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ABSTRACT
Constraint systems provide techniques for automatically analyzing
the conformance of low-level access control policies to high-level
business rules formalized as logical constraints. However, there
are likely to be priorities for solutions that are not easy to encode
formally, so administrator input is often important. This paper in-
troduces PolicyMorph, a constraint system that supports interac-
tive development and maintenance of access control policies that
respect both formalized and un-formalized business rules and pri-
orities. We provide a mathematical description of the system and
an architecture for implementing it. We constructed a prototype
that is validated using a case study in which constraints are im-
posed on a building automation system that controls door locks.
PolicyMorph advances the state-of-the-art in constraint systems by
suggesting predictable policy model modifications that will resolve
specific constraint violations and then allowing policy administra-
tors to select the appropriate modifications using knowledge that is
not formally encoded in the constraint system.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection—Access controls; K.6.5
[Management of Computing and Information Systems]: Secu-
rity and Protection

General Terms: Security

Keywords: attribute based access control, policy administration,
separation of duty, constraints

1. INTRODUCTION
Many of the challenges that arise during the development and

maintenance of an access control policy are caused by the inability
of the policy administrator to correctly translate high-level busi-
ness requirements into low-level access control policies that can
be implemented in an Access Decision Function (ADF). Several
approaches to this problem have been explored, such as improv-
ing the policy languages themselves to provide more direct ex-
pressions of business requirements. Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC) languages
are representative outcomes of this line of investigation [18, 15].
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Another common approach uses constraint languages to test prop-
erties of an ADF and point out violations to the policy adminis-
trator [11, 7]. Because constraint languages can be very expres-
sive, they are able to encode many business rules directly, but such
high-level constraints cannot be used to directly implement an ADF
because they specify what access control policies satisfy the busi-
ness requirements, without actually selecting any particular policy
from the (usually infinite) space of acceptable ones. Thus, most
constraint checkers simply report constraint violations for the for-
malized business rules. This generates a substantial burden on an
administrator because he must not only resolve the violations man-
ually but must also deal with all of the solution priorities that, for
one reason or another, were not formalized within the constraint
system. Another, more subtle, point is that business rules are often
flexible: exceptions are sometimes made, and a burdensome rule
may be ignored or changed. Thus the process of selecting an ADF
in light of business rules benefits from formalization and automated
support, but also requires significant human input.

In this paper we introduce a system called PolicyMorph that
helps administrators interactively assess ABAC access control poli-
cies with respect to logical constraints. This is, PolicyMorph not
only reports constraint violations, but also formulates suggestions
on how to address common types of violations. It then prioritizes
those suggestions, presents them, and allows the administrator to
evaluate the effect of each suggestion and implement the suggestion
that produces the most desirable outcome. In particular, Policy-
Morph allows the administrator to evaluate the desirability of each
option, without forcing him to encode all relevant constraints in a
formal language. This provides a middle ground between a fully
automatic system that places on the administrator a high burden of
formalization and a largely manual system that provides little help
in discovering and resolving specific violations.

To make these concepts more concrete, consider an access con-
trol policy for Personally Identifiable Information (PII) contained
in an online retailer’s database and regulated by that organization’s
privacy policy, which sets forth the business requirements that regu-
late the processing and storage of the PII collected from customers.
Other works have explored the formal semantics of privacy poli-
cies and explain how to decompose policies into individual goals
that can be analyzed further [1, 6, 14]. These goals can be easily
converted into logical constraints over an ABAC policy. For ex-
ample, consider the privacy goal “maintain confidentiality of cus-
tomer information from third party partners and marketing.” Let us
assume that some employees hold responsibilities in multiple ar-
eas, such as both marketing and information systems support (IS).
As a part of their IS duties, such an employee could be responsi-
ble for the maintenance of a customer email list. Unfortunately,
her membership in the marketing department would disqualify her



from this role according to the privacy rule. The constraint checker
can easily detect this violation, but it is unlikely to know how to op-
timally transfer the responsibility for managing the customer email
list, since workload information, employee preferences, and other
external considerations are rarely encoded into the systems hosting
an access control policy. However, a human policy administrator is
likely to have access to such information and can easily select be-
tween the employees who could be assigned to that task. Thus, the
administrator would be aided by an analysis system that presents a
list of other employees to whom the responsibility could be trans-
ferred, allowing him to make the final selection. On the other hand,
if this re-assignment is viewed as impractical or excessively ex-
pensive, then the administrator may instead choose to adjust the
business rules, perhaps by accepting a weaker level of protection in
which the employee is asked to personally enforce the rule.

Two of the fundamental components in PolicyMorph are its logi-
cal ABAC policy language and its logical constraint language. Both
of these are based on order-sorted first-order logic [16], which is
capable of supporting very expressive policies [10]. We then de-
scribe our interactive environment for resolving constraint viola-
tions and provide examples of policies where an administrator’s
human knowledge and preferences can be used to resolve constraint
violations with the help of PolicyMorph’s suggestions and analysis.
This analysis is complicated by the fact that PolicyMorph policies
can use dynamic contextual information from external sources to
make access decisions. We show how this functionality can be sup-
ported without significantly complicating policy definitions, and
while still preserving safety with respect to constraints. In partic-
ular, in one of our examples the location of a subject represented
within the access control system is inferred using presence infor-
mation from an instant messaging protocol and has actually been
implemented in our prototype. We demonstrate how our proto-
type operates as an access decision function using a representative
policy for a building automation system in a sophisticated, object-
oriented application, and also demonstrate our interactive policy
administration tool using that policy.

The rest of this paper is organized as follows. In Section 2 we
define our access control policy and constraint languages. In a simi-
lar fashion, Section 3 presents our transformation framework. Sec-
tion 4 describes an architecture and prototype implementation of
these systems. Section 5 describes an evaluation of the approach
using the prototype to carry out a case study. Section 6 discusses
related work. Section 7 concludes the paper and summarizes our
future directions.

2. POLICIES AND CONSTRAINTS
In this section we present the major components of our system,

namely the access control policies, the models needed to interpret
them, and the the constraints to be imposed on them. We assume
that the reader is familiar with first-order logic.

Access Control Policies.
A low-level access control policy comprises a set of predicates

with a predefined signature that corresponds to the elements of an
access decision request. To accommodate this signature, policies
use a variety of sorts, including S (agents or principals σ, com-
monly known as subjects, that perform actions on objects), O (ob-
jects δ upon which subjects perform actions), Entities (a super-sort
of both S and O), Actions (η), Contexts (runtime information γ that
can be incorporated into access decisions), and Justifications (com-
pound terms κ that specify every reason that a positive access deci-
sion was provided). More formally, a policy is a first-order formula

which can be represented as follows:

f ⇒ Permitted(σ, δ, η, γ, κ)

Whenever this formula is satisfied, it indicates that the correspond-
ing access request should be granted. To understand the role of κ,
one should consider it to be an output of the predicate, rather than
an input parameter to be tested. It is not used in the decision mak-
ing process, but is simply unified with the reasons that a positive
access decision were made, as discussed in more detail later.

Members of Contexts represent a specific set of conditions that
can be defined or sensed by the overall system into which the access
control system is integrated. Each context is a relation that maps
arbitrary, application-defined keys to arbitrary values:

∀γ ∈ Contexts. γ ⊆ CtxKeys × CtxValues,

where CtxKeys and CtxValues are application-defined sorts. Each
context relation is customarily a partial function. However, the pol-
icy for each application has the freedom to define its own mecha-
nisms for representing and processing contextual information.

Elements of Justifications are used to convey the exact reasons
that a particular access decision is granted. Using a backtracking
engine like the one built into Prolog interpreters [17], it is possi-
ble to determine all possible justifications for a particular access
decision.

Each element of Justifications can be formally expressed as a
set of individual reasons for why a positive decision was made, al-
though the same formulation could also be used to justify negative
decisions if our system supported such decisions. Justifications are
simply sets of reasons and sets of labels. We now present each
reason currently recognized by our framework:

∀ε ∈ Entities,∀α ∈ A. HasAttr(ε, α) ∈ Reasons ∧

NotHasAttr(ε, α) ∈ Reasons

The HasAttr reason specifies that the entity ε possesses a spe-
cific attribute α, whereas NotHasAttr signifies that ε lacks α. This
convention is also used for the following reasons. Any reason with
a name prefixed by “Not” carries the opposite meaning of the pos-
itive reason with the same parameters.

∀ε ∈ Entities,∀α ∈ A. HasSubAttr(ε, α) ∈ Reasons ∧

NotHasSubAttr(ε, α) ∈ Reasons

The HasSubAttr reason specifies that the entity ε possesses an
attribute that has the specified attribute α as a direct or indirect
parent in the attribute hierarchy (the hierarchy will be described
later and is reflexive, so that the specified attribute itself is included
in the set of acceptable attributes).

∀ε ∈ Entities. IsNamed(ε) ∈ Reasons ∧

NotIsNamed(ε) ∈ Reasons

The IsNamed reason is required because policies can take the
exact identity of the subject or object specified in an access decision
request into consideration when making the decision.

These reasons can be used to describe the operation of typical
policies supported by our system. Specifically, the framework sup-
ports permission terms that consider the association or disassocia-
tion of an attribute to an entity, or the identity or non-identity of an
entity when making an access decision. However, administrators
are not restricted to those policies that can be characterized by this
justification framework. Any term that is not specially supported
by the framework will be wrapped in a generic reason that simply
conveys the term verbatim.



Model.
An access control model defines parameters used by an access

control policy to produce access decisions. It comprises a set of
entity declarations, a set of attributes, an attribute hierarchy defini-
tion, and an assignment of attributes to entities. Formally, we can
represent this as a 5-tuple:

Ψ = 〈S ,O, A,AH,AA〉,

where S and O were explained previously, and:

• A is a sort containing attributes that can be assigned to enti-
ties.

• AH ⊆ A × A is a reflexive, transitive, and antisymmet-
ric relation defining a hierarchy over those attributes, where
(α1, α2) ∈ AH =⇒ α1 is a sub-attribute of α2. This hierar-
chy can be used when making access decisions.

• AA ⊆ Entities × A is a relation which represents the assign-
ment of a set of attributes to each entity in the model.

Constraints.
Since access control policies in our system are expressed in first-

order logic, it is easy to express and test queries over those policies
using a backtracker that explores the state space of possible query
instantiations. We use a backtracker facility parameterized over
all entities to express high-level business requirements and other
constraints.

Each constraint must conform to the following template:

f ⇒ Undesirable(κ),

where f is any first-order formula, κ ∈ Justifications and the for-
mula is only satisfied if an undesirable access is allowed in the pol-
icy instantiation (combination of low-level policy and access con-
trol model) being tested and κ specifies the exact reasons that the
undesirable access was allowed. Using a backtracking engine, it
is possible to discover all such undesirable accesses. Again, κ is
actually an output from the constraint that encapsulates all of the
reasons responsible for the violation.

In brief, this allows us to impose high-level constraints on low-
level logical ABAC policies. Constraints are used to describe safety
properties of an access control policy in an inverted manner (i.e.
conditions or authorizations that should never be permitted in the
policy). Such constraints should be written in a predicate calcu-
lus, in general because they must preclude assignments that are not
known a priori. Typically, such constraints are checked whenever
the policy or model is modified and before the system is deployed,
to prevent the usage of any access control system that may violate
the constraints.

3. MODEL TRANSFORMATIONS
When constraints are violated, it is often possible to resolve the

violations by performing simple, predictable modifications to the
access control model in question. It is typical that some attributes
cannot be changed (like the age of the subject) whereas others can
be changed under suitable authority (like the task assignment or de-
partment of the subject). The latter are the focus of our transforma-
tions related to access control and constraint satisfaction. Our sys-
tem provides four predefined rules for modifying the model based
on constraint violations, but additional rules can be easily added to
the system. Regardless of the transformation rule in use, the over-
all transformation process is unmodified. Each set of transforma-
tions may resolve one or more violations, but it may also produce

new violations, so it is important to re-validate the constraints after
implementing transformations. The transformation process itself
is represented by a function that accepts the original model and a
transformation rule as arguments, and produces a modified model.
PolicyMorph provides an interactive environment in which: an ac-
cess control policy is analyzed with respect to a set of constraints,
violations are discovered, suggestions to resolve them are provided,
and transformations are applied to eliminate the violations. We now
outline the basic transformations and the way in which suggestions
are prioritized.

Basic Transformations.
The elimination transformation disassociates an attribute from

an entity:

Transform(〈S ,O, A,AH,AA〉,Eliminate(ε, α)) =
〈S ,O, A,AH,AA − {(ε, α)}〉

The introduction transformation associates an attribute with an en-
tity:

Transform(〈S ,O, A,AH,AA〉, Introduce(ε, α)) =
〈S ,O, A,AH,AA ∪ {(ε, α)}〉

The egress transfer transformation disassociates an attribute from
the entity specified in the reason and associates it with another en-
tity that does not already possess the attribute.

Transform(〈S ,O, A,AH,AA〉,EgressTransfer(ε1, ε2, α)) =
〈S ,O, A,AH, (AA − {(ε1, α)})) ∪ {(ε2, α)}〉

The ingress transfer transformation is the semantic complement of
the egress transfer, and is included for notational convenience. It
associates an attribute with the entity specified in the reason and
disassociates it from another entity that already possesses the at-
tribute. We will explain the purpose of each transformation below.

Since a justification is invalidated if any one of its reasons is in-
validated, the administrator is usually not required to implement a
transformation for every reason before the policy instantiation be-
comes conformant. To minimize the number of transformations, we
combine the reasons from all violations and sort them in decreasing
order according to the frequency with which they each occur. Then,
we iterate through the list and generate all possible transformations
that will eliminate the reason in question. The administrator is al-
lowed to evaluate the results of any of the suggested transforma-
tions and then implement the most desirable transformation. This
process continues until the administrator decides to re-evaluate the
policy’s conformance.

We define a function that suggests transformations to eliminate
a specific reason as follows:

SR : Reason→ 2Transformers,

where Transformers is a sort containing all possible transformation
rules, containing at a minimum those just discussed. This func-
tion can be extended when additional transformation rules are in-
troduced into the system. We show the basic definition of the func-
tion here:

SR(HasAttr(ε, α)) = {Eliminate(ε, α)} ∪
{EgressTransfer(ε, εd , α)|
(ε ∈ S =⇒ εd ∈ S ) ∧
(ε ∈ O =⇒ εd ∈ O) ∧
α < AA(εd)}

SR(HasSubAttr(ε, α)) =
⋃

(β,α)∈AH∧β∈AA(ε)

SR(HasAttr(ε, β)),



where AA(ε) is the set of attributes assigned to ε by the relation
AA. You may have noticed that Eliminate is the functional com-
plement of Introduce, and EgressTransfer is the complement of
IngressTransfer. Thus, it should not be surprising that we use
Introduce and IngressTransfer as the suggested transformations for
negated reasons:

SR(NotHasAttr(ε, α)) = {Introduce(ε, α)} ∪
{IngressTransfer(ε, εs, α)|
(ε ∈ S =⇒ εs ∈ S ) ∧
(ε ∈ O =⇒ εs ∈ O) ∧
α ∈ AA(εs)}

SR(NotHasSubAttr(ε, α)) =
⋃

(β,α)∈AH

SR(NotHasAttr(ε, β))

Finally, SR does not produce any suggestions for IsNamed reasons,
since those reasons typically point to underlying problems in the
model (presence of a banned entity) or low-level policy. Neither
problem lends itself to an automated solution in our system.

Suggestion Prioritization.
As we will explain shortly, our tool presents potential transfor-

mations that will resolve constraint violations to policy administra-
tors. Unfortunately, an overwhelming number of possible transfor-
mations may be generated in large access control models, causing
policy administrators to abandon the tool or make non-optimal de-
cisions. Thus, we first prioritize reasons in justifications for vio-
lations in descending order according to the frequency with which
they appear in all the justifications. Then, for each of these rea-
sons, we prioritize the possible transformations and present the
most likely transformations to administrators first.

Unfortunately, it is not possible to formulate a general prioritiza-
tion scheme; a comparator must be defined that explicitly handles
each type of transformation in the system:

CompareSuggestion : Transformers × Transformers→ {first, second},

where a result of first indicates that the first transformation rule
should be given precedence, and second indicates that the second
transformation should be given precedence.

Again, this comparator should be extensible and accommodate
the addition of new transformations, but we explain how it will
operate on the standard transformation types here.

Introductions and eliminations will always be given precedence
over transfers, since they do not interact with any entity in the sys-
tem except the one identified in the reason. Thus, they are less
likely to introduce new violations.

Ingress and egress transfers need only be prioritized among
themselves, since both types of transfers will never be suggested
for a single reason (besides, they are semantically equivalent).

In a well-defined access control model, attributes will typically
be transferred between entities with similar sets of attributes, since
these attributes should represent the similarity of the entities. In
our privacy policy example, the “customer email list administra-
tor” attribute should most likely be transferred to another entity
that already possesses attributes similar to those possessed by the
source entity. In this example, someone who already possesses the
IS departmental attribute is a likely candidate. Thus, we quantify
the similarity between entities specified in a transfer transforma-
tion and prefer transfers between similar entities. More formally,
we evaluate the following function on the two entities in the trans-
fer and prefer transformations that result in higher values for the
function:

EntitySimilarity : Entities × Entities→ R,

where

∀ε1, ε2. EntitySimilarity(ε1, ε2) =
|{α|α1 ∈ AA(ε1) ∧ α2 ∈ AA(ε2) ∧

(α1, α) ∈ AH ∧ (α2, α) ∈ AH}|,

and AA and AH are drawn from the access control model.
Of course, this scheme could be greatly improved by consider-

ing how relevant attributes are to each other, so that in our example
the IS attribute is given more consideration than other attributes
when transferring the email list administrator attribute. Unfortu-
nately, this may require the policy administrator to specify these
relationships, although they could possibly be constructed by ana-
lyzing the correlation between attributes assigned to each object in
a representative model.

4. IMPLEMENTATION
To evaluate the constructs discussed in this paper, we imple-

mented a prototype access control engine. Several requirements
helped direct the system’s design. First, it must be straightforward
to design and encode policies, models, and constraints. Second, it
must be easy to evaluate the access control model using those con-
straints, and then to implement transformations to bring the access
control model into conformance. Finally, we needed a full-featured
foreign language API to demonstrate the usefulness of our access
control engine in a sophisticated, object-oriented security applica-
tion.

There are now several logical programming languages available
that could have potentially satisfied many of our requirements, but
we settled upon Prolog due to its maturity and popularity [17]. We
use the SWI-Prolog interpreter (swi-prolog.org) because it pro-
vides a sophisticated foreign language API, is freely available, and
has respectable performance [8].

Our system implements the major logical constructs discussed
previously, including support for context-aware policies. The for-
eign language API supports bi-directional data transfer, to allow
external programs to query the ADF, and to allow permission pred-
icates to utilize contextual information from external sources.

Our prototype system can serve at least two different purposes.
First, it can be used to ensure that policies conform to a set of con-
straints representing business requirements. However, it can also be
used to evaluate the effects of business requirement changes on ex-
isting policies. To perform this evaluation, the administrator should
first ensure that the affected policy instantiations are compliant with
the original constraints. Then, they should re-evaluate those instan-
tiations using the new constraints. The violations discovered by the
system will inform the administrator of what new constraints will
necessitate changes in the policy instantiations, which can then be
used to evaluate the practical effects of the constraint changes on
the legacy policies.

4.1 Access Control Policies
Policies must be written in Prolog as a number of predi-

cates. Each predicate must have a head (Prolog terminology
referring to the signature of the predicate) like the following:
permitted(Subj, Obj, Act, Ctx, Just), where Subj is a
subject, Obj is an object, Act is the action that is to be performed
by Subj on Obj, Ctx is the current context of the system, and Just
is an output variable to which a justification structure will be as-
signed whenever the rule is satisfied. The following rule is a fairly
complex and illustrative example. It specifies that professors are
allowed to access their secretaries’ resources:

permitted(entity(subject, ProfId, _), Obj,

swi-prolog.org


Act, Ctx, Just) :-
justification_none(prof_secretary_res, JN),
is_subject(Sec),
jb(subject_has_attr(secretary(ProfId),
Sec), JN, J0),

permitted(Sec, Obj, Act, Ctx, J1),
jb_join(J0, J1, Just).

Recall that in Prolog all of the terms separated by commas af-
ter the head and reverse-implication symbol (:-) must be satisfied
for the entire predicate to be satisfied. Multiple predicates with
the same name and number of arguments are joined into a logical
disjunction, so that the entire formula can be satisfied if at least
one predicate in the procedure is satisfied. Capitalized terms repre-
sent variables, whereas lowercase terms are simple values. Low-
ercase terms written in function notation are structures, such as
secretary(ProfId). Notice that structures may contain vari-
ables. We now describe each line individually, since this rule uses
some syntax that we have not yet introduced:
permitted(entity(subject, ProfId, ), Obj, Act,

Ctx, Just): The first argument uses Prolog’s ability to de-
compose structures within predicate heads. In our system, both
subjects and objects are represented using entity structures. The
first field of the structure indicates whether the entity is a subject or
an object. The second field identifies the entity, and the third field
may contain the set of attributes associated with the entity. It is not
necessary to populate the final field in normal usage, since helper
predicates are provided to populate that field whenever it becomes
necessary. In this case, we are only interested in the identity of the
person who must be a professor for the predicate to be satisfied, so
we extract the ID from the entity and refer to it as ProfId.
justification none(prof secretary res, JN): Create

an empty justification structure assigned to JN that assigns the
name prof secretary res to the predicate. The name is simply
used to record in a human-understandable format which predicates
played a role in deciding to allow this access if it is in fact
permitted.
is subject(Sec): Due to the backtracker in Prolog, this sin-

gle line will actually enumerate all subjects in the entity database,
unifying Sec with them individually. This line does not play a sig-
nificant role in deciding whether to permit the access, so it does not
contribute to the justification structure.
jb(subject has attr(secretary(ProfId),

Sec), JN, J0): The inner part of this line,
subject has attr(secretary(ProfId), Sec), is only
satisfied when Sec is the secretary of the professor identified by
ProfId.

The outer part of this line, jb(..., JN, J0), serves two pur-
poses. First, it interprets the inner part of the line as just discussed.
If the inner term is satisfied, the outer term will then add a reason
representing that inner part to the justification, unifying J0 with
the new structure. The outer term is satisfied iff the inner term is
satisfied.

Seven generic reasons of four major types are supported. They
correspond to the formal reasons discussed in previous sections:

(\)has attr(Type, Id, Attr): Specifies that the decision
was based on the fact that the entity with the given Type
(subject or object) and Id was associated (or not associ-
ated if the negation symbol \ is used) with the attribute Attr.

(\)has subattr(Type, Id, Attr): Specifies that the decision
was based on the fact that the entity with the given Type and
Id was associated (or not associated) with a sub-attribute of
Attr.

(\)is named(Type, Id): Specifies that the decision was based
on the fact that an entity with the given Type is or is not iden-
tified by the given Id. Typically, all three of the reasons just
presented identify one of the entities passed into the permis-
sion predicate producing the justification, but they can also
be applied to other entities in the system.

satisfied(Pred): This is a default reason that encapsulates a
predicate that does not correspond to any of the other reasons
just described.

In our example, the jb predicate adds the has attr(subject,
Sec, secretary(ProfId)) reason to the justification, where all
of the variables (capitalized terms) are replaced with the specific
terms that cause the larger term to be satisfied.

The next line in our predicate, permitted(Sec, Obj, Act,
Ctx, J1), is a chained reference to the permitted predicate, to de-
termine whether the secretary just selected has access to the re-
source in question. Notice that this invocation generates its own
justification.

The final line in the predicate, jb join(J0, J1, Just), sim-
ply merges the two justifications, J0 and J1, to form the single jus-
tification Just that is finally returned to the process invoking the
predicate. The merging process constructs a justification structure
containing a union of the labels and reasons from both justifications
being merged.

Contextual Information.
The previous rule did not explicitly deal with any contextual in-

formation. The next rule demonstrates how contextual information
can be used to make access decisions. This example is drawn from
an academic environment, and centers on an admissions committee
comprising both faculty and students. It specifies that students on
the admissions committee are permitted to enter rooms designated
for admission committee meetings only after the context indicates
that the system is at least 50% confident that all professors on the
committee have entered the room. The final confidence level is an
unweighted average of the confidence levels that each individual
professor on the committee is in the room. Thus, if the system is
100% confident that half of the committee members are present the
predicate will be satisfied, and so forth.

permitted(Subj, Room, enter, Ctx, Just) :-
justification_none(adm_comm, JN),
jb(object_has_subattr(adm_comm_rm, Room),
JN, J0),

jb(subject_has_subattr(adm_comm_mbr, Subj),
J0, J1),

(
jb(subject_has_subattr(professor, Subj),
J1, Just)

;
jb(adm_comm_meeting(Room, Ctx),
J1, Just)

).

We explain only the significantly different aspects of this predi-
cate here:
object has subattr(adm comm rm, Room): This predicate

only deals with admission committee rooms. Thus, this term fil-
ters out all irrelevant rooms by only accepting objects with an at-
tribute specifying that the room is a designated meeting place for
admission committee members.
subject has subattr(adm comm mbr, Subj): In a similar

spirit, this predicate filters out subjects that are not members of
the admission committee.



subject has subattr(professor, Subj): This predicate is
satisfied if the subject in question is a professor. It is one of two
predicates in a disjunctive compound term. One or both of this
predicate and the following one must be satisfied for the rule as
a whole to be satisfied. The intention of this arrangement is to
allow professors on the admission committee to access the room
unconditionally, but perform further checks otherwise.
adm comm meeting(Room, Ctx): This is a custom predicate

that processes the current context to determine if Room is currently
occupied by a number of admission committee members. For full
details, examine our sample policy included in the software distri-
bution at seclab.uiuc.edu/policymorph. One important pro-
vision included in the predicate is special handling for the context
value used during constraint checks. Obviously, constraint checks
occur in an isolated environment, so it is not usually possible to
predict what context values will be used when the access control
system is deployed. Thus, we use a special context structure value,
context(some), when performing constraint checks. All pred-
icates that perform context processing must be satisfied if some
context value could satisfy the predicate. By convention, all per-
mission predicates that incorporate context must use satisfied con-
text checks to provide additional permissions beyond those nor-
mally provided with unsatisfied context checks. This permits us to
perform constraint checking on the most permissive access control
system supported by the policy instantiation in question.

To illustrate this, consider how our permission predicate
would behave if the term adm comm meeting(Room, Ctx) were
replaced with the term \+(adm comm meeting(Room, Ctx)),
where the standard Prolog \+(...) predicate is only satisfied
when the predicate provided as its sole argument is unsatisfied. For
the overall permission predicate to be satisfied, the subject must
be a professor, or an admissions committee meeting must not be
in progress. In this case, the adm comm meeting predicate will be
satisfied when the context(some) value is passed to it, as before,
and this will actually result in the most restrictive permission pred-
icate available.

Arbitrary contextual information can be considered in policies,
from any conceivable source. The only fixed structure imposed on
the context is that it take the form of a dictionary structure (set of
key-value pairs where the keys are unique). We will discuss specific
types of context below, such as instant messenger presence status
generated by individuals in a building.

4.2 Attribute Hierarchies
Besides the main permission rules, policies also contain predi-

cates specifying the attribute hierarchy. Since attributes can be pa-
rameterized, and since the declarations are true Prolog predicates,
sophisticated hierarchies can be constructed with very little effort:

In each predicate shown below, the first argument specifies the
type of the entities affected by the declaration, the second argument
specifies the attribute that is lower in the hierarchy, and the final
argument specifies the parent attribute. As with any Prolog predi-
cate, an underbar indicates a don’t care, meaning any term can be
inserted in its place, and any capitalized term is a variable. For
example, entity subattr(subject, professor(cs421),

ta( )) would indicate that professor(cs421) is a sub-
attribute of any ta attribute, while entity subattr(subject,
professor(X), ta(X)) could indicate that professor(cs411)
is a sub-attribute of ta(cs411). Policies are responsible for inter-
preting the attribute hierarchy. We have included an example of a
subject and object attribute hierarchy here:

entity_subattr(subject, secretary, staff).
entity_subattr(subject, professor, staff).

entity_subattr(subject, secretary(_),
secretary).

entity_subattr(subject, ta(_), ta).
entity_subattr(subject, student(_), student).
entity_subattr(subject, professor(_),

professor).
entity_subattr(subject, ta(X), student(X)).
entity_subattr(subject, professor(X), ta(X)).
entity_subattr(object, class_rm(_),class_rm).
entity_subattr(object, secretary_rm(_),

secretary_rm).

4.3 Constraints
One of the most important features of our tool is its policy valida-

tion engine that checks constraints against a specific policy instan-
tiation and uses its results as inputs for the transformation engine.

As we noted previously, it is often the case that systems have
been running with legacy procedures and access control policies
for years, before business rules are suddenly changed. Ideally, be-
fore such changes are ratified, the effect upon legacy access control
policies and models should be evaluated. Our tool can evaluate
business rule changes by discovering violations of those new rules
in existing policy instantiations. If the business rule changes are
still enacted after this evaluation, our tool can help administrators
discover and resolve all violations that are introduced.

First, let us consider a simple constraint for enforcing Bell-
LaPadula confidentiality properties on a multi-level secure system:

uncleared_access(Just) :-
is_subject(Subj),
is_object(Res),
object_has_attr(classified(Level), Res),
\+(subject_has_subattr(cleared(Level), Subj)),
permitted(Subj, Res, enter, _, Just).

Just as we did for our logical policy predicates, let us explore this
constraint one line at a time:
uncleared access(Just): Unlike policy statements, we do

not use a standard naming convention for constraints. Instead, the
names of each constraint predicate should be meaningful to a hu-
man and we explicitly list constraints by specifying their names in
a separate policy constraint predicate, so that the policy vali-
dation engine can efficiently enumerate all constraints. Again, the
Just variable will be unified with a justification for whatever pol-
icy violation is detected by the constraint.

Just like we do in our first policy predicate, we enumerate all
subjects in the policy system using the is subject predicate. We
also enumerate all objects in the system using the is object pred-
icate.

Next, we filter out the objects that have classification attributes
with the object has attr(classified(Level), Res) predi-
cate. Level is unified with the actual classification in use (e.g.
secret or top secret).

For the constraint to be violated, we must locate a subject that
can perform the enter operation on the classified resource, but
does not possess the required clearance. This bit of logic is encoded
as \+(subject has subattr(cleared(Level), Subj)), as-
suming that the cleared(Level) attribute indicates that the sub-
ject has been granted a clearance at the indicated level, and that
clearance levels are arranged appropriately in the attribute hierar-
chy, so that top secret is a child of secret, etc.

4.4 Policy Validation and Transformation
In this section we describe how potential violations of high-level

constraints by low-level policies detected as shown in the previous
section are interactively resolved by our tool. The basic interactions
are depicted in Figure 1.

seclab.uiuc.edu/policymorph


Figure 1: Interactive policy validation and transformation.

Three distinct input files are used to instantiate the system. The
access control model is split between the Policy Rulebase and the
Entity Database. The attribute declarations and attribute hierar-
chy are contained within the Policy Rulebase, along with the per-
mission rules. The subject and object declarations and attribute
assignment are contained within the Entity Database. The Entity
Database contains declarations that resemble Prolog sentences, but
they are actually encoded in a simplified format that is program-
matically expanded to form valid Prolog declarations, to enhance
ease of use and encapsulation. Finally, the Constraint Rulebase
encodes high-level constraints. At the conclusion of the policy val-
idation and transformation process, a modified entity database may
be produced and saved as a new file.

To begin the validation process, all of the violations for a particu-
lar constraint are collected. Then, the individual reasons within the
justifications for those violations are extracted and sorted according
to the frequency with which they occur in the justifications. Each of
these reasons is handled in turn, until the administrator believes that
the constraints should be re-validated to see which violations have
been eliminated and which new violations have been introduced.

The processing for each reason entails generating a list of possi-
ble transformations, prioritizing those transformations as described
previously, and then presenting that list to the administrator. Then,
the administrator is permitted to select one of the suggested trans-
formations and either apply it immediately or evaluate its effects
on the ADF. To evaluate the effects on the ADF, the system gen-
erates every possible access request using both the old and new
models and presents the differences in the decisions to the admin-
istrator. Of course, this exhaustive evaluation takes a long time in
large models, but is provided as a convenience when it is practical.

We have not yet actually implemented the transformation prior-
itization scheme in our current tool, but we plan to do so in the
future. Prioritization is most helpful in access control systems with
large entity databases.

The policy validation/resolution phase is complete when the ad-
ministrator has resolved all violations or chooses to halt the process
prematurely. More details are provided in our case study below.

5. CASE STUDY
In this section we demonstrate the usage of our system to con-

trol access to rooms within a Building Automation System (BAS)
simulator called Janus (seclab.uiuc.edu/janus). The overall

Figure 2: System architecture of PolicyMorph-regulated Janus
BAS simulator.

architecture of the system is depicted in Figure 2. Notice that the
Constraint Rulebase used during policy validation is not used by
the ADF.

5.1 Integration with Building Simulator
Originally, Janus was developed as a backend simulator for the

Janus’ Map [5] location detection system. It simulates parts of the
building automation system actually installed in the Siebel Cen-
ter for Computer Science at the University of Illinois at Urbana-
Champaign (UIUC). Janus simulates rooms and doors installed in
the building, as well as imaginary users of the building. In the
original version of Janus, access to resources was based on a rudi-
mentary discretionary access control system. It is written in Java
and uses a backend database to store and access information about
resources, individuals, and (static) access control policies.

As implied above, it was necessary for us to modify the Janus
backend slightly to support our improved access control scheme.
In order to evaluate access control decisions in real-time using our
Prolog engine, we modified Janus to perform a dynamic call to
our system whenever an access request is issued. As discussed
previously, our Prolog kernel interfaces with Java and can provide
real-time access decisions to Janus.

5.2 Integration with Context Provider
We integrated our system with the Jabber Instant Messaging (IM)

system (jabber.org) to infer the locations of subjects in the ac-
cess control system that are also Jabber users. In addition, we
can infer contextual information from successful access requests
to the rooms in the building. Therefore, we use context from a few
sources:

Jabber presence status - Location inference: We provide sup-
port for mapping Jabber users to subjects in the access con-
trol model. Then, when a subject modifies their IM sta-
tus, the system modifies its dynamic contextual information
to indicate how confident it is that the subject is currently
at the location occupied by the IM client. We use the re-
source variable that can be set in any Jabber client to iden-
tify a physical space represented in the access control sys-
tem. Of course, this indicator can be spoofed, but it simply
serves as an example. The context map contains entries for-
matted as presence(SubjId, RoomId)-ConfLvl, where
ConfLvl is a floating-point number between 0.0 and 100.0
that indicates how confident the system is that the subject is
currently in the room. We update the confidence level when
the user changes their Jabber presence. For instance, if the
presence changes from Available to Idle, we lose some con-
fidence that the subject is still in the room.

seclab.uiuc.edu/janus
jabber.org


Successful access requests: Whenever an entity successfully re-
quests entrance to a room, we become more confident that
they are in the room, and update the same confidence level
that is updated by the Jabber location inference scheme.

Jabber presence status - Do Not Disturb: Jabber supports a spe-
cial presence value: Do Not Disturb. Normally, that means
that the user is present at their computer, but do not wish
to chat. When this presence status is set, our system
records the fact using a similar format to that shown above:
dnd(SubjId, RoomId)-X, where X is set to yes when the
subject wishes to not be disturbed, and no otherwise. See our
Experiment Integrity Protection scenario for a usage exam-
ple.

5.3 Example Scenarios
In this section, we identify representative security and constraint

models for access control policies from the literature and demon-
strate their realization in PolicyMorph. In the last part of this sec-
tion, we also illustrate a dynamic, context-aware access control sce-
nario.

Model.
The model we use in the following scenarios is an approxi-

mate representation of the Department of Computer Science in
UIUC. The subjects include 60 faculty members, 28 postdoctoral
researchers (referred to as postdocs), 300 grad students, and 20
secretaries. The objects include 20 class/seminar rooms, 12 public
areas and print rooms, 20 research labs, and 120 offices for fac-
ulty, postdocs, secretaries and TAs. All the entities are assigned
attributes as described in the previous sections. These attributes
and the attribute hierarchy reflect the academic realm they model,
and are incrementally introduced as necessary in the following dis-
cussion.

Separation of Duty Constraints.
Separation of duty (SOD) constraints are by far the most ex-

haustively explored set of constraints in the literature. Jaeger and
Tidswell in [12] and Crampton in [7] provide the most compre-
hensive set of examples in the literature on SOD constraints. We
pick a few non-trivial SOD scenarios which reflect the SOD re-
quirements in our academic environment and show how they can
be supported in our system. Other constraints for this environment
could be based on Bell-LaPadula [3] and Biba [4] security models,
which can be represented in our system as illustrated in 4.3.

Individuals within academic organizations occupy many differ-
ent roles on a daily basis. For example, a Teaching Assistant
(TA) for a particular class is usually also a student in several other
classes. In the idealized world represented by typical RBAC sys-
tems, the individual is able to perform a full context-switch when
switching between these distinct roles. In the real world, however,
that simply is not possible. Even when the individual is working
in their TA role, they will still be motivated to enhance their per-
formance as a student. Consider TAs, Amber and Curtiss, who are
assigned to work in the same room. If Amber is a TA for the oper-
ating systems class (CS523) in which Curtiss is a student, Curtiss
may be tempted to take advantage of Amber’s materials that are
available in the room while she is away.

In this conflict of interest example, the following negative log-
ical constraint will ensure that the desired properties for TA room
assignments hold:

∀s ∈ S ,¬∃(c0, c1, r) ∈ (C ×C × R).(
ta(s, c0) ∧ taroom(c0, r)

)
∧
(
enrolled(s, c1) ∧ taroom(c1, r)

)
,

where C is the set of all courses, R ⊆ O is the set of all rooms,
ta(s, c) holds when subject s is the TA for class c, taroom(c, r) holds
when r is the assigned TA room for course c, and enrolled(s, c)
holds when subject s is enrolled in course c.

If this constraint holds for the ABAC policy defined in the sys-
tem, then it will never be true that any TA shares a TA room with
another TA from one of the courses in which the first TA is en-
rolled. We encode this negative constraint as a rule in Prolog that
will never be satisfied by a valid policy:

coi_ta_student(JF) :-
justification_none(coi_ta_student, JN),
is_subject(SubjA),
is_subject(SubjB),
jb(subject_has_attr(ta(ACrs), SubjA),
JN, J0),

jb(subject_has_attr(ta(BCrs), SubjB),
J0, J1),

ta_room(ACrs, Room, J2),
ta_room(BCrs, Room, J3),
enrolled(SubjB, ACrs, J4),
jb_join(J2, J3, J23),
jb_join(J23, J4, J234),
jb_join(J234, J1, JF).

This overall rule makes use of some other “convenience” rules,
whose definitions are omitted for clarity: 1) ta room(Course,
Room, JF): Satisfied when object Room is a designated TA room
for the course identified by Course. 2) course ta(Course, Ta,
JF): Satisfied when the subject Ta is a designated TA for Course.
3) enrolled(Subj, Course, JF): Satisfied when subject Subj
is a student in Course.

With our current policy and entity database, we encounter viola-
tions. Here is an excerpt from the output of our policy validator:

*** coi_ta_student found some violations:
justified by[coi_ta_student,enrolled,ta_room]:
has_attr(object,room(rm4023),ta_room(cs461))
has_attr(object,room(rm4023),ta_room(cs523))
has_attr(subject,curtiss,student(cs523))
has_attr(subject,curtiss,ta(cs461))
has_attr(subject,amber,ta(cs523))

This output informs the administrator that the validator detected
a violation of the coi ta student constraint. It also explains why
the constraint was violated, and thus how the violation can be re-
solved. The labels in square brackets are the labels of the permis-
sion predicates that were used to grant the violating access. The
reasons following those labels show that the violation occurred be-
cause room 4023 is the TA room for both the CS461 and CS523
courses, and because Curtiss is both a TA using that room and the
student of another TA using the same room, Amber.

What follows is a subset of the transformations that the system
suggests to resolve this violation. Note that any or all of the rea-
sons used to generate these suggestions may appear in violations
generated by other constraints or permission rules. Thus, the num-
ber of transformations ultimately suggested to the administrator is
not directly related to the size or complexity of the policy or its
constraints, although it is directly related to the number of entities
in the system. Some obvious user interface improvements could be
applied to manage the complexity associated with large entity sets.

remove ta(cs461) from the subject curtiss
transfer ta(cs461) to amber
transfer ta(cs461) to corwin
transfer ta(cs461) to alice
...
remove student(cs523) from the subject curtiss



transfer student(cs523) to alice
...
remove ta(cs523) from the subject amber
transfer ta(cs523) to curtiss
transfer ta(cs523) to corwin
transfer ta(cs523) to alice
...
remove ta_room(cs523) from the object room(rm4023)
transfer ta_room(cs523) to room(rm4001)
transfer ta_room(cs523) to room(rm4002)
...
remove ta_room(cs461) from the object room(rm4023)
transfer ta_room(cs461) to room(rm4001)
transfer ta_room(cs461) to room(rm4002)
...

Implementing any one of these transformations would invalidate
the justification for this violation.

As another example, consider a graduate student Bob that grad-
uates with a Ph.D. degree under Dr. Carlson. However, after grad-
uation, he accepts a position as a postdoctoral researcher under Dr.
Smith. There exists an obvious Static Separation Of Duty (SSOD)
rule [12] in the department that prohibits users from being assigned
both the student and postdoc attributes, and there should also exist
only one advisor for each student or postdoc in the system. The
administration could inadvertently violate these rules by adding
the new postdoc and advised by attributes (and hence respec-
tive privileges) to Bob’s account without removing his old status
and adviser information. We show how to encode the constraints in
the system and how the policy validator discovers and reports these
violations below:

sod_grad_postdoc(Just) :-
justification_none(sod_gradpostdoc, JN),
is_subject(Subj),
jb(subject_has_attr(gradstudent,Subj),
JN, J0),

jb(subject_has_attr(postdoc,Subj),
J0, Just).

sod_one_advisor(Just) :-
justification_none(sod_one_advisor, JN),
is_subject(Subj),
jb(subject_has_attr(advised_by(Prof1),

Subj), JN, J0),
jb(subject_has_attr(advised_by(Prof2),

Subj), J0 ,J1),
jb(Prof1 \= Prof2, J1, Just).

Just as it did in the TA room assignment scenario, PolicyMorph’s
policy validator successfully identifies the constraint violations and
suggests appropriate attribute removals or transfers. We omit the
output for the sake of brevity.

Context Sensitive Access Restriction.
Experiment Integrity Protection. In a research-oriented aca-

demic environment, a professor may decide to give his students and
secretary access to his office. Under normal circumstances, this ac-
cess would be justified by the need for students to access the books,
journals, or presentation laptops often stored in the professor’s of-
fice. However, temporary circumstances may arise during which
such access should be denied. We explain one such scenario here,
and use it to demonstrate the ability of PolicyMorph to consider
external contextual information when making access decisions.

Suppose the professor must run a light-sensitive experiment in
his office over the weekend. He would not want any of his students
to enter the room while this experiment is being performed, since
the light flooding through an open door would invalidate the results.

Such access restrictions can be easily enforced using our context-
aware environment. By adding the required rules to our policy, we
can dynamically enforce the policy in the following manner:

Access to the professor’s office will be restricted so that his stu-
dents are unable to enter whenever he sets the standard “Do Not
Disturb” flag in his Jabber instant messenger. Of course, he will
set this flag when he initiates the sensitive experiment. Once the
experiment is completed, he will remove the flag and his students
will immediately be able to access his office once again. To encode
this in Prolog, the following rule is used:

permitted(Stu, Office, enter, Ctx, Just) :-
justification_none(dnd_stu_access, JN),
Office=entity(_, OffId, _),
jb(object_has_subattr(office(Prof), Office),
JN, J0),

jb(subject_has_subattr(advised(Prof), Stu),
J0, J1),

jb(dnd_flag_cleared(Prof, OffId, Ctx),
J1, Just).

dnd_flag_cleared(_, _, context(some)) :- !. *

dnd_flag_cleared(Prof, Office, Ctx) :-
context_lookup(dnd(Prof, Office)-X, Ctx),
!,
X = no.

dnd_flag_cleared(_, _, _).

The rule above basically says that students of the professor are
allowed to access his office only if the “Do Not Disturb” flag is
cleared. The starred line is necessary to accommodate the policy
validator. It ensures that the policy validator operates on a maxi-
mally permissive policy.

6. RELATED WORK
Constraint conflicts were clearly distinguished from policy con-

flicts in [11]. That work also showed how constraints could be ex-
pressed in propositional logic and used to evaluate SELinux Type
Enforcement policies. Furthermore, it showed several ways in
which the policy could be modified to resolve constraint conflicts.
Our system is applicable to a completely different policy language,
and modifies the access control model rather than the policy itself.
Additionally, we have created a powerful tool to automatically im-
plement our conflict resolutions.

An alternative constraint expression language was put forth
in [12]. It expresses constraints graphically, as binary relationships
between sets of subjects and objects, etc. Our system has similar
capabilities to this alternative, however, it uses first-order logic for
this purpose, and additionally provides interactive suggestions to
remedy the constraint violations.

Other work explored the various types of SOD constraints that
are useful in the context of RBAC systems, as well as more gen-
eral constraints, which it collectively (with SOD constraints) refers
to as authorization constraints [7]. It represents these constraints
using set-based notation. Our system also supports generalized au-
thorization constraints, but expresses them differently and provides
automated support for constraint violation resolution.

Another access control system based on first-order logic was pre-
sented in [2]. The system supports an extended RBAC model with
support for positive and negative policy statements, temporal con-
straints and authorization constraints. It does not provide sugges-
tions on how to resolve the violations. However, the system uses
Constraint Logic Programming (CLP) to express policies and con-
straints, so it is possible to efficiently express numeric ranges for



arithmetic variables. This is a feature that may prove beneficial to
PolicyMorph if implemented in the future.

Our system uses justifications to encode the reasons that a partic-
ular positive access control decision was made. These justifications
are used to audit the normal operation of the system and also to
resolve constraint violations. Other systems have been developed
that generate reasons for negative access control decisions, such as
Know [13]. However, these reasons are presented to the subjects
themselves, rather than being reserved for those with access to the
policy administrative system and audit log. Thus, Know must take
special precautions to ensure that subjects are unable to manipulate
the system and determine significant portions of the access con-
trol policy from the denial justifications they receive. PolicyMorph
and Know provide two different examples of how access decision
justifications can be useful to both users and administrators.

Margrave is a system for analyzing access control policies writ-
ten in a subset of XACML [9]. It allows authorization constraints to
be encoded and validated, and also provides change analysis func-
tionality, so that all the permission changes introduced by policy
changes can be enumerated. Our system provides similar function-
ality for a logical policy language, and also provides an interactive
environment that suggests resolutions to constraint violations.

An Attribute-Based Access Control framework constructed
in Constraint-Logic Programming was motivated and presented
in [18]. It has a good discussion of why ABAC is often prefer-
able to RBAC and other models. The logical model used in [18]
is focused on sets of attributes and services, rather than subjects
and objects, although it provides similar capabilities to our under-
lying policy system. The paper also has a discussion of policy opti-
mization techniques that could be applied to optimize our policies.
Again, it lacks resolution strategies.

7. CONCLUSIONS AND FUTURE WORK
In conclusion, PolicyMorph advances the state-of-the-art in log-

ical ABAC access control policy and constraint models by intro-
ducing an interactive policy validation and transformation method-
ology that leverages the knowledge and preferences of a human
administrator while still assisting the administrator in the decision
process and providing comprehensive analysis of transformation
effects. We have demonstrated the utility of our system using real-
istic building automation scenarios drawn from an academic setting
and integrating dynamic contextual information.

Since our policy administration tool is fully functional, in the
future we would like to develop a graphical interface to assist with
iterative access control policy and model design and maintenance.
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