Defeasible Security Policy Composition for Web Services’

Adam J. Lee, Jodie P. Boyer, Lars E. Olson, and Carl A. Glinter
Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract meanings for these priorities. This problem is related to
the concept of “common sense” reasoning, in that an ana-
The ability to automatically compose security policielyst needs to assert policies with a limited degree of com-
created by multiple organizations is fundamental to thgitment, just as a party may need to make a judgment of
development of scalable security systems. The diversifi¢ts tentatively until greater information reveals fault
of policies leads to conflicts and the need to resolve prior-One area in which the need for policy composition in
ities between rules. In this paper we explore the concegfige-scale systems is emerging involves the specifica-
of defeasible policy compositipwherein policies are rep-tion of security policies foweb services As a result of
resented in defeasible logic and composition is basedtpa efforts of standards bodies such as OASIS and the
rules for non-monotonic inference. This enables poligyorld Wide Web Consortium (W3C), SOAP-based web
writers to assert rules tentatively; when policies are corervices [37] are becoming more prevalent on the Inter-
posed the policy with the firmest position takes precget. Web services are being explored and deployed in a
dence. In addition, the structure of our policies allows f@fide range of areas, including business-to-business pur-
composition to occur using a single operator; this allowasing, web mining [17, 2], grid computing [15], and
for entirely automated composition. We argue that thisectronic mail messaging [25]. To address security con-
provides a practical system that can be understood by t¥prns, OASIS and the W3C have released standards and
ical policy writers, analyzed rigorously by theoreticiangpecifications regarding many aspects of web services se-
and efficiently automated by computers. We aim to pajurity, including confidentiality [32], integrity [13], fier-
tially validate these claims here with a formulation of dextion [23], and the establishment of security policies [30]
feasible policy composition for web services, an emergingThe WS-SecurityPolicy specification [30] was devel-
foundation for B2B commerce on the World Wide Web. oped to allow providers of web services to specify the
security requirements for the services that they deploy.
1 Introduction For instance, a service provider may require that a request
contain a particular type of cryptographic token to be used

Large-scale security svstems tvpically entail coo emtifor authentication purposes, or that a certain part of the re
9 -urity systems typicaty PErlif, \est be encrypted using a particular algorithm. While the
between domains with differing policies. Developin

ractical. sound. and automated wavs to compose poli S-SecurityPolicy specification allows service providers
practical, sound, a u red way P POIGKS freedom to specify such policies, policies defined ac-
to bridge these differences is a long-standing problem

cording to this specification lack the semantics necessary

One of the key subtleties is the need to deal with INCORL: automated composition. Due to rising interest in the

sistencies and defaults where one organization PrOPORER ation of dynamic federations and the deployment of

a rule on a particular feature and another has_a d'ﬁen\ez\?éb services that must satisfy the security policies of mul-

rule or expresses no rule. A general approach is to ass}
o : o

priorities to rules and observe the rules with the high

I ) g . is a matter of increasing importance.
priorities when there are conflicts. However, policies wit o : o .

- - . Three principal requirements arise in addressing the
priorities may be difficult to write and understand. For

: . o : need to compose web service security policies. First, the
instance, if a priority is represented as a numerical val

between 1 and 10, when should a policy designer usg?é)roach must be simple and intuitive to policy design-

o LA ) . Second, the approach should have a formal founda-
2

\?vrr']c;rr'%g;; ravtvri]tir ;ha;rtgér Z?e;rﬁz(::g(lycnum:j r?; gtsarclffvﬁon that allows careful reasoning about the correctness

9 P 9 ollaalgorithms and consequences of composition in bound-

*In Formal Methods in Software Engineering (FMSE '06), Alexa ary cases that could be exploited by attackers. Third, en-

le members of these federations, addressing this prob-

dfif? VA, November 2006. ACM. forcement should be efficiently implementable on existing
@uE?:gj‘ddresses{'adam'ee'Jpboyer"ec"sonl*cg“”ter } programming platforms and consistent with the existing



or proposed standards. These requirements will generallyich the policy composition problem emerges. Sec-
hold in other applications as well. tion 3 presents an abstract model that can be used to rea-
In this paper, we introducdefeasible policy compo-son about the composition of WS-SecurityPolicies. We
sition. In this system, policy writers construct metadescribe an instantiation of this model based on defea-
policies describing both the policy that they wish to ersible logic in Section 4. Section 5 steps through an ex-
force and annotations describing their composition préénded example policy composition using our defeasible
erences. These annotations can indicate whether certagic framework. We discuss our implementation of this
policy assertions are required by the policy writer or, Ibgical framework in Section 6 and then examine potential
not, under what circumstances the policy writer is willingses of defeasible policy composition in other domains in
to compromise and allow other assertions to take pre&ection 7. We present our conclusions in Section 8.
dence. Meta-policies are specified in defeasible logic, a
computationally-efficient non-monotonic logic develope
to mE))deI huma>;1 reasoning. Because com|gaositi0n prpef r- Background and Related Work

ences are specified along with the policies in our system, . .
a single composition operator can be used to combine dfythis section, we set the context of the policy com-

two meta-policies. This offers several advantages over &Sition_problem through an overview of the WS-

isting policy composition proposals, which typically deSecurityPolicy specification and defeasible logic. Addi-
i we discuss related work in the area of logical

fine several low-level composition operations and requii@na!ly; S
a human to oversee the composition process by specifyRjicy composition.

which operations must be used to combine a collection of

sub-policies: 2.1 WS-SecurityPolicy 1.0

e The composition rules for a given policy need onlFonsider a set of business processes communicating over

be Specified once, rather than each time the po“cyt@ Internet Via SOAP Web SeI’ViceS. These SOftWare

composed with other policies. components pass XML messages formatted in SQAP en-
Policy composition can be entirelv automated Sinvelopes. Each envelope consists of a header which con-
¢ com yositiog references are en)(/:oded in thé mei ins routing information and other meta-data, and a body

np P . Which contains information about the service being re-
pollc.:les.thems.elves and only one compos_lt'lon 0g'uested. The contents of SOAP envelopes can be pro-
er%t'c;n IS Emv'rgg% annaUt?tm?tid collmpt(i)s;uo? PrfEcted using an optional security header which may con-
;(e)ngi:sca co € any arbitrary cofiection o Su?éin security tokens, such as X.509 certificates (public-

key certificates in an ISO format) or SAML assertions

We cannotprove that this method is the best way tésecurity tokens in an XML format as specified by OA-

compose policiés but defeasible logic has been used sue!S)- This security header can also contain key material

cessfully in diverse applications and offers a fresh pé}[signed digests used to protect the confidentiality and in-

spective on policy composition. In addition, defeasiblg9"ty of the enclosed SOAP message. Additionally, the

policy composition affords us a formal framework withirf€Nd€" may encryptor sign any or all parts of the enclosed

which to reason about the outcomes of policy compo§—OAP message. ) )
tions. To ensure that this technique can be efficiently | '® S€rvice provider may wish to specify that requests
implemented with existing platforms and standards, Og\lfrected to thelr services meet certain security require-
approach involves compilation to policies supported BYENtS- For instance, they could require that a request
major platforms. Our study is based on Microsoft NE§ONtain apartlc_ular type token for authentication purgose
Web Service Extensions version 2.0 (WSE 2.0), but otH¥r that & certain part of the request be encrypted using
platforms, standards, and web service policy specificatigrePECific_algorithm. - WS-SecurityPolicy is a web ser-
systems are likely to be suitate. vice sp_ec_lflcatlon_ develqped by_Mlcrosoft, IBM RSA,
The paper is organized as follows. In Section 2, V\%wd VeriSign to give service providers the ability to spec-

present a brief overview of WS-SecurityPolicy, defead]y the security recliylre_mgnts of tge'r web services.

ble logic, and other related work to set the context jn YWS-SecurityPolicy is designed as an extension to WS-
Policy [35], a specification used to define the charac-

'This can be compared to a challenge lveving that Java is the teristics, capabilities, and requirements for an XML-

best general-purpose programming language. based web service. In addition, WS-Policy provides a
2We chose to use WSE 2.0 instead of WSE 3.0 because the latter : ’ y P

does not support WS-Policy and related standards. Theseastis are way to combine several assertions using E@Ct'
more expressive than the policy framework that has beereimghted in lyOne , All , or OneOrMore operators. With WS-

WSE 3.0 and therefore provide a more interesting test caskefeasible SecurityPolicy, a deve|oper can specify requirements re-
policy composition.




<wsp:Policy xml:base="http://.../policies" Defeater Rules Defeater rules provide contrary evidence

eh Al wsu:ld="P1"> to defeasible rules. For example, “if a dog is sick, it
wsp: . ”
<W‘;se:5€cumymken> might not be able to bark.” More formally:
<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>
</wsse:SecurityToken> SiCk(X) - —\bal’k(X)

<wsse:Integrity>
<wsse:Algorithm Type="wsse:AlgSignature"”

_ URI="http:/l.../xmidsig#rsa-shal” /> It is important to note that defeater rules cannot be
</wsse:Integrity> . .
<lwsp:All> used to draw conclusions, they simply prevent con-
‘ </wsp:Policy> clusions. A dog being sick is not sufficient evidence
to prove that the dog cannot bark, however we do
Figure 1: A sample WS-SecurityPolicy document not want to jump to the conclusion that it indeed can
bark.

lating to the security tokens presented to the service, ang,o superiority relationship is a partial ordering of the
the confidentiality and integrity of incoming messageg;jes in the defeasible theory. For example:
The requirements of the service provider are written as

an XML document, an example of which is shown in Fig- basenj{Jasmine

ure 1. This example states that the requester must present basenj{X) — dog(X)

a Kerberos version 5 ticket-granting ticket and include a r:dogX) = bark(X)

RSA-signed SHA1 hash of the message. r’ : basenj{X) = —bark(X)
WS-SecurityPolicy is implemented as part of the -

current Microsoft .NET web service extensions (WSE . . .
Without the superiority relation, we would not be

)2“\(/)')'_ evl\éhr;]C:m a[lé%(z)] de.fllﬂfss i;hizgcﬁgsotz:rgeg; WSgalble to conclude eithdrark(Jasming or —bark(Jasmine.

PolicyAttachment [36] to tie a policy to a specific Wel%;]h? SE;Jpe“‘?.“ty relatlct)nsmE g|v§s p”recedenc;e 0 thelrl(JjIe
service. SpecificallypolicyDocument  is used to de- al Basenis cannot bark and aflows us fo conciude

fine policies that are applied to service requests, repli@?ark(‘]asm.me' . .
In the policy composition system presented in this pa-
and faults. ) -
per, we have chosen to represent WS-SecurityPolicies and
. ) rules regarding their composition as defeasible logic the-
2.2 DefeasibleLogic ories. We chose to use a non-monotonic logic because hu-

Defeasible logic is a type of non-monotonic logic. Thidan reasoning is, by nature, not monotonic [16]. Humans
family of logics allows previously valid conclusions tdend to make decisions based upon partial evidence and

be withdrawn in the event that new information is pré_evise their conclusions as new facts come to light [31].

sented. Non-monotonic logics were developed to emuld¥€ @rgueé that specifying security policies and their com-
common-sense reasoning. For example, if we know tfRgSition rules using a non-monotonic logic is more natu-
Sam is a dog, it is reasonable to assume that he can b&tkNan using a monotonic logic, as users need not trans-

However, if we later find out that Sam is sick we may walfte their inherently non-monotonic reasoning into sltyict

to retract our previous assumption about Sam’s ability fa°notonic rules. Although interesting, a user study inves-
bark. tigating this argument is outside the scope of this paper.

A defeasible theory consists of three parts: facts, rules, € System presented in this paper uses defeasible

and a superiority relationship. Facts are indisputatf9iC: rather than another non-monotonic logic, because

statements such derrier(Sam), which states that “Samd'e'feasmle logic has been shown to bg computationally ef-

is a terrier.” Defeasible logic has three types of rules: f|C|e_nt [26] and a number of t(_)OIS eX|s_t_to automate rea-
soning about defeasible theories. Additionally, defdasib

Strict Rules Strict rules are rules in the classical sensgic has been used to solve a number of related prob-

such as “terriers are dogs.” Formally: lems in requirements engineering and legal decision sup-
) port [4], planning and learning [31], and automated ne-
terrier(X) — dog(X) gotiation during auctions and brokered sales [18]. Lastly,

) ) according to [5], defeasible logic is at least as expressive
Defeasible Rules Defeasible rules are used to draw conys courteous Logic Programs, which are used in [20, 33]

clusions that may later be retracted. For exampig define and prioritize rules, a problem closely related to
“dogs typically bark” is a defeasible rule which ISsecurity policy composition.

written formally as:

dog X) = bark(X)



2.3 Reated Work administrators to specify the ways in which sub-policies

. e . . written by different administrative domains within an or-
Policy specification in defeasible logic, the use of for-

| methods f b . 4 ooli i anization shall be combined. In this paper, we present a
mal methods Tor Web SErvices, and policy cOmMpOSIQE, logical framework, however with a different focus
are three areas closely related to the work presente

) : i "GHY a different level of abstraction. Our system focuses
this paper. In this section, we present a survey of previols combining documents specifying the properties of se-

contributions in these areas. cure systems, such as the required types of authorization

In [19], Governatori, ter Hofstede, and Oaks dlscu%(?ken or levels of encryption, rather than determining a

‘h?‘ use of def_ea5|b|e logic for a _brokered sale and b@B'mplete list of authorized users. In addition, we allow
gaining. Antoniou, Maher, and Billington [3] also use d

. . - . _ solicy writers to encode their composition preferences in
feasible logic to represent administrative regulations-c

; . he policies themselves and provide a general composition
cerning, for example, exam schedl.JImg.'ChoIvy and CuB'erator that combinesny two such policies. Our sys-
pens [12] propose the use of deontic logic, another YPeQh can encode operators such as those presented in [11]

nor_l-monotonlc logic, for specifying z_;md reasoning abo\'7§;hile also enabling more advanced features such as prim-
policies. None of these works consider policy COMPOSL o forms of policy negotiation

tion. ;
. Several other authors (e.g., Bidan and Issarny [10];
McDougall, Alur, and Gunter [28, 29)] introduced thPBertino, Jajodia, and Samarati [7]; and Lupu and Slo-

|dea|1(c1)tf comblnlng”;])ohmesr ust[ng d?fﬁl{’.‘s’lpdle Iotglc. Th%an [24]) address the problem of conflict resolution as
work Tocuses on the application of this 1dea to po ICI(;‘i'r:‘emerges in access control and management policy com-
specifically deS|gne_d_for financial transactions on a sm gsition. Conflicts in access-control policies often con-
paycrjner_n_card, al?d I Ibs su%portedt bty a mOdeIttZaLfO(;u %¥n users that can satisfy different roles or accessible ob
on decision-making based on stale generated by gy matching contradicting rules. Our notion of poli-

actiorl histories. .The current wor'k insteaq treats poI_i es, while certainly related to access-control, takeg-a di
merging for long-lived server functions and is strongly Nerent approach by defining the content of a document,
Mher than specifying access rules. This leads to differen
es of possible conflicts, requiring different approache

conflict resolution.

standardized policies. The resulting system therefore
a somewhat different underlying model despite the fq
that both use defeasible logic.
There has been relatively little work thus far on the
application of formal methods to reasoning about W& Framewor k
SecurityPolicies. TulaFale [8] is a tool that verifies pplic
based security from Web services. It has been usedriathis section, we describe some of the problems that
prove security properties for a messaging protocol bassilerge while attempting to compose security policies by
on web services [25] and protocols for a web service axamining the possible compositions of several web ser-
chitecture for collecting medical information about pedplices security policies. We then present an abstract frame-
in their homes [27]. Recent work [9] has demonstratedark that addresses this problem.
web service programming technique that enables rigorous
\lgenﬁcatlon together with producyon quality executgl_:)leg.g_ A Motivating Example
owever, none of these works discuss the composition ©
policies. Suppose that Alice and Bob each work in different de-
Several other sources describe the problem of poliggrtments within the same organization. In addition, sup-
composition. In particular, Halpern and Weissman [2fpse that Carol manages both of these departments. We
present a mechanism for using a fragment of first-ordesw imagine a scenario in which Alice and Bob collab-
logic to specify a security policy, which accommodatesrate on a cross-departmental project to develop a web
composing policies. They are able to identify when polservice. It is clear that this web service must abide by Al-
cies can be logically combined without contradictionice’s, Bob's, and Carol's security policies, as Alice and
however, if contradictions do occur then the policies caBob developed the web service jointly and both individu-
not be combined. Our work allows contradictions to o@ls fall under the management of Carol. Consider the case
cur, and specifies a framework for resolving them. in which all three individuals have different requirements
Bonatti, Vimercati, and Samarati [11] present a logicédr the security of SOAP requests sent to this web service,
framework for the specification and composition of agpecifically, those listed in the first column of Figure 2.
cess control policies expressed as (subject, object, slccesBecause all three individuals have different require-
tuples. They specify several operators such as additioments, there are several conflicts that must be resolved
conjunction, subtraction, and overriding and allow polidyefore their policies can be composed. First, since Al-



Policies | Annotations

Entity

Entity 1

Alice

security token
X.509 certificate unless otherwise overruled
issued by MyUniv/CS (61,8,)
used to encrypt/decrypt session key e

encryption i
single-use, generated by client encrypted by X.509 key (6,.8;)
3-DES session key unless otherwise overruled "

Local
/" resource
O — T

“Local .
: ;eSOUrCe.
di—m

IA

Bob

security token
SAML assertion in case of low computing capacity

so X.509 isn't required

issued by MyUniv/ICS

encryption
any algorithm . '
session key encrypted with Shared
password-based algorithm N ' resource

Carol
security token

either SAML or X.509 or stricter requirements
issued by MyUniv any MyUniv organization
message integrity Figure 3: Overview of mathematical framework

Figure 2: Three policies to be merged
3.2 Mathematical Framework

ice and Bob have no precedence over each other, whith now introduce an abstract model that
type of security token should we require? If we useallows us to reason about the composi-
conjunction semantics for composition, we would requiteon  of  security  policies, such as WS-
both types of security tokens and require that the sess@acurityPolicies, and addresses the types of prob-
key be encrypted twice, once for each algorithm, whi¢éms illustrated in our example. Let us denote the set
may be unnecessary. If we use a disjunction semantieb.all such security policies byl. Rather than each
we would allow either a certificate or a SAML assertiosntity storing a security policyy < 1II, as its internal
or both. Note that either security token, by itself, fails tpolicy representation, we propose that it instead stores a
satisfy both Alice’s and Bob'’s policies. semantically-enhanced policy, We will denote the set

In addition, Carol’s policy should certainly take preceof all such policies byA. A policy § € A is a meta-policy
dence over Alice’s and Bob’s policies in case of any cothat describes both the requirements enforced and
flicts, but what exactly does that mean? If Bob requirélse means through which should be composed with
a SAML assertion and Carol allows either a SAML asther meta-policies.
sertion or an X.509 certificate, do we simply require a To maintain compatibility with currently deployed
SAML assertion since it satisfies both policies? Or, #andards, we cannot require that applications understand
Carol actually insisting that X.509 certificates always ke meta-policy directly. Instead, we define a projection
accepted, and that her policy should overrule Bob’s? Sifanction,p : A — (ITU L). For a givens € A, p(6)
ilarly, since Alice requires security tokens to be issued lgjves us the unique < II enforced byd. If § cannot be
MyUniv/CS and Carol only requires them to be issued lpyojected onto a < 11, p will return the valuel.
MyUniv, which assertion should be used? Or, should theBecause meta-policies specify the way that they are to
merged policy require two X.509 certificates, one froime combined with other policies, we can define a single
each issuer? composition operation in this system. Let us define an or-

The second column of Figure 2 shows how annotdered policy structure as a pdiP, <) whereP < 22 is
tions help eliminate these ambiguities and specify how theset of meta-policies and is a partial ordering orP.
policies should be combined. One of the annotations flogt P be the collection of all such ordered policy struc-
Bob’s policy even includes some context about the clientisres. The existence of allows us to account for organi-
computing capacity to be considered. The composite ppétional hierarchies or other superiority relationshigst t
icy, in this case, depends on this context informatioexist between policies or their authors. Note that the pol-
In the case of a low-capacity client, a SAML assertidgy hierarchy induced by can take the form of a total
with generic shared-key encryption using a passworskdering of policies, an ad-hoc peering arrangement, or
based key and message integrity will be used, otherwissme arbitrary structure, allowing complete flexibility in
an X.509 certificate with 3-DES encryption and messagee situations in which our framework is applicable. We
integrity will be used. then definey : P — A to be the function which produces



a composite meta-policy from an ordered policy structunghat different, because it is logically equivalent to the
Because the annotations (such as those in the secondmedation of the&Confidentiality assertion. We leave
umn of Figure 2) already specify how the policy shoulthis for future work.
combine with other policiesy is the only composition  We define thesecuritytoken structure as:
operator. securitytoken(TokenType, Tokenlssuer, {Claims },

Figure 3 illustrates how a group @f entities can use {Ext})
the operations described in this section. Each entityyhere each attribute gives the value of
contains a local meta-policy;. To enforce this pol- o corresponding tags of the Security-
icy on some local resource, the entity simply computeg e assertion. The integrity and

p(9;) = m; and uses its existing protection framework tg,nfigentiality structures are defined similarly:
enforcer;. However, if the group ok entities wishes to

; H i integrity( Algorithms  }, Tokenlnfo, Claims },
define a security policy to a_lpply to some resource shared {Messag{e Parts 1 {Ext }) {
among them, the composition of their individual secu-
H ] H ) confidentiality( Algorithms , Keylnfo,
rity policies must be computed. Given a partial order, N oeaeParts {}’ P b Key
on the set of meta-policieB = {41, ..., ox }, the entities
can compute their composite meta-pohigy P, <)) = ¢§'. For example, the following structure is used to repre-
The group can then us¢ to compute the security po|icysent an X.509 certificate issued by MyUﬂIV We use the
p(8") = 7’ that will protect their joint resource. free variable<C andE to indicate that there are no restric-
The precise generation ef is outside of the scope oftions on the token’s claims or extensible elements:
this paper, though one could imagine it being agreed upon
by thek entities at the time that their federation is formed.
For example, in the case where reflects an organiza- similarly, to require an RSA enveloped signature on the
tional hierarchy, it may be mandated by corporate policgntire message using a security token issued by MyUniv,
we might use the following structure:

securitytoken('’x509’, 'myuniv’, C, E)

4 POI'Cy Compostlon M Odel integrity( {algorithm('signature’,'rsa’),
algorithm('transform’,’enveloped’) +
) ) ) ) o securitytoken(T,'myuniv’,C1,E1), C2,
In this section, we describe an instantiation of the pol- {messageparts(xpath’,S, /), E2 b

icy composition framework described in Section 3.2 basedyjpte that we abuse the notation of predicate logic in

on defeasible logic. Our instantiation is compatible witfy, ways. First, we allow set-valued attributes, such as
WSE 2.0, although this framework could be applied tq-|5ims }. Second, theTokeninfo  and Keylnfo

othe_r domains as well. In the context of this 'nSt"?mt'at'OHttributes are complex structures rather than atomic val-
we first present the syntax for a set of defeasible 1ogigs |n fact, WS-SecurityPolicy allows these values to be
atoms expressing WS-SecurityPolicy assertions. Thegg rityToken  assertions themselves; thus, we allow
atoms will be used to construct full defeasible logic eXpese attributes to keecuritytoken structures. Sim-
pressions. We nex'g discuss. the structure of meta—'policii%ﬂy' theAlgorithms ~ andMessageParts  attributes

in the setA, and define algorithms forandy appropriate e sets of complex values. It is possible to make the nota-
to our instantiation. We then show that any finite orderggl, -onform to regular predicate logic: for example, we

policy structure that can be described in this model can 98,14 define a separate predicate @aims , with an
composed in an automated fashion to form a single Mef@gihyte that links it to thesecuritytoken  structure.

policy, &". However, we think the chosen notation is more readable.
In WSE 2.0, separate policies may be defined
4.1 Syntax for WS-SecurityPolicy Asser- for request, reply and fault messages. We de-
tions fine variations of the above structures that allow
users to specify that a particular assertion is bound
Rather than reasoning about atomic propositions, WRly to a particular class of messages (e.g., the
define complex structures, to represent the Wgequest _securitytoken structure describes secu-
SeCUrityPOIicy assertions defined in [30] Each assel’tiﬁ@/ token requirements for request messages 0n|y)' These
Corl’esponds to a Structure, with its defined Sub-elemeﬂé‘ﬁaﬁons allow users to specify request, rep|y, and fault
as attributes. While we will Only define structures f%o”cies that are dependent on one another’ for examp|e,
the SecurityToken , Integrity ~ , andConfiden-  «| wjll accept UsernameTokens in the request policy if we
tiality ~ assertions, we could easily define thecu-  require X.509 certificates in the response policy.” A struc-

rityHeader and MessageAge structures following tyre without aequest _ reply _ orfault _prefix ap-
the same pattern. Théisibility assertion is some-pjies to all three policy types.



Oreq:
hassecuritytoken,hasencryption

— satisfied

securitytoken('SAML’,'myuniv/CS’,C,E) 1
— hassecuritytoken 2
3
4

Oreas!
mobile =- securitytoken('SAML’,’myuniv/CS’,C,E) 5
securitytoken('SAML',I,C,E) 6
~» —securitytoken("X509',11,C1,E1) 7:
8:
9:
10:
Figure 4: Bob’s policy represented in defeasible logic 11:
12:
13:
4.2 Defeasible Logic Policy Representation igf

Though the above structures can be used in logl6:

ical statements, deciding the semantics of defeal—
sible rules based on these structures is a nong
trivial problem. For example,
request _securitytoken(’x509’, 'myu-
niv', C, E)

acceptable, or that such a certificate is required?
We solve this problem by definingjas a tuple of the-

trates a portion of Bob’s policy from Figure 2. The part

of 4,., shown states that a security token and encryptiof?:
are required, and that a SAML assertion issued by Myugjf
niv/CS is a valid security token,., includes a custom 5z,
proposition,mobile , which, if true, helps conclude that 3g:

a SAML assertion will be accepted and prevents the pols7:
38:
39:

icy from requiring an X.509 certificate.

25:
Ori€S (0yeq, deltareqs). Oreq defines the requirements of 26:
the policy, andy,... defines the “reasoning” behind the 27
policy, or the annotations of each assertion. We also a—Bf
low the use of custom-defined propositions to account fog.
any context information. As an example, Figure 4 illus-31:

: Function p(6 = (0req, Oreas) € A) =

: {# Phase 1: Logical Derivatign

. LetC =the set of all conclusions that can be derived fidm. s

: LetS = {} {# S will be the set of sets of conclusions that

satisfydreq }

: for all ¢ € 2¢ do

Letdyq = Oreq UC
if we can derivesatisfied
S=Su{C}

end if
end for
if S == {} then

return L {# Cannot output a valid }
end if

ind’.., then

req

{# Phase 2: Generate XML
Outpu(<policyDocument>
and mappings header)

with namespace declarations

7.1=NS
; : for all prefixe {request ,response |, fault
if we can prove 19:

20:
, does it indicate that requests containing?l:

an X.509 certificate issued by MyUniv are merelyggf

} do
Outpu{prefixspecific header tags)
I' = {i € I | iis applicable to messages of typeefix}
if I’ # {} then
Outpu(<All> )
for all : € I’ do
Outpu{ DefeasibleToAssertii) )
end for
Outpu(</All> )
end if
Outpu{<ExactlyOne> )
forall S € Sdo
Outpu(<All> )
for all s € (S '\ I) applicable to messages of typeefix
do
Outpu{ DefeasibleToAsserti¢s) )
end for
Outpu(</All> )
end for
Outpu(</ExactlyOne> )
Outpu{prefixspecific footer tags)
end for
Outpu(</policyDocument> )

4.3 The p Function

Recall from Section 3.2 that the function is used
to project a meta-policy,§, onto the security pol-
icy, w, that is to be enforced.

Figure 5: Pseudocode for thagunction

T Inour Iogic_al in-s,...., the reasoning theory of. This operation is lin-
stantiation of the framework presented in Section 3.&ay in the number of propositions in the system, as shown

p projects our logical meta-policies onto WSE 2.f [26]. Lines 5-10 determine all of the subset<ahat

policyDocument

s that describe the set of securityatisfy the requirements 6t For eachC' € 2¢, we con-

policies protecting access to a given web service. TRigyct a new requirements theody, ., which contains the

function can be computed automatically by using existirgy requirements theory,..,, along with one fact for each
reasoning tools, and allows our framework to be appligenclusion in the sef, as shown on line 6. If we can con-
directly to a concrete specification and implementatiogy,de satisfied in this newd.,, then we add the set
namely WSE 2.0. The function has two distinct phases( tg the set of sets. If S is empty after this process
logical derivation and XML generation. Figure 5 presengpmpletes for each subset®f then we cannot generate

pseudocode fop. . o . a WS-SecurityPolicy that meets the requirements of the
The first step of the logical derivation phase is to detefreta-policys, sop returns the value..

mine the set of all conclusions, that can be derived from |t S js non-empty we proceed to generate the XML



1: Function v*(a = (treq, Qtreas) € A, B = (Breq, Preas) €
A X)) =

2. if a < Bthen

3 y(Ba,X)

4:

5: Rewrite rule labels ix and3 to ensure uniqueness

6: if 3 < athen

7:  {#«is of higher priority;

8:  Extend the rule priority partial ordering to allow defexat in

« to block conclusions fron®
9:  Extend the rule priority partial ordering to allow consions

quirements of botla,.., and5,.,.

The case in which3 < « is similar, although it re-
quires extensions of the rule priority partial order defined
in a,..qs. This partial order needs to be extended to give
end if each defeater rulé € a,...s precedence over defeasible
rules in,...s Which can possibly be defeated by Ad-
ditionally, the rule priority partial order needs to be ex-
tended to give each rule concludinin «...s precedence
over each rule in3,.,s whose conclusion can be scoped
by eitherc or —c.

in « to take precedence over conclusions that they can scope It €an be shown th.ai.* can be U§ed iteratively tO. merge
in 3 any set of meta-policie®. We first show that given a

10: end if
11: 6450‘3 = Qreas U ﬂrcas
12: 6Ly = Otreq U freg
13: return 6’ = (8.4, 01

req) Teas>

Figure 6: Pseudocode for thé function

representation of thg@olicyDocument
cess takes place in lines 15-39 of Figure 5. Note
that the functionOutput() writes its argument to the
policyDocument being generated and the func-
tion DefeasibleToAssertionQarries out the straightfor-
ward task of converting a logical fact to its corre-
sponding WS-SecurityPolicy assertion. For each pos-
sible message type (request, response, or fault), the
loop on lines 18-38 generates the portion of the
policyDocument  relating to this message type. Lines
17-27 extract the intersection of the possible ways to sat-
isfy 6,4 @and generate a correspondigll> clause for

the current message type. Lines 25—-33 generatdan
actlyOne> clause describing the requirements needed
in addition to those addressed by the abod> clause.

4.4 The~ Function

Given a finite se? C A of policies to compose and,
a partial ordering o, the functiony composes the meta-
policies in P to construct a new meta-poligy. Here we
present the details of a functiom?, which composes two
meta-policies, given a priority relation between them (see
Figure 6). We then discuss how to definghrough re-
peated applications of*. As with p, this function can be
computed automatically though the use of existing tools,
allowing the composition of meta-policies to occur with-
out human intervention.

Composing two meta-policies, 5 € A is not a diffi-
cult task. In the case that and 3 are not related by the

finite ordered policy structure which forms a set of trees,
we can recursively define the partial function P — A
that iteratively applies* to compute the composition of
all meta-policies in the structure. Specifically,; (P, <

I Y — ¢, whered' is defined as follows:

Basecase (|P| =2): Let P = {61,62}. Thend’ =
v*(61, 02, X).

This pro- Recursive case (|P| = n > 2): Here we must consider
three possible cases.

Case1l: P contains two meta-policiesy; and oo,

which are unrelated to any; € P by =,
i.e., 01 andd, are singletons. In this case,
let 6(1_’2) = ’7*(51,(52,j). Let P! = (P\
{01,02}) U {d(1,2)}. Now, |[P’| = n — 1 and
we can seb’ = Y((P’, <)).

Case2: P contains two meta-policies); and ds,

such thaty, is the parent ob,, §; has no chil-
dren other thard,, andd,y is a leaf of the or-
dered policy structure. In this case, &t o) =
’7*(51,52,5). Let P! = (P \ {51,52}) U
{0(1,2)} If 61 had no parent, lek’==. Oth-
erwise, becauseg is a tree structure, there is a
singled,, such that); < oy, so let=x’'==, with
the additional relationship(; o) <" dx. Now,
|P'| =n —1and we can set = 5((P’,<')).

Case 3. P contains three meta-policie,, d», and

03, such that), andds are children of5;, and
0o andds are leaves of the ordered policy struc-
ture. Inthis case, leY, 3) = 7" (d2, 3, <). Let
P" = (P\ {02,03}) U{d(2,3} and let='==
with the additional relationshig(, s =" d:.
Now, |P'| = n — 1 and we can set/ =

P, =)

Given that any ordered policy structure which forms a
collection of trees can be composed usiyig we argue

partial ordering=, we simply ensure that the rule labelg, 4t this is sufficient to show that any arbitrary ordered

in the two reasoning theories..,s andS,..s are unigue

policy structure inP can be composed through iterative

and collect these ruIe.s to form a new reasoning theo&bplications ofy*, using the following sketched algorithm
We then create a requirements theory that enforces thege- . p _, p-



. [
If an ordered policy structure(P, <) € PP, does gequirements:
not form a collection of trees, then at least one metssecuritytoken,hasintegrity satisfied.
. . . . securitytoken(’x509’,myuniv’)— hassecuritytoken.
policy has multiple parent nodes. That is, there exisuritytoken(sam’ ) securitytoken(unt’)

somedq, ..., d, such thaty; < ds, ..., & < d,, and — hassecuritytoken.

.. . integrity({algorithm('signature’,rsa’), algorithm('transfornenveloped’)},
v (1 < {17]} < n) (6i 7é 5j)- This means that the en- securitytoken(T, myuniv’){ messageparts('wsse:path’,S,'wsp:Body()
tity whose p0|icy is described b§91 is subordinate to wsp:Header(soap:Header) wse:Timestamp() wse:Userrakes()
. . . wse:Addressing()’))
02, ..., 0,. Assume, without loss of generality, thatis — hasintegrity.

the lowest such node in the ordered policy structure integfity({a'q?rithkm(’?igrlatlglie’,’hmaC-Sha%’)(,’algorithn:r(]”trgpﬂﬂ’,’gn\éelgped’)},
. . securitytoken('unt’,l),{messageparts('wsse:path’,S,'wsp:Body!
To convert this section ofP, <) to a tree, we clone the wsp:Header(soap:Header) wse:Timestamp() wse:Userraiea()
subtree rooted af; (n — 1) times and alter< such that hWS_etrAddt;essing()‘})
. . —hnasintegrity.
each clone is subordinate to exactly onejgf ..., 4,. 9
This operation does not modify the meaning of the pdgeasoning: _ _
. . ; 1: {} = securitytoken(’x509',myuniv’).
tial order since each parent still has precedence over #3&; —. securitytoken(sam’).
rules in its clone of the subtree rooteddt To create R3:{} = securitytoken(unt,l).
. . R4: securitytoken(’x509’,1)
an ordered policy structure that forms a collection of trees = integrity({algorithm(signature’, rsa),
from our starting structuré P, <), we can inductively ap- algorithm(transform','envelopedy),
: . : securitytoken(T,l), M).
ply this reasoning starting at the leaves of the ordered pg4: securitytoken(unt, iy
icy structure, eliminating all nodes with multiple parents = integrity(wl{alg_?;ith(r’?(‘sigyatu[?’,‘hnllac-sg}?l’),
. . algoritnm( transform’, envelopedyj,
Let 7 ((P, <)) be the resulting policy structure. Sfcuritytoken(vumv,,), M). P
Although this algorithm sketch suggests an exponent‘iégl mobi'?;;: ;s'é(?ugit%fﬁl;iﬂ(’x509’%t cen(sam)
. . . . . . . securitytoken( X , —securitytoken(saml, ).
increase in the running time of due to the duplication grg: securitytoken('x509' 1)+ —securitytoken(unt’ ).
of subtrees, in practice this can be avoided. We can k- integrity_({talgqtr)ilt(hrln('si_a?azyr_E’,‘rsta'),Yﬁscuritytﬁkig(g’m%univ'), M)
. . .. ~» —integrity(algoritnm(’signature’, hmac-shal’), S5, .
terleave the composmon and restructurlng of the pOI|C|ﬁ§0: integri?y({algorithm(".signatqre’,’hmac-shaﬂ) securitytoken('unt',l), M)
in (P, <) by composing the subtrees into a single nooFIg iy ;?;e%gy%gsrggm(’&gnature’,’rsa’),S, M).
before they are cloned. | ) ' )
Finally, we define the algorithm : P — A, the com-
position operator for any finite ordered policy structue, a

v : (P, =) — (T ((P,=))). This function is well-defined
because returns a tree-based policy structure, for whickyies. For clarity, we have omitted tfxt andClaims
7 is always defined. _ ~ fields from the structures since they are not used in this
In this section, we have presented an instantiation Qfample. Alice requires that all messages contain a se-
the reasoning framework described in Section 3.2 basggity token and have an integrity guarantee. Note that
on defeasible logic for use with WSE 2.0. Additionally,q |ogical structures contain a prefix as discussed in Sec-
we have shown that it is possible to compose any finigy 4.1, meaning that Alice has the same requirements
ordered policy structure that can be expressed in this logj; 4 message types. Alice will accept either an X.509
cal model. The composition and projection processes Gkificate or both a SAML assertion and a username to-
be carried out in an automated fashion, allowing for th&n she will accept either an RSA signature with a token
immediate use of our logical policy composition framggsyed by MyUniv or an HMAC-SHAL signature with a
work with unmodified WSE 2.0-compliant web servicegsername token. R1 through R3 of Alice’s reasoning the-
In the following section, we present an extended exampj; state that she will accept either an X.509 certificate
illustrating the processes of meta-policy composition apd ,eq by MyUniv, a SAML assertion with any issuer, or

Figure 7: Alice’s policyd,,

projection. a username token with any issuer. R4 states that if we are
able to conclude the use of an X.509 certificate then we
5 An Extended Example would like to use an RSA signature to protect the integrity

of the message. R5 is similar to R4. R7 and R8 state that
\we can use X.509 certificates then we do not want to
to compose two policies using the defeasible logic fram?€ able to conclude the use of either SAML assertions or

work presented in Section 4. In this example, suppose tHSFname tokens. R9 and R10 prevent both integrity al-
Alice and Bob are peers developing a web service usiﬂg'thms from being concluded. R6 de_serves_ special at-
WSE 2.0. Each party has different requirements for tig'tion. R6 uses a context-based predicatebile , to
security-relevant properties of messages sent to and frdfjjeat the use of an X.509 certificate. This means that
their service. Alice will allow the use of an authentication token other

Figure 7 shows Alice’s requirements and reasoning tHRan an X.509 certificate only if the service is meant to be
accessed by mobile devices.

In this section, we present an extended example of h



I 1T
Requirements: R11: {} == securitytoken(’x509’,myuniv’).

hassecuritytoken,hasconfidentiality satisfied. R12: {} = securitytoken('saml’,l).
securitytoken(’x509’, myuniv/cs’}— hassecuritytoken. R13: {} = securitytoken('unt',l).
securitytoken('saml’,myuniv/cs/securitygroup? hassecuritytoken. R1.4: securitytoken('x509',1)
confidentiality{algorithm(’encryption’,rsa’}, securitytoken(T,myuniv/cs’), = integrity({algorithm(’signature’,rsa’),
{messageparts('wsse:path’,S,'wsp:Body))’) algorithm('transform’,’enveloped},
— hasconfidentiality. securitytoken(T,l), M).
confidentiality{ algorithm(’encryption’,;aes128cbc}) securitytoken('unt’,l)), R1.5: securitytoken('unt’,l)
{messageparts('wsse:path’,S,wsp:Bodyy)") — integrity({algorithm('signature’’hmac-shal’),
— hasconfidentiality. algorithm(transform’,'enveloped?),
securitytoken('unt’,l), M).
Reasoning: R1.6: mobile~~ —securitytoken('x509’,1).
mobile. R1.7: securitytoken('x509’,Iy —securitytoken('saml’,l).
R1:{} = securitytoken(’x509’,myuniv/cs’). R1.8: securitytoken('x509’, I —securitytoken('unt’,1).
R2:{} = securitytoken('saml’;myuniv/cs/securitygroup’). R1.9: integrity({algorithm('signature’,rsa’}, securitytoken(T, myuniv’), M)
R3: securitytoken(’x509’,1) ~~ —integrity(algorithm(’signature’’hmac-shal’), S, M).
= confidentiality{algorithm(’encryption’,rsa’}, R1.10: integrity{algorithm(’signature’,hmac-sha1}) securitytoken('unt’,l), M)
securitytoken(’x509',1), ~~ —integrity(algorithm('signature’,rsa’), S, M).
{messageparts('wsse:path’,S,'wsp:BodyX):) R16>R11.R17>R12. R18>R13.
R4:{} = confidentiality{algorithm(’encryption’’aes128chc})
securitytoken(T,l), R2.1: {} == securitytoken(’x509’,myuniv/cs’).
{messageparts('wsse:path’,S,'wsp:Bodyy):) R2.2: {} = securitytoken(’'saml’,myuniv/cs/securitygroup’).
R5: securitytoken('x509’, I} —securitytoken('saml’,11). R2_3: securitytoken('x509',1)
R6: confidentiality{algorithm(’encryption’rsa’}, S, M) = confidentiality{algorithm(’encryption’ rsa’},
~~ —confidentiality{ algorithm(’encryption’,/aes128cbc}) S1, M1). securitytoken('x509',1),

R6 > R2. {messageparts('wsse:path’,S,wsp:Bodyy):)
L I R24:{} = confidentiality{algorithm(’encryption’,aes128cbc})
securitytoken(T,l),

Figure 8: Bob’s policyy, {messageparts('wsse:path’,S, wsp:Body)’)
R2.5: securitytoken('x509’,I) —securitytoken('saml’,11).
R2.6: confidentiality{algorithm(’encryption’/rsa’}, S, M)
) o ) ) ) ~~ —confidentiality algorithm(’encryption’,aes128cbc}) S1, M1).
Bob’s security policies are shown in Figure 8. Lik&26>R22.

Alice, Bob uses the same requirements for all messége

types. Bob requires the use of either an X.509 certificate Figure 9: The result of* (4, d, <)

or a SAML assertion as a security token. Additionally, he

would like the body of each message to be encrypted using N )

either RSA or 128-bit AES. R1 and R2 of Bob's reasoniri§at has the ability to reason abdigtcurityToken  as-
theory state that Bob will accept either a X.509 certificag€tions. Our implementation consists of a collection of
or a SAML assertion and R3 states that if an X.509 certiftr scripts that embody the functionality-pf and inter-
cate is accepted then he does not want a SAML assertfdf With the defeasible reasoning engine along with a Java
R3 and R4 state Bob’s reasoning about the confidentiait{Pgram that implements thefunction. For our defeasi-

of the message body. Bob would like to use RSA onfjj€ reasoning engine, we use the Deimos tool, developed
if an X.509 certificate is sent with the message. R5 af Griffith University [34]. As discussed in Section 4.1,
R6 prevent the conclusion of multiple security tokens a4 Syntax for the logical forms of WS-SecurityPolicy as-

multiple confidentiality algorithms. It is also importawt t Sértions overloads the predicate syntax used by Deimos
note that Bob hamobile as a fact in his theory. and therefore must first be preprocessed into a format un-

Figure 9 shows the result of running on Alice’s and derstood by Deimos; we also have implemented an auto-

Bob's security policies. Notice that because Alice arffatéd translator to facilitate this.

Bob are peers, there are no new superiority relationshipdVe feel that our instantiation of the framework pre-
among the rules. The final result of the projection is a p&iénted in Section 3 illustrates that defeasible policy com-
icy that requires two security tokens: a SAML assertid#PSition can meet the goals set forth in Section 1. Our use
and a username token. Additionally, all messages mggpefea}smle logic makes the policies both relatlvel)_/ easy
include an HMAC-SHAL signature, and the body of th® SPecify and human readable. We were able to imple-
message must be encrypted with 128-bit AES. BecaljBgntY in such a way as to allow policy composition to
the policy applies to all types of messages the default pBf Performed automatically and our implementatiom of
icy for request, reply and fault are the same. Both Alice®dlows the merged policy to be projected into a format that
and Bob’s requirements theories accept this policy. TR&N be understood directly by WSE 2.0.

result of the projection functiom, is shown in Figure 10.

7 Web Services and Beyond

While the bulk of this paper focuses on using defeasi-

To test the logical reasoning framework presented in S&€ logic to combine WS-SecurityPolicy documents, the
tion 4, we have implemented a subset of this framewofkethods presented in this paper are also applicable to

6 Implementation

10



<policyDocument xmins="...Policy">
<mappings>
<endpoint uri="...Servicel.asmx">
<defaultOperation>
<request policy="#MergedPolicies" />
<response policy="#MergedPolicies" />
<fault policy="#MergedPolicies" />
</defaultOperation>
</endpoint>
</mappings>
<policies xmiIns:wsu="..
xmins:wss
xmins:wsp="...">
<wsp:Policy wsu:ld="MergedPolicies">
<wsp:All>
<wsse:SecurityToken>
<wsse:TokenType>
wsse:SAMLAssertion
</wsse:TokenType>
<wsse:Tokenlssuer>
myuniv/cs/securitygroup
</wsse:Tokenlssuer>
</wsse:SecurityToken>
<wsse:SecurityToken>
<wsse:TokenType>
wsse:UsernameToken
</wsse:TokenType>
</wsse:SecurityToken>
<wsse:Integrity>
<wsse:Algorithm Type="wsse:AlgSignature"
URI="...hmac-shal"/>
<wsse:Algorithm Type="wsse:AlgTransform"
URI="...enveloped-signature"/>

<wsse:TokenInfo>
<wsse:SecurityToken>
<wsse:TokenType>
wsse:UsernameToken
</wsse:TokenType>
</wsse:SecurityToken>
</wsse:TokenInfo>
<wsse:MessageParts Dialect="...wsse:path">
wsp:Body() wsp:Header(soap:Header) wse:Timestamp()
wse:UsernameToken() wse:Addressing()
</wsse:MessageParts>
</wsse:Integrity>
<wsse:Confidentiality>
<wsse:Algorithm Type="wsse:AlgSignature"
URI="...aes128_chc"/>
<wsse:KeylInfo>
<wsse:SecurityToken>
<wsse:TokenType>
wsse:UsernameToken
</wsse:TokenType>
</wsse:SecurityToken>
</wsse:KeylInfo>
<wsse:MessageParts Dialect="...wsse:path">
wsp:Body()
</wsse:MessageParts>
</wsse:Confidentiality>
</wsp:All>
</wsp:Policy>
</policies>
</policyDocument>
|

Figure 10: The resultingolicyDocument

to make assertions regarding timeouts and retransmission
intervals as well as acknowledgement intervals for a par-
ticular web service. Our defeasible policy composition
system could be easily adapted to handle the composi-
tion of WS-RM Policy documents. Additionally, it would

be very reasonable to expect that the requirements for se-
curity policies would have an effect on the requirements
for reliable messaging. For example, if the policy writers
want to use a heavy-duty encryption algorithm, it would
be important to ensure that inactivity timeouts account for
this. Within our system, it is trivial to write assertionsth
would allow an WS-RM Policy to be created with respect
to requirements for security.

7.2 Firewall Policies

Another possible use of defeasible policy composition in-
volves merging firewall policies. Consider the case where
a research lab shared by members of two different de-
partments within a university is protected by a firewall.
The researchers themselves would likely want some con-
trol over the types of traffic allowed to pass through the
firewall, as would the university and the network opera-
tions groups within their departments. Proposed firewall
policies and composition preferences could be expressed
in defeasible logic, while the partial ordering can ac-
count for any organizational structure. From these poli-
cies, an overall policy for the firewall which accounts for
each user’s preferences could be created using the meth-
ods discussed in this paper. Additionally, the efficiency
of defeasible logic implies that the firewall policy could
be regenerated often, allowing for the inclusion of time-
sensitive firewall rules. An area of closely related work
involves the examination of complex firewall policies to
locate possible conflicts [1]. Our technique is orthogo-
nal to this, in that the techniques presented in [1] can be
applied to the composite policy generated using defeasi-
ble policy composition to detect, for instance, extraneous
rules.

many other areas. In this section, we discuss additiofgoll Conclusions
applications of defeasible policy composition within the

realm of web services and an example application outs’&e ; o y
to perform automated policy composition. We defined an

of the web services domain.

this paper, we investigated the use of defeasible logic

abstract framework that augments a policy with meta-data

. . o describing how it should be composed with other such
7.1 Reliable Messaging Policies meta-policies. Because the composition preferences are

In February 2005, the WS-ReliableMessaging [14] Spe%qcoded in meta'-policies, we requ'ire a single composi-
ification, which focuses on the reliable delivery of medion ope'rgtor. This allows us to define afully-automated
sages, was introduced. As a complement to this Spé‘tq_mposmon procedure that also takes into account both
ficatio;l WS-RM Policy [6] allows system designers tfesource-specific context information and a partial order-
make assertions about their requirements with respecfd defined among the meta-policies. We then showed
message delivery. WS-RM Policy allows policy writerQOW this model can be applied to the composition of web

11



services security policies.

(7]

We then presented an instantiation of this model for the
composition of web service security policies. We showed
that this model can be used to compose any finite set of
meta-policies that can be expressed in the syntax pre-
sented in Section 4. This composite meta-policy can b%]
projected onto a WS-SecurityPolicy enforceable by Mi-
crosoft's web services extensions, WSE 2.0. We have im-
plemented a subset of this logical framework that can be
used to reason about the composition of policies contairpg]

ing securitytoken

predicates and have successfully

used these policies in WSE 2.0 web services. We also dis-
cussed additional applications both inside and outside of
the realm of web services.

[10]

Acknowledgements

Lee was supported by the NSF under grants 11S-0331707

CNS-0325951, and CNS-0524695 and by a Motordial]
Center for Communications Graduate Fellowship. Boyer
was partially supported by the MacArthur Foundation.

Boyer and Gunter were partially supported by NSF Grant
CCR-0208996 and ONR Grant NO0014-04-1-0562.

[12]

References

[1]

2]

3]

[4]

[5]

[6]

E. S. Al Shaer and H. H. Hamend. Discovery of
policy anomalies in distributed firewalls. WEEE [13]
INFOCOMM, 2004.

Amazon web services. Web Page, Jan. 2006w.

amazon.com/gp/aws/landing.html [14]

G. Antoniou, D. Billington, and M. J. Maher. On
the analysis of regulations using defeasible rules.
In HICSS '99: Proceedings of the Thirty-second
Annual Hawaii International Conference on System
Sciences-Volume page 6033, 1999.

G. Antoniou and A. Ghose. What is default reasor[1—
ing good for? applications revisited. 2nd Hawaii
International Conference on System Sciendes.
1999.

G. Antoniou, M. J. Maher, and D. Billington. Defea{16]
sible logic versus logic programming without nega-
tion as failure. Journal of Logic Programming
42(1):47-57, 2000.

[17]
S. Batres and C. Ferris (Editors). Web ser-
vices reliable messaging policy assertlon(WS—
RM Policy). Specification, Feb. 200518
msdn.microsoft.com/library/en-us/
dnglobspec/html/WS-RMPolicy.pdf

12

E. Bertino, S. Jajodia, and P. Samarati. Supporting
multiple access control policies in database systems.
In IEEE Symposium on Security and Privapgges
94-109, 1996.

K. Bhargavan, C. Fournet, and A. D. Gordon. Veri-
fying policy-based security for web services.1lith
ACM conference on Computer and Communications
Security pages 268-277, Oct. 2004.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse.
Verified interoperable implementations of security
protocols. InComputer Security Foundations Work-
shop (CSFW 06 )enice, Italy, July 2006. IEEE.

C. Bidan and V. Issarny. Dealing with multi-policy
security in large open distributed systems.Euro-
pean Symposium on Research in Computer Security
(ESORICS)pages 51-66, 1998.

] P. Bonatti, S. D. C. di Vimercati, and P. Samarati.
A modular approach to composing access control
policies. In7th ACM Conference on Computer and
Communications Security (CCS 'Q0pages 164—
173, Nov. 2000.

L. Cholvy and F. Cuppens. Analyzing consistency
of security policies. In8th IEEE Computer Soci-
ety Symposium on Research in Security and Privacy
1997.

D. Eastlake and J. Reagle (Chairs). W3C XML-
DSig working group. Web Page, Jan. 2008ww.
w3.org/Signature/

C. Ferris and D. Langworth (Editors). Web
services reliable  messaging  protocol(WS-
ReliableMessaging). Specification,
Feb. 2005. msdn.microsoft.com/
library/en-us/dnglobspec/html/
WS-ReliableMessaging.p%df

15] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.

The physiology of the grid: An open grid services
architecture for distributed systems integration. In
Open Grid Service Infrastructure Working Group,
Global Grid Forum Jun. 2002.

K. Frankish. Non-monotonic inference. Trhe En-
cyclopedia of Language and LinguisticBlsevier,
second edition, 2005.

Google web APIs. Web Page, Jan. 200&ww.
google.com/apis/

G. Governatori, A. H. M. ter Hofstede, and P. Oaks.
Defeasible logic for automated negotiation. In
P. Swatman and P. M. Swatman, editdPspceed-
ings of CollECTeRR2000.



[19] G. Governatori, A. H. M. ter Hofstede, and P. Oak§31] D. Nute. Defeasible logic.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Is defeasible logic applicable? In G. Antoniou and
G. Governatori, editorglroceedings of the 2nd Aus-

tralasian Workshop on Computational Logjtages [32] J- Reagle (Chair).

47-62, Brisbane, January 2001. Queensland Univer-
sity of Technology.

B. N. Grosof, Y. Labrou, and H. Y. Chan. A declar[33]

ative approach to business rules in contracts: courte-
ous logic programs in XML. IACM Conference on
Electronic Commercegpages 68—77, 1999.

J. Halpern and V. Weissman. Using first-order logic
to reason about policies. IEEE Computer Security
Foundations Workshop (CSFW’Q3)un. 2003.

S. Horrell. Web services enhancements 2.0
support for WS-Policy. Web Page, July 2004,
msdn.microsoft.com/library/en-us/ [3
dnwse/html/wse2wspolicy.asp

C. Kaler and A. Nadalin (Editors). Web ser-
vices federation language (WS-Federation).
Specification, Jul. 2003.  www-106.ibm.

com/developerworks/webservices/
library/ws-fed/

E. C. Lupu and M. Sloman. Conflicts in policy-
based distributed systems managemi&EE Trans-

actions on Software Engineering@5(6):852—-869,

1999.

K. D. Lux, M. J. May, N. L. Bhattad, and C. A.
Gunter. WSEmail: Secure internet messaging based
on web services. Innternational Conference on
Web Service®rlando, FL, July 2005.

M. J. Maher. Propositional defeasible logic has lin-
ear complexity. Theory and Practice of Logic Pro-
gramming 1(6):691-711, 2001.

M. J. May, W. Shin, C. A. Gunter, and I. Lee. Se-
curing the drop-box architecture for assisted living.
In Formal Methods in Software Engineering (FMSE
'06), Alexandria, VA, November 2006. ACM.

M. McDougall, R. Alur, and C. A. Gunter. A model-
based approach to integrating security policies for
embedded devices. KCM EMSOFT Sept. 2004.

Michael McDougall. Modeling and Analyzing Inte-
grated Policies PhD thesis, University of Pennsyl-
vania, 2004.

A. Nadalin (Editor). Web services security pol-
icy language (WS-SecurityPolicy). Web Services
Specification, 2002vww.verisign.com/wss/
WS-SecurityPolicy.pdf

13

5] J. Schlimmer (Editor).

[36]

[37]

I14th International
Conference on Applications of Prolp@ct. 2001.

W3C XML encryption work-
ing group. Web Page, Jan. 2006ww.w3.org/
Encryption/2001/

D. M. Reeves, M. P. Wellman, B. N. Grosof, and
H. Y. Chan. Automated negotiation from declarative
contract descriptions. 17th National Conference
on Artificial Intelligence, Workshop on Knowledge-
Based Electronic Markets (KBEM)ul. 2000.

34] A. Rock. Deimos: A query answering defeasible

logic system. Technical report, Griffith University,
Mar. 2004. www.cit.gu.edu.au/ arock/
defeasible/doc/Deimos-long.pdf

Web services policy
framework (WS-Policy). Web Services Specifi-
cation, 2004. ftp://www6.software.ibm.
com/software/developer/library/

ws-policy.pdf

C. Sharp (Editor). Web services policy at-
tachment (WS-PolicyAttachment). Specifica-
tion, Sept. 2004. msdn.microsoft.com/
library/en-us/dnglobspec/html/
ws-policyattachment.as%p

SOAP version 1.2. W3C Recommendation, Jan.
2006.www.w3.0rg/TR/soapl2



