
MyABDAC: Compiling XACML Policies for Attribute-Based
Database Access Control

Sonia Jahid
University of Illinois at
Urbana-Champaign

sjahid2@illinois.edu

Carl A. Gunter
University of Illinois at
Urbana-Champaign

cgunter@illinois.edu

Imranul Hoque
University of Illinois at
Urbana-Champaign

ihoque2@illinois.edu

Hamed Okhravi
∗

University of Illinois at
Urbana-Champaign
okhravi@mit.edu

ABSTRACT
Attribute-based Access Control (ABAC) based on XACML
can substantially improve the security and management of
access rights on databases. However, existing implementa-
tions rely on high-level policy interpretation and are not as
efficient as mechanisms natively supported by commodity
databases. In this paper we explore advantages and chal-
lenges arising from compiling XACML policies for database
access into Access Control Lists (ACLs) natively supported
by the database. The main contributions are an architecture
and algorithms for efficiently addressing incremental changes
in attributes that could trigger changes to the ACLs. We
consider this in a context of reflective database access con-
trol where attributes used in access decisions are stored in
the database itself. Our implementation and experiments
demonstrate a significant improvement in access decision
times compared to the best available optimizations for gen-
eral XACML access engines.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, inte-
grity, and protection

General Terms
Design, Experimentation, Security

Keywords
Access Control List, Database, XACML, MySQL, Attribute

∗The author is currently with MIT Lincoln Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’11, February 21–23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

1. INTRODUCTION
Databases are able to enforce access policies through low-

level mechanisms like Access Control Lists (ACLs). A com-
mon approach is to implement Identity-based Access Con-
trol (IBAC) with ACLs. While very efficient, this approach
has management disadvantages when policies are based on
attributes. By contrast, Attribute-based Access Control
(ABAC) policies, such as ones based on XACML [12], de-
scribe users and resources in terms of attributes and estab-
lish permissions using these attributes rather than identi-
fiers. This provides more expressive and manageable access
control. However, general ABAC policy implementations
such as the Sun XACML Implementation (SunXACML) [31]
are less efficient at deciding access rights on databases than
ACLs, which are supported natively by common database
systems.

In this paper we explore the idea of policy compilation
to address this limitation and provide efficient implemen-
tation of ABAC over databases. The basic idea is to use
attributes contained in the database itself, and compile high-
level policies over these attributes into a collection of ACLs
for the underlying database resources together with a col-
lection of database-level mechanisms for their automated
maintenance. This enables access rights to be described at
a high level but implemented and maintained at a low level.
For example, a high-level policy states ‘give nurses of de-
partment infectious disease read and write access on patient
records with infectious disease diagnoses’ whereas an ACL
says, ‘give read and write permissions to principals a and b
on objects o1 and o2’. We compile the former into the latter
to provide the expressiveness of the high level policy as well
as the efficiency of ACLs.

Existing policy decision point implementations such as
SunXACML verify XACML policies on-the-fly to perform
access control in general. A significant improvement in per-
formance can be achieved by preprocessing specific poli-
cies to include optimizations. This is demonstrated by the
XACML preprocessor XEngine [18]. XEngine maintains
the generality of XACML while eliminating numerous in-
efficient decision-time processing steps by trading these im-
provements off against modest preprocessing costs. The goal
of this paper is explore what further efficiency can be ob-
tained by sacrificing some of this generality by specializing
the optimizations to the case of Reflective Database Access

Control (RDBAC) [22]. RDBAC is concerned with ABAC
access to a database where the database itself contains se-
curity attributes used by the decision engine. For example,
the database contains a table that indicates who is a nurse,
who is in the infectious disease department, and what consti-
tutes an infectious disease diagnosis. This situation enables
a step beyond optimizations that are specific to the policy,
but not specific to the enforcement mechanism, to a situa-
tion in which compilation into the underlying enforcement
mechanism is possible.
The trade off for RDBAC-specific optimization is the need

for an efficient way to deal with changes not only in poli-
cies but also in attributes. Attribute value updates in the
database require efficient, timely, and correct ACL recalcu-
lations. This needs a way to transform the ACLs to a correct
and consistent state with minimal overhead by reconsider-
ing a well-chosen subset of existing policies and permissions.
An intuitive analogy here is to the way spreadsheets update
values in cells as cells on which they depend are updated. In
this context there is a trade off between updating the cells
immediately (so up-to-date values can be seen in all cells)
versus updating cells periodically (to save unnecessary recal-
culations if correct values are not needed immediately). Our
goal here is to describe an architecture and algorithms that
will do this on-demand for XACML over RDBAC. That is,
the algorithm detects when a change to an attribute could
affect an access right so that recompilation is triggered only
when necessary and only affected ACLs require updates.
To test and validate ABAC policy compilation for data-

bases, we implemented an engine named MyABDAC that
compiles XACML policies into MySQL [16] ACLs. We com-
pare our performance with that of SunXACML and XEngine
to demonstrate non-trivial speed up in database access de-
cision time with reasonable costs for compilation of thou-
sands of policies and users. We choose a basic database
system like MySQL for the demonstration because, if it can
be done there, it will undoubtedly be easier and more effi-
cient to do it for more full-featured commercial databases
where the implementation could use support like the Oracle
Virtual Private Database (VPD) [7] transformations.
The rest of the paper is organized as follows. Section 2

describes the problem and its challenges in details, Section 3
describes necessary background materials, Section 4 presents
a system design, architecture, and approach for policy com-
pilation, Section 5 describes updates and correctness, Sec-
tion 6 analyzes MyABDAC performance in comparison with
SunXACML and XEngine, Section 7 discusses the security
and expressiveness, Section 8 discusses key related works,
and Section 9 concludes.

2. CHALLENGES
Though compiling policies offers potential improvements

in efficiency, it comes with several challenges. Policy com-
pilation moves the decision point from high-level to low-
level, that is, from application to database ACL. An ACL
is a list of access rights attached to an object. It describes
which users have what permission on the objects. In this
case, objects are either tables or columns, and permissions
are database operations such as ‘SELECT’, ‘INSERT’, and so
on. The principals and resources reside in an organization
database, and are used to construct the ACLs when they
satisfy the attribute policies. Any update in their attribute
values affects the permissions and may introduce inconsis-

tency in the database ACLs. Some permissions have to be
revoked while some remain unchanged. A näive approach
is to recompile all the policies and build up the ACLs from
scratch, but this is quite inefficient. Since ACLs are af-
fected in different ways depending on the underlying data,
the policy, and the combining algorithms in the policy [12],
maintaining a consistent relationship between the high level
attribute policy and the ACLs in the database is challeng-
ing. New attribute values may leave existing permissions un-
changed, or they may add or eliminate permissions. What
makes this determination challenging is the complexity of
XACML policies in general, the potentially large number of
the rules in a given database policy, and the number of users
and resources that satisfy the rules.

An example in Figure 1 represents a high level XACML
policy that illustrates some of the issues concretely. It con-
sists of 2 policies P1 and P2 which consist of rules R1, R2, R3,
and R4 respectively. Rules R1 and R2 permit read on table1
to the nurses of department infectious disease and job ex-
perience greater than 5 years respectively. Rule R3 denies
read on table1 to the nurses of qualification level less than
3. In case of conflict, a permit is prioritized for these rules
in P1. Rule R4 denies the same permission to the 4th floor
nurses. Suppose a nurse nrs1 satisfies all these policies. Be-
cause of the ‘permit overrides’ combining algorithm in P1

and P , nrs1 gets read permission on table1. If her depart-
ment changes to ‘medicine’, her permission is unchanged
because of R2 within P1. If no R2 existed, then her per-
mission would be revoked since there is no other rule in
either P1 or P2 that permits this permission. If P2 had
‘permit overrides’, R2 did not exist, and another rule R5

(Permit, Dept=medicine, table2) existed in P2, then, al-
though 〈table1, nrs1, select〉 would be revoked, a new per-
mission 〈table2, nrs1, select〉 would be added.

Figure 1: Representation of an XACML Policy

Though we discussed the challenges of updating a single
user, there are cases when a large number of users are up-
dated. For example, a company might give promotions to a
range of employees who received favorable job reviews and
thus trigger changes in permissions for all of these employ-
ees. This type of attribute update raises scalability issues.
Besides, when a policy has a large number of rules that deal
with different attributes, the primary challenge is to find
out a subset of rules in the policy that have to be recom-
piled and reconsider the other existing permissions that all
the updated users have in order to perform the minimum
changes in database ACLs, and reduce expensive database

operations. These issues challenge the correctness of per-
missions at low level database ACLs. Although compilation
can improve efficiency at decision time, it also introduces
the challenge of correct and efficient management.

3. BACKGROUND
In this section, we present some background on XACML

and native database access control mechanisms.
At the core of an XACML policy are Rules. A Rule con-

sists of a Target, an Effect (Permit or Deny), and, option-
ally, a Condition. The Target defines the access permissions
between Subject and Resource elements using Action, and
is used to decide whether a rule applies to a request. The
Condition is used to further restrict the rule. Subjects and
resources are expressed through attributes.
At the top of a policy exists a PolicySet or Policy. A

PolicySet (Policy) consists of PolicySet or Policy (Rule),
a policy-(rule)combining-algorithm, and a Target. The al-
gorithms resolve an access decision in case of conflict or re-
dundancy within a Policy or PolicySet. A permit/deny-

overrides rule-combining algorithm permits/denies an ac-
cess if at least one Rule results in permit/deny. first-

applicable returns the effect of the first rule that applies
to the request and ignores the rest. Policy-combining algo-
rithm only-one-applicable returns Indeterminate if more
than one Policy applies to a request. It returns the effect
of the one applicable policy otherwise. If no match is found
for a request, then NotApplicable is returned. Further infor-
mation on XACML can be found in [12].
Most mainstream database systems maintain a list of per-

mitted users along with their access rights on tables. De-
pending on the implementation, this can be either Access
Control Matrix (a table with entries that indicate who can
access what) or an ACL (for each object a list of who is
allowed to access it). MySQL keeps ACLs in certain ta-
bles in a special database (mysql). Access control is per-
formed in two stages: authentication, and privilege check
for query execution. In the first stage the server consults
tables mysql.user (which provides usernames, passwords,
and global privileges), mysql.db and mysql.host (which
provide privileges for specific databases tables) for user au-
thentication. In the second stage it checks whether the
user has the privileges needed to execute a given query.
The server can also consult tables mysql.tables_priv and
mysql.columns_priv and mysql.procs_priv for finer priv-
ileges at table, column, and stored routine levels respec-
tively. These tables contain the ACLs for specific tables
in the database. For example, if a user user0 has SELECT

access on table0 and table1, then there will be two entries
in tables_priv with appropriate values. Details of MySQL
access control mechanism can be found in [20].

4. SYSTEM ARCHITECTURE
Let us now consider how policy compilation for XACML

into ACLs can be achieved with common database mecha-
nisms. We describe a suitable architecture and show how
to compile policies and analyze consistency. The system,
which is illustrated in Figure 2, consists of three major com-
ponents: 1) the database, in which the attributes, resources,
and ACLs are all stored, 2) the high-level access policy, from
which access enforcement is derived, and 3) the compilation

Figure 2: System Architecture

engine, which relates high-level policy to low-level policy and
enforcement. We discuss each of these in turn.

4.1 Database
Database tables maintained, for example, by the human

resources department of an organization contain information
useful for access control decisions. This information includes
user attributes such as department, job title, salary, birth
date, email, mail, phone, and so on. Usually administra-
tors have access to user information so that they can modify
sensitive data like salary and job title. The frequency of
change in these attributes varies, attributes such as birth
date, joining date, and gender change rarely, while others,
like various benefit plans, may change yearly, and still oth-
ers, like short-term work assignments, might change quite
frequently. Depending on the context, not all attributes
are appropriate for access control. For instance, a phone
number supplied by employee is less likely to be used in
access control than, for instance, the job title of the em-
ployee. In a hospital database this attribute table can be
of the form employee(username, department, jobtitle,

...) that stores all information about employees. An ex-
ample record for a nurse is 〈‘alice’,‘infectious disease

department’, ‘nurse’, ...〉.
A database contains tables of records that define enter-

prise resources. For example, a resource table in a school
might consist of a list of courses being offered in a given
semester, including information like when and where the
course meets, who is teaching it, and so on. Resource ta-
bles in a hospital might consist of patient information, ad-
ministrative details, and so on. Various existing database
mechanisms can be utilized in order to attach attributes to
tables. For example, the information about a table or col-
umn in MySQL being marked as ‘sensitive’ in its comment
field is stored as metadata in information_schema.tables

table. Generally, databases maintain a special part to store
the ACLs. In MySQL this is called mysql.

4.2 High-level Policy
The subjects and resources of our XACML policy are con-

structed using attributes extracted from the database. Re-
sources are database tables or columns described through
attributes or identifiers. Actions are database operations
such as SELECT, INSERT, DELETE, which subjects can have
on these resources. A ‘Permit’ allows and a ‘Deny’ prevents
database access. Policies are generated using an interactive
policy-builder that accesses the attribute database. A sim-
plified XACML policy is shown in Figure 3.

Figure 3: An XACML Policy (Simplified)

At the root of the policy is a PolicySet P with policy-
combining algorithm permit-overrides. P consists of two
policies P1 and P2. P1 consists of rules R1, R2, and R3. R1

permits ‘nurses’ of department ‘infectious disease’ to ‘select’
from and ‘insert’ into tables marked as ‘sensitive informa-
tion’, R2 permits ‘nurses’ with job experience greater that
5 years to ‘select’ and ‘delete’ from table1, and R3 denies
‘nurses’ of qualification level less than 3 (greater and less-
than functions not shown in the policy) ‘select’ on table1.
P1 has a permit-overrides rule combining algorithm. P2 con-
sists of R4 that denies ‘select’ and ‘insert’ on table1 to the
4th floor nurses. P2’s rule combining algorithm is ‘deny-
overrides’.

4.3 Compilation Engine
The Compilation Engine consists of four modules. We

describe each of the components and their functions in turn
and summarize their connections to the database.
The Policy Parsing Module (PPM) takes an XACML

policy as input, extracts the rules out of it, and formulates

a tuple for each of the rules. Parsing depends on the num-
ber of policies, the number of attributes each policy con-
sists of, while it is independent of the underlying attribute
data. It creates a tree structure of the XACML policy. Each
Policy, PolicySet, and Rule element is a node in the tree.
Rules are leaves, and the other elements are intermediate
nodes. While parsing the rules of an XACML policy, the
corresponding ‘Policy’ and ‘PolicySet’s are extracted and
stored along with their combining algorithms in the process.
For each Rule in the policy, it extracts a tuple 〈policyID,
ruleID, subject, resource, action, effect〉. For ins-
tance, parsing R1 of P1 results in the following tuple. A

〈 P1, R1, position =‘nurse’ AND department = ‘infec-
tious disease’, resource = ‘sensitive information’,
‘SELECT,INSERT’, Permit〉

pseudo-code of the described process is shown in Figure 8 in
the appendix of the paper.

TheUser and Resource Extraction Module (UREM)
interacts with the parsing module and gets the parsed policy.
For each rule it formulates a subject query, and a resource
query that extract the corresponding users and resources
from the database respectively. For instance, the following
queries are constructed for R1 in P1. If resources are ex-
pressed merely through their identifiers, the latter query is
omitted. The tuple is saved in database with the attributes

1) SELECT username FROM hospital.employee
WHERE jobtitle=‘nurse’ AND department=‘infectious dis-
ease’;
2) SELECT table_name FROM information_schema.tables
WHERE table_comment=‘sensitive information’;

replaced by the queries. The queries are cached to han-
dle dynamic effects on the ACL in case any user attribute
changes (a process described later). The queries are then ex-
ecuted, and a set of users (e.g. nrs1, nrs2) and tables (e.g.
tab1, tab2) are obtained. Each of this is used to generate an
access permission 〈resource, user , action, effect〉. Figure 4
shows the tree representation of the policy in Figure 3. Ex-
ample access permissions for R1, R2, R3, and R4 are shown
at leaves; s, i, and d stand for select, insert, and delete re-
spectively.

Conflict Discovery and Resolution Module (CD-
RM) checks for conflicts and redundancies in the policy.
Since XACML policy has a hierarchical structure, conflict
resolution is done recursively at each Policy and PolicySet
level. In current approaches (as in SunXACML), these con-
flicts are detected and resolved on the fly when a user re-
quest comes, or are pre-processed (as in XEngine) for the
combination of conditions in rules and policies. Since we
are compiling XACML permissions into database ACLs, we
need to do a data level conflict resolution during the com-
pilation phase, that is, we have to do it for each extracted
permission.

Policies consist of rules each of which extracts a set of per-
missions 〈resource, user , action, effect〉. We order the rules
of each Policy according to the rule-combining algorithm,
that is, if the rule-combining algorithm is permit-overrides,
rules are sorted from permit to deny so that permit rules
are executed first, and vice versa. This is not a necessary
condition for conflict resolution, but enables us to finalize a

Figure 4: Tree Representation of a Policy, and Set
of Permissions at Each Level

permission and determine its status, i.e., whether a permis-
sion is active, redundant, or conflict when it shows up for
the first time in a Policy. For first-applicable algorithm, rule
order is kept unchanged since if a permission shows up for
the first time in any rule then that is the final permission.
Suppose a combining algorithm is permit-overrides and the
list of rules for this Policy is R1 : D, R2 : D, R3 : P . Permis-
sion (r0, u0, s,D) shows up in R1 and R2 but (r0, u0, s, P)
shows up in R3. If the list is sorted, the last permission
shows up first and can be finalized as soon as it shows up.
With the unordered sequence, it is difficult to determine the
status of (r0, u0, s,D) until the last rule is seen, since if no
(r0, u0, s, P) shows up, the former should be ‘active’, oth-
erwise it is a ‘conflict’. This status information allows us
to perform dynamic attribute update handling (described
later). P and D represent permit and deny respectively.
At the Policy level, the permissions from the Rules are

merged and combined to resolve conflict and remove redun-
dancy. When a permission (r0, u0, s,D) shows up first, it is
added to the final decision set at that level and marked as
‘active’. If the same permission shows up from another rule
in the same Policy later, it is marked as ‘redundant’. If the
same user, resource, and action shows up with a different
effect, that is a ‘conflict’ for this permission. Since the rules
are sorted, an existing permission complies with the rule-
combining algorithm, and the latter permission is ignored.
All the permissions are logged in the database along with
their status.
At the PolicySet level, permissions are resolved using the

same technique as at Policy level. The difference is, the chil-
dren of PolicySet are not sorted since that does not help in
finalizing permissions when they show up for the first time.
This happens because though a policy-combining algorithm
may be ‘permit overrides’, some Policies may extract per-
missions that ‘deny’ an access when no other permission

permits it and vice versa. This is not a flaw but a feature
of XACML. Let us consider the policy-combining-algorithm
to be ‘permit-overrides’. A permission (r0, u0, s,D) received
from one policy is added to the final decision list but re-
placed later if the same permission shows up with a per-
mit effect from another Policy. Though the first permission
would be marked ‘active’ at first, it would be remarked as
‘conflict’ when the latter shows up. The latter permission
is marked as ‘active’. First-applicable combining algorithms
don’t need any permission replacement.

Considering the sample policy in Figure 4, permission 1
is active, 9 is redundant, and 11 is at conflict status. 11 is
ignored because of ‘permit-overrides’ algorithm at P1. Since
P2 contains only 1 rule, no conflict arises at P2. Permissions
from P1 are 1, 2, 3, 4, 5, 6, 7, 8, 10, and 12, and permissions
from P2 are 13, 14, 15, and 16. At the PolicySet level, 13 and
14 from P2 are ignored because of 1 and 2 respectively from
P1. The final permissions are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15,
and 16. The final decision list is free of any kind of re-
dundancy or conflict. An ‘Indeterminate’ result from only-
one-applicable is not a meaningful permission for databases.
Since database permissions should be either Permit or Deny
if a request matches a policy, we do not consider only-one-
applicable in our system. A pseudo-code of the described
conflict resolution is given in Figure 7 in Appendix.

TheACL Building Module (ACLBM) is responsible for
updating database ACLs. It forms GRANT and REVOKE state-
ments using the access decision lists received from CDRM.
One GRANT/REVOKE statement is formulated per resource, per
action. This is done by merging the users that have the
same action on the same resource. In order to perform the
minimum changes to the database ACLs, the permissions
are checked against any existing permission in the database
ACL. If a similar permission exists, it is not updated. If a

Table 1: Statements to Update ACL
GRANT select on tab1 to nrs1, nrs2;

GRANT insert on tab1 to nrs1, nrs2;

GRANT select on tab2 to nrs1, nrs2;

GRANT insert on tab2 to nrs1, nrs2;

GRANT delete on tab1 to nrs1;

REVOKE select on tab1 from nrs3, nrs4;

REVOKE insert on tab1 from nrs4;

permission marked to be revoked does not exist, it is ignored,
since 1) generally, databases deny access by default unless
explicitly mentioned, and 2) revoking a nonexistent permis-
sion is not practical. Execution of these queries modifies the
underlying database ACLs. A policy for which the UREM
retrieves no user or resources from the database does not af-
fect the database ACLs at all. Assuming MySQL to be the
underlying database server, the statements in Table 1 are
formulated to update the database ACL for the mentioned
example.

5. UPDATES AND CORRECTNESS
The primary challenge of compiling policies into database

ACL is to maintain consistency when user (or resource) at-
tributes are updated. We will discuss user attribute updates;
similar type of discussions apply to updates on resource at-
tributes. When user attributes are changed, the affected
users need reconsideration since some of their permissions

may require revocation, new permissions may be granted,
or both. Permissions may also remain unchanged. Näıve
approaches include manual updates, or re-populating the
database ACLs by recompiling all of the policies. We aim
for automatic processing with the efficiency achieved by the
use of incremental updating ideas employed in spreadsheets.
As in spreadsheets, the attribute update can be handled

either in delayed fashion, or instantaneously. In delayed
mode, any attribute value change is left for the next re-
compilation of policies whereas in instantaneous mode, it
is handled right away. Also, as the spreadsheet creates a
dependency set of cells to perform recalculation, we create
dependency relationships among attributes and rules to re-
compile the necessary rules only. The compilation engine
stores compilation information in the database for efficient
ACL recalculation. This is done using two database tables,
one to store the parsed rules, and another one to store the
permission information. Parsed rules are stored in terms of
subject and resource queries got from UREM, actions, and
effects. Query caching enables us to omit policy parsing and
start recompilation from user and resource extraction. The
second table stores access information that describes which
users have what permissions on which resources along with
the status of each permission (‘active’, ‘redundant’, ‘con-
flict’) as discussed before. A summary of the tables in our
design is shown in Table 2.

Table 2: Tables Storing Compilation Information
Table Fields

ruledetails ruleID, policyID, subjectQuery, resource,
action, effect

log username, resource, action, effect, status,
ruleID

Updates are handled by recompiling the relevant subtree
of the parsed policy that contains the rules dealing with the
updated attributes. We get these rules from the rulede-

tails table. The update handling starts with getting the
existing permissions of the affected users from the database
ACL. After the user attributes are updated, we retrieve the
rules that contain the changed attribute names. The chal-
lenge then is to comply with the policy and rule combin-
ing algorithms even by recompiling the related rules only.
For each rule, we re-execute the subject retrieval query, and
check if this rule contains any of the affected users. Updating
permissions for the affected users is challenging since though
a relevant rule might change an affected user’s permission,
there might exist some other rule irrelevant to the changed
attributes that complies with the combining algorithm and
expects no change in the permission.
We solve this in the following way: if a user’s new per-

mission complies with the rule-combining algorithm, it is ac-
cepted irrespective of her existing permission in the database
ACL (e.g., a user’s new permission is permit (deny) in a pol-
icy with permit-overrides (deny-overrides) rule-combining
algorithm). If the new permission conflicts with the exist-
ing one, (existing permission is permit but the new one is
deny in a policy with permit-overrides rule-combining algo-
rithm), then we check for ‘active’ or ‘redundant’ rules (that
are not related to the updated attributes) for this particular
permission in this policy. These rules are retrieved from the

log table. If such a rule exists, it means that the existing
permission should get priority and remain unchanged be-
cause of some other unchanged attributes of the user. Oth-
erwise, the new permission is accepted. For first-applicable
rule combining algorithm, a suggested change in permission
finds out an ‘active’ or ‘redundant’ rule listed before the cur-
rent executed-relevant rule from the log table to figure out
which one is first-applicable. This is done for each Policy
and the decision list is passed on to the parent PolicySet in
the policy tree. The rest of the conflict resolution is done as
discussed in CDRM (Section 4).

Let us consider the example policy in Figure 4. Permis-
sions may change in several ways. We will discuss some
example cases. Suppose nrs1 is transferred to medicine de-
partment. The existing permission of nrs1 is 1, 2, 5, 6, and
10 . At first the cached queries of R1 are re-executed since it
deals with the attribute ‘department’. This does not extract
nrs1 any more and so 1, 2, 5, and 6 from R1 need reconsid-
eration. We look for the same permissions with ‘redundant’
status in other rules that don’t deal with the changed at-
tribute.

• 9 in R2 is redundant for 1, and so 1 is not revoked.
Since no other permissions exist that can keep the rest
of the permissions unchanged (except 10), they are re-
voked. 10 is unchanged since it is not affected by the
attribute change.

• If a rule R5 with ‘Permit’ existed either in P1 or P2 that
gives ‘select’ on tab3 to the nurses of medicine depart-
ment, then though permissions 2, 5, and 6 would be
revoked, a new permission 〈tab3, nrs1, select, Permit〉
would be added to the ACLs.

• Suppose R5 in P1 gives the same permissions as 1, 2, 5,
and 6, then none of the permissions is changed.

• Let us assume R2 and R5 don’t exist. This requires all
the permissions to be revoked.

• A change in an attribute that is not used in the policy
does not affect the ACLs at all.

We call this dynamic update handling concept logical trig-
ger since conceptually it is similar to database triggers. We
could not use database triggers directly because of some lim-
itations [20]. The logical trigger instantaneously re-executes
relevant portion of the policy and updates MySQL ACLs
when an attribute is updated.Generally high level policies
rarely change, and hence recompiling the whole policy is
more appropriate for this type of policy update.

6. EVALUATION
To evaluate policy compilation we implemented a proto-

type MyABDAC using Apache Struts [15], an open source
web application framework. Since we are using MySQL ACL
as the underlying access mechanism, we can provide col-
umn level granularity for resources. We designed a resource
database (hospital) based on the schema from a local hos-
pital and populated it with random data because of lack
of enough information. The user attribute table consists of
50, 000 users each with 100 attributes (attr0 − attr99). We
constructed XACML policies with 100, 1000, 2000, ..., 5000
rules in 3 layers (PolicySet, Policy, Rule).

All the experiments were carried out on a 2.40GHz Intel
Core2 Duo with 3GB memory, and running Ubuntu 8.10.
The database server was MySQL version 5.0.67-community-
nt.

6.1 Performance and Optimization
We measure space requirement, compilation time, and dy-

namic ACL update time. A few optimizations reduce the
compile time to minutes. We do a comparison with two
other approaches in the next section. We take the average
in each experiment and round it to the nearest integer.

Space. To perform the worst case space requirement
analysis, we grant 1, 2, or 3 privileges from SELECT, IN-

SERT, and DELETE on the entire resource database, its tables,
or columns to 50, 000 users. For database-level privileges,
users are given access on the entire hospital database. This
requires only 30MB because it affects only user and db ta-
bles in mysql database. Each user is given access on 1− 10
tables for table privilege; this requires 212MB of space. For
columns, each user gets access to 5 − 10 columns of 1 − 10
tables each. This requires the most disk space 1606MB, but
this is still modest compared to the existing and future disk
capacities. In general the space requirement increases lin-

Figure 5: Space Requirement for MyABDAC

early with the number of users. Since it is scalable for such a
large number of users, we believe that the approach fits ap-
plications within our scope where not all kinds of users need
database accounts. Figure 5 shows the relationships among
the space requirements for different levels of accesses.

Compilation Time. Policy compilation time includes
parsing, user extraction from the database, and the popula-
tion of ACLs by processing policies. We consider cases with
100, 1000, ..., 5000 rules over a test database. The results
are illustrated in Figure 6.
Compiling a policy of 5000 Rules each with 10 subject

attributes, 5 resources, and 2 actions takes 882sec with the
following breakdown: parse-31sec, user extraction-720sec,
and ACL population-131sec. Parse time (Figure 6a) is lin-
early proportional to the number of rules. User extraction
(Table 6b) depends on the complexity in the WHERE clause of
a SELECT statement for each Rule, and the underlying data
type. ACL population is a series of GRANT statements. It
depends on the number of GRANTs and the number of users
per GRANT. For example, the 1000 rule policy generates 119
GRANTSs which add 36, 142 permissions when no user has any
permission on the database.
In another evaluation of this policy where the database

already stored some random rights, and rights needed to be
revoked in addition to GRANTs, the total compilation time

was 169sec with the following breakdown: parse-7sec, user
extraction-148sec, ACL update-11sec. This includes 119
GRANTs and 21 REVOKEs with 36, 059 addition and 1376 re-
moval of rights respectively. If an administrator performs
this task manually, she has to identify each user individu-
ally and update the ACL accordingly.

Optimization. In a näıve approach, one GRANT (REVOKE)
statement for each resource in a rule adds (removes) the
users extracted for that Rule into the database ACL. We
optimize by updating the ACLs only after all the conflict res-
olution is done, and removing redundant permissions. For
example, if a user has SELECT and INSERT permissions on
table1, then only a SELECT on table1 in another rule is ig-
nored. For the 3 types of permissions on a table, the total

(a) Parse Time for Different numbers of Rules

No.
of
Rules

No. of
Users
Retrieved
from DB

Retrieval
Time
(sec)

No. of
GRANTs

Rights
Granted

ACL
Popu-
lation
Time
(sec)

100 220 17 19 2180 0.16
1000 9569 150 119 36142 8
2000 23161 290 120 46982 12
3000 25432 431 120 109479 56
4000 24277 573 120 106196 52
5000 34558 720 120 170757 131

(b) Time to Extract Users from Database and Populate ACL

(c) ACL Population Time for Different No. of
Users

Figure 6: Policy Compilation Time

combination of permissions is mapped to 120 for the 40 re-
source tables. This results in at most 120 GRANTs and 120

REVOKEs. Since grant and revoke statements are costly (Fig-
ure 6c), these optimizations reduce the compilation time to
minutes. The results of this optimization are included in the
values shown in the figures.

Update. A key performance issue is the cost of ‘churn’
on the attributes since this will trigger updates in the ACLs.
We measured the cost of dynamic ACL update by updating
5, 10, ..., 20 user-attributes. The update time depends on the
updated attributes and the related rules, the number of users
who are updated, and the obsolete and new permissions.
The results of attribute updates are shown in Table 3. The
structure of the update statements used is as follows:

UPDATE users SET attrx = valuex, ..., attry = valuey
WHERE condition

Table 3: Update Analysis
Users
Up-
dated

Attributes
Updated

Rules
Recon-
sidered

New
Rights

Obsolete
Rights

Total
Time
(sec)

5 391 0 1 104
1666 10 662 10 1 143

15 822 50 1 163
20 900 50 1 161
5 432 160 1 213

5633 10 682 1402 156 235
15 813 1345 156 249
20 888 1537 1 270
5 391 41 1 369

12384 10 662 121 2 409
15 822 261 2 433
20 900 331 2 448

An entry such as row 6 of the table means the following:
when 10 attributes of 5633 users are updated (number of
users are determined by the condition part of the update
statement), then 682 rules are reconsidered, 1402 new rights
are added, and 156 rights are revoked. The total time for
this is 235sec.
Since we insert random test data, we cannot predict the

number of permission changes. But we perform two op-
timizations to: 1) remove redundant and overlapping per-
missions which reduces the number of GRANT and REVOKE

statements, and 2) minimize the changes. For instance, if a
user currently has SELECT and INSERT permissions, but SE-
LECT and DELETE after update, we revoke INSERT and add
DELETE. We believe that most of the time, few user attributes
are changed and only a few users are affected, although there
is no way to prove this for all circumstances, so optimiza-
tions are important.

6.2 Comparative Analysis
We compare MyABDAC with SunXACML and XEngine.

Since we are compiling XACML to a database platform we
expect some improvement in access decision times. These
gains must be set against the costs we just described for
ACL updates. We compare the access verification time a
user faces when she submits a query. The request submitted
is 〈username, password, query〉.

• In MyABDAC, access verification latency is just the
time to establish a database connection. Credential
verification is performed off line while creating the
ACLs. Since it is done off line, users do not face this

time while accessing the database. As discussed, cre-
dential change is taken care of by the dynamic update
handler.

• In SunXACML, the total time that a user faces in-
cludes database connection by the Policy Enforcement
Point (PEP) as a super user, credential (username,
password) verification, XACML request formation by
retrieving user attributes from the database, and pol-
icy checking by the PDP, which checks all the policies
against the retrieved attributes and returns the result
back to PEP. If the result is Permit, the query is exe-
cuted.

• In XEngine, the total time that a user faces includes
database connection by the application as a super user,
user credential verification, XACML request formation
by retrieving user attributes from the database, re-
quest normalization, and finally policy checking.

Table 4: Comparison Results
Type Explanation Time

(ms)
Compilation (Offline Credential Check,
ACL building)

417,610

MyABDAC Database Connection 307
Total (Online) 307
Total (Offline) 417,610
Database Connection 307
Credential Check 56

SunXACML XACML Request Construction 290
XACML Request Verification 1221
Total (Online) 1874
Policy Conversion (Offline) 11340
Database Connection 307

XEngine Credential Check 56
XACML Request Construction 290
XACML Request Verification 32
Total (Online) 685
Total (Offline) 11340

Because of some limitations of current XEngine implemen-
tation, we could only test for equality in subject attributes
in this comparison. This forced us to use fewer attributes
in Subject elements since using more attributes does not
retrieve enough users to populate database ACL. On the
other hand, using too few attributes retrieves large num-
ber of users which is not practical for MyABDAC. So, we
chose reasonable number of Subject attributes with a mix-
ture of OR and AND conditions. Besides, there were some
anomaly in the decisions returned by XEngine and SunX-
ACML. Our returned decisions comply with those returned
by SunXACML. A ‘Not Applicable’ is equivalent to ‘Deny’
since by default database denies any request if there is not
explicit permission in the ACL.

Our results for 500 database requests are summarized in
Table 4. We check a policy with 3000 Rules. The structure
of the query is not important here since we are interested
in the access check part rather than the time it takes to re-
trieve data by query execution. We used the same requests
for both SunXACML and XEngine. The total online delay a
user faces is 307ms in MyABDAC, 1874ms in SunXACML,
AND 685ms in XEngine. A single request formation and
verification requires over 4000ms in total in SunXACML,
but since we take the average of request formation and ver-
ification time, the time faced is reduced.

MyABDAC runtime is 6 times faster than SunXACML
and reasonably faster than XEngine. The MyABDAC offline
compilation time is 418sec. This is reasonable when the win-
dow of vulnerability can accommodate it, which seems likely
for many applications. For example, the time to change an
employee job description on the HR database from the point
that the employee is informed of the planned change may be
hours or days so an hourly or daily recompilation may be
sufficient.
We conclude that MyABDAC is a scalable and efficient

policy compilation mechanism for attribute based database
access control.

7. DISCUSSION
In this section, we analyze some security features and is-

sues of compiling attribute-based policies for database access
control, and discuss the expressiveness it provides.

7.1 Security Issues
Some security concerns with policy compilation include

user modifiable attributes and the window of vulnerability
when attributes change. On the other hand there are several
ways in which policy compilation enhances security. We
elaborate briefly on these issues.
User modifiable attributes, that is, attributes that

users are allowed to update, should get careful considera-
tion in ABAC. A concern in ABAC for databases is whether
access information leakage vulnerability is created by using
this type of attributes. Typically, in an organization, out
of hundreds of attributes a user has, only some are used
for access control. User modifiable attributes, such as email
and mailing address usually are not used in access control.
The other modifiable attributes are generally updated by
an administrator, e.g., an assistant professor is promoted
to associate professor. One possible approach is to limit
the amount of information a user can access by updating
attributes. This may be performed by creating an allowed
attribute list for the sensitive data which explicitly mentions
what user attributes can be used to access this data. Using
other attributes to access this data will result in denial. This
is almost similar to the idea where a data is labeled with a
purpose for which it can be used [5].
A window of access vulnerability is the time between

the change of privileges due to attribute updates and the
next policy compilation. This generally is an issue in de-
layed mode. In instantaneous mode, this window duration
is the time to update ACLs which we have tested to be in
minutes for reasonable number of updates. For delayed pol-
icy compilation, how often the engine is executed depends
on the organization requirements. Policy compilation needs
to be done in a reasonable manner that neither makes the
ACLs obsolete nor creates jitter by frequent compilations.
If the data that a user can access is not that important or

attribute change is not that frequent, a window of vulnera-
bility can be tolerated till the next compilation; e.g., when
an assistant professor gets promoted to associate professor,
the recompilation is not a first priority task, but when an
employee is under investigation for some corruption, her ac-
cess should be updated right away. From the performance
analysis, we can see that policy compilation takes reason-
able time and can be done several times a day reducing the
duration of window of access vulnerability.

Policy compilation enhances the security of database ac-
cess control in at least three ways.

1. First, because policy compilation alleviates the perfor-
mance drawback of ABAC, it facilitates the usage of
attributes instead of identities for access control deci-
sions. Since ABAC policies describe the intent rather
than the long list of access control entries, there is a
smaller chance of accidental bugs in the policy which
avoids unintentional access granting to unauthorized
users.

2. Second, since policy compilation verifies a policy at
the data level, it removes anomalies among conflict-
ing permissions. Note that this is not possible when
working with the high level policy since we do not know
whether two sets of attribute-based rules intersect over
the actual users or not. For example, it is not possible
to tell whether the set of ‘senior nurses’ in the depart-
ment of ‘infectious disease’ intersect with the set of
‘NIH certified personnel’ with ‘more than 10 years of
experience’. Policy compilation allows such anomalies
to be identified without false positives/negatives.

3. Finally, MyABDAC complies with the principle of the
least privileges and least common mechanism [26]
by avoiding connecting to the database via superuser
when users access some database resources. Since users
connect through their own accounts, this approach sig-
nificantly decreases the risks associated with a supe-
ruser database connection.

7.2 Expressiveness
There are several points about the expressiveness of pol-

icy compilation that merit discussion. These include the
distinction between the extensional and intensional aspects
of the policy and the ability of policy compilation to sup-
port other access control models such as Role-based Access
Control (RBAC).

It is important to note that policies based on attributes
can have unrealized contradictions. That is, some rules may
grant permissions to individuals that other rules prohibit
them from having, but there may, in fact, be no principals
in the system that have the attributes in question so the
policy conflict is not realized in any specific instance. While
this situation can exist with the high-level policy, it is not
an issue in the ACL since the ACL concretely describes per-
missions for specific principals. The underlying distinction
here is between the intensional nature of the attribute rules
compared to the extensional nature of the ACLs.

Policy compilation enables these two different types of ac-
cess rules to live in a coherent common model. For example,
we are able to go beyond attribute-policies by doing conflict
resolution in the ACL. Consider an example; P1: allow users
of age> 25 to read table1; P2: revoke read access from users
of age> 31 on table1. If there is no user with age> 31 then
there is no conflict. Therefore, though the policies are in
conflict, actual data is not. Conflict arises when users u1

and u2 with ages 32 and 35 are added to the system. De-
pending on the resolution algorithm, one of these policies is
activated and it updates the database ACL or the manager
is warned of the conflict. This provides complete consis-
tency checking regardless of the complexity of the rules in
the high-level language and any challenges that might arise

in checking consistency of these rules independent of the
underlying extensional model they induce. Another advan-
tage of this integrated perspective is the ability, irrespective
of attributes and high-level policies based on them, the ad-
ministrator could manually assign rights at the database
level. This type of conflict resolution provides the flexibil-
ity of selective permission assignment, providing an option
for explicit permissions in harmony with ABAC. This uni-
fies ABAC and IBAC by allowing policies to be defined at
high level but providing the flexibility to modify them at
low level.
In Role-based Access Control (RBAC) [10, 27, 9],

a set of users intended to have the same set of permissions
are mapped to a role, which can be viewed as a kind of
abstract user. Access rights over resources are defined for
this abstract user so that changes in its permissions induce
changes in the permissions of all of the users mapped to it.
Applications can use RBAC to avoid over populating ACLs
with users with same kind of permissions. Applications with
such requirements can be benefited by MyABDAC with cer-
tain modifications. In this case MyABDAC should compile
policies to map attributes to roles. A similar approach has
been proposed in [2] for other languages. Compilation here
needs to be performed on two sets of ABAC policies as in
XACML interpretation. First a set of policies are compiled
to map attributes to roles and this set is compiled to trans-
form roles to ACLs. From the evaluation (Table 6b) we see
that in one experiment 3000 rules add 109479 permissions
to the database ACLs. This must contain a lot of common
types of permissions. If large number of users have the same
kind of access, then there is no reason to give each of them
separate permission. MyABDAC should be used to map
attributes to roles for those applications.

8. RELATED WORK
Three general areas of related work include policy verifi-

cation for XACML, database access control techniques, and
general attribute-based access control systems. We compare
the current work with the most closely-related work in each
of these areas.
To our knowledge, none of the existing works on XACML

policy verification are specialized for database access con-
trol, and they solely focus on fast XACML policy evaluation.
In these works, access verification is performed outside the
database at application level. We specialize XACML pol-
icy verification for databases efficiently, and provide pro-
tection at the lowest level, i.e., within the database. Our
concept of compiling high level policies to ACLs is analo-
gous to SELinux [28] that uses user identity, domain, type,
role, and levels attached to subjects (users, processes) and
objects (files, sockets, etc) and compiles policies to binary
formats for Linux kernel security server.
Sun has implemented an interpretation-based evaluation

engine that verifies XACML policies [31] on-the-fly upon
a request submission. A user submits a request to a Pol-
icy Enforcement Point (PEP) which authenticates the user,
forms an XACML request consisting of related attributes,
and submits it to a Policy Decision Point (PDP). The PDP
checks all the stored XACML policies, verifies against the
submitted request and sends a response back to the PEP.
Approaches have been proposed for fast XACML policy

evaluation. Java XACML [13] uses traditional techniques
such as indexing, decision caching, and caching policies to

avoid evaluating all policies on each access. XEngine [18]
preprocesses XACML policies by converting textual XACML
to numerical policy (numericalization), transforming com-
plex policy structures to a normalized structure (normaliza-
tion), and converting normalized policy to tree data struc-
tures. It also transforms all types of conflict resolution rules
to the ‘first-applicable’ rule in order to avoid evaluating all
the rules each time. It creates a decision table from the pol-
icy which is consulted upon a request submission. Marouf
et. al. [19] use statistical analysis to determine the frequently
encountered rules inside an XACML policy. Then using rule
reordering and clustering techniques they make the evalua-
tion process faster and more efficient than Sun PDP. Fi-
nally, Karjoth et. al. [17] describe techniques to support IBM
Tivoli Access Manager policies using XACML. The focus of
this work is supporting legacy systems and preserving com-
patibility between XACML and IBM Tivoli policies rather
than performance improvement.

Policy enforcement for database access control has been
interpreted in several efforts. We did not find any literature
on policy compilation over databases per se. Roichman et.
al. [24] perform on-the-fly IBAC using parameterized view
which is still not a part of current SQL servers. Olson et. al.
transform transaction datalog policies into SQL view defi-
nitions for RDBAC [22]. Cook et. al. [6] use a middleware
rule-engine to intercept user submitted query and change
it if necessary to abide by rules. Stoller [30] extends SQL
to support attribute-based access grant and revocation. It
uses a modified SQL which is not supported by commodity
databases. It uses special grant/revoke statements that limit
the policy to a special form. Agrawal et. al. [1] propose a
scheme to preserve privacy in a ‘Hippocratic database’. Al-
though Hippocratic databases use attributes and metadata
stored in the database to make access decisions, they are
specialized and not expressive enough for general security
policies.

Another form of access control is Fine-Grained Access
Control (FGAC), which provides row-level access granular-
ity with a cost of query rewriting [11, 21] or view creation [23].
Oracle VPD [7], an example of FGAC defines policies as
database functions attached to tables. Policies of this type
require extra indirections in the form of tables or views.
Query rewriting is problematic [8] in general. Using MyAB-
DAC to perform FGAC by an appropriate form of policy
compilation into database functions is a challenging next
step.

Other than databases, ABAC has been applied to several
areas. Bobba et al. [4] use user attributes in an enter-
prise database to send messages based on some attribute
policies. Yu et al. [32] use attributes to establish mutual
trust among parties. Stermsek et al. [29] perform Internet
resource access control based on 〈subject, operation, object〉
triple along with attributes. Attributes define certain re-
lationships (e.g., subjattr1 = objectattr1) to perform access
control, or assign roles and permissions to the subject . Sub-
ject attributes are retrieved directly from the user (attribute
documents and user public key certificate) or from a local
database in the server.

Cryptosystems use attributes to enforce security in en-
cryption and decryption in various ways. Sahai et al. [25]
use biometric identities as attributes to provide a fuzzy, er-
ror tolerant identity-based encryption eliminating the neces-
sity of public key certificates. They also propose attribute-

based encryption (ABE) based on fuzzy-ibe. Bethencourt et
al. [3] implements ABE by embedding attributes in keys, and
Goyal et al. [14] uses attributes in the ciphertext. Both these
approaches require cryptographically formed attributes to
decrypt a ciphertext.

9. CONCLUSION
We introduced a model for efficient policy compilation

for ABAC at database level using existing database access
control mechanisms such as ACLs. The model describes
how high level attribute-based policy can be efficiently con-
verted into low-level ACLs for database resources. We de-
scribed how to maintain ACL correctness in case of dynamic
data. We implemented a prototype named MyABDAC as
a proof of applicability of this idea and proved that the
approach is scalable in terms of space and time. A com-
parison with SunXACML showed that policy compilation
significantly improves attribute-based database access time
with a price of reasonable offline compilation time. We also
compared our approach with a pre-processed XACML en-
gine and found out that for database access control, ACLs
are faster than access verification at application level. We
presented security enhancements provided by our approach
in comparison with other approaches. A field that can be
of further interest in this track is, how to support different
roles a user has using the proposed technique.

Acknowledgements
This work was supported in part by HHS 90TR0003-01, NSF
CNS 09-64392, NSF CNS 09-17218, NSF CNS 07-16626,
NSF CNS 07-16421, NSF CNS 05-24695, and grants from
the MacArthur Foundation, and Lockheed Martin Corpora-
tion. The authors would like to thank researchers involved
in the project XEngine for providing their code. The views
expressed are those of the authors only.

10. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.

Hippocratic databases. In VLDB, 2002.

[2] M. A. Al-Kahtani and R. Sandhu. A model for
attribute-based user-role assignment. In ACSAC, 2002.

[3] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In IEEE
S & P, 2007.

[4] R. Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and
H. Khurana. Using attribute-based access control to
enable attribute-based messaging. In ACSAC, 2006.

[5] J.-W. Byun and N. Li. Purpose based access control
for privacy protection in relational database systems.
VLDB J., 2008.

[6] W. R. Cook and M. R. Gannholm. Rule based
database security system and method.
http://www.freepatentsonline.com/6820082.html,
November 2004.

[7] O. Corportation. Oracle virtual private database.
Technical report, Oracle Corporation, 2005.

[8] C. Costa. A framework proposal for fine grained
access control. Informatica, L1(2):99–108, 2006.

[9] D. Ferraiolo and R. Kuhn. Role-based access control.
In 15th NIST-NCSC National Computer Security
Conference, 1992.

[10] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-Based Access Control. Artech House, 2003.

[11] S. Franzoni, P. Mazzoleni, S. Valtolina, and
E. Bertino. Towards a fine-grained access control
model and mechanisms for semantic databases. In
ICWS, 2007.

[12] S. Godik and T. Moses. eXtensible Access Control
Markup Language (XACML). Technical Report v1.1,
OASIS, August 2003.

[13] Google code enterprise java XACML implementation.
http://code.google.com/p/enterprise-java-xacml.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Water.
Attribute-based encryption for fine-grained access
control of encrypted data. In ACM CCS, 2006.

[15] Apache struts. http://struts.apache.org.

[16] MySQL. http://www.mysql.com.

[17] G. Karjoth, A. Schade, and E. V. Herreweghen.
Implementing ACL-based policies in XACML. In
ACSAC, 2008.

[18] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine:
A fast and scalable xacml policy evaluation engine. In
ACM SIGMETRICS, 2008.

[19] S. Marouf, M. Shehab, A. Squicciarini, and
S. Sundareswaran. Statistics & clustering based
framework for efficient XACML policy evaluation.
POLICY, 2009.

[20] MySQL. MySQL Reference Manual, 2008.

[21] A. Nanda. Fine Grained Access Control. Proligence,
2003.

[22] L. E. Olson, C. A. Gunter, W. R. Cook, and
M. Winslett. Implementing reflective access control in
SQL. In DBSec, 2009.

[23] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In ACM SIGMOD, 2004.

[24] A. Roichman and E. Gudes. Fine-grained access
control to web databases. In SACMAT, 2007.

[25] A. Sahai and B. Waters. Fuzzy identity based
encryption. In Eurocrypt, 2005.

[26] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[27] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2), 1996.

[28] Security-enhanced linux. http:
//www.nsa.gov/research/selinux/index.shtml.

[29] G. Stermsek, M. Strembeck, and G. Neumann. Using
subject- and object-specific attributes for access
control in web-based knowledge management systems.
In SKM, 2004.

[30] S. D. Stoller. Trust management and trust negotiation
in an extension of SQL. In TGC, 2009.

[31] Sun Microsystems, Inc. Sun’s XACML
Implementation.

[32] T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. ACM TISSEC, 2003.

APPENDIX
This section contains pseudo-codes for Policy Parsing and
Conflict Resolution. The pseudo-codes can be viewed as a
summary of the processes described in Section 4.

Figure 7: Pseudo-code for Conflict Resolution

Figure 8: Pseudo-code for Policy Parsing

