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Abstract. 1 There are increasing deployments of networked embedded systems
and rising threats of malware intrusions on such systems. To mitigate this threat,
it is desirable to enable commonly-used embedded processors known as flash
MCUs to provide remote attestation assurances like the Trusted Platform Module
(TPM) provides for PCs. However, flash MCUs have special limitations concern-
ing cost, power efficiency, computation, and memory that influence how this goal
can be achieved. Moreover, many types of applications require integrity guaran-
tees for the system over an interval of time rather than just at a given instant.
The aim of this paper is to demonstrate how an architecture we call a Cumulative
Attestation Kernel (CAK) can address these concerns by providing cryptograph-
ically secure firmware auditing on networked embedded systems. To illustrate
the value of CAKs, we demonstrate practical remote attestation for Advanced
Metering Infrastructure (AMI), a core technology in emerging smart power grid
systems that requires cumulative integrity guarantees. To this end, we show how
to implement a CAK in less than one quarter of the memory available on low end
AVR32 flash MCUs similar to those used in AMI deployments. We analyze one
of the specialized features of such applications by formally proving that remote
attestation requirements are met by our implementation even if no battery backup
is available to prevent sudden halt conditions.

1 Introduction

Networked embedded systems are becoming increasingly common and important. The
networking of these systems often enables updating of firmware in the field to correct
flaws or add functionality. This updating also introduces security threats if adversaries
are in a position to use it to install malware. A good example of this trend is in the
deployment of Advanced Metering Infrastructure (AMI), a centerpiece of “smart grid”
technology in which networked power meters are used to collect, process, and trans-
mit electrical usage data, and relay commands from utilities to intelligent appliances.
Meters are required to support remote upgrades, since physical service visits are too
expensive. Threats to the updates on this infrastructure are severe since meters are a
common target of exploits aimed at electrical service theft. This type of threat will arise
in many other contexts as well when remote sensing systems become more pervasive.

For such systems one would like something like the Trusted Platform Module (TPM)
to provide remote attestation so that the embedded infrastructure can be efficiently and
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securely queried for its configuration [2]. This configuration information can be exam-
ined to detect intrusions resulting in the installation of malware. However, there are a
variety of challenges to extending the concept of remote attestation for personal com-
puters to work for embedded systems. Among these are the cost, power, memory, and
computational limitations of embedded systems and the need to provide audit data over
an interval of time rather than just at a given point in time. These requirements can
be seen in the planned AMI deployments which envision millions of remotely mon-
itored systems based on inexpensive flash MicroController Units (MCUs), which are
integrated circuits containing a microprocessor core, integrated flash memory for stor-
ing a program, data RAM, and other peripherals. They are required to reliably provide
high-integrity billing data over a lifetime of 10-15 years and support remote updates of
their firmware.

In this paper we describe an architecture for providing remote attestation on net-
worked embedded systems. The architecture is called a Cumulative Attestation Kernel
(CAK), which is implemented at a low level in the embedded system and provides cryp-
tographically secure audit data for an unbroken sequence of firmware revisions that have
been installed on the protected system, including the current firmware. The kernel itself
is never remotely upgraded, so that it can serve as a static root of trust. Our specific ob-
jective is to show that CAKs can be practically achieved on flash MCUs. Only recently
have inexpensive flash MCUs possessed the memory capacity and memory protection
functions required to properly support a CAK. More expensive MCUs typically rely on
external memory. Flash MCUs are also typically distinguished from high-end MCUs by
their simple, monolithic firmware images containing a static set of applications that run
in a single memory space. High-end MCUs often run a full-featured OS such as Linux.
Finally, flash MCUs operate at low clock frequencies, and may not offer many of the
features of high-end MCUs such as superscalar execution and a Memory Management
Unit (MMU). We account for these characteristics of flash MCUs in our design.

We explore the feasibility of CAKs with respect to the requirements of advanced
meters, since they represent an interesting application of flash MCUs. Although me-
ters are connected to the power mains there is concern about their power usage since
they may generate an undesirable drain on the power grid. To accommodate this, CAKs
only consume energy when they are actually invoked and can be operated with accept-
able efficiency. Another interesting peculiarity of the AMI application is that the long
deployment lifetime means that it is infeasible to rely on battery backups over the com-
plete lifetime of a typical meter. We demonstrate that CAKs are able to address this and
a range of other such requirements using an implementation called Cumulative Remote
Attestation of Embedded System Integrity (CRAESI). CRAESI is targeted at a mid-
range Atmel AVR32 flash MCU equipped with a Memory Protection Unit (MPU). Our
prototype is integrated with a practical advanced meter for illustration purposes. Since
the battery backup assumption is unusual we formally verify that the CAK design for
CRAESI is resilient to sudden, unexpected power loss.

Our contributions are as follows: 1) requirements and design for CAKs that are
fault-tolerant and respect the constraints of networked embedded systems based on
flash MCUs, 2) a prototype CAK implementation called CRAESI that satisfies these
requirements, and 3) formal proof that CRAESI has certain security and fault-tolerance



properties. The paper is organized as follows. Section 2 contains additional background
on illustrative security-critical embedded systems. In Section 3, we present the require-
ments for a CAK. Section 4 presents a design that satisfies those requirements. We
present experimental results from CRAESI in Section 5. We formally analyze important
properties of CRAESI in Section 6. Additional related work is discussed in Section 7.
Finally, we conclude in Section 8.

2 Background

Remote Attestation. Remote attestation is the process whereby a remote party can
obtain certified measurements of parts of the state of a system. There are a variety of
protocols that can be used to accomplish this, but they usually involve at least two
messages. The first message is a request from the remote party containing a nonce used
to verify the freshness of the attestation results. The second message is from the system
being attested to the remote party, containing a certified record of the system’s state
that incorporates the nonce provided by the remote party. Of course, the system must
contain some set of components that is capable of securely recording and certifying
the system’s state. On desktop PCs, the TPM and supporting components in the system
software often fulfill this role.

Flash MCUs. Trends in microcontroller technology have recently made our approach
to providing remote attestation practical and useful. In the past, flash MCUs were most
commonly available with 8-bit architectures, small memory sizes, and very limited
memory protection. For example, the popular 8-bit megaAVR line of MCUs by At-
mel contains parts with up to 256KiB of program memory and 8KiB of data memory.
The main memory protection provided by those parts is a boot block in which the in-
structions for modifying the flash memory must reside.

Atmel introduced a line of 32-bit flash MCUs based on the AVR32 architecture
that focus on low power consumption and high code density in April 2007. ST Mi-
croelectronics introduced the STM32 flash MCU line based on the ARM Cortex-M3
architecture with similar capabilities in June 2007. Certain older flash MCUs had large
memories, but they typically did not include fine-grained memory protection hardware.
Thus, the introduction of the AVR32 and similar processors illustrates that conditions
are finally ripe for low-power processors with large memories and memory protection.

Since many applications originally developed to run on 8-bit MCUs do not yet re-
quire the memory protection supported by these new MCU architectures, it can easily
be used to implement protected security functions on the MCU itself. Even if memory
protection is commonly required by future embedded applications they can still be ac-
commodated using virtualization. The ability to implement security on the MCU itself
can eliminate the need for security coprocessors in some applications, particularly those
that do not include hardware attacks in their threat models.

Advanced Metering Infrastructure (AMI). Advanced electric meters are embedded
systems deployed by utilities in homes or businesses to record and transmit information
about electricity extracted from the power distribution network. They arose out of Au-
tomated Meter Reading (AMR). Current plans of many utilities call for AMI with new



applications envisioned based on bidirectional communications such as the ability to
manipulate power consumption at a facility by sending a price signal or direct command
to its meter. AMI networks are being deployed on a massive scale. Southern California
Edison (SCE) recently filed a plan to deploy 5.3 million residential meters [1]. AMI is
a particularly good example of an embedded sensor system and a good benchmark for
study because of its nascent but real deployment and rich set of requirements.

The sophisticated functionality of advanced meters creates numerous attack scenar-
ios and increases the likelihood that they will contain security vulnerabilities linked to
firmware bugs. An outage of the meters in a region would likely entail a huge financial
loss for a utility. The UtiliSec AMI-SEC AMI Task Force System Security Require-
ments call for code-auditing capabilities that can be provided by remote attestation [4].
In a previous work we further motivated the use of attestation to provide AMI security,
but did not address the need for cumulative attestation or provide a design suitable for
use on practical flash MCUs [16].

Other embedded systems also could benefit from CAK-supported intrusion detec-
tion. Modern Intelligent Electronic Devices (IEDs) used in electrical substations to
monitor and control the transmission and distribution of electricity support firmware
upgrades. As an example from another area, some car insurance companies are plac-
ing data loggers within cars in exchange for lower rates [23]. Those devices are prime
targets for all kinds of tampering.

Formal Methods. Formal methods are used to verify correctness and fault-tolerance
properties of the integrated CRAESI design in Section 6. Specifically, model checking is
a methodology for systematically exploring the entire state space of a model and verify-
ing that specific properties hold over that entire space. Maude is the name of a language
as well as a corresponding tool that support model checking based on rewriting logic
models and Linear Temporal Logic (LTL) properties [8]. Essentially, rewriting logic
provides a convenient technique to express non-deterministic finite automata. Maude is
a multi-paradigm language, and supports membership equational logic, rewriting logic,
and even has a built-in object-oriented layer. We use Maude for our verification tasks.

3 Threat Model and Requirements

Threat Model. Data integrity on embedded systems can be compromised by malicious
application firmware in various ways, as shown in Figure 1. A CAK can detect and
report all three types of intrusions, whereas a remote attestation scheme that does not
provide cumulative attestation and is invoked only when data is reported can only detect
corruption caused by firmware running at that time, being vulnerable to Time-Of-Use-
To-Time-Of-Check (TOUTTOC) inconsistencies. Similarly, cumulative attestation can
provide assurance that actuator controls have not been abused in the past.

We assume that an attacker is capable of communicating with a protected system
over a network and installing malicious application firmware. Well-designed systems
include access control mechanisms to prevent unauthorized firmware from being in-
stalled, but we assume that those mechanisms can be overcome by attackers. This is in
accordance with the principle of defense in depth.



“Ordinary” environmental phenomena must not cause any of the security require-
ments of the kernel to be violated. An example is an accidental power failure, unless
the system has a robust, trusted power supply. On the other hand, a bit flip caused by
cosmic radiation would be considered an extraordinary phenomenon in most ground-
based embedded systems. These examples make it clear that the definitions of ordinary
and extraordinary will vary based on a system’s intrinsic characteristics and environ-
ment. In this paper, we only include accidental power failures in our threat model. We
also exclude physical attacks on microcontrollers such as fault analysis, silicon mod-
ifications, and probing [3, 12]. If such attacks are a concern, as they often are, then
tamper-resistance techniques must be incorporated into the device’s packaging.

Fig. 1. Three modes of attack available to malicious ap-
plication firmware running during various lifetime phases
occupied by sensor data.

The security of our de-
sign is dependent upon
the fact that application
firmware runs at a lower
privilege level than the
CAK and is not permit-
ted to access security-
critical memory and pe-
ripherals, to exclude a
wide variety of attacks,
such as Cloaker [9]. The
specific peripherals that
are considered security-
critical will vary between
microcontrollers.

Common operating sys-
tems used on embedded
systems do not fundamen-
tally rely on memory pro-
tection, and their reliance
on privileged peripherals can be accommodated through emulation or simple modifica-
tions, which makes our design suitable for them.

Requirements. The basic security and functional requirements for a CAK are that it
maintain an audit log of application firmware revisions installed on an embedded sys-
tem, and that it make a certified copy of that log available to authorized remote parties
that request it. It must satisfy the following properties to provide security: 1) Compre-
hensiveness: The audit log must represent all application firmware revisions that were
ever active on the system. Application firmware is considered to be active whenever the
processor’s program counter falls somewhere within its active code space. 2) Accuracy:
Whenever application firmware is active, the latest entry in the audit log must corre-
spond to that firmware. The earlier entries must be chronologically ordered according
to the activation of the firmware revisions they represent.

We define the following requirements for a broadly-applicable embedded CAK
based on the characteristics and constraints of many embedded systems. The impor-
tance of each requirement varies between systems. 1) Cost-Effectiveness: Low cost



devices in competitive markets are unable to tolerate even the smallest unjustified ex-
pense. 2) Energy-Efficiency: Some embedded systems are critically constrained by lim-
ited energy supplies, often provided by batteries. Even embedded systems attached to
mains power may be constrained to low energy consumption to reduce energy costs.
3) Suitability for Hardware Protections: The CAK must be adapted to the protection
mechanisms provided by the embedded system’s processor.

4 Design

Fig. 2. A basic state machine representation of CAK op-
eration, in which transitions are generated by the speci-
fied commands.

We now present a general
design that satisfies the re-
quirements. The persistent
memory (NVRAM) con-
ceptually available to the
kernel is divided into sev-
eral regions, and contains
the following data: 1) A list
of cryptographic hashes for
all application firmware re-
visions installed, arranged
chronologically and with
a maximum size dictated
by the capacity of the
NVRAM. If necessary, it in-
cludes a hash value repre-
senting a hash chain for the
oldest application firmware
versions installed that no
longer fit in the NVRAM.
An entry will also contain
an event code if an excep-
tional event has occurred,
such as an aborted upgrade attempt. The specific codes will vary between designs. 2) A
counter to record the number of entries currently represented in the audit log and hash
chain. 3) An asymmetric keypair used to sign the firmware audit log during attestation
operations. 4) An explicit state variable to control transactions. 5) A master keypair,
used to sign the other coprocessor public keys. 6) A keypair used during Diffie-Hellman
key exchanges. 7) Two counters to record the number of signatures generated by each
of the audit log and key exchange private keys. The keys will be automatically refreshed
when these counters reach a threshold value.

The master keypair is generated by the CAK using its built-in Random Number
Generator (RNG) when it is first started and stored in memory, or burned into fuses at
the factory in such a way that no entity, including the manufacturer, can determine its
value. The master keypair is only used to sign the other two public keys, to preserve the
cryptographic useful lifetime of the master keypair.



Since the audit log can overflow, the remote party performing the attestation must
already know the sequence of hashes for those firmware images no longer contained
in the audit log. This is a reasonable assumption if the embedded system is used by a
group of remote parties that can communicate with all parties that have installed new
firmware revisions on the system during the period of time in which the party verifying
the attestation is interested, and if that party also knows the value of the hash chain
immediately prior to that period. In that case, the party verifying the attestation can
request that the updaters provide all the entries represented by the current hash chain
after the checkpoint for which the verifier knows the hash chain value. It can then verify
the current hash chain.

Fig. 3. The general CAK program
memory layout. The birds represent
canary values.

To satisfy the Comprehensiveness and Ac-
curacy properties, it is most likely necessary for
the kernel to control all access to the low-level
firmware modification mechanisms in the sys-
tem for the application firmware memory re-
gion. Figure 2 depicts the state machine that
manages the application firmware upgrade pro-
cess within the CAK. The transition labels not
in parentheses are commands that can be issued
by the application to cause itself to be upgraded.
The explicit state variable records the current
state. The “Waiting for Heartbeat” state causes
the application firmware to be reverted to its pre-
vious revision if no heartbeat command is re-
ceived within a certain period of time. Any un-
expected command received by the CAK will be
ignored.

Three additional commands not shown in
the figure can be executed by an application to:
“quote” the audit log by digitally signing and
transmitting a copy including a nonce for fresh-
ness (Quote), retrieve the public keys signed
using the master private key (Retrieve Public
Keys), and perform a Diffie-Hellman key ex-
change (Handshake). The Handshake command
demonstrates how the asymmetric cryptography
implemented within the kernel can be used to perform operations directly useful to the
application (establish a symmetric key with a remote entity, in this case), to defray the
memory space that the CAK requires. More general access could be provided in future
designs, but would complicate the security analysis of the API.

Transactional semantics must be provided for all the persistent data used by the
kernel. This design accomplishes that by maintaining redundant copies of all persistent
data in a static “filesystem” containing a fixed set of files that are referenced using abso-
lute addresses. Both copies of the filesystem have canary values placed before and after
the file data to support standard fault-tolerance techniques. The application firmware



upgrade process is also fault-tolerant. The basic memory layout of the system, includ-
ing conceptual canary locations, is depicted in Figure 3. Both fault-tolerance processes
are analyzed in Section 6 to ensure that the particular memory manipulations we use
correctly recover from accidental power failures.

Every time the embedded system boots, the processor immediately transfers control
to the CAK. The CAK first initializes the memory protections, performs filesystem
recovery if necessary, and completes the application firmware upgrade transaction if
one was interrupted by a power failure. It then generates a cryptographic hash of the
firmware and compares it to the latest audit log entry. If they differ, it extends the log
with a new entry. Finally, it transfers control to the application.

Whenever a remote entity requests the audit log of application firmware revisions,
the main program receiving the command sends a Quote command to the kernel, which
then returns the audit log of firmware and a signature over it to link the audit log to the
embedded system that generated it.

This design does not provide forward integrity, as an attacker that compromises ei-
ther the master or attestation key can forge logs to indicate arbitrary system histories.
A design providing deletion-detecting forward integrity would prevent attackers from
undetectably modifying or deleting past entries [5]. However, this would require addi-
tional overhead such as a Message Authentication Code (MAC) per entry, additional
entry data, and associated infrastructure. This would reduce the number of entries that
the log could store, and is of questionable utility in some embedded system applications.
In our AMI example, even a recent compromise can result in arbitrary data corruption.
However, it is possible that forward integrity could be useful in certain applications, and
our architecture could easily be modified to provide it.

5 Implementation and Evaluation

In this section we present CRAESI, a prototype integrated CAK. The purpose of this
prototype is to demonstrate that our design satisfies the practical requirements put forth
in Section 4, and to obtain preliminary performance, cost, and power-consumption mea-
surements. However, these preliminary measurements do not indicate the parameters
that will be exhibited by commercial implementations, since our prototype relies heav-
ily on unoptimized software.

Hardware Components. Our prototype implementation comprises five distinct devices.
The first is an Atmel ATSTK600 development kit containing an AVR32 AT32UC3A0512
microcontroller with a 3.3V supply voltage. The second device is a Schweitzer Engi-
neering Laboratories SEL-734 substation electrical meter. The SEL-734 has a conve-
nient RS-232 Modbus data interface. We could have used any similar device in our
experiments since it simply serves as a realistic data source connected to the AVR32
microcontroller. Third, we use a standard desktop PC to communicate with the AVR32
microcontroller over an RS-232 serial port from a Java application that issues Mod-
bus commands. The final two devices are paired ZigBee radios that relay RS-232 data
between the PC and AVR32 microcontroller.

Application Firmware. We prepared two application firmware images for our exper-
iments. They both implement Modbus master and slave interfaces, where the master



communicates with the meter over an RS-232 serial port, and the slave accepts com-
mands from the PC over the ZigBee link and either passes them to the kernel or handles
them directly if they are requesting data from the meter. The first image accurately re-
lays meter data, whereas the second halves all meter readings, as might be the case with
a malicious firmware image installed on an advanced meter by an unethical customer.

Fig. 4. A performance comparison of TPM-assisted
and integrated CRAESI.

Kernel Firmware. The ker-
nel is invoked whenever the pro-
cessor resets, and by the appli-
cation firmware when required.
The AVR32 scall instruction
is used to implement a sim-
ple syscall-style interface be-
tween the application and the
kernel. TinyECC provides soft-
ware implementations of SHA-
1 hashing and Elliptic Curve
Cryptography (ECC) [18]. They
are not significantly optimized
for AVR32. Note that the al-
gorithms and key lengths used
here may not be suitable for pro-
duction use in systems with ex-
tended lifetimes during which
the algorithms may be compro-
mised. However, they are useful
to illustrate the principles of our
system. Pseudo-random num-
bers are generated by Mersenne
Twister [19]. A commercial im-
plementation would require a
true RNG. Excluding the cryp-
tography and the drivers pro-
vided by Atmel, the kernel com-
prises around 1,620 lines of
C++, which includes 13 lines of
inline assembly.

The kernel consumes 81,312
bytes of program memory. We reserved 88KiB of flash memory to store the kernel code,
and another 40KiB to store the persistent data manipulated by the kernel. 10,872 bytes
of SRAM is used to store static data, 392B is dedicated to the heap, and 1KiB is dedi-
cated to the stack. Thus, a total of 12KiB of SRAM is set aside for the kernel. Obviously,
the memory consumed by the kernel is unavailable to the application, which does im-
pose an added cost if it becomes necessary to upgrade to a larger microcontroller than
would have been required without the kernel. In this prototype, the maximum appli-
cation firmware image size is 191.5KiB. However, commercial kernel implementations



will be significantly more compact in both flash and SRAM than our unoptimized proto-
type, and clever swapping schemes could effectively eliminate the SRAM consumption
of the kernel when it is not active. The audit log in this implementation can record up
to 107 upgrades and events before overflowing.

Performance Results. We now compare the energy and time consumed by our firmware-
only prototype (integrated CRAESI) to that consumed by an Atmel AT97SC3203 TPM
performing comparable operations (TPM-assisted CRAESI), since TPMs are currently
popular devices used to implement remote attestation and could in fact be used by
CRAESI to perform its cryptographic functions with some minor modifications to the
design of CRAESI. We have not actually implemented TPM-assisted CRAESI, and
used a TPM installed in a PC instead to perform comparable operations. The TPM has
a supply voltage of 3.3V and relies on an LPC bus connection. We used Digital Multi-
Meters (DMMs) that have limited sampling rates (100-300 ms between samples) to
measure the energy consumption of both systems. This introduces some error into our
calculations, so we have presented an upper-bound on the energy consumed by inte-
grated CRAESI and a lower-bound on the energy consumed by TPM-assisted CRAESI.
The time and energy consumed for a variety of operations is presented in Figure 4.

The TPM uses a 2048-bit RSA key to sign the PCRs, which provides security equiv-
alent to a 224-bit ECC key, superior to the security of the 192-bit ECC keys used in
integrated CRAESI. Due to the use of hardware, the TPM RSA signature generation
mechanism is roughly as energy consumptive as the ECC software implementation in
the integrated design. The Elliptic-Curve Diffie-Hellman key exchange supported by in-
tegrated CRAESI would not be supported by TPM-assisted CRAESI, although it could
potentially be replaced with equivalent functionality.

The most significant efficiency drawback of the TPM is that it consumes 10.6mW
when sitting idle. It may be possible to place the TPM into a deep sleep state to reduce
this constant burden, but that is not done in practice in our test system, and may have
unexamined security consequences.

Practical Implications of Experiments. As stated in Section 2, SCE is planning to
deploy 5.3 million advanced meters in the short term. If AT97SC3203 TPMs were
installed in all of those meters, they would consume 492,136 kWh per year, even if
they sat idle at all times. In contrast, if integrated CRAESI were used instead, no en-
ergy would be consumed by CRAESI until a reset occurred or it was actually used. At
$0.07/kWh, powering 5.3 million TPMs would cost around $34,450 per year.

Of course, the security coprocessors will not sit idle at all times. Let us assume that
attestation is performed once per day per meter. In this case, TPMs would consume
at least 31,651 kWh per year performing the quotation operations in addition to their
idle energy consumption. Integrated CRAESI would consume less than 32,489 kWh
per year performing comparable operations in addition to its negligible idle energy con-
sumption.

6 Correctness and Fault-Tolerance Analysis

We used the Maude model checker to ensure that our design actually satisfies critical as-
pects of the security requirements put forth at the beginning of Section 4 [11]. First, we



converted our design into a rewriting logic model, which represents transitions between
states using rewrite rules. Then, we expressed aspects of the requirements for the design
as theorems, which we converted into LTL formulas that were checked using a model
checker. We discuss the outcome of this process in this section. The model checker did
not discover any errors in the aspects of our implementation that we modeled, and thus
increased our confidence that those aspects of the implementation are correct.

The model comprises several objects within modules that roughly correspond to the
modules of functionality in the implementation. When the model is being used to check
high-level properties, such as the correctness of the application firmware upgrade oper-
ations, the model assumes that any operation invoked on an object runs until completion
without interruption. Without such an assumption, the state space that must be checked
becomes intractable. However, that assumption does not necessarily hold in the real
world, since power failures can occur and cause the processor to reset in the middle of
any operation. Thus, we define rewrite rules that model power failures that can occur at
arbitrary times in separate modules. We then use those modules to check that the system
is fault-tolerant in the presence of power failures in representative scnarios.

A wide variety of theorems could be important, but we have selected the ones that
deal with the parts of our design that have the most complex interactions, since it is
most helpful to gain increased confidence in the correctness of those parts.

The first theorem is concerned with the correctness and auditability of application
firmware upgrade procedures:

Theorem 1. At the conclusion of any operation that modifies the active application
firmware image, the audit log is updated to accurately reflect the new state. Addition-
ally, the previous active application firmware image is cached if an elective upgrade is
performed (not a rollback).

Proof. We must check that all possible upgrade and rollback operations are correct,
and that the firmware audit log is properly updated after each operation. We examine
six distinct cases for upgrade and rollback operations in the following five lemmata.
Taken together, these six cases are representative of all possible upgrade and rollback
operations. In Lemma 6, we show that the firmware audit log is properly updated after
every operation. �

We now discuss lemmata that the preceding theorem depends upon. To limit the
state space, we are concerned with three distinct application firmware images, referred
to as image #0, image #1, and image #2. The images are installed in order, and it is
possible to jump directly from image #0 to image #2, or to halt without performing
any upgrades. Since we are not concerned with the semantics of each image, but rather
its identity, the upgrade transitions between these three images represent all possible
upgrade operations.

Lemma 1 ensures that the initial application firmware on the device is not modified
until a specific command to do so is received from the application.

Lemma 1. If no upgrade operations are performed, then image #0 is active whenever
the application is active.



Lemma 2. If image #1 has been installed, and no other upgrade or rollback operation
has yet been performed, then image #1 is active and image #0 is cached whenever the
application is active.

This specifies that the image #0 is cached when replaced, and image #1 can be
successfully activated at the proper time, and remains unmodified until the application
firmware is upgraded to image #2, or it fails to send a heartbeat and is automatically
rolled back to image #0.

Lemma 3 is similar, but handles transitions to image #2 from either image #0 or
image #1.

Lemma 3. If image #2 has been installed, replacing image #N, and no other upgrade
or rollback operation has yet been performed, then image #2 is active and image #N is
cached whenever the application is active.

Lemma 4. If image #0 is cached at the time that a rollback occurs, then whenever
the application is active after the rollback until another upgrade operation occurs, im-
age #0 is active.

This specifies that the application firmware rollback action always operates as ex-
pected when rolling back to image #0.

Lemma 5 is similar, but handles rollback operations that restore image #1. If a roll-
back restores image #1, then it must be rolling back from an upgrade to image #2, which
means that no further upgrades are possible within our model. Thus, this lemma does
not include an allowance for further upgrade operations, as is the case in the previous
lemma.

Lemma 5. If image #1 is cached at the time that a rollback occurs, then image #1 is
active whenever the application is active after the rollback.

Lemma 6. The current audit log entry corresponds to the active application firmware
whenever the application is active.

This states that the latest entry in the audit log is accurate whenever the application
is running, ensuring that no undetected actions can be performed by the application. It
does not verify the mechanism that is responsible for actually inserting new entries into
the log and archiving old entries when the log overflows. That mechanism is consoli-
dated into a short, isolated segment of code in the implementation that can be manually
verified. The primary value of the model checker is in verifying portions of the imple-
mentation that interact in complex ways with other portions of the implementation and
the environment.

The following theorem is used to ensure the fault-tolerant application firmware up-
grade mechanism operates as expected. We modeled non-deterministic power failures,
and allowed them to occur at any point in the upgrade process. The model checker ex-
haustively searched all combinations of power failures, and verified that the application
firmware upgrade process always eventually succeeds as long as the power failures do
not continually occur forever. Only one upgrade operation is modeled, because all up-
grade operations are handled similarly regardless of identity and content. We tested this



theorem on real hardware by pressing the reset button repeatedly during an upgrade and
verifying that it still eventually succeeded, but of course we were not able to exhaus-
tively test all possible points of interruption as the model checker did.

Theorem 2. Executing any application firmware upgrade operation eventually results
in the expected application firmware images being cached and active when the appli-
cation is subsequently activated, regardless of how many times the processor is reset
during the upgrade process, if the processor does not continually reset forever.

The initial state for the model checking run of Theorem 2 represents the system
running application firmware image #0 after an upgrade to image #1 has been cached
and is about to be committed.

The following theorem is used to verify that the fault-tolerant persistent configura-
tion data storage mechanism used by the kernel exhibits correct behavior. As in the pre-
vious theorem, non-deterministic power failures are modeled at every transition point in
the model. We model only a single store-commit sequence, because all persistent data
is handled identically regardless of identity and content. We tested this theorem on real
hardware by setting breakpoints at critical locations in the filesystem code and forcing
the processor to reset at those locations. Again, the model checker provides exhaustive
testing, which is superior to our manual tests.

Theorem 3. The filesystem correctly handles any transaction, regardless of how many
times the processor is reset during a transaction, as long as the processor does not
continually reset forever.

Proof. We must show that transactional semantics are provided whether or not the trans-
action is interrupted prior to a critical point. The critical point occurs when the proces-
sor executes the instruction that invalidates the first canary in the redundant copy of the
filesystem. Lemma 7 checks transactions that are interrupted prior to the critical point
and Lemma 8 checks all other transactions. �

Lemma 7. Executing any filesystem transaction eventually results in the original filesys-
tem state if the transaction is interrupted prior to the critical point.

Lemma 8. Executing any filesystem transaction results in the filesystem state that is
expected following the successful completion of the transaction if it is first interrupted
after the critical point or is not interrupted at all.

7 Related Work

The Linux Integrity Measurement Architecture (Linux-IMA) supports remote attesta-
tion of Linux platforms. It uses the TPMs that are being deployed in many modern
desktop and laptop computers to record the configurations of those systems and provide
a signed copy of that configuration information to authorized remote challengers [20].
It only maintains information about the configuration of a system since it was last reset.



The reference model provided by the Mobile Phone Working Group within the
Trusted Computing Group deals with both configuration control and integrity measure-
ment for mobile devices [21]. It recommends the use of a Mobile Local-owner Trusted
Module (MLTM) to implement the functions of a TPM, although many of the TPM’s
operations are made optional to accommodate the resource constraints of mobile de-
vices. It also recommends the use of a Mobile Remote-owner Trusted Module (MRTM)
that is based on the design of the MLTM and also controls what code can run in certain
regions of the system based on certificates. Such modules can be implemented in soft-
ware, as has been shown using the ARM TrustZone hardware security extensions [24].

Terra synthesizes virtualization and attestation to provide application isolation and
support for “closed-box” VMs that are observable via remote attestation [13]. We be-
lieve that such an architecture can be extended with cumulative attestation and is useful
on embedded systems, as we have shown.

SWATT is an approach to verify the memory contents of embedded systems [22].
Its basic operating model assumes the existence of an external verifier that knows the
precise type of hardware installed in the embedded system to be verified and that is con-
nected to that system over a low-latency communications link, which is not available in
many embedded system installations. It provides no intrinsic assurances of the contin-
uous proper operation of embedded systems and requires that the system being verified
not be able to offload computation to an external device (proxy attacks). Embedded
systems often operate on networks where this assumption is not valid.

The ReVirt project has shown that it is feasible to maintain information on the ex-
ecution of a fully-featured desktop or server system running within a virtual machine
that is sufficient to replay the exact instruction sequence executed by the system prior
to some failure that must be debugged [10]. DejaView uses a kernel-level approach to
process recording to allow desktop sessions to be searched and restarted at arbitrary
points [15]. It is conceivable that these techniques could support a CAK for desktops
and servers, although it may not be feasible to store cumulative information for a long
enough period of the system’s life to be useful.

Attested Append-only Memory (A2M) maintains a cumulative record of logged ker-
nel events in an isolated component to provide Byzantine-fault-tolerant replicated state
machines [7]. Their architecture proposals are oriented towards server applications, but
the paper provides examples of how attested information besides application firmware
identity can be useful. The Trusted Incrementer project showed that the TCB for A2M
and many other interesting systems can be reduced to a simple set of counters, cryp-
tography, and an attestation-based API implemented in a trusted hardware component
known as a “trinket” [17]. Our design could be adapted to provide similar functionality
in firmware with a potentially different threat model.

One of the primary factors leading to the security issues in hardware security copro-
cessors is the complexity of their APIs [14]. To ease analysis and reduce the incidence
of vulnerabilities our proposed design exports a very simple API. We have analyzed the
security of that design using a model checker.

A previous methodology for explicitly modeling faults that can occur in systems
and verifying that the systems tolerate those faults using a model checker only gives



examples of logical faults, such as dropped messages [6]. We analyze the tolerance of
our system against physical faults, such as power failures.

8 Conclusion

We present requirements for cumulative attestation kernels for embedded systems with
flash MCUs to audit application firmware integrity. Auditing is accomplished by record-
ing an unbroken sequence of application firmware revisions installed on the system in
kernel memory, and providing a signed version of that audit log to the verifier during
attestation operations. We have shown that this model of attestation is suitable for the
applications in which sensor and control systems are used, and proposed a design for
an attestation kernel that can be implemented entirely in firmware.

Our prototype cumulative attestation kernel is cost-effective and energy-efficient for
use on mid-range 32-bit flash MCUs, and can be implemented without special support
from microcontroller manufacturers. We used a model checker to verify that the proto-
type satisfies important correctness and fault-tolerance properties.
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