
Collaborative Recommender Systems for Building Automation

Michael LeMay, Jason J. Haas, and Carl A. Gunter
University of Illinois at Urbana-Champaign

{mdlemay2@cs, jjhaas2@crhc, cgunter@cs}.uiuc.edu

Abstract

Building Automation Systems (BASs) can save build-
ing owners money by reducing energy consumption
while simultaneously preserving occupant comfort.
There are algorithms that optimize this tradeoff, such
as detecting which appliances are turned on without
requiring expensive status detectors to be attached
to each appliance. However, better ways are needed
to determine which algorithms are best-suited to a
particular building. This paper explores the idea of
allowing building managers to automatically com-
municate among themselves and exchange ratings of
individual monitoring and control algorithms in such
a way that each building manager can then obtain
predicted ratings for all algorithms that he has not
yet tried personally. We allow individual algorithms
to be replaced by using a blackboard architecture
to loosen the coupling between them. We propose
a recommender system that operates on a database
of contributed ratings to predict ratings of untried
algorithms. To explore this approach, we developed a
prototype that seamlessly interacts with both emulated
physical buildings and buildings simulated in software
and we implemented several of the control algorithms
described in previous works. We demonstrate a rec-
ommender system that selects between algorithms in
various types of buildings.

1. Introduction
Collaborative recommender systems have been used
to create recommendations that help individuals max-
imize the utility of time and money spent consuming
movies, products, and reading materials. The collabo-
rative features of these systems help them to continu-
ously adapt themselves to changing consumer attitudes
and reason about massive sets of items by integrating
ratings from other individuals with similar interests or
characteristics. Another domain that will potentially

. In: Hawaii International Conference on System Sciences,
Waikoloa, Hawaii, January 2009

require consumers to select among a large number
of items is the one occupied by Building Automation
Systems (BASs), which can be used to conserve energy
and reduce building owners’ energy bills in other ways.
Current buildings commonly implement simple control
schemes, such as using motion detectors to determine
when rooms are occupied and automatically turning
off lights in unoccupied rooms. However, more so-
phisticated control regimes that automatically respond
to changing electricity prices and adjust the settings of
air conditioners and other complex devices to minimize
costs while maintaining adequate comfort levels in the
building are coming into existence.

The increase in overall BAS complexity creates
opportunities to develop algorithms that perform well
in some types of buildings and poorly in others. For
example, a control algorithm that shuts down an air
conditioner when a building is unoccupied may per-
form well in a small home that can be cooled quickly,
yet perform poorly in a large home that has more
significant thermal mass, creating longer cooling times.
Along similar lines, consider a more advanced Heating,
Ventilation, and Air-Conditioning (HVAC) controller
that predicts when a building’s occupants will arrive
and pre-cools the building, rather than waiting for
them to actually arrive and be detected. There may
be a tradeoff between the accuracy and computational
complexity of occupancy prediction heuristics, causing
simpler and cheaper algorithms to be preferred in
buildings with few occupants, since their movements
are less likely to interfere with each other and confuse
a simple heuristic, while more complex algorithms
would be required in buildings with many occupants.

Without a detailed understanding of these subtleties,
the manager of a particular building may have diffi-
culty selecting among control algorithms, and may not
even realize that the algorithms in his BAS are not
performing as well as others that are available. These
complexities can also make it difficult to accurately
evaluate algorithms using simulations, since it can be
difficult to develop a realistic simulation of all aspects
of a building controlled by a sophisticated BAS. This

motivates our system, which does not require sim-
ulations but rather deals with actual buildings. The
deficiencies in BAS management workflow that we
have highlighted are particularly troubling given the
increasing cost of a poorly-configured BAS that wastes
electricity. From 2005 to 2007, the average cost of
energy in the United States rose by approximately
12.3% [1]. For comparison, the CPI inflation in the
United States was 6.17% during the same period [2].

In this paper, we explain how collaborative recom-
mender systems can be used to select among multiple
building control algorithms to optimize the energy-
efficiency and occupant comfort levels of a particular
building. Our primary contribution is a loosely-coupled
architecture for coordinating BAS control algorithms,
sharing ratings of those algorithms among a group
of building managers, and replacing them when the
building manager decides to do so in response to
ratings received from other building managers. Our
secondary contributions include a prototype implemen-
tation and evaluation of a Social Filtering collabora-
tive recommender system for BAS control algorithms,
several specific BAS control algorithms for testing,
and a system that integrates those algorithms using
the recommender to demonstrate how a system based
on our design could help building managers select
appropriate algorithms.

Our BAS control architecture is based on the black-
board architectural pattern, which permits multiple
interchangeable modules to collaborate on finding a
solution to a particular problem [3]. Each module
is capable of processing some events that may be
added to the blackboard by other modules. A central
director is responsible for receiving events that are
placed on the blackboard and assigning those events
to other modules for processing. This loosely-coupled
architecture permits the recommender system to make
recommendations for individual components within the
system.

The recommender system uses a central database
of control algorithm ratings contributed by participat-
ing building managers to provide recommendations as
to which control algorithms should be used. When
the building manager selects a new algorithm to be
used, the system dynamically swaps that algorithm
into the place of the algorithm currently providing the
functionality of the new algorithm without interrupting
the BAS’ operation. The salient feature of the recom-
mender system is that it weights control algorithm rat-
ings from managers of similar buildings more heavily
than other ratings when generating recommendations
for a particular building’s manager. Several aspects of

the building and its environment are modeled in the
system and used as a basis for such weightings.

The rest of this paper is divided as follows. In
Section 2, we discuss related work and provide back-
ground on current trends in building control systems
and recommender systems. In Section 3, we present
a detailed design of our blackboard architecture for
building automation. In Section 4, we describe a
recommender system that can be used to select indi-
vidual control algorithms. In Section 5, we describe
our prototype implementation of this approach. In
Section 6, we evaluate our approach on the basis of
our implementation. Finally, we conclude and describe
future work in Section 7.

2. Related Work and Background
The Neural Network House (NNH) used artificial neu-
ral networks to automatically adapt various aspects of a
house to the desires of its occupants, while also helping
to minimize energy consumption [4]. The primary
motivation for its development was the observation
that residential occupants are unwilling to program
home automation devices, even those that are relatively
simple, such as VCRs. Thus, the house is capable of
training itself. After the system is initialized, it sets
all adjustable components in the house to their lowest
energy states, forcing the occupant to manually adjust
those components to more comfortable settings. The
neural network accepts these adjustments as input and
subsequently automatically implements those settings
when it detects the occupant. After some time, the
neural network gradually adjusts each setting back
towards a more conservative level, always pushing to-
wards an energy-conserving equilibrium. The occupant
is allowed to resist this trend when the neural network
interferes with comfort or convenience.

The MavHome project is more wide-ranging than
NNH in its application of technologies from artifi-
cial intelligence, machine learning, databases, mobile
computing, robotics, and multimedia in creating an
entire smart home that acts as an intelligent agent [5].
It uses an occupant activity prediction scheme based
on Lempel-Ziv (LZ) and Prediction by Partial Match
(PPM) compression methods. This scheme is an ef-
ficient implementation of a Markov predictor. In our
prototype, we include an LZ-based Markov predictor
inspired by the description of MavHome, but it lacks
the optimizations described in that paper.

As far as we know, recommender systems have
not been previously used to select among possible
algorithms for controlling smart homes. In fact, we
were unable to find any works that use recommender

systems to select among various algorithms at all.
However, recommender systems are widely-used in
other domains [6]. The purpose of a recommender
system is to predict how a particular user will rate
some item based upon characteristics of the item as
compared to other items, ratings from other users,
and/or ratings from the same user of other items.
Recommender systems are typically classified into
three categories. 1) Content-based recommendations:
Users are recommended items similar to those that
they have consumed in the past. 2) Collaborative
recommendations: Users are recommended items that
people with similar characteristics rated highly. 3)
Hybrid approaches: Hybrid recommenders combine
content-based and collaborative methods. Because it
can be very difficult to characterize the content of al-
gorithms in a general manner, we rely on collaborative
recommendations in our system.

An important component of our prototype is a Non-
Intrusive Load Monitoring (NILM) algorithm that can
analyze the energy consumption of a segment of a
building and determine what appliances are in use.
Several NILM algorithms have been developed, and
we implement two of them in our prototype. The
seminal work on NILM was performed by G.W. Hart
and classifies loads into three categories based on
their power consumption profiles [7]. The categories
are: 1) ON/OFF: the appliance has only two states,
meaning that it can be turned on or off; 2) Finite
State Machine (FSM): the appliance has more than
two discrete states, such as a fan with three speed
settings; 3) Continuously Variable: the appliance has
a large or practically infinite number of states, such
as a lamp on a dimmer control. This work also
presented a clustering-based algorithm for detecting
transitions between discrete appliance states based on
predetermined profiles of those states. We implemented
that algorithm in our prototype, along with a simple
brute-force algorithm that performs a constrained 0-
1 Knapsack search of all possible appliance state
combinations. Many other NILM algorithms have been
developed, but they typically require electric meters
with high sampling rates that are too expensive for
use in residential applications.

Once control decisions have actually been made,
they must then be implemented in the BAS. One
approach for doing so is embodied in the Meter
Gateway Architecture (MGA) [8]. It explicitly provides
a pathway for incrementally deploying intelligence
throughout a home or building with multiple loci of
control that interact with each other in a complemen-
tary fashion. This is beneficial because some devices

Figure 1. Blackboard architectural pattern used
to coordinate the interactions between modules in
the system.

are so inexpensive that it is infeasible to integrate
control functionality into them, while others are more
advanced and must use specialized control algorithms
to attain optimal performance.

3. Blackboard BAS Architecture
The blackboard architectural pattern that was devel-
oped by the artificial intelligence community [3] can
be used to loosen the coupling between control al-
gorithms. An overview of a possible architecture is
depicted in Figure 1. The blackboard is a software
object that hosts several cooperating modules and co-
ordinates communication between them. All modules
have the objective of solving some “problem” that
is posted on the blackboard, and they accomplish
that by taking information from the blackboard and
putting other information back onto the blackboard.
We refer to these pieces of information as “messages,”
since they are treated somewhat similarly to unicast or
multicast network messages with blackboard modules
playing similar roles as network hosts. Ultimately, one
of the modules places a solution to the problem on
the blackboard. One of the primary advantages of that
pattern is the loose coupling it provides between mod-
ules. None of the modules communicate directly with
each other; all of the communication occurs through
the blackboard. This provides a simple abstraction of
computation that permits independent development of
modules and also makes it possible for the blackboard
to “hot-swap” modules without interrupting the com-
putation of a solution.

Our system makes use of several types of modules
to implement intelligent building control, as shown in
Figure 1. We describe each of these modules below.

Sensor driver modules are responsible for monitor-
ing the physical environment and perhaps some vir-
tual environment based on state information obtained
from the network or some other source. Sensors also
generate messages in response to notable events in
those environments. For example, an electric meter
interface module is a software sensor that generates
a message when it receives a new usage indication
from the physical sensor it is monitoring. The software
and hardware interfaces connecting software sensors
to underlying physical sensors are undefined and may
involve communication over USB or serial ports, PCI
busses, IP networks, etc.

Actuator driver modules receive messages that are
intended to change the state of some appliance and
must manipulate a physical or virtual environment
accordingly. For example, some module may generate
a setpoint to turn a specific lamp on, and if an actuator
module that is capable of implementing that setpoint
is registered with the blackboard, it must do so and
inform the blackboard that the setpoint has been imple-
mented. Again, the hardware and software interfaces
that are used to perform this process are left undefined.
If no actuator exists to handle some particular setpoint,
the blackboard must instruct the building manager to
manually implement the setpoint.

Energy modelers receive sensor messages from any
electric meters registered with the blackboard and
generates building-wide views of energy consumption.
Energy modelers also make an up-to-date instance of
this map available on the blackboard on a periodic
basis. Essentially, the energy modeler serves to aggre-
gate and synchronize electric meter readings that are
concerned with some particular Current Transformer
(CT) of a building and that may arrive asynchronously.

Appliance usage detectors may translate sensor
readings into indications that some appliance is in
use and/or may analyze energy usage maps to infer
the state of an appliance using NILM algorithms.
Many BASs include interfaces to either directly query
appliances to determine their states (on or off, dimmer
level, thermostat setpoint, etc.) or have remote controls
that can receive commands used to adjust appliance
state, and thus, infer the state of the appliance. Sensor
readings from any such BAS can be translated into
appliance usage indications. Periodically, the appliance
usage detector produces an appliance usage map that
aggregates all these indications and information ob-
tained from power analysis for use by other modules.

Appliance usage predictors analyze maps generated
by appliance usage detectors and generate predictions
from that information, since some modules use predic-
tions of what appliances will be used in the future to
make decisions. For example, a kitchen light controller
may be interested in predictions regarding when a
kitchen appliance, such as a coffee maker, will be
turned on, so that it can preemptively activate the
kitchen light and thus improve occupant safety or
comfort.

Occupancy detectors translate sensor readings into
occupancy indications and may analyze energy usage
maps to infer occupant locations. Many modules use
occupancy data for locations in the controlled building
to make decisions. Currently, we only consider confi-
dence levels that some location is occupied and make
no distinction between various identifiable occupants
within the building or the activities they are currently
performing. Sensor inputs from motion detectors may
be directly translated into occupancy indications. Alter-
nately, the use of an appliance in a particular location
may imply that the location is occupied. Occupancy
detectors periodically make occupancy maps available
to the blackboard.

Occupancy predictors are similar to appliance usage
predictors, but predict the future occupancy status of
locations instead of the future appliance usage.

Setpoint generators consider the maps produced by
appliance usage and occupancy detectors and predic-
tors, and possibly also the energy modeler directly.
The setpoint generators use those inputs to generate
updated setpoints for appliances recognized by the sys-
tem. For example, if the occupancy detector indicates
that a particular room is newly occupied at 9:32PM,
and an internal model maintained by the setpoint gen-
erator indicates that occupants lower the temperature
setpoint of an air conditioner installed in the room
whenever they enter it between the hours of 8:00PM
and 4:00AM, the setpoint generator may generate a
setpoint to automatically perform that action. To help
evaluate possible setpoints, setpoint generators can use
the following three modules.

Energy usage predictors transform an appliance
usage map into a prediction of how much energy will
be consumed by those appliances when they occupy
the states given in the map.

Energy cost predictors transform energy usage maps
into corresponding predictions of how much it will cost
to consume that energy at a particular time. These
modules can implement complex power cost models
to accommodate real-time electric pricing, subsidy
thresholds, and other factors.

Discomfort predictors can model tradeoffs between
occupant comfort and convenience versus energy costs
associated with various setpoints and thus predict the
future comfort of occupants given specific setpoints.

The blackboard internally implements an implicit
publish-subscribe model for managing communica-
tions. It recognizes a set of well-defined relationships
between modules, as described in the previous para-
graphs, and forwards messages accordingly.

4. Recommender System
The system recommends specific modules that can
be installed in the blackboard. Any of the categories
described above may contain many different modules
that can be more or less useful in a given system instan-
tiation. In Section 2, we described several types of ap-
pliance usage and occupancy prediction algorithms and
different appliance detection algorithms. We described
the tradeoffs between those algorithms that make them
more or less suitable for various circumstances. The
recommender system should help building managers
explore those tradeoffs and ultimately select modules
that satisfy their requirements.

Recommender systems themselves support many
types of algorithms, so it was necessary for us to
consider the requirements of this application and de-
sign an appropriate recommender system. It is unlikely
that content-based recommenders will be suitable for
selecting among building control algorithms, since it
is difficult to characterize algorithms. It is not possible
to completely dismiss this possibility, since it may
be useful to coarsely classify algorithms according to
their objectives (maximum energy savings, balanced
approach, maximum comfort, etc.), but we believe
that there are more useful ways of representing and
evaluating tradeoffs than through static categories, as
we will explain below.

Different types of BAS control modules and al-
gorithms must be rated on different aspects of their
performance. Appliance usage and occupancy detector
and predictor algorithms must be rated according to
their accuracy, while setpoint generator algorithms
must be rated according to the comfort and energy
cost savings that they provide. Other aspects may be
interesting to building managers and can be discov-
ered using surveys or other human polling techniques.
Sensors and actuators are ordinarily simple software
modules, similar in function to Operating System (OS)
device drivers. However, even in the OS device driver
domain, some devices do have multiple drivers that
provide distinguishing features. It is thus conceivable
that some of those modules could also be rated, but

unlikely. Energy modelers are very simple, so it should
not be necessary to rate them, since it is inconceivable
that any value-added functionality could be integrated
into them.

Several types of content-independent recommender
algorithms, also known as prediction techniques, can
be used to aggregate ratings of algorithms from mul-
tiple users and use those ratings to predict the rating
a new user would provide for a particular algorithm.
One of their drawbacks is that many users may not be
motivated to submit ratings to the system, since they
do not directly benefit from spending their time in that
way. Some successful recommender systems, such as
that used by Amazon, can infer a user’s rating of items
based on other actions that are directly useful to the
user, such as purchasing particular items. Such tech-
niques may be applicable here, using inferences from
building sensors. Regardless, we considered four pos-
sible algorithms during our design process: 1) Already
Known: returns whatever rating the building man-
ager has already provided for the algorithm; 2) User
Average: returns the average of all ratings provided
by the building manager for all algorithms; 3) TopN
Deviation: returns the average of all normalized ratings
of the algorithm provided by other users, normalized
for the current building manager; 4) Social Filtering:
returns the weighted average of all normalized ratings
of the algorithm provided by other users, normalized
for the current building manager, where the similarity
between each user and the current building manager is
used to determine the weights.

The Already Known algorithm is trivial and ob-
viously useful, so we use it whenever the building
manager has already rated an algorithm.

The User Average algorithm is only useful for
determining how satisfied the building manager is with
algorithms he has tried in the past and predicts that he
will be equally satisfied with all untried algorithms.
This prediction technique can help a user to allocate
his resources between different types of content. For
example, if a user is consistently more satisfied with
magazines than TV shows, and they are rated using
independent recommender systems, the User Average
algorithm when applied in each of those recommender
systems will predict that the user will be more satisfied
by continuing to read magazines rather than watching
TV. However, we assume the building manager has
already committed to using an automated BAS and
is unwilling to abandon it even if he is generally
dissatisfied with all algorithms tried in the past, since
there is no good substitute for the BAS. Thus, we do
not consider the User Average algorithm further.

The TopN Deviation prediction technique provides
different predictions for distinct control algorithms but
assigns an equal weighting to all users. This is an in-
valid assumption in our assumed deployment scenario,
since we envision managers of multiple building types
using the same recommender system to select control
algorithms for different types of buildings. Managers
of residential and commercial buildings may share
control algorithm ratings with each other, but their
buildings may have vastly different characteristics.
Thus, the TopN Deviation algorithm is only suitable for
deployments in which a single recommender system
only serves managers of very similar buildings.

Social Filtering overcomes this limitation by as-
signing different weights to the ratings of different
users according to their similarity to the building man-
ager in question. In reality, control algorithms affect
buildings themselves, so Social Filtering must weight
users according to how similar their buildings are to
the building managed by the manager seeking recom-
mendations. The correlation between two buildings is
calculated as follows:

Sa,b =
|Ca ∩ Cb|

|Ca|
where Ci is the set of characteristics associated with
building i. Intuitively, the correlation represents the
number of characteristics that are shared by buildings
a and b, divided by the total number of characteristics
associated with a. All buildings have a fixed set of
characteristics, described below, so this is also the
number of characteristics associated with building b.

The ratings of other building managers and the
correlations between their buildings are used to create
control algorithm predictions, as follows:

Pa,y = µa + σa

∑ n
i=1

[(
Ri,y−µi

σi

)
Sa,i

]
∑ n

i=1 Sa,i

where µi and σi are the mean and standard deviation,
respectively, of all ratings provided by building man-
ager i, and Ri,y is the rating of control algorithm y
provided by i. If a particular building manager has
provided less than two ratings, his rating mean and
standard deviation are set to the averages of all other
building managers, to permit meaningful predictions to
be made immediately to managers who are new to the
system.

To optimize the predictions produced by Social
Filtering, we suggest at least comparing the following
characteristics of a building: 1) Usage: whether the
building is residential, commercial, agricultural, etc.;

2) Climate: whether the building is located in a hot,
cold, or temperate zone, how much precipitation is
expected on a yearly basis, etc.; 3) Average Number
of Occupants: how many people can be expected to
simultaneously occupy the building on average; 4)
Number of Rooms: number of distinct locations being
controlled; 5) Number of Energy Sources: granularity
of energy sources in the building, typically correspond-
ing to the number of circuit breakers installed and indi-
vidually metered; 6) Number of Appliances: granularity
of device control available to the system. Some of these
characteristics are correlated (e.g. number of occupants
and number of rooms), but only loosely so.

Recommender systems rely on ratings from users
to make recommendations to other users. There are
several possible ways to generate these ratings. They
can be provided manually by users, or they can be
automatically generated if the broader system has a
mechanism for automatically evaluating the perfor-
mance of an algorithm. For buildings that have been in
operation for a long time and that have monitored their
power consumption and occupant comfort levels, it
may be possible to compare the environmental effects
of a new control algorithm against those records. For
other buildings, it may be necessary to rely on manual
ratings by the building manager.

5. Implementation
In this section, we discuss details of our prototype
implementation of our architecture.

We implemented a complete prototype of the system
described as in the previous section that is capable of
either monitoring and controlling a physical prototype
of a building using X10 home automation devices
and an EnerSure electrical submeter, or alternatively
monitoring and controlling a simulated building. The
experimental equipment used in the physical prototype
is expensive and requires a large amount of space to
install, so it was necessary for us to construct simulated
buildings to avoid those expenses while still being able
to construct a complete prototype system comprising
multiple buildings.

We now describe the prototype software that we con-
structed. The basic recommender system is provided by
the Duine toolkit [9], which is a Java package that au-
tomatically manages a recommender system database
and contains several pre-implemented recommender
prediction techniques, including the Already Known
and Social Filtering techniques that we highlighted in
Section 4. The blackboard architecture was specially
constructed for this project, as were all of the black-
board modules. We constructed a graphical interface to

our system using a framework that had been previously
developed for the MGA project [8]. The framework
was extended to include all of the software infrastruc-
ture necessary to interact with the hardware we used
to monitor and control the emulated building in our
experiments and the several simulated buildings we
constructed. The graphical interface allows the building
manager to monitor and configure any critical aspect
of the system and its interfaces.

We implemented several control algorithms for our
experiments, which we now describe. Two of these
are appliance usage detectors. The first, called the
“Knapsack Appliance Detector,” attempts to solve a
constrained 0-1 Knapsack optimization problem to
“pack” appliance states into the energy consumption
measurements observed on all energy sources, where
an energy source typically represents an individual cir-
cuit breaker or some other independently-submetered
segment of the electrical infrastructure in the building.
The algorithm does a brute-force search of all possi-
ble appliance state combinations, predicts how much
energy will be consumed by the appliances on each
energy source, and then selects the configuration that
most closely approximates the actual energy consump-
tion observed on the energy sources.

The second appliance usage detector was based on
the idea of clustering [7], and is referred to as the
“Clustering Appliance Detector.” The recent change
in current consumption on each segment is compared
with the reference data on the possible states of each
appliance on that segment, which were measured prior
to the experiments. Changes that are close to the
current consumption of a particular appliance state may
indicate that the state was either entered or exited, as
appropriate. The reference data we collected consists
of the center of a cluster, that is the real current for
the states of each appliance.

We implemented three setpoint generators with very
different approaches to system control. The first is a
simple algorithm that sets all appliances in all currently
occupied locations to their highest-powered states. It
can also be configured to use occupancy predictions to
turn on appliances in locations predicted to be occupied
in the near future. This algorithm is only useful in
buildings that have automatic controls installed only
on simple appliances, such as overhead lights.

The second setpoint generator attempts to maximize
occupant comfort while staying within an energy cost
bound. It does this by setting all appliances in unoccu-
pied locations to their lowest-power states and testing
all combinations of appliance settings in occupied
locations, selecting the combination that provides the

greatest occupant comfort while remaining within a
building manager-defined energy cost bound. Comfort
contributions for each appliance state were specified
prior to the experiments.

Finally, the most sophisticated setpoint generator
uses a neural network to react to changing user re-
quirements and activities by adapting and learning. The
neural network consists of two layers and is based on
inputs of time of day, day of week and room occu-
pancy. We chose a two-layer neural network because
a single layer perceptron network would not allow
sufficient expressiveness for envisioned user activity
schedules. The network learns when a user provides
feedback to the system. If the feedback is positive, the
current conditions are provided to the network as a
set of training data. If the feedback is negative, the
current conditions are complemented and provided to
the network as a set of training data.

We implemented two types of sensor modules. The
first type attaches to X10 input interfaces or other
boolean input interfaces and generates occupancy indi-
cations when the appropriate input signal is received.
X10 input signals can be generated by IR motion de-
tectors, or manual remote controls. The second type of
sensor attaches to an EnerSure submeter and produces
energy consumption indications whenever the subme-
ter provides a reading. The submeter is a Modbus
device that is capable of simultaneously monitoring
the real current consumed by up to 21 devices, and
providing current measurements from those devices
once every 0.1-3 seconds, depending on how many
are enabled. We implemented one type of actuator
capable of activating or de-activating power flow to
X10-controlled devices.

Our energy modeler module simply aggregates en-
ergy usage indications provided by energy sensors
into a snapshot of the building’s current energy con-
sumption. Likewise, the energy usage predictor in
our prototype simply uses the data in the building
specification file to transform an appliance usage map
into an energy usage map in a straightforward fashion.
The same principle is used to implement our simple
discomfort predictor, since we have a trivial additive
user comfort model.

Our energy cost predictor implements a simple real-
time pricing scheme that alters the cost of electricity
once every fifteen minutes. In reality, real-time prices
would probably be downloaded from a website once
per day or perhaps even more frequently, but for our
experiments it suffices to statically encode a set of
prices that is never updated.

The occupancy detector module not only aggregates

occupancy indications from motion detector sensors
but also analyzes the current appliance usage map
and adjusts its confidence level depending on whether
that location is occupied, which it determines based
on the number of appliances that are turned on in
that location. An appliance is considered to be turned
on if it is not in its default state. The occupancy
detector divides the number of activated appliances
by the total number of appliances in the location, and
uses that value as its confidence level that the location
is occupied. However, if an occupancy indication for
the location has recently been received, a confidence
level of 1 is used, indicating near-total certainty that
the location is occupied. Indications expire after a
manager-defined period, which is 10 minutes in our
prototype.

We implemented occupancy and appliance usage
predictors based on the LZ compression scheme to
allow us to efficiently encode sequences of actions.

All these modules can be instantiated by the black-
board director, and the setpoint generators and appli-
ance detectors can be rated and explicitly selected by
building managers. The other modules are fixed in
our initial prototype but could be integrated into the
recommender system in future versions.

6. Experimental Evaluation
The goal of our experiments is to demonstrate the
effectiveness of our recommender system in generating
useful recommendations and also to evaluate the ef-
fectiveness of the modules that we have implemented,
although they are not our main contribution and thus
are not expected to perform as well as carefully-
optimized implementations with similar functionality.

To evaluate the effectiveness of our recommender
system, we have defined six distinct buildings that
will share ratings among themselves. Three are small
apartments with similar characteristics but different
sets of appliances, two are small retail stores with iden-
tical appliances and layouts, and one is an industrial
building. The first apartment is physically emulated in
our experiments and contains a laptop computer, LCD
monitor, and incandescent lamp in the bedroom, a fan
and air purifier in the kitchen, and a fluorescent lamp
in the bathroom. All of these devices can be switched
on and off using X10 controllers. Each room is also
equipped with an IR motion detector. This testbed is
depicted in Figure 2. The metadata for the remaining
buildings simply serves as input to the recommender
system.

Our first experiment demonstrates the ability of the
recommender to make useful predictions. Besides man-

Figure 2. Experimental apparatus used to physi-
cally emulate Apartment #1 for evaluation.

agers of the third apartment and second retail store, we
cause all other building managers to provide ratings for
all algorithms, as shown in the top portion of Table 1.
One important feature of the recommender system is
its ability to compensate for different styles of rating
allocation, so we cause the managers of retail store #1
and the industrial building to submit relatively higher
ratings, in general, as compared to the two apartment
managers to test this functionality. After submitting the
ratings in the top portion of the table, we requested
predictions for each of the algorithms on behalf of the
manager of apartment #3 and then on behalf of the
retail store #2 manager. Those ratings are listed in the
last rows of the table. The numbers in parentheses are
the ratings after being normalized to compensate for
each manager’s style of rating allocation. It is clear that
the recommender system does use the characteristics
of buildings when generating personalized recommen-
dations, since the predictions provided to the manager
of retail store #2 are more heavily influenced by the
ratings provided by the manager of retail store #1 than
the other ratings, whereas the ratings provided to the
manager of apartment #3 are more heavily influenced
by the ratings provided by the managers of the two
other apartments than the other ratings.

Our second experiment evaluates the effectiveness
of our knapsack appliance detection module. We mon-
itored each of the virtual locations in Apartment #1
with a distinct CT. Then, we exhaustively created every
possible combination of appliance states in our phys-
ical testbed, maintaining each combination for around
15 seconds, and recorded the appliances detected at
each time step. Appliance detection was performed
approximately twice per second, and the energy con-

Table 1. Control algorithm ratings for experiment #1. Ratings range from -1 to 1, and ratings in
parentheses are unitless, normalized versions of the ratings to their immediate left.

Appliance Detectors Setpoint Generators
Building 0-1 Knapsack Clustering Neural Network Bounded Knapsack All-In-Occupied
Apartment #1 0.80 (1.10) -0.20 (-1.05) -0.10 (-0.84) 0.90 (1.31) 0.05 (-0.52)
Apartment #2 0.75 (1.25) -0.30 (-1.14) -0.15 (-0.80) 0.70 (1.14) 0.00 (-0.46)
Retail Store #1 0.00 (0.54) 1.00 (1.06) 0.20 (-1.01) 0.90 (0.80) 0.05 (-1.39)
Industrial Building 0.80 (0.80) 0.80 (0.80) 0.25 (-0.89) 0.80 (0.80) 0.05 (-1.51)
Apartment #3 0.82 (1.03) 0.18 (-0.55) 0.06 (-0.85) 0.86 (1.12) 0.10 (-0.75)
Retail Store #2 0.70 (0.75) 0.56 (0.39) 0.02 (-0.94) 0.78 (0.94) -0.05 (-1.14)

Figure 3. Evaluation data for knapsack-based appliance detector on Apartment #1, with three distinct CTs.

sumption map used by the detection algorithm was
updated approximately three times per second. The
actual appliance states are displayed along with the
detected states and the actual energy consumption on
a timeline in Figure 3.

In the absence of reactive current consumption data,
our algorithm had significant difficulty distinguishing
between appliances that consumed a relatively small
amount of energy. In fact, it even failed to detect the air
purifier for a significant portion of its runtime, despite
it being the second most-consumptive device, after the
fan. The statistics for each appliance are provided in

Table 2. The unpredictability of the laptop’s power
consumption also complicated appliance detection in
the bedroom of the emulated apartment. This experi-
ment illustrates that it is possible to determine informa-
tion about what appliances are in use in a building by
simply metering and analyzing their aggregate energy
consumption. However, they also confirm that simply
analyzing appliances’ real power consumption can lead
to ambiguity in the detection results.

Table 2. Statistics for appliance detection
experiments: False Negative (FN) and False

Positive (FP) rates, as a percentage of total time.

Single CT Three CTs
Appliance FN FP FN FP
Incandescent Lamp 22.9 16.8 19.3 14.9
LCD Monitor 21.8 23.0 27.1 1.9
Laptop Computer 24.0 6.3 4.5 24.6
Fluorescent Lamp 6.9 7.7 0.0 1.0
Air Purifier 16.7 6.5 0.2 1.0
Fan 0.9 18.8 0.2 0.0

7. Conclusion and Future Work
We have presented an architecture to help building
managers select building control algorithms by using
a collaborative recommender system that weights rat-
ings from managers of similar buildings more heavily
than ratings from other managers. This should permit
building managers to easily select control algorithms
that provide greater energy-efficiency and occupant
comfort than generic control algorithms designed to
operate in a wide variety of buildings. We developed a
prototype system in Java that is capable of controlling
an emulated physical building or a simulated building
in software, and demonstrated that the recommender
system does in fact provide recommendations that are
tailored to the type of building being managed. In the
future we would like to perform an evaluation of our
system installed in several actual homes, including at
least one that is unaffiliated with our research group,
so that we can obtain actual user feedback.

Acknowledgements
This work was supported in part by NSF CNS 07-
16626, NSF CNS 07-16421, NSF CNS 05-24695,
ONR N00014-08-1-0248, NSF CNS 05-24516, DHS
2006-CS-001-000001, and grants from the MacAruthur
Foundation and Boeing Corporation. Michael LeMay
was supported on an NDSEG fellowship from the
AFOSR. The views expressed are those of the authors
only.

References
[1] United States Department of Energy, “Average retail

prices of electricity,” http://www.eia.doe.gov/emeu/mer/
pdf/pages/sec9 14.pdf, April 2008.

[2] United States Treasury - Bureau of Labor Statistics, “CPI
inflation calculator,” http://data.bls.gov/cgi-bin/cpicalc.
pl, April 2008.

[3] B. Hayes-Roth, “A blackboard architecture for control,”
Artificial Intelligence, vol. 26, no. 3, pp. 251–321, 1985.

[4] M. Mozer, “The neural network house: An environment
that adapts to its inhabitants,” in Proceedings of the
American Association for Artificial Intelligence Spring
Symposium on Intelligent Environments, 1998, pp. 110–
114.

[5] D. Cook, M. Youngblood, E. Heierman III, K. Gopal-
ratnam, S. Rao, A. Litvin, and F. Khawaja, “MavHome:
an agent-based smart home,” in Proceedings of the First
IEEE International Conference on Pervasive Computing
and Communications (PerCom 0́3), 2003, pp. 521–524.

[6] G. Adomavicius and A. Tuzhilin, “Toward the next gen-
eration of recommender systems: a survey of the state-
of-the-art and possible extensions,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 6, pp.
734–749, 2005.

[7] G. Hart, “Nonintrusive appliance load monitoring,” Pro-
ceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891,
Dec 1992.

[8] M. LeMay, R. Nelli, G. Gross, and C. A. Gunter.,
“An integrated architecture for demand response com-
munications and control,” in IEEE Hawaii International
Conference On System Sciences (HICSS ’08), Waikola,
Hawaii, January 2008.

[9] M. Setten, J. Reitsma, and P. Ebben, “Duine Toolkit–
user manual,” http://www.telin.nl/ index.cfm?type=
doc&handle=62057&language=en, 2003.

http://www.eia.doe.gov/emeu/mer/pdf/pages/sec9_14.pdf
http://www.eia.doe.gov/emeu/mer/pdf/pages/sec9_14.pdf
http://data.bls.gov/cgi-bin/cpicalc.pl
http://data.bls.gov/cgi-bin/cpicalc.pl
http://www.telin.nl/index.cfm?type=doc&handle=62057&language=en
http://www.telin.nl/index.cfm?type=doc&handle=62057&language=en

	1 Introduction
	2 Related Work and Background
	3 Blackboard BAS Architecture
	4 Recommender System
	5 Implementation
	6 Experimental Evaluation
	7 Conclusion and Future Work
	References

