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Abstract

Humans use computers to carry out tasks that nei-
ther is able to do easily alone: humans provide eyes,
hands, and judgment while computers provide computa-
tion, networking, and storage. This symbiosis is espe-
cially evident in workflows where humans identify ob-
jects using bar codes or RFID tags and capture data
about them for the computer. ThisAutomated Identi-
fication and Data Capture (AIDC)is increasingly im-
portant in areas such as inventory systems and health
care. Humans involved in AIDC follow simple rules and
rely on the computer to catch mistakes; in complex situ-
ations this reliance can lead to mismatches between hu-
man workflows and system programming. In this pa-
per we explore the design, implementation and formal
modeling of AIDC for vital signs measurements in hos-
pitals. To this end we describe the design of a wireless
mobilemedical mediatordevice that mediates between
identifications, measurements, and updates of Electronic
Health Records (EHRs). We implement this as a system
Med2 that uses PDAs equipped with Bluetooth, WiFi,
and RFID wireless capabilities. Using Communicating
Sequential Processes (CSP) we jointly specify workflow
and computer system operations and provide a formal
analysis of the protections the system provides for user
errors.

1. Introduction

Automated Identification and Data Capture (AIDC)
provides support for a growing collection of tasks in
which sensor systems, often manipulated by humans,
are used to identify objects and collect measurements
about them. Identification uses tools like bar codes or
Radio Frequency Identification (RFID) tags with opti-
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cal or radio readers. Data capture involves both man-
ual input and an increasingly rich collection of mea-
surement devices often linked wirelessly to computer
networks. While workflows like the checkout lanes at
grocery stores are fairly simple and have become well-
established, in other areas AIDC is only beginning to see
practical application because reliability, flexibility, and
cost savings have not yet been adequately addressed. A
particular case in point is medical workflows where the
identification of readings and samples is of safety criti-
cal importance and workflows are quite complex. Better
analysis techniques are needed to help design workflows
and systems so that these concerns can be addressed
with high confidence.

In this paper we explore modeling techniques based
on process algebras to better design and analyze human
workflows and the computer and networking systems
that support them. Our primary focus and contribution
is on the analysis of the gap between the human work-
flow instructions, which must be comparatively simple,
and theprotection envelopecomprising the collection of
erroneous behaviors the computer is able to detect. It is
typically impossible to detect all types of human error
using storage and sensor data, so it is essential to iden-
tify exactly which types of conditions lie outside of the
protection envelope and address these through system
extensions or user training. As systems become more
complex and safety critical, it is increasingly undesirable
to base the detection of errors on operational experience
and hence formal means of analysis provide a premium.

As a simple example, consider the move from cur-
rent grocery store checkout lines which use attendants
to scan items to ones that encourage the customer to
perform this task. A typical system of this type might,
for instance, provide a scale onto which the user places
items after scanning them; if there are inconsistences be-
tween the expected weight of the item scanned and the
measured weight of the item placed on the scale, then
an attendant may be called to review the situation. This
example illustrates the combination of automated iden-
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tification (the scan), data capture (the weighing), and
the envelope of protection (exceptional conditions aris-
ing from inconsistency between identification and data
capture). The default behavior is simple, scan items and
put them on the scale, but a broader protection envelope
is supported if this workflow is violated. The situation is
made more complex when additional issues arise, such
as a customer using their own cloth bag (to avoid choos-
ing paper or plastic): can (or should) the system be de-
signed to account for the added weight of the customer’s
bag on the scale without generating a call-attendant sig-
nal?

This paper introduces a methodology based on Com-
municating Sequential Processes (CSP) that provides
basic vocabulary for AIDC. We show that this language
can be effective in characterizing and analyzing the hu-
man workflow, the system protection envelope, and the
implementation for complex and potentially valuable
AIDC systems. We demonstrate this with a device we
call a “medical mediator” which can be carried by a
nurse or other clinical personnel and used to identify de-
vices and subjects (patients) so their data can be auto-
matically recorded into the hospital information system
with a well-understood set of rules about the protection
envelope of the device and workflow.

The paper is divided into seven sections. We begin
in Section 2 with background material on CSP, how it
can be used to model workflow, and the opportunity and
challenge of AIDC in healthcare. Section 3 describes the
design of the medical mediator and Section 4 sketches a
prototype implementation of a medical mediator using
PDAs with WiFi, Bluetooth, and RFID. In Section 5 we
describe our modeling technique for AIDC using CSP
and apply it to the medical mediator by specifying hu-
man workflow and the protection envelope. Section 6
sketches safety properties of the medical mediator de-
rived from our three specifications. Section 7 describes
some of the related work on workflow modeling and
AIDC and Section 8 provides some conclusions.

2. Background

Since our focus will be on using CSP to model AIDC
in health care, we need some background on CSP nota-
tions, how CSP can be used to model workflows, and the
opportunity and challenge of AIDC in health care.

Communicating Sequential Processes (CSP).CSP
is an algebraic notation for concurrency and communi-
cation that is used to describe processes in terms of their
patterns of behavior. We will try to make our discus-
sion self-contained but more details and examples can
be found in [11, 21].

A simplified grammar of CSP is given below. It is
based on a primitive set of eventse and booleansb.

P, Q ::= e → P |Stop |Skip | if b then P else Q |P \A |
P 4Q |P ;Q |P |||Q |P ; Q |P |[{A}]|Q |P � Q |P uQ

The processe → P first doese and then behaves like
P . The constantSkip indicates successful completion
while Stop indicates a deadlocked process. The pro-
cessif b then P else Q behaves likeP if b holds and
like Q otherwise. The processP \ A behaves likeP
but with all elements ofA removed from its traces as
if they have been internalized. The processP 4 Q be-
haves likeP but becomesQ on interrupt. The process
P ;Q behaves likeP until P terminates, and then be-
haves likeQ. The processP |||Q denotes the interleaved
parallel composition of the two processesP andQ. In
the processP |[A]|Q, the processesP andQ must syn-
chronize on the events in the event alphabetA but exe-
cute with parallel interleaving otherwise. The processes
P � Q andP u Q each behave either likeP or Q, but
the choice between them is made by the environment
for P � Q and internally forP u Q. The operators
||| , �, andu are associative and commutative. We will
abbreviateP (x1) � . . . � P (xn) by �

x∈X
P (x) where

X = {x1, . . . , xn}, and similarly for ||| andu. (All sets
will be assumed to be finite.) We will further abbreviate

�
{C.x|x∈X}

C.x → P (x), whereX is an understood set of

values for a communication, byC?x → P (x) meaning
the possible receipt of a value, and writeC!v → P for
C.v → P , representing the sending of a valuev. We will
refer to the modifierC in a set of events{C.x|x ∈ X}
as a communication channel, or channel for short.

Using CSP to Model Workflow. Perhaps the easiest
way to understand CSP and its potential for workflow
modeling is to work through an example. We do this for
an identification workflow used by the U.S. Transporta-
tion Safety Agency (TSA) [2] and illustrate a (known)
procedural gap using CSP notation. Our goal here is
simply to show how concurrency contructs can be used
to express sometimes subtle aspects of human workflow
using an example that will be familiar to most readers.
The bulk of the paper will focus on more complex and
specialized workflows in health care.

TSA provides screening of passengers and their
carry-on baggage in a checkpoint that passengers must
traverse to reach boarding gates. At the checkpoint, the
passenger is required to place their bags onto a conveyor
belt, where they are screened by X-ray, while the pas-
senger steps through a metal (and possibly chemical)
detector. After stepping through the metal detector, a
passenger may be selected by TSA for further screen-



ing. In this case the passenger is asked to identify their
bags and step to a separate screening zone. A security
gap arises in this workflow because the workflow does
not bind the passenger to his baggage before the screen-
ing step is executed, thus allowing the passenger to po-
tentially select a different bag than the one they were
originally carrying. The check against this happening is
the assumption that the selected passenger’s bag would
remain unclaimed while the other passenger whose bag
was taken would complain, thereby alerting the the TSA
to a problem. However, if the person selected has an ac-
complice, they could enter together and swap bags if one
was pulled for further screening. The end association of
bag with passenger has failed to match corresponding
identities; after the bag selection is complete, the TSA
agent does not know the identity of the bag selected rel-
ative to the passenger selected. It is arguable that there
is an error in the workflow specification: the workflow
should specify that the TSA agent makes the choice of
the bag for the passenger to reclaim, and not the passen-
ger. Let us see how the workflow in particular, and this
issue in general, can be modeled formally using CSP.

We model the specification of the passenger and TSA
agent as follows. We assume events for clearing a pas-
sengerClr, selecting a passengerSel, and getting a bag
Bag, and processes for going to the gatesGate, or for
going to the waiting areaWait (for further screening).

Pass(p) = (Clr.p −→ u
b∈Bags

Bag.b −→ Gate(p, b))

�(Sel.p −→ u
b∈Bags

Bag.b −→ Wait(p, b))

TSA = �
p∈Pass

(Clr.p −→ �
b∈Bags

Bag.b −→ TSA)

u(Sel.p −→ �
b∈Bags

Bag.b −→ Screen(p, b))

This allows for the following implementation (failure
refinementin CSP terminology) in which a suspicious
passengerp plans ahead to swap bags with accomplice
passengera.

(Clr.p −→ Bag.bp −→ Gate(p, bp))
�(Sel.p −→ Bag.ba −→ Wait(p, ba))

One strategy to address this problem is to change the
specification of the workflow for the passenger to:

Pass(p) = u
b∈Bags

Bag.b −→ (Clr.p −→ Gate(p, b))

�(Sel.p −→ Wait(p, b))

Practically speaking, this means not selecting the pas-
sengers for extra screening until after they have se-
lected the bags they plan to take to the gate with them.
The specification of the TSA would now need to be
changed to reflect the order of bag selection and passen-
ger screening selection. By changing the specification
this way, we are (more) assured that the bag has been
identified as the one that the passenger plans to take with

them. However, this still does not guarantee that the bag
is the one that the passenger brought with them. An al-
ternative strategy is to change specification of the TSA’s
workflow:

TSA = �
p∈Pass

(Clr.p −→ �
b∈Bags

Bag.b −→ TSA)

u(Sel.p −→ Bag.bp −→ Screen(p, bp))

This specifies that the TSA officer is required to select
the bag of the passenger. Of course, a proper execu-
tion requires that the TSA agent remember or somehow
record which bag the passenger had when he reached the
checkpoint so the selection can be made accurately if it
needs to be made.

AIDC in Health Care. Identification is especially im-
portant in health care. Everyone has heard horror stories
about patients who got an operation intended for another
patient [6], died because they got the wrong medica-
tion [14], or had surgery that mis-identifies a limb that
needed to be amputated. Samples must be very carefully
handled in labs and there is an especially important gap
between the collection of a reading and its entry into an
Electronic Health Record (EHR). As a result, health care
facilities such as hospitals, labs, and clinics have rigor-
ous workflows for clinical personnel that involve careful
identification. Clinicians, patients and samples are all
labeled with badges, arm tags and stickers respectively
for use in many procedures.

There are efforts to improve efficiency in hospitals
by using AIDC and we will overview a few in our re-
lated work section. Our primary focus in this paper con-
cerns using tags to facilitate EHR updates from read-
ings a clinician takes from a patient using a medical de-
vice. Wireless communication capabilities such as WiFi,
Blue-tooth, and RFID are changing hospital workflows.
To see the trend, first note that much current workflow
is comparatively manual. For instance, a nurse collects
the weight of a patient on a mechanical scale and writes
it on into a paper file. With the emergence of EHRs, the
nurse then enters this information into an EHR at a later
stage. But if wireless medical devices were used, the
workflow could have been streamlined. For instance, a
wireless scale has a Blue-tooth link to a computer and
the reading is transfered directly to the computer with
the nurse providing other necessary identifications.Or
the scale connects by Blue-tooth to a Personal Digital
Assistant (PDA) carried by the nurse, displays the read-
ing and enters it via a WiFi link into the EHR.Or, in the
case of our system in this paper, a scale / pulse oximeter
connects by Blue-tooth to a PDA (which we will subse-
quently refer to as amedical mediator), which uses an
RFID reader to identify the patient and the clinician be-
fore entering the results into an EHR via a WiFi link. We



add the additional step of identifying the device making
the reading to obtain the following:

Nurse Workflow: Identify the patient by scanning the
patient’s identification tag, then identify the device
to be used to take a reading by scanning its identifi-
cation tag. View the information to verify whether
the correct entities were identified. Take a reading
and check the reading to see if it is acceptable for
entry into the EHR and approve if it is.

This is the type of workflow a human can understand
and follow; it can be augmented by some simple recov-
ery instructions like using a reset function if the entities
are not correctly identified or the reading is not satisfac-
tory. It can be expressed in CSP without great complex-
ity as follows:

Nurse(n, m) =
HCInm!GetID → u

p
(HCInm!(RFIDChann,m

p ) →
u
d
(HCInm!(RFIDChann,m

d ) → HCInm?x →
if x = (Name(p), Name(d))
then (HCInm!Yes → TakeCkReading(n, m, p, d))
else if x = Error then (HCInm!OK → Skip)

else (HCInm!No → Skip)))

whereHCInm is the human-computer interface for the
PDA m used by the cliniciann and RFIDChann,m

x is
the connection between the RFID tag onx (personp
or deviced) and the medical mediatorm provided by
the cliniciann bringing the RFID reader in range of the
RFID tag. The processTakeCkReading for collecting
the reading from the device is described in Section 5.

Our primary interest is in what happens when we step
outside of the simple human workflow and consider the
many exceptional conditions that plague practical oper-
ational deployment and implementation. For example,
what happens if the nurse scans the patient’s ID more
than once, or skips the identification of the device, or
does the identifications in a different order, or identifies
the wrong type of object (like herself as patient), and so
on. In these cases one hopes that the computer can cor-
rect many errors, but it is generally impossible to correct
all of them (for example a nurse who takes a reading of
a patient different from the one identified) so it is impor-
tant to know exactly which ones willnot be caught.

3. Medical Mediator

As mentioned earlier, it is not unusual for a nurse to
take a measurement from a patient, record the reading
into a piece of paper, and enter it into patient’s EHR at
a later stage. This workflow is not only inefficient but
it also creates many opportunities for mistakes. In the

Figure 1. Communications

meantime there has been excellent progress on develop-
ing wireless medical devices that automatically transfer
their readings to a nearby station. Research-oriented ef-
forts include Harvard CodeBlue [19] and UCSD’s WI-
ISARD [17]. Many technologies have reached commer-
cial deployment, including the Nonin Bluetooth pulse
oximeter used in our implementation and, with wire-
less network quality getting better and battery life get-
ting longer, we expect to see significant adoptions of
wireless medical devices in the near future. However,
current systems solve only a piece of the overall prob-
lem. For example, the Nonin pulse oximeter can pair
with nearby computers that use Bluetooth, but has little
capability itself and, in particular, it is not able to iden-
tify the subject on which it is being used. Also, this new
technology only becomes practical if there exists an ef-
ficient mechanism to handle the heterogenous nature of
the system, that is requiring a modest amount of effort
to manage and install various devices, potentially from
different vendors. Themedical mediatoris a design that
effectively addresses this gap using a mobile computer
that can carry out identifications and mediate communi-
cations with devices that lack identification capabilities.

We have developed an overall system architecture,
which has been implemented and tested with existing
hardware platforms. Our tests show that such a system
is feasible and could be deployed in practice. The medi-
cal mediator combines patient identification and medical
data capturing functionalities into one single handheld
device and provides automatic aggregation of the two.
It can assist the nurse in detecting and preventing medi-
cal errors, which, if go unnoticed, might lead to harmful
consequences for patients such as injuries or even death.
We will discuss its architecture and intended operations
in this section; we describe a prototype implemention in
the next section.

Architecture. Figure 1 shows communication paths



between the components and with the clinicians and sub-
jects. There are three software components: an elec-
tronic health record databaseEHR, the medical media-
tor software, and a server which processes data and in-
terfaces with the EHR:EHRInterface.

EHR contains information about theagents(clini-
cians like nurses),subjects(patients) and medicalde-
vices. This includes the name and role of each agent
in the hospital, medical notes (such as medication aller-
gies) of each patient, a short description of each medical
device, its functionality (pulse oximeter/ scale) and its
working status (working/broken), etc. This information
can be queried using the ID number of the correspond-
ing object or subject.EHR also stores information about
medical measuring schedules: when it should take place,
who is the patient, and what type of device should be
used, etc.

The mediator,Med, runs on a handheld device that
can connect toEHRInterface and to medical devices.
It also has the ability to read identification tags. The
mediator acts as an interface between theparticipants
(agents, subjects and devices) and our backend system,
which comprisesEHR andEHRInterface. Each agent,
subject and device has a tag containing their identifica-
tion number (ID). Note that we do not limit ourselves
to any particular identification mechanism. A barcode
or any other type of automated ID such as RFID can be
used to identify the participants.

The last component,EHRInterface, processes re-
quests from the agent, makes queries toEHR, analyzes
medical data, checks for possible errors, and commits
changes toEHR based on decisions made by the agent.
By comparing data given byMed and data stored in
EHR, EHRInterface is capable of detecting and prevent-
ing a wide range of errors during the identification and
data capture process.

System Operations. At the beginning of her shift, a
nurse checks out a PDA with the mediator software in-
stalled and running. She scans her badge to associate
herself with the mediator, perhaps entering a password
or PIN. To take a measurement for a given patient and
device the nurse scans the patient’s tag and the tag of the
medical device. The two IDs are sent from the media-
tor to EHRInterface. ThenEHRInterface queriesEHR
to get detailed information regarding these IDs, such
as the patient’s name and the device’s description. If
EHRInterface detects any mismatch, such as a wrong
combination of IDs, or no scheduled measuring for the
patient at this given time, etc, an error is raised that
may cancel the whole transaction and notify the nurse
through the mediator; otherwise the identifications are
sent back to the mediator. This check is capable of de-

tecting many common errors, such as patients wearing
wrong ID tags, or nurse taking measurement of wrong
patient (perhaps having a name similar with the correct
one). After this point, the nurse can verify these iden-
tifications one more time, making sure that these data
reflect the actual patient and device, before advancing to
the next stage.

The mediator then connects to the identified device if
necessary. Since many of the new medical devices are
enabled with Bluetooth, this may mean a Bluetooth link,
but other communication technologies like ZigBee or in-
frared are also possible. In our implementation the nurse
needs to select the identified Bluetooth device from a
list; a more streamlined program could avoid this step.
The mediator then collects the data captured by the iden-
tified medical device. The collected data will be tun-
neled from the mediator toEHRInterface. The mediator
does not need to “understand” the semantics of the col-
lected data since it will not analyze it; it will instead be
parsed byEHRInterface. The result, in a human read-
able format, will be transferred back toMed. The nurse
can now examine the outcome, along with meaningful
identifications of the patient and the device before de-
ciding whether the data is correct and should be recorded
into the patient’s EHR. This design offloads heavy com-
putations from a PDA to a much more powerful server.
Doing this not only reduces the cost of the system, but
also eases management, both of which add to scalabil-
ity and applicability of our system. If we were to rely
on the mobile device for computational power, the me-
diator would probably need to be a laptop or tablet PC,
which are much more expensive than a PDA. However,
the more serious concern is configuration management:
in order for a new medical device to be introduced into
the system its software must be installed on all of the
mobile devices. Even in a medium-sized hospital, this
number could be hundreds. In our system only the back-
end server needs to be updated.

4. Med2 Implementation

We implemented a prototype of our designMed2and
tested it in taking real medical measurements. In our im-
plementation, we put bothEHR andEHRInterface com-
ponents in a single laptop equipped with Intel Core2Duo
2.00GHz processor, 2GB of RAM, running Microsoft
Windows XP. The Med2 software runs on top of an HP
iPaq 4150 PDA with Microsoft Windows Mobile 2003
platform. The Pocket PC has 64MB of RAM, 400MHz
Intel XScale processor, and an SD slot armed with a
SDIO RFID reader from SDiD. The PDA connects to
the back end server via WiFi, and communicates with a
Nonin 4100 wireless pulse oximeter via Bluetooth. We



Figure 2. Med2 Hardware

use ISO 15693 compliant RFID tags to identify the par-
ticipants. The RFID tags in the prototype are shaped like
credit cards, but these tags also can be had in wrist bands
or as tags that can be stuck on devices. The mediator
identifies a tag by being held within a few centimeters of
it. This proximity reduces the risk that tags from other
nearby devices or patients will be collected accidentally.
Figure 2 shows the Med2 mediator in action.

Med2 has about 3000 lines of C++ code and a small
mySQL database. This includes code for our frame-
work, a piece of code to control the SDiD reader and
read data from RFID tags, and a piece of code to in-
terpret data from the pulse oximeter.EHRInterface was
programmed using MFC while the mediator software on
the PDA was developed with Microsoft .Net Compact
Framework.

Figure 3 shows detailed modules of Med2. The func-

Figure 3. Med2 Software Components

tions of the modules are intuitive and can typically be de-
duced from their names.Identification LogicandData
Collector help the nurse to identify the participants,
and collect readings from medical devices.Transaction
Controlat EHRInterface creates and terminates transac-
tions. To enhance reliability of the system, each trans-
action is realized using a separated instance ofTransac-
tion Logic. This is to make sure that if anything wrong
happens in a transaction, it will be contained and cannot
affect other transactions taking place at the same time.
Readings collected from medical devices will be inter-
preted by theDevice Logicmodule. This is a layer of
abstraction that addresses heterogeneity by providing a
common interface when handling multiple types of de-
vices from the same or different vendors. Each type of
device will have its corresponding device logic imple-
mented in a dynamic library. This logic may include
wrappers for vendor-specific code to assure compatibil-
ity in the EHR or the mediator interface. This approach
allows new devices to be installed with no changes to
the code on the mediator and controlled changes in the
EHR schemas.

We tested our implementation by taking blood
oxygen-percentage and heart rate readings on people in
our lab. We set up a few scenarios with errors within the
specified protection envelope and showed that our im-
plementation was able to detect and prevent these errors.
Several people were given RFID cards, each with a pro-
grammed ID that identifies its owner. One of them was
given role as a nurse and the others were patients. The
Nonin Bluetooth Oximeter was also given an ID. These
roles and IDs were reflected in our EHR database, which
was implemented using mySQL. In a normal transac-
tion, the nurse began by scanning a patient ID and the
pulse oximeter ID. She then waited to receive the pa-
tient’s name and picture and the device’s description,
and verified them. She then put the hand of the patient in
the oximeter, selected it in the list of devices discovered
by the PDA and waited for the data collecting process to
complete. The raw data was sent to our backend system
and the patient’s blood oxygen percentage was sent back
to the nurse. This result is displayed in HTML format,
along with other identification information. The nurse
approved the result and the device moved into a state
ready for the next patient.

To prove the error detection capability of our sys-
tem we set up a few abnormal scenarios as well. These
fell into the protection envelope and all of them were
detected. There were trivial errors such as scanning
the wrong type of ID or using the wrong type of de-
vice. Some type of errors were even prevented before
they could happen. We tried changing the status of
the oximeter from working to broken, or changing the



schedule to another date in our EHR database. These
actions triggered our backend system to stop the trans-
action and informed the nurse of the according error.

There is work on improving patient identification
using automated identification techniques [28, 15] but
these works do not address aggregating automated pa-
tient identification with automated medical data capture.
Due to time and resource constraints, we did not fully
implement some aspects of Med2, such as security and
optimized power management. But our prototype and
testing results show that these issues can be addressed
and the approach is feasible to deploy in practice using
inexpensive stock platforms, communication cards, and
medical devices.

5. Formalism

Our approach to modeling AIDC is to represent each
of the environment (typically entities supplying identity
and information), the human workflow, the identifica-
tion system and the identification platform (typically a
database such as an EHR on an inventory system) as
CSP processes to be composed with synchronization.
The environment and the identification platform should
be thought of as fixed and the purpose of their specifi-
cation is to capture existing functionality. The specifica-
tions for each of the human workflow and the identifica-
tion system should be thought of as stating the required
behavior to be implemented. The composition of the
human workflow and the identification system is the to-
tal “system” to be supplied. However, since the human
behavior can not be guaranteed, it is critical that its spec-
ification be broken out separately to clarify the precise
limitations of the system deployed.

For each type of pairing of entities in the environ-
ment, human agents, identification system components
and platform components, we associate a parameterized
family of channels, where the parameters give the spe-
cific implicit and explicit participating entities. In our
examples, we have given the parameters as indexing
subscripts and superscripts. To the extent one can say
one party “owns” a channel, we have used the subscript
to indicate the owner. The superscripts indicate infor-
mation about the other participant(s) in the communi-
cation, and the source(s) of the data being communi-
cated. These are mathematical labeling of the channels
by “real world” entities and are not visible to the system
being implemented; only the data transmitted is actually
visible. However, these indices play a critical role in
enabling us to state the needed correspondence proper-
ties guaranteeing that the recorded data had originated
from the expected source,i.e., they have the expected
identity. To clarify this general methodology, we will

demonstrate it through the example of the medical me-
diator.

We explore a scenario at a hospital where nurses take
patient readings from devices capable of reporting re-
sults wirelessly. The challenge here is to ensure that the
correct reading gets associated with the correct patient
in the hospital database. To aid in ensuring this, all el-
ements of the hospital environment are equipped with
identification tags, and the nurse is required to identify
with those tags the patient and the device being used, and
then the system should ensure that the data collected are
associated with the identified patient and device. The
whole process can be seen as an interaction among the
physical actions taking place in the environment, like the
nurse taking the reading using a device and the actions
in the electronic system, which receives, interprets and
stores the readings collected from patients.

In accordance with the general methodology outlined
above, the environment comprises the patients, the med-
ical devices, and all tags associated with these entities.
The nurse must adhere to the human workflow. The
medical mediator (the PDA plus readers and software)
is the identification system, and the combination of the
EHR and its interface make up the identification plat-
form. To model these elements we will use the CSP pro-
cessesTag, Pat, Nurse, Med, Device, EHRInterface and
EHR. Some of these processes will be further described
in terms of subprocesses, such asTakeCkReading for
Nurse. The channels are as follows:HCInm is used for
interactions between the nursen and the medical me-
diator m; RFIDChann,m

o for communicating RFID tag
numbers for a tagged objecto to a medical mediatorm
operated by nursen; BTAddrn,m

d is the Blue-tooth con-
nection betweenm and deviced selected byn, while
BTScanm represents scanning the radio frequencies for
blue-tooth devices;EHRChm is the channel form to
communicate with the EHR interface to get names asso-
ciated with id numbers, andEHRBEChm is the channel
for m to use to store information in the EHR.

Human Workflow. In Section 2, we introduced
the nurse’s workflow, including its CSP specifica-
tion. That specification relied upon the specification
TakeCkReading of the workflow to be followed when
taking and verifying a reading for a patient. For this
phase, when the nurse is ready to take a reading he
pushes aGetReading button on the medical mediator,
then selects a blue-tooth device from the list displayed
assuming it is present, examines the results of the read-
ing and decides whether to store the results if they are



meaningful. In CSP, we can encode this as:

TakeCkReading(n, m, p, d) =
HCInm!GetReading → HCInm?X →
if BTAddrn,m

d 6∈ X
then HCInm!No → Skip
else HCInm!BTAddrn,m

d → HCInm?data →
if data = Error
then HCInm!OK → TakeCkReading(n, m, p, d)
else ((HCInm!Yes → Skip)u

(HCInm!No → Skip))

Environment. The tags in the environment should be
modeled as processes that repeatedly announce their
identification number to any party listening. All we di-
rectly know about a patient is her tag. A blue-tooth de-
vice is similar to a tag, except that it chooses a fresh set
of data for each communication, instead of a single id
number. A device is viewed as a combination of a tag
and a blue-tooth device. Separate from the individual
blue-tooth devices, we will have a channel that is used
for detecting all available blue-tooth devices. These are
specified by:

Tag(o) = �
n,m

RFIDChann,m
o !(IDnum(o)) → Tag(o)

Pat(p) = Tag(p)
BTDev(d) = �

n,m
( u
data

(BTAddrn,m
d !data → BTDev(d)))

Device(d) = Tag(d) |||BTDev(d)
BTDevs = �

m
( u
X⊆ BTDevices

BTScanm!X → BTDevs)

Identification Platform. The two database compo-
nents that are relied upon by the medical mediator are
the EHR and the EHR interface. For the interface, we as-
sume that it can somehow determine if the tag ids make
sense, sort them and accompany them with the corre-
sponding names. The EHR is just required to accept
whatever it is sent.

EHRInterface(m) = EHRChm?x →
((EHRChm!Error → Skip)u
(u (n1, n2)|∃y1 y2.(y1, y2) = x ∨ (y2, y1) = x

∧(n1 = Name(y1) ∧ n2Name(y2))


EHRChm!n1 → EHRChm!n2 →
EHRChm?r → EHRChm!FormatRaw(r) →
EHRChm?z → if z = Auth(n, m)
then (EHRBEChm!(n, m, y1, y2, EHR(r)) → Skip)
else Skip))

EHR = �
m

(EHRBEChm?x → EHR)

Identification System. The medical mediator was de-
scribed in considerable detail in Sections 3 and 4. We

give the high-level CSP specification here.

Med(n, m) = HCInm?GetID → HCInm?x1 → x1?y1 →
HCInm?x2→x2?y2→EHRChm!(y1, y2)→EHRChm?n1

→ if n1 = Error then HCInm!n1 → HCInm?OK → Skip
else EHRChm?n2 → HCInm!(n1, n2) → HCInm?z →
if z = Yes then MedRead(n, m) else Skip

MedRead(n, m) = HCInm?GetReading →
BTScanm?X → HCInm!X → HCInm?y →
if y = No then Skip
else y?rdata→EHRChm!rdata→EHRChm?fdata→
HCInm!fdata → if fdata = Error
then HCInm?OK → MedRead(n, m)
else HCInm?z → if z = Yes
then EHRChm!Auth(n, m) → Skip
else Skip

Protection Envelope. A nurse may unwittingly make
mistakes while following the suggested workflow of
hospital AIDC. A simple example can be the case when
the nurse is unsure as to whether he has scanned the pa-
tient’s ID successfully and scans it again. This should
not cause any serious compromise of the workflow and
life will be easier for the nurse if he is not required to
restart the whole process if he scans an identity multi-
ple times. Hence, it is felt that there should be a more
flexible workflow accepted by the hospital AIDC sys-
tem than the workflow suggested to the nurses. This
more flexible workflow will form a protection envelop
around the suggested workflow and help the nurses to
be on track in spite of mistakes unwittingly made.

In a protected workflow for the nurse, multiple scans
of the identity tag of a patient or a device has the same
effect as scanning it once. After a nurse has scanned
a patient, a nondeterministic internal choice is made as
to whether the patient will be scanned again or whether
the device will be scanned as the next action. Another
possible situation arises when the nurse scans a medical
device’s tag first and then scans a patient’s tag instead of
scanning the tag of the patient first and then the device’s
tag. The more flexible workflow can look like this:

NursePE(n, m) = HCInm!GetID →
((u

p
ScanPat(n, m, p)) u (u

d
ScanDev(n, m, d)))

ScanPat(n, m, p) = HCInm!(RFIDChann,m
p ) →

(ScanPat(n, m, p) u (u
d
(HCInm!(RFIDChann,m

d ) →
SeeID(n, m, p, d))))

ScanDev(n, m, d) = HCInm!(RFIDChann,m
d ) →

(ScanDev(n, m, d) u (u
p
(HCInm!(RFIDChann,m

p ) →
SeeID(n, m, p, d))))

SeeID(n, m, p, d) = HCInm?x →
if x = (Name(p), Name(d))
then ((HCInm!Yes → TakeCkReading(n, m, p, d))
else if x = Error then (HCInm!OK → Skip)
else (HCInm!No → Skip))



6. Safety Properties

There are a variety of different semantics and models
for CSP processes. We concentrate on the trace model
and the failure model in this work. In a trace model
a process is represented by the sequences of communi-
cations or events it can perform. In the stable failures
model, a process is represented by its failures. A fail-
ure for a process,P , is given by a pair(s,X), where
s is a trace ofP andX is a set of things it can refuse
to perform after performings. We intend to provide
some desired safety and liveness properties for the hos-
pital AIDC system. We will provide the specifications
for a CSP process by providing the most nondeterminis-
tic process satisfying the specification. The CSP process
for a hospital AIDC system satisfies a specificationS if
the CSP processP representing the specification is re-
fined by the AIDC system process. We will consider two
different types of refinement: trace refinement for safety
properties and failure refinement for liveness properties
[21]. A processQ is a trace refinement of another pro-
cessP , denoted byP vT Q if traces(Q) ⊆ traces(P ).
A processQ is a failure refinement of another process
P , denoted byP vF Q if failures(Q) ⊆F failures(P ).
If we have a processP and its safety specificationS and
we haveS vT P , then we can sayP is a safe process,
as all its traces are traces of the specification, so no bad
event can be performed byP . Similarly, failure refine-
ment can be used to express liveness properties.

We now express the environment of a hospital AIDC
system as the collection of all the identification tags rep-
resenting the devices and patients and the devices send-
ing out the readings for patients, together with the elec-
tronic records system. These are the “given” compo-
nents, which we cannot control.

Given = ( |||
d∈Dev

Dev(d)) ||| ( |||
p∈Pat

Pat(p))

|||BTDevs |||EHR

We shall refer to the combination of all instances of
nurses and medical mediators as the system. It is impor-
tant that only one nurse have use a medical mediator at
a time. This is reflected in our specification by allowing
each medical mediator to “choose” a nurse.

System = (( |||
m

(u
n
(Nurse(n, m) |[{{y|∃x.y = HCInm.x}}]|

Med(n, m)) |[{{y|∃x.y = EHRChm.x}}]|
EHRInterface)) \ {y|∀n m p d x.
y 6= RFIDChann

p .x ∧ y 6= EHRBEChm.x ∧
y 6= BTAddrn,m

d .x ∧ y 6= BTScanm.x});
System

In the system, we hide away almost all internal and inter-
element communication. The only events that we are

interested in are the actual scanning of patient and device
identifier tags and the ultimate sending of the medical
measurement to the EHR for storage after it has been
verified by the nurse.

We now provide the safety specification for the hos-
pital AIDC system, where the specification ensures that
if a tuple of data is entered into a database, stating that
a particular device,d was used to take a readingx from
a patientp by a nursen, then it had been the case that
the nursen did identify p andd andhadtaken a medical
measurementx from the patientp usingd after identify-
ing them.

Safety =

|||
m

(u
n
u
p
u
d
(((RFIDChann,m

p .IDnum(p))+ →

(RFIDChann,m
d .IDnum(d))+)

u((RFIDChann,m
d .IDnum(d))+ →

(RFIDChann,m
p .IDnum(p))+)

→ (Skip u (BTScanm?X → (Skip u
( if BTAddrn,m

d ∈ X then (BTAddrn,m
d ?r → (Skip u

EHRBEChm.(n, m, IDnum(p), IDnum(d), EHR(r))
→ Skip)) else Skip)))))); Safety

Now, we are ready to specify the desired safety and
liveness properties. LetVis = {y.(∃n d x. y =
RFIDChann,m

d .x) ∨ (∃m z. y = EHRBEChm.z)}. The
properties then are as follows:

Safety|[{Vis}]|Given vT System|[{Vis}]|Given
LIVE vF System|[{Vis}]|Given

whereLIVE = u
x
x → LIVE. LIVE is the most nondeter-

ministic process that is deadlock free. The first property
states that no wrong, random, non-associated tuple gets
stored in EHR and the second property states that the
nurse can eventually take steps and will not get dead-
locked.

We have sketched proofs for the above results based
on their semantics using traces of events. Due to the
large number of cases to be considered, we feel that
such a proof is easily subject to accidental omissions and
hence is best checked by automated assistant. To this
end we have encoded the CSP processes described in
this paper two such tools. The first system we used was
the fully automated CSP failures-refined prover FDR2
(Failures-Divergence Refinement) [1]. Our experience
with this system is limited, but a straightforward encod-
ing led the system to run for hours, probably indicating
divergence. The second system we used was the exten-
sion CSP-prover [13] to the interactive theorem prover
Isabelle [18]. In this system, there is a restricted type
system for communications and the encoding entailed
creating a number of functions for coercing data into
this type system. Also, certain operators were lacking



(index interleaving, in particular), and so we had to ex-
pand the code to accommodate this lack. As of this writ-
ing the proofs in CSP-prover of the above two results
are incomplete. We conclude from this effort that there
are interesting challenges to automating proofs of AIDC
workflows such as the ones for the mediator.

To summarize these results in less technical lan-
guage, there are three possibilities for the outcome of op-
erator actions. First there are actions that make progress
by providing proper updates of the EHR. This will occur
when the nurse adheres to the specified workflow. Sec-
ond there are actions that lie within the protection enve-
lope but do not make progress. For example, repeated
reading of a patient’s tag is tolerated by the system al-
though it is not the specified workflow. A detected error
occurs when reading tags on two devices (rather than on
a patient and a device). Third there are actions that cor-
rupt the EHR database. These require significant devia-
tion from specified workflow such as reading the tag on
one patient and then collecting a reading from a different
patient.

7. Related Work

We are not aware of any prior work on formal mod-
eling and analysis of ADIC workflows in health care,
but formal techniques have been applied to workflows
in general, there have been case studies in heath care ap-
plications, and there is a significant body of non-formal
work on AIDC in health care.

Yong et. al. in [27] use CSP to model and refine
workflows to prove correctness properties. Puhlmannet.
al. [20] use theπ-calculus to model workflow patterns.
Stafansen [23] shows how the Calculus of Communi-
cating Systems (CCS) can be used to model workflow.
Davulcu et. al. [8] use Concurrent Transaction Logic
(CTR) to specify, analyze, and schedule workflows. Van
der Alastet. al. [24] use Petri nets to model workflow.
Petri nets are able to model Yet Another Workflow Lan-
guage(YAWL), which in turn, can model a wide range
of workflow patterns [25].

Barkaouiet al [5] use Petri nets to model, verify and
improve an operating room workflow. Songet al [22]
provide a classification of computer-aided health care
workflows and workflow application issues. Van der
Alastet al[26] describes a method for finding workflows
as Petri nets automatically from hospital process logs.
Ardissonoet al [3] present a framework for the man-
agement of context-aware workflow systems. They use
the framework to develop a prototype application han-
dling medical guidelines specifying workflow for mon-
itoring patients treated with blood thinners. In our re-
search on AIDC we attempted to useπ-calculus and Fi-

nite State Machines (FSMs) before concluding that CSP
was better-suited to our needs because of its algebraic
notation, simple treatment of communication, and its
representation for internal and external choice. How-
ever, it is likely other models discussed above could pro-
vide good formalisms for reasoning about AIDC.

AIDC techniques are now being used in many dif-
ferent areas in the health care sector. One notable area
is the use of AIDC techniques for the blood manage-
ment to reduce blood handling errors so that the chances
of bad blood transfusions is reduced. Clarkeet al [7]
model and verify an in-patient blood transfusion pro-
cess. Al Nahaset al [16] overview research in vari-
ous applications of RFID-based AIDC systems in hos-
pitals. Automated identification of patients [4] provides
more accurate and efficient association of patients with
their medical readings and the medical procedures they
should undergo. AIDC techniques are being deployed to
provide error-free and fully-audited drug management in
hospitals [4, 12]. Hospital-wide AIDC [9, 10] is being
investigated for tracking patients, assets, and staff.

8. Conclusion

We have introduced a methodology for modeling and
analyzing AIDC workflows to provide high assurance
protection envelopes. Such techniques will aid the de-
velopment of computer and networking systems that
support AIDC in safety-critical workflows like those
used in hospitals. To illustrate and demonstrate the value
of our approach we have designed and implemented a
medical mediator system which provides RFID identi-
fication using a mobile device that links to medical de-
vices to collect patient readings and enters them auto-
matically in the EHR of the (correct) patient within well-
specified and verified conditions. This is the first work
on formal analysis of AIDC workflows; it contributes in-
sight into good primitives for clear specifications in this
area and promises wide applicability.
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