
WSEmail: Secure Internet Messaging Based on Web Services∗

Kevin D. Lux, Michael J. May, Nayan L. Bhattad, and Carl A. Gunter
University of Pennsylvania

Abstract

Web services offer an opportunity to redesign a variety
of older systems to exploit the advantages of a flexible, ex-
tensible, secure set of standards. In this paper we explore
the objective of improving Internet messaging (email) by
redesigning it as a family of web services, an approach we
call WSEmail. We illustrate an architecture and describe
some applications. Since increased flexibility often miti-
gates against security and performance, we focus on steps
for proving security properties and measuring the perfor-
mance of our system with its security operations. In par-
ticular, we demonstrate an automated proof using TulaFale
and ProVerif of a correspondence theorem for an applica-
tion called on-demand attachments. We also provide per-
formance measures for the basic WSEmail functions in a
prototype we have implemented using .NET. Our experi-
ments show a latency of about a quarter of a second per
transaction under load.

1. Introduction
The advent of web services has created the foundation

for highly interoperable distributed systems to communi-
cate over the Internet using standardized protocols and se-
curity mechanisms. With the foundation now available,
older designs and protocols should be reevaluated to see
whether they can benefit from the new architecture, stan-
dards, and tools. As a case study of such an analysis and
redesign, we presentWSEmail, electronic mail redesigned
as a family of web services.

Internet electronic mail (email) is based on a collection
of protocols—SMTP, POP, IMAP, S/MIME—that have
evolved over a vast installed base. The resulting sys-
tem has shortcomings in the areas of flexibility, security,
and integration with other messaging systems. For in-
stance, problems of authentication and extensibility have
plagued attempts to reduce spam, while poor integration
with browsers has led to a rash of spoofing attacks (“phish-
ing”). There are many ideas about improving email that

∗Appeared in IEEE International Symposium on Web Services 2005.

can be addressed by new design ideas; a listing of a number
of these limitations can be found on the mail-ng list of the
Internet Mail Consortium (IMC) (www.imc.org). To re-
spond to these shortcomings and pursue new opportunities,
we have investigated replacing the existing protocols with
protocols based on SOAP, WSDL, XMLDSIG and other
XML-based formats. The new protocols are inherently ex-
tensible, promise to give stronger guarantees for message
authentication, and are amenable to formal modeling and
proof.

WSEmail is designed to perform the functions of or-
dinary email but enable additional security functions and
more flexibility. The primary strategy is to import these
virtues from the standards and development platforms for
web services. Our exploration of WSEmail is based on
a prototype architecture and implementation. WSEmail
messages are SOAP messages that use web service secu-
rity features to support integrity, authentication, and access
control for both end-to-end and hop-by-hop message trans-
missions. The WSEmail platform supports the dynamic
updating of messaging protocols on both client Mail User
Agents (MUAs) and server Mail Transfer Agents (MTAs)
to enable custom communications. This flexibility sup-
ports the introduction of new security protocols, richer
message routing (such as routing based on the semantics
of a message), and close integration with diverse forms of
communication such as instant messaging.

The benefits of flexibility can be validated by showing
diverse applications. However, flexibility often has a high
cost for security and performance. This paper focuses on
techniques to measure and mitigate these costs for WSE-
mail. We make two contributions. First, we carry out a
case study of a formal analysis of an application called
on-demand attachments, in which email with an attach-
ment leaves the attachment on the sender’s server rather
than placing it on the servers of the recipients. The chal-
lenge is to design the associated security for the attachment
based on emerging federated identity systems. Second, we
carry out a set of experiments intended to determine the
efficiency of our base system, including its security op-
erations. Both of these studies demonstrate promise for

�� ��
����� ��� ���� ��� � � � 	 �� � ���

Figure 1. Messaging architecture

security and performance for web services in general and
WSEmail in particular.

The paper is organized in seven sections. Following this
introductory section we sketch the architecture of WSE-
mail focusing on its security assumptions. In the third sec-
tion we discuss applications we have explored with WSE-
mail focusing on on-demand attachments. In the fourth
section we describe on-demand attachments theoretically
and argue that basing email on web services can aid the
application of advances in security analysis to new mes-
saging protocols. In the fifth section we discuss our imple-
mentation and its performance. The sixth section discusses
related work. The seventh section concludes. Interested
readers can find more information on our project web page
atwsemail.ws.

2. Architecture
The baseline protocols for WSEmail are illustrated in

Figure 1. In the common case, similar to an SMTP mes-
sage, an MUA Sender ClientSC1 makes a call on its MTA
Sender ServerSS to send a messageM1. This and other
calls are SOAP calls over TCP; the messageM1 is in the
body of the SOAP message and the SOAP header con-
tains information like the type of call and security param-
eters. The message itself is structured as a collection of
XML elements, including, for instance, a subject header.
A sample trace of WSEmail messages can be found at
wsemail.ws/messages.html. After receiving the call
from SC1, the serverSS makes a call on the Receiver
ServerRS to deliver the mail from the Sender DomainSD

into the Receiver DomainRD. The Receiver ClientRC

makes calls toRS to inquire about new messages or down-
load message bodies. In particular,RC makes a call toRS

to obtain message headers and then requests the message
M1 if it wishes.

Our design is based on a three-tier authentication sys-
tem combined with an extensible system of federated iden-
tities. The first tier provides user (MUA) authentication
based on passwords, public keys, or federated identity to-
kens. The second tier provides server (MTA) authentica-
tion based on public keys with certificates similar to those
used for TLS. The third tier uses root certificates simi-

lar to the ones in browsers. Overall, this addresses inter-
domain authentication in a practical way at the cost of full
end-to-end confidentiality. Confidentiality is preserved be-
tween hops by TLS or another tunnel protocol. In a ba-
sic instance, the message fromSC1 to RC will be given an
XMLDSIG signature bySS that is checked by bothRS and
RC.

The novel aspects of our WSEmail architecture are in
the integration and flexibility of the MUA authentication
and the ability of both MUAs and MTAs to add new secu-
rity functions dynamically. To illustrate a variation in the
basic protocol, consider our design for instant messaging.
Referring again to Figure 1, an instant messageM2 dis-
patched from a clientSC2 to RC while SC2 is outside its
home domainSD. In this caseSC2 contactsSS to obtain a
security tokenT that will be recognized byRS. Once this
is obtained,SC sendsM2 authenticated with this creden-
tial to RS and indicates (in a SOAP header) that it should
be treated as an instant message byRS andRC. Instant
messages are posted directly to the client, with the client
now viewed as a server that accepts the instant message
call. RS andRC are able to apply access control for this
function based on the security token fromSC. This token
is recognized because of a prior arrangement betweenSS

andRS.
The WSEmail MUA and MTA are based on a plug-

in architecture capable of dynamic extensions. Secu-
rity for such extensions is provided though a policy for
trusted sources and the enforcement mechanisms provided
by web services. On-demand attachments are an exam-
ple of such a plug-in, as are a variety of kinds of attach-
ments with special semantics. A party that sends a mes-
sage with such an attachment automatically includes in-
formation for the receiver on where to obtain the software
necessary to process the attachment. The client provides
hooks for plug-ins to access security tokens, after first per-
forming an access control check on the plug-in. A figure
illustrating the MUA (client) components is available at
wsemail.ws/client.html and screen shots of the GUI
can be seen atwsemail.ws/screenshots.html. A fig-
ure illustrating the server (MTA) components is available
atwsemail.ws/server.html.

3. Applications
WSEmail offers the possibility to have rich XML for-

mats, extensible semantics on clients and routers, and a
range of security tokens. Since there are substantial devel-
opment platforms for these features from major software
vendors, it is easy to use WSEmail as a foundation for a
suite of integrated applications that share common code,
routing, security, and other features. We have attempted
to validate this extensibility by developing several exten-
sions of WSEmail. Our applications includerouted forms

in which a message has a semantic structure that influences
its routing and its handling on both MTAs and MUAs, and
integrated instant messagingin which the same architec-
ture, routing and security are used to provide both email
and instant messaging. In this paper we focus on one il-
lustrative application, especially because we wish to show
how new protocols can be analyzed for security. This ap-
plication is known ason-demand attachments.

SupposeSC wishes to send an email to a large collec-
tion of recipients containing a large document. Suppose,
moreover, that only a fairly small, but unknown, subset of
the recipients are likely to actually want to look at the doc-
ument. A straight-forward but expensive approach is to
send email to all of the recipients with the document as an
attachment. A more efficient approach is to place the doc-
ument on a web page and send a URL to the recipients.
If the document is sensitive, it may be necessary to insist
on some access control for the web page, which assumes
there is a way to authenticate the recipients if they visit
the page to get the document. Systems have been imple-
mented to assist this form of distribution; for instance, it
is possible with Microsoft Sharepoint (www.microsoft.

com/sharepoint) including hooks into the Outlook email
client (office.microsoft.com).

WSEmail can be used to provide a similar functional-
ity based on federated identities. Figure 2 illustrates such

 � � �� � �� � � � � � � �� � � � �� � � � �� �� � � ��� � � � � � ��� � � � ! � � � � � � � � � " �# � � � ! � � �� � � � � �� � � � $� � � � �� %& � � � � ! �� � � � � � �� � � � $� � � � �� %
' � � � ! � � � (� � �) * + � � �, � - � � � � (� � �) * + � � �. /

0 / 1 � - � � � � � � � � " � 2 �� * (� � �) * + � � �

3 � - � � � � � � � � � " �
0 4
. 4

0 0
. 0

Figure 2. On-Demand attachments

a design based on a nine message protocol. In the first
message, the clientSC sends a WSEmail message with an
attachment and an indication that the attachment should re-
main on the server. For the illustration we assume only one
recipientRC, located in another administrative domainRD

with its own access control system different from the one
in SD, the domain ofSC. The serverSS in SD accepts the
call, stores the attachment, and sends the message and a
reference to the attachment to the serverRS of the recipi-
ent. Clients typically poll their server to inquire about mes-
sages. WSEmail can do this or the server can inform the
client of messages. In the third, fourth, and fifth messages,
RC is informed of the message, requests, and receives it.
Upon finding the reference to the attachment at a server
in another domain,RC requests a token for communicat-
ing with that server and gets one from its serverRS. The
clientRC then uses this token to request and obtain the at-
tachment fromSS. We discuss the security analysis of this
protocol in the next section.

4. Theory
Trends in the analysis of security protocols will aid

the development of WSEmail security by supporting the
analysis of web services generally [3] (securing.ws) and
email specifically [1]. To illustrate this, we describe an
on-demand attachments protocol in Figure 1 and state a
formally-verified correctness property. We assume famil-
iarity with digital certificates (Γ) and hope the notation is
sufficiently self-explanatory. LetS be a public key signa-
ture function andH be a one way hash.

Definition: (Public Key Authentication Using a Timed Nonce)
We writeA → B : M (pkeyΓ, r, t) to indicate thatA sends to
B a message of the form:A | M | r | t | S(priv(Γ),H(A | M |
r | t)).

Heret is the current time according to the clock ofA andr is
a random number selected byA. The principalB processes this
message by checking the following conditions in this order:the
time t is not older than a given threshold; the validity interval of
Γ includes the current time; the noncer is not in the replay cache
of B; the signature checks using public key inΓ; the certificate
Γ is trusted. If any of these fails then the remaining steps are
omitted and the message is discarded. If all of the conditions
succeed, thenr is added to the replay cache with an expiration
time determined by a given threshold. In this case the message is
said to bevalid. �

Definition: (Salted Password Authentication) We writeA →
B : M (pswdP, r, t) if A sendsB a message of the following
form A | M | r | t | MAC(P, A | M | r | t)

Heret is the current time according to the clock ofA andr

is a random number selected byA. The principalB processes
this message by checking the following conditions in this order:
the timet is not older than a given threshold; the noncer is not
in the replay cache ofB; the MAC is correct for the password
associated withA. If any of these fails then the remaining steps
are omitted and the message is discarded. If all of the conditions
succeed, thenr is added to the replay cache with an expiration
time determined by a given threshold. In this case the message is
said to bevalid. �

Protocol: On-Demand Attachments
Initiation Distribution procedures are used to ensure that the fol-

lowing passwords and keys are known only to the speci-
fied principals: principalsSC andSS share a passwordPSC;
principalSS has the private key for a certificateΓSS that is
trusted by the other principals; principalRS has the private
key for a certificateΓRS that is trusted by the other princi-
pals; principalsRS andRC share a passwordPRC. Principal
SC creates a messageM that includes the return addressSC

and an attachmentN and sends:

Msg 1 SC → SS : SS | (RC | RS) | M | N (pswdPSC, r1, t1)

If SS gets a message of this form, it checks this using the
passwordPSC. If the message is valid,SS selects a locally
unique referenceN∗, stores the attachmentN with this ref-
erence and the nameSC and sends:

Msg 2 SS → RS : RS | (RC | RS) | M | (SS |
U∗) (pkeyΓSS, r2, t2)

If RS gets a message of this form, it checks this using
priv(ΓSS). If the message is valid,RS selects a locally
unique referenceV ∗, storesM | (SS | U∗) with this refer-
ence and the nameSC and sends:

Msg 3 RS → RC : RC | (RC | RS) | V ∗ (pkeyΓRS, r3, t3)

If RC gets a message of this form, it checks this using
priv(ΓRS). If the message is valid,RC may send the fol-
lowing request:

Msg 4 RC → RS : RS | V ∗? (pswdPRS, r4, t4)

If RS gets a message of this form, it first checks whetherV ∗

is associated withRC. If it is and the message is valid based
on the password ofRC, then it sends the following message:

Msg 5 RS → RC : RC | V ∗ | (SS | U∗) (pkeyΓRS, r5, t5)

If RC receives a message of this form, it checks this using
ΓRS and may choose to retrieve the attachmentN . The ref-
erenceV ∗ is included to ensure that this is the response to
Msg 4. To do this it needs a token to authenticate toSS. If
it does not have one it may request this by a key pair with
K as its public key and sending:

Msg 6 RC → RS : RS | token(K)? (pswdPRC, r6, t6)

WhenRS receives a message of this form, it checks validity
and creates a certificateΓRC for use byRC and sends:

Msg 7 RS → RC : RC | ΓRC

WhenRC receives a message of this form, it checks and
stores the certificate for use in accordance with its lifetime.
It may choose to obtain the attachment by sending:

Msg 8 RC → SS : SS | U∗? (pkeyΓRC, r7, t7)

WhenSS receives a message of this form, it checks validity
using its code for credentials fromRS and confirms that the
referenceU∗ is associated withRC. It sends:

Msg 9 SS → RC : RC | U∗ | N (pkeyΓSS, r8, t8)

WhenRC receives a message of this form, it checks validity
and makes the attachment available onRC

We specified this protocol formally using the Tu-
laFale [4] specification language, which has constructs
for public key signatures and salted password authen-
tication. The TulaFale script compiles to a script
that is verifiable with the ProVerif protocol veri-
fier of Bruno Blanchet (www.di.ens.fr/~blanchet/
crypto-eng.html, version 1.11) [5]. With this we were
able to prove the following correspondence theorem for on-
demand attachments:if RC retrieves an on-demand attach-
ment withSC as return address, thenSC sent the attach-
ment.

The story behind this proof is at least as interesting and
important as the theorem itself, given what it illustrates
about the potential for formal automated verification of se-
curity protocols in general and for secure web services in
particular. In our first attempt to do the proof, we formu-
lated the protocol messages and required secrets directly
in the ProVerif language. ProVerif’s language allows for
atoms called events which programmers use to declare that
certain actions have happened or conditions have been met.
We created events for message sending and receiving as
well as the receiving of the attachment. We then queried
the correspondence that we desired:RC’s event that it re-
ceived the attachment impliesSC’s event that it had sent
the same attachment. The ProVerif tool ran on our script
and quickly output that our correspondence was true.

We realized that there was a problem when we discussed
our results with Andrew Gordon and Karthikeyan Bharga-
van. Both remarked at the mismatch between the complex-
ity of our protocol (nine messages and four parties) and the
speed with which ProVerif returned a result. In their expe-
rience ProVerif verifications of complex protocols required
time measured in days, not seconds! With some checking
and insertion of extra event checks it became clear that we
had proven a trivial theorem.RC’s “receive attachment”
event was unreachable and that was why the prover had
declared the correspondence to be true. We had made mis-
takes in our original formalization and, given our initial
“success” with the prover, had not inserted the additional
checks necessary to discover if our theorem was trivial.

We decided that rather than attempt to rewrite the pro-
tocol in ProVerif’s language, we would start from scratch
using the TulaFale language and libraries, the aim of which
were to help us to focus on just the aspects of the protocol
unique to our system. The TulaFale compiler would trans-
late down from the higher level structures to the ProVerif
language and then run the ProVerif executable automati-
cally. As expected, this improved confidence and degraded
performance. After encoding up to message 5 in the proto-
col, ProVerif would no longer converge for correspondence
checks (that is, receiving Message 5 implies that Message 5
was sent) after two days of run time. The memory footprint

for the verifier exploded, taking up to 900MB of memory
during execution. Some proofs simply caused an out-of-
memory error. We finished the encoding regardless, just
ensuring that events were reachable to prevent trivial the-
orems. When the encoding was complete we attempted
to just prove that receiving the attachment implied it was
sent, but even after four days of processing on a 2.4GHz
computer, we saw no output. With the assistance of Bruno
Blanchet, the creator of ProVerif, we found that the proof
could be completed with some optimizations—in particu-
lar, by discarding the derivation tree ordinarily created by
the proof.

Our analysis of on-demand attachments appears to the
be the largest application of TulaFale or ProVerif and the
largest verification of a any web service security protocol
yet completed. It illustrates both the value of these tools
and challenges in correct representation and performance.
The specification can be found in full atwsemail.ws/
On-Demand.tf and the output of the proof is atwsemail.
ws/On-Demand.tf.an.

5. Experiments
Web services are often criticized for being slow based

on their design and existing implementation platforms.
Security and flexibility also provide a performance chal-
lenge. Hence a secure, flexible implementation of mes-
saging based on web services raises concerns about per-
formance. We implemented a prototype for WSEmail as
a way to address these concerns at the same time as il-
lustrating the benefits of flexibility. In order to evaluate
the efficiency of our messaging system, we built a test bed
to stress test our implementation’s application and proto-
cols. In this section we describe the implementation, the
test bed, and our experiments.

We simulated a real world email environment where
many users share a common email server. Users may ex-
change messages with other users within the local domain
or external domains. Users may also interact with their per-
sonal inboxes to view and delete messages. For our test we
defined four standard email operations: send, list, retrieve,
and delete. These operations are discussed in detail below.
5.1. Implementation

Our WSEmail prototype runs on Windows server and
client systems. Version 1.0 was implemented over the
.NET framework and relies on Web Services Enhancement
(WSE) 1.0, CAPICOM 2.00, SQL Server 2000 (to store
messages for the server), and IIS 5.0. The current version
consists of 68 interfaces and 343 classes organized into 30
projects (seewsemail.ws/uml.html for a UML model
illustrating the design). About 98% of the software is C#
.NET-managed code created with Microsoft Visual Studio.
Our instant messaging system also exploits a TLS pack-
age from Mentalis (mentalis.org) since the .NET plat-

form does not provide native support for TLS. In Novem-
ber 2004 we upgraded WSEmail to version 1.1 in order to
get WS-Policy support from Microsoft WSE 2.0. This was
challenging because primitive functions from WSE 1.0 that
we needed for our WSEmail 1.0 implementation were re-
moved from the WSE 2.0 package forcing us to use both
WSE 1.0 and WSE 2.0 to implement WSEmail 1.1.

WSEmail uses DNS SRV records (ietf.org/rfc/

rfc2782.txt) to determine routing. This makes it pos-
sible to run WSEmail over other protocols without chang-
ing the way DNS is queried, and we can exploit the priority
and weight attributes in the records. These properties of the
SRV record allow for future enhancement and present day
configuration that is extremely similar to the way SMTP is
deployed now.

5.2. Test Bed
Our test bed consisted of a total of four client machines,

two mail servers (designated as local and external), one test
coordinator and one database/DNS server. The arrange-
ment of the test bed is depicted in Figure 3.

The test clients(labeled asT1 through T4) all per-
formed operations by sending requests to the “local” email
server,Si. The test client actions were coordinated by
the test coordinator,Stc. There also was a second server,
Se, which acted as both an “external” email server and a
load generator for the “local” system.Sdb hosted a mes-
sage storage database and DNS records forSi andSe. The
clients all had Pentium 4 2.8GHz processors with 512MB
of memory and the Windows XP Pro operating system.
They performed four different operations during the test
execution: senda message to a recipient;list the head-
ers of messages in the client’s inbox,retrievea particular
message,deletea particular message. We explored various
ways to include a mixture of applications with these basic
operations but found it difficult to isolate performance is-
sues clearly in doing this, so we restricted our focus to a
demonstration of the basic operations.

The test coordinator, Stc, was responsible for distribut-
ing the test specifications, starting the test and receivingthe
results from each client. The coordinatorStc broadcasted
its network address, instructing all clients to connect to it
and download the test specifications file. The clients then
waited forStc to announce the start of the test, after which
the clients executed requests toSi in compliance with the
specs they downloaded. After each client finished, the la-
tencies for each request were reported back toStc.

The test specifications document described exactly what
each client was to do. It indicated whether the client should
authenticate using a username token (user name and pass-
word) or X.509 certificate. It also specified how many mes-
sages were to be sent from each client, to whom are they
were to be sent and the size of the message body. The

5 6 78 9 : ;< = = > ? @ A B ; = >C D E F G H I J K L M L N O K I P Q K R I S K L N O K L T S5 UV @ A ? = W : X Y Y ZV 9 [\ ? @; @= A 5]V @A ? = W : X Y Y ZV 9 [\ ? @; @= A
^ _ ` a b : 9 >c d ; e 9 A ; @f B ; @ = A ^ _ ` a b : 9 >c d ; e 9 A ; @f B ; @= A a^ g ` ; = > B h 9

V @ A ? = W : X Y Y Z` 9 > i 9 > ` ; B A ? B > ?\ ? @; @= A j kj lj mj n
o p qr s t u v w x q s r yV @A ? = W : z { { >=| } I J ~ O � IO S �� O } } � T J �P Q K R I S K L N O K L T S

5 � � ` � � ` 9 >i 9 >X Y Y Y \ A ; 9 > � > @: 9\ ? @; @= A � ` { Z B �

Figure 3. Test bed

specification document also indicated the total number of
requests that should be sent and the ratios of the four types
of requests.

The local serverSi was the focus of our test. It ac-
cepted incoming messages from the clients and aexternal
serverSe. It performed the necessary authentication, and
forwarded external messages to the appropriate destination
after performing DNS resolution. If the destination was
local (for example, the recipient is onSi) then the mes-
sage was stored inSdb. If the destination was external, the
message was forwarded toSe. We allowed the local and
external server to share a database and DNS server since
these were not performance bottlenecks in the system.

The external serverSe played two roles in our test bed.
First, it imitated the entire external client list, so that all
emails directed to any external client were forwarded to it.
On reception of a message addressed to one of the clients
that it simulated, it did not save it to the the database server.
This was done to preventSi from experiencing extra la-
tency due toSe’s database transaction. Rather, it performed
the required certificate checking to verify authenticity and
then discarded the message. Second, it acted as a load gen-
erator and sent one message per second addressed to each
of the four clients:T1 - T4. These messages were all re-
ceived bySi, authenticated, and stored inSdb.

5.3. Procedure and Results
The test coordinatorStc provided a test specification

document that instructed each client to run one execution
thread sending 2,000 requests toSi. The clients chose
send, list, retrieve, and delete operations with 25% chance.
In cases where the delete operation was to be performed on
an unpopulated inbox, it was considered a no-op and not
counted towards the results. However, to avoid this con-

dition, each client’s inbox was primed with approximately
half a dozen messages. To get the most out of each send
event, each message was addressed to both a randomly
chosen local client and an external client. The clients were
all instructed to authenticate toSi using username token
authentication.Si andSe authenticated to each other using
X.509 certificate signing. The duration of the entire test
was 1826 seconds.

In order to get a client-side view of the efficiency of the
system, we measured the latency of each request. A timer
was started as the client contactedSi with a request and
stopped after the client received the appropriate response
(e.g. inbox listing, message received confirmation, and so
on). The time difference between the client’s request and
the server’s complete response was the latency of the op-
eration. The results of this calculation point to an aver-
age of 0.284 seconds per request with a variance of 0.1389
seconds. The minimum and the maximum latencies were
46.876 ms and 4.0 seconds respectively. Note that the Mes-
sage Received confirmation does not mean that the mes-
sage was delivered to the ultimate recipient, just that the
message was placed in the delivery queue.

The test results in Table 1 show the throughput of bytes

Table 1. Bytes sent between clients and Si

Operation Send List Retrieve Delete
of requests 1970 2024 2026 1980

% of all requests 24.6 25.3 25.4 24.7
Client to Server 10.74 8.42 8.62 8.4

Data (MB)
Server to Client 12.31 324.55 20.41 12.08

Data (MB)

sent in MB as a break-down of the number of requests
(send, list, retrieve and delete). Therefore the total data
in MB from the clients toSi is 36.18 MB and from theSi

to all the clients is 369.35 MB.
Since each message is also sent to an external client,

each send action also sends a message fromSi to Se. This
data is measured according to the representation in Table 2.
Therefore the total data exchanged fromSi to Se is 30.95
MB and fromSe to Si 30.69 MB.

Table 2. Bytes sent between Si and Se

Server # of Send Received
name Messages (MB) Confirmations (MB)
Si 1970 19.59 12.29
Se 1826 18.40 11.36

The entire test bed data transfer was recorded us-
ing the Ethereal network monitor (www.ethereal.com),
which was run atSi andSe. The TCP/IP sessions were
then reconstructed using tcpflow (www.circlemud.org/

~jelson/software/tcpflow/) and post-processed with
Perl and awk. SinceSe, acting as a load generator, sent one
message per second, 1826 messages were also sent fromSe

to Si over the entire duration of the test. The corresponding
byte count represents the messages that were sent and the
notification messages that were received.
5.4. Analysis

A best case test of SMTP with no load on
server/network and no contention for resources, yielded an
average latency of 0.170 ms to send a message of approxi-
mately the same size as the WSEmail messages we sent in
our experiment. The average difference in latency between
WSEmail and the SMTP test is therefore 0.114 ms, which
accounts for the additional overhead of the XML parsing
and cryptography. In that short time span a large number
of operations took place: one secret key signature, one pri-
vate key signature verification, two public key signatures,
and one public key signature verification. Given that the
entire system is using XML we conclude that performance
is not a barrier to secure web services in this type of ap-
plication. Indeed, the extra latency probably would not be
noticed in a typical client/server environment.

XML and XMLDSIG do have a drawback in their ver-
bosity. Our test bed sent 1 KB mail messages which bal-
looned into 10 KB responses to the retrieve message action
in order to make XMLDSIG work properly. In general,
at least 30% of those bytes were the Base64 encoded rep-
resentations of the certificates used for signing messages.
After the certificate size, the WS-Security structures were
also a significant amount of overhead, accounting for about
30% of the bytes transferred. WSEmail might need to ex-
plore ways to distribute certificates so that they are not

replicated excessively. It might also be fruitful to look at
how messages are signed to try to minimize their verbosity.

Our experimentation bodes well for web service effi-
ciency, especially for high volume messaging. Extending
our experimental results, we find that WSEmail is theoret-
ically capable of handling approximately 1787 messages
a minute (combination of incoming and outgoing). We
looked for published benchmarks to compare this against
and found that the University of Wisconsin-Parkside (uwp.

edu/cgi/netstats.cgi?log=mail) had a peak usage
of 1716 (total of incoming and outgoing) messages per
minute over the past year, meaning it should be possible
for a single WSEmail server similar to our test system to
routinely handle the normal load at that institution. Given
the modest cost and capability of our test bed system, we
predict that much higher capacities are possible with fur-
ther hardware investment.

We made some modest adjustments in the WSEmail
system to improve its efficiency based on early test results.
For instance, our early results show that the client to server
bandwidth usage was dominated by list commands. This
is because in the test bed the new message-checking mech-
anism was inefficient. It would download all the headers
and compare them to find new ones rather than just ask-
ing for messages newer than a certain date. In response to
these results, we changed the functionality of WSEmail to
ask for new messages by date, increasing its efficiency.

The experimental results shows a promising picture for
secure XML-based web services messaging. The respon-
siveness of the system, combined with the new security
features and inherent extensibility, provide a solid frame-
work for new messaging systems. We aim to expand the
scope of the test bed to include application tests and use it
to regularly confirm performance consequences of changes
in the system.

6. Related Work
Work related to WSEmail can be divided into two gen-

eral areas: improved Internet messaging systems and the
analysis of web service security.

Improvements to the SMTP messaging system have of-
ten been motivated by two, sometimes overlapping goals:
strong message authentication and spam prevention. PGP
offers authentication tools that include public/private key
signing and encryption. Privacy Enhancement Mail (PEM)
(IETF RFCs 1421-4) has mechanisms for privacy, integrity,
source authentication, and non-repudiation using public
and private key encryption and end-to-end encryption tech-
niques. Zhou,et. al.[8] use formal tools to verify the prop-
erties of the PEM system. Abadi,et. al. [2] use a trusted
third party to achieve message and source authentication
and formally prove correctness of their protocol.

Changes to the SMTP system aimed at spam reduc-
tion include a proposal by Fenton and Thomas [7] which
uses public key cryptography and an option for server-
signed (rather than client-signed) messages and Petmail
(petmail.lothar.com). Petmail uses the GPG encryp-
tion utility for public key encryption and signing of mes-
sages. Users are identified by IDRecords, self-signed bi-
nary blobs that include public key, identity, and message
routing information. Petmail agents can enforce IDRecord
whitelists and policies for contact from first time senders.
First-time senders may be forced to obtain tickets from a
third party Ticket Server which may perform checks to en-
sure that the sender is a human (using CAPTCHA reverse
Turing tests.) Messages can be encapsulated and sent using
SMTP, Jabber, or some other queueing transport protocol.
Patterns and options for sender anonymity are offered as
well. Our most recent work on extensions of WSEmail
show how to do several of these things and more based on
WS-Policy negotiations and our dynamic plug-in capabil-
ity.

In the area of web services security analyses, the Samoa
project at Microsoft Research (securing.ws) has devel-
oped important fundamentals, including a formal seman-
tics for proving web services authentication theorems [3]
and the TulaFale language for automating web service se-
curity protocol proofs [4]. This is our primary foundation
for current and future formal work with WSEmail. Dami-
ani et. al. [6] discuss connections between XML, SOAP,
and access control languages.

7. Conclusions
We have explored WSEmail, the development of email

functions as a family of web services, by developing a pro-
totype system based on an architecture that emphasizes
flexibility, security, and integration. We have shown that
WSEmail is amenable to the addition of new protocols
and the formal analysis of these protocols. We have also
shown that the basic WSEmail functions have satisfactory
performance. In ongoing work, we are exploring several
directions such as: new applications that exploit improved
integration between web-like data retrieval functions and
the messaging system; challenges to interoperability with
a Java implementation of the MUA; and ways to express
and negotiate messaging policies. For widespread use,
WSEmail faces substantial problems with standardization
and interoperability with SMTP, which may be mitigated
by writing more plugins like our SMTP-compatible relay
agent. However, it is well-suited to some high-security ap-
plications even now, offers ideas in exploring the general
design space for Internet messaging, and can rely on the
standardization advantages of XML as an aid to addressing
interoperability challenges. We also aim to support WSE-
mail on diverse platforms. A project of Heo, Patel, and

Shah was partially successful in doing this for a Java WSE-
mail client based on Sun’s JWSDP 1.4 with X.509 security.
This went well for some web service standards like WSDL
but was challenged by support for some security functions
in the message headers such as OASIS UsernameToken au-
thentication.

This work was supported by a gift from Microsoft Uni-
versity Relations, NSF grants CCR02-08996 and EIA00-
88028, ONR grant N000014-02-1-0715, and ARO grant
DAAD-19-01-1-0473. We are grateful for discussions of
WSEmail that we had with Martı́n Abadi, Raja Afandi,
Noam Arzt, Karthikeyan Bhargavan, Luca Cardelli, Dan
Fay, Eric Freudenthal, Cedric Fournet, Andy Gordon, Ari
Hershl Gordon-Schlosberg, Munawar Hafiz, Jin Heo, Hi-
manshu Khurana, Ralph Johnson, Bjorn Knutsson, Jay Pa-
tel, Neelay Shah, Kaijun Tan, and Jianqing Zhang. We are
also grateful to Bruno Blanchet for technical support.

References
[1] M. Abadi and B. Blanchet. Computer-assisted verification

of a protocol for certified email. In Radhia Cousot, editor,
Static Analysis, 10th International Symposium (SAS’03, vol-
ume 2694 ofLecture Notes on Computer Scienc, pages 316–
335, San Diego, CA, June 2003. Springer.

[2] M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email
with a light on-line trusted third party: design and implemen-
tation. InProceedings of the eleventh international confer-
ence on World Wide Web, pages 387–395. ACM Press, 2002.

[3] K. Bhargavan, C. Fournet, and A. Gordon. A semantics
for web services authentication. InProceedings of the 31st
ACM SIGPLAN-SIGACT symposium on principles of pro-
gramming languages, pages 198–209. ACM Press, 2004.

[4] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. InInternational
Symposium on Formal Methods for Components and Objects
(FMCO’03), LNCS. Springer, 2004.

[5] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. InProceedings of the 14th IEEE
Workshop on Computer Security Foundations, page 82. IEEE
Computer Society, 2001.

[6] E. Damiani, S. De Capitani di Vimercati, and P. Samarati.
Towards securing XML Web services. InProceedings of the
2002 ACM workshop on XML security. ACM Press, 2002.

[7] J. Fenton and M. Thomas. Identified internet mail. Work
in Progress draft-fenton-identified-mail-01, IETF Internet
Draft, October 2004. Expires April 2005.

[8] D. Zhou, J. Kuo, S. Older, and S. Chin. Formal develop-
ment of secure email. InProceedings of the 32nd Hawaii In-
ternational Conference on System Sciences. IEEE Computer
Society, 1999.

