, without loss of generality, that
< d-(u- k Ck for each 0 < k < ii. (Else legitimate users

will suffer packet drops even under clean operating
conditions and we may as well set

0-< min{d-(-) Ck,0 < k<K T}I

which will reduce the problem to the stated case.)
For some 0 <Kr <KTi, suppose that a fraction d-(` r) of

the legitimate users are subverted with attack bots taking
over their functioning. We suppose that each bot (or
compromised user) offers a load c := C. to its parent
vertex limited only by the outgoing link capacity at the
leaves.
We will suppose that the d' bots are distributed uni-

formly across the leaves, one per each group of d`
leaves. More precisely, suppose that each vertex at gen-
eration r has precisely one bot (i.e., compromised user)
among its descendants. This will correspond to a worst-
case scenario where the bot distribution is maximally
effective in disrupting traffic.
Say that a vertex is contaminated if it has a compro-

mised descendant, and uncontaminated otherwise. Then
all vertices in generations 0 < k < r are contaminated.
We assume afair queueing protocol where each router at

generation k guarantees a minimum bandwidth of up to
Ck/d to each of its d children. Subject to the availability
of bandwidth under this fair queueing model, each
router at generation k makes a best-effort attempt at
delivering any offered load up to its link capacity Ck.
In this model, after all children whose offered load is
< Ck/d are accommodated, any excess bandwidth is
allocated uniformly across all children who have loads
in excess of Ck/d. If the offered load on any incoming
edge is in excess of the total allocated bandwidth then
the router drops packets on the offending link until the
offered load matches the allocated bandwidth. We make
the simplifying assumption that packet level granularity
is sufficiently fine for the flow on each edge to be thought
of as a fluid. In a bow to convention we will continue to
refer to the components of a flow as "packets" though
with the understanding that the flow is arbitrarily divis-
ible and, at need, any given fraction of a flow can be
dropped to match the bandwidth allocated to that flow.
Our variation on the fair queuing theme is idealised

and deviates somewhat from protocols used in prac-
tice. Ideal "fair queuing" mechanisms allocate capacity
equally among all of the end-to-end flows. In practice,
protocols such as Stochastic Fair Queuing (SFQ) are
deployed, where each link is divided up into a fixed
number of bins, and capacity is allocated evenly between
the bins. In contrast, our variant of fair queuing, allo-
cates outgoing capacity fairly between incoming links
regardless of the number of individual flows on each
link. Our riff on the general theme reflects the behaviour
of stochastic fair queuing under overload, where there
are more flows than bins at each router, and has the
great advantage of simplicity. At the cost of some added
complexity, we can apply a similar analysis to the cases
of SFQ or Fair Queuing.
Random drop models are both natural and easy to

implement at the routers and we consider two variants.
To eschew unnecessary complexity at this stage we
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begin with two stylized drop models that ignore random
effects in trimming flows.

* Agnostic drop model. The router makes no judgement
about the presence or absence of hostile elements in
an incoming flow that exceeds allocated bandwidth
and merely drops packets uniformly across the flow
until the load offered by the link matches the allo-
cated bandwidth. The proportionate mix of users in
the trimmed flow is kept in the same proportion as
in the original incoming flow.

* Pernicious drop model. Packets in the contami-
nated flow that originate with legitimate users are
dropped first (uniformly across all legitimate pack-
ets in the flow under consideration) with bot gen-
erated packets dropped only after all legitimate
packets are exhausted. In the portion (if any) of the
trimmed flow that is occupied by legitimate users,
the users appear in the same proportion vis a vis
each other as they did in the incoming flow. Attacker
friendly drops of this nature may be thought of as
an attempt to model situations where an attacker
exploits knowledge of the router protocol by timing,
replay, or other attacks.

The fraction of the flow of any user that is dropped in the
above proportionate drop models may be identified with
the expected fraction of the flow that is dropped in the
corresponding random drop models. As we shall see, for
reasonable capacity link assignments, the results may be
interpreted in terms of expected loads for random drop
protocols.
On notation: It will be convenient to introduce the

notations xA\ := min{x,1g} and xVg := max{x,lg} for
minimum and maximum, respectively. As is usual, we
write

rx if x > 0,
X+ = 0 if x< 0,

to denote the positive part of x.

III. EDGE FLOWS
Ignoring random effects for the nonce, suppose that

each legitimate user offers a load exactly equal to P.
Write (Pk for the load carried by the outgoing edge of

any vertex in generation k. We call y(k the flow emanating
from a vertex in generation k. We write (Pk = ck
if the vertex is contaminated, and (Pk = q4 if it is
uncontaminated.

Vertices in generations r < k < n may be either
uncontaminated or contaminated. We consider these in
turn.
The flow emanating from uncontaminated vertices

satisfies the recurrence Wu = d4uc+, (recall that 1d-k <
Ck for each k and that the bandwidth allocation model
supports fair queueing). Together with the boundary
condition Wu : , this leads to the solution

,u = fidUk (r + 1 < k <Ti). (1)

(Bear in mind that all vertices in generations k < r are
contaminated.)
Now each contaminated vertex in generation k (with

r < k < n) has precisely one contaminated child.
Each such vertex will hence accommodate the entire
offered load q c+I + (d -1) u

+I if it is less than the
link capacity Ck; else it will accommodate the entire
offered load from each of its uncontaminated children
(as Wu+, = d-k-k 11 <K Ck/d) and limit the bandwidth
allocated to the contaminated child to Ck -(d_1)1uk+l
Ck- (d-1 )d-k- 11 so that the total traffic carried by
the outgoing link is at link capacity Ck. Accordingly, the
flow emanating from a contaminated vertex in genera-
tion k satisfies the recurrence

(f = Ck A {q4'l, + (d- 1)'+, I} (r < k < Ti).

By induction, we quickly obtain

WC =CkA{Ck++(d -1)d 13}
A{Ck+2 + (d- 1)(d + 1)d -k-2}
A{ Ck+3 + (d-1) (d22+ d + 1)d-k-3k iA}

which leads to the general solution

A{CAcj + (di 1)d U3}
j=k

U

A {Cj+ (d - k
j=k

dn-)13} (2)

for r K k < in.
To finish up, consider vertices in generations 0 < k <

r -1. As all such vertices are contaminated, we obtain
the recurrence

k=ck= CkA(dWck+l)
and induction again quickly yields

kAf(d A(Adr kr ) A(di kC.)
j=k j=k

A n

/\ (A{dT-Cj + (dn- -d-
j =r

j+rk )13}) (3)

for 0 < k < r -1. The convention A0 = oc allows us to
unify our results and write

fc = ( -Cj)A(A {d(rk-k
j=k j=kVr

+ (dT-k - d-j+(rT- k )1 })

(Cj

(O < k < rv,).

It follows a fortiori that the flow emanating from the root
satisfies

(Po (A d(CJ)A(A{drCj±dU dn +)P
j=0j=T~~~~+r3}
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IV. ATTACK RATIOS AND COOPTED BANDWIDTH

Let ak denote the bot generated portion of the flow
emanating from a contaminated vertex at generation k.
We will refer to bot generated traffic as attack packets and
in keeping with this vivid terminology we may identify
aXk as the attack flow emanating from a contaminated
vertex in generation k. The attack ratio Pk := aXk / then
connotes the fraction of the total flow emanating from
the vertex that is bot driven.

AGNOSTIC DROP MODEL: Begin with the recurrence base

an = a= Cn.

Now consider the flow emanating from any contami-
nated vertex in generation k for r < k < n- 1. Recall
that each such vertex has exactly one incoming contam-
inated flow with the remaining d -1 incoming flows
uncontaminated. If the total flow entering the vertex,
4c+1 + (d-1])u+, is no larger than the link capacity Ck
then the vertex passes on the accumulated incoming flow
onto its outgoing link so that 4 c = Wc4+I + (d Il).u
and Xk = ak.+1. If, on the other hand, the net incoming
flow c4+ I + (d -1 ) WP + , exceeds link capacity Ck then,
as fair queueing mandates that the entire flow from
uncontaminated links is passed on untrammelled, the
bandwidth allocated to the incoming contaminated link
is Ck- (d-1 )IP) + 1 and a random selection of packets
is dropped from the offending incoming link until its
offered load matches the allocated bandwidth. As the
fraction of attack packets in the contaminated incoming
flow is Pk+1 = ak+1 4/4C+I, under a model of uniform
agnostic drops it follows that this is also the fraction
of the allocated bandwidth that is usurped by attack
packets and, consequently, Xk = (Ck- (d-1I 1 ) Pk+1
Putting the two cases together we obtain the recurrence

To complete the recursive specification, each vertex in
generation k for 0 < k < r -1 sees d contaminated
incoming edges, each carrying traffic ±c+1 = 1k+1 +
(WC+41 - k±+1) of which ak+1 is the portion coopted by
the attack flow. If dylc+ < Ck then the entire offered
load dyc+, is accepted and passed on to the outgoing
link whence Xk = dak+I. If d44c+H > Ck, on the other
hand, the incoming traffic is pruned back with traffic on
each incoming link allocated bandwidth Ck/d whence
ak = d(pk+l Ck/d) = Pk+1 Ck. It follows that

ak = (dc+)AA (pk+l C) = {dACk/(pk+1}ki+1
which leads to the inductive solution

r-1

ak = aCrf{dA Cj I(Pi}
j=k

(0< k < r-1). (5)

Pooling results, we obtain the desired expression

()=k)
n-1

x fl {1/A(Cj-(d
j=kVr

1 )Wu O/W4+l})

with the convention on products over empty sets allow-
ing us to extend the result to the cases r < k < n as well.
In particular, the attack flow at the root is given by

o = CT(,i{d/C/(Hj+1})
nlI

x (H{lA(Cj-(d
jr

1 )u+ 1)/44+1 }

ak = axk+lA (Ck -( -1) o1q+4) pk+l
{1A (Ck- (d-1) ou+,)/C+ lI}xk+1

valid for all r K k Ku 1. An easy induction now leads
to the general solution

ul-I

j=k
(r < k < Ti),

(4)
the usual conventionHo := 1 allowing us to extend the
result to the base case k = n as well.
The product on the right suitably normalises by a

quantity no larger than one. For instance, we may verify

aL_-l = C {1AI (CR_1- (d -1)yu) /yc }
= Cn A{C(C[ 1 -(d- 13) /C}
= C {C-1- (d- 11 }

where the right-hand side is in accordance with what we
may write down by direct observation.

PERNICIOUS DROP MODEL: The recurrence base is unaf-
fected with

nX=1 = Cn

as before. For a vertex in generation k with r < k < u-1,
if the net incoming flow q c+I + (d l-)>p is no
larger than the outgoing link capacity Ck then the entire
incoming flow is passed on to the outgoing link, (Pk.
4±+1 and, a fortiori, X= k+ 1 If, on the other hand,

the net incoming flow exceeds link capacity then, under
the aegis of fair queueing, all uncontaminated incoming
flows are allocated bandwidth sufficient to handle their
flows with the bandwidth allocated to the contaminated
incoming flow restricted perforce to Ck -(d 1 y)Wk+l1
Under the pernicious drop model, the bot generated
portion of the contaminated incoming flow gets first
access to this bandwidth (up to the allocated maximum)
whence Xk = k+1 A {Ck- (d-1 ) uP+I }. Pooling cases,
we have

ak = Xk+l A{Ck-(d- ])u+,>} (r < k < -1).
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An easy induction mops up and we obtain

n-1

ak A-{ (d _1)y}ACT}
j=k

(r < k <rt), (6)

with the convention on the minimum over an empty set
allowing us to extend the identity to the base case k = u.
Arguing as before, for 0 < k < r-1, all incoming flows

to a vertex in generation k are contaminated. If d(p c+ <
Ck then the entire incoming flow can be accommodated:
y c = dyc +1 and ak = dxk+1. If dyc +1 > Ck then each
of the incoming flows is allocated bandwidth Ck/d. As
the attack segments of these flows grab the allocated
bandwidth first up to the allocated maximum, Xk
d(xk+l A Ck/d) = (dxk+±) A Ck. It follows that

r-1
ak = (dxk+1) A Ck A(di-kCj)k (drk-Lkr) (7)

j=k

for 0< k <r -1.
Unifying the two cases, the attack flow emanating

from a contaminated vertex in generation k is given by

r-1I n-1
a,= A(di-kCj) A d(T-)+ {C,-(d _1)pu }

j=k j=kVr

A { d(r-k)+ C }

for 0 < k < n. In particular, the attack flow emanating
from the root is given by

r-1 l- I

(O = A(dJC) AA dr{Cj
j=O j=r

(d_ 1),uy ,I}A {drCn}.

It is instructive to compare these results for the perni-
cious drop model with the corresponding expressions
obtained for the agnostic drop model.

V. BANDWIDTH UTILISATION

Of the traffic entering the sink, the total bandwidth
utilised by legitimate users is yc ao. It is not difficult
now to obtain a finer resolution of bandwidth utilisation
across different categories of legitimate users.

Introduce the natural metric on the vertices of the tree
by setting the the distance between any two vertices to
be the hop count to their closest common ancestor. For
each 1 < t <K r, let Ut be the equivalence class of users
at distance t from the nearest bot. It is easy to see that
a given bot has d -1 users at distance 1 from it, d2 - d
users at distance 2 from it and, in general, dt dt
users at distance t. By symmetry, it follows perforce that
cardUt =dr(dt -dt-l).

For each t and k, let 1t, denote the flow originating
from a user in class Ut that is admitted into the outgoing
link of its ancestor in generation k. Now fix any 1 <
t < - r and consider any user in the class Ut. As
the nearest contaminated ancestor is t hops away, fair

queueing dictates that the entire user flow is preserved
through the lowest t + 1 generations whence

1 = Pt,T= Pt,T- =... = pt,1-t-

Suppose k > r. Then the subtree with root at any
contaminated vertex in generation k has d"-k leaves
consisting of one bot, d -1 users in the class U1, d2- d
users in the class U2, ..., and d-k d 1-- users in
the class UT k* It follows that the flow emanating from
the vertex may be decomposed into

n-k

k
=ak+ (dt

t=l

dt )13t,k

Ti-k- I

ak. + (d-1) Lk dt-1 t,k + (d -

t=l

1)d-k 113

as 0,,-k,k= 13.

Now, fix t and consider any given user in class Ut.
For r < k < n- t-1, the kth generation ancestor of the
tagged user sees d -1 uncontaminated incoming flows
in addition to a single contaminated flow containing the
tagged user's packets. The bandwidth allocated by the
vertex to the contaminated flow is hence (p4c-(d- 1) yu
of which ak is coopted by the attack flow. The residual
bandwidth 4c-ak - (d -1 )d-k- 113 is spread propor-
tionately among the commingled flows of the legitimate
users in the contaminated incoming flow

n-k- I

Wk = ak+1 + y (ds
s=l

dS )13s,k+1.

Accordingly,

_t,k=::

Pt,k+I
t E--1 (d(S-dd- ) 1s dkk

x (ck-ak- (d- )dTk I }
Pt,k+l

k+l1- k+1
-{f' -k- (d -)d-k-k 11}

so that a ready induction yields

ktI 4± c(d- J)d-j-1J±1
(r < k < Ti),

(8)
the usual convention on empty products allowing us to
extend the range of validity of the above equation to
- t < k < r, as well.
To finish up, consider any vertex in generation k with

0 < k < r -1. Such a vertex is necessarily contaminated
and the subtree rooted at the vertex has d'-k leaves
consisting of d'-k bots, d'-k (d- 1) users in class Ul,
dT-k (d2 d) users in class U2, ..., d-k (d 'r- rd 1
users in class U_ . Accordingly,

n-r

(k = ky(+ dr- (dt
t=l

dt )13t,k.
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As all d incoming flows to the vertex are contaminated,
the vertex allocates bandwidth qc /d to each incoming
flow of which a portion ak/d is coopted by the attack
segment of that flow. Thus, the legitimate users com-
mingled in each contaminated flow have available a
bandwidth (Wlc- k)/d. Arguing as above, any class
Ut descendant of the tagged vertex hence receives a
proportionate bandwidth

13t,kc = _t,kHl {Y dak

and, for 0 < k < r -1, another easy induction shows

1j+-1 c _ ic
p t, k = drlII,T (pjc _ 0cj+ d-p t, W k aXk (9)

IT
as the product telescopes. Pooling our results we obtain

13t,k drk(IIjp± )±)

d rl W' a cxj+i )
(PkA)l/r 0LXkAr

k (V= k Xr )

x Hqgc) aj-(d-1)d-113

jk=kVr )+1 -aj+l

the usual conventions allowing us to extend the identity
to all values of k. In particular, the bandwidth used at
the root by a user in class Ut is given by

On the other hand, (2) and (3) show that all contami-
nated flows satisfy

q. =1 (0< k <r).
Attack ratios under agnostic drops: From (4) we obtain

ak f|( (C) |(1 -2T'j 1

n-k-I

H (I(-2i (r < k <Ti,),
i=O

while (5) shows that the attack flow emanating from each
router remains unaltered in size for generations prior to

r-1

aLk = arH2A1} X=°r (0< k < r-1).
j=k

It follows in particular that the attack flow emanating
from the root satisfies

ri.-r-1rI -r-1
cxo H ( -2i13) < exp{3 L 2i}

i=O i=o

exp{ 13(2- I)} =exp- (1 -e)2 r+ P}
the second step following by virtue of the elementary
inequality 1 -x < e-X. The upper bound is in fact
tight asymptotically and we may prove the following
proposition: If r = r, increases unboundedly with n then
ao - exp{ -( 1-)2-T- } = 1- 0(2-T ) as rt - oc. Indeed,
as log(1 -x) =-x+ 0((x2) as x -i 0, we have

13t,O = dr (Pc
ao n-t-I bj (d- I)dn--i

°rJ j=r f c1 ^+

v-rT,- I

ao = exp{ log(1
i=O

for 1 < t < r -r. The specific form of these expressions
depends on whether the agnostic or the pernicious drop
protocol is in force.

VI. APPLICATIONS

The nature and impact of the DoS threat can vary

substantially depending on the specification of the link
capacities. Some examples in natural settings may serve

to illustrate the extremes of behaviour.

EXAMPLE 1 (SOCIALISED CAPACITY) Suppose all links
have the same capacity which we may assume, without
loss of generality, to be unit: Co = C = ...= Cn = 1.
For definiteness, consider a binary tree with d = 2. To
ensure that no legitimate packets are lost under normal,
average operating conditions, we require 12' < CO = 1.
Accordingly, write 2 = 1 -C where the positive C
denotes the capacity held in reserve at the root.

Edge flows: For uncontaminated edge flows we have
from (1) that

u=2n-k13= ( -)2k (r+ <KkK<T).

= exp{ LP 2i+ (D 2 22i)}
i=O i=O

exp{ 13(2 -1 ) + o(D(222(nrrJ))}
= exp{-(1 -c)2 rn +0(2 + 2 2n)}

as oc, to complete the proof.
Thus, even very modest attacks with only logn, or

even log* i, cannily placed attackers, (corresponding to

r. = log logn and log* i, respectively) will end up

coopting all but a vanishing fraction 0(2-Tr) of the
bandwidth at the root even though the number of at-
tackers is dwarfed by the exponential number of regular
users.

Attack ratios under pernicious drops: Proceeding simi-
larly, (6) yields

n-1

axk A{ -2n-j-1}A
j=k

= 1-2n-k-k 1I1 = 1 -(1 -c)2 k (r < k < Ti),
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and substituting ar from this result into (7) gives

r-1
,k A2j-k A2r-k (I

j=k

- 1 (1 -e)2-r)

=1A (2 -k- 1 (1 -c)2 k)

It follows in particular that

co = 1A (2 - I (1 -e)) = (1

(O < k < r-1).

e)/2 if r = 0,
if r> 1.

With pernicious drops, even a single attacker (corresponding
to r = 0) will cause half the legitimate packets to be dropped,
while two attackers (corresponding to r = 1), one placed
on each half of the leaves of the tree, will coopt the entire
bandwidth at the root.

It should be borne in mind, however, that each attack
bot is allowed the capability of imposing an exponen-
tially larger load than the typical user. This large initial
attack capability of even a few bots is fostered by the
substantial excess capacity in the downstream links. I

The identical link capacities of the previous example
result in all contaminated links operating at maximum
capacity. For an illustration in the opposite direction,
consider the following familiar setting.

EXAMPLE 2 (DIGITAL TELEPHONY TREES) If each router
in the tree has sufficient capacity to simultaneously han-
dle all incoming flows at maximum intensity we are led
to a model where link capacities increase exponentially
towards the sink. This is the model for digital telephony
in the DSL hierarchy and the Bell Labs TI, T3, ... system.
Accordingly, suppose

Ck > dCk+l (O < k < T-1 ).

If the load offered by legitimate users is bounded we
may suppose without loss of generality that the max-
imum offered load is unit with the mean load 0 < 1.
In this setting we may normalise by setting C, := 1,
whence Ck > d'-k for each k.

In this model, each router will accept its entire offered
load even under worst case settings in normal operation.
It follows that the edge flows are given by

vc = d(T-k) + + (d-k-d(T-k)+) (O < k < in),

as we may also verify directly from (2) and (3). In
particular,

,c = dr + (dn-dr).
As all incoming flows are accepted whole at every
router the same situation obtains for both agnostic and
pernicious drops as can be verified by running through
the corresponding pairs of equations (4, 5) and (6, 7).
The corresponding attack flows hence satisfy

ak= dd(r-k)- (O < k < in),

and, in particular,
ao = dr.

The fraction of the bandwidth coopted by attack bots
at the root is hence given by the attack ratio

°co dr
P= c = d" + (I1- )dr

For any fixed O < <1, if r, < KrT for any
K < 1 then p0 =0 (d- (1 -K)) decreases exponentially.
Indeed, even if r = r = n w- where w, increases
slowly but without bound, w, -i oc, w = o(n), then
PO = 0(d-w) and the attack flow at the root is an
asymptotically negligible fraction of the the total traffic
with most of the legitimate packets making it through.

Thus, if link capacities increase exponentially towards
the sink then DoS effects are minuscule unless a constant
fraction of the users are compromised [i.e., n-ir =

(9(1)]. As is intuitive, the limited link capacities at the
downstream vertices functions as a gatekeeping mecha-
nism which limits the severity of the initial attack the
ratio of the bandwidth accessed by an attack bot to that
of the mean bandwidth occupied by a legitimate user,
1: 0, may be large but is bounded. I

The link capacity assignments in the previous example
are conservative in that under attack-free conditions
there is sufficient capacity to simultaneously handle
the worst-case load that can be offered simultaneously
by all legitimate users. In a somewhat less generous
assignment of capacities we may seek to exploit statis-
tical information about offered loads so that only rare
load excursions lead to packet drops with typical loads
handled effortlessly.

EXAMPLE 3 (STATISTICAL OVERPROVISIONING) Let X
be a positive, bounded random variable with mean
f and variance u2. We shall suppose, without loss of
generality, that X is bounded above by 1 so that f
and u2 are both positive and less than one. Suppose
the loads offered by legitimate users are independent
random variables all with the common probability law
of X. As each router in generation k has d'-k leaves
as its descendants, the total load Sk proffered by these
descendants is the sum of d'-k independent copies
of X. It follows that E(Sk) = kd- and Bernstein's
inequality suggests that large excursions above this
value are unlikely:

P{Sk > 1dT- + Aud(n-k /2}
< exp{-2 A2/(1 + 3 Ad-(n-2)}.

The right-hand side can be made less than 6, say, by
choice of the positive constant A. Accordingly, the choice
of link capacities

Ck = fd-k + AUyd(T-k)/2 (O < k <in)
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will ensure that the fraction of time that any given
router sees a buffer overflow under normal, attack-free
conditions may be made as small as desired.

Edge flows: With these link capacity assignments the
terms under the minimum in (2) are decreasing whence

Wk = Cn + (d"-k >)3 = 13d-k + Au (r < k <r).
(10)

On the other hand, the terms under the first minimum
on the right of (3) are increasing and accordingly

WC = Ck A (d-krc) = 3d- + Audmmin{r-,k( k)/2}
{ 13d-+kAudr-k if (2r -n)+ < k <r -,
l3d-k + Aud( n-k)/2 if 0 <k < (2rr-n).

(11)

In particular, the edge flow emanating from the root
satisfies

pc = fdn + AudminTr,/2}.

Attack ratios under agnostic drops: As all incoming flows
to routers in generations r < k < ii are accepted (as is
easy to verify from (4)), we have

ak=Cu= 1+Au (r < k < Ti).

to C. = 1 + Au < 1. It follows that the attack ratio at
the root is given by

Po ( Auy+Po= - I d-13/ (-+oo).

There are modest gains over the previous case (in a
multiplicative factor of 1 + Aul1 instead of 1 1/) if the
mean and standard deviation of the legitimate flows are
comparable and both much less than the load maximum
1, this kind of large excursion being rare.
High intensity attacks. Suppose now that r = r,

increases with n so that lim infr/n > 1 /2 and
limsup r/n < 1. Then,

O<c =< dn +A1dw/2h e dn

Now for 0 < j < 2r- -1,wehave

oi I -Au - ) d-(n-j)/2(
/ d_ (O<j<2r-n- 1).

Taking logarithms of the product on the right of (12), we
hence obtain

2r-n-I Au 2r-n-A
j log(1+ Oj) d j)d-O di

On the other hand, (10) and (11) show that

dq4+1 Cj
if (2r -n)+ < k <kr-
if O<k<(2r -n)+,

and, accordingly, (5) shows that

ak =Xrdr k if (2r -rt)+ <kK<r -1,

while

ak =(x,rdr-(2r-i)
(2ru-n)+-I

j=k

cj if 0 <k< (2r
Wj+l

It will be convenient to set

Aud(n-i -3)/2 (v/d_- )
j 13d-j-1 + Aud(n-j-])/2 -

Then we may compact our expressions into the form

(2r-n) +-1

ak = (13+Au)drdk H1 (I +Oj)
j=k

(O< k < r- 1),

(12)
with the usual convention on empty products taking care
of the cases k > (2r -rT)+. Two cases are indicated.
Low intensity attacks. If r < n/2 then

Au -(n-T)
13 d(d ~r1

d- /2) dAC d_ (T-Tu)r
13/d-

It follows that

(TAdre(Au d(u1-Tao=( + Au)dr exp (~1 d-(-)l + o(lI)))
0 ~~~~~~ ~ ~~ 1vld I

as in -i oc. The attack ratio at the root hence satisfies

Po (l AC) d-(r)exp(AX ( rrd (1+(1 )))

Write r, =ii W- . If w, -i oc and w = o(n) then
Po (1 + Ad) d W" and again the attack flow at the root
is asymptotically negligible. Even much larger attacks do
not take over the entire flow. Thus, if r, =i -K for any
fixed K then po -+ (1 + ) d-K exp(Aud -K/p d) and
at most a constant fraction of the flow is coopted. The
gains are largest when the flows are highly concentrated
around the mean so that ul1< 1. This situation should
be compared with that of the previous example.

Attack flows under pernicious drops: The sequence of
values Cj -(d 1 ) u

, is decreasing as j increases from
r to n -1 and in consequence (6) shows that

ak = Cu (r < k < Tr).

,c = C3dT + Audr, ao = (13+Au)dT,

and all flows are accepted without truncation at any
generation as in the previous example, the difference
only in that the entering flows at the leaves are restricted

Likewise, for any 0 < k < 1r-, the sequence of
values di kC increases as j increases from k to r-l.
Accordingly, (7) yields

ak = CkA (dr-kCT ) (O< k < 1- ).
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In particular, the attack flow emanating from the root
satisfies

ao = {f d" + Aud/2} /A{ ( + Au)dr}.

Low intensity attacks. If r = r, = n- where w,
satisfies w, -i oo and w= o(u) then ao = (3+A)drn
eventually and the attack ratio at the root is given by

p d +Aod (1 Ao -
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which matches the agnostic drop result. Thus, under a
low intensity attack, an asymptotically negligible frac-
tion of the bandwidth is coopted by the attack even
under a pernicious drop protocol.
High intensity attacks. Suppose now that r, = n-K for

some fixed K. In this case, all but a fixed fraction d-K
of the leaves is compromised. Then, for all sufficiently
large u,

ao'-f A({ + Au)d-K}dn

so that the attack ratio at the root is given asymptotically
by

Po -< 1 A (1 + Au )d K (T - oo )).

If the deviations from the mean are not very small, the
entire bandwidth gets coopted. If C is comparable to C
then for all sufficiently large K an asymptotically fixed
fraction of the bandwidth is coopted. I

VII. IN FINE

Even in this stylised setting, a key conclusion that
emerges from the analysis is that, as is intuitive, there
may be distinct advantages in combating DoS attacks to
allow of early gatekeeping mechanisms at downstream
routers by limiting ingress capacities at the leaves. The
analysis presented here is, of course, simplistic in that
it ignored random fluctuations in user traffic. It may
be anticipated, however, that there is concentration of
the results around the expressions obtained by using
the mean values for the loads at least for "reason-
able" assignments of link capacities ; we reserve these
considerations for elsewhere. In another direction, more
complex network models pose more challenges in anal-
ysis because of a multiplicity of routes that become
available between sender and receiver and the pres-
ence of crossing traffic which has the nuisance value
of creating fluctuations in demand in the sub-net under
consideration. The analysis now depends intimately on
the topology, the routing protocols in force, and the
nature and composition of the incidental traffic, as well
as on the deployment of bots. We leave these issues for
a later date.
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