
Defeasible Security Policy Composition for Web Services∗

Adam J. Lee, Jodie P. Boyer, Lars E. Olson, and Carl A. Gunter†

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

The ability to automatically compose security policies
created by multiple organizations is fundamental to the
development of scalable security systems. The diversity
of policies leads to conflicts and the need to resolve prior-
ities between rules. In this paper we explore the concept
of defeasible policy composition, wherein policies are rep-
resented in defeasible logic and composition is based on
rules for non-monotonic inference. This enables policy
writers to assert rules tentatively; when policies are com-
posed the policy with the firmest position takes prece-
dence. In addition, the structure of our policies allows for
composition to occur using a single operator; this allows
for entirely automated composition. We argue that this
provides a practical system that can be understood by typ-
ical policy writers, analyzed rigorously by theoreticians,
and efficiently automated by computers. We aim to par-
tially validate these claims here with a formulation of de-
feasible policy composition for web services, an emerging
foundation for B2B commerce on the World Wide Web.

1 Introduction

Large-scale security systems typically entail cooperation
between domains with differing policies. Developing
practical, sound, and automated ways to compose policies
to bridge these differences is a long-standing problem.
One of the key subtleties is the need to deal with incon-
sistencies and defaults where one organization proposes
a rule on a particular feature and another has a different
rule or expresses no rule. A general approach is to assign
priorities to rules and observe the rules with the highest
priorities when there are conflicts. However, policies with
priorities may be difficult to write and understand. For
instance, if a priority is represented as a numerical value
between 1 and 10, when should a policy designer use a
priority of 5 rather than 6? These difficulties may arise
when dealing with a partner organization that has its own

∗In Formal Methods in Software Engineering (FMSE ’06), Alexan-
dria, VA, November 2006. ACM.

†Email addresses:{adamlee,jpboyer,leolson1,cgunter }
@uiuc.edu

meanings for these priorities. This problem is related to
the concept of “common sense” reasoning, in that an ana-
lyst needs to assert policies with a limited degree of com-
mitment, just as a party may need to make a judgment of
facts tentatively until greater information reveals faults.

One area in which the need for policy composition in
large-scale systems is emerging involves the specifica-
tion of security policies forweb services. As a result of
the efforts of standards bodies such as OASIS and the
World Wide Web Consortium (W3C), SOAP-based web
services [37] are becoming more prevalent on the Inter-
net. Web services are being explored and deployed in a
wide range of areas, including business-to-business pur-
chasing, web mining [17, 2], grid computing [15], and
electronic mail messaging [25]. To address security con-
cerns, OASIS and the W3C have released standards and
specifications regarding many aspects of web services se-
curity, including confidentiality [32], integrity [13], feder-
ation [23], and the establishment of security policies [30].

The WS-SecurityPolicy specification [30] was devel-
oped to allow providers of web services to specify the
security requirements for the services that they deploy.
For instance, a service provider may require that a request
contain a particular type of cryptographic token to be used
for authentication purposes, or that a certain part of the re-
quest be encrypted using a particular algorithm. While the
WS-SecurityPolicy specification allows service providers
the freedom to specify such policies, policies defined ac-
cording to this specification lack the semantics necessary
for automated composition. Due to rising interest in the
formation of dynamic federations and the deployment of
web services that must satisfy the security policies of mul-
tiple members of these federations, addressing this prob-
lem is a matter of increasing importance.

Three principal requirements arise in addressing the
need to compose web service security policies. First, the
approach must be simple and intuitive to policy design-
ers. Second, the approach should have a formal founda-
tion that allows careful reasoning about the correctness
of algorithms and consequences of composition in bound-
ary cases that could be exploited by attackers. Third, en-
forcement should be efficiently implementable on existing
programming platforms and consistent with the existing

1

or proposed standards. These requirements will generally
hold in other applications as well.

In this paper, we introducedefeasible policy compo-
sition. In this system, policy writers construct meta-
policies describing both the policy that they wish to en-
force and annotations describing their composition pref-
erences. These annotations can indicate whether certain
policy assertions are required by the policy writer or, if
not, under what circumstances the policy writer is willing
to compromise and allow other assertions to take prece-
dence. Meta-policies are specified in defeasible logic, a
computationally-efficient non-monotonic logic developed
to model human reasoning. Because composition prefer-
ences are specified along with the policies in our system,
a single composition operator can be used to combine any
two meta-policies. This offers several advantages over ex-
isting policy composition proposals, which typically de-
fine several low-level composition operations and require
a human to oversee the composition process by specifying
which operations must be used to combine a collection of
sub-policies:

• The composition rules for a given policy need only
be specified once, rather than each time the policy is
composed with other policies.

• Policy composition can be entirely automated. Since
composition preferences are encoded in the meta-
policies themselves and only one composition op-
eration is provided, an automated composition pro-
cedure can combine any arbitrary collection of sub-
policies.

We cannotprove that this method is the best way to
compose policies1, but defeasible logic has been used suc-
cessfully in diverse applications and offers a fresh per-
spective on policy composition. In addition, defeasible
policy composition affords us a formal framework within
which to reason about the outcomes of policy composi-
tions. To ensure that this technique can be efficiently
implemented with existing platforms and standards, our
approach involves compilation to policies supported by
major platforms. Our study is based on Microsoft .NET
Web Service Extensions version 2.0 (WSE 2.0), but other
platforms, standards, and web service policy specification
systems are likely to be suitable.2

The paper is organized as follows. In Section 2, we
present a brief overview of WS-SecurityPolicy, defeasi-
ble logic, and other related work to set the context in

1This can be compared to a challenge likeproving that Java is the
best general-purpose programming language.

2We chose to use WSE 2.0 instead of WSE 3.0 because the latter
does not support WS-Policy and related standards. These standards are
more expressive than the policy framework that has been implemented in
WSE 3.0 and therefore provide a more interesting test case for defeasible
policy composition.

which the policy composition problem emerges. Sec-
tion 3 presents an abstract model that can be used to rea-
son about the composition of WS-SecurityPolicies. We
describe an instantiation of this model based on defea-
sible logic in Section 4. Section 5 steps through an ex-
tended example policy composition using our defeasible
logic framework. We discuss our implementation of this
logical framework in Section 6 and then examine potential
uses of defeasible policy composition in other domains in
Section 7. We present our conclusions in Section 8.

2 Background and Related Work

In this section, we set the context of the policy com-
position problem through an overview of the WS-
SecurityPolicy specification and defeasible logic. Addi-
tionally, we discuss related work in the area of logical
policy composition.

2.1 WS-SecurityPolicy 1.0

Consider a set of business processes communicating over
the Internet via SOAP web services. These software
components pass XML messages formatted in SOAP en-
velopes. Each envelope consists of a header which con-
tains routing information and other meta-data, and a body
which contains information about the service being re-
quested. The contents of SOAP envelopes can be pro-
tected using an optional security header which may con-
tain security tokens, such as X.509 certificates (public-
key certificates in an ISO format) or SAML assertions
(security tokens in an XML format as specified by OA-
SIS). This security header can also contain key material
or signed digests used to protect the confidentiality and in-
tegrity of the enclosed SOAP message. Additionally, the
sender may encrypt or sign any or all parts of the enclosed
SOAP message.

The service provider may wish to specify that requests
directed to their services meet certain security require-
ments. For instance, they could require that a request
contain a particular type token for authentication purposes
or that a certain part of the request be encrypted using
a specific algorithm. WS-SecurityPolicy is a web ser-
vice specification developed by Microsoft, IBM, RSA,
and VeriSign to give service providers the ability to spec-
ify the security requirements of their web services.

WS-SecurityPolicy is designed as an extension to WS-
Policy [35], a specification used to define the charac-
teristics, capabilities, and requirements for an XML-
based web service. In addition, WS-Policy provides a
way to combine several assertions using theExact-
lyOne , All , or OneOrMore operators. With WS-
SecurityPolicy, a developer can specify requirements re-

2

<wsp:Policy xml:base="http://.../policies"
wsu:Id="P1">

<wsp:All>
<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>
</wsse:SecurityToken>
<wsse:Integrity>

<wsse:Algorithm Type="wsse:AlgSignature"
URI="http://.../xmldsig#rsa-sha1" />

</wsse:Integrity>
</wsp:All>

</wsp:Policy>

Figure 1: A sample WS-SecurityPolicy document

lating to the security tokens presented to the service, and
the confidentiality and integrity of incoming messages.
The requirements of the service provider are written as
an XML document, an example of which is shown in Fig-
ure 1. This example states that the requester must present
a Kerberos version 5 ticket-granting ticket and include a
RSA-signed SHA1 hash of the message.

WS-SecurityPolicy is implemented as part of the
current Microsoft .NET web service extensions (WSE
2.0), which also defines thepolicyDocument
XML element [22]. This is used instead of WS-
PolicyAttachment [36] to tie a policy to a specific web
service. Specifically,policyDocument is used to de-
fine policies that are applied to service requests, replies,
and faults.

2.2 Defeasible Logic

Defeasible logic is a type of non-monotonic logic. This
family of logics allows previously valid conclusions to
be withdrawn in the event that new information is pre-
sented. Non-monotonic logics were developed to emulate
common-sense reasoning. For example, if we know that
Sam is a dog, it is reasonable to assume that he can bark.
However, if we later find out that Sam is sick we may want
to retract our previous assumption about Sam’s ability to
bark.

A defeasible theory consists of three parts: facts, rules,
and a superiority relationship. Facts are indisputable
statements such asterrier(Sam), which states that “Sam
is a terrier.” Defeasible logic has three types of rules:

Strict Rules Strict rules are rules in the classical sense,
such as “terriers are dogs.” Formally:

terrier(X) → dog(X)

Defeasible Rules Defeasible rules are used to draw con-
clusions that may later be retracted. For example
“dogs typically bark” is a defeasible rule which is
written formally as:

dog(X) =⇒ bark(X)

Defeater Rules Defeater rules provide contrary evidence
to defeasible rules. For example, “if a dog is sick, it
might not be able to bark.” More formally:

sick(X) ¬bark(X)

It is important to note that defeater rules cannot be
used to draw conclusions, they simply prevent con-
clusions. A dog being sick is not sufficient evidence
to prove that the dog cannot bark, however we do
not want to jump to the conclusion that it indeed can
bark.

The superiority relationship is a partial ordering of the
rules in the defeasible theory. For example:

basenji(Jasmine)
basenji(X) → dog(X)
r : dog(X) =⇒ bark(X)
r′ : basenji(X) =⇒ ¬bark(X)
r′ ≻ r

Without the superiority relation, we would not be
able to conclude eitherbark(Jasmine) or¬bark(Jasmine).
The superiority relationship gives precedence to the rule
that Basenjis cannot bark and allows us to conclude
¬bark(Jasmine).

In the policy composition system presented in this pa-
per, we have chosen to represent WS-SecurityPolicies and
rules regarding their composition as defeasible logic the-
ories. We chose to use a non-monotonic logic because hu-
man reasoning is, by nature, not monotonic [16]. Humans
tend to make decisions based upon partial evidence and
revise their conclusions as new facts come to light [31].
We argue that specifying security policies and their com-
position rules using a non-monotonic logic is more natu-
ral than using a monotonic logic, as users need not trans-
late their inherently non-monotonic reasoning into strictly
monotonic rules. Although interesting, a user study inves-
tigating this argument is outside the scope of this paper.

The system presented in this paper uses defeasible
logic, rather than another non-monotonic logic, because
defeasible logic has been shown to be computationally ef-
ficient [26] and a number of tools exist to automate rea-
soning about defeasible theories. Additionally, defeasible
logic has been used to solve a number of related prob-
lems in requirements engineering and legal decision sup-
port [4], planning and learning [31], and automated ne-
gotiation during auctions and brokered sales [18]. Lastly,
according to [5], defeasible logic is at least as expressive
as Courteous Logic Programs, which are used in [20, 33]
to define and prioritize rules, a problem closely related to
security policy composition.

3

2.3 Related Work

Policy specification in defeasible logic, the use of for-
mal methods for web services, and policy composition
are three areas closely related to the work presented in
this paper. In this section, we present a survey of previous
contributions in these areas.

In [19], Governatori, ter Hofstede, and Oaks discuss
the use of defeasible logic for a brokered sale and bar-
gaining. Antoniou, Maher, and Billington [3] also use de-
feasible logic to represent administrative regulations con-
cerning, for example, exam scheduling. Cholvy and Cup-
pens [12] propose the use of deontic logic, another type of
non-monotonic logic, for specifying and reasoning about
policies. None of these works consider policy composi-
tion.

McDougall, Alur, and Gunter [28, 29] introduced the
idea of combining policies using defeasible logic. Their
work focuses on the application of this idea to policies
specifically designed for financial transactions on a smart
payment card, and it is supported by a model that focuses
on decision-making based on state generated by trans-
action histories. The current work instead treats policy
merging for long-lived server functions and is strongly in-
fluenced by issues like hierarchy and the use of existing
standardized policies. The resulting system therefore has
a somewhat different underlying model despite the fact
that both use defeasible logic.

There has been relatively little work thus far on the
application of formal methods to reasoning about WS-
SecurityPolicies. TulaFale [8] is a tool that verifies policy-
based security from Web services. It has been used to
prove security properties for a messaging protocol based
on web services [25] and protocols for a web service ar-
chitecture for collecting medical information about people
in their homes [27]. Recent work [9] has demonstrated a
web service programming technique that enables rigorous
verification together with production quality executables.
However, none of these works discuss the composition of
policies.

Several other sources describe the problem of policy
composition. In particular, Halpern and Weissman [21]
present a mechanism for using a fragment of first-order
logic to specify a security policy, which accommodates
composing policies. They are able to identify when poli-
cies can be logically combined without contradiction;
however, if contradictions do occur then the policies can-
not be combined. Our work allows contradictions to oc-
cur, and specifies a framework for resolving them.

Bonatti, Vimercati, and Samarati [11] present a logical
framework for the specification and composition of ac-
cess control policies expressed as (subject, object, access)
tuples. They specify several operators such as addition,
conjunction, subtraction, and overriding and allow policy

administrators to specify the ways in which sub-policies
written by different administrative domains within an or-
ganization shall be combined. In this paper, we present a
similar logical framework, however with a different focus
and a different level of abstraction. Our system focuses
on combining documents specifying the properties of se-
cure systems, such as the required types of authorization
token or levels of encryption, rather than determining a
complete list of authorized users. In addition, we allow
policy writers to encode their composition preferences in
the policies themselves and provide a general composition
operator that combinesany two such policies. Our sys-
tem can encode operators such as those presented in [11]
while also enabling more advanced features such as prim-
itive forms of policy negotiation.

Several other authors (e.g., Bidan and Issarny [10];
Bertino, Jajodia, and Samarati [7]; and Lupu and Slo-
man [24]) address the problem of conflict resolution as
it emerges in access control and management policy com-
position. Conflicts in access-control policies often con-
cern users that can satisfy different roles or accessible ob-
jects matching contradicting rules. Our notion of poli-
cies, while certainly related to access-control, takes a dif-
ferent approach by defining the content of a document,
rather than specifying access rules. This leads to different
types of possible conflicts, requiring different approaches
to conflict resolution.

3 Framework

In this section, we describe some of the problems that
emerge while attempting to compose security policies by
examining the possible compositions of several web ser-
vices security policies. We then present an abstract frame-
work that addresses this problem.

3.1 A Motivating Example

Suppose that Alice and Bob each work in different de-
partments within the same organization. In addition, sup-
pose that Carol manages both of these departments. We
now imagine a scenario in which Alice and Bob collab-
orate on a cross-departmental project to develop a web
service. It is clear that this web service must abide by Al-
ice’s, Bob’s, and Carol’s security policies, as Alice and
Bob developed the web service jointly and both individu-
als fall under the management of Carol. Consider the case
in which all three individuals have different requirements
for the security of SOAP requests sent to this web service,
specifically, those listed in the first column of Figure 2.

Because all three individuals have different require-
ments, there are several conflicts that must be resolved
before their policies can be composed. First, since Al-

4

Policies Annotations

Alice
security token

X.509 certificate unless otherwise overruled
issued by MyUniv/CS
used to encrypt/decrypt session key

encryption
single-use, generated by client encrypted by X.509 key
3-DES session key unless otherwise overruled

Bob
security token

SAML assertion in case of low computing capacity
so X.509 isn’t required

issued by MyUniv/CS
encryption

any algorithm
session key encrypted with

password-based algorithm

Carol
security token

either SAML or X.509 or stricter requirements
issued by MyUniv any MyUniv organization

message integrity

Figure 2: Three policies to be merged

ice and Bob have no precedence over each other, which
type of security token should we require? If we use a
conjunction semantics for composition, we would require
both types of security tokens and require that the session
key be encrypted twice, once for each algorithm, which
may be unnecessary. If we use a disjunction semantics,
we would allow either a certificate or a SAML assertion
or both. Note that either security token, by itself, fails to
satisfy both Alice’s and Bob’s policies.

In addition, Carol’s policy should certainly take prece-
dence over Alice’s and Bob’s policies in case of any con-
flicts, but what exactly does that mean? If Bob requires
a SAML assertion and Carol allows either a SAML as-
sertion or an X.509 certificate, do we simply require a
SAML assertion since it satisfies both policies? Or, is
Carol actually insisting that X.509 certificates always be
accepted, and that her policy should overrule Bob’s? Sim-
ilarly, since Alice requires security tokens to be issued by
MyUniv/CS and Carol only requires them to be issued by
MyUniv, which assertion should be used? Or, should the
merged policy require two X.509 certificates, one from
each issuer?

The second column of Figure 2 shows how annota-
tions help eliminate these ambiguities and specify how the
policies should be combined. One of the annotations for
Bob’s policy even includes some context about the client’s
computing capacity to be considered. The composite pol-
icy, in this case, depends on this context information.
In the case of a low-capacity client, a SAML assertion
with generic shared-key encryption using a password-
based key and message integrity will be used, otherwise
an X.509 certificate with 3-DES encryption and message
integrity will be used.

Entity 1

δ1

ρ
7−→ π1

Local
resource

Entity k

δk
ρ

7−→ πk

Local
resource�

(δi1, δj1
)

...

(δin, δjn
)

P = (δ1, . . . , δk)

γ(〈P,�〉) = δ′
ρ

7−→ π′

· · ·

Shared
resource

Figure 3: Overview of mathematical framework

3.2 Mathematical Framework

We now introduce an abstract model that
allows us to reason about the composi-
tion of security policies, such as WS-
SecurityPolicies, and addresses the types of prob-
lems illustrated in our example. Let us denote the set
of all such security policies byΠ. Rather than each
entity storing a security policy,π ∈ Π, as its internal
policy representation, we propose that it instead stores a
semantically-enhanced policy,δ. We will denote the set
of all such policies by∆. A policy δ ∈ ∆ is a meta-policy
that describes both the requirements enforced byδ and
the means through whichδ should be composed with
other meta-policies.

To maintain compatibility with currently deployed
standards, we cannot require that applications understand
a meta-policy directly. Instead, we define a projection
function, ρ : ∆ → (Π ∪ ⊥). For a givenδ ∈ ∆, ρ(δ)
gives us the uniqueπ ∈ Π enforced byδ. If δ cannot be
projected onto aπ ∈ Π, ρ will return the value⊥.

Because meta-policies specify the way that they are to
be combined with other policies, we can define a single
composition operation in this system. Let us define an or-
dered policy structure as a pair〈P,�〉 whereP ∈ 2∆ is
a set of meta-policies and� is a partial ordering onP .
Let P be the collection of all such ordered policy struc-
tures. The existence of� allows us to account for organi-
zational hierarchies or other superiority relationships that
exist between policies or their authors. Note that the pol-
icy hierarchy induced by� can take the form of a total
ordering of policies, an ad-hoc peering arrangement, or
some arbitrary structure, allowing complete flexibility in
the situations in which our framework is applicable. We
then defineγ : P → ∆ to be the function which produces

5

a composite meta-policy from an ordered policy structure.
Because the annotations (such as those in the second col-
umn of Figure 2) already specify how the policy should
combine with other policies,γ is the only composition
operator.

Figure 3 illustrates how a group ofk entities can use
the operations described in this section. Each entityj

contains a local meta-policyδj . To enforce this pol-
icy on some local resource, the entity simply computes
ρ(δj) = πj and uses its existing protection framework to
enforceπj . However, if the group ofk entities wishes to
define a security policy to apply to some resource shared
among them, the composition of their individual secu-
rity policies must be computed. Given a partial order,�,
on the set of meta-policiesP = {δ1, ..., δk}, the entities
can compute their composite meta-policyγ(〈P,�〉) = δ′.
The group can then useδ′ to compute the security policy
ρ(δ′) = π′ that will protect their joint resource.

The precise generation of� is outside of the scope of
this paper, though one could imagine it being agreed upon
by thek entities at the time that their federation is formed.
For example, in the case where� reflects an organiza-
tional hierarchy, it may be mandated by corporate policy.

4 Policy Composition Model

In this section, we describe an instantiation of the pol-
icy composition framework described in Section 3.2 based
on defeasible logic. Our instantiation is compatible with
WSE 2.0, although this framework could be applied to
other domains as well. In the context of this instantiation,
we first present the syntax for a set of defeasible logic
atoms expressing WS-SecurityPolicy assertions. These
atoms will be used to construct full defeasible logic ex-
pressions. We next discuss the structure of meta-policies
in the set∆, and define algorithms forρ andγ appropriate
to our instantiation. We then show that any finite ordered
policy structure that can be described in this model can be
composed in an automated fashion to form a single meta-
policy, δ′.

4.1 Syntax for WS-SecurityPolicy Asser-
tions

Rather than reasoning about atomic propositions, we
define complex structures, to represent the WS-
SecurityPolicy assertions defined in [30]. Each assertion
corresponds to a structure, with its defined sub-elements
as attributes. While we will only define structures for
theSecurityToken , Integrity , andConfiden-
tiality assertions, we could easily define theSecu-
rityHeader and MessageAge structures following
the same pattern. TheVisibility assertion is some-

what different, because it is logically equivalent to the
negation of theConfidentiality assertion. We leave
this for future work.

We define thesecuritytoken structure as:

securitytoken(TokenType, TokenIssuer, {Claims },
{Ext })

where each attribute gives the value of
the corresponding tags of the Security-
Token assertion. The integrity and
confidentiality structures are defined similarly:

integrity({Algorithms }, TokenInfo, {Claims },
{MessageParts }, {Ext })

confidentiality({Algorithms }, KeyInfo,
{MessageParts }, {Ext })

For example, the following structure is used to repre-
sent an X.509 certificate issued by MyUniv. We use the
free variablesCandE to indicate that there are no restric-
tions on the token’s claims or extensible elements:

securitytoken(’x509’, ’myuniv’, C, E)

Similarly, to require an RSA enveloped signature on the
entire message using a security token issued by MyUniv,
we might use the following structure:

integrity({algorithm(’signature’,‘rsa’),
algorithm(’transform’,’enveloped’) },
securitytoken(T,’myuniv’,C1,E1), C2,
{messageparts(’xpath’,S,’/’), E2 })

Note that we abuse the notation of predicate logic in
two ways. First, we allow set-valued attributes, such as
{Claims }. Second, theTokenInfo and KeyInfo
attributes are complex structures rather than atomic val-
ues. In fact, WS-SecurityPolicy allows these values to be
SecurityToken assertions themselves; thus, we allow
these attributes to besecuritytoken structures. Sim-
ilarly, theAlgorithms andMessageParts attributes
are sets of complex values. It is possible to make the nota-
tion conform to regular predicate logic: for example, we
could define a separate predicate forClaims , with an
attribute that links it to thesecuritytoken structure.
However, we think the chosen notation is more readable.

In WSE 2.0, separate policies may be defined
for request, reply and fault messages. We de-
fine variations of the above structures that allow
users to specify that a particular assertion is bound
only to a particular class of messages (e.g., the
request securitytoken structure describes secu-
rity token requirements for request messages only). These
variations allow users to specify request, reply, and fault
policies that are dependent on one another, for example,
“I will accept UsernameTokens in the request policy if we
require X.509 certificates in the response policy.” A struc-
ture without arequest , reply , or fault prefix ap-
plies to all three policy types.

6

δreq :
hassecuritytoken,hasencryption → satisfied
securitytoken(’SAML’,’myuniv/CS’,C,E)

→ hassecuritytoken
.
.
.

δreas:
mobile ⇒ securitytoken(’SAML’,’myuniv/CS’,C,E)
securitytoken(’SAML’,I,C,E)

; ¬securitytoken(’X509’,I1,C1,E1)
.
.
.

Figure 4: Bob’s policy represented in defeasible logic

4.2 Defeasible Logic Policy Representation

Though the above structures can be used in log-
ical statements, deciding the semantics of defea-
sible rules based on these structures is a non-
trivial problem. For example, if we can prove
request securitytoken(’x509’, ’myu-
niv’, C, E) , does it indicate that requests containing
an X.509 certificate issued by MyUniv are merely
acceptable, or that such a certificate is required?

We solve this problem by definingδ as a tuple of the-
ories 〈δreq, deltareas〉. δreq defines the requirements of
the policy, andδreas defines the “reasoning” behind the
policy, or the annotations of each assertion. We also al-
low the use of custom-defined propositions to account for
any context information. As an example, Figure 4 illus-
trates a portion of Bob’s policy from Figure 2. The part
of δreq shown states that a security token and encryption
are required, and that a SAML assertion issued by MyU-
niv/CS is a valid security token.δreas includes a custom
proposition,mobile , which, if true, helps conclude that
a SAML assertion will be accepted and prevents the pol-
icy from requiring an X.509 certificate.

4.3 The ρ Function

Recall from Section 3.2 that theρ function is used
to project a meta-policy,δ, onto the security pol-
icy, π, that is to be enforced. In our logical in-
stantiation of the framework presented in Section 3.2,
ρ projects our logical meta-policies onto WSE 2.0
policyDocument s that describe the set of security
policies protecting access to a given web service. This
function can be computed automatically by using existing
reasoning tools, and allows our framework to be applied
directly to a concrete specification and implementation,
namely WSE 2.0. Theρ function has two distinct phases:
logical derivation and XML generation. Figure 5 presents
pseudocode forρ.

The first step of the logical derivation phase is to deter-
mine the set of all conclusions,C, that can be derived from

1: Function ρ(δ = 〈δreq, δreas〉 ∈ ∆) =
2: {# Phase 1: Logical Derivation}
3: LetC = the set of all conclusions that can be derived fromδreas

4: Let S = {} {# S will be the set of sets of conclusions that
satisfyδreq}

5: for all C ∈ 2C do
6: Let δ′

req
= δreq ∪ C

7: if we can derivesatisfied in δ′
req

then
8: S = S ∪ {C}
9: end if

10: end for
11: if S == {} then
12: return ⊥ {# Cannot output a validπ}
13: end if
14:
15: {# Phase 2: Generate XML}
16: Output(<policyDocument> with namespace declarations

and mappings header)
17: I =

⋂
S

18: for all prefix∈ {request , response , fault } do
19: Output(prefix-specific header tags)
20: I′ = {i ∈ I | i is applicable to messages of typeprefix}
21: if I′ 6= {} then
22: Output(<All>)
23: for all i ∈ I′ do
24: Output(DefeasibleToAssertion(i))
25: end for
26: Output(</All>)
27: end if
28: Output(<ExactlyOne>)
29: for all S ∈ S do
30: Output(<All>)
31: for all s ∈ (S \ I) applicable to messages of typeprefix

do
32: Output(DefeasibleToAssertion(s))
33: end for
34: Output(</All>)
35: end for
36: Output(</ExactlyOne>)
37: Output(prefix-specific footer tags)
38: end for
39: Output(</policyDocument>)

Figure 5: Pseudocode for theρ function

δreas, the reasoning theory ofδ. This operation is lin-
ear in the number of propositions in the system, as shown
in [26]. Lines 5–10 determine all of the subsets ofC that
satisfy the requirements ofδ. For eachC ∈ 2C , we con-
struct a new requirements theory,δ′req, which contains the
old requirements theory,δreq, along with one fact for each
conclusion in the setC, as shown on line 6. If we can con-
cludesatisfied in this newδ′req, then we add the set
C to the set of setsS. If S is empty after this process
completes for each subset ofC, then we cannot generate
a WS-SecurityPolicy that meets the requirements of the
meta-policyδ, soρ returns the value⊥.

If S is non-empty we proceed to generate the XML

7

1: Function γ∗(α = 〈αreq, αreas〉 ∈ ∆, β = 〈βreq , βreas〉 ∈
∆,�) =

2: if α � β then
3: γ∗(β, α,�)
4: end if
5: Rewrite rule labels inα andβ to ensure uniqueness
6: if β � α then
7: {# α is of higher priority}
8: Extend the rule priority partial ordering to allow defeaters in

α to block conclusions fromβ
9: Extend the rule priority partial ordering to allow conclusions

in α to take precedence over conclusions that they can scope
in β

10: end if
11: δ′

reas
= αreas ∪ βreas

12: δ′
req

= αreq ∪ βreq

13: return δ′ = 〈δ′
req

, δ′
reas

〉

Figure 6: Pseudocode for theγ∗ function

representation of thepolicyDocument . This pro-
cess takes place in lines 15–39 of Figure 5. Note
that the functionOutput() writes its argument to the
policyDocument being generated and the func-
tion DefeasibleToAssertion()carries out the straightfor-
ward task of converting a logical fact to its corre-
sponding WS-SecurityPolicy assertion. For each pos-
sible message type (request, response, or fault), the
loop on lines 18–38 generates the portion of the
policyDocument relating to this message type. Lines
17–27 extract the intersection of the possible ways to sat-
isfy δreq and generate a corresponding<All> clause for
the current message type. Lines 25–33 generate an<Ex-
actlyOne> clause describing the requirements needed
in addition to those addressed by the above<All> clause.

4.4 The γ Function

Given a finite setP ⊂ ∆ of policies to compose and�,
a partial ordering onP , the functionγ composes the meta-
policies inP to construct a new meta-policyδ′. Here we
present the details of a function,γ∗, which composes two
meta-policies, given a priority relation between them (see
Figure 6). We then discuss how to defineγ through re-
peated applications ofγ∗. As with ρ, this function can be
computed automatically though the use of existing tools,
allowing the composition of meta-policies to occur with-
out human intervention.

Composing two meta-policiesα, β ∈ ∆ is not a diffi-
cult task. In the case thatα andβ are not related by the
partial ordering�, we simply ensure that the rule labels
in the two reasoning theoriesαreas andβreas are unique
and collect these rules to form a new reasoning theory.
We then create a requirements theory that enforces the re-

quirements of bothαreq andβreq.
The case in whichβ � α is similar, although it re-

quires extensions of the rule priority partial order defined
in αreas. This partial order needs to be extended to give
each defeater ruled ∈ αreas precedence over defeasible
rules inβreas which can possibly be defeated byd. Ad-
ditionally, the rule priority partial order needs to be ex-
tended to give each rule concludingc in αreas precedence
over each rule inβreas whose conclusion can be scoped
by eitherc or¬c.

It can be shown thatγ∗ can be used iteratively to merge
any set of meta-policiesP . We first show that given a
finite ordered policy structure which forms a set of trees,
we can recursively define the partial functionγ̂ : P → ∆
that iteratively appliesγ∗ to compute the composition of
all meta-policies in the structure. Specifically,γ̂ : 〈P,�
〉 7→ δ′, whereδ′ is defined as follows:

Base case (|P | = 2): Let P = {δ1, δ2}. Then δ′ =
γ∗(δ1, δ2,�).

Recursive case (|P | = n > 2): Here we must consider
three possible cases.

Case 1: P contains two meta-policies,δ1 and δ2,
which are unrelated to anyδi ∈ P by �,
i.e., δ1 and δ2 are singletons. In this case,
let δ(1,2) = γ∗(δ1, δ2,�). Let P ′ = (P \
{δ1, δ2}) ∪ {δ(1,2)}. Now, |P ′| = n − 1 and
we can setδ′ = γ̂(〈P ′,�〉).

Case 2: P contains two meta-policies,δ1 and δ2,
such thatδ1 is the parent ofδ2, δ1 has no chil-
dren other thanδ2, andδ2 is a leaf of the or-
dered policy structure. In this case, letδ(1,2) =
γ∗(δ1, δ2,�). Let P ′ = (P \ {δ1, δ2}) ∪
{δ(1,2)}. If δ1 had no parent, let�′=�. Oth-
erwise, because� is a tree structure, there is a
singleδk such thatδ1 � δk, so let�′=�, with
the additional relationshipδ(1,2) �′ δk. Now,
|P ′| = n − 1 and we can setδ′ = γ̂(〈P ′,�′〉).

Case 3: P contains three meta-policies,δ1, δ2, and
δ3, such thatδ2 andδ3 are children ofδ1, and
δ2 andδ3 are leaves of the ordered policy struc-
ture. In this case, letδ(2,3) = γ∗(δ2, δ3,�). Let
P ′ = (P \ {δ2, δ3}) ∪ {δ(2,3)} and let�′=�
with the additional relationshipδ(2,3) �′ δ1.
Now, |P ′| = n − 1 and we can setδ′ =
γ̂(〈P ′,�′〉).

Given that any ordered policy structure which forms a
collection of trees can be composed usingγ∗, we argue
that this is sufficient to show that any arbitrary ordered
policy structure inP can be composed through iterative
applications ofγ∗, using the following sketched algorithm
of τ : P → P:

8

If an ordered policy structure,〈P,�〉 ∈ P, does
not form a collection of trees, then at least one meta-
policy has multiple parent nodes. That is, there exists
someδ1, . . . , δn such thatδ1 � δ2, . . . , δ1 � δn, and
∀ (1 ≤ {i, j} ≤ n) (δi 6= δj). This means that the en-
tity whose policy is described byδ1 is subordinate to
δ2, . . . , δn. Assume, without loss of generality, thatδ1 is
the lowest such node in the ordered policy structure

To convert this section of〈P,�〉 to a tree, we clone the
subtree rooted atδ1 (n − 1) times and alter� such that
each clone is subordinate to exactly one ofδ2, . . . , δn.
This operation does not modify the meaning of the par-
tial order since each parent still has precedence over the
rules in its clone of the subtree rooted atδ1. To create
an ordered policy structure that forms a collection of trees
from our starting structure,〈P,�〉, we can inductively ap-
ply this reasoning starting at the leaves of the ordered pol-
icy structure, eliminating all nodes with multiple parents.
Let τ (〈P,�〉) be the resulting policy structure.

Although this algorithm sketch suggests an exponential
increase in the running time ofγ due to the duplication
of subtrees, in practice this can be avoided. We can in-
terleave the composition and restructuring of the policies
in 〈P,�〉 by composing the subtrees into a single node
before they are cloned.

Finally, we define the algorithmγ : P → ∆, the com-
position operator for any finite ordered policy structure, as
γ : 〈P,�〉 7→ γ̂(τ (〈P,�〉)). This function is well-defined
becauseτ returns a tree-based policy structure, for which
γ̂ is always defined.

In this section, we have presented an instantiation of
the reasoning framework described in Section 3.2 based
on defeasible logic for use with WSE 2.0. Additionally,
we have shown that it is possible to compose any finite
ordered policy structure that can be expressed in this logi-
cal model. The composition and projection processes can
be carried out in an automated fashion, allowing for the
immediate use of our logical policy composition frame-
work with unmodified WSE 2.0-compliant web services.
In the following section, we present an extended example
illustrating the processes of meta-policy composition and
projection.

5 An Extended Example

In this section, we present an extended example of how
to compose two policies using the defeasible logic frame-
work presented in Section 4. In this example, suppose that
Alice and Bob are peers developing a web service using
WSE 2.0. Each party has different requirements for the
security-relevant properties of messages sent to and from
their service.

Figure 7 shows Alice’s requirements and reasoning the-

Requirements:
hassecuritytoken,hasintegrity→ satisfied.
securitytoken(’x509’,’myuniv’)→ hassecuritytoken.
securitytoken(’saml’,I),securitytoken(’unt’,I)

→ hassecuritytoken.
integrity({algorithm(’signature’,’rsa’), algorithm(’transform’,’enveloped’)},

securitytoken(T,’myuniv’),{messageparts(’wsse:path’,S,’wsp:Body()
wsp:Header(soap:Header) wse:Timestamp() wse:UsernameToken()
wse:Addressing()’)})

→ hasintegrity.
integrity({algorithm(’signature’,’hmac-sha1’),algorithm(’transform’,’enveloped’)},

securitytoken(’unt’,I),{messageparts(’wsse:path’,S,’wsp:Body()
wsp:Header(soap:Header) wse:Timestamp() wse:UsernameToken()
wse:Addressing()’)})

→hasintegrity.

Reasoning:
R1: {} =⇒ securitytoken(’x509’,’myuniv’).
R2: {} =⇒ securitytoken(’saml’,I).
R3: {} =⇒ securitytoken(’unt’,I).
R4: securitytoken(’x509’,I)

=⇒ integrity({algorithm(’signature’,’rsa’),
algorithm(’transform’,’enveloped’)},
securitytoken(T,I), M).

R5: securitytoken(’unt’,I)
=⇒ integrity({algorithm(’signature’,’hmac-sha1’),

algorithm(’transform’,’enveloped’)},
securitytoken(’unt’,I), M).

R6: mobile ¬securitytoken(’x509’,I).
R7: securitytoken(’x509’,I) ¬securitytoken(’saml’,I).
R8: securitytoken(’x509’,I) ¬securitytoken(’unt’,I).
R9: integrity({algorithm(’signature’,’rsa’)}, securitytoken(T,’myuniv’), M)

 ¬integrity(algorithm(’signature’,’hmac-sha1’), S, M).
R10: integrity({algorithm(’signature’,’hmac-sha1’)}, securitytoken(’unt’,I), M)

 ¬integrity(algorithm(’signature’,’rsa’), S, M).
R6> R1. R7> R2. R8> R3.

Figure 7: Alice’s policy,δa

ories. For clarity, we have omitted theExt andClaims
fields from the structures since they are not used in this
example. Alice requires that all messages contain a se-
curity token and have an integrity guarantee. Note that
no logical structures contain a prefix as discussed in Sec-
tion 4.1, meaning that Alice has the same requirements
for all message types. Alice will accept either an X.509
certificate or both a SAML assertion and a username to-
ken. She will accept either an RSA signature with a token
issued by MyUniv or an HMAC-SHA1 signature with a
username token. R1 through R3 of Alice’s reasoning the-
ory state that she will accept either an X.509 certificate
issued by MyUniv, a SAML assertion with any issuer, or
a username token with any issuer. R4 states that if we are
able to conclude the use of an X.509 certificate then we
would like to use an RSA signature to protect the integrity
of the message. R5 is similar to R4. R7 and R8 state that
if we can use X.509 certificates then we do not want to
be able to conclude the use of either SAML assertions or
username tokens. R9 and R10 prevent both integrity al-
gorithms from being concluded. R6 deserves special at-
tention. R6 uses a context-based predicate,mobile , to
defeat the use of an X.509 certificate. This means that
Alice will allow the use of an authentication token other
than an X.509 certificate only if the service is meant to be
accessed by mobile devices.

9

Requirements:
hassecuritytoken,hasconfidentiality→ satisfied.
securitytoken(’x509’,’myuniv/cs’)→ hassecuritytoken.
securitytoken(’saml’,’myuniv/cs/securitygroup’)→ hassecuritytoken.
confidentiality({algorithm(’encryption’,’rsa’)}, securitytoken(T,’myuniv/cs’),

{messageparts(’wsse:path’,S,’wsp:Body()’)})
→ hasconfidentiality.

confidentiality({algorithm(’encryption’,’aes128cbc’)}, securitytoken(’unt’,I)),
{messageparts(’wsse:path’,S,’wsp:Body()’)})

→ hasconfidentiality.

Reasoning:
mobile.
R1: {} =⇒ securitytoken(’x509’,’myuniv/cs’).
R2: {} =⇒ securitytoken(’saml’,’myuniv/cs/securitygroup’).
R3: securitytoken(’x509’,I)

=⇒ confidentiality({algorithm(’encryption’,’rsa’)},
securitytoken(’x509’,I),
{messageparts(’wsse:path’,S,’wsp:Body()’)}).

R4: {} =⇒ confidentiality({algorithm(’encryption’,’aes128cbc’)},
securitytoken(T,I),
{messageparts(’wsse:path’,S,’wsp:Body()’)}).

R5: securitytoken(’x509’,I) ¬securitytoken(’saml’,I1).
R6: confidentiality({algorithm(’encryption’,’rsa’)}, S, M)

 ¬confidentiality({algorithm(’encryption’,’aes128cbc’)}, S1, M1).
R6> R2.

Figure 8: Bob’s policy,δb

Bob’s security policies are shown in Figure 8. Like
Alice, Bob uses the same requirements for all message
types. Bob requires the use of either an X.509 certificate
or a SAML assertion as a security token. Additionally, he
would like the body of each message to be encrypted using
either RSA or 128-bit AES. R1 and R2 of Bob’s reasoning
theory state that Bob will accept either a X.509 certificate
or a SAML assertion and R3 states that if an X.509 certifi-
cate is accepted then he does not want a SAML assertion.
R3 and R4 state Bob’s reasoning about the confidentiality
of the message body. Bob would like to use RSA only
if an X.509 certificate is sent with the message. R5 and
R6 prevent the conclusion of multiple security tokens and
multiple confidentiality algorithms. It is also important to
note that Bob hasmobile as a fact in his theory.

Figure 9 shows the result of runningγ∗ on Alice’s and
Bob’s security policies. Notice that because Alice and
Bob are peers, there are no new superiority relationships
among the rules. The final result of the projection is a pol-
icy that requires two security tokens: a SAML assertion
and a username token. Additionally, all messages must
include an HMAC-SHA1 signature, and the body of the
message must be encrypted with 128-bit AES. Because
the policy applies to all types of messages the default pol-
icy for request, reply and fault are the same. Both Alice’s
and Bob’s requirements theories accept this policy. The
result of the projection function,ρ, is shown in Figure 10.

6 Implementation

To test the logical reasoning framework presented in Sec-
tion 4, we have implemented a subset of this framework

R1 1: {} =⇒ securitytoken(’x509’,’myuniv’).
R1 2: {} =⇒ securitytoken(’saml’,I).
R1 3: {} =⇒ securitytoken(’unt’,I).
R1 4: securitytoken(’x509’,I)

=⇒ integrity({algorithm(’signature’,’rsa’),
algorithm(’transform’,’enveloped’)},
securitytoken(T,I), M).

R1 5: securitytoken(’unt’,I)
=⇒ integrity({algorithm(’signature’,’hmac-sha1’),

algorithm(’transform’,’enveloped’)},
securitytoken(’unt’,I), M).

R1 6: mobile ¬securitytoken(’x509’,I).
R1 7: securitytoken(’x509’,I) ¬securitytoken(’saml’,I).
R1 8: securitytoken(’x509’,I) ¬securitytoken(’unt’,I).
R1 9: integrity({algorithm(’signature’,’rsa’)}, securitytoken(T,’myuniv’), M)

 ¬integrity(algorithm(’signature’,’hmac-sha1’), S, M).
R1 10: integrity({algorithm(’signature’,’hmac-sha1’)}, securitytoken(’unt’,I), M)

 ¬integrity(algorithm(’signature’,’rsa’), S, M).
R1 6 > R1 1. R1 7 > R1 2. R1 8 > R1 3.

R2 1: {} =⇒ securitytoken(’x509’,’myuniv/cs’).
R2 2: {} =⇒ securitytoken(’saml’,’myuniv/cs/securitygroup’).
R2 3: securitytoken(’x509’,I)

=⇒ confidentiality({algorithm(’encryption’,’rsa’)},
securitytoken(’x509’,I),
{messageparts(’wsse:path’,S,’wsp:Body()’)}).

R2 4: {} =⇒ confidentiality({algorithm(’encryption’,’aes128cbc’)},
securitytoken(T,I),
{messageparts(’wsse:path’,S,’wsp:Body()’)}).

R2 5: securitytoken(’x509’,I) ¬securitytoken(’saml’,I1).
R2 6: confidentiality({algorithm(’encryption’,’rsa’)}, S, M)

 ¬confidentiality({algorithm(’encryption’,’aes128cbc’)}, S1, M1).
R2 6 > R2 2.

Figure 9: The result ofγ∗(δa, δb,�)

that has the ability to reason aboutSecurityToken as-
sertions. Our implementation consists of a collection of
Perl scripts that embody the functionality ofγ∗ and inter-
act with the defeasible reasoning engine along with a Java
program that implements theρ function. For our defeasi-
ble reasoning engine, we use the Deimos tool, developed
at Griffith University [34]. As discussed in Section 4.1,
our syntax for the logical forms of WS-SecurityPolicy as-
sertions overloads the predicate syntax used by Deimos
and therefore must first be preprocessed into a format un-
derstood by Deimos; we also have implemented an auto-
mated translator to facilitate this.

We feel that our instantiation of the framework pre-
sented in Section 3 illustrates that defeasible policy com-
position can meet the goals set forth in Section 1. Our use
of defeasible logic makes the policies both relatively easy
to specify and human readable. We were able to imple-
mentγ in such a way as to allow policy composition to
be performed automatically and our implementation ofρ

allows the merged policy to be projected into a format that
can be understood directly by WSE 2.0.

7 Web Services and Beyond

While the bulk of this paper focuses on using defeasi-
ble logic to combine WS-SecurityPolicy documents, the
methods presented in this paper are also applicable to

10

<policyDocument xmlns="...Policy">
<mappings>

<endpoint uri="...Service1.asmx">
<defaultOperation>

<request policy="#MergedPolicies" />
<response policy="#MergedPolicies" />
<fault policy="#MergedPolicies" />

</defaultOperation>
</endpoint>

</mappings>
<policies xmlns:wsu="..."

xmlns:wssp="..."
xmlns:wsp="...">

<wsp:Policy wsu:Id="MergedPolicies">
<wsp:All>

<wsse:SecurityToken>
<wsse:TokenType>

wsse:SAMLAssertion
</wsse:TokenType>
<wsse:TokenIssuer>

myuniv/cs/securitygroup
</wsse:TokenIssuer>

</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>
wsse:UsernameToken

</wsse:TokenType>
</wsse:SecurityToken>
<wsse:Integrity>

<wsse:Algorithm Type="wsse:AlgSignature"
URI="...hmac-sha1"/>

<wsse:Algorithm Type="wsse:AlgTransform"
URI="...enveloped-signature"/>

<wsse:TokenInfo>
<wsse:SecurityToken>

<wsse:TokenType>
wsse:UsernameToken

</wsse:TokenType>
</wsse:SecurityToken>

</wsse:TokenInfo>
<wsse:MessageParts Dialect="...wsse:path">

wsp:Body() wsp:Header(soap:Header) wse:Timestamp()
wse:UsernameToken() wse:Addressing()

</wsse:MessageParts>
</wsse:Integrity>
<wsse:Confidentiality>

<wsse:Algorithm Type="wsse:AlgSignature"
URI="...aes128_cbc"/>

<wsse:KeyInfo>
<wsse:SecurityToken>

<wsse:TokenType>
wsse:UsernameToken

</wsse:TokenType>
</wsse:SecurityToken>

</wsse:KeyInfo>
<wsse:MessageParts Dialect="...wsse:path">

wsp:Body()
</wsse:MessageParts>

</wsse:Confidentiality>
</wsp:All>

</wsp:Policy>
</policies>

</policyDocument>

Figure 10: The resultingpolicyDocument

many other areas. In this section, we discuss additional
applications of defeasible policy composition within the
realm of web services and an example application outside
of the web services domain.

7.1 Reliable Messaging Policies

In February 2005, the WS-ReliableMessaging [14] spec-
ification, which focuses on the reliable delivery of mes-
sages, was introduced. As a complement to this speci-
fication, WS-RM Policy [6] allows system designers to
make assertions about their requirements with respect to
message delivery. WS-RM Policy allows policy writers

to make assertions regarding timeouts and retransmission
intervals as well as acknowledgement intervals for a par-
ticular web service. Our defeasible policy composition
system could be easily adapted to handle the composi-
tion of WS-RM Policy documents. Additionally, it would
be very reasonable to expect that the requirements for se-
curity policies would have an effect on the requirements
for reliable messaging. For example, if the policy writers
want to use a heavy-duty encryption algorithm, it would
be important to ensure that inactivity timeouts account for
this. Within our system, it is trivial to write assertions that
would allow an WS-RM Policy to be created with respect
to requirements for security.

7.2 Firewall Policies

Another possible use of defeasible policy composition in-
volves merging firewall policies. Consider the case where
a research lab shared by members of two different de-
partments within a university is protected by a firewall.
The researchers themselves would likely want some con-
trol over the types of traffic allowed to pass through the
firewall, as would the university and the network opera-
tions groups within their departments. Proposed firewall
policies and composition preferences could be expressed
in defeasible logic, while the partial ordering� can ac-
count for any organizational structure. From these poli-
cies, an overall policy for the firewall which accounts for
each user’s preferences could be created using the meth-
ods discussed in this paper. Additionally, the efficiency
of defeasible logic implies that the firewall policy could
be regenerated often, allowing for the inclusion of time-
sensitive firewall rules. An area of closely related work
involves the examination of complex firewall policies to
locate possible conflicts [1]. Our technique is orthogo-
nal to this, in that the techniques presented in [1] can be
applied to the composite policy generated using defeasi-
ble policy composition to detect, for instance, extraneous
rules.

8 Conclusions

In this paper, we investigated the use of defeasible logic
to perform automated policy composition. We defined an
abstract framework that augments a policy with meta-data
describing how it should be composed with other such
meta-policies. Because the composition preferences are
encoded in meta-policies, we require a single composi-
tion operator. This allows us to define a fully-automated
composition procedure that also takes into account both
resource-specific context information and a partial order-
ing defined among the meta-policies. We then showed
how this model can be applied to the composition of web

11

services security policies.
We then presented an instantiation of this model for the

composition of web service security policies. We showed
that this model can be used to compose any finite set of
meta-policies that can be expressed in the syntax pre-
sented in Section 4. This composite meta-policy can be
projected onto a WS-SecurityPolicy enforceable by Mi-
crosoft’s web services extensions, WSE 2.0. We have im-
plemented a subset of this logical framework that can be
used to reason about the composition of policies contain-
ing securitytoken predicates and have successfully
used these policies in WSE 2.0 web services. We also dis-
cussed additional applications both inside and outside of
the realm of web services.

Acknowledgements

Lee was supported by the NSF under grants IIS-0331707,
CNS-0325951, and CNS-0524695 and by a Motorola
Center for Communications Graduate Fellowship. Boyer
was partially supported by the MacArthur Foundation.
Boyer and Gunter were partially supported by NSF Grant
CCR-0208996 and ONR Grant N00014-04-1-0562.

References

[1] E. S. Al Shaer and H. H. Hamend. Discovery of
policy anomalies in distributed firewalls. InIEEE
INFOCOMM, 2004.

[2] Amazon web services. Web Page, Jan. 2006.www.
amazon.com/gp/aws/landing.html .

[3] G. Antoniou, D. Billington, and M. J. Maher. On
the analysis of regulations using defeasible rules.
In HICSS ’99: Proceedings of the Thirty-second
Annual Hawaii International Conference on System
Sciences-Volume 6, page 6033, 1999.

[4] G. Antoniou and A. Ghose. What is default reason-
ing good for? applications revisited. In32nd Hawaii
International Conference on System Sciences, Jan.
1999.

[5] G. Antoniou, M. J. Maher, and D. Billington. Defea-
sible logic versus logic programming without nega-
tion as failure. Journal of Logic Programming,
42(1):47–57, 2000.

[6] S. Batres and C. Ferris (Editors). Web ser-
vices reliable messaging policy assertion(WS-
RM Policy). Specification, Feb. 2005.
msdn.microsoft.com/library/en-us/
dnglobspec/html/WS-RMPolicy.pdf .

[7] E. Bertino, S. Jajodia, and P. Samarati. Supporting
multiple access control policies in database systems.
In IEEE Symposium on Security and Privacy, pages
94–109, 1996.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon. Veri-
fying policy-based security for web services. In11th
ACM conference on Computer and Communications
Security, pages 268–277, Oct. 2004.

[9] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse.
Verified interoperable implementations of security
protocols. InComputer Security Foundations Work-
shop (CSFW 06), Venice, Italy, July 2006. IEEE.

[10] C. Bidan and V. Issarny. Dealing with multi-policy
security in large open distributed systems. InEuro-
pean Symposium on Research in Computer Security
(ESORICS), pages 51–66, 1998.

[11] P. Bonatti, S. D. C. di Vimercati, and P. Samarati.
A modular approach to composing access control
policies. In7th ACM Conference on Computer and
Communications Security (CCS ’00), pages 164–
173, Nov. 2000.

[12] L. Cholvy and F. Cuppens. Analyzing consistency
of security policies. In18th IEEE Computer Soci-
ety Symposium on Research in Security and Privacy,
1997.

[13] D. Eastlake and J. Reagle (Chairs). W3C XML-
DSig working group. Web Page, Jan. 2006.www.
w3.org/Signature/ .

[14] C. Ferris and D. Langworth (Editors). Web
services reliable messaging protocol(WS-
ReliableMessaging). Specification,
Feb. 2005. msdn.microsoft.com/
library/en-us/dnglobspec/html/
WS-ReliableMessaging.p%df .

[15] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The physiology of the grid: An open grid services
architecture for distributed systems integration. In
Open Grid Service Infrastructure Working Group,
Global Grid Forum, Jun. 2002.

[16] K. Frankish. Non-monotonic inference. InThe En-
cyclopedia of Language and Linguistics. Elsevier,
second edition, 2005.

[17] Google web APIs. Web Page, Jan. 2006.www.
google.com/apis/ .

[18] G. Governatori, A. H. M. ter Hofstede, and P. Oaks.
Defeasible logic for automated negotiation. In
P. Swatman and P. M. Swatman, editors,Proceed-
ings of CollECTeR, 2000.

12

[19] G. Governatori, A. H. M. ter Hofstede, and P. Oaks.
Is defeasible logic applicable? In G. Antoniou and
G. Governatori, editors,Proceedings of the 2nd Aus-
tralasian Workshop on Computational Logic, pages
47–62, Brisbane, January 2001. Queensland Univer-
sity of Technology.

[20] B. N. Grosof, Y. Labrou, and H. Y. Chan. A declar-
ative approach to business rules in contracts: courte-
ous logic programs in XML. InACM Conference on
Electronic Commerce, pages 68–77, 1999.

[21] J. Halpern and V. Weissman. Using first-order logic
to reason about policies. InIEEE Computer Security
Foundations Workshop (CSFW’03), Jun. 2003.

[22] S. Horrell. Web services enhancements 2.0
support for WS-Policy. Web Page, July 2004.
msdn.microsoft.com/library/en-us/
dnwse/html/wse2wspolicy.asp .

[23] C. Kaler and A. Nadalin (Editors). Web ser-
vices federation language (WS-Federation).
Specification, Jul. 2003. www-106.ibm.
com/developerworks/webservices/
library/ws-fed/ .

[24] E. C. Lupu and M. Sloman. Conflicts in policy-
based distributed systems management.IEEE Trans-
actions on Software Engineering, 25(6):852–869,
1999.

[25] K. D. Lux, M. J. May, N. L. Bhattad, and C. A.
Gunter. WSEmail: Secure internet messaging based
on web services. InInternational Conference on
Web Services, Orlando, FL, July 2005.

[26] M. J. Maher. Propositional defeasible logic has lin-
ear complexity.Theory and Practice of Logic Pro-
gramming, 1(6):691–711, 2001.

[27] M. J. May, W. Shin, C. A. Gunter, and I. Lee. Se-
curing the drop-box architecture for assisted living.
In Formal Methods in Software Engineering (FMSE
’06), Alexandria, VA, November 2006. ACM.

[28] M. McDougall, R. Alur, and C. A. Gunter. A model-
based approach to integrating security policies for
embedded devices. InACM EMSOFT, Sept. 2004.

[29] Michael McDougall.Modeling and Analyzing Inte-
grated Policies. PhD thesis, University of Pennsyl-
vania, 2004.

[30] A. Nadalin (Editor). Web services security pol-
icy language (WS-SecurityPolicy). Web Services
Specification, 2002.www.verisign.com/wss/
WS-SecurityPolicy.pdf .

[31] D. Nute. Defeasible logic. In14th International
Conference on Applications of Prolog, Oct. 2001.

[32] J. Reagle (Chair). W3C XML encryption work-
ing group. Web Page, Jan. 2006.www.w3.org/
Encryption/2001/ .

[33] D. M. Reeves, M. P. Wellman, B. N. Grosof, and
H. Y. Chan. Automated negotiation from declarative
contract descriptions. In17th National Conference
on Artificial Intelligence, Workshop on Knowledge-
Based Electronic Markets (KBEM), Jul. 2000.

[34] A. Rock. Deimos: A query answering defeasible
logic system. Technical report, Griffith University,
Mar. 2004. www.cit.gu.edu.au/˜arock/
defeasible/doc/Deimos-long.pdf .

[35] J. Schlimmer (Editor). Web services policy
framework (WS-Policy). Web Services Specifi-
cation, 2004. ftp://www6.software.ibm.
com/software/developer/library/
ws-policy.pdf .

[36] C. Sharp (Editor). Web services policy at-
tachment (WS-PolicyAttachment). Specifica-
tion, Sept. 2004. msdn.microsoft.com/
library/en-us/dnglobspec/html/
ws-policyattachment.as%p .

[37] SOAP version 1.2. W3C Recommendation, Jan.
2006.www.w3.org/TR/soap12 .

13

