
PRIVACY APIS: FORMAL MODELS FOR ANALYZING LEGAL

PRIVACY REQUIREMENTS

Michael J. May

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2008

Insup Lee
Supervisor of Dissertation

Carl A. Gunter
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

Acknowledgements

This work would not have been possible without the help and support of my advisors Carl

A. Gunter and Insup Lee. Their advice has guided this work from its beginning all of the

way to its final form. I am also grateful to my dissertation committee members whose

input and corrections have been invaluable.

I also would like to acknowledge the support of the Ashton Fellowship at Penn which

has helped support me financially for three years of my graduate studies.

Finally, I would like to thank my wife Raquel and daughter Nechama for their patience

and support throughout my graduate studies. This work is dedicated to them.

ii

Abstract

There is a growing interest in establishing rules to regulate the privacy of citizens

in the treatment of sensitive personal data such as medical and financial records. Such

rules must be respected by software used in these sectors. The regulatory statements are

somewhat informal and must be interpreted carefully in the software interface to private

data. Another issue of growing interest in establishing and proving that enterprises, their

products, workflows, and services are in compliance with relevant privacy legislation. There

is a growing industry in the creation of compliance tools that help enterprises self-examine

to determine their status, but there is little formalization of what compliance means or

how to check for it.

To address these issues, we present techniques to formalize regulatory privacy rules

and show how we can exploit this formalization to analyze the rules automatically. Our

formal language, Privacy Commands which combine to form Privacy APIs, is an exten-

sion of classical access control language to include operations for notification and logging,

constructs that ease the mapping between legal and formal language, and a robust and

expressive system for expressing references and constraints.

We develop constructs and evaluation mechanisms for the language which are specially

suited to the modeling or legal privacy policies and show the usefulness of the language

by developing several comparison metrics for Privacy APIs which let us compare the per-

missiveness of policies. We call the metrics strong licensing and weak licensing and show

how they are useful in comparing Privacy APIs. To validate the robustness and flexibility

of the language we show several involved case studies with a variety of policies including

the US HIPAA Privacy Rule, the US Cable TV Privacy Act, and the Insurance Council of

Australia’s Privacy Code. To automate the evaluation of policy properties and comparison

we develop and prove the correctness of a mapping from Privacy APIs to Promela, the

input language for the SPIN model checker.

COPYRIGHT

Michael J. May

2008

Contents

Acknowledgements ii

1 Introduction 1

1.1 Regulatory Privacy Policies . 3

1.2 Compliance and Static Checking . 4

1.3 Policy Enforcement . 5

1.4 Methods . 6

1.5 Contributions and Challenges . 8

1.6 Organization . 9

2 Background and Related Work 11

2.1 Privacy in the Law . 12

2.1.1 Legal Background . 12

2.1.2 Complexities in Legal Policies . 14

2.1.3 Policy Examples . 16

2.1.4 Related Technical Work . 22

2.2 Access Control Formalization . 24

2.2.1 Access Control Terms . 24

2.2.2 Access Control Policies . 26

2.3 Privacy Policy Formalization . 32

2.4 Conclusion . 41

iii

3 Motivation for Formal Privacy 42

3.1 Formal Privacy . 42

3.2 Desired Properties of Formal Privacy . 45

3.3 Conclusion . 55

4 Methodology 56

4.1 Auditable Privacy Systems . 56

4.1.1 Constraints . 59

4.1.2 References . 62

4.2 Methodology of Translation . 66

4.3 Challenges in Translation . 67

4.4 Privacy Commands and APIs . 68

4.4.1 Knowledge State . 69

4.4.2 Evaluation Model . 71

4.4.3 Judgments and Derivation of Judgments 80

4.4.4 Overloading . 85

4.5 Alternate Approaches . 91

4.6 Conclusion . 95

5 Formal Language and Framework for Privacy APIs 96

5.1 Fundamental Types and Sets . 97

5.1.1 Purpose Examples . 100

5.2 Syntax for Privacy Commands . 103

5.2.1 Guards and Operations . 103

5.2.2 Typing . 105

5.2.3 Command Syntax . 110

5.2.4 Constraint Syntax . 112

5.2.5 Grammar for Privacy Commands . 115

5.2.6 Privacy Commands Examples . 118

5.3 Operational Semantics . 126

5.4 Evaluation Engine for Privacy APIs . 129

iv

5.4.1 Running Commands and Constraints 133

5.4.2 Judgment Derivation . 136

5.4.3 Constraint Search . 141

5.4.4 Chained References . 144

5.4.5 Termination . 146

5.5 Policies and Licensing . 149

5.5.1 Notation and Definitions . 150

5.5.2 Policy Relations . 152

5.5.3 Policy Comparison . 161

5.5.4 Applications of Licensing . 164

5.6 Conclusion . 178

6 Translating Privacy APIs to Promela 179

6.1 Translation Overview . 181

6.2 Translation to Promela . 182

6.2.1 Promela Fundamentals . 183

6.2.2 From Formal Model to Promela Model 189

6.2.3 Translating Guards and Operations 201

6.2.4 Translating Constraints . 202

6.2.5 Translating Scope . 207

6.2.6 Translating Commands . 208

6.2.7 Judgment Derivation . 213

6.3 Building Models . 214

6.3.1 Constraint Search . 214

6.3.2 Transaction Processing . 216

6.4 Equivalence of Promela Model and Privacy Commands 217

6.4.1 Semantics of the Promela Model . 219

6.4.2 Translation Correspondence . 222

6.5 Conclusion . 238

v

7 Case Studies 243

7.1 HIPAA Consent . 244

7.1.1 Model Development . 245

7.1.2 Consent from 2000 . 246

7.1.3 Consent from 2003 . 263

7.1.4 Queries . 268

7.1.5 Discussion . 281

7.2 ICA Privacy Code and HIPAA . 282

7.2.1 Broadening Constraints . 283

7.2.2 Comparison of Disclosure Rules . 286

7.3 Cable TV Privacy Act and TiVo . 299

7.3.1 Cable TV Privacy Act . 300

7.3.2 Comparing Disclosure Rules . 305

7.4 Conclusion . 309

8 Conclusion 312

A Supplementary Promela Code 314

A.1 Purposes Code . 316

A.2 Overloaded Constraints Structure . 323

A.3 Transaction Processing Code . 331

A.3.1 Taking a snapshot . 331

A.3.2 Restoring a snapshot . 332

B Privacy Law Texts 335

B.1 Privacy Rule December 28, 2000 . 335

B.1.1 §164.506 . 336

B.1.2 §164.530 . 339

B.2 Privacy Rule August 14, 2002 . 339

B.2.1 §164.506 . 339

B.2.2 §164.501 . 340

vi

B.2.3 §164.508 . 341

B.3 Insurance Council of Australia Privacy Code 342

B.4 Cable TV Privacy Act of 1984 . 344

B.5 TiVo Privacy Policy . 346

C Full Privacy APIs for Case Studies 349

C.1 Privacy Rule 2000 Privacy API . 349

C.1.1 Tags . 349

C.1.2 Privacy API . 350

C.2 Privacy Rule 2003 Privacy API . 381

C.2.1 Health Care Operations Hierarchy 381

C.2.2 Commands and Constraints . 383

C.3 Insurance Council of Australia Privacy Code 414

C.4 Cable TV Act Privacy API . 431

D Glossary of Sets, Functions, Relations, and Notation 450

D.1 General Notation . 450

D.2 Fundamental Sets and Types . 451

D.3 Variable Name Bindings . 452

D.4 Transitions . 452

D.5 Purposes . 454

D.6 Functions . 454

vii

List of Tables

2.1 Access control matrix under Graham/Denning 27

4.1 Names, description, and applicability of judgments 82

5.1 Purposes included in allowed and forbidden semantics for surgery example . 101

5.2 Guards (ψ) . 104

5.3 Operations (ω) . 104

5.4 Types . 106

5.5 Simple and complex types . 116

5.6 Terms . 117

5.7 Judgment combination for constraint search 133

5.8 Judgment from a single constraint run by reference 138

5.9 Judgment from an overloaded constraint run by reference 140

5.10 Judgment from a single constraint during constraint search 144

5.11 Judgment from an overloaded constraint during constraint search 145

5.12 Relations between commands, command series, and policies 153

6.1 Promela operators . 183

6.2 Knowledge state representations . 190

6.3 Declared Constants for Promela models . 201

6.4 Global variables for Promela models . 202

6.5 Message Types . 203

6.6 Result combination for overloaded constraints in Promela 206

6.7 Promela translation for members of Guard 241

viii

6.8 Promela translation for members of Operation 242

7.1 Tags for the HIPAA 2003 Privacy API . 266

7.2 Tags for the Cable TV Privacy Act . 305

A.1 Judgment comparison for overloaded constraints in pre-command search . . 333

A.2 Judgment comparison for overloaded constraints invocation 334

C.1 Tags for the HIPAA 2000 Privacy API . 350

D.1 Variable Names . 453

ix

List of Figures

1.1 Moving from text to Promela via Privacy Commands 7

2.1 Sample P3P policy web tracking . 34

4.1 Invariants on a command . 73

4.2 Running an overloaded constraint . 86

5.1 Hierarchy for surgery example . 101

5.2 Hierarchy for marketing purpose example 102

5.3 Typing rules for operations . 107

5.4 Typing rules for guards . 108

5.5 Typing rule for commands . 112

5.6 Typing rule for constraints . 115

5.7 Operational semantics for guards, part 1 . 128

5.8 Operational semantics for guards, part 2 . 129

5.9 Operational semantics for guard sequences 130

5.10 Operational semantics for operations, part 1 130

5.11 Operational semantics for operations, part 2 131

5.12 Operational semantics for operations sequences 131

5.13 Operational semantics for constraints . 132

5.14 Operational semantics for overloading . 133

5.15 Operational semantics for commands . 134

5.16 Reference types . 134

5.17 Scenario for running a constraint: Search 135

x

5.18 Scenario for running a constraint: Reference 136

5.19 Scenario for running a constraint: Chain . 136

5.20 Pseudocode for overloaded constraint derivation by reference 140

5.21 Overloaded constraint scenario . 141

5.22 Constraint search pseudocode . 142

5.23 Equivalence of scope and references . 143

5.24 Constraint chained from a search . 146

6.1 Sample commands for translation . 181

6.2 Sample communication . 187

6.3 Hierarchy for surgery example (reprise) . 198

6.4 Promela framework for constraints . 205

6.5 Promela code for the combination of overloaded constraint results 207

6.6 Promela framework for commands . 209

6.7 Code for deriving a constraint search judgment 213

6.8 Code for deriving a constraint reference judgment 213

6.9 Promela code for single constraint search 215

6.10 Promela code for pre- and post-command state management 217

6.11 Equivalence mappings . 218

6.12 Promela code an n constraint search . 240

7.1 Initial state and invariant for ambulance query 311

xi

Chapter 1

Introduction

To address the growing business of corporations collecting and using personal data, there

are increased government attempts to create regulations that assure consumers their pri-

vacy will be respected. Privacy regulations are complex documents which often include

requirements for enterprises who handle personal data to install safeguards and auditing

controls to monitor access and use of personal information. The challenges posed by this

arrangement are two fold.

First, since regulatory policies are structured in an idiosyncratic manner with differ-

ing levels of hierarchies, internal and external references, and implicit dependencies, it is

difficult for non-experts to understand them. Key actions may be permitted or forbidden

by a paragraph in the law if they are “permitted elsewhere” in the section or chapter,

causing rules to have a complex reference and deference structure. Governing agencies and

privacy activist groups frequently publish summaries of key privacy legislation to inform

the public, but those summaries do not include all of the aspects of the legislation and are

not designed for implementation. Enterprises need languages and automated tools to help

them discover what actions are permitted and forbidden by the laws they are subject to.

Second, once an enterprise has implemented an internal policy, they may need to revisit

it if the law changes, if they begin operating in a new legal jurisdiction, or if they enter

new markets that are regulated differently. In such situations, the key questions then are

whether their old policy is still valid under the new legal document and if not, what is it

that they need to do differently.

1

The aim of this thesis is to construct a formalism which we call Privacy APIs that

aids the modeling and understanding of regulatory rules for privacy as they appear in

diverse contexts (such as countries or sectors) and use this formalization to analyze the

impacts of changing or composing such policies. We develop Privacy APIs in a bottom

up approach, from foundational theory to an implemented language. We begin with a

theoretical model for privacy policies called Privacy Systems which is then concretized

and applied to legal texts in the form of Auditable Privacy Systems. We then generalize

Auditable Privacy Systems to Privacy APIs to better handle references and deferences.

For the final language we provide a detailed syntax and semantics as well as a mapping

from it to Promela, the input language for the model checker SPIN.

As a caveat, we stress that Privacy APIs are a tool to aid, but not replace, competent

legal advice and domain expertise. We show the flexibility of the language through appli-

cation to several real world legal policies, but since the formal language operates using the

language of source text, its judgments are affected by how the source text is interpreted.

For instance, rules which limit when information may be disclosed are subject to interpre-

tation with respect as to what actions constitute disclosure. Also, while we introduce a

flexible and expressive means for indicating precedence, we do not address the greater chal-

lenge of interpreting and integrating decisions from varying sources of law. For instance,

in deciding whether a particular piece of information may be used for a purpose it may

be necessary to examine rulings from privacy law in addition to tort, libel, and contracts

laws.

As part of this introduction, we present more specific background on regulatory privacy

policies in Section 1.1. We then outline notions of policy compliance in Section 1.2 and

policy enforcement in Section 1.3 to motivate the work that we present in this dissertation.

We discuss the methods used in this work and how we evaluate them in Section 1.4. We

consider the challenges that we faced completing the work and its major contributions to

the field of privacy policies and formalization in Section 1.5. We conclude the introduction

with an outline for the rest of this dissertation in Section 1.6.

2

1.1 Regulatory Privacy Policies

An increasing number of government agencies and enterprises are finding a need to write

down privacy rules for their handling of personal information of parties who entrust such

information to them. These rules are derived from a complex set of requirements laid down

by diverse stakeholders; they are often complex and may contain important ambiguities

and unexpected consequences. Examples include sector-specific rules like the Health In-

surance Portability and Accountability Act (HIPAA) [84] and Gramm-Leach-Bliley (GLB)

Act [35] in the US and comprehensive privacy rules established by the European Economic

Community [79, 80]. Increasing automation of data management using computer systems

invariably means that these privacy rules become requirements for software systems that

manage data affected by privacy rules. Analyzing conformance to these rules requires care-

ful comparison of the permitted actions of a computer system with the (typically informal)

regulatory rule sets.

Existing work in the area of legislative privacy policy is divided by discipline.

In the legal discipline, legal scholars, philosophers, and legislators discuss what are

reasonable societal assumptions of privacy and confidentiality, what are fair information

practices, and what sorts of disclosures and uses are appropriate for different contexts. Pri-

vacy policy formulations from the legal discipline involve information in all forms, whether

digital, paper, or verbal. Legislators aim to create laws that are long lived, that is general

enough to be relevant and prescriptive, but not too specific such that they become obsolete

with changes in technology or business practices.

People who implement the legislative policy, those in the information processing disci-

pline, including customer data brokers, computer scientists, information technology work-

ers, and systems designers discuss what are reasonable levels of security for information,

what are practical workflows for managing private data, and what sorts of safeguards are

necessary for protecting information. Privacy policy formulations from the information

processing discipline are more specific, focusing on information that can be easily trans-

mitted, tracked, and audited. Policy specifications from this perspective make assumptions

about technological and business process environments, exploiting features and norms that

best fulfill their policy goals. The result of these assumptions is that implemented policy

3

is often sector specific and not easily transferred to different problem domains.

The upshot of this division is that there is a need for a framework to understand both

the legislative requirements and the information and workflow systems that are regulated

by them. Such a framework will bridge the gap between the two views, giving clarity to

both disciplines. Privacy APIs is a step in the necessary direction, work that will be aided

by further developments in this area.

1.2 Compliance and Static Checking

There is a growing industry in regulatory compliance, ranging from software questionnaire

based solutions for HIPAA (e.g., GetHIP [67]) and the Sarbanes-Oxley Act (e.g., Cer-

tus [31]) to private legal consultants. Compliance requires that enterprises create a large

volume of paperwork: descriptions of their data practices, workflows, and security provi-

sions, policy documents that describe their internal security and privacy policies, disclosure

documents to provide to customers about their practices, access and disclosure histories for

evaluation by compliance auditors, etc. At the heart of the large set of documents is the

essential policy that the enterprise aims to implement—the coalescence of all the privacy

and disclosure practices, workflows, security provisions, etc. of the enterprise.

Legislative privacy rules are designed to be general, but enforceable. This means that

determining whether an enterprises’ essential privacy policy is acceptable should be deriv-

able from a comparison with the policy requirements as given in the relevant laws. The

problem is that there is no common framework to compare the legal rules to the enter-

prise policies. A unified format that is flexible, generic, and formal enough for automated

evaluation would greatly simplify deriving an answer to the question: “Do the enterprise’s

current practices match with the law?”

In addition to compliance, other static properties of legislation are of interest as well.

Legal policy is complex as a rule, written by many loosely connected authors, and never

created in a vacuum. Complexity is required in good legislation since comprehensive pri-

vacy policies are not easy to write. The downside of complexity is length and difficulty

4

in gaining a big picture of what the ruling of a law really is. Evaluation of legal ques-

tions about privacy in complex real world situations requires investigations of terminology,

norms, and many relevant clauses and restrictions. An additional source of complexity is

resolving queries in the presence of preemption, deference to other laws, and resolution of

jurisdiction.

Some static properties of laws such as cross-jurisdictional violations, relation to in-

formation safe-harbors, and the interface between criminal and civil laws are best left to

legislators and legal experts. We can, however, gain traction in understanding questions

of how a legal policy interacts with itself and other laws, what kind of references it makes

to itself and other laws, when it explicitly defers to or preempts conflicting laws, what

kind of loopholes it provides, whether it is internally consistent, and whether it maintains

either its implicit and explicit invariants. Computational and automated formal methods

for resolving such properties will greatly reduce the ambiguity and confusion created by

newly proposed bills and freshly minted legislation by allowing legislator, lawyers, and lay

people to see exactly what is being proposed.

1.3 Policy Enforcement

Existing languages and architectures focus on different areas of enforcement.

At the lower level are reference monitors and access control matrix systems that mon-

itor access to objects in a single environment. Policy at this level is very specific and is

enforced by the operating system or networked file system. Examples of this style include

Harrison, Ruzzo, and Ullman’s access control language framework (HRU) [56], Graham

and Denning’s access control matrix policy [49], the Chinese Wall security policy [25], and

Role Based Access Control (RBAC) [39].

At the higher level are policy engines that answer queries about proposed actions in

a distributed environment. Policy at this level is more general, describing combinations

of actions and roles that are permitted or (less often) prohibited. Since the policy is

designed for a distributed environment, enforcement of query results is left to the lower

level. Examples of this style include W3C’s Platform for Privacy Preferences (P3P) [93], the

5

Enterprise Policy Authorization Language (EPAL) [8], Cassandra [16], and some obligation

systems.

Enforcement of regulatory policy requirements is a combination of regular distributed

policy enforcement combined with a meta-policy enforcement. That is, regulatory policies

often describe what sorts of policies must be enforced on the system. This higher level of

enforcement requires a bigger picture view of system events than is classically available to

policy enforcement engines. The development of an architecture to support a big picture

view and enforce meta-policy requirements will be an enabler of enforcement of regulatory

policy requirements.

1.4 Methods

Figure 1.1 gives an overview of the methods used in this dissertation. The figure shows the

steps we take in adapting a legal text for formal analysis. We first translate the legal text

by hand into a Privacy API which consists of commands and constraints in the Privacy

Commands language. This step requires the input of legal professionals to indicate how

the provisions in the law are to be interpreted. We then use the structured translation

algorithm in Section 6.2 to translate the Privacy API into a Promela model. We use

the Promela model, combined with initial state provided by the user as input to SPIN.

SPIN uses the model, the initial state, and properties expressed in LTL to evaluate static

properties of the models. The properties that we are most interested in are based on the

relations developed in Section 5.5. Using the properties discovered by SPIN, we can then

return to the legal text to map the results to the features of the source text. SPIN makes

such mapping easier by providing full traces of events which lead to property violation.

In order to evaluate our work we develop several case studies of its usefulness and

flexibility. Our choice of legal documents to study is affected by several factors: their

complexity (i.e., how interesting they are to study), their relevance, and their amenability

to modeling (i.e., they are specific enough to quantify objectively).

We have three particular interests to explore with these studies. The first is showing

that our methods scale well to large policy sets. The second is using our tools to show

6

Legal Text Privacy API

Properties SPIN Promela

User input

Hand Translation To Privacy Commands (Sections 5.2, 5.3)

Structured Translation (Section 6.2)

Model Adaptation (Section 6.3)Property Checking (Sections 7.1–7.3)

Checking Source

Initial StateInvariants For Relations (Section 5.5)

Figure 1.1: Moving from text to Promela via Privacy Commands

compliance to both policies and meta-policies. The third is showing how policies interact,

preempting, deferring to, and modifying each other’s rulings.

HIPAA As part of our previous work we performed a case study on the HIPAA consent

requirements. The case study, described in Chapter 7 compared two versions of the

same subsection of the regulation, one from 2000 and one from 2003. Our results

showed the usefulness of our approach and presented some interesting results on

the comparison. In particular, we looked at three properties of the 2000 version

that were pointed out by commentators as being inappropriate. We then used our

representation to discover those issues in the 2000 version and to explore whether

those properties were also true in the 2003 version.

Cable TV Privacy Act and TiVo As an exercise in the conformance determination

features of Privacy APIs we develop a case study comparison between the US Cable

TV Privacy Act of 1984 [48] (CTPA) and the TiVo corporation’s (tivo.com) privacy

policy [62] that is subject to it.

7

Australian Insurance Privacy Policy To exercise the comparison features of Privacy

APIs we show how to compare two different privacy laws, HIPAA from the previous

case study and the Insurance Council of Australia’s privacy guideline [72].

1.5 Contributions and Challenges

We based the requirements for our work on the challenges faced by enterprises and indi-

viduals who must deal with legal policies. We sought a balance between descriptiveness,

accuracy to the source text, and enabling automated formal analysis. Out fundamental

goal was to allow better analysis, examination, and comparison of legal policies so we faced

the following major challenges in doing so:

1. In order to enable analysis, we needed to design a policy representation suited to

the structure of legal texts, including idiosyncratic and subtle methods of referencing

other text locations as used in real world legal policies. We also needed to avoid

“overfitting” the representation by tailoring it to one target policy to the exclusion

of all others.

2. To enable quicker and analysis of legal policies we sought to enable automated ex-

ploration of properties.

3. To make comparison of legal policies easier and more objective, we sought mecha-

nisms to compare and contrast policies.

We also faced numerous other smaller challenges in the design and execution of this

work. We enumerate a detailed list of requirements later in Section 3.2 as part of our dis-

cussion of the complicating properties of legal policies. In meeting the above challenges we

offer three major contributions to the area of privacy policy language design and analysis.

1. We present the Privacy Commands language as a representation suitable for captur-

ing the permissions and structures of complex legal privacy policies. With proper

expert advice, the formalism can be used to capture aspects of legal policies which are

suitable for automated exploration. The evaluation engine for the language interprets

8

Privacy APIs (collections of commands and constraints in the Privacy Commands

language) in a manner akin to how a person might interpret the source policy, making

its results intuitive and readily understandable based on the source text.

2. We devise a methodology for modeling the various methods restrictions and con-

straints are stated in legal policies. Constraints may include references to other

policies, invariants, situations where only one of a set of requirements need to be

satisfied, and situations where a referenced constraint is only partially applicable.

We devise a method for representing such constraints that is expressive, flexible, and

subtle.

3. Since comparisons between privacy policies is not always straightforward, we devise

objective comparison metrics. Our two fundamental metrics are strong licensing

and weak licensing and they act as building blocks for derivation of higher level

comparisons such as observational equivalence and comparison of permissiveness.

We define our metrics with tunable granularity, giving us the flexibility to compare

anything from single policy paragraphs in a specific situation to whole policies under

any potential situation. Our metrics are based on the notions of strong and weak

bisimulation from the process algebra community.

As a secondary contribution we offer a novel case study in the use of formal methods

tools for the analysis of privacy policies. We devise a methodology for translating from

the Privacy Command language to Promela, show its correctness, and offer three in depth

examples of how we may use the SPIN state space analyzer to examine policy properties.

This study is a strong indication of the usefulness of formal analysis tools in the examination

of privacy policies. This observation is important since it may open up a new and fruitful

avenue in the study, design, and management of privacy policies.

1.6 Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses background and

related work in access control, privacy policy formalization, and legal privacy policies.

9

Chapter 3 motivates the need for Privacy APIs by discussing the real world problems with

respect to legal privacy policies which we assist in solving. Chapter 4 develops Auditable

Privacy Systems and the Privacy Commands language, the tools that we develop in this

dissertation. Chapter 5 develops the formal language that we use for Privacy APIs as well

as the notions of strong and weak licensing. Chapter 6 develops the translation technique

we use for moving from the formal language to verifiable code in Promela. Chapter 7

presents extensive case studies in the application and use of Privacy APIs. Chapter 8

concludes.

10

Chapter 2

Background and Related Work

This work bridges three areas of research: access control, privacy policy formalization, and

legal privacy analysis. The purpose of this chapter is to provide background for the reader

on the fundamentals of computer access control policies, privacy policies, and legal policy

analysis and the relevant related work in those areas. Since each of the topics discussed

here are the subject of decades of research, we briefly touch upon the topics at a general

level and only discuss closely relevant material in depth.

The rest of this chapter is organized as follows. We begin with a summary of privacy

policies as they have been implemented in legal documents in Section 2.1. We discuss

several legal policies in Section 2.1.3 that we will use in later chapters and case studies as

well as related work dealing with technical approaches to modeling them. We then present

an overview of access control terms and policy formalizations in Section 2.2 as a lead in to

the access control theory used in this work. Last, we discuss relevant related work in the

area of privacy policy formalization in Section 2.3. Certain closely related work is discussed

in depth with extensive examples. We conclude in Section 2.4.

11

2.1 Privacy in the Law

In this section we discuss some background for understanding legal privacy policies, present

some particular attributes and complexities associated with them, and give some illustra-

tive examples from the laws of the United States, the European Union, the United King-

dom, and Australia. We consider technical approaches to understanding legal texts in

Section 2.1.4.

2.1.1 Legal Background

An understanding of the tradition of privacy in the laws and traditions of western countries

is essential for an appreciation of the task addressed in this work. Certainly a presentation

of legal minutia and litigation are beyond the scope of this work, so we focus on how

relevant issues relate to the policies we are considering. Since this is not the work of a

legal expert, the presentation here relies on the writings and analysis of legal scholars and

historians and not from original scholarship by the author. The goal of this discussion is

to motivate a computer science approach to this subject, so we will focus on the aspects

of legal privacy most addressable using our methods.

Discussions of privacy in the United States’ legal framework began well over a century

ago in law review journals. Legal scholars debated the notions of privacy and confidentiality

and where they belong in the considerations of society. The earliest discussions involved

the definitions of privacy, as Warren and Brandeis’ [95] formulation of privacy in terms

of the “right to be let alone” as well as numerous other definitions by other scholars.

Their discussion came at a time when the relatively new technique of photography was

becoming widespread and so is in the context of the right of people to prevent unauthorized

photographs of them being public circulated. The advent of computers and digital storage

and retrieval has changed the scope of concern for legal privacy consideration, but the old

definitions are still applicable with respect to their demand for people to have relief from

the courts against abuses of information about them.

Privacy laws in the last several decades have focussed on the twin aspects of data col-

lection and data use. As we discuss below, US regulations differ between industrial sectors

12

while European and Australian privacy laws are cross-industry. Despite the difference of

scope, there are several basic concepts and protections that appear in nearly all privacy

laws.

One common set of regulations relating to data collection is provisions requiring col-

lectors to disclose the purpose for which they are collecting the information. Regulations

of this type appear, for instance in the Australian Market Research Privacy Principles

Section E paragraph 1.5 [74] and the US Gramm-Leach-Bliley Act 15 USC, Subchapter I,

Section 6803(a)–(b) [35]. They are requirements that data subjects be told what informa-

tion about them is being collected and what types of procedures will be followed in the

use the information. Such provisions are especially important in scenarios where people

may not even be aware that information is being collected about them (e.g., when storing

a browser cookie that will be sent to a tracking server).

A second common set of regulations on collections is limitations on the correlation

and compilation of records from multiple data sources. Such limitations are placed to

prevent owners of one database from combining their records with another database to

produce a more revealing picture than would be available otherwise from either database.

Particular worry about government surveillance using multiple data source correlations led

to the inclusion of such provisions in US law regarding government databases (i.e., The

US Privacy Act [73] 5 USC §522a(o) and note)), but not for commercial databases. There

is a large industry in the collection and correlation of consumer information for businesses

and retailers (e.g., Acxiom (acxiom.com), Equitec (equitec.com)) that exists beyond the

scope of the US Privacy Act. The issue of database correlation and combination has come

to debate several times in the past few years, for example in 2000 with the merger of a

web advertising company and a customer information company [29, 85, 82].

A third common set of regulations is requirements for safeguarding and securing col-

lected information. Requirements for safeguarding typically include physical, technical,

and administrative mechanisms. Technical safeguards are difficult to get right in legal

documents since terms such as “encrypted” and “password protected” are ambiguous if

not rigorously defined by law. Some specifications are couched with phrases such as “rea-

sonable and appropriate” (e.g., HIPAA [84] [§164.306(d)(3)(i)-(ii), v. 2003]) which places

13

a burden of proof on the data holders that the safeguards they implemented in fact are

so. There is certainly a desire to ensure that legislation is not tied to a particular software

package or transient technology (e.g., HIPAA Final Security Rule Section III paragraph

2, page 8336 [45]). With respect to our policy formalizations, we do not implement any

details not specifically mentioned in the legal text. Thus, our policy analysis takes place

at the level of specificity contained in the document.

A fourth common set of regulations are limitations on use. They include common re-

strictions such as rules about disclosures of information and restrictions of actions that may

be performed based on information. More procedurally complicated restriction include re-

quirements for formulating business and administrative procedures for the handling and

approval of proposed uses and allowances for individuals to access and correct informa-

tion about themselves. Since our policy formalization focusses on uses and disclosures of

information, we have limited capability in reflecting rules about business processes and

workflows.

Lastly, a fifth common set of regulations relate to the depersonalization or anonymiza-

tion of records. Anonymized records are needed for statistical analysis and research, both

clinical and otherwise so there has been research into mechanisms for achieving record

anonymization while maintaining the properties of data (e.g., privacy preserving data

mining [4]) as well as studies showing some schemes that are not truly secure (e.g., work

by Malin [65, 66]). Such research helps inform technical discussions of what types of

anonymization are effective and appropriate for different research and analysis needs.

2.1.2 Complexities in Legal Policies

Having discussed some common themes and requirements of legal policies we now discuss

some aspects of legal policies that tend to make them complex to implement rigorously

in policies derived by computer scientists. Legal policies include common access control

concepts discussed above as well as complex dependency structures that often create a

mesh of rules rather than a distinct policy. Policy interpretation then involves determining

how a particular policy ruling fits into the big picture.

A first reading of legal policies shows that concepts in their technical and administrative

14

safeguards have much in common with classical access control work. This should not be

surprising because classical access control theory is based on existing human level controls

in place in government, military, and commercial environments (e.g., Bell-LaPadula [18],

ORCON [50], Clark-Wilson [32], Chinese Wall [25], etc.). The commonalities include the

concepts of agents in a system that are assigned roles, vocabularies of precisely defined

terms, dependencies on purposes and obligations, and formulations for exceptions. These

commonalities mean that legal policies share a large enough set of terms with access control

systems that we can use one to enforce the other.

Despite the conceptual similarities between the two fields, legal policies have a com-

plex dependency and decision mechanism not commonly seen in access control theories.

Dependencies in policies range from simple references between paragraphs to wholesale def-

erence to any other existing law (e.g., such an exception in HIPAA [46] [164.512(c)(1)(iii),

v.2003]). Simple references to other paragraphs are textual pointers that allow one para-

graph to invoke the functionality of another. Another type of reference refers just to the

condition of another paragraph, allowing one paragraph to condition its functionality on

another paragraph’s guard. In terms of deference, many documents explicitly delineate

when they defer to or preempt competing or conflicting policies, but the delineations are

not always symmetric (e.g., A states that it preempts B, but B does not say that it defers

to A). When laws do not explicitly state deference or preemption guidelines we leave the

interpretation to legal experts.

Intertwined with issues of deference and preemption are laws with limited scope and

coverage. For example, laws may be addressed to particular industrial sectors (e.g., only

financial services providers), specific categories of use (e.g., only for market research), or

even to specific media (e.g., only electronic records). When a particular policy speaks to

only a limited set of cases its impact on the mesh of legal policies is also limited and we

must be careful in applying it.

A fourth, perhaps more subtle, point regarding management of legal policies is the

difference between those laws that are actively regulated and those that are reactively regu-

lated. An actively regulated law implies that an authority actively checks implementation

of the legal policy and regularly reviews the actions of covered entities (i.e., parties covered

15

by the particular law) to ensure compliance. Under a reactively regulated law, however,

covered entities may only be checked or reviewed for compliance when someone files a

complaint. A reactively regulated law that is couched in terms of “reasonable and appro-

priate” places a larger burden on a plaintiff seeking relief from a covered entity than an

actively regulated law that is specifically worded. The upshot of this is that in designing

systems to support the enforcement of legal privacy policies we must tailor the system to

the method of enforcement. A system to enforce an actively regulated law will require

strong preventive enforcement guarantees that violations will not occur. A system to en-

force a reactively regulated law will require weaker enforcement guarantees coupled with

stronger audit and tracking facilities to enable after the fact investigations. As system and

computer policy designers, not legislators, our goal is to make systems that respect the

law as well as enable its enforcement appropriately.

2.1.3 Policy Examples

To help the reader understand the policies that we discuss in this work, we now present

and briefly some example privacy policies, some of which we will use for examples and case

studies in this work. An important contrast to note is that US privacy law is primarily

sectoral, so particular policies are limited to industries and specialities. Thus, while the

HIPAA law discussed below provides comprehensive protections for personal health infor-

mation held by certain entities, it does not provide any protections from health information

held by other entities.

HIPAA

The US Health Information Portability and Accountability Act of 1996 [84] obligates the

Department of Health and Human Services (HHS) to define rules and regulations for the

privacy, security, and portability of electronic health information. Pursuant to it, the HHS

created documents called Rules to fulfill its new mandate. Of interest in this work is the

Privacy Rule which contains rules regarding the use and disclosures of personal health

information stored in electronic format. The Privacy Rule (as with the rest of the HHS

proposed rules) went through a few revisions. The first version was released in 2000 [42].

16

Its release was followed by a comment period during which individuals and affected parties

were allowed submit comments to the HHS. Relevant comments were summarized into a

comments document [43] and published by the HHS. After the comment period, the Rules

were revised and the new version of the Privacy Rule [46] (along with the other rules)

was published in 2003. It has been amended several times since by various laws. Each

Rule defines particular phase-in stages and deadlines by which covered entities must be

compliant with the law.

Of interest in HIPAA is its limitation of covered entities to health plans, health

providers, and heath care clearinghouses (i.e., entities that convert health information

from non-standard format to standard format or vice versa). Non-covered entities that

maintain and use electronic health information in conjunction with covered entities (e.g.,

a billing service) must be bound by business associate contracts between them. Such con-

tracts need not have the same force as the HHS Rules, but must contain a level of privacy

assurance and accountability to the covered entity. Such contractual relationships are of

interest to this work since they provide a good example of policy conformance analysis.

That is, it is required that business associate contracts limit the actions of associates to

within a certain approximation of the HIPAA rules.

Colloquially, the term “HIPAA” is used to refer to the contents of the Privacy and

Security Rules as issued and enforced by the HHS even though strictly it refers to the

Act of 1996 and not the subsequent Rules. In this work we use the term “HIPAA” in its

relaxed meaning, to refer to the law itself or the Rules. When needed for specificity we

will clearly mention if we refer to the Act, the Privacy Rule, or the Security Rule.

The Rules are codified in the Code of Federal Regulations (CFR) and published by the

Federal Register on a quarterly basis. The Rules are located in Title 45 of the CFR, Subtitle

A, Part 164 and are further divided into subparts, sections, and paragraphs. Throughout

this work we refer to text in the Rules by their section and paragraph headings as well

as the year in which they are published and set the reference out in square brackets. For

instance, the reference [§164.500(a)(1), v.2003] refers to the text published in 2003 in Part

164, section 500, paragraph (a)(1). The reference [§164.502(b)(2)–(4), v.2000] refers to the

text published in 2000 in Part 164, section 502, paragraphs (2), (3), and (4).

17

Compliance with the Privacy Rule requires covered entities to appoint a Privacy Officer

who oversees the design and implementation of policies to enforce the information security

rules. When the Rule was first published in 2001, covered entities rushed to review their

current practices, compile detailed lists of their information technology (IT) assets, and

perform a gaps analysis to determine what practices, policies, and IT systems needed to

be updated. Larger covered entities employed HIPAA consultants to or companies which

specialize in compliance to aid them. Case studies from covered entities emphasize the

review process and gap analysis performed during the compliance evaluation as a major

burden in the process [26, 69].

In this dissertation we use selections from HIPAA’s Privacy Rule as running examples.

The sections that we select from generally concern the use and disclosure of protected

health information for treatment, payment, and health care operations. We choose these

sections since they cover many common situations of information use. The requirements

that they include therefore represent very important aspects of the privacy protections

included in the Privacy Rule.

The rules regarding the need for consent for treatment, payment, and health care

operations from the 2000 version of the Privacy Rule have six major divisions (paragraphs):

§164.506(a) The first paragraph (a) contains the rules about when a covered health care

provider must obtain consent from an individual prior to the use or disclosure of the

individual’s protected health information. The top level text gives a general con-

straint that unless permitted in the paragraph, a covered health care provider must

obtain consent before use or disclosure for treatment, payment, or health care oper-

ations. Exceptions are made for health care providers who have indirect treatment

relationships (e.g., a radiologist), information regarding prison inmates, emergencies,

health care providers required by law to provide treatment who attempt to obtain

consent but fail, and health care providers who infer consent from an individual but

cannot obtain written consent due to barriers in communication.

Paragraph (a) states that in cases where the health care provider is not required to

obtain consent as per the exceptions above, it may do so if it is obtained appropriately

as per the section (i.e., 164.506). It also states that consent given to one health care

18

provider does not permit another to use or disclose unless they are a joint entity as

defined in paragraph (f).

§164.506(b) The second paragraph (b) contains the rules for the management of indi-

vidual consent such as how the consent may be combined with other documents,

revocation, and the retaining of signed consent.

§164.506(c) The third paragraph (c) contains the rules for the content that must be

present in a signed consent form.

§164.506(d) The fourth paragraph (d) defines a “defective consent” as one that is either

revoked or that does not fulfill the rules in (c).

§164.506(e) The fifth paragraph (e) defines how two conflicting consent documents signed

by the same individual must be resolved. It prescribes that in case of conflicting

statements, a health care provider must either follow the stricter of the two statements

or communicate directly with the individual.

§164.506(f) The sixth paragraph (f) contains the rules for how health care providers in

an organized arrangement may provide and receive joint consents from individuals.

Joint consent documents must have the documentary content of paragraph (c) but

may be modified to refer to all the parties in the arrangement. Revocation of a joint

consent by an individual must be communicated to all parties in the arrangement.

The rules regarding the need for consent for treatment, payment, and health care

operations from the 2003 version of the Privacy Rule have three paragraphs:

§164.506(a) The first paragraph (a) is a general rule permitting the use and disclosure

of protected health information for treatment, payment, or health care operations

without consent. It references paragraph (c) with respect to the details of consent.

Exceptions to the rule include situations where an authorization is required as per

§164.508(a)(2)–(3).

§164.506(b) The second paragraph (b) grants permission for covered entities to request

consent from individuals for use and disclosure for treatment, payment, or health

19

care operations. Such voluntary consent, however, does not permit use or disclosure

when an authorization as per §164.508 is required.

§164.506(c) The third paragraph (c) details the cases where use and disclosure of pro-

tected health information for treatment, payment, and health care operations are

permitted. Five subparagraphs detail the permitted cases.

The rules in §164.506 reference the requirements for special written authorizations in

§164.508. The rules for authorizations there are given in three paragraphs:

§164.508(a) The first paragraph (a) states that authorizations must be obtained to use

or disclose psychotherapy notes or to use protected health information for marketing.

Some exceptions to each case are given with references to many other sections.

§164.508(b) The second paragraph (b) delineates general requirements for authorizations,

how they are obtained, revoked, and combined with other documents when presented

to individuals.

§164.508(c) The third paragraph (c) delineates the required contents of authorization

documents and the requirement that individuals be given a copy of any consent

signed.

Aside from rules regarding consent, HIPAA imposes many other rules regarding the

management of health information. One important one relates to the logging of activity

[§164.308(a)(ii)(D), v.2003]:

(D) Information system activity review (Required). Implement procedures to
regularly review records of information system activity, such as audit logs,
access reports, and security incident tracking reports

The requirement to log all actions and operations is common enough that we include

special operations to manage logs for auditing.

EU Privacy Directive

The European Union’s 1995 Data Protection Directive 95/46/EC [79] is its main regula-

tion for the protection of personal information. Unlike the US which has taken a sectoral

20

approach, the European Parliament chose to devise a broad policy document that would

cover all areas of information processing. The policy directive has been followed up with

some additions to handle more recent technologies (e.g., communication and location infor-

mation in 2002 [80]), but the 1995 law sets the groundwork for all subsequent regulations.

The document establishes privacy principles which generally limit categories and types of

actions. Its principles include meta-policy to describe what laws member states should

create to support it. It has a different structure than the US privacy laws, using less

references and larger self-contained paragraphs.

We do not consider a case study involving the EU Privacy Directive in this work,

although comparison between its privacy principles and US regulation would be an inter-

esting direction for further research.

Insurance Council of Australia Privacy Code

The Australian Privacy Act of 1988 [71] sets National Privacy Principles (NPPs) for the

protection of information about individuals which are binding on all sectors of industry

in Australia. Section 18BG of the Privacy Act, as activated in 2001, permits private

industry groups to compose sector specific privacy codes which, if approved by the Privacy

Commissioner, may replace the NPPs for the constituent members of the group. As of

this writing in October 2007, the Privacy Commissioner has approved three private sector

privacy codes, two are under consideration, and one has been revoked.

The Insurance Council of Australia (ICA) (ica.com.au) issued a General Insurance

Information Privacy Code (GIIPC) as per that permission that is applicable to all insur-

ance providers who choose to belong to the ICA. The code was approved by the Privacy

Commissioner in April 2002 and became effective as of that date. The code was revoked

by the Privacy Commissioner on April 4, 2006 due to lack of industry uptake and several

complaints from individuals. Even though it is no longer in active use, it provides a good

example of a legal privacy policy and a contrast in writing style from the HIPAA rules.

We consider a piece of ICA privacy code in a case study in Section 7.2. The full text of

the relevant section for disclosure of personal information is included in Appendix B.3.

21

Cable TV Privacy

The Cable TV Privacy Act of 1984 [48] (CTPA) restricts the uses and disclosures that

cable operators can perform on certain categories of subscriber information. The CTPA is

recorded in US Code Title 47, Chapter 5, Subchapter V-A, Part IV, Section 551. Section

551(c) includes the rules regarding the disclosure of personally identifiable information

which we consider as part of a case study in Section 7.3. In the case study we compare the

permissions for disclosure in the CTPA with the privacy policy of TiVo.

TiVo Corporation (tivo.com) produces digital video recorders (DVRs) and service

contracts that allow subscribers to download television show times, record shows, rewind

shows during viewing, and other convenient features. When a service contract is in place,

TiVo DVRs collect information about the viewing habits of their users—which shows they

watch, when they change channels, etc.—and a portion of this information is sent back

to TiVo each time the DVR “dials home” to receive new listing information [68, 89].

TiVo initially did not operate over cable lines and therefore was not subject to the Cable

TV Privacy Act. However, they recently began offering their service for use over Comcast

Cable’s (comcast.com) network in certain areas [87] which may therefore place them under

the requirements of CTPA.

The TiVo policy includes 9 sections, two of which are of interest to us in our case study

in Section 7.3:

Section 1 “Our User Information Definitions” The section contains definitions for terms

used in the policy, including definitions of personally identifiable information.

Section 3 “Disclosure of User Information” The section contains the policies for when

TiVo discloses user information to others.

2.1.4 Related Technical Work

There has been work on implementing and analyzing legal privacy policies from the natural

language, logic, formal methods, and artificial intelligence communities. Since this work

presents a policy and formal analysis approach to legal policies, we consider related work

22

that approaches the technical aspects of analyzing and implementing legal privacy policies.

A full discussion of approaches from the other communities is beyond the scope of this work.

With respect to designing and enforcing health information, Anderson presents a list

of requirements to secure a national patient health information database in the UK [5].

He considers features of the system that must be legislated to ensure patient privacy, such

as sending automatic notifications of access by doctors to patients and strong audit con-

trols. Becker and Sewell use Cassandra, a trust management language, to implement a

system that is compliant with the UK’s actual health information data Spine specifica-

tion [17]. To be sure, their work is an implementation of a system that is compliant with

the specification, not necessarily a close following of the specification.

Antón, et al. have developed a methodology for analyzing the different statements

made in privacy policies. They take each statement in a privacy policy and figure out

its goal. They then classify statements by their goals (e.g., technical, legal, business)

and as either privacy protections or vulnerabilities. A protection statement is a goal that

will keep information safe. A vulnerability is a goal that may imply use or disclosure of

information. [38]. Using their goal based analysis, they analyze how privacy policies have

changed before and after HIPAA, based on the number and types of goals that policies

contain [6]. Their metrics are rather vague since their analysis compares the number and

category of goals in policies rather than what those goals really mean.

As a study of the power of EPAL, a policy language that we discuss in Section 2.3,

Powers, et al. translate a section of Ontario’s Freedom of Information an Protection of

Privacy Act [75] to EPAL [81]. As with our model, their resulting policy closely mirrors

the legal text, having one rule per textual paragraph. They show how the policy allows

them to process a request and return a ruling in a similar manner to how a human would,

but do not analyze or verify their policy formulation.

While it is more of technical discussion than a theoretical discussion, Hogben considers

P3P’s relation to EU’s privacy directive in the context of cookies and other potentially

privacy invading technologies [59].

The above works are united by their focus on implementing systems or policies that

are influenced by legislation. They do not consider the problem of analyzing legislative

23

policy themselves or comparing them to others. In contrast, this work explicitly takes

that consideration and presents tools for better understanding and analyzing legislation in

addition to implementing it.

There has been significant study of legal ontologies and structure of legal text in ma-

chine learning and natural language processing fields. As examples, Dinesh, et al. [37]

use formal semantics to extract structure from regulations for blood banks. They consider

the reference structure noted above in particular regarding global references. Breaux and

Antón [24] analyze the formal semantics of a HIPAA privacy rule summary sheet [44],

analyzing the phrases and structures that commonly appear in it as a model for other legal

privacy policies. Interestingly, as part of their study they count the number of references in

HIPAA’s Privacy Rule, but do not consider their types. As we discuss in Section 4.1.2, one

of the more complex and subtle aspects of modeling legal policies is capturing the intent

of the many types of references used.

2.2 Access Control Formalization

The classic goal of access control is to maintain and enforce a set of permissions for

agents over objects in a closed system. Access control systems were originally designed to

protect computer system files and resources from unauthorized people. As policies became

more sophisticated, notions of delegation, obligations, roles, and capabilities were added.

Since our work builds on these fundamental concepts, we discuss some of the theoretical

frameworks that have been designed to support them.

2.2.1 Access Control Terms

The basic problem of managing the rights that people have on files and resources in a

computer system can be imagined as a mapping of people (agents) and files or resources

(objects) to permissions. The key terms and concepts that we use in our models are as

follows.

Objects Objects are abstractions of anything that can be affected, used, or modified by

an agent in a computer system, including files, printers, storage media, and other

24

agents.

Agents Agents are an abstraction of people who interact with other agents or object,

often through a programmatic interface. Often it is useful to think of an agent as

an operating system process that is performing the actions of the person controlling

it. In our work, we use agents heavily, not distinguishing between people and the

software or hardware agents that perform tasks on their behalf. Thus, if a doctor

has the right to view a file, it does not matter whether the doctor sees it on paper or

on her computer screen. This decision abstracts away the notions of authentication,

user sessions, and other lower level systems details which are typically not considered

in legal privacy policies.

The policies that we consider in this work are often concerned with two classes of

agents in every action: the actor who performs the action, and the agent(s) who the

action affects. If the action involves sending information to another agent, we also

consider the agent who receives the information (i.e., the recipient). If the action

involves information about another agent, we consider the agent who the information

is about (i.e., the subject).

Rights Rights are abstractions of permissions that agents may hold over objects. When

considering rights in policies we are normally not so concerned with the semantics

of the rights so much as how they are created, transferred, and deleted by policies.

We normally assume that all rights are stored in a central repository, an access

control matrix, or some other data repository that is shielded from modification by

others. Thus, policies that we create implicitly trust the integrity of the permissions

repository.

Roles A role represents a set of authorizations that a given agent has. In this work

we use roles as static descriptions of agent authorizations. This simplification is to

the exclusion of a large body of work related to the treatment of roles as dynamic

descriptors which are added, deleted, and modified. We make this simplification

in order to simplify our policy language and formalism since the legal policies we

consider do not explicitly discuss the mechanisms used to dynamically manage them.

25

Tags Tags are named boolean variables which we use to store meta-information about

objects. They are used to keep track of information that the policy needs to be

aware of, allowing decisions to be made about the properties of an object. Tags may

be derived from the contents of an object (e.g., personal information), its provenance

(e.g., file came from the CIA’s secret records), or any other aspect. At the policy

level we are normally concerned only with the truth values of the tags related to an

object, however, not the manner of how tags are set by the environment or derived.

2.2.2 Access Control Policies

Fundamental research in computer access control systems took off in the 1970s as methods

of protecting files and resources in operating systems. Many of the models were based on

human level access control policies then enforced by the military, intelligence, and banking

communities.

Graham and Denning

A representative example of early access control matrix policy and theory is the “protection

system” of Graham and Denning [49]. In their system agents, objects, and permissions

exist in the context of a system-wide access control matrix. The rows of the matrix are

the agents, called subjects in their work. The columns of the matrix are the objects. The

system is assumed to have a root subject who is the prime mover for all events in the

system.

The system supports five permissions: read, write, execute, owner, and control. The

first three in the list also have transferrable versions, indicated by the appending of an

asterisk.

Actions in the system are called events. The events allowed by the system are: object

and subject creation, object and subject deletion, granting and removal of permissions,

transfer of permissions, and reading of permissions.

Events in the system are defined as complex entities and are allowed or disallowed by the

protection system policy. For example, any agent p can create an object o by executing the

event p creates object o. Upon completion of the event a new object o has been created

26

and p owns it: M(p, o) = {owner}. Only the owner of o, p in this instance, can later

delete it with the command p destroys object o. The system verifies p’s ownership by

checking that owner ∈M(p, o) and then removes it from the matrix. The policy regarding

the creation and deletion of subjects is similar.

Agents are restricted from reading the access control matrix as a whole. Instead, an

agent can request to read individual rows in the matrix and are allowed or denied by the

policy in accordance with its permissions on the referenced agent. A reference monitor is

used by the system to track requests for actions and to protect the access control matrix

from unauthorized reading and modification.

Some examples of events in the Graham and Denning system are:

1. Root creates subject Alice

2. Root creates object File

3. Root grants read to Alice on File

After these commands execute the access control matrix looks as in Table 2.1. The

matrix contains two rows, the principals Root and Alice. The matrix has three columns:

Root, Alice, and File. Root owns both Alice and File. Alice has control on Alice (meaning

that Alice can read her own entries in the matrix) and read on File.

Table 2.1: Access control matrix under Graham/Denning

Root Alice File

Root control own own

Alice control read

Graham and Denning consider issues of safety and correctness of their protection system

and ways to implement it efficiently. They consider extensions to permissions that include

management of delegation, transfer, and message passing. They relate their model to

existing operating system implementations as well. The base policy and operations of the

protection system can also be used by more complex policies to enforce higher level rules

by breaking them down to simpler operations.

27

Our work is in the spirit of a protection system, but differs in an important way. The

requirements for satisfying legal policies differ from those needed for operating systems, but

we retain the spirit of identifying a useful base system that will support those requirements.

We differ in that we decouple the policy for a system from its low level implementation.

That is, we do not presume that there is any underlying policy built into the system that

a higher level policy must respect. Instead, we create a language for defining policies and

an evaluation engine which respects certain invariants of the language.

Harrison, Ruzzo, and Ullman

A more abstract language for writing access control policies is developed by Harrison,

Ruzzo, and Ullman [56]. Like Graham and Denning, their system relies on an underlying

access control matrix and reference monitor. Their contribution is in their formulation of

events and their definition of a form of access control policy. Actions in the system are

performed by “rules” which agents invoke.

Rules in the Harrison, Ruzzo, and Ullman work are transaction-style commands that

execute in sequence on a single system. They discern two types of rules. Primitive opera-

tions of the system manage the reading, granting, and revocation of rights and the creation

and deletion of principals and objects in the matrix. The set of Commands consist of (op-

tional) conditions and a series of primitive operations that are executed transactionally.

Example 2.2.1 As an example of a rule, consider a command for creating an object in

the Graham and Denning policy in the following command:

1 command CreateObject (actor, object)

2 create object object

3 and enter owner into (actor, object)

4 end

Line 1 declares the name of the rule and that it is of type command. It takes two

parameters: the agent carrying out the action and the name of the object to create. Line

2 executes the primitive operation that creates a new row in the matrix. Line 3 executes

the primitive operation that enters the owner right for the actor on the new object. Line

4 concludes. �

28

Harrison, Ruzzo, and Ullman’s access control system structure of primitive operations

and commands that execute them is a flexible framework that allows arbitrary policies to

be composed.

As a caveat, Harrison, Ruzzo, and Ullman show that a specific issue of safety, whether

granting a specific permission to another principal could lead to the permission being

leaked to an untrusted principal, is in general undecidable since a Turing machine can be

constructed whose termination depends on safety. They note, however, that some changes

to their model would invalidate the undecidability result.

Other access control formulations such as the Chinese Wall [25] have addressed such

issues as the expiration of rights in the context of rights becoming constantly more re-

strictive as time goes on. Policies in the model are designed to enforce separation of duty

requirements commonly found in banking and investment companies. Analysis of the static

properties of the policy lead to modifications in the policy to allow for the expiration of re-

strictions to enable greater flexibility and the notion that individuals may change positions

and so lose previous restrictions with time.

Role Based Access Control

Roles were introduced to access control systems to make policies more scalable and man-

ageable. In role based access control (RBAC) [39] there is a set of roles that are assigned

rights in the policy. Rather than assigning individual rights to each agent independently,

each agent is assigned a set of standard roles. Policy decisions are based on the roles that

the requesting agent is assigned as in the following example.

Example 2.2.2 (Roles)

The access control system for an office has two roles: Secretary, Manager. Two people

work in the office: Sam, Mary. The office policy allows Secretaries to only view and edit

object that belongs to them, but Managers can view and edit any object. The role and

policy tables are as follows:

29

Name Role

Sam Secretary

Mary Manager

Role Rights

Secretary Read and Write own

Manager Read and Write any

When Alice tries to view an object that belongs to Sam, she is allowed access. When

Sam tries to view an object that belongs to Alice, he is denied access.

After the manager sees that Sam tried to access an object he was not allowed, he is

fired. Mary hires a new secretary Tina. Tina is assigned the same role as Sam and thus

the same permissions, but the policy table does not need to updated. �

Some policies that allow principals to have multiple roles require that actions be per-

formed under only one role. Thus, a principal who has multiple roles must activate a role

that is effective for some duration as in the following example.

Example 2.2.3 Activating Roles

The access control system for the office is extended with a third role: IT Staff. Members

of the IT Staff role can view any object in the system, but can only edit objects they own.

Ian, who is already a manager in the office, is assigned to the new role of IT Staff as well.

The role and policy tables are extended as follows:

Name Role

Ian Manager, IT Staff

Role Rights

IT Staff Read and Write own, Read any

When Ian tries to view an object owned by Mary the policy requires him to activate

either Manager or IT Staff. Either one will let him view the object. However, when he

tries to edit a file that belongs to Mary, he can only do so if he chooses to activate the

Manager role. �

Advanced policy systems (e.g., [17]) include rules that limit role activation, for exam-

ple limiting the number of principals who can activate a given role at any time. Complex

systems for the management and delegation of roles are termed trust management sys-

tems [22].

30

Fisler, et al. [41] present Margrave, a tool for verifying properties of a role based access

control policy and for performing change impact analysis on it. Policies for Margrave are

encoded in XACML [70] as binary decision trees with optional constraints. They do not

present a method for policy translation. Presumably the translation is done by hand. They

present algorithms for combining two trees with similar constraints and for comparing

differences between two similar decision trees. Their work is similar to EPAL in that they

consider properties of policies that yield access control decisions, providing permit or deny

decisions. Their method for discovering changes between policies in interesting in that

their tree representation lets them verify all the differences between two policies, not just

with respect to a particular property.

Our work differs from Fisler, et al. ’s in terms of scope and approach. We are concerned

with policies that include more than just permit and deny decisions and therefore their

decision tree structure would not be appropriate. Their algorithm for comparing differences

between policies is of interest, but only as an example to extracting differences between

policies. The authors’ consideration of complexity in choosing their decision tree structure

is a good example of policy condensation, something we will need to consider as we develop

our lower level representation of policy.

Originator Control

Originator Control (ORCON) policies [50] are a special kind of mandatory access control

that give rights to the originators of objects even if those objects are no longer owned

by them. For example, if Alice creates a file and Bob makes a copy of it, only Alice can

grant new permissions on Bob’s copy, even if Bob modifies it. The policy is mandatory

since the system, not Bob, determines how the originator designation is assigned. The

ORCON idiom is commonly used for policies where one principal holds or collects another

principal’s information. It becoming a common idiom for privacy policies as well, leading

to techniques to maintain records of where data originates (i.e., data provenance).

31

Usage Control and DRM

The spread of digital content and widespread file sharing brought the need for policies to

control how files and digital objects are used, termed Digital Rights Management (DRM).

Rich languages for access control systems have been designed recently to support DRM

systems, including concepts of state, roles, and delegation. Languages for DRM policies

include the Open Digital Rights Language (ODRL) [60] and eXtensible rights Markup

Language (XrML) [61, 94], recently adopted as the Rights Expression Language of the

Motion Picture Experts Group Multimedia Framework (MPEG-21) [23]. There has been

work on the formal properties of both ODRL [53, 83] and XrML [55]. Both languages are

designed to create digital contracts that are attached to digital media objects. Before a

user can use (i.e., play, print, view) the object, software must consult the contract and

determine whether the proposed action should be allowed. Both languages make use of

signed digital tokens from content owners as well as counters to regulate the rights that

content users have.

Park and Sandhu’s Usage Control (UCON) [76, 77] model is an extensive access control

system. The system includes provisions for digital rights management through the use of

updateable permissions and rights that can behave as counters. UCON allows a very rich

combination of rights, conditions, and obligations to be included in a single access control

system.

2.3 Privacy Policy Formalization

There is extensive work on fundamentals of privacy policies and privacy policy languages

and a extensive discussion of the whole space is beyond the scope of this work. In this

section we therefore survey related work and discuss in depth only work that is closely

related to our own. We return to three of the policy languages below in Section 4.5 with

a discussion of their suitability for modeling legal policies.

Let us first consider two languages similar in nature to our approach: P3P and EPAL.

32

P3P

The Platform for Privacy Preferences (P3P) [93, 36] is a World Wide Web Consortium

(W3C) standard language for web information privacy policies. P3P is a browser-centric

standard designed to put web site privacy policies in a machine readable format. P3P

policies are XML documents that a web site can store in a well known location. A combi-

nation of descriptive tags and human readable text describe the promises that a web site

owner makes about how data on the site is collected, used, and maintained.

An example P3P policy snippet is shown in Figure 2.1. For clarity we omit the required

namespace declarations and policy URL declarations. Lines 1–8 describe the entity that

is making the privacy promises. In this case, ABC Corporation is the owner of the web

site hosting the policy, so it provides its address. Line 9 declares that data subjects will

have access to all information about them. Lines 10–14 provide a method for users to

challenge or dispute the way that information about them is handled. Line 11 describes

that disputes will be resolved through the company’s customer service policies. Line 12 is

an English explanation of this method, meant to be displayed to the user. Line 13 explains

that resolutions will be made by correcting the information about the user. Lines 15–23

are a policy “statement,” a declaration about how particular types of data will be retained

and used. Different data types may have their own, independent statements. Line 16

gives an English summary of the statement’s thrust. Line 17 declares that data will be

used for the purposes of administering the web site (admin), completing and supporting

the purpose for which the data was provided (current), and research and development

(develop). Line 18 declares that only ABC Corp or its will receive the data. Line 19

declares that data collected may be retained indefinitely. Lines 20–23 describe the data

covered by the statement, in this case http connection and click stream information.

The authors of P3P see it as a machine version of a normal human-readable legal privacy

policy. Before interacting with a web site, users can instruct their browsers download the

site’s policy, examine it, and present it to receive user approval to continue interaction with

the site. P3P is a one way communication mechanism, so web users have an all or nothing

choice. It is not clear, however, whether the promises in a P3P policy are as legally binding

as standard corporate privacy policies. For this reason privacy activists initially critiqued

33

1 <ENTITY><DATA-GROUP>

2 <DATA ref="\#business.contact-info.postal.organization">ABC Corp</DATA>

3 <DATA ref="\#business.contact-info.postal.street">123 Avenue A</DATA>

4 <DATA ref="\#business.contact-info.postal.city">Rome</DATA>

5 <DATA ref="\#business.contact-info.postal.stateprov">ME</DATA>

6 <DATA ref="\#business.contact-info.postal.postalcode">04957</DATA>

7 <DATA ref="\#business.contact-info.postal.country">USA</DATA>

8 </DATA-GROUP></ENTITY>

9 <ACCESS><all/></ACCESS>

10 <DISPUTES-GROUP>

11 <DISPUTES resolution-type="service" service="example.com/pol.htm">

12 <LONG-DESCRIPTION>Ask our staff for help</LONG-DESCRIPTION>

13 <REMEDIES><correct/></REMEDIES>

14 </DISPUTES></DISPUTES-GROUP>

15 <STATEMENT>

16 <CONSEQUENCE>Our Web server collects access logs</CONSEQUENCE>

17 <PURPOSE><admin/><current/><develop/></PURPOSE>

18 <RECIPIENT><ours/></RECIPIENT>

19 <RETENTION><indefinitely/></RETENTION>

20 <DATA-GROUP>

21 <DATA ref="\#dynamic.clickstream"/>

22 <DATA ref="\#dynamic.http"/>

23 </DATA-GROUP></STATEMENT>

Figure 2.1: Sample P3P policy web tracking

the language for allowing policies that are perhaps misleading since they are unenforceable

in court [30, 33, 90].

Despite the declarative nature of P3P, policies written in it can be very complex,

opaque, and difficult to understand. The difficulty is compounded by the possibility for web

sites to have different P3P policies for different pages and the ability for policies to specify

different rules for each type of data collected. To help get a handle on this complexity,

a rule set language called “A P3P Preference Exchange Language” (APPEL) [92] was

devised to enable users to specify their preferences so they can be matched against policies

received used by web sites. In theory a user could specify what policies are acceptable

using APPEL and then let the APPEL engine examine each site’s policy before visiting.

However, its use of rule sets with precedence by order and default policy rulings makes

composing a correct policy in APPEL subtle and writing nontrivial policies using it is

34

somewhat difficult [59]. Some alternative languages have been proposed, such as XPref [3],

which is based on the XML query language XPath [91].

In terms of formalization of P3P, Yu, et al. present formal semantics for P3P [98].

Hayati and Abadi use certain P3P duration flags to create an information flow enforcing

tool [57].

EPAL

The Enterprise Privacy Authorization Language [8, 10] is an XML based language to

describe and enforce internal enterprise privacy rules. The language uses a client-server

architecture where each action on private information must first be submitted as a formal

request to a “privacy server” which processes the request and returns an answer. The

request includes the following information:

1. Name or role of the requestor

2. Proposed action

3. Declared purpose of the proposed action

4. The class of data is being acted upon

5. An optional container which is a mapping of field names to values

The privacy server has a policy in the form of a set of rules. Rules include the following

fields:

1. A ruling (deny or allow)

2. Restrictions on the values of the requestor’s name, proposed action, purpose, and

data class

3. Optional conditions which check boolean conditions based on the values in the con-

tainer (e.g., Bob may do action A on data D if field D.name is blank)

4. Optional obligations to impose

35

The privacy server uses a matching algorithm to compare the rules to the requests.

The EPAL authors propose two different matching algorithm:

• In their formal description of EPAL (there called E-P3P) [9], the authors propose a

full search of the policy rule set to find all rules that match a given request. There is

no ordering of rules in the policy. The rulings of the rules are then combined in some

manner (either most restrictive or most lenient). The combined ruling is returned

along with the union of all the obligations from the rules.

• In their proposed policy architecture and implementation [10, 8], the authors propose

that the policy document impose ordering on the rules. The privacy server iterates

down the list of rules and returns the ruling of the first one that matches.

Obligations define (normally) external requirements for the user to fulfill as a condition

of doing the requested action (e.g., data may be stored, but must be deleted after six

months). The policy language is not concerned with the meaning of or enforcement of

obligations. They are to be enforced by the requestor in accordance with the ruling given

by the privacy server.

One interesting property of the EPAL framework is that a rule may impose obligations

regardless of whether it responds with an approval or denial. This makes it easy for a

rule to impose obligations on requests that fail. For example, a policy rule may require

that failed access attempts be logged. It also introduces some complexity in automatically

exploring the permissiveness of a policy since failure to gain permission and failure to make

a request may have different outcomes.

In contrast to P3P which addresses web privacy statements and so has a fixed set of

terms carefully defined to cover common web site usage, EPAL, is a generic architecture

that requires policy writers to define a vocabulary of terms for the policy. Terms in the vo-

cabulary can either be user categories, data categories, purposes, actions, data containers,

or obligations. The first three types are hierarchical. A snippet of an example vocabulary

is shown in the following example.

Example 2.3.1 EPAL Vocabulary

36

We present a snippet of an EPAL vocabulary for a policy about location information

below. We omit details such as namespace declarations and some header clauses.

1 <user-category id="AnyUser">

2 <short-description>Root user category</short-description>

3 </user-category>

4 <user-category id="Subscriber" parent="AnyUser">

5 <short-description>Subscriber</short-description>

6 </user-category>

7 <data-category id="AnyCategory">

8 <short-description>Root data category</short-description>

9 </data-category>

10 <data-category id="Location">

11 <short-description>Location information</short-description>

12 </data-category>

13 <purpose id="AnyPurpose">

14 <short-description>Root purpose category</short-description>

15 </purpose>

16 <purpose id="Advertising" parent="AnyPurpose">

17 <short-description>Advertising</short-description>

18 </purpose>

19 <action id="PublishSubscribe">

20 <short-description>Publish Subscribe event</short-description>

21 </action>

22 <container id="Permissions">

23 <short-description>Container for information about the principal

24 involved in the publishing event.</short-description>

25 <attribute id="Owner" maxOccurs="1" minOccurs="1"

26 simpleType="http://www.w3.org/2001/XMLSchema\#string">

27 <short-description>Name of the principal that owns this permission

28 </short-description>

37

29 </attribute>

30 </container>

31 <obligation id="ReduceAccuracy">

32 <short-description>Data must be reduced in accuracy.

33 </short-description>

34 </obligation>

Lines 1–3 defines a base user category called AnyUser. It functions as the root of the

user hierarchy. Lines 4–6 defines a user category called Subscriber and makes its parent

AnyUser. Lines 7–9 defines a base data category called AnyCategory. Lines 10–12 defines

a location information data category and makes its parent AnyCategory. Lines 13–15

defines a base purpose called AnyPurpose. Lines 16–18 defines an advertising purpose

and makes its parent AnyPurpose. Lines 19–21 defines an publish/subscribe action. Lines

22–30 define a permissions data container. Lines 22–24 defines its name and gives a short

description of it. Lines 25–29 defines an attribute of the container called Owner. Owner

must occur exactly once (since maxOccurs and minOccurs are both 1) and is a string type.

Line 30 closes the container. Lines 31–34 defines an obligation to reduce the accuracy of

data.

We have included only one base type for each of users, data categories, and purposes,

but we could have created an arbitrary number of them if desired. We also have given the

container only one attribute though we could have included an arbitrary number of them

as well. �

Since EPAL is designed to be executable, they may include details of enterprise em-

ployee hierarchies that data subjects do not need to know. Instead, they would be better

served with a conventional privacy policy that summarizes everything that is allowed by

the executable policy. As Hayati and Abadi [57] note, the policy provided to the data

subject is an upper bound on the actions that may be performed under the executable

policy. In the specific case of web server privacy policies then, an enterprise may publish

a policy in P3P for visitors and implement a compliant policy in EPAL. To that end the

EPAL authors [86] suggest a method of translating from an EPAL policy to a P3P policy.

38

Their method is only semi-automated, however, since the EPAL policy rules must first be

tagged by hand with P3P purpose tags. Since an EPAL policy contains more information

than a P3P policy, there is no automated way to convert from P3P to EPAL.

In our study of legislative policies, our language has a similarity to the way an ex-

ecutable EPAL policy interacts with a descriptive P3P policy. We also begin with a

descriptive policy document and produce an executable version of it. There, however, the

similarity ends. We work on a direct translation from the descriptive policy to an exe-

cutable one. Also, our policy language is more suitable for legislative policies as we shall

discuss next.

Certain properties of EPAL’s rules, conditions, system model, and vocabularies, how-

ever, made it difficult for us to use. Rules do not have an explicit representation of access

to system and object state, so rules that inspect the state of objects and rights or modify

state (e.g., data anonymization, disclosure of minimum necessary information, etc.) must

rely on complex conditions and obligations. They also do not include a parameter for

“recipient,” so rules that depend on the information recipient can not be written easily.

They also can not query or invoke other rules, so they can not collaborate or query each

other for rulings or obligations. Conditions can not access rule invocation parameters such

as purpose, actor, and data. They are confined to flags and parameters included in a

“container.” There also is no provision for writing to or inspecting a system log.

There has been extensive work on the formal semantics of EPAL [9] (there called E-

P3P) and translation to other languages [64, 11]. There has also been work on EPAL on

policy composition [12, 14] and comparison and merging [13]. Since EPAL policies depend

on the construction of customized vocabularies, it is only meaningful to compare and merge

policies that have compatible vocabularies. As shown in the case studies in Chapter 7, the

vocabulary overlap issue is important to consider when comparing policies. Two policies

with non-overlapping roles, rights, and purposes are difficult to compare.

Other Related Work

XACML [70] is a privacy and access control authorization language that includes much of

the functionality of our system. It does not, however, allow for conditions or obligations

39

that depend on past actions or offer constructions for “permitted elsewhere” rules. The

policy relations we consider in Section 5.5 may prove useful for analysis of XACML policies

since they consider many of the same requirements such as roles, object types, and initial

state. Jajodia et al. present an analysis of the provisional authorizations [63] which underly

the XML access control language XACL [54] which is similar in nature to XACML.

Other recent work on formalizations of privacy policies include Bertino, et al. ’s formal

model for policy features and comparison [20], Fischer-Hübner and Ott’s formalization of

the Generalized Framework for Access Control [40], and Wijesekera and Jajodia’s propo-

sitional policy model and algebra [97, 96].

There has been extensive work on the formalization of obligations in contexts including

from businesses processes [2] and contracts [1], access control policies [58, 78, 21], and

enterprise privacy policies [28, 27]. Obligations in our model are handled rudimentarily

with flags and checks by policy rules. A full treatment of the classification, tracking,

enforcement, and management of the different types of obligations that arise in privacy

laws is beyond the scope of this work.

There has been work on the development of privacy policy languages for location based

services. Some of those languages have taken considerations for policy merging and compo-

sition. The Geopriv working group (ietf.org/html.charters/geopriv-charter.html)

from the Internet Engineering Task Force (ietf.org) has developed drafts of policy doc-

uments to describe rights granted to location based services providers. Their language

proposal includes query based access control policies, but do not allow negative rules due

to complexity restrictions. By removing negation, they also allow policies to be stored

partially in different locations and combined later to form one large policy. Snekkenes [88]

presents a lattice theoretic model of location privacy policies, parameterized by data ac-

curacy allowance. Policies can be compared by where on the lattice they stand for each of

several data fields (e.g., identity, time, geographic location). Policy merging in his model

would involve the consideration of each data field and adjusting the policy lattice value

according to the input policies.

Barth, et al. [15] present a theoretical framework for privacy policies based on message

40

passing. Their framework allows policies to predicate rulings on the total history of mes-

sages sent and to impose future obligations. They outline some results on the complexity

of resolving the satisfiability of future obligations. Importantly, their policy evaluation

framework handles negation properly, imposing the strictest of all possible rulings based

on queries. They present some policy ruling examples from legal privacy policies, including

HIPAA, GLB, and the Children’s Online Privacy Protection Act (COPPA) [34]. Notably,

policies in their framework do not include notions of the purpose of an action and their

conditions to examination of message logs.

REALM [47] is a formulation for the expression of regulations as logical models. The

focus of the work is on business processes and so focusses on the timing of obligations and

actions, but it may be possible to extend their work to privacy requirements as well.

2.4 Conclusion

In conclusion, we have presented background work on the landscape of access control and

privacy legislation. The two fields have long and separate histories, but share considerable

concepts and goals. In this work we show how we can use access control techniques and

formal model checking procedures to better understand what different legal policies. Our

hope is to make the task of understanding complex legislation easier and more tractable

using automated tools and analysis.

41

Chapter 3

Motivation for Formal Privacy

In this chapter we develop the conceptual framework of Formal Privacy to motivate our use

of formal methods in the study of privacy preservation and policies. Broadly, we consider

the benefits we are seeking to attain with formal privacy models and the advantages they

have over other formulations. With the benefits in mind, we develop a set of desired

properties for formal privacy models to allow evaluation of their various strengths and

shortcomings. We use the desired properties developed in this chapter to give us direction

in the development of our methodology in the chapters that follow.

The rest of this chapter is organized as follows. Section 3.1 motivates the use of formal

privacy in the study of privacy preserving systems and privacy policies and the benefits we

may desire from them. Section 3.2 enumerates the properties we desire for Formal Privacy

models in light of the desired benefits. Section 3.3 concludes and leads into Chapter 4

which presents our methodology.

3.1 Formal Privacy

Information privacy policies are generally divided between two enforcement levels. At the

human level, natural language policies describe procedures, actions, and protections that

an entity will follow. At the data level, computer and network level policies enable, enforce,

or restrict particular actions. When a human level policy governs what a data level policy

must enforce, we face the challenge of mapping between them. Of course, the gap between

42

the human and data policies serves as a layer of abstraction between them, letting one

human level policy govern many potential data level policy implementations, so there is

good reason to maintain the division.

With respect to data level policies, there has been considerable work in the access

control and policy communities with respect to the construction, management, composi-

tion, comparison, and combination of policies. There has been some emerging work on the

examination and analysis of human level privacy policies outside of the natural language

processing community. The policy and formal methods communities have been exploring

ways in which their tools can be adapted to the format, style, and structure of human level

policies. Interest has come from a few directions, primarily from the significant amount

of complex privacy legislation issued by governments globally. Even as new laws requiring

enterprises to comply with standards for data privacy and protection are coming into force,

a steady stream of news alerts concerning data theft and misdirection from companies has

emerged as well.

The application of formal methods to access control policies is not new, as we have

explored in the background sections of Chapter 2. The strength and novelty of our work

stems from our approach to create a formal language that is a step towards bridging the

gap between the natural language idiom and data driven analysis. Our goal is the creation

of a formal language that is intuitive to read and is visually and semantically similar to the

contents of the legal policy that it is supposed to represent. By letting the legal structure

dictate the format of our language and evaluation tasks, we impose as little artificial

structure on the law requirements as possible and thereby give us stronger confidence in

the accuracy of our models.

Our focus on maintaining the structure of the legal text is one important feature of our

formal privacy language and techniques for analysis, a feature often not present in purely

logic-based or implementation-based solutions. Laws are written in a highly structured

dialect of natural language, including repeating phrases, references, and deference to other

parts of the document[19]. The structure helps in the management of the various laws by

prescribing and proscribing actions based on multiple sections of text. Our formal language

preserves the structure of the law, thereby reducing the size of the resulting policy and by

43

enabling various types of common reference schemes.

One potential pitfall to maintaining the document structure, however, is in designing

a language that is too close to the text to be implementable. That is, the derivation of a

formal model which is too complex or abstract to be analyzed is not as useful as one that

is. Furthermore, a formal language which is analyzable using existing and well understood

formal methods tools has an even greater advantage since it permits quicker and more

efficient analysis of policies.

With the above observations in mind, we advocate models in the rubric that we call

Formal Privacy:

Definition: Formal Privacy is a framework for models which provide structured repre-

sentations for privacy policies that enable the use of formal methods tools in the analysis

and exploration of policy properties including aspects such as data use and the purposes

of actions. �

When derived from a natural language text, Formal Privacy models should maintain the

structure of the underlying document, acting as a bridge between natural language privacy

policies and code level policy implementations. Aiming the formal representation towards

formal methods analysis tools gives greater ease of use and enables quick, push-button

exploration of policy properties.

Given the varying scope, depth, and structure of legal language and policy, we limit

the focus of this work to common aspects of several specific, well known privacy laws. We

develop the Formal Privacy framework to address the common aspects of the laws chosen

and develops a formalism which may be readily adapted to similar aspects of other legal

privacy policies as well. In narrowing our focus, we explicitly do not model aspects of many

privacy laws which are beyond the scope of our expertise and ability to model. We note

such limitations in the upcoming chapters and return to them briefly in the conclusion of

this work.

44

3.2 Desired Properties of Formal Privacy

Our goal in using Formal Privacy as a model is to improve the current practices for achiev-

ing and evaluating compliance as well as providing a tool to let legal experts provide best

practices guidance to non-experts regarding legal requirements. We foresee two prototyp-

ical usage scenarios for Formal Privacy which we explain next. The usage scenarios guide

us by providing a source for properties that a Formal Privacy solution should provide.

Compliance Reviews Compliance reviews involve current practices evaluations and

legal requirements reviews in enterprises. Current practices evaluations are performed by

enterprises to gather their current business and technical practices in order to understand

the way things are currently done and compare them against some metrics. Such metrics

are derived by performing legal requirements reviews in which enterprise staff and legal

experts together derive standards of what is required by the various laws impacting the

enterprise. Given the current practices and the legal requirements metrics, enterprises

chart out guidelines for the creation of documents, the modification of practices that must

be changed, and the equipment or software required to support the requirements [26, 69].

Achieving compliance is a long and complex task for large enterprises [26] which is

aided by many consulting companies specializing in particular classes of enterprises. As

described in published compliance case studies [26, 69], compliance efforts normally be-

gin with a gathering phase where enterprise staff members collect information about the

current practices of the enterprise. This involves interviewing technical staff, managers,

and business staff to establish precisely how the covered operations currently handled. For

instance, for a requirement to enforce two-factor authentication on all network accesses,

the technical staff would be interviewed about the current authentication mechanisms and

the enterprise users would be queried about their typical uses of the system and how they

would be affected by a change to two-factor authentication. Once the staff members have

completed the gathering stage, they consult with legal experts to determine what of their

current practices must be modified to fit the legal requirements. With those results, the

staff produce recommendations for the parts of the enterprise that must modify their be-

haviors and produce whatever documentation is required to prove their compliance to the

45

regulating body. After completing the review, enterprises must continue to evaluate the

creation and deployment of new processes and services in the enterprise. Enterprise par-

lance is that “Compliance is a process”; a process which requires current practices reviews

regularly and regular checkups with respect to the applicable laws and regulations. As new

applications, systems, and requirements are adopted, enterprises must carefully evaluate

how they fit with the relevant legislation and best practices.

Certainly the process of compliance reviews is and will remain a work intensive process

at the human level. Automation will not relieve the burden of technical assessments,

project management, and review by legal experts. Our language can aid the different

steps in the process however, by creating a common language for the description of certain

aspects of enterprise processes and legal requirements. For instance, in the process of

performing a compliance review with respect to health care privacy legislation, a hospital

needs to review its current practices and systems to identify areas which require review

and potential by legal experts in the hospital’s compliance office. To do that, the hospital

information technology (IT) staff must gather and create a presentation of the ways its

systems work for their meeting with the compliance office staff. Since the compliance

office staff are experts in the law and not necessarily the workings of IT resources, the

presentation needs to be placed at the correct level of detail to highlight the behaviors

that are legally relevant. Unlike models standard software modeling languages such as

the Unified Modeling Language (UML) or Business Process Execution Language (BPEL)

which offer encodings for program structure, the IT staff are interested in system behavior

as an executable property of their systems, asking “How does the system behave under the

various circumstances in which the hospital uses the IT system?” A language that enables

them to describe the behavior of their systems under various situations and circumstances

enables the IT staff to create a clear description of IT system behavior. Additionally

since it is executable, the both the IT and compliance staff members can experiment

with the model to discover behaviors which warrant examination. Additionally, for the

next compliance review cycle, even if the IT and compliance offices have seen significant

changes, the model can be extended and adapted for reuse.

46

On the other side of the compliance evaluation, the legal staff must have a clear un-

derstanding of what the behaviors permitted by the legal texts are. While legal training is

required for the correct interpretation of laws and statues, the job of an enterprise’s com-

pliance office is to evaluate business practices and potential liabilities, create enterprise

policies, and act as a resource for other parts of the enterprise. The policies created by the

compliance office staff are used by the enterprise to guide its behavior, so producing an

executable version of an enterprise policy gives an additional dimension to the policy. For

the benefit of the compliance staff which must validate that the executable model fits the

policy, the executable version should closely mirror the structure of the source policy for

easy comparison. By providing an executable model for the policy, the compliance office

makes it easier for other enterprise departments to implement the policy guidelines since

they can see precisely what behaviors are affected by the policy. As a caveat, however,

since the executable model is written at the level of the policy language it must be care-

fully designed to capture the interpretation of the policy as relevant to the enterprise’s IT

staff. Greater precision in delineating purposes, actions, and data classifications make the

executable policy more descriptive, complete, and useful for implementation comparison.

As an example, let us consider a case where a company which previously was not

covered under any privacy legislation suddenly becomes subject to legislation due to a

shift in business practices.

Example 3.2.1 (TiVo and Cable TV Privacy Act)

The Cable TV Privacy Act of 1984 [48] (CTPA) restricts the uses and disclosures

that cable operators can perform on certain categories of subscriber information. TiVo

Corporation (tivo.com) produces digital video recorders (DVRs) and service contracts

that allow subscribers to download television show times, record shows, rewind shows

during viewing, and other convenient features. When a service contract is in place, TiVo

DVRs collect information about the viewing habits of their users—which shows they watch,

when they change channels, etc.—and a portion of this information is sent back to TiVo

each time the DVR “dials home” to receive new listing information [68, 89]. TiVo initially

did not operate over cable lines and therefore was not subject to the Cable TV Privacy Act.

However, they recently began offering their service for use over Comcast Cable’s (comcast.

47

com) network in certain areas [87]. We are therefore interested in discovering whether

policies and business practices of TiVo are sanctioned by the Cable TV Privacy Act. Our

comparison should be at the policy level since we do not have access to the internal business

practices of TiVo. We must therefore presume that TiVo behaves precisely according to

its policy, doing no less and no more than what is written in it. Conversely, since our

analysis remains at the textual level, results from the comparison must be validated by

competent legal professionals. For instance, in the case we examine in Section 7.3, it is

essential to determine what qualifies as a “disclosure” in the Cable TV Privacy Act and

which companies fall under the “Corporate Family” of TiVo Corporation. �

Aside from the process of initial compliance review, as mentioned above, the creation of

an executable version of enterprise behavior and legal requirements makes policy and model

reuse simpler, especially in scenarios where current practices must be compared against

new legal requirements. For instance, if a hospital management company has offices only

in the United States and wishes to expand to new European markets, the compliance office

must evaluate what changes must be made in order to comply with the requirements in the

new area of jurisdiction. Such evaluations differ from basic compliance evaluations in that

the business practices for the enterprise have already been evaluated for compliance with

the existing legal regime and therefore the compliance staff must be careful to evaluate

where the current policy subsumes the new policy to avoid wasting resources on them.

The reevaluation process certainly requires legal expertise which no automated system can

replace, however, an executable model can aid the compliance office staff in identifying

differences between the new policy and the existing policy and practices. Importantly, the

model can aid both staffs in finding instances in which no change is necessary.

As an example, let us consider a case where a company needs to explore whether its

current practices under one privacy regulation must be changed to comply with a different

one.

Example 3.2.2 (HIPAA and Australian Insurance)

The Privacy Rule of the US Health Insurance Portability and Accountability Act

48

(HIPAA) [84] governs the management, storage, and distribution of patient health in-

formation. Since hospital electronic health care records systems are normally complex and

often nonuniform, assuring compliance with the rule required a significant effort by the

entities affected by it. The primary changes brought about by the Privacy Rules are in

the area of information security and protection. The rule requires health care providers,

health insurance companies, and health care clearing houses (i.e., the covered entities) to

secure the electronic health information that they hold through physical, electronic, and

social mechanisms. For instance, hospitals are required to protect their servers with locks

(physical mechanisms), enforce access with passwords (electronic mechanisms), and ensure

doctors do not haphazardly discuss patients in public places (social mechanisms).

Compliance with the Privacy Rule requires covered entities to appoint a Privacy Officer

who oversees the design and implementation of policies to enforce the information security

rules. When the Rule was first published in 2001, covered entities rushed to review their

current practices, compile detailed lists of their information technology (IT) assets, and

perform a gaps analysis to determine what practices, policies, and IT systems needed to

be updated. Larger covered entities employed HIPAA consultants or companies which

specialize in compliance to aid them. Case studies from covered entities emphasize the

review process and gap analysis performed during the compliance evaluation as a major

burden in the process [26, 69].

The Australian Privacy Act [71] grants permission for industries to develop self regula-

tory consortiums that enforce tailored privacy policies. The Insurance Council of Australia

(ICA) (ica.com.au) issued a General Insurance Information Privacy Code (GIIPC) as per

that permission that is applicable to all insurance providers who choose to belong to the

ICA. For a hypothetical Australian health insurer interested in expanding to the US mar-

ket, the insurer would need to evaluate whether its policies need to be changed to conform

to the US’ HIPAA Privacy Rule [46] which applies to health insurers. Let us assume

that the insurance company has already established business practices compliant with the

ICA’s policy. The insurance company would then need to investigate any potential new

requirements of HIPAA and modify its business practices to comply with them. It must be

careful in doing so ensure that in changing its policies it does not violate the ICA’s policy.

49

�

Legal Guidance Providing legal guidance for enterprises and industries requires eval-

uation of the legal requirements in light of the business practices. Legal scholarship is

required to give such guidance since the rules regarding interpretation, precedence, and

application are complex. The recipients of guidance include legislative staffers, enterprises,

and stakeholders for a particular area of law. We can aid legal experts in their efforts by

letting them more quickly visualize and explore what new or existing laws require. Since

the executable models are serving as summaries of a law or policy it is important that they

be either created by or thoroughly checked by legal experts to ensure their accuracy. By

creating and using Formal Privacy models, our goal is to allow providers and recipients

of guidance to “query” a legal text as if it were a database of permitted and forbidden

behaviors based on some set of circumstances. We are interested in queries that legislators,

legal experts, and interested parties would normally perform by hand. We want to ask

queries such as “Does this loophole exist in the law?” and “Can an enterprise perform

action A before it does B?” The results we can receive from our formal analysis give useful

indications about how such questions can be answered.

When performing such queries, we wish to permit the establishment and evaluation of

invariants. Invariants represent assumptions by a stakeholder about what behaviors should

be allowed or forbidden. When the model revels a violation of a stakeholder invariant, we

call it a relative stakeholder problem since other stakeholders may have conflicting views

of what the invariants should be. Queries may not need a large number of steps to be

answered, but they are interesting because the stakeholder asking may not be able to look

at or properly interpret the text directly due to its length or complexity. In this work

we consider relative stakeholder invariants which operate at the level of the source text.

Invariants which are subject to how particular words, phrases, or exceptions are interpreted

are beyond the scope of this work.

As an example of a stakeholder invariant that we can examine, let us consider one of

the legal policies discussed above in Section 2.1.3 and queries that stakeholders would be

interested in.

50

Example 3.2.3 (HIPAA Consent)

As noted above in Section 2.1.3, the HIPAA Privacy Rules changed between its initial

release in 2000 and its final release in 2003. Changes were made after a comment period

in which stakeholders were given the opportunity to submit comments to HHS regarding

the formulation of the rules. The comments summary as released by HHS reveals a list

of the various, often conflicting, interests of the different stakeholders. Some items on the

list are relative stakeholder problems, so other stakeholders might not consider them to be

concerns. Others are concerns in that they forbid what is common industry practice.

The rules about when covered entities must get patient consent before performing using

or disclosing health information were the subject of debate during the development of the

Privacy Rule. The version of the rules from 2000 [§164.506, v.2000] requires that covered

entities receive consent from individuals for the use and disclosure of their information for

treatment, payment, and health care operations. There are many provisions and exceptions

to the general rule, but for the majority of cases, it required covered entities to receive

consent. Consent for treatment, payment, and health care operations was to be signed

and revokable by the patient at any time. The general rules from [§164.506, v.2000] are as

follows:

§164.506 Consent for uses or disclosures to carry out treatment, payment, or
health care operations.

(a) Standard: Consent requirement.

(1) Except as provided in paragraph (a)(2) or (a)(3) of this section, a covered
health care provider must obtain the individual’s consent, in accordance with
this section, prior to using or disclosing protected health information to carry
out treatment, payment, or health care operations.. . .

(3)(i) A covered health care provider may, without prior consent, use or disclose
protected health information created or received under paragraph (a)(3)(i)(A)–
(C) of this section to carry out treatment, payment, or health care operations:

(A) In emergency treatment situations, if the covered health care provider
attempts to obtain such consent as soon as reasonably practicable after the
delivery of such treatment;

(B) If the covered health care provider is required by law to treat the individual,
and the covered health care provider attempts to obtain such consent but is
unable to obtain such consent; or . . .

(b) Implementation specifications: General requirements.

51

(1) A covered health care provider may condition treatment on the provision
by the individual of a consent under this section.. . .

(5) An individual may revoke a consent under this section at any time, except
to the extent that the covered entity has taken action in reliance thereon. Such
revocation must be in writing.

(6) A covered entity must document and retain any signed consent under this
section as required by §164.530(j).

The shift to requiring explicit consent from patients was a major shift in approach from

previous modes of medical and hospital operations and required that doctors offices, clinics,

and hospitals create new methods for documenting the acquisition of and management of

patient consent.

The response from stakeholders during the public comment period brought out many

of the concerns that covered entities and health care organizations had over the new rules.

Many pointed to the changes in hospital operating procedure as well as the burden of

managing the new consent documents. Some comments pointed to particular aspects of

the new consent requirements that interfered with the day to day operation of health care

providers. Those comments pointed to specific concerns with respect to the content and

requirements of the section. Three specific comments relating to the consent rules which

we return to later in this section are as follows (paragraph numbers added for reference):

[(1)] Emergency medical providers were also concerned that the requirement
that they attempt to obtain consent as soon as reasonably practicable after
an emergency would have required significant efforts and administrative bur-
den which might have been viewed as harassing by individuals, because these
providers typically do not have ongoing relationships with individuals.

[(2)] The transition provisions would have resulted in significant operational
problems, and the inability to access health records would have had an adverse
effect on quality activities, because many providers currently are not required
to obtain consent for treatment, payment, or health care operations.

[(3)] Providers that are required by law to treat were concerned about the mixed
messages to patients and interference with the physician-patient relationship
that would have resulted because they would have had to ask for consent to use
or disclose protected health information for treatment, payment, or health care
operations, but could have used or disclosed the information for such purposes
even if the patient said “no.”

52

The HHS response to the comments was to admit that the concerns raised were trou-

bling enough to warrant removal of mandatory consent for treatment, payment, and health

care operations. The later version of the rules from 2003 was simplified, making consent for

treatment, payment, and health care operations optional for most situations, but leaving

intact restrictions for things such as marketing and the release of psychotherapy notes.

The general rules for [§164.506, v.2003] are as follows:

§164.506 Uses and disclosures to carry out treatment, payment, or health care
operations.

(a) Standard: Permitted uses and disclosures. Except with respect to uses
or disclosures that require an authorization under §164.508(a)(2) and (3), a
covered entity may use or disclose protected health information for treatment,
payment, or health care operations as set forth in paragraph (c) of this sec-
tion, provided that such use or disclosure is consistent with other applicable
requirements of this subpart.

(b) Standard: Consent for uses and disclosures permitted.

(1) A covered entity may obtain consent of the individual to use or disclose
protected health information to carry out treatment, payment, or health care
operations.. . .

(c) Implementation specifications: Treatment, payment, or health care opera-
tions.

(1) A covered entity may use or disclose protected health information for its
own treatment, payment, or health care operations

While the 2003 policy was written with the comments in mind, it is not clear if the

new policy solved all of the concerns. To answer that question, we would like to take the

expert discovered concerns, find them in the 2000 version, and query as to whether they

are still present in the 2003 version. From the above three concerns we would therefore

like to perform the following three queries:

(1) In general, are emergency workers who do not have ongoing treatment relationships

required to acquire consent from individuals after the provision of services?

(2) In general, are health care providers required to acquire consent for access to records for

treatment, payment, and health care operations after the transition period mentioned

in the document?

53

(3) Are there situations where providers that are required by law to treat individuals are

permitted to use or disclose health information for treatment, payment, or health care

operations even after the individual has refused consent?

Given the large number of exceptions and circumstances discussed in the Privacy Rule,

we must carefully choose the circumstances under which the queries are performed. That

is, for the first two queries we are interested in examining the general circumstances for

the emergency workers and health care providers, ignoring exceptional and extenuating

circumstances. For the third query we are interested in the exploration of circumstances

in which providers may ignore the refusal of consent by an individual so we are interested

in any exceptional circumstances in which that is the case. �

Based on the above scenarios and examples we have the following requirements for

what Formal Privacy models must provide.

1. Confidence and Traceability. Since the formal models will be used as represen-

tations of the regulation it is essential that it be straightforward to establish that

models created are accurate to the content of the regulation. One way to aid in

establishing confidence is to have the models be visibly and directly close to the text.

With such models, we can ensure that the model correctly correlates to the text as

required. Additionally, since the ones using the models may not be legal experts,

it is essential that the properties discovered from the formal models be traceable to

the part(s) of the original policy that are their source. This includes the requirement

that the models be specific enough to show interesting properties of the regulation.

Models that do not preserve the structure of the source text may also be used for such

purposes, but the verification and traceability are likely to be significantly harder.

2. Usability. The formal models that we develop need to have a robust and flexible

interaction mechanism. Legal texts are normally descriptive and the advantages in

terms of usability and policy comparison that we seek come from creating represen-

tations with which experiments can be performed. Models with clear and intuitive

means of for users to interact with policies aid non-experts in understanding com-

plex policies since they allow for users to explore the properties of the model more

54

intuitively.

3. Legal Properties. Legal texts and privacy policies derived from them use standard

privacy policy concepts such as actions, actors, objects, and purposes as well as

specialized structures such as complex references, deference between rules, scopes,

vagaries, and testimonials from actors. A formal model must include functionality

to model the intent of the source text, whether or not it maintains the particular

structure of the text. The design of an intuitive interaction paradigm for the model

(see requirement 2) that produces the same response as the source text is required

for accuracy.

4. Extensibility. Since regulations and policies change over time, Formal Privacy

models must be easily extensible to new situations and environments. Formal rep-

resentation which are as generic as possible will aid in this requirement since by

making the formal model simple we ensure that new features can be added easily.

Additionally, the formal language itself must be extensible to adapt to different le-

gal requirements, regimens, and styles. Importantly, the language must be able to

represent specifications from a variety of applications and jurisdictions.

In listing the requirements we emphasize the desired outcomes independent of the

details of the particular solution. With them in mind we next develop the Formal Privacy

model that is the result of this dissertation.

3.3 Conclusion

In this chapter we have motivated the problem space that we address in this work: the

analysis and examination of legal privacy policies. Our goal is to develop a language

that will aid us in comparing legal privacy policies and determining whether following one

policy is sufficient to conform with another. We develop Formal Privacy as a framework for

developing languages which offer the tools needed to meet our requirements. In the next

chapter we describe the methodology that we use in this dissertation: the development of

Auditable Privacy Systems and the Privacy Commands language.

55

Chapter 4

Methodology

The Formal Privacy language that we develop in this dissertation is Auditable Privacy

Systems. Using the formal language we develop models that represent the requirements

and properties of regulations and show how to use them to identify interesting properties.

In chapter we develop the intuition behind the language, including some of its fundamental

features and mechanisms. We more formally develop the language along with its syntax

and semantics in Chapter 5.

The rest of this chapter is organized as follows. Section 4.1 presents Auditable Privacy

Systems as a Formal Privacy framework and Privacy Commands as a formal language

for the development of models of regulations, motivates its usefulness, and outlines the

structures needed to use it. Section 4.2 outlines the translation steps we use to adapt legal

privacy language to Auditable Privacy Systems. We discuss some of the challenges that

we faced in doing so in Section 4.3. Section 4.4 describes the Privacy Commands language

at a high level, using a running example to illustrate the features and constructs of the

language. Section 4.6 concludes.

4.1 Auditable Privacy Systems

We base our development of Auditable Privacy Systems on the Privacy Systems work

of Gunter, May, and Stubblebine [52]. Privacy Systems develop a generic set of policy

and interaction atoms that can be used to capture the operational behavior permitted

56

by privacy policies. Gunter, et al. show the formal properties of the Privacy Systems

language and apply it to a scenario involving a privacy policy-controlled location based

services framework. The salient features of the language are the inclusion of an object

being about a particular principal (the subject of the object), a consideration of data

crossing domains of control, and an explicit consideration of the contents and properties

of objects. An model created in the Privacy Systems language describes the properties of

a policy by dividing it into four mappings: a transfer function that prepares objects for

transfer between agents, an action relation that permits actions on objects, a data creation

relation that permits certain agents to create information about other agents, and rights

establishment relation that permits certain agents to create or modify the rights that one

agent holds over another.

The state of a Privacy System includes the sets of principals, objects, and the rights in

the access control matrix that have been established. The policy of a particular Privacy

System model is reflected in the rules that it enforces over the events. Rules in the system

make decisions based on the state of the access control matrix and the properties of the

system policy.

The intuition behind actors and subjects is that the actors are the parties to a trans-

action that concerns private information about the subject of the transaction. The actors

initiate events through joint agreement subject to the privacy rules they have with respect

to the subject of the event.

The Privacy Systems approach for the management of rights on private data gives a

good model for the maintenance of data. It also lets policies explicitly examine and modify

data objects, expanding the scope and specificity of policies. Because of these favorable

properties we use Privacy Systems as a foundation for our formal language for regulatory

policies.

Regulatory policies differ from many classical privacy and access control policies in

their use of purposes, evidence, logging, and references. We consider therefore the following

extended list as the primary events necessary for modeling regulations.

Transfer What is the right of an agent a to transfer an object o to another agent r where

the object is about another agent s? In many policies this depends on the rights of

57

both a and r relative to s, the features of o, and the purpose and circumstances of

the transfer. After the transfer of an object is completed, the recipient may have

different restrictions on its use than the sender.

Action What is the right of an agent a to carry out an action that affects the privacy of

an agent s? This normally on the purpose and circumstances of the action as well

as previous actions or interactions by a and s.

Data Creation Which agents are allowed to create an object o whose subject is s? The

right to create objects about another agent is normally tied to the roles that the

creator and subject are holding and the contents of the object being created.

Rights Establishment How are rights established for an agent s? Regulations often by

default grant certain rights to agents in a particular role that may be modified by

interactions with the subject or special circumstances.

Notification When an agent a carries out or attempts to carry out an action on or trans-

fers an object o that is about a subject s, who must be informed of it? Commonly,

notification is imposed as an enforcement mechanism for circumstances subject to

the discretion of the actors, but it may be used in other circumstances as well.

Logging After the completion or attempted completion of an event initiated by agent

s and potentially involving other objects or agents, what record must be kept of

it? Like notification, logging is a requirement imposed by regulations often as an

enforcement or auditing mechanism.

By including notification and logging we extend the Privacy Systems events with the

ability to audit the events and actions that have been performed under the policy. We

therefore term the framework Auditable Privacy Systems that we informally define as

follows:

Definition: Auditable Privacy Systems is a formal model for privacy policies that is char-

acterized by defining policies in terms of transfer, action, data creation, rights establish-

ment, notification, and logging events. �

58

The auditing events differ from the other four in that their execution is not governed by

the other aspects of the policy. For instance, if a a must inform s of something after an

event affecting s has been performed by a, we do not consider the act of informing s to be

a transfer event. Similarly, if a must add a note to the log of an action performed on o,

it is not considered an action on o. This separation ensures that notification and logging

may always be performed, easing their use as auditing tools.

4.1.1 Constraints

Policies restrict or permit the events described above based on a variety of circumstances

and situations. Generically, we refer the circumstances, requirements, and situations that

restrict the performance of events as constraints. Constraints may be simple with just one

requirement or complex combinations of multiple requirements and circumstances. Since

Auditable Privacy Systems are to be used for the modeling of regulations, we must consider

the types of constraints they commonly employ.

Since regulatory privacy policies give rules for the interaction of users and information,

they normally include constraints that can not be objectively verified. In some cases, the

constraints require an expert to evaluate properly. A common example is a requirement

that a particular action be reasonable or appropriate. For such constraints that are part of

the requirements, but an automated policy can not properly evaluate, Auditable Privacy

Systems rely upon assertions or environmental information to make decisions. By factoring

out unenforceable constraints and placing trust in agents or the environment we achieve

a model that is easier to design and verify. Since we are interested in creating models of

regulations and policies, the unenforceable constraints are useful as an indication of the

degree to which the regulation or policy trusts the agents it regulates.

It is helpful to delineate three types of constraints that regulations commonly include:

Type 1 are constraints that are immediately and objectively evident from the situation

or information at hand.

Type 2 are constraints that are not objectively evident but may be resolved based on the

input of some environmental or meta-information without reliance on the unverifiable

59

judgment of a person.

Type 3 are constraints that can not be resolved without the subjective or unverifiable

judgment of a (perhaps non-objective) person.

The makeup of the constraints imposed by a particular regulation varies widely based

on the regulation’s area of application and style. As an example of the three types of

constraints, let us consider a sample quote.

Example 4.1.1 (Gramm-Leach-Bliley Constraints)

The following is a selection from the Financial Modernization Act of 1999 [35], com-

monly referred to as the Gramm-Leach-Bliley Act (GLB). It is codified in US Code Title

15, Subchapter I. GLB imposed regulations on the management of financial services com-

panies and the information that they store. Included in GLB is a section on financial

services privacy requirements in §6801–6803. Section 6802 “Obligations with respect to

disclosures of personal information” regulates the disclosures that financial services compa-

nies may perform. The following is a quote from §6802(b)(1)(B) that relates to disclosures

on personal information to third parties:

A financial institution may not disclose nonpublic personal information to a
nonaffiliated third party unless—

(A) such financial institution clearly and conspicuously discloses to the con-
sumer, in writing or in electronic form or other form permitted by the regula-
tions prescribed under section 6804 of this title, that such information may be
disclosed to such third party;

(B) the consumer is given the opportunity, before the time that such informa-
tion is initially disclosed, to direct that such information not be disclosed to
such third party; and

(C) the consumer is given an explanation of how the consumer can exercise
that nondisclosure option.

Let us identify a few constraints in the above passage and classify them according to

the types above.

The introductory sentence includes constraint that the rules apply to “nonpublic per-

sonal information.” It is a type 1 constraint since the definition of nonpublic personal

60

information is given in the GLB text (§6809(4)) and whether a particular piece of informa-

tion falls into the categories defined there is objective and straightforward. Similarly, the

introductory sentence constrains the applicability of the rules to agent acting in the roles

of financial institutions and nonaffiliated third parties. They are also type 1 constraints

since their precise meaning is defined in §6809(3) and §6809(5) respectively and so whether

an agent occupies the given roles can be objectively determined.

Paragraph (A) constrains disclosures based on whether the financial institution has

“clearly and conspicuously” disclosed to the consumer that the information may be dis-

closed to a third party. Whether the financial institution has sent any information to the

consumer at all is a type 2 constraint since by checking the history of what the financial

institution has sent in the past we may determine objectively whether the consumer was

sent a notice. The constraint that the disclosure be clear and conspicuous is a type 3

constraint since the terms are not objectively defined. Instead the regulation relies on the

financial institution to ensure its disclosures are clear and conspicuous.

Paragraph (B) constrains disclosures based on whether the financial institution has

previously given the consumer the opportunity to prevent (opt-out of) the disclosure. The

constraint of previously offering the consumer an opt-out opportunity is a type 2 constraint

since it may be resolved objectively by checking the history what communications were

sent to the consumer.

Paragraph (C) constrains disclosures based on whether the financial institution has

given the consumer an explanation of how to opt-out of the disclosure. As in (B), the con-

straint is type 2 since we it may be objectively resolved by examining the communications

sent to the consumer. �

The variety of constraints contained in the quote in Example 4.1.1 shows the diversity

of constraints that regulations commonly impose. In order to properly model diverse

regulations, an Auditable Privacy Systems language or model must include mechanisms

to account for them. From a software engineering point of view, outside constraints are

environment information that is invisible to the system specification [51]. The system

specification needs assurance that the environmental variables are correct, however, so

we must create a bridge between them. Tags as defined in Section 2.2 let agents make

61

assertions about the environment that the automated system can check to impose outside

constraints. The tags can be tied to particular principals in the system (e.g., patient

gives a consent form that is signed and dated) or be non-principal-specific conditions (e.g.,

disclosure document reserves the right to change).

4.1.2 References

Regulations use references to allow paragraphs in one text to affect paragraphs in other

places, most often as a constraint that is to be imposed by the referenced paragraph.

The manner and diversity of references varies by regulation, so Auditable Privacy Systems

models must offer mechanisms to support the various types. In order to introduce the

reader to the different types of references that are found in regulations we introduce a

series of quotes from the HIPAA Privacy Rule that employ a range of references. After the

series of examples we summarize the types of references and how they can be modeled.

We begin with an example of a reference where a child paragraph clarifies the permis-

sions of a parent paragraph.

Example 4.1.2 (2003 HIPAA Disclosure Rule)

The following example section is a quote from the disclosure rules of HIPAA

[§164.506(c)(1), v.2003]. Here our goal is to delineate its references as constraints. We

shall return to it in later chapters to describe how we capture its intent in our formal

language.

§164.506(c) Implementation specifications: Treatment, payment, or health care
operations.

(1) A covered entity may use or disclose protected health information for its
own treatment, payment, or health care operations. [or]

(2) A covered entity may disclose protected health information for treatment
activities of a health care provider.

The parent paragraph (c) provides a heading for the implementation paragraphs that

follow and so it implicitly refers to its child paragraphs (1) and (2) to delineate the what

kinds of actions are to be permitted or forbidden. The child paragraphs are independent

since they do not refer to each other.

62

Paragraph (1) permits use and disclosure of protected health information under three

constraints: (1) that the action be conducted for the purpose of treatment, payment,

or health care operations and (2) that the intended treatment, payment, or health care

operations be for a covered entity and (3) its own. The result, therefore, is a constraint on

usage and disclosure for treatment, payment, and health care operations to situations with

the specified properties. Note that all three constraints are of type 1 since the definitions

of what purposes constitute treatment, payment, and health care operations and what

entities are covered entities are defined in the [§164.501, v.2003] and it is straightforward

to determine whether the agent has the correct role, whether the intended action falls into

the categories listed, and whether the action is intended for the use of the covered entity.

Paragraph (2) is similarly structured, but refers to just disclosure. It constrains disclo-

sure to be only for treatment purposes and for the benefit of a health care provider.

In summary, the top level sentence (c) permits treatment, payment, and health care

operations only as delineated in its child paragraphs. Paragraphs (1) and (2) do not refer

to each other and so offer independent permissions. A reference to the permissions of

§164.506(c) therefore permits any actions permitted by its child paragraphs. �

In the above example, the top level sentence references to the constraints since its

body inherently depends on its children’s constraints. We next consider direct references

between paragraphs where one paragraph constrains an action based on another, non-child

paragraph.

Example 4.1.3 (2000 HIPAA Consent Requirement)

Direct references to other paragraphs often appear as exceptions or constraints to a

paragraph’s actions. For example, the paragraph quoted here from HIPAA [§164.506(a),

v.2000] concerns when consent is required for treatment, payment, or health care opera-

tions:

(a) Standard: Consent requirement.

(1) Except as provided in paragraph (a)(2) or (a)(3) of this section, a covered
health care provider must obtain the individual’s consent, in accordance with
this section, prior to using or disclosing protected health information to carry
out treatment, payment, or health care operations. (2) A covered health care

63

provider may, without consent, use or disclose protected health information to
carry out treatment, payment, or health care operations, if:

(i) The covered health care provider has an indirect treatment relationship with
the individual; or

(ii) The covered health care provider created or received the protected health
information in the course of providing health care to an individual who is an
inmate.

(3)(i) A covered health care provider may, without prior consent, use or disclose
protected health information created or received under paragraph (a)(3)(i)(A)–
(C) of this section to carry out treatment, payment, or health care opera-
tions:. . .

Here paragraph (1) permits usage and disclosure of protected health information by a

covered entity provided that it has the individual’s consent and that the situation is not

subject to two other paragraphs: (2) and (3). This means that paragraph (1)’s constraints

are not applicable if either (2) or (3)’s constraints are satisfied. Intuitively, (1) refers to

(2)–(3) and so their applicability must be determined before (1) yields a decision. In this

case, (2)–(3) give exceptions to the consent requirement, so they provide a more lenient

ruling than (1) does. �

Constraint references may also be implicit, where constraints limit the actions of other

paragraphs without the action paragraph acknowledging the limitation. Such constraints

are invariants that must be maintained by any applicable action paragraph.

Example 4.1.4 (2000 Transferring Consent)

As an example of an invariant constraint, the following is a limitation from HIPAA on

the transferability of consent from one covered entity to another [§164.506(a)(5), v.2000]:

(5) Except as provided in paragraph (f)(1) of this section, a consent obtained
by a covered entity under this section is not effective to permit another covered
entity to use or disclose protected health information.

Ignoring for a moment the exception to (f)(1), the invariant in (5) limits how the

permission from a consent is granted, but does not provide any specific action that it is

limiting. As an invariant, any action that is predicated on a consent derived from the

section must first determine if (5) is applicable and satisfied. �

64

The final type of constraint reference that we consider is a “permitted elsewhere”

constraint:

Definition: A permitted elsewhere constraint is a condition on an action that depends

upon a permission derived from another policy document or document fragment (i.e.,

paragraph, sentence). �

In a permitted elsewhere constraint, a constraint is imposed if an action is permitted by

some other paragraph(s). Paragraphs may permit an action if it is permitted elsewhere

(in which case the permission is a duplicate) or require an action if it or another action

is permitted elsewhere. Modeling such constraints are interesting in their own right, but

also are of interest since they lead to an intuition of legal policy comparison. We develop

this concept further in Section 5.5. As an example of a permitted elsewhere constraint, we

quote the following example from HIPAA.

Example 4.1.5 (Authorization Requirement 2003)

As an example of a constraint of the form “required unless permitted elsewhere”, con-

sider the beginning of the HIPAA rules requiring authorizations for usage and disclosures

of protected health information [§164.508(a), v.2003]:

Uses and disclosures for which an authorization is required.

(a) Standard: authorizations for uses and disclosures.

(1) Authorization required: general rule. Except as otherwise permitted or
required by this subchapter, a covered entity may not use or disclose protected
health information without an authorization that is valid under this section.
When a covered entity obtains or receives a valid authorization for its use
or disclosure of protected health information, such use or disclosure must be
consistent with such authorization.

Here (1) requires that an authorization be acquired from individuals before protected

health information can be used or disclosed unless the action is permitted by some other

part of the subchapter. The constraint for the paragraph is a resolution of whether there

exists some other paragraph in the subchapter that permits the intended action. Re-

solving the constraint requires a method for determining the applicability of a number of

paragraphs. �

65

From the above examples we see four types of constraint references:

1. Implicit references between parent and child paragraphs.

2. Direct references between independent paragraphs.

3. Indirect references where one paragraph limits the actions of another without the

limited paragraph mentioning the limitation.

4. Permitted elsewhere references where one paragraph constrains actions based on a

permission granted by another paragraph(s).

Each of the four types of constraint references mentioned behave differently and there-

fore will need to be addressed separately. We must therefore include support for all four

types in the Auditable Privacy Systems framework and the formal language that we devise

in it.

4.2 Methodology of Translation

As discussed above, we are interested in translating legal privacy documents into commands

and constraints. Doing so, we strive to stay as close to the structure of the text as possible.

This is in order to allow quicker translation, easier verification of the relationship between

the source text and the derived rules, and to preserve the particular structure of legal

texts. To this end, we designed a methodology which made translation straightforward

and observably close to the text. Our methodology also has the advantage of yielding a

command set that is linear the number of paragraphs in the text.

Each paragraph in the text has one or more commands that execute it. Paragraphs are

translated into multiple commands when they allow or deny multiple actions (e.g., use and

disclose). Paragraphs may also include constraints that limit the execution of commands.

Commands and constraints yield judgments based on user input, including the purpose(s)

for the proposed action and any relevant environmental information.

When paragraphs reference each other, whether directly or implicitly, we locate and

translate the referenced clause and include an explicit reference to it.

66

Parent paragraphs that refer to their children include their children as references.

Where appropriate, child paragraphs have their own commands. A child paragraph may

reference its own specific constraints, its parent’s constraints, or both.

Each condition or obligation in a paragraph is included in the paragraph’s constraints.

If the condition or obligation is unrelated to access control (e.g., HIPAA’s [§164.520] which

has typographic rules for privacy practices disclosures documents) then it is elided unless

relevant to actions. Relevant rules are then included through a combination of meta-

information tag checks (see Section 5.1). We follow the language of the legal text, so

unless two conditions or obligations are phrased very similarly or have obviously the same

intent they have separate tags or rights associated with them. The number of tags, roles,

and rights included in each policy model is therefore dependent on the writing style of the

legal text.

4.3 Challenges in Translation

It is not surprising that legal privacy policies differ in style from standard computer systems

access control policies, but two common features we came upon made the distinction very

sharp.

The first distinguishing feature is the way that references are used. Commonly, a para-

graph refers to the conditions of another paragraph independent of its body. For example

in HIPAA [§164.506(a), v.2003] “Except with respect to uses or disclosures that require

an authorization under §164.508(a)(2)” is a condition that points to the conditions of the

referenced paragraph, but does not intend to activate the functionality of it. This is akin

to a procedure creating a condition out of the precondition of another procedure without

executing the referenced procedure. Because this is not a common programming language

idiom, we implement it by dividing each paragraph into two parts: a constraint which

contains the conditions and one or more regular commands that reference the associated

constraint. This separation allows us to keep the reference structure of the law.

Legal references also vary in specificity. Most are unambiguous, but some are global

pointers that refer to a large body of law. For example in HIPAA [§164.520(b)(3), v.2000]

67

“Except when required by law, a material change to any term. . . ” is a deference to any

other relevant legal requirement. We deal with this and other kinds of ambiguous references

by using tags and rights to assert that the condition is satisfied. Non-monotonic default

logic (for example, [7]) could perhaps be used here instead.

The second distinguishing feature is the use of testimonials in resolving conditions.

Many environmental conditions are resolved by a testimonial from a principal in the sys-

tem. For example, the following quote from HIPAA [§164.506(a)(3)(c), v.2000] grants a

permission based on a health care provider’s judgment:

If . . . the covered health care provider determines, in the exercise of professional
judgment, that the individual’s consent to receive treatment is clearly inferred
from the circumstances.”

Our model handles testimonials by placing them in tags to associate them with objects

in the system knowledge, but a practical deployment of a policy system would need to

track the testimonials that allowed a command to execute and log who asserted them.

We present several examples of privacy commands later in Section 5.2.6 after we

develop the syntax and semantics for Privacy Commands and Privacy APIs.

4.4 Privacy Commands and APIs

The Auditable Privacy Systems framework delineates the events and atoms that are needed

for the modeling of regulatory policies. In order to create concrete models for regulations,

we devise a formal language for encoding the rules, conditions, and references that make up

the body of the regulation. We call the language Privacy Commands due to the emphasis

on commands as we shall explain below:

Definition: Privacy Commands is a formal language that is in the Formal Privacy frame-

work and that satisfies the Auditable Privacy Systems requirements. It is characterized by

defining policies in terms of “commands” and “constraints.” �

Using the Privacy Commands language we devise models for regulations that implement

the body of the regulation. We call such models Privacy Auditable Policy Interfaces or

68

Privacy APIs. We now discuss the fundamental properties of the formal language as an

introduction to the formal presentation of the language in Chapter 5.

We devise a formal language that concretizes the theoretical constructs of Auditable

Privacy Systems by creating a rule based language for the description of actions. The

atoms of the language are commands that perform actions and constraints that limit the

behavior of commands by imposing constraints.

Definition: A command is a small program that checks some conditions and then executes

some instructions that may modify the knowledge state. �

Definition: A constraint is a collection of conditions that are evaluated to derive a judg-

ment that indicates when and where some action should be permitted or forbidden. �

Both commands and constraints operate over an implicit collection of information called

a knowledge state, which we define in Section 4.4.1. Both commands and constraints

may receive input information before they are evaluated (i.e., parameters) and inspect the

knowledge state to make decisions. Importantly, constraints include an explicit indication

as to their scope, the commands which they limit.

Definition: The scope of a constraint is the set of commands to that it is applicable. �

4.4.1 Knowledge State

The knowledge state is a universe based on standard access control and trust management

concepts as discussed in Section 2.2. In particular we use agents to represent people and

objects to represent resources or files. As in standard access control models, the relation-

ships between agents and objects are described using rights. Rights are flags that indicate

the presence of a relationship between agents and objects. The rights for a given model

are derived from the source regulation and may include standard operating system permis-

sions such as read/write/execute as well as more abstracted concepts such as “primary care

physician of.” Agents and objects are augmented with descriptive properties that describe

their contents and disposition. Agents have special properties called roles that describe the

social or formal positions that they occupy. Both agents and objects are annotated with

69

tags that indicate their properties. For simplicity we simplify roles and tags to boolean

properties that may be true or false for any particular agent or object. Roles differ from

tags in that they are read only to the model (i.e., commands can not modify an agent’s

roles). As in many privacy policy languages, whenever a person performs an action he

includes information about the purpose of the action. The purposes that are in a model’s

vocabulary are determined by the language of the regulation. Thus, the universe for a

given model includes a vocabulary of purposes extracted from the source regulation.

An instance of a knowledge state is a snap shot of the evolving universe. It includes

information about the agents, objects, and rights that exist as well as their role and tag

properties. As explained below, we include mechanisms for logging and sending information

to agents, so a knowledge state includes information about the log and what information

has been sent. The set of roles, tags, rights, and purposes used by a model are a static

vocabulary and so are not included in the description of the universe.

As noted above in Section 4.1.1, we need to implement mechanisms for the encoding

of diverse types of constraints. We use combinations of input parameters, tags, roles,

purposes, and rights to encode the three different types of constraints as follows. Resolv-

ing each type of constraint requires using information present in the knowledge state in

combination with parameter information. Type 1 can be resolved normally by inspection

of the knowledge state to determine fundamental properties of the knowledge state such

as the presence or absence of roles and rights. The parameters passed in indicate which

agents or objects to inspect, but the information required to resolve the constraint is nor-

mally already present. Type 2 and type 3 constraints require more information to resolve.

Both are resolved by relying more on the input parameters such as information about the

purpose of an action. Tags also play a major role in the evaluation of type 2 and type 3

constraints. The difference between the two is that type 3 constraints rely on tags that are

subjective and not as readily verifiable as those used for resolving type 2 constraints.

70

4.4.2 Evaluation Model

Since Privacy APIs are meant to closely model the structure of legal texts, we base our

evaluation model on how a non-expert reader might interpret a legal policy. When a non-

expert wants to perform an action that is restricted by law, the first step he would take

is to search the applicable law to find the paragraph(s) or section that deals with a case

most similar to the one in which he is interested. Having found the correct paragraph(s)

or section, he may find that the text permits the action under a set of specific circum-

stances or conditions. The applicable paragraph(s) may include some conditions that are

mentioned only by reference in the paragraph so he must find the referenced paragraphs to

see what conditions are mentioned there. He also must check the context of the applicable

paragraph(s) by skimming the surrounding sections to see if they impose any additional

restrictions or mention any mitigating circumstances. Having collected all of the conditions

mentioned in surrounding paragraphs, referenced paragraphs, and in the applicable text

itself, he can finally evaluate whether all of the applicable conditions are satisfied. If they

are, he may decide that the ruling from the law is to permit the action. Otherwise, he may

decide that the ruling from the law is to forbid the action.

Let us consider the procedure taken by the hypothetical reader above to see how we

may apply it to Privacy APIs.

Step 1: Searching the law to find the applicable paragraph(s) or section.

Step 2: Examining the conditions and requirements mentioned in the applicable text.

Step 3: Examining all other locations or rulings mentioned in the applicable text.

Step 4: Examining the surrounding text for any applicable restrictions or mitigating cir-

cumstances.

Step 5: Combining all applicable restrictions and mitigating conditions to derive a final

ruling.

Step 6: Apply the ruling from the text to the case.

71

We adapt the above process to the evaluation of Privacy APIs as follows. First, to

set up the initial conditions for the action, we create a knowledge state for the commands

and constraints to use. As noted in Section 4.4.1, the knowledge state is the universe over

which the commands and constraints operate and it includes information such as the agents

that may interact with each other and other objects. Since the commands as derived from

the regulation are the actions that the model allows, progress occurs by agents running

commands in series. By running we mean that a list of parameters (including one for

the agent who is performing the action, the actor) along with the knowledge state and

command name are provided to an evaluation engine. The evaluation engine “runs” the

command by using the parameters and knowledge state to check the constraints for the

command. We discuss the constraint evaluation procedure in the next paragraph in depth,

so for the moment let us just say that the engine evaluates the constraints and arrives at

a decision, a judgment, as to whether they are satisfied. If the constraints are satisfied,

the updates to the knowledge state included in the command are executed. We refer to

the updates as the true branch for the command. Additionally, some commands include

updates to perform in case the constraints are not satisfied. Those updates are the false

branch for the command. Due to limitations that we discuss later in Section 5.2.3, some

types of updates can only appear in the true branch while others can appear in either

branch. Upon the completion of a command’s updates, the knowledge state is updated

and another command can be executed with the same or different parameters.

Commands behave in a manner consistent with a standard transition system. We may

consider the knowledge state as representative of the state of the transition system and

the commands as transitions on the knowledge state. The transitions are conditioned by

guards and constraints that determine whether a transition may be taken. We discuss the

transition system in more details in Section 5.2.3.

Constraints on commands In order to handle the diverse constraints and references

mentioned above in Section 4.1.1 and Section 4.1.2 in a manner similar to the human level

procedure described above, we implement a multi-step constraint evaluation procedure.

Since the result is a logical AND of all of the conditions, they may be collected in any

72

order, so the steps below could be ordered differently or performed concurrently without

affecting the final decision. The procedure followed by the evaluating engine follow for

checking the constraints of commands is as follows:

1. The engine first checks to see what constraints have the command to run in their

scope. This is done to check for invariants as shown above in Example 4.1.4 and

corresponds to Step 4 above. We call this process the constraint search. In order to

do the constraint search, the name of the command to be run is checked against the

scopes for all of the constraints. Any constraints that have the command in their

scopes are collected in a list for checking. Figure 4.1 illustrates how the invariants

structure works with two constraints including Command1 in their scope. The

constraints are invariants on Command1 and must run before the command can be

run.

Figure 4.1: Invariants on a command

2. With the list, the engine needs to check which constraints are applicable to the given

knowledge state and parameters. Constraints that are not applicable may be removed

from the list. For instance, if a constraint limits some an action related to children

under 18, if the situation involves a 30 year old, the constraint is not applicable. We

call such checks such that guards.

3. The engine then evaluates all of the constraints on the list, that is the ones which have

73

the command in scope and are applicable. Each constraint is resolved to a boolean

result that indicates its decision. We call the result the constraint’s judgment. True

means that the command should be allowed to run. False means that it should not

be allowed to run. If the judgment of any constraint on the list is false, the resulting

judgment is false (i.e., a most-strict combination of judgments), the command is

forbidden to run and the updates in the false branch of the command are performed.

If there are no constraints on the list, the default judgment is to allow the command.

This derives a result for Step 4 so it can be combined with the results from the other

steps.

4. If the judgment from the constraint search is true (i.e., allow the command to ex-

ecute), the evaluation engine proceeds to examine the constraints contained in the

command itself. We call the constraints inside a command its guards. Included in

the command’s guards are properties of the knowledge state, properties of the pa-

rameters, or the names of constraints. Names of constraints appear in cases such as

shown above in Examples 4.1.2 and 4.1.3. The evaluation engine checks the proper-

ties directly against the knowledge state and parameters. It evaluates any constraints

named by running them and deriving their judgments. Since any constraint that is

run is mentioned explicitly by the command, its judgment is derived ignoring whether

the command appears in the constraint’s scope.

5. Using the combined results from the constraint search and the guards, the evaluation

engine decides which branch of the command to execute. If the constraint search

result permits the command and the guards all permit the command as well, the

updates in the true branch of the command are performed. Otherwise, the updates

in the false branch are performed.

The result of performing the constraint search steps above is that we have a list of the

constraints that are applicable to the command since we have filtered out all non-applicable

ones based on their such that guards and scopes. We have also derived a judgment from

the applicable constraints that we can use for deriving a final judgment as mentioned in

Step 5 above.

74

Intuitively there are two ways that we might combine the results from multiple con-

straints. Using a most strict algorithm, a forbidding result from a constraint overrides

any permitting results. If we represent a permitting judgment as “true” and a forbidding

judgment as “false”, the logic for such an algorithm would parallel a logical AND of the

results. Using a most lenient algorithm, a permitting result from a constraint overrides

any forbidding results. Using true and false representations, the logic for such an algorithm

would parallel a logical OR of the results. We use both types of algorithms, most strict

and most lenient, in different scenarios of constraint combination as we shall discuss.

In order to concretize the steps discussed we give a simple example of how the evaluation

engine works.

Example 4.4.1 (Helping Part 1)

Since this example is meant to illustrate the evaluation process we use a simplified

version of the Privacy Commands language.

Let us consider a store that has many employees. Some employees are designated to

help customers with their shopping while others are assigned other duties. The store’s

policy is that any employee may say hello to a customer, but only those designated as

helpers may offer to help them. The policy is expressed in the following rules:

1. Employees may greet customers.

2. Employees who are designated Helpers may offer to assist customers.

Let us design a few commands and constraints to describe the store’s policy. Let the

knowledge state be three agents: Harry, Ed, and Roy. There are no other objects or tags.

There are two roles that the agents may hold: Helper and Employee. Let Harry have the

roles Helper and Employee. Let Ed have the role Employee. Let us consider the following

constraint and command that are formatted similarly to Privacy Commands.

1 CMD CmdHelping(actor, recipient)

2 If true

3 Then actor sends “Can I help you?” to recipient

4 Else

75

The first command is executed by someone who wants to offer help to someone in the

store. Line 1 begins with the abbreviation “CMD” that indicates that the text to follow

is a command. The name of the command follows: CmdHelping. In parentheses are the

parameter values that are passed to CmdHelping. The parameter “actor” indicates which

agent is to perform the action. The parameter “recipient” indicates which agent is to

receive the action. Line 2 is the guard for the command. In this case it declared “true”,

so there is nothing to check. Line 3 begins the true branch for the command. It sends a

message from the actor to the recipient offering help. Line 4 is the false branch for the

command and is empty.

1 CMD CmdGreeting(actor, recipient)

2 If true

3 Then actor sends “Hello” to recipient

4 Else

The second command is similar to CmdHelping. Its true branch, line 3, however, sends

a “Hello” greeting to the recipient.

1 CST CstHelping(actor, recipient)

2 Scope {CmdHelping}

3 Such That actor in role Employee

4 If actor in role Helper

5 Then Allow

6 Else Forbid

The constraint places a limit on which employees can offer help in the store. Line 1

begins with the abbreviation “CST” that indicates that the text to follow is a constraint.

The name of the constraint follows: CstHelping. The parameters are the same as in

CmdHelping. Line 2 declares the commands to which the constraint are applicable, its

scope. Since CmdHelping deals with offering help, it is included in the scope. Line 3 limits

the applicability of the constraint to employees since they are ones to whom the policy

applies. If the actor isn’t an employee, the command isn’t applicable. The check is the

constraint’s such that guard. Line 4 checks that the actor is a helper. It is the guard for

the constraint. Line 5 is the “true” branch for the constraint and allows the action. Line

76

6 is the “false” branch and forbids the action.

Let us now consider the following scenarios:

CmdGreeting(Harry, Roy) When the evaluation engine attempts to run the command

CmdGreeting(Harry, Roy), it first checks to see if any constraints are applicable.

Since CmdGreeting is not in the scope of CstHelping, the constraint search results

in a default judgment that allows it. The evaluation engine then checks the guard

for CmdGreeting on line 2. Since the guard is “true”, it is automatically satisfied.

Since the judgment from the constraint search (Allow) and the guard both allow the

action, the true branch is run and Harry sends “Hello” to Roy.

CmdHelping(Harry, Roy) When the evaluation engine attempts to run the command

CmdHelping(Harry, Roy), it first checks to see if any constraints are applicable. Since

CmdHelping is in the scope of CstHelping, it is run. Its such that guard checks that

Harry has the role Employee. Since he is, the constraint is applicable and so the

guard on line 4 is checked. It checks that Harry has the role Helper. Since he does,

it is satisfied and the true branch is run which permits the action. The resulting

judgment from CstHelping is therefore Allow. The evaluation engine then checks the

guard for CmdHelping on line 2. Since it is “true”, it is automatically satisfied. Since

the judgment from the constraint search (Allow) and the guard both all the action,

the true branch is run and Harry send “Can I help you?” to Roy.

CmdHelping(Ed, Roy) When the evaluation engine attempts to run the command

CmdHelping(Ed, Roy), it performs the same steps as in the previous case. It first

checks to see if the command is in the scope of CstHelping. Since it is, it checks the

such that guard. Since Ed has the role Employee, it is satisfied and therefore Cs-

tHelping is applicable. The guard for the constraint on line 3, however, is false since

Ed does not have the role Helper. The false branch for the constraint is therefore

run and the resulting judgment is Forbid. The evaluation engine then checks the

guard for CmdHelping and since it is “true”, it is automatically satisfied. Since the

constraint search judgment is Forbid, the false branch for the command is run and

no message is sent.

77

Given the above policy, it may be interesting to evaluate whether Roy may offer to help

others. That is, since Roy does not have the role Employee, the policy is unclear about

whether he may greet or offer to help others. We return to this point later in Example 4.4.3.

�

In the commands in Example 4.4.1, CstHelping is an invariant since it includes Cmd-

Helping in its scope without CmdHelping acknowledging it. Let us next consider a modified

version with an explicit reference.

Example 4.4.2 (Helping Part 2)

The store discovered that even though it did not allow non-helpers to offer help, employ-

ees who said “Hello” to customers were often asked for help in response to their greeting.

In order to prevent the situation from arising again, the store decided to change its policy

to only allow employees who are permitted to offer help to say “Hello” to customers. The

policy rules are as follows:

1. Employees who are permitted to offer to help customers may greet customers.

2. Employees who are designated Helpers may offer to help customers.

Since the policy already includes a constraint CstHelping that determines who can offer

help, the greeting command can be rewritten in terms of the helping requirements without

changes to CmdHelping and CstHelping.

1 CMD CmdGreeting(actor, recipient)

2 If CstHelping(actor, recipient)

3 Then actor sends “Hello” to recipient

4 Else

The new guard on line 2 is a reference to CstHelping. By including it as a guard,

CmdGreeting now allows the actor to say “Hello” only if CstHelping permits the action.

Let us now reconsider the first scenario from Example 4.4.1 as well as a variation of it:

CmdGreeting(Harry, Roy) When the evaluation engine attempts to run the command

CmdGreeting(Harry, Roy), it first checks to see if any constraints are applicable.

78

Since CmdGreeting is not in the scope of CstHelping, the constraint search results in

a default judgment that allows it. The evaluation engine then checks the guard for

CmdGreeting on line 2. The guard indicates to check the judgment from CstHelping

and so it is run even though CmdGreeting does not appear in its scope. The such

that guard for CstHelping on line 3 checks that Harry is an employee. Since he is, the

command is applicable. The guard on line 4 checks that Harry has the role Helper.

Since he does, the true branch is taken and the judgment from the constraint is

Allow. Since the judgment from the constraint search (Allow) and the guard both

allow the action, the true branch is run and Harry sends “Hello” to Roy.

CmdGreeting(Ed, Roy) When the evaluation engine attempts to run the command

CmdGreeting(Ed, Roy), it first checks to see if any constraints are applicable. As

above, CmdGreeting is not in the scope of CstHelping and so the result is a default

Allow judgment. As above, the evaluation engine then checks the judgment from

CstHelping as per line 2 even though CmdGreeting does not appear in its scope.

The such that guard for CstHelping on line 3 checks that Ed is an employee. Since

he is, the command is applicable. The guard on line 4 checks that Ed has the role

Helper. Since he does not, the false branch is taken and the judgment from the

constraint is Forbid. Since the judgment from the constraint search is Allow and the

guard Forbids the action, the false branch is run and nothing is sent.

�

The above example illustrates the difference between how constraints are treated when

they are evaluated as invariants and when they are evaluated via direct reference. In the

former case the evaluation engine considers the scope of the constraint. In the latter case

it may ignore it. The inclusion of the such that guards introduces another dimension for

constraints, however, which we discuss next.

Intuitively, the scheme for constraint evaluation will terminate if we ensure that there

are no circular references between constraints. We formalize this intuition in Section 5.4.5

with Lemma 5.4.1.

79

4.4.3 Judgments and Derivation of Judgments

The addition of such that guards and scope makes the judgments derived from constraints

more complex than just Allow and Forbid. Recall that scope and such that guards are

designed to filter the applicability of a constraint, but they operate at different levels.

Scope operates at the command level, declaring whether particular commands are subject

to the constraint irrespective of the knowledge state or parameters. Conversely, such that

guards operate at the input level, examining the knowledge state and parameters for a given

situation. In combination, they create a flexible mechanism for focusing the applicability

of constraints.

We use judgments to summarize the decision of constraints in particular situations. In

designing the derivation mechanism for judgments, it is essential to distinguish between

the two different scenarios in which constraints are run:

Constraint Search Before any command is executed, the evaluation engine examines

which constraints are applicable to it and the current situation. For the search,

since we are interested in just discovering invariants which may not be mentioned

explicitly in the command’s guards, we strictly are interested in constraints that are

directly applicable to the command and the situation. Therefore, any constraint

for which the command is not in scope or the such that guards are not applicable

may be ignored. Only constraints that have the command in scope and for which

the such that guards are satisfied need be consulted for their judgment. The final

decision from the constraint search is then the combination of the judgments from the

applicable constraints using a most strict algorithm. We use a most strict algorithm

since if any of the constraints forbids the command to be run, its judgment should

be respected.

Explicit Reference A command’s guards may include a constraint name as a guard.

By including the constraint’s name, the guard is introducing the judgment of the

constraint as a condition on the command. When the evaluation engine sees the

constraint name, it runs the constraint to derive its judgment. Since the command

has explicitly referenced the constraint, the scope of the constraint is ignored in

80

deriving the judgment. The command’s inclusion of the constraint as being applicable

is sufficient for the evaluation engine. Even though the scope is ignored, the such that

guards are still evaluated to determine whether the particular situation is applicable.

If they are not satisfied, the constraint issues a don’t care judgment since the situation

is not applicable according to the constraint. The don’t care judgment is issued in

combination with the result from the other guards for the constraint. The final

judgment as received by the evaluation engine must then be checked against the

expectations of the command.

The scenarios above lead to the derivation of five judgments that may result from a

constraint in different situations. Their names, a short description, and applicability are

shown in Table 4.1. The judgments Allow and Forbid directly permit or forbid the running

of a command. An Ignore (Allow) (sometimes shortened to Ignore) judgment is the result

of a constraint during a constraint search when the command in question is not in scope

or the such that guards are not satisfied. When an explicit reference is the source of a

constraint being run, if the such that guards are not satisfied the result is a don’t care prefix

for the result of the rest of the guards. Therefore, if the such that guards are not satisfied,

but the other guards are, the judgment is Don’t Care/Allow. If the other guards are also

not satisfied, the judgment is Don’t Care/Forbid. The implication of Don’t Care/Allow and

Don’t Care/Forbid is that the case presented to the constraint is not directly applicable,

but ignoring the differences, the constraint would have permitted (or forbid) the action.

We postpone a fuller discussion of the derivation of judgments from constraints and their

combination algorithm to the formal discussion of constraints in Section 5.2.4.

In order to give a better intuition for how the different judgments are used in policies

let us consider an example from the scenario we have discussed previously.

Example 4.4.3 (Helping Part 3)

The store’s policy relating to employees offering help and greeting customers was work-

ing. The store posted its policies on the wall so that customers would understand why

only certain employees would greet them or offer help. After posting the policy, however,

customers began to wonder whether they were included in the prohibition to help or greet

81

Table 4.1: Names, description, and applicability of judgments

Judgment Description Search Reference

Allow Permit the command to be run. X X

Forbid Forbid the command to be run. X X

Ignore (Allow) Constraint ignores the command. X

Don’t Care/Allow Situation not applicable.
It would otherwise permit. X

Don’t Care/Forbid Situation not applicable.
It would otherwise forbid. X

other customers since the policy didn’t make any indication about non-employees. The

store decided that for liability reasons everybody would be subject to the restriction on

offering help, however the greeting policy would be applicable only to employees. The

policy rules are as follows:

1. Employees are restricted to greeting customers only if they may offer to

help.

2. Only employees who are designated Helpers may offer to help customers.

The resulting policy requires some tuning of the commands using the judgments that

may be derived from the constraints, but no additional commands. For reference, CstHelp-

ing is shown below as from Example 4.4.1.

1 CST CstHelping(actor, recipient)

2 Scope {CmdHelping}

3 Such That actor in role Employee

4 If actor in role Helper

5 Then Allow

6 Else Forbid

82

1 CMD CmdGreeting(actor, recipient)

2 If CstHelping(actor, recipient) ∈ {Allow, Don’t Care/Allow,

3 Don’t Care/Forbid}

4 Then actor sends “Hello” to recipient

5 Else

The greeting policy is amended to indicate that unless the constraint issues a Forbid

judgment, the actor may say “Hello” to a customer. This is shown on line 2 where the

name of the constraint is followed by the set inclusion symbol ∈ and a set of judgments to

examine {Allow, Don’t Care/Allow, Don’t Care/Forbid}. The evaluation engine processes

the guard by first deriving the judgment from CstHelping and then comparing it against

the judgments listed afterwards. If the judgment from CstHelping is included in the set,

the guard is satisfied. Otherwise, it is not satisfied.

1 CMD CmdHelping(actor, recipient)

2 If CstHelping(actor, recipient) ∈ {Allow}

3 Then actor sends “Hello” to recipient

4 Else

The helping policy remains unchanged since it remains applicable to everyone. We

update the syntax with the expected judgment from the constraint. As above, if the

judgment from CstHelping is Allow, the guard on line 2 is satisfied. Otherwise, it is not

satisfied.

Let us consider now four scenarios for the new policy. Let the knowledge state include

four agents: Harry, Ed, and Roy, and Nancy. Harry, Ed, and Roy are as in Example 4.4.2.

Nancy is a non-employee and holds no roles. The first two scenarios are as above in

Examples 4.4.1 and 4.4.2 and the last two are a new variation.

CmdHelping(Harry, Roy) As in Example 4.4.1, the evaluation engine first performs a

constraint search. Since CmdHelping is in the scope of CstHelping and its such that

guards and other guards are all satisfied, the resulting judgment is Allow. When the

evaluation engine then checks the guard in line 2, it runs CstHelping to derive its

judgment (an optimization would be to cache the results from CstHelping) of Allow.

Since Allow is in the set judgment set {Allow}, the true branch is taken and Harry

83

offers to help Roy.

CmdGreeting(Ed, Roy) As in Example 4.4.2, the evaluation engine first performs a

constraint search. Since CmdGreeting is not in the scope of CstHelping, its judgment

is Ignore (Allow), permitting the command to run. When the evaluation engine runs

CstHelping on line 2, however, it ignores the scope and derives a judgment based on

the such that guard and other guards. Since the such that guards are satisfied and

the other guard is not, the resulting judgment is Forbid. Since Forbid is not in the

judgment set on lines 2–3, the false branch is taken and no communication occurs,

forbidding Ed to greet Roy.

CmdGreeting(Nancy, Roy) The evaluation steps for CmdGreeting(Nancy, Roy) begin

similarly to those for (Ed, Roy). The constraint search results in an Ignore (Allow)

judgment as above. However, when the guard on line 2 is run, the such that guard

on line 3 for CstHelping is not satisfied since Nancy does not hold the role Employee.

The other guard is also not satisfied since Nancy does not hold the role Helper. The

resulting judgment from CstHelping is thus Don’t Care/Forbid. However, since Don’t

Care/Forbid is included in the judgment set on lines 2–3, the guard is satisfied. The

true branch of CmdGreeting is therefore run and Nancy says “Hello” to Roy.

CmdHelping(Nancy, Roy) The evaluation steps for CmdHelping(Nancy, Roy) begins

with a constraint search. Even though CmdHelping is in the scope for CstHelping

since Nancy does not have the role Employee, the such that guard on line 2 is not

satisfied and the resulting judgment is Ignore (Allow). When the evaluation en-

gine checks CstHelping on line 2 of CmdHelping, the resulting judgment is Don’t

Care/Forbid as for CmdGreeting(Nancy, Roy). Since Don’t Care/Forbid is not in

the judgment set {Allow}, the guard is not satisfied and the false branch is taken.

No communication occurs and therefore Nancy may not offer help to Roy.

�

84

4.4.4 Overloading

For simplicity we have restricted constraints and commands to using only AND combina-

tions of guards. This may be overly restrictive for constraints that offer multiple options

for fulfillment. For instance, a constraint that allows an action to proceed under one of

two circumstances would require the maintenance of two copies of each referring command

to check either of the two resulting constraints as a guard. This is unacceptable since it is

common for regulatory paragraphs to mention multiple ways of fulfilling a constraint and

creating disparately referenced constraints that differ from the text would conflict with

requirements 1 and 2 as mentioned above in Section 3.2.

In order to better model such constraints with multiple options for fulfillment we in-

troduce a limited OR mechanism for constraints that we call overloading. For instance,

when a regulatory paragraph offers two conditions for fulfillment A and B, we create two

overloaded constraints for the paragraph with identical names, one for A and the other

for B. When the paragraph name is then referenced by a command, both A and B are

run and the most lenient judgment of the two is selected by the evaluation engine. This

corresponds to the intuition that if either A or B are satisfied, the paragraph’s restric-

tion has been met. Since the judgment derivation is performed by the evaluation engine,

the resulting judgment appears the same as from a regular constraint. Commands can

therefore reference overloaded constraints identically to non-overloaded constraints. The

operation of overloaded constraints is reminiscent of overloaded functions in a C when the

compiler selects the appropriate function to run from a list of identically named functions.

Overloaded constraints differ from overloaded functions, however, in that all of the over-

loaded constraints are run in order to derive a judgment instead of C’s requirement that a

maximum of one function be executed.

Figure 4.2 illustrates how overloaded constraints are run. First, the command includes

a reference to run the constraint. The evaluation engine then runs all of the instances of

the constraint and combines their judgments. After combining the judgments, it returns

the resulting judgment to the command.

While we create separate constraints for each situation in a paragraph, we place one

restriction on overloaded constraints: that they must all share the same scope. This

85

Figure 4.2: Running an overloaded constraint

restriction is practical since paragraphs normally declare their applicability without respect

to the options for fulfillment. It also simplifies the constraint search somewhat.

Overloading constraints is a syntactic simplification meant to reduce the number of

references from commands. Any set of overloaded constraints could be transformed into a

set of non-overloaded constraints provided that all referencing commands are changed to

refer to each constraint independently. Overloading is a form of “syntactic sugar” to make

Privacy APIs simpler and easier to read but does not add any new semantic constructs to

the language.

In order to give an intuition for how overloaded constraints work, let us continue with

the example from the previous subsections.

Example 4.4.4 (Helping Part 4)

The store’s restriction of who can offer help to customers hit a snag when customers

wanted to ask the store manager for help in special cases. Since the manager is also an

employee she was not permitted to offer help as per the policy, placing her in a difficult

situation. In order to resolve this, the store changed its policy to permit Managers and

Helpers to offer help to customers. The policy rules are then as follows:

1. Employees are restricted to greeting customers only if they may offer to

help.

2. Only employees who are designated Helpers or Managers may offer to help

customers.

Rule 1 is the same as in Example 4.4.3, but rule 2 differs by offering two options for

fulfillment. Under rule 2, if the actor has the roles Helper or Manager the constraint is

86

satisfied. Also note that as a consequence of the change in rule 2, that managers are now

permitted to greet customers since the greeting right is defined in terms of the right to

offer help. Let us first consider how the policy would appear without using overloading.

1 CST CstHelping1(actor, recipient)

2 Scope {CmdHelping1, CmdHelping2}

3 Such That actor in role Employee

4 If actor in role Manager

5 Then Allow

6 Else Forbid

1 CST CstHelping2(actor, recipient)

2 Scope {CmdHelping1, CmdHelping2}

3 Such That actor in role Employee

4 If actor in role Manager

5 Then Allow

6 Else Forbid

Since there are now two options for fulfilling the Helping constraint, we implement

the two as separate constraints. Now in order to reference both options for the Helping

constraints, we must create multiple instances of the Greeting and Helping commands:

1 CMD CmdGreeting1(actor, recipient)

2 If CstHelping1(actor, recipient) ∈ {Allow, Don’t Care/Allow,

3 Don’t Care/Forbid}

4 Then actor sends “Hello” to recipient

5 Else

1 CMD CmdGreeting2(actor, recipient)

2 If CstHelping2(actor, recipient) ∈ {Allow, Don’t Care/Allow,

3 Don’t Care/Forbid}

4 Then actor sends “Hello” to recipient

5 Else

87

1 CMD CmdHelping1(actor, recipient)

2 If CstHelping1(actor, recipient) ∈ {Allow}

3 Then actor sends “Hello” to recipient

4 Else

1 CMD CmdHelping2(actor, recipient)

2 If CstHelping2(actor, recipient) ∈ {Allow}

3 Then actor sends “Hello” to recipient

4 Else

Now in order to check whether an agent can send a “Hello” greeting to another, we

must select from either CmdGreeting1 or CmdGreeting2. The two are identical except

with respect to the constraint that they reference, so they are somewhat redundant and

reduce the clarity of the model. The same is true of the CmdHelping1 and CmdHelping2

commands. For each additional option for CstHelping we would need to add more com-

mands linearly. For each additional constraint not related to CstHelping we would need

to add more commands exponentially, quickly leading to an explosion in the size of the

model.

The key observation here is that the problem of multiple references is caused by the OR

logic in the Helping rule. We can use overloading to better model OR constraint choices

and thereby collapse the size of the model. By collapsing CstHelping1 and CstHelping2

into one name CstHelping that can be referenced as one constraint, we translate the helping

rule into two constraints as follows:

1 CST CstHelping(actor, recipient)

2 Scope {CmdHelping}

3 Such That actor in role Employee

4 If actor in role Helper

5 Then Allow

6 Else Forbid

88

1 CST CstHelping(actor, recipient)

2 Scope {CmdHelping}

3 Such That actor in role Employee

4 If actor in role Manager

5 Then Allow

6 Else Forbid

Now we can use the same CmdGreeting and CmdHelping commands from Exam-

ple 4.4.3 above. For reference, they are as follows.

1 CMD CmdGreeting(actor, recipient)

2 If CstHelping(actor, recipient) ∈ {Allow, Don’t Care/Allow,

3 Don’t Care/Forbid}

4 Then actor sends “Hello” to recipient

5 Else

1 CMD CmdHelping(actor, recipient)

2 If CstHelping(actor, recipient) ∈ {Allow}

3 Then actor sends “Hello” to recipient

4 Else

Note that since the constraints have the same name as in the previous policies, we do

not need to revise the commands at all. The evaluation engine takes care of the reference

by combining the judgments from the CstHelping constraints so that the command does

not care whether it is invoking an overloaded constraint. Let us consider a few scenarios

for the above policy. Let the knowledge state include four agents: Harry, Ed, and Roy,

and Mary. We augment the roles that the agents may hold to be: Employee, Helper, and

Manager. Harry, Ed, and Roy are as in Example 4.4.2. Mary is a manager who holds the

roles Employee and Manager.

CmdHelping(Harry, Roy) When the evaluation engine runs CmdHelping(Harry, Roy),

it first performs a constraint search as mentioned in the scenarios in previous exam-

ples. Since the evaluation engine sees that CstHelping has CmdHelping in its scope

and CstHelping is overloaded, it runs both versions of CstHelping and combines their

89

judgments. The first CstHelping yields a judgment of Allow since Harry has the roles

Employee and Helper. The second CstHelping evaluates to Forbid since Harry has

the role Employee (thereby satisfying the such that guard on line 3) but does not

have the role Manager (violating the guard on line 4). Since the two constraints are

options for fulfilling the requirement, the evaluation engine combines the Allow and

Forbid judgments using a most lenient algorithm. The final judgment is therefore

Allow since it is the most lenient result. The command CmdHelping is then run as

above in the scenarios in Example 4.4.3.

CmdHelping(Mary, Roy) The evaluation engine runs CmdHelping(Mary, Roy) in a

manner similar to the previous scenario of CmdHelping(Harry, Roy). However, dur-

ing the constraint search the first CstHelping instance yields Forbid since Mary has

the role Employee but not the role Helper and the second CstHelping instance yields

Allow since Mary has the roles Employee and Manager. As before, the evaluation

engine uses a most lenient algorithm to combine the judgments (yielding Allow) and

Mary offers to help Roy as above in Example 4.4.3.

CmdGreeting(Mary, Roy) When the evaluation engine runs CmdGreeting(Mary,

Roy), it first performs a constraint search. Since CmdGreeting is not in the scope

of the CstHelping constraints, the resulting judgment from the constraint search is

Ignore (Allow). When the evaluation engine runs CmdGreeting, it checks the ref-

erence to CstHelping on line 2. Since CstHelping is overloaded, both instances of

CstHelping are run. The first instance yields Don’t Care/Forbid since Mary has the

role Employee but not Helper. The second instance yields Allow since Mary has the

roles Employee and Manager. As during the constraint search, the evaluation engine

combines the two judgments using a most lenient algorithm, yielding Allow. Since

Allow is in the set of judgments on lines 2–3, the guard in CmdGreeting is satisfied

and Mary is permitted to greet Roy.

In this example, we could perhaps have avoided using overloading by introducing an OR

guard in line 4 of CstHelping, for instance changing it to “actor in role {Helper, Manager}”

to indicate that it should be satisfied if the actor has either role. We then could collapse

90

CmdHelping into a single constraint and not need to use overloading. We use the example

as given primarily for illustrative reasons since more complex policies can not be easily

collapsed as such, but also to retain the atomicity of guards as much as possible and

thereby making policies slightly easier to compose, model, and understand. �

From the scenarios we see that since the evaluation engine takes care of the running

and judgment combination of overloaded constraints, references for overloaded and non-

overloaded constraints are handled identically. We use overloading to let constraints offer

multiple options for fulfillment without creating an explosion of references, but any collec-

tion of overloaded constraints can be rewritten without using overloading at the price of

complexity. Example 4.4.4 shows this by offering the same policy with and without the

use overloading.

4.5 Alternate Approaches

The Privacy Commands language and evaluation engine structure, while complex, en-

ables an expressive and flexible modeling of privacy policies. Constraints in particular

are treated in a complex way with subtle combinations or scopes, such that guards, and

overloading. The most important design decision made in the design of the language and

the evaluation engine is the strict adherence to the structure of the legal text. As shown

in Section 4.1.1 and Section 4.1.2, legal policies use a variety of complex constraint and

reference mechanisms. Rather than designing simpler mechanisms with similar semantics,

we enable the implementation of policies which maintain the original structure and style

of the source text’s constraints and references even at the expense of simplicity. As we

explore in Section 5.5, our representation enables the evaluation of interesting policy com-

parison metrics. Used in combination with our representation, we can more easily explore

how the properties and permissiveness of a policy is affected by its use of references and

constraints.

To contrast our approach, let us consider other languages and systems from the privacy

policy literature as discussed in Section 2.3. Three policy systems mentioned there are

very similar to our work so we shall describe them in depth. In order to demonstrate how

91

they differ from our work, we use an example policy fragment, derived from the HIPAA

Privacy Rules. The 2000 HIPAA Privacy Rule [§164.506(a)(1)-(2), v.2000] permits use and

disclosure of protected health information under certain circumstances. Two simplified

conditions from the text are as follows:

1. A covered entity may use protected health information for its own treatment.

2. Unless permitted by 506(a)(2) or (3), a covered entity must receive consent from a

patient before using protected health information.

The source text for the above rules is in Appendix B.1.1 and is considered in depth in

Example 7.1.1. The commands and constraints for the quote are shown in Appendix C.1.2.

Let us now examine how the above policy would be modeled by three other languages from

the literature.

P3P

A policy fragment for the permissions 1 and 2 in P3P is as follows:

1 <purpose>

2 <other-purpose required="always">treatment</other-purpose>

3 <other-purpose required="opt-in">any</other-purpose>

4 </purpose>

The “required” attribute indicates whether actions for a purpose need no consent (al-

ways), opt-in consent, or opt-out consent. The statement does not identify the agents

performing the actions, but by specifying the purposes separately we can capture the no-

tion of requiring consent using the required attribute. If the obligation had been something

else, requiring patient notification for example, it would not have been expressible.

Contextual Integrity Barth, et al. [15] model contextual integrity based using tem-

poral logic formulas called norms to describe allowed and forbidden actions. Formulas con-

sider a message’s sender, its recipient, the agent who is its subject, and meta-information

92

about the content of the message. Positive norms (permissions) and negative norms (re-

quirements) may include an additional obligation clause which can inspect additional prop-

erties and require past or future messages. As an aside, the symbol used in Barth, et al.

for past requirements is a diamond with a bar through it. For technical reasons, we use �

instead.

A positive norm for 1 must adapt a “use” to be the sending of a message, in this case

a message the sender sends to herself:

inrole(p1, covered-entity) ∧ (p2 = p2) ∧ inrole(p3, patient) ∧ (t ∈

protected-health-information).

The norm checks that the sender (p1) is a covered entity, that the recipient (p2) is the

same as the sender, that the message subject (p3) is a patient, and that the message (t) is

protected health information. We can not include purposes such as treatment in clauses

because they are not supported, however it would not be difficult to add them. There also

is no way to express the notion of “otherwise” using the formulas since all negative norms

must be satisfied before any positive ones can be exercised. . The closest we could get for

2 is a negative norm:

inrole(p1, covered-entity) ∧ (p2 = p2) ∧ inrole(p3, patient) ∧ (t ∈

protected-health-information)→ � send(p3, p1, usage-opt-in)

The norm, however, does not capture the concept of the use being for a different purpose

or that it is exercised only if the permissions in the other location are not applicable.

EPAL

EPAL rules are similar to constraints in that they return judgments based on parameter

value, but don’t perform state updates. An EPAL rule for 1 is:

1 <rule id="OwnTreatment" ruling="allow">

2 <user-category refid="Covered-Entity"/>

3 <data-category refid="Protected Health Information"/>

4 <purpose refid="Treatment"/>

93

5 <action refid="Own-Use"/>

6 </rule>

The rule allows covered entities access to protected health information for its own

treatment use. There is no corresponding notion of permitted elsewhere, but since EPAL

policies are evaluated in order, an enterprise could place the following rule at the end of

its policy to emulate 2:

1 <rule id="OtherUse" ruling="allow">

2 <user-category refid="Covered-Entity"/>

3 <data-category refid="Protected Health Information"/>

4 <purpose refid="Any"/>

5 <action refid="Use"/>

6 <condition refid="Granted-Consent"/>

7 </rule>

The rule adds a condition that consent had been previously granted. The body of the

condition evaluates whether consent had been granted previously and that the granter had

a particular name.

Aside from the hazards of creating ordered rule sets [3], EPAL is limited in that its

rules can not directly examine or update state, include the recipient of messages, or impose

obligations that are linked to concrete actions or conditions. EPAL policies depend on well

defined vocabularies and systems that enforce the meaning of vocabulary terms.

Discussion

The limitations in the above systems center around the management of purposes and

constraints. All three models are based fundamentally on an access control paradigm

where policies are compartmentalized, giving simple combinations of rules which much be

applied to specific circumstances. Barth, et al. ’s provides a robust mechanism for the

writing of policies by including the possibility for negative norms to override positive ones,

however its LTL logic based approach does give it the flexibility to deal with contingencies

and references which commonly appear in larger legal policies. A representation suited

94

for modeling legal policies must be adapted to their idioms and structure in order to be

accurate and representative. Through the examples and case studies in the chapters that

follow we show that the structures and evaluation engine algorithms in Privacy Commands

are necessary and sufficient for the task.

4.6 Conclusion

In this chapter we developed Auditable Privacy Systems and how they fulfill the goals of

the Formal Privacy framework described in Chapter 3. Since the framework is focussed on

the development of regulatory models, we describe two usage cases and requirements for

languages which are designed in the framework. We then informally describe the Privacy

Commands language and show how its features are used and can address the requirements.

Our informal presentation is meant to provide an intuition for Chapter 5 which goes more

deeply into syntax and semantics.

95

Chapter 5

Formal Language and Framework

for Privacy APIs

In the previous chapters we have developed an informal description of the requirements

for our formal privacy language. In this chapter we give technical details about our formal

Privacy Commands language including its syntax and semantics. As shown in examples in

Section 3.2, legal privacy documents generate a combination of commands and constraints

that interact through references and deferences. As discussed previously in Section 4.4,

Privacy APIs use commands and constraints to model the permissions and references that

are combined to make policy decisions. In this chapter we develop the formal model for

the Privacy Commands language, discuss its syntax and semantics, and develop relations

that let us analyze their properties.

The rest of this chapter is organized as follows. In Section 5.1 we discuss the fundamen-

tal types and sets that we use in the formal model for Privacy Commands. In Section 5.2

we introduce the syntax for guards and operations and how they are used to create com-

mands and constraints. In Section 5.2.2 we introduce the typing system used for Privacy

Commands. In Section 5.2.5 we present a grammar for Privacy APIs and provide descrip-

tive examples to show its use in Section 5.2.6. In Section 5.3 we present the operational

semantics for Privacy Commands. In Section 5.4 we discuss the evaluation engine for Pri-

vacy Commands and how it interacts with the various features of the language which may

96

manifest in a Privacy API. In Section 5.5 we develop the formal relations for strong and

weak licensing, policy relations defined in the same vein as strong and weak bisimulation

from process calculi, and relate them to the evaluation structures defined in this chapter.

We conclude in Section 5.6.

5.1 Fundamental Types and Sets

Before presenting the formal model for Privacy Commands, we must explore the funda-

mental sets, operations, and atoms which the language uses. We base our formal model

on the fundamental models for access control and privacy policies discussed above in Sec-

tion 2.2 using the concepts of agents, objects, rights, and actions to model the people,

resources, and behaviors that models may make decisions about. We extend the standard

access control model with the privacy policy concept of purposes for actions. We annotate

objects and agents with tags to indicate meta-data and use a log to record evidence. We

also include a construct for the sending of messages to agents to inform them of events.

Since such communication is out of the scope of the policy and its evaluation, we formally

model such messages by recording evidence in the log of each message and its recipient.

The type and sets in the universe are thus as follows. As a rule we use small caps to

indicate type names (e.g., Type) and italics for set names (e.g., Set). To indicate that

a variable is of a given type we use the colon notation. For instance, v :V means that

variable v has type V.

Agent is the type for agents. The set Agent is a finite set of objects of the type.

Object is the type for objects. The set Object is a finite set of objects and agents. The

type Agent is a subtype of Object and so we enforce that Object includes all agents

(Agent ⊆ Object).

Role is the type for roles. The set Role is a finite, non-hierarchical set of roles. Roles are

implemented as properties of agents which are not updateable by commands. For

a : Agent, we use the function Roles(a) to extract the set of roles that an agent

holds. For k1 ∈ Role and using a.k1 = true to denote that a holds the role k1,

97

Roles(a) = {k ∈ Role |a.k = true}.

Right is the type for rights which represent relations between agents and objects. The

finite set Right are the rights recognized by a policy. A knowledge state stores

the rights in a matrix Matrix ⊂ Agent × Object × pwr(Right). For example, if

(a, f, {r, w}) ∈ Matrix then we say a has rights r and w over f .

Tag is the type for meta-data tags. Tags are boolean flags which indicate properties of

agents and objects. The finite set Tag are the tags recognized by a policy. For an

agent a and tag t ∈ Tag , we write a.t = true to indicate that the tag is true (or

set) for a. We use the function tags(a) to extract the set of tags that are true of an

object, tags(a) = {t ∈ Tag |a.t = true}.

Purpose a finite hierarchical set of purposes for actions as included in a policy. They

include general categories of purposes for actions (e.g., use, disclosure) as well as

specific purposes which fall under the general categories (e.g., use for prevention

of loss). For compactness of regulatory texts, enumerations of specific purposes for

actions are classified under a more general heading and rules are given with respect

to the general headings. To support this, we require that agents include a purpose

set P whenever running a command.

Since they are normally hierarchical, we implemented a standard partial ordering on

purposes based on their specificity and legal definition. We define the partial order

in terms of parent and child relationships where parents are general terms which

encompass their children. Thus, a purpose may have a maximum of one parent, but

many children. The relation parent: Purpose → Purpose yields the parent element

for a given p ∈ Purpose . If p has no parents (i.e., it is a root), parent(p) = ∅.

The relation children: Purpose → pwr(Purpose) yields the set of direct descendants

of p. If p has no children (i.e., it is a leaf), children(p) = ∅. Let ancestors be the

transitive closure of parent and let descendants be the transitive closure of children.

The intuition of the hierarchy is that for a purpose p, its ancestors are more general

and its descendants are more specific.

Agents provide a set of purposes P ⊂ Purpose as a parameter for each command (i.e.,

98

action or combination of actions) to run. Commands and constraints use P for the

evaluation of guards to do with purpose by evaluating set membership guards in one

of two mechanisms. Under allowed semantics, the guard is interested in evaluating

whether P contains a particular purpose or any of its descendants, denoted p ina P .

It is true if ∃p′ ∈ P . p′ ∈ descendants(p). Allowed semantics are used in cases such as

when an action is permitted if it is for purpose p (e.g., You may perform the action

if it is for p). Thus, p or any of its descendants being included in P is sufficient to

satisfy the guard. Under forbidden semantics, the guard is interested in whether

the P contains a particular purpose p or any of its descendants or ancestors, denoted

p inf P . It is true if ∃p′ ∈ P . p′ ∈ {ancestors(p) ∪ descendants(p)}. Forbidden

semantics are used in cases such as when an action is required if p is included (e.g.,

You must perform the action if it is for p). Thus, p or any of its descendants or

ancestors being included in P is sufficient to satisfy the guard. Note that if p has

no ancestors (i.e., it is a root), p ina P is true iff p inf P since ancestors(p) = ∅.

Other applications of “permit down” (allowed semantics) and “forbid up and down”

(forbidden semantics) are found in privacy policy literature (e.g., EPAL [9]).

Log An append-only log. It is stored as a series of strings and can be updated by com-

mands, but it can not be inspected by guards. The log includes messages sent to

agents. Storage of a message for a ∈ Agent in Log is the equivalent of sending the

message to a in the real world.

State As described above in Section 4.4.1, the knowledge state represents the state at a

given moment in time. The set State ⊆ Agent×Object×Matrix×Log . An individual

s has members s = (A,O,m, l) for A ⊆ Agent , O ⊆ Object ,m ∈ Matrix , l ∈ Log .

Parameters We define a tuple type Parameters = (a : Agent, s : Agent, r :

Agent, P : Purpose∗, f : Object, f ′ : Object,msg : String). For the rest of this work

we do not include the type annotations for parameters, instead using a short hand notation

for a member of Parameters as (a, s, r, P, f, f ′,msg). Tuples such that a, s, r ∈ Agent ,

P ⊆ Purpose , f ∈ Object , f ′ 6∈ Object if not null, and msg a string are members of

the valid parameters set ParametersE . We use parameter lists to allow agents to pass

99

information to the evaluation engine to aid in processing commands. We define a paral-

lel tuple type ParametersE = (a : Agent, s : Agent, r : Agent, P : Purpose∗, f :

Object, f ′ : Object,msg : String, e : Command) which are written without type an-

notations as (a, s, r, P, f, f ′,msg, e). The members of ParametersE such that a ∈ Agent ,

s ∈ Agent , r ∈ Agent , P ⊆ Purpose , f ∈ Object , f ′ 6∈ Object if not null, msg ∈ String , and

e ∈ Command are members of the valid constraint parameter set ParametersC . They are

used to pass information to constraints. We use the following names for the parameters

throughout this work: actor for a, subject for s, recipient for r, purpose set for P , object

or file for f , new object or new file for f ′, message for msg, and current command for e.

Judgments As noted above in Section 4.4.3 and informally described in Table 4.1, we

summarize the policy decision of constraints using judgments. The judgment set Judgment

contains the following members: Judgment = {Allow, Forbid, Ignore, Don’t Care/Allow,

Don’t Care/Forbid}. We discuss the usage and derivation of the judgments below in

Section 5.2.4. As a notational convention, we capitalize the names of the judgments when

referring to them as the results of some judgment derivation algorithm. We refer to the

judgments Ignore, Don’t Care/Allow, and Don’t Care/Forbid as a class of don’t care results,

italicizing the name. We use don’t care to refer to all members of the class. We write Don’t

Care/* when we refer to Don’t Care/Allow and Don’t Care/Forbid equally. Since Ignore is

given a semantics similar to Allow in some situations, we often write it as “Ignore (Allow)”.

5.1.1 Purpose Examples

In order to give an intuition for the use of the partial order of Purpose let us consider two

examples, one contrived to illustrate the differences between the usage of ina and inf and

the other from HIPAA.

Example 5.1.1 (Surgery Purposes)

In order to illustrate the use of the Purpose partial order and allowed and forbidden

semantics, let us consider an example of four purposes: Treatment is the parent of Surgery,

Surgery is the parent of Oral Surgery and Eye Surgery. The hierarchy is shown in Fig-

ure 5.1. We include index numbers in parentheses next to the names of purposes for brevity

100

in discussing the hierarchy.

Treatment (0)
↓

Surgery (1)
ւ ց

Oral Surgery (2) Eye Surgery (3)

Figure 5.1: Hierarchy for surgery example

For allowed semantics, we are interested in the descendants of a purpose while for for-

bidden semantics we are interested in the descendants and ancestors. Table 5.1 enumerates

the members of the sets under both semantics. For compactness, we use the numbering in

Figure 5.1 to refer to purposes.

Table 5.1: Purposes included in allowed and forbidden semantics for surgery example

Purpose ina inf
Treatment (0) {0, 1, 2, 3} {0, 1, 2, 3}
Surgery (1) {1, 2, 3} {0, 1, 2, 3}

Oral Surgery (2) {2} {0, 1, 2}
Eye Surgery (3) {3} {0, 1, 3}

The following example guards are then evaluated as follows:

You may do A if it is for Treatment This guard uses allowed semantics and is equiv-

alent to Treatment ina P . It is true if Treatment, Surgery, Oral Surgery, or Eye

Surgery are in P .

You may not do B for Oral Surgery This guard uses forbidden semantics and is

equivalent to Oral Surgery inf P . It is true if Treatment, Surgery, or Oral Surgery

are in P .

�

Example 5.1.2 (Marketing Purposes)

101

In regulatory documents, purposes are often defined in a hierarchical format. Before

being used in the regulatory text, general purpose terms are defined precisely. For example,

consider the definition of “marketing” in HIPAA [§164.501, v. 2003]:

Marketing means:

(1) To make a communication about a product or service that encourages re-
cipients of the communication to purchase or use the product or service, unless
the communication is made . . .

(2) An arrangement between a covered entity and any other entity whereby
the covered entity discloses protected health information to the other entity, in
exchange for direct or indirect remuneration, for the other entity or its affiliate
to make a communication about its own product or service that encourages
recipients of the communication to purchase or use that product or service.

Marketing therefore includes two separate actions - (1) communication about a product

or service to recipients and (2) directly selling information to another entity who will then

make a communication to recipients. For clauses that then discuss marketing, the purpose

for the action is examined using the permitted or forbidden semantics as described in

the clause. Let us consider one usage of Marketing as a purpose from [§164.508(a)(3)(i),

v.2003]:

(i) Notwithstanding any provision of this subpart, other than the transition
provisions in §164.532, a covered entity must obtain an authorization for any
use or disclosure of protected health information for marketing, except if the
communication is in the form of:

(A) A face-to-face communication made by a covered entity to an individual;
or

(B) A promotional gift of nominal value provided by the covered entity.

Combining the purpose definitions, we have a hierarchy as shown in Figure 5.2.

Marketing
ւ ↓ ց

Promotional gift Communication to recipient Sell to another
↓ who will communicate

Face-to-face

Figure 5.2: Hierarchy for marketing purpose example

102

Using P as the purpose set provided by the agent, the guard in §164.508(a)(3)(i) re-

quires an authorization for a use or disclosure of protected health information if (Marketing

infP ∧ !(Face-to-face inaP ∨ Promotional gift inaP)). �

5.2 Syntax for Privacy Commands

Commands and constraints operate over the fundamental sets by using guards to inspect

the knowledge state and parameters and operations to modify the knowledge state. We

first discuss the syntax of the guards and operations since they are building blocks for

commands and constraints. We then discuss the syntax for commands and constraints

followed by their semantics and interaction model. The following sections build on the

overview and informal development of Privacy Commands in Section 4.4. We begin with a

formal discussion of the structure and syntax of commands in Section 5.2.3 and constraints

in Section 5.2.4 and follow with a grammar in Section 5.2.5. We resent several illustrative

examples in Section 5.2.6.

5.2.1 Guards and Operations

Commands are combinations of guards (ψ) and operations (ω) that inspect and modify the

knowledge state while constraints consist solely of guards and so do not modify the knowl-

edge state. Since guards and operations are the fundamental atoms for both commands

and constraints we first list them and informally describe their purposes. We postpone the

discussion of their operational semantics to Section 5.3, after we have discussed the syntax

and grammar for commands and constraints.

As shown in Table 5.2, guards inspect the knowledge state and parameters to extract

their properties. Guards do not cause state updates and always yield a boolean result. The

first guard d in (a, o) checks the existence of rights in the matrix. The second guard o.t = b

checks whether a tag t has the boolean value b on an object o. The third guard k in Roles(a)

checks whether a holds the role k. The fourth guard p ina P checks set membership of p

in P using allowed semantics. The fifth guard p inf P checks set membership for p in P

using forbidden semantics. The sixth guard e(args) ∈ J instructs the evaluation engine

103

Table 5.2: Guards (ψ)

d in (a, o) Checks for the presence of a right.
o.t = b Checks the boolean value of a tag
k in Roles(a) Checks an agent’s holding a role
p ina P Checks if a purpose is allowed by a purpose set
p inf P Checks if a purpose is forbidden by a purpose set
c(a, s, r, P, f, f ′,msg) ∈ J Runs a constraint in a command
a1 = a2 Compares agent identity
!g Negation of guard g

Table 5.3: Operations (ω)

create object o Create a fresh object
delete object o Delete an object
set o.t = b′ Set a tag
insert d in (a, o) Insert a right
delete d from (a, o) Delete a right
insert s in log Insert a note in the log
inform a of msg Send a message to an agent
invoke e(a, s, r, P, f, f ′,msg) Execute a command and waits for its completion
return b End a command and returns a boolean value

to run the constraint e with the arguments args. The resulting judgment as derived by

the evaluation engine is then compared against the set of judgments J ⊆ Judgment . If the

resulting judgment is in J , the guard’s result is true. Otherwise, its result is false. The

seventh guard a1 = a2 checks the equality of two of the agent parameters (i.e., a, s, r). If

a1’s value coincides with a2’s value, the result is true. Otherwise it is false. The last guard

!g is the logical negation of another guard !g. We forbid negation of negation to prevent

guards of unbounded length. We formalize this restriction in the grammar in Table 5.6.

As shown in Table 5.3, operations cause updates to the knowledge state. Operations

include implicit checks of the knowledge state on which they operate which if not satisfied,

result in a type error. Non-well typed operations are not well formed and so commands

which contain them have undefined behavior at run time. We discuss typing for operations

and guards and provide well-formedness definitions for them in Section 5.2.2. The first

104

operation create object o creates a fresh object in Object with the fresh name o. The

second operation delete object o removes o from Object . The third operation set o.t = b

sets the tag t for o to the boolean value b. The fourth operation insert d in (a, o) and

fifth operation delete d from (a, o) update the rights matrix by inserting or deleting d

for a on o. The sixth operation insert s in log inserts a string s in the knowledge state’s

log. The seventh operation inform a of msg sends a message to a by noting it in the

log. If a 6∈ Agent , the logged message will indicate a recipient which does not exist. The

eighth operation invoke e(args) runs the command e with the parameters args. When the

evaluation engine reaches an invoke operation it suspends running the current command to

run e. Upon completion of running e, the evaluation engine resumes running the current

command. The final operation return b is special in that it is the only operation that is

included in constraints as well as commands. It indicates to the evaluation engine that

the command or constraint is finished running. The value of b is the return value and the

evaluation engine provides it to any command or constraint which had run the currently

running command or constraint.

Let us consider the subset of operations which only perform logging operations, denoted

Operationd. The members are Operationd = {inform a of msg, insert s in log, return b}.

We use the set Operationd below for situations in commands where only logging operations

are appropriate.

5.2.2 Typing

As defined in Section 5.1, we define several fundamental sets that guards and operations

use. We use the sets as the basis for a typing system for guards and operations which lets

us define well typed guards and operations. Based on the fundamental sets we define the

sets shown in Table 5.4

The types shown in Table 5.4 include simple types such as Purpose, Right,

Judgment, String, and Bool as well as composite types. Objects are represented as

functions from a tag to a boolean since guards may use them in only two ways: (1) testing

for existence and (2) testing or setting the value of a tag on the object. Agents are an

extension of objects in that they can be tested for whether they have a role set. We assume

105

Table 5.4: Types

Type Set Description

Agent Agent (Tag ∪ Role) → Bool

Object Object Tag → Bool

Role Role Atomic

Purpose Purpose Atomic

Right Right Atomic

Tag Tag Atomic

Judgment Judgment Atomic

String String Atomic

Bool Boolean Atomic

Log Log String

State State Agent∗ × Object∗ × Matrix × Log

Guard Guard State → Judgment

Operation Operation State → State

Command Command Agent × Agent × Agent × Purpose∗ × Object
×Object× String× State → State,Bool

Constraint Constraint Agent × Agent × Agent × Purpose×Object
×Object× String× Command× State → Judgment

Policy Policy Constraint∗ × Command∗ × Role∗ × Tag∗×
Purpose∗

that all members of the sets in Table 5.4 are well typed, but that the sets may not contain

all members of the type. So, for instance all members of Agent are of type Agent, however

there may be objects of type Agent not present in Agent . We use these assumptions to

make assertions about the variables used in guards and operations which we discuss next.

Guards and operations use variables of particular types. We enforce typing for the

variables for each guard and operation to ensure that they are well formed. We use the

colon notation : to annotate the types of variables. For instance a : Agent indicates that a

is of type Agent. Figures 5.3 and 5.4 show the typing derivation trees for all variables used

in operations and guards respectively. Figure 5.3 does not include a rule for the return

operation since it must be placed only at the end of a command branch. We therefore

provide its typing in Figure 5.5 and Figure 5.6 as appropriate.

Using the typing from the tables we define well formed operations and guards as follows.

106

o : Object

create object o : Operation
[T-Create]

o : Object

delete object o : Operation
[T-DeleteO]

o : Object t : Tag b : Bool

set o.t = b : Operation
[T-TagSet]

d : Right a : Agent o : Object

insert d in (a, o) : Operation
[T-InsertR]

d : Right a : Agent o : Object

delete d from (a, o) : Operation
[T-DeleteR]

a : Agent msg : String

inform a of msg : Operation
[T-Inform]

e : Command a, s, r : Agent P : Purpose∗

f, f ′ : Object msg : String

invoke e(a, s, r, P, f, f ′,msg) : Operation
[T-Invoke]

Figure 5.3: Typing rules for operations

Definition 5.2.1 (Well Formed Operation) An operation ω is well formed if its structure

can be inferred from the typing rules in Figures 5.3 and 5.4. �

Definition 5.2.2 (Well Formed Guard) A guard ψ is well formed if its structure can be

inferred from the typing rules in Figures 5.3 and 5.4. �

For the rest of this work we now presume that all operations and guards are well formed.

As such, evaluation for non-well formed guards and operations is undefined.

A Privacy API φ is a collection of commands and constraints along with the purposes,

tags, and roles which support them. We denote the set of Privacy APIs as Policy . Let us

use a shorthand notation for : to apply to all members of a set such that V :V is a shorthand

for ∀v ∈ V, v :V. Let C : Constraint, E : Command, R : Role, T : Tag, P : Purpose.

A Privacy API is then a tuple φ = (C,E,R, T, P). Intuitively, in order to ensure that a

Privacy API is well formed, we check that the roles, tags, and purposes used in E and C

107

d : Right a : Agent o : Object

d in (a, o) : Guard
[T-CheckRight]

o : Object t : Tag b : Bool

o.t = b : Guard
[T-CheckTag]

k : Role a : Agent

k in Roles(a) : Guard
[T-CheckRole]

p : Purpose P : Purpose∗

p ina P : Guard
[T-PurposeA]

p : Purpose P : Purpose∗

p inf P : Guard
[T-PurposeF]

c : Constraint a, s, r : Agent P : Purpose∗ f ′, f : Object
msg : String J : Judgment∗ e : Command

c(a, s, r, P, f, f ′,msg, e) ∈ J : Guard
[T-Reference]

a1, a2 : Agent

a1 = a2 : Guard
[T-Agent]

g : Guard

!g : Guard
[T-Neg]

Figure 5.4: Typing rules for guards

are contained in R, T , and P and that the references in C and E are only to commands

in E and constraints in C.

To concretize well formed-ness let us first define some shorthand notation. Let ω :

Operation, ψ : Guard, e : Command, c : Constraint, and φ = (C,E,R, T, P) ∈

Policy . To avoid confusion we use the triple equal sign ≡ to indicate structural equivalence

to differentiate from = which we use in the syntax of guards.

Definition 5.2.3 (Roles of)

• roles(ψ) =







ψ ≡ k in Roles(a), k;

otherwise, ∅.

• roles(e) =
⋃

ψ∈ψ

roles(ψ)

• roles(c) =
⋃

ψ∈(ψst∪ψr)

roles(ψ).

108

• roles(φ) =
⋃

c∈C

roles(c) ∪
⋃

e∈E

roles(e).

�

Definition 5.2.4 (Tags of)

• tags(ω) =







ω ≡ set o.t = s, t;

otherwise, ∅.

• tags(ψ) =







ψ ≡ o.t = b, t;

otherwise, ∅.

• tags(e) =
⋃

ψ∈ψ

tags(ψ) ∪
⋃

ω∈ωt

tags(ω).

• tags(c) =
⋃

ψ∈(ψst∪ψr)

tags(ψ).

• tags(φ) =
⋃

c∈C

tags(c) ∪
⋃

e∈E

tags(e).

�

Definition 5.2.5 (Purposes of)

• purposes(ψ) =



















ψ ≡ p ina P, p;

ψ ≡ p inf P, p;

otherwise, ∅.

• purposes(e) =
⋃

ψ∈ψ

purposes(ψ)

• purposes(c) =
⋃

ψ∈(ψst∪ψr)

purposes(ψ).

• purposes(φ) =
⋃

c∈C

purposes(c) ∪
⋃

e∈E

purposes(e).

�

Definition 5.2.6 (References of)

• references(ω) =







ω ≡ invoke e(a, s, r, P, f, f ′,msg), e;

otherwise, ∅.

109

• references(ψ) =







ψ ≡ c(a, s, r, P, f, f ′,msg), c;

otherwise, ∅.

• references(e) =
⋃

ψ∈ψ

references(ψ) ∪
⋃

ω∈ωt

references(ω).

• references(c) = E ∪
⋃

ψ∈(ψst∪ψr)

references(ψ).

• references(φ) =
⋃

c∈C

references(c) ∪
⋃

e∈E

references(e).

�

Using the above shorthand, we define well formed Privacy API as follows:

Definition 5.2.7 (Privacy API) φ = (C,E,R, T, P) is a well formed Privacy API iff

roles(φ) ⊆ R, tags(φ) ⊆ T , purposes(φ) ⊆ P , and references(φ) ⊆ (C ∪ E). �

5.2.3 Command Syntax

Legal privacy documents describe the types of actions, behaviors, and protections related

the handling of protected information. We use commands to perform the actions permitted

in policies, becoming the verbs which cause the knowledge state to evolve. Intuitively, a

command is a button which can be pushed by an agent to perform an action. That is, when

a command is run, there is an agent who actively intends to perform the updates contained

in the command and provides information about its intent in the form of parameters.

For the following definition, let a, s, r ∈ Agent , f ∈ Object , f ′ a fresh name not in

Object , P ⊂ Purpose , and msg a string. We say that e is the name of the command, a

is the actor in the request, r the information recipient, s the information subject, P the

purpose set for the command, f the object of the command, f ′ a fresh name for creating

new objects, and msg a message string to be sent or logged. Let ψ ∈ Guard be a well formed

guard and ω ∈ Operation be a well formed operation as defined above in Section 5.2.1.

Definition 5.2.8 (Command) A command e has the following structure:

e(a, s, r, P, f, f ′,msg) = if ψ then (ωt) and return true else (ωf) and return false

110

where ψ = ψ1∧ψ2∧. . .∧ψm form ≥ 0, ωt = ωt1∧ω
t
2∧. . .∧ω

t
n for n ≥ 0, ωf = ω

f
1∧ω

f
2∧. . .∧ω

f
k

for k ≥ 0, ψ ⊂ pwr(ψ), ωt ⊂ pwr(Operation), and ωf ⊂ pwr(Operationd). When ψ = ∅, the

true branch of the command is always executed, so ωf may be ignored.

The case where m = k = n = 0 is the trivial nil command. A command e is a valid

command if it has the above structure and ∄ω ∈ ωt . ω ≡ invoke e(a, s, r, P, f, f ′,msg)

(i.e., no self-invocation). We forbid self invocation to avoid non-terminating commands.

When building policies with more than one command we may still have non-termination

issues due to circular references, an issue we address in Section 5.4.5.

A similar, less compact representation for commands which we use for representation

of commands in examples throughout this work is:

CMD e(a, s, r, P, f, f ′,msg)

if ψ1

and . . .

then ωt1

and . . .

and return true

else ω
f
1

and . . .

and return false

�

Intuitively, a command e accepts parameters e(a, s, r, P, f, f ′,msg) and modifies the

knowledge state, producing side effects. If the boolean AND of all guards in ψ is true, we

say that the command returns true. Otherwise, we say that the command returns false.

For convenience we indicate the boolean return value in the command with the syntax

return true and return false.

Since commands are comprised of operations and guards, we define well formedness for

them in terms of guards and operations. We show the typing derivation rule for commands

in Figure 5.5 and use it for the following definition. We force that return operations only

appear at the end of command branches using the type CmdBranch. Branches may be

empty of other operations (T-CmdBnch2) or have a sequence of one or more operations

111

(T-CmdBnch1).

ω : OpSeq b : Bool

ω; return b : CmdBranch
[T-CmdBnch1]

b : Bool

return b : CmdBranch
[T-CmdBnch2]

ω : Operation ω : OpSeq

ω;ω : OpSeq
[T-OpSeq1]

ω : Operation

ω : OpSeq
[T-OpSeq2]

ψ ∈ ψ ψ : Guard ωt, ωf : CmdBranch

CMD e(a, s, r, P, f, f ′,msg) If ψ Then ωt Else ωf : Command
T-Cmd

Figure 5.5: Typing rule for commands

Definition 5.2.9 (Well Formed Command) A command e is well formed if its structure

matches the typing rule T-Cmd in Figure 5.5. �

For the rest of this work we now presume that all commands are well formed. As such,

evaluation for non-well formed commands is undefined.

5.2.4 Constraint Syntax

The permissions offered by legal documents are constrained by requirements for when and

how they may be exercised. Such constraints are a form of obligations, static external

limitations imposed on actions, as opposed to classical obligations which impose or restrict

future actions until fulfilled. An important aspect of regulatory constraints is their scope

of applicability. Rules may explicitly invoke or refer to a set of constraints or a hierarchical

structure (e.g., a top level paragraph imposing constraints on all rules in sub-paragraphs).

Alternatively, constraints may be formulated such that the constraining rule defines its

scope of applicability (e.g., must be enforced for all rules in a section) while the referenced

rules contain no explicit reference to the constraint. In all cases, constraints must explicitly

specify their scope, the commands that they apply to.

Constraints implement these requirements by including a set of commands which is the

constraint’s scope as well as two sets of guards to determine applicability. The first set of

guards determine the applicability of the constraint and are denoted such that guards. The

second set of guards, denoted “regular guards”, determine the judgment of the constraint

112

with respect to allowing or forbidding the intended action. The different contexts when

constraints are executed and the interpretations of the judgments in those contexts are

noted in Tables 5.10 and 5.8 in our discussion of the evaluation engine in Section 5.4.

Similar to our definition of commands, we formally define constraints as follows.

Definition 5.2.10 (Constraint) A constraint c has the following structure:

c(a, s, r, P, f, f ′,msg, e) = Scope: E Such That ψst if ψr then return true else

return false

where E = {e1, . . .} for all ei ∈ Command , ψst = ψst1 ∧ ψst2 ∧ . . . ∧ ψstm for m ≥ 0,

ψr = ψr1 ∧ ψr2 ∧ . . . ∧ ψrn for n ≥ 0. When ψr = ∅, the true branch of the constraint is

always executed, so the return value for the regular guards is always true.

The case where m = n = 0 is the trivial nil constraint which is always true. A

constraint c1 is a valid constraint if it has the above structure and ∄ψ ∈ {ψst ∪ ψr} . ψ ≡

c1(a, s, r, P, f, f
′,msg, e) ∈ J (i.e., no self referencing).

A similar, less compact representation which we use for representation of constraints

in examples throughout this work is:

CST c(a, s, r, P, f, f ′,msg, e)

Scope {e1, . . .}

Such That ψst1

and . . .

if ψr1

and . . .

then return true

else return false

�

Intuitively, a constraint is a function which takes input parameters (a, s, r, P, f, f’, msg,

e), including a command parameter e which indicates which command was responsible for

the constraint being run. The constraint checks the command parameter against a possibly

empty set of commands in scope to determine whether the command is in scope. It then

113

runs a (possibly empty) set of such that guards followed by a (possibly empty) set of regular

guards. The return value for the constraint is determined by the regular guards alone, not

the such that guards. The evaluation engine uses the results from the scope, such that

guards, and regular guards to determine a judgment as we discuss below in Section 5.4.

The combination of scope, such that guards, and regular guards means that constraints

issue three results: whether the command parameter is in scope, whether such that guards

are satisfied, and whether the regular guards are satisfied. The intuitive use of the three

results is as follows.

Scope The scope judgment is relevant only during the search for applicable constraints

before the execution of a command. During the search for applicable constraints,

if a constraint includes the proposed command in its scope set then it is executed

and its outcome is noted. When a constraint is explicitly invoked by a command or

another constraint, the scope judgment is irrelevant and so is set to null. Since the

constraint has been asked for a judgment, its outcome will be noted.

Such That Guards The such that judgment relates to the particular cases for which a

constraint is to be applicable. For example, a constraint relating to the processing of

information about prison inmates (as in Example 5.2.2 below) would not be applicable

to information about non-inmates and therefore would include a such that check to

see if the information is about an inmate. If the constraint is queried about a case

relating to non-inmates, it would indicate that its such that guard is not fulfilled and

it is not applicable to the given query, the equivalent of a don’t care decision.

Regular Guards The rest of the guards in a constraint, those that relate to the exam-

ination of the query and the issuing of the allow/forbid ruling, are consulted when

the constraint is to be executed. They examine the particulars of the query and

determine Allow/Forbid based on them.

Since constraints are comprised of operations and guards, we define well formedness for

them in terms of guards and commands. We show the typing derivation rule for constraints

in Figure 5.6 and use it for the following definition.

114

b : Bool

return b : CstBranch
[T-CstBnch]

e′ ∈ E e′ : Command ψ ∈ ψst ∪ ψr ψ : Guard b1, b2 : CstBranch

CST c(a, s, r, P, f, f ′,msg, e) Scope E Such that ψst If ψr

Then b1 Else b2 : Constraint

T-Cst

Figure 5.6: Typing rule for constraints

Definition 5.2.11 (Well Formed Constraint) A constraint c is well formed if its structure

matches the typing rule T-Cst shown in Figure 5.6. �

For the rest of this work we now presume that all constraints are well formed. As such,

evaluation for non-well formed constraints is undefined.

Overloading As discussed above in Section 4.4.4, we implement a limited form of OR

logic for constraints using overloading. Overloaded constraints have identical names and

scopes, but different such that and regular guards. The evaluation engine treats overloaded

constraints differently than regular constraints for judgment derivation as discussed below

in Section 5.4. Formally, we require that for such c1, c2, . . . ∈ Constraint such that c1, c2, . . .

have the same name, we require that no two constraints have syntactically equivalent such

that and regular guard sets (ψstc1 ∩ ψrc2) ∪ (ψrc1 ∩ ψrc2) 6= ∅ to avoid duplicates and that

Ec1 = Ec2 =

5.2.5 Grammar for Privacy Commands

We now formally describe the privacy commands language using a BNF grammar. The

simple types for the language are shown in Table 5.5. The sets in Table 5.5 are as described

above in Section 5.1. The last two sets, Command and Constraint are the collection of

commands and constraints in the Privacy API. We have defined the syntax for commands

in Section 5.2.3 and constraints in Section 5.2.4.

In Section 5.2.1 we listed, described, and informally defined operations and guards.

Guards as listed in Table 5.2 inspect the knowledge state and parameter values passed to

commands or constraints and assume boolean result values. The knowledge state updates

115

Table 5.5: Simple and complex types

Agent a ∈ Agent
Object o, f ∈ Object
Tag t ∈ Tag
Rights d ∈ Right
Matrix m ∈ Matrix
Role k ∈ Role
Log l ∈ Log
Purpose p ∈ Purpose , P ⊆ Purpose
String s ∈ String
Boolean b ∈ Boolean
Judgment j ∈ Judgment , J ⊆ Judgment

Command e ∈ Command , E ⊆ Command
Constraint c ∈ Constraint , C ⊆ Constraint

via the operations listed in Table 5.3. The reader is directed to Section 5.2.1 for specifics

on each operation and guard.

The top level terms for the Privacy Commands language are in Table 5.6. Commands

and constraints are built using guards and operations which are listed as the first two

sets in the table. Guards include all of the inspectors from Table 5.2. As noted above in

Table 5.2, the negation guard can negate any guard other than another negation. This

limitation is enforced by separating the negatable terms (NonNeg) from the term which

contains the negation guard (Neg). The last guard in the NonNeg term is just a boolean

value b which is interpreted at face value. If b = true, the guard is always satisfied. If

b = false, the guard is never satisfied. Operations include all modifiers from Table 5.3

with the exception of the return operation which is reserved for use at the end of operation

groups in command and constraints.

The constraints term in the grammar consists of a scope, such that guards, and regular

guards. The scope is a series of command names as defined in the Scope term. The such

that and regular guards can accept any guard in the Guard term. The difference between

the two sets comes from the differing interpretations given them by the evaluation engine

as discussed below in Section 5.4. We conclude with the Commands and Constraints terms

116

Table 5.6: Terms

NonNeg ::= o.t = b | d in (a, o) | k in Roles(a) | p ina P
| p inf P | c(a1, a2, a3, P, o1, o2, s) ∈ J | a1 = a2 | b

Neg ::= !(NonNeg)
ψ ::= NonNeg | Neg
ψ∗ ::= • | ψ | ψ and ψ∗

ω ::= create object o | delete object o | set o.t = b

| insert d in (a, o) | delete d from (a, o)
| invoke e(a1, a2, a3, P, o1, o2, s)

ω∗ ::= • | ω | ω and ω∗

cmdbr ::= ω∗ and return b

e ::= if ψ∗ then cmdbrt else cmdbrf
E ::= {e1, . . . } | ∅

cstbr ::= return b

c ::= Scope {E} Such That ψ∗

1 if ψ∗

2 then cstbr1 else cstbr2
C ::= {c1, . . . } | ∅
φ ::= C ∪ E

117

which indicate how commands and constraints combine and a Policy term to indicate how

whole Privacy APIs are constructed structurally using the grammar.

5.2.6 Privacy Commands Examples

We now present some illustrative examples using the Privacy Commands language to give

an intuition for its syntactical use in addition to the previous informal examples above

in Section 4.4. The purpose of these examples is to introduce the usage of the opera-

tions, guards, and terms introduced in this section. We begin with a simple example of a

paragraph and its derived constraints and commands. The example shows the use of con-

straints and commands, including scope, such that guards, regular guards, and references

along with several of the guards and operations shown above in this section.

Example 5.2.1 (Own Use)

As a first example of the use of Privacy Commands, we examine and translate the

following quote from the US Health Insurance Portability and Accountability Act Privacy

Rule [§164.506(c)(1), v.2003]:

(c) Implementation specifications: Treatment, payment, or health care opera-
tions.

(1) A covered entity may use or disclose protected health information for its
own treatment, payment, or health care operations.

The quote contains six permitted actions: use and disclose for treatment, payment,

and health care operations. We separate the cases allowed by the paragraph (only for a

covered entity’s own usage) of the paragraph into a constraint which checks the particulars

of the case. Below is Permitted506c1, the constraint derived from the paragraph.

118

1 CST Permitted506c1 (a, s, r, P, f, f’, msg, e)

2 Scope {TreatmentUse506c1, PaymentUse506c1,

3 HealthCareOperationsUse506c1, TreatmentDisclose506c1,

4 PaymentDisclose506c1, HealthCareOperationsDisclose506c1}

5 Such That f.protected-health-information = true

6 and coveredEntity in Roles(a)

7 and individual in Roles(s)

8 if own ina P

9 then return true

10 else return false

Line 1 declares the name of the constraint Permitted506c1 and the parameters that

it receives. Lines 2–4 are the scope of the constraint, the commands for which it is an

invariant. Only two of the commands in its scope are included in this example for brevity.

The rest are similar and are shown in Section C.2.2 beginning on page 387. Lines 5–7

are the such that guards for the constraint. They limit the applicability of the constraint

to cases where the object is protected health information (line 5), the actor is a covered

entity (line 6), and the subject is an individual (line 7). Line 8 is the regular guard for the

constraint which checks that the action is for the actor’s own use. If the regular guard is

true, line 9 returns true (Allow). Otherwise, line 10 returns false (Forbid).

In the above constraint we separate the covered entity role and protected health infor-

mation checks as such that guards since they are conditions on the action which if false

may not necessarily imply that the action should be forbidden based on the paragraph. For

instance, if the information is unprotected health information, the paragraph is not nec-

essarily forbidding use or disclosure of the information for treatment, payment, or health

care operations, rather it is simply not discussing it. The policy may impose a separate

set of guidelines for such information which are located elsewhere. We can make a similar

argument for the check that the actor is a covered entity and the subject is an individual.

If the actor is not a covered entity or the subject is not an individual, the paragraph is

simply not applicable. We therefore separate off the three conditions as such that guards

to make Permitted506c1 offer a don’t care judgment in such cases which may be overridden

119

by more applicable constraints. This is a simple case where we use such that guards to

allow deference, but it illustrates the importance of maintaining a separate set of guards

and don’t care judgments.

We create two commands, TreatmentUse506c1 and TreatmentDisclose506c1, parame-

terized by purpose, as samples. Four other parallel commands for the other purposes are

elided.

1 CMD TreatmentUse506c1 (a, s, r, P, f, f’, msg)

2 if Permitted506c1 (a, s, r, P, f, f’, msg) ∈ {Allow}

3 and local in (a, f)

4 and use ina P

5 and treatment ina P

6 then insert treatment in (a, s)

7 and return true

8 else return false

TreatmentUse506c1 begins on line 1 with the name of the command and its parameters.

On line 2, it includes a reference to Permitted5061 which indicates that the evaluation

engine should run Permitted506c1 to derive its judgment. If its judgment is Allow, the

guard on line 2 is satisfied. Otherwise it is not. On line 3, there is a guard to check that

the actor has the right “local” on the object. We use “local” to indicate that an actor

has physical or logical access to an object even if the actor is not necessarily permitted to

access the object based on the policy. Lines 4–5 check that the purpose of the action is for

use and treatment. We use the allowed semantics for the purpose check since the command

is permitting the action if use or treatment or any more specific (i.e., child) purposes of

the two are present. It is not permitting the action for more generic (i.e., parent) purposes

of use or treatment. If all of the guards are satisfied, line 6 grants the right for treatment

to the actor by inserting the right “treatment” in the actor’s rights over the subject and

line 7 returns true. Otherwise, line 8 returns false.

We grant the right to treatment on the subject rather than on the object because the

treatment relationship is between the covered entity and the individual, not with respect

to a particular object. Thus, once the treatment right has been granted to the actor on the

120

subject, any other object of protected health information may be accessed by the actor,

not just the one identified with f in the command’s parameters.

1 CMD TreatmentDisclose506c1 (a, s, r, P, f, f’, msg)

2 if Permitted506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

3 and coveredEntity in Roles(a)

4 and local in (a, f)

5 and treatment ina P

6 and disclose ina P

7 then insert local in (r, f)

8 and return true

9 else return false

TreatmentDisclose506c1 is similar to TreatmentUse506c1 except that if the guards on

lines 2–6 are satisfied, the “local” right is granted to the recipient on the object. Since

disclosure is an action with respect to a particular object, we grant the “local” right to

the actor on the object identified in the command’s parameters f . If further objects are

to be disclosed, TreatmentDisclose506c1 or another disclosure command must be run for

the other objects. �

The above example illustrates the use and derivation of a constraint and commands

from a policy paragraph. It shows some of the close decisions that policy writers must

make to create properly working Privacy APIs. Specifically, the decision for when to

assign a guard in a constraint as a such that or regular guard as well as a careful decision

about how rights are granted (i.e., on an object or on an agent) requires care. The terms

and structures of Privacy Commands enable policy authors flexibility in designing and

implementing policies, however it is still up to the policy author to make careful decisions

when implementing a Privacy API.

In order to illustrate some of the power of the judgment structure in Privacy Com-

mands, we next develop a more complex example which exercises don’t care judgments

from constraints.

Example 5.2.2 (Inmates)

121

HIPAA provides exceptions when protected health information may be used without

consent from the individual. One exception is provided for inmates in a correctional insti-

tution [§164.512(k)(5), v.2003]:

(5) Correctional institutions and other law enforcement custodial situations.

(i) Permitted disclosures. A covered entity may disclose to a correctional in-
stitution or a law enforcement official having lawful custody of an inmate or
other individual protected health information about such inmate or individual,
if the correctional institution or such law enforcement official represents that
such protected health information is necessary for:

(A) The provision of health care to such individuals;

(B) The health and safety of such individual or other inmates;

(C) The health and safety of the officers or employees of or others at the
correctional institution;

(D) The health and safety of such individuals and officers or other persons
responsible for the transporting of inmates or their transfer from one institution,
facility, or setting to another;

(E) Law enforcement on the premises of the correctional institution; and

(F) The administration and maintenance of the safety, security, and good order
of the correctional institution.

(ii) Permitted uses. A covered entity that is a correctional institution may use
protected health information of individuals who are inmates for any purpose
for which such protected health information may be disclosed.

The first paragraph permits the disclosure of protected health information about an

inmate for various reasons, including health care for the individual (i.e., the inmate). The

second paragraph permits the use of protected health information for any reason permitted

in first paragraph for disclosure. The structure of the constraints is as follows.

The top level constraint for paragraph §164.512(k)(5)(i) permits the disclosure of pro-

tected health information with some restrictions as to the recipient and subject to the

purposes enumerated in (A)–(F). For brevity in this example we show one instantiation of

InmateDisclose512k5i, the one that references InmateHealthCare512k5iA. Since the sub-

paragraphs are combined using logical or, InmateDisclose512k5i would be overloaded with

one version of InmateDisclose512k5i for each of the subparagraphs (A)–(F).

122

1 CST InmateDisclose512k5i (a, s, r, P, f, f’, msg, e)

2 Scope {}

3 Such That inmate in Roles(s)

4 and f.protected-health-information = true

5 and subject in (s, f)

6 and coveredEntity in Roles(a)

7 and disclose ina P

8 and correctionalInstitution in Roles(r)

9 if inLawfulCustodyOf in (r, s)

10 and r.represents-necessary = true

11 and InmateHealthCare512k5iA(a, s, r, P, f, f’, msg) in {Allow}

12 then return true

13 else return false

InmateDisclose512k5i begins on line 1 with its name and parameter list. Line 2 declares

the scope for the constraint. For simplicity, here it is empty since it does not explicitly

claim coverage over any other paragraphs listed here. Commands which implement the

disclosure rule would be included in the scope. Lines 3–8 are the such that guards for the

paragraph. They check that the subject has the role Inmate (line 3), the information is

protected health information (line 4), that the subject has the right “subject” on the object

(i.e., s’s information is contained in f) (line 5), and that the actor has the role Covered

Entity (line 6). Line 7 checks that the purpose of the action is disclosure. Line 8 checks that

the recipient has the role Correctional Institution. If the such that guards are not fulfilled,

the constraint is not directly applicable and may result in the judgments Ignore (Allow),

Don’t Care/Allow, or Don’t Care/Forbid as discussed above in Section 5.2.4. The guards

are placed as such that guards rather than regular guards since the intent of the paragraph

is to give a ruling for the disclosure of protected health information about an inmate for use

by a correctional institution. If those conditions are not met (i.e., it’s not for disclosure, the

subject is not an inmate, the object is not protected health information, the object is not

about the inmate, or the actor is not a covered entity) then the paragraph is not directly

applicable. The regular guards on lines 9–11 check the remainder of the requirements

123

from the top level paragraph: that the recipient has the right inLawfulCustodyOf on

the subject (i.e., the subject is in lawful custody of the recipient) (line 9), and that the

recipient represents that receiving the information is necessary (line 10). The last guard

on line 11 contains a reference to the child constraint InmateHealthCare512k5iA. If its

resulting judgment is Allow, the guard is satisfied. If all of the regular guards are satisfied,

the return value is true. Otherwise it is false. The evaluation engine uses the results from

the such that guards and regular guards to derive the judgment.

1 CST InmateHealthCare512k5iA(a, s, r, P, f, f’, msg, e)

2 Scope {}

3 Such That

4 if provision-of-health-care ina P

5 and s.target-of-provision = true

6 then return true

7 else return false

The lower level constraint for the sentence §164.512(k)(5)(i)(A) is a permission for the

disclosure of protected health information by a covered entity for the use of a correctional

institution and is implemented in the constraint InmateHealthCare512(k)(5)(i)(A). It op-

erates a sub-constraint, only checking the for the guards listed in the sentence: that the

purpose of the action be for provision of health care (line 4) and that the target of the

provision be the inmate (line 5).

124

1 CST CorrectionalUse512k5ii (a, s, r, P, f, f’, msg, e)

2 Scope {}

3 Such That correctional-institution in Roles(a)

4 and inmate in Roles(s)

5 and f.protected-health-information = true

6 and use ina P

7 if InmateDisclose512k5i(a, s, r, P, f, f’, msg) in {Allow,

8 Don’t Care/Allow}

9 and covered-entity in Roles(a)

10 then return true

111 else return false

The top level command for the paragraph §164.512(k)(5)(ii) permits correctional in-

stitutions which are a covered entities to use protected health information for any rea-

son that would have permitted disclosure. The permission refers to another constraint,

so we simplify it by including a reference to the intended paragraph: §164.512(k)(5)(i)

on lines 7–8. The guard is satisfied if the resulting judgment is either Allow or Don’t

Care/Allow. The guard accepts the Don’t Care/Allow judgment since the case is not di-

rectly applicable since the purpose of the action is use (line 6), not disclosure. Since line 7

of InmateDisclose512k5i will not be satisfied unless the purpose of the action is disclosure,

the judgment Don’t Care/Allow is likely to be returned. In order to accept such cases,

CorrectionalUse512k5ii allows the Don’t Care/Allow ruling.

In the above constraints, the second paragraph §164.512(k)(5)(ii) was checking for a

permission from paragraph §164.512(k)(5)(i). If the constraint for paragraph (i) did not

return Allow, that is if it returned Forbid or Don’t Care/Forbid, paragraph (ii) would

not permit the intended use. Conversely, if paragraph (ii) had instead been looking for a

direct permission, it would not satisfied with a Don’t Care/Allow judgment; it would have

been the equivalent of a Forbid. This illustrates the flexibility and fine grained control

given to commands and constraints in using the various judgments that the evaluation

engine derives. It also illustrates the necessity of using the two different types of guards in

constraints to better capture the intent of the policy authors. �

125

Examples 5.2.1 and 5.2.2 illustrate two common idioms for command and constraint

interaction: commands referencing parent constraints and constraints referencing children.

In Example 5.2.1, the constraint Permitted506c1 defined the cases where actions in the

paragraph could be performed. The guards in Permitted506c1 are applicable to any com-

mand which is created from the paragraph and so its scope includes all children commands

derived from §164.506. The example is a good illustration of a structure that is repeated in

many other contexts: commands reference their parent constraints for applicable restric-

tions.

Conversely, in Example 5.2.2 the parent constraint InmateDisclose512k5i references its

children, including InmateHealthCare512k5iA, by creating overloaded copies of the parent

paragraph to reference each of the child constraints. The parent constraint is then used

for guards such as “if A is permitted by §164.512(k)(5)(i).” The evaluation engine can

then determine whether §164.512(k)(5)(i) permits the action by running the overloaded

versions of the top level constraint InmateDisclose512k5i which effectively runs all of its

children. If any of the children permit the action (e.g., if §164.512(k)(5)(i)(A) permits

A), then the corresponding version of InmateDisclose512k5i will yield an Allow judgment,

satisfying the guard. If none of the overloaded versions of InmateDisclose512k5i permit

the action, the guard will not be satisfied. The example is a good illustration a common

constraint structure: constraints referencing their children. Using the idiom, we enable

parent constraints to “summarize” their children by creating overloaded copies of the parent

which reference the children.

5.3 Operational Semantics

We developed the syntactical structures for privacy commands above in Section 5.2. In the

following section we develop an operational semantics for the Privacy Commands language.

We first consider the operational semantics for well formed guard and operations as per

Definitions 5.2.2 and 5.2.1 using a small step semantics. We then use them to develop the

operational semantics for well formed commands and constraints using a big step semantics.

Let us consider the operational semantics for guards and operations as shown below.

126

We first show the operational semantics for evaluating guards in Figures 5.7 and 5.8 and

show how we evaluate guard sequencing in Figure 5.9. We show the operation semantics

for operations in Figures 5.10 and 5.11 and show how we evaluate operation sequencing

in Figure 5.12. As above, to avoid confusion we use the triple equal sign ≡ to indicate

structural equivalence to differentiate from = which we use in the syntax of guards. Since

operations modify the state, we frame their semantics in terms of transitions of a knowledge

state S = (A,O,m, l) using small step semantics. Where appropriate, we indicate the

updates to the state using the modified versions of the state, S′ = (A′, O′,m′, l′). We

indicate the state in which an operation is evaluated using the ⊢ operator.

The sequence indicator and is used to create sequences of guards and operations. We

summarize sequences of guards and operations using the bar notation, for instance summa-

rizing ψ1 and ψ2 and ψ3 as ψ. The evaluation of guards occurs in order, but since their

evaluation does not change state, their order is not semantically significant. Operations are

also evaluated in order, but since they update state, their order is semantically significant.

We include the rules E-Ref1 and E-Ref2 which create a layer of abstraction in the eval-

uation of constraints, enabling overloaded and non-overloaded constraints to be referenced

identically, letting the evaluation engine determine the results. We present the rules for

the evaluation of overloaded constraints in Figure 5.14. The invoke rule E-Invoke relies

on the evaluation of commands as shown in Figure 5.15 shown below. The precondition

(A,O,m, l) ⊢ e(a, s, r, P, f, f ′,msg) → (A′, O′,m′, l′) relies on the evaluation of e as per

the rules shown there.

Using the semantics for guards and operations we define the operational semantics for

constraints and commands as shown in Figure 5.13 and 5.15.

The evaluation of constraints is made slightly more complex through the use of overload-

ing. Overloaded constraints are evaluated and combined using the most-lenient combina-

tion algorithms described in Table 5.9 for constraint reference and Table 5.11 for constraint

search. We present the operational semantics for evaluating references to overloaded con-

straints in Figure 5.14. Due to space considerations we use a more compact representation

for constraints, writing CSTc(a, s, r, P, f, f ′,msg, e)(E,ψst, ψr) in place of the normal rep-

resentation CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst If If ψr Then b1

127

S = (A,O,m, l) a ∈ A o ∈ O d ∈ m(a, o)

S ⊢ d in (a, o) → true
[E-CheckRight1]

S = (A,O,m, l) a ∈ A o ∈ O d 6∈ m(a, o)

S ⊢ d in (a, o) → false
[E-CheckRight2]

S = (A,O,m, l) o ∈ O o.t→ b

S ⊢ o.t = b→ true
[E-CheckTag1]

S = (A,O,m, l) o ∈ O o.t 9 b

S ⊢ o.t = b→ false
[E-CheckTag2]

S = (A,O,m, l) a ∈ A k ∈ Roles(a)

S ⊢ k in Roles(a) → true
[E-CheckRole1

S = (A,O,m, l) a ∈ A k 6∈ Roles(a)

S ⊢ k in Roles(a) → false
[E-CheckRole2]

S ⊢ g → false

S ⊢!g → true
[E-Neg1]

S ⊢ g → true

S ⊢!g → false
[E-Neg2]

Figure 5.7: Operational semantics for guards, part 1

Else b2. In the representation we use c as the name of the constraint, so for over-

loaded constraints Constraint contains multiple constraints with the name c. We use Cc

to denote the set of constraints with name c. For a simple constraint, the cardinality

of the set |Cc| is 1. For overloaded constraints, |Cc| > 1. To identify which constraint

member of Cc we mean in a given rule we use indexes such as c1(E,ψst1 , ψ
r
1). We write

c(a, s, r, P, f, f ′,msg, e)(E,ψst, ψr) → j for the result of applying one of the evaluation

rules in Figure 5.13 as appropriate.

The evaluation of commands is performed in two steps. We details the evaluation

steps in Section 5.4, but we briefly outline them here as well and show their operational

semantics. First, before being run, a constraint search is performed for the command.

If any constraint in the set Constraint yields a Forbid judgment, the command’s false

branch will be run. The truth table for the evaluation of the constraint search is shown in

Table 5.7. Second, the guards ψ are evaluated for the command. If any of them yield false,

the false branch of the command is run. Otherwise, the true branch for the command is

128

p′ ∈ P p ∈ descendants(p′)

S ⊢ p ina P → true
[E-PurposeA1]

∄p′ ∈ P . p ∈ descendants(p′)

S ⊢ p ina P → false
[E-PurposeA2]

p′ ∈ P p ∈ descendants(p′) ∪ ancestors(p′)

S ⊢ p inf P → true
[E-PurposeF1]

∄p′ ∈ P . p ∈ descendants(p′) ∪ ancestors(p′)

S ⊢ p inf P → false
[E-PurposeF2]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

S ⊢ c(a, s, r, P, f, f ′,msg, null)(E,ψst, ψr) → j j ∈ J

S ⊢ c(a, s, r, P, f, f ′,msg, null) ∈ J → true
[E-Ref1]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

S ⊢ c(a, s, r, P, f, f ′,msg, null)(E,ψst, ψr) → j j 6∈ J

S ⊢ c(a, s, r, P, f, f ′,msg, null) ∈ J → false
[E-Ref2]

S = (A,O,m, l) a1, a2 ∈ A a1 ≡ a2

S ⊢ a1 = a2 → true
[E-Agent1]

S = (A,O,m, l) a1, a2 ∈ A a1 6≡ a2

S ⊢ a1 = a2 → false
[E-Agent2]

Figure 5.8: Operational semantics for guards, part 2

run. The rules for command evaluation are shown in Figure 5.15.

5.4 Evaluation Engine for Privacy APIs

The evaluation engine for Privacy Commands acts as the interpreter for the language, pro-

cessing commands and constraints, deriving judgments, evaluating guards, and performing

operations. In this section we describe its functionality with respect to the formal model

of the language, not a particular implementation. We defer discussion of implementation

details to Chapter 6 where we present our implementation of the evaluation engine using

Promela in SPIN. Since the intended purpose of a Privacy API is the evaluation of the

properties of policies, we use Privacy APIs as an interactive policy model, a formulation of

129

S ⊢ ψ1 → true S ⊢ ψ2 → b

S ⊢ ψ1 and ψ2 → b
[E-Seq1]

S ⊢ ψ1 → false

S ⊢ ψ1 and ψ2 → false
[E-Seq2]

S ⊢ ψ1 → true ψ = ψ2 and ψ2 S ⊢ ψ2 and ψ2 → b

S ⊢ ψ1 and ψ → b
[E-Seq3]

S ⊢ ψ1 → true ψ = ψ2 S ⊢ ψ2 → b

S ⊢ ψ1 and ψ → b
[E-Seq4]

S ⊢ ψ1 → false

S ⊢ ψ1 and ψ → false
[E-Seq5]

Figure 5.9: Operational semantics for guard sequences

S = (A,O,m, l) o 6∈ O S′ = (A,O ∪ {o},m, l)

S ⊢ create object o→ S′
[E-Create]

S = (A,O,m, l) o ∈ O O′ = O − {o} S′ = (A,O′,m, l)

S ⊢ delete object o→ S′
[E-DelO1]

S = (A,O,m, l) o 6∈ O S′ = (A,O,m, l)

S ⊢ delete object o→ S′
[E-DelO2]

S = (A,O,m, l) o ∈ O o′ = o[t 7→ b] O′ = {O − {o}} ∪ o′

S′ = (A,O′,m, l)

S ⊢ set o.t = b→ S′
[E-SetTag1]

S = (A,O,m, l) o ∈ A o′ = o[t 7→ b] O′ = {O − {o}} ∪ o′

A′ = {A− {o}} ∪ o′ S′ = (A′, O′,m, l)

S ⊢ set o.t = b→ S′
[E-SetTag2]

Figure 5.10: Operational semantics for operations, part 1

the policy that permits experimentation, exploration of reachable states, and comparison

of policies. The state space exploration program or mechanism used to perform the exper-

iments, explorations, or comparisons is independent of the evaluation engine. Instead, the

job of the evaluation engine is to enable scripts, state space explorers, or users to use the

Privacy API as an interactive artifact by processing the requests and responses needed to

run commands.

The jobs that the evaluation engine performs are as follows. We consider each of the

jobs separately in the following subsections as noted.

1. Run commands and constraints, including process parameters as inputs and provide

130

S = (A,O,m, l) a ∈ A o ∈ O m′ = m[(a, o) 7→ {m(a, o) ∪ {d}]
S′ = (A,O,m′, l)

S ⊢ insert d in (a, o) → S′
[E-InsertR]

S = (A,O,m, l) a ∈ A o ∈ O m′ = m[(a, o) 7→ {m(a, o) − {d}}]
S′ = (A,O,m′, l)

S ⊢ delete d from (a, o) → S′
[E-DeleteR]

S = (A,O,m, l) l′ = l + s S′ = (A,O,m, l′)

S ⊢ insert s in log → S′
[E-InsertL]

e ∈ Command a, s, r ∈ A f ∈ O f ′ 6∈ O

∄c′ ∈ Constraint . S ⊢ c′(a, s, r, P, f, f ′,msg, e) → Forbid

S ⊢ e(a, s, r, P, f, f ′,msg) → S′

S ⊢ invoke e(a, s, r, P, f, f ′,msg) → S′
[E-Invoke]

Figure 5.11: Operational semantics for operations, part 2

S ⊢ • → S
[E-Seq6]

S ⊢ ω → S′

S ⊢ ω; return b→ S′, b
[E-Seq7]

S ⊢ ω → S′ S′ ⊢ ω → S′′

S ⊢ ω;ω → S′′
[E-Seq8]

Figure 5.12: Operational semantics for operations sequences

them to commands and constraints. (Section 5.4.1)

2. Derive judgments from constraints, both overloaded and non-overloaded. (Sec-

tion 5.4.2)

3. Perform the constraint search required before commands are run. (Section 5.4.3)

The second and third jobs are more complex than the first and involve the management

of references between commands and constraints. We discuss them in detail in the next

two subsections, but first we give a short overview of the two types of references that the

evaluation engine processes. Figure 5.16 illustrates the two types of references between

constraints and commands. In the figure, Command2 contains a guard which references

Constraint1’s judgment. The reference tells the evaluation engine to run Constraint1,

131

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

e ∈ {E ∪ null} ψst → true ψr → true

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Allow

[E-Allow]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

e ∈ {E ∪ null} ψst → true ψr → false

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Forbid

[E-Forbid]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

e = null ψst → false ψr → true

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Don’t Care/Allow

[E-DCA]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

e = null ψst → false ψr → false

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Don’t Care/Forbid

[E-DCF]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O e 6= null ψst → false

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Ignore

[E-Ignore1]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O e 6= null e 6∈ E

S ⊢ CST c(a, s, r, P, f, f ′,msg, e) Scope E Such That ψst

If ψr then return trueElse return false → Ignore

[E-Ignore2]

Figure 5.13: Operational semantics for constraints

derive its judgment, and return it to Command2 for use in the guard. When the evaluation

engine runs Constraint1 we say that it is run by reference. Command1 does not contain a

reference to Constraint1 as a guard, but it is included in the scope for Constraint1. When

the evaluation engine is instructed to run Command1 (e.g., when a user attempts to run

Command1, a state space explorer tests whether Command1 leads to some state, etc.), it

finds Constraint1 and runs it since Command1 is in its scope. The evaluation engine then

uses the judgment from Constraint1 to determine whether Command1 will be permitted

to run.

132

c1 ∈ Cc S ⊢ c1(a, s, r, P, f, f
′,msg, e)(E,ψst1 , ψ

r
1) → Allow

S ⊢ c(a, s, r, P, f, f ′,msg, e) → Allow
[E-RefO1]

c1 ∈ Cc S ⊢ c1(a, s, r, P, f, f
′,msg, e)(E,ψst1 , ψ

r
1) → Forbid

∄c2 ∈ Cc . S ⊢ c2(a, s, r, P, f, f
′,msg, e)(E,ψst2 , ψ

r
2) → Allow

S ⊢ c(a, s, r, P, f, f ′,msg, e) → Forbid
[E-RefO2]

c1 ∈ Cc S ⊢ c1(a, s, r, P, f, f
′,msg, e)(E,ψst1 , ψ

r
1) → Don’t Care/Allow

∄c2 ∈ Cc . S ⊢ c2(a, s, r, P, f, f
′,msg, e)(E,ψst2 , ψ

r
2) → {Allow,Forbid}

S ⊢ c(a, s, r, P, f, f ′,msg, e) → Don’t Care/Allow
[E-RefO3]

c1 ∈ Cc S ⊢ c1(a, s, r, P, f, f
′,msg, e)(E,ψst1 , ψ

r
1) → Don’t Care/Allow

∄c2 ∈ Cc . S ⊢ c2(a, s, r, P, f, f
′,msg, e)(E,ψst2 , ψ

r
2) → {Allow,Forbid,

Don’t Care/Allow}

S ⊢ c(a, s, r, P, f, f ′,msg, e) → Don’t Care/Forbid
[E-RefO4]

Figure 5.14: Operational semantics for overloading

Table 5.7: Judgment combination for constraint search
Constraint 1 Constraint 2 Combined

Allow Allow Allow

Allow Forbid Forbid

Allow Ignore (Allow) Allow

Forbid Ignore (Allow) Forbid

Forbid Forbid Forbid

Ignore (Allow) Ignore (Allow) Ignore (Allow)

5.4.1 Running Commands and Constraints

The first job, running commands and constraints and processing parameters for them is

the process of interpreting a Privacy API as an executable program. First, parameter

passing is performed by renaming members of the knowledge state to match the parameter

names listed. The renaming is akin to call-by-reference in that if an object o is passed as

parameter f to a function and f is modified, o changes as well. The evaluation engine then

runs commands and constraints as follows.

Running Commands The evaluation engine runs a command either because a user

(or automated script, state space explorer, etc.) requests that the command be run or

133

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O

c ∈ Constraint S ⊢ c(a, s, r, P, f, f ′,msg, e) → Forbid S ⊢ ωf → S′

S ⊢ Cmd e(a, s, r, P, f, f ′,msg) If ψ Then ωt Else ωf → S′, false
[E-Cmd1]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O S ⊢ ψ → false S ⊢ ωf → S′

S ⊢ Cmd e(a, s, r, P, f, f ′,msg) If ψ Then ωt Else ωf → S′, false
[E-Cmd2]

S = (A,O,m, l) a, s, r ∈ A f ∈ O f ′ 6∈ O S ⊢ ψ → true

∄c ∈ Constraint . S ⊢ c(a, s, r, P, f, f ′,msg, e) → Forbid S ⊢ ωt → S′

S ⊢ Cmd e(a, s, r, P, f, f ′,msg) If ψ Then ωt Else ωf → S′, true
[E-Cmd3]

Figure 5.15: Operational semantics for commands

Figure 5.16: Reference types

because another already running command includes a reference to it in an operation (i.e.,

invoke e). In either cases, the evaluation engine first performs a constraint search to

find all applicable constraints for the command as defined below in Section 5.4.3. If the

judgment from the constraint search is Allow or Ignore (Allow), the evaluation engine runs

the guards in ψ for the command. If the result from all of the guards is true, the evaluation

engine runs the operations in ωt. If the judgment from the constraint search is Forbid or

the result from all of the guards if false, the evaluation engine runs the operations in ωf

and the return value of the command is false.

Running Constraints The evaluation engine runs constraints in two modes: constraint

search and by a constraint reference. In either case, the evaluation engine performs the

same steps to derive three boolean results: (1) whether the calling command is a member

134

of the constraint’s scope set, (2) whether all of the such that guards are satisfied, and

(3) whether all of the regular guards are satisfied. We denote the three results using the

following boolean variables: bscp for the scope membership, bst for the result of the such

that guards, and br for the result of the regular guards. Commands accept a parameter set

a, s, r, P, f, f ′,msg which provides input information. The evaluation engine also provides

an implicit parameter cmd ∈ Command which is defined as follows:

1. If the constraint is run by the evaluation engine for a constraint search before running

command e, cmd = e. In Figure 5.17, cmd = Command1 since Constraint1 is run

during a constraint search for Command1.

2. If the constraint is run because a command e includes a reference to it, cmd = e. In

Figure 5.18, cmd = Command1 since Constraint1 is run because of a reference to it

in Command1.

3. If the constraint is run because a constraint c′ which was run by cmd′ includes a

reference to it, cmd = cmd′. In Figure 5.19, cmd = Command1 since Constraint2 is

run because of a reference to it in Constraint1 and Constraint1 is run because of a

reference to it in Command1.

Figure 5.17: Scenario for running a constraint: Search

Intuitively, cmd is the command which causes the constraint to be run. The boolean

results for the constraint are derived as follows. Let c.E denote the scope set E for

constraint c as per Definition 5.2.10:

• bscp = true iff cmd ∈ c.E.

• bst =
∧

ψ∈ψst

ψ.

135

Figure 5.18: Scenario for running a constraint: Reference

Figure 5.19: Scenario for running a constraint: Chain

• br =
∧

ψ∈ψr

ψ.

The evaluation engine uses the boolean values bscp, bst, and br to derive judgments from

the constraints based on whether they are run because of a reference (Section 5.4.2) or for

the constraint search (Section 5.4.3) and whether they are overloaded.

5.4.2 Judgment Derivation

Based on the different combinations of results, the resulting judgment from a constraint

may be one of five judgments as we shall describe:

Allow Explicitly allow the execution of the intended command

Forbid Explicitly forbid the execution of the intended command

Ignore (Allow) Do not issue a ruling on the command. Since by default commands may

136

execute, ignore essentially allows the execution. It differs semantically from Allow (as

shown in Table 5.9) in that it represents a don’t care judgment from a non-applicable

constraint and therefore may be overridden by other, more applicable judgments.

Don’t Care/Allow The constraint is not directly applicable to the query. If certain

properties of it were different (i.e., the such that guards were satisfied), the constraint

would have allowed the execution of the intended command.

Don’t Care/Forbid The constraint is not directly applicable to the query. If certain

properties of it were different (i.e., the such that guards were satisfied), the constraint

would have forbidden the execution of the intended command.

The third job of the evaluation engine is to run constraints as appropriate and derive

the correct judgments from them. The derived judgments may be returned to a calling

command or constraint for use in a guard or as part of a constraint search. In this sub-

section we discuss the judgment derivation process for when a constraint is run due to

a reference in a guard in a command or constraint. The judgment derivation algorithm

is slightly different in the case of the constraint search, so we postpone its description to

Section 5.4.3 where we address constraint search in detail.

As noted in Section 5.2.4, constraints perform three groups of checks when run: scope,

such that guards, and regular guards. Scope determines whether the command which

referenced the constraint is subject to the constraint as an invariant. The such that guards

examine whether the case is relevant. The regular guards examine whether the action

should be permitted. Since each can be assigned a boolean value, there are in theory

eight possible outcomes from the three groups which must be considered. When running

a constraint from a reference, however, the scope check is not relevant since the constraint

is being run from a reference, not during a search for invariants, so are only concerned

with the four potential outcomes from the such that and regular guards. We return to the

scope check in Section 5.4.3 during our discussion of the constraint search algorithm.

Single Constraint For a single constraint, the judgment derivation algorithm is sum-

marized in Table 5.8. The table shows all eight possible boolean combinations between the

137

scope (bscp), such that (bst), and regular guards (br) and the resulting judgment (j). As

noted, the scope result may be ignored in the derivation of the judgment and so the cases

where scope is true and false parallel each other. When both the such that and regular

guards sets result in true (i.e., both are satisfied), the resulting judgment is Allow. This

corresponds to the constraint being both relevant to the situation and permitting of the

action. When the such that guards are true but the regular guards are not, the resulting

judgment is Forbid. This corresponds to the constraint being relevant to the situation,

but forbidding of the action. When the such that guards are false (i.e., not satisfied) and

the regular guards are true, the resulting judgment is Don’t Care/Allow. This corresponds

to the constraint not being relevant to the situation, but permitting if it were. Finally,

when both the such that and regular guards are false, the resulting judgment is Don’t

Care/False. This corresponds to the constraint not being relevant to the situation, but

forbidding if it were.

Table 5.8: Judgment from a single constraint run by reference

In Scope (bscp) Such That (bst) Regular (br) Judgment (j)

True True True Allow

True True False Forbid

True False True Don’t Care/Allow

True False False Don’t Care/Forbid

False True True Allow

False True False Forbid

False False True Don’t Care/Allow

False False False Don’t Care/Forbid

The design of the judgment derivation algorithm is based on the legal policy idiom

of applicability and reference. Paragraphs in legal documents give rulings for what is

permissible or required in a given class of situations. The ruling of the paragraph can

then be applied to cases which match the situations cited in the paragraph. For situations

which are not included in the situations mentioned in the paragraph, the paragraph neither

permits nor forbids the action. It simply is not relevant. In order to capture this idiom,

we place the situation definition in the such that guards and the ruling of the paragraph

in the regular guards. By separating out the two types of guards we enable a constraint

138

to issue three judgments: Allow, Forbid, and don’t care .

We further specialize the don’t care judgments into Don’t Care/Allow and Don’t

Care/Forbid to better support references in the legal text. As we show in Example 5.2.2,

a paragraph may reference the permissions given in another paragraph with respect to a

different case. The reference idiom is of the type “Paragraph A: You may do action a in

situations that paragraph B would allow”. If paragraph B is not relevant to all of the cases

that the A refers to, B may yield a don’t care ruling since its such that guards may not be

satisfied. Still, the permission in A is based on cases that B would have allowed and so it

is interested in the result of its regular guards, ignoring its such that guards. We call such

a decision Don’t Care/Allow, indicating that B is not relevant to the case, but if it were,

it would have permitted the action. Don’t Care/Forbid is similar, used for cases where the

paragraph is not relevant but would have forbidden the action if it were.

Overloaded Constraints The evaluation engine derives judgments for overloaded con-

straints similarly to how it derives judgments for single constraints with the addition of an

extra judgment combination step. As noted above in Section 5.2.4, overloaded constraints

are combined using an OR to support cases where one paragraph issues rulings for multiple

situations. The judgment combination algorithm is therefore uses a most lenient combina-

tion method. The algorithm for combining judgments from an overloaded constraint run

from a reference is straightforward and is shown in Figure 5.20. The code begins on line 1

with some temporary variables. Line 2 gets the first instance of the overloaded constraint

and stores it in a temporary variable. The do/while loop on lines 3–6 gets the judgment

from each constraint instance using the single constraint judgment derivation algorithm

discussed above, stores it in the temporary variable j and combines it with the final judg-

ment (final) using the most-lenient algorithm. We perform the judgment combination

iteratively since the combination of judgment is commutative.

The most-lenient combination algorithm uses the judgment combination rules in

Table 5.9. Since the combination is commutative, the table elides redundant cases (i.e.,

Allow/Forbid and Forbid/Allow). The algorithm uses the following two rules:

1. The most lenient judgment overrules.

139

1 Judgment j, final; int i = 0;

2 Constraint c = overloaded-constraint-set[i];

3 do {

4 j = Run c;

5 final = most-lenient(final, j);

6 } while (c = overloaded-constraint-set[++i])

Figure 5.20: Pseudocode for overloaded constraint derivation by reference

2. A don’t care judgment is overruled by a Allow or Forbid.

The use of these rules leads to a total order on the judgments: (1) Allow, (2) Forbid, (3)

Don’t Care/Allow, (4) Don’t Care/Forbid. The intuition to the combination is that don’t

care judgments are from constraint instances that are not applicable and therefore should

be overridden by ones that are more applicable, even if the more applicable one is stricter.

As shown in the table therefore, for each combination of judgments, the one higher on the

total order of judgments is selected.

Table 5.9: Judgment from an overloaded constraint run by reference

Constraint 1 Constraint 2 Combined

Allow Allow Allow

Allow Forbid Allow

Allow Don’t Care/Allow Allow

Allow Don’t Care/Forbid Allow

Forbid Forbid Forbid

Forbid Don’t Care/Allow Forbid

Forbid Don’t Care/Forbid Forbid

Don’t Care/Allow Don’t Care/Allow Don’t Care/Allow

Don’t Care/Allow Don’t Care/Forbid Don’t Care/Allow

Don’t Care/Forbid Don’t Care/Forbid Don’t Care/Forbid

Figure 5.21 illustrates a simple constraint overloading scenario. Command2 refers to

Constraint2 using a guard. The first instance of Constraint2 issues an Allow judgment if

A is true. The second instance issues Allow if B is true. The evaluation engine runs both

instances and combined their judgments using Table 5.9. As a result, if either A or B are

true, the resulting judgment is Allow and the guard in Command2 is satisfied.

140

Figure 5.21: Overloaded constraint scenario

5.4.3 Constraint Search

The fourth job that the evaluation engine performs the constraint search performed before

a command is run. The purpose of the constraint search is to discover any constraints

which are applicable to the command as invariants. The intuition is that a paragraph

may be subject to a limitation from another paragraph which is not explicitly mentioned

in it. Such limitations are typically in the form of invariants which give rules with broad

applicability, but are not mentioned explicitly in the commands which are subject to them.

Figure 4.1 on page 73 shows a schematic for invariant references. In the scenario shown,

the job of the evaluation engine is to discover that the three constraints have the command

in their scopes, run them, and use their judgments to decide if the command should be

allowed to run. If result of the constraint search is Forbid, it is the equivalent of the false

branch of the command is executed.

The algorithm for finding applicable constraints is straightforward and its pseudocode

is shown in Figure 5.22. On lines 2–7, the evaluation engine loops through each constraint

to determine if cmd is in scope. For each constraint that contain cmd in scope, the eval-

uation engine derives its judgment (using the single and overloaded constraint derivation

algorithms) and combines the result using a most-strict algorithm (lines 4–5). If the final

141

result from the constraint search is Forbid (lines 8–9), the search returns false. Otherwise,

the search returns true.

1 Command cmd; Judgment j, final;

2 foreach (Constraint cst in Constraints) {

3 if (cmd in cst.scope) {

4 j = Run cst;

5 final = most-strict(j, final);

6 }

7 }

8 if (final == Forbid)

9 return false;

10 else

11 return true;

Figure 5.22: Constraint search pseudocode

The most-strict combination algorithm on line 5 combines the judgments derived

from the constraints using a most strict algorithm, shown in Table 5.7. As in Section 5.4.2

with respect to overloaded constraints there is a total order on the judgments: (1) For-

bid, (2) Allow, (3) Ignore (Allow). Since Ignore and Allow are effectively the same, the

algorithm may be summarized as “Allow unless a constraint Forbids.”

Logically, the return value from the constraint search is the equivalent of an extra guard

added to the beginning of each command. For example, for a command with the form:

CMD Command1(a, s, r, P, f, f’, msg)

if a = s

then . . .

else . . .

Could be logically rewritten as:

CMD Command1(a, s, r, P, f, f’, msg)

if Constraint-Search(Command1) in {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and a = s

then . . .

else . . .

From the model’s perspective, the two cases in Figure 5.23 are equivalent. In case

142

(a), Constraint1 includes Command1 in its scope. If Constraint1 yields Forbid, the false

branch of Command1 will be run. Similarly, in case (b), Command1 includes a reference

to Constraint1. If its resulting judgment is Forbid, the guard is not satisfied and the false

branch of Command1 is run. The interchangeability of the two reference types is impor-

tant since it allows policies to have redundant references without changing the semantics

of the policy. For instance, in Example 5.2.1 above, the constraint Permitted506c1 in-

cluded TreatmentUse506c1 in its scope and TreatmentUse506c1 included a reference to

Permitted506c1 which accepts only Allow. The inclusion of TreatmentUse506c1 in Per-

mitted506c1’s scope since the guard is more restrictive than the constraint check, but it

helps make the Privacy API more readable since it guides readers to the commands that

are subject to the restrictions in the constraint paragraph.

(a) Using scope

(b) Using a reference

Figure 5.23: Equivalence of scope and references

The judgment derivation for constraints during the constraint check differs slightly

between the processing of single constraints and overloaded constraints as with references

in Section 5.4.2. For the constraint check we collapse the two don’t care judgments into

a single Ignore (Allow) judgment. The intuition is that if the constraint is not applicable

to the command either because the command is not in scope or its such that guards are

143

not satisfied, it may be ignored. We place a higher bar for applicability for the constraint

search since the goal is to discover constraints which limit the command that is about to

be run but are not mentioned explicitly with a reference in the command. We are therefore

interested only in constraints which are applicable to the command and the situation.

Single Constraints Table 5.10 shows how the evaluation engine determines judgments

from constraints during the constraint search. As noted, if either the command is not

in scope or the such that guards are not satisfied, the default judgment is Ignore. If the

command is in scope and the such that guards are satisfied, the judgment is determined

based on the results of the regular guards.

Table 5.10: Judgment from a single constraint during constraint search

In Scope (bscp) Such That (bst) Regular (br) Judgment (j)

True True True Allow

True True False Forbid

True False True Ignore (Allow)

True False False Ignore (Allow)

False True True Ignore (Allow)

False True False Ignore (Allow)

False False True Ignore (Allow)

False False False Ignore (Allow)

Overloaded Constraints For overloaded constraints, each instance of the constraint

is run using the same algorithm shown above in Figure 5.20 except that the judgment

combination algorithm is based on Table 5.11. As in Table 5.9, there is a total order on

the judgments: (1) Allow, (2) Forbid, (3) Ignore (Allow). The order reflects the rules that

don’t care judgments are overruled by Allow or Forbid and that we take the most lenient

judgment.

5.4.4 Chained References

Note that whenever a constraint c1 is run using a reference c1(a, s, r, P, f, f
′,msg) ∈ J

from another constraint c2, the judgment derivation procedure is followed, regardless of

144

Table 5.11: Judgment from an overloaded constraint during constraint search

Constraint 1 Constraint 2 Combined

Allow Allow Allow

Allow Forbid Allow

Allow Ignore (Allow) Allow

Forbid Forbid Forbid

Forbid Ignore (Allow) Forbid

Ignore (Allow) Ignore (Allow) Ignore (Allow)

whether c2 was run as part of a constraint search. That is, if c2 is invoked as part of a

constraint search and in order to evaluate one of its guards, c2 must be evaluated, the

judgment derivation procedure in this subsection is followed for deriving the judgment of

c2 while the constraint search judgment procedure is followed for deriving the judgment

for c1.

For instance, in Figure 5.19, Constraint1 is run because of a reference in Command1.

Constraint2 in turn is run because Constraint1 contains a reference to it. Conversely, in

Figure 5.24, Constraint1 is run because of a reference to it in Command1. Constraint2 in

turn is run because of a reference to it in Constraint1. In the first case, the judgment from

Constraint1 is derived using Table 5.8 while in the second case the judgment for Constraint1

is derived using Table 5.10. However, in both cases the judgment for Constraint2 is derived

using the judgment algorithm in Table 5.8.

The most important reason for the difference is that it makes the semantics of con-

straint references uniform. That is, a constraint can include a reference to other constraints

(i.e., a guard of the form if e(a, s, r, P, f, f ′,msg) ∈ {J}) and receive judgments uniformly,

regardless of whether it was run as part of a constraint search or from a reference. Intu-

itively, it also is logical that when a constraint is run inside of a reference, the evaluation

engine should return a detailed judgment, including Don’t Care/* judgments instead of

the more generic Ignore judgment so that the calling constraint may have the most infor-

mation. Conversely, when a constraint is run as part of a constraint search, the command

never receives the judgment from the search and therefore more generic judgments can be

derived.

145

Figure 5.24: Constraint chained from a search

5.4.5 Termination

We now consider the termination properties of the evaluation engine. Intuitively, we may

posit that since constraints may reference other constraints in a circular manner (i.e.,

Constraint1 has a reference to Constraint2 in its guards and Constraint2 has Constraint1

in its guards), we must impose circularity restrictions on references included in constraints.

Similarly, we must impose circularity restrictions on how commands reference each other

(i.e., Command1 runs Command2 if satisfied and Command2 runs Command1).

Let us concretize the intuition above using the following lemmas. First, recall that

Agent , Object , Purpose , Tag , and Role are restricted to being finite (in Section 5.1) so

may ensure that guards always eventually terminate.

Let Gc be a directed graph with a node nc for each c ∈ Constraint . For each c, let ψst

be c’s such that guards and ψr be c’s regular guards. Let us draw a directed edge from nc

to nc′ if ∃ψ ∈ {ψst ∪ ψr} . ψ ≡ c′(a, s, r, P, f, f ′,msg) ∈ J .

Lemma 5.4.1 (Constraint Circularity)

Constraint search and constraint references always terminate if Constraint and

Command are finite and Gc is acyclic.

Proof: Let us consider constraint search first. Since Constraint is finite, the evaluation

engine only needs to consider a finite number of constraints in its search. We therefore

146

must show that the evaluation of each constraint eventually terminates. Let us consider

the evaluation of a constraint c performed by the evaluation engine as part of a constraint

search for command e.

First, the engine checks the scope of c to see if e is present. Since Command is finite,

the scope is also finite and the engine eventually discovers in e is present in the set.

Second, the engine evaluates the such that guards of the constraint to see if it is

applicable. Let us consider each guard individually to discuss its termination properties,

considering the guard c(args) ∈ J last since it is more complicated.

• d in (a, o). The evaluation terminates since Object is finite and therefore the matrix

is of finite size.

• o.t = b. The evaluation terminates since o is identified and it has only a finite number

of tags.

• k in Roles(a). The evaluation terminates since k and a are identified and Role is

finite.

• p ina P , p inf P . The evaluation terminates since Purpose is finite and P ⊆ Purpose .

• a1 = a2. The evaluation terminates since a1 and a2 are identified and Agent is finite.

• !ψ. The evaluation terminates since each ψ terminates.

For c′(args) ∈ J , the evaluation requires that c′ be run as well. Let us observe that

by the construction of Gc, running c′ is equivalent to traversing the edge from nc to nc′

in Gc. Similarly, any references in the guards of c′ are represented by edges from c′ to

the referenced guards. We may therefore consider the evaluation of c′ as a walk from c

to c′ and then from c′ to all constraints referenced by c′. Since Gc is finite and acyclic,

we are guaranteed that the walk from c′ will terminate and therefore the evaluation of

c′(args) ∈ J will terminate as well.

Third, if the such that guards all yield true, the evaluation engine runs the regular

guards for the constraint. The argument for the termination of the regular guards is

identical to the argument for the termination of the such that guards.

147

Fourth, the engine combines the judgments derived from the applicable constraints into

a final judgment for the running of e using a logical AND. Since Constraint is finite, the

combination is finite and terminates.

The argument for constraint reference is similar since the evaluation engine performs

the second, third, and fourth steps as above with the exception that the third step is

performed regardless of whether the second step yields true. �

For commands, we offer a similar construction and proof. Let Ge be a directed graph

with a node ne for each e ∈ Command . For each e, let ωt be e’s true branch operations.

Let us draw a directed edge from ne to ne′ if ∃ω ∈ ωt . ω ≡ invoke e′(a, s, r, P, f, f ′,msg).

Lemma 5.4.2 (Command Circularity)

Commands and command references always terminate if Constraint and Command are

finite and Ge and Gc are acyclic.

Proof: Let us consider the steps taken by the evaluation engine when running a command

e, whether by reference or not.

First, the evaluation engine performs a constraint search for e. We have shown in

Lemma 5.4.1 that the constraint search always terminates if Command and Constraint

are finite and Gc is acyclic.

Second, the evaluation engine evaluates the guards of e. Lemma 5.4.1 shows that all

guard evaluation terminates if Command and Constraint are finite and Gc is acyclic.

Third, if the evaluation finds that the guards are true and the constraint search permits

e to run, it runs the operations in ωt. Let us consider each operation separately with respect

to its termination properties, considering invoke e(args) last since it is more complicated.

• create object o, delete object o. The operations perform a finite number of steps in

creating or deleting an object since Object is finite and so both terminate.

• set o.t = b′. The operation terminates since o is identified and Tag is finite.

• insert d in (a, o), delete d from (a, o). The operations terminate since d, a, and o are

identified and Agent and Object are finite.

148

• insert s in log. The operation terminates since the string s must be finite.

• inform a of msg. The operation terminates since a and msg are identified and Agent

is finite.

• return b. The operation terminates since it does not perform any state updates.

For invoke e′(args), the evaluation requires that e′ be run as well. Let us observe that

by the construction of Ge, running e′ is equivalent to traversing the edge from ne to ne′ in

Ge. Similarly, any commands run by e′ are represented by edges from e′ to the referenced

commands. We may therefore consider the evaluation of e′ as a walk from e to e′ and then

from e′ to all commands referenced by e′. Since Ge is finite and acyclic, we are guaranteed

that the walk from e′ will terminate and therefore the evaluation of invoke e′(args) will

terminate as well.

Fourth, if the evaluation engine finds that the guards are false, the engine runs the

operations in ωf . They are a subset of Operation and therefore all terminate by the

argument presented for ωt. �

Using the above lemmas, we arrive at a theorem regarding the termination of the

evaluation engine. Let Gc and Ge be constructed as above.

Theorem 1 (Evaluation Engine Termination)

For a Privacy API φ = (Command ,Constraint), the evaluation engine terminates if

Command and Constraint are finite and Gc and Ge are acyclic.

Proof: By Lemma 5.4.2 we have the for running any command e ∈ Command , the evalu-

ation engine terminates if Command and Constraint are finite and Gc and Ge are acyclic.

A straightforward application of the result to a collection of commands yields the result

for φ.

�

5.5 Policies and Licensing

In the previous sections we presented the syntax and semantics of the Privacy Commands

language and how we construct commands and constraints in it from legal policies. In

149

this section we consider the properties of sets of commands and constraints. That is,

we shall examine the kinds of properties that we can derive from Privacy APIs and use

them to denote equivalence and stricter than relations. We are interested in particular

relations because of their versatility. Specifically we explore two action level relations,

strong licensing and weak licensing which not only induce policy equivalence but let us

quantify policy permissiveness. The relations in this section relate to the Privacy API at

the policy level and so their evaluation is defined at the level of the formal language. The

specifics of how we evaluate the relations are discussed later in Chapter 6.

The rest of this section is organized as follows. In Section 5.5.2 we examine the types

of relations that we can evaluate over policies and motivate our close examination of two

relating to licensing of actions. In Section 5.5.3 we develop a policy equivalence relation

with respect to strong licensing. In Section 5.5.4 we develop several short examples to

show how we use the relations to compare policies and commands.

5.5.1 Notation and Definitions

In the following discussion, we denote Privacy APIs with the symbol φ. We summarize

Privacy APIs as collections of operations ω and guards ψ as defined above in Section 5.3.

We use the variable e to range over Command and c to range over Constraint . For

convenience, we define the following functions.

We define the following functions to summarize the operations and guards in a com-

mand e ∈ Command or constraint c ∈ Constraint :

Definition 5.5.1 (Operations of e) operations(e) = ωt ∪ωf for e as in Definition 5.2.8. �

Definition 5.5.2 (Guards of e and c)

• guards(e) = ψ for e as in Definition 5.2.8.

• guards(e) = ψst ∪ ψr for c as in Definition 5.2.10.

�

For convenience we denote an ordered command series with the bar notation. For

instance, e = e1, e2, . . . is a command series. Let s1, s2, . . . ∈ State be knowledge

150

states. Let arguments g1, g2 ∈ ParametersE , g1 = (a1, s1, r1, P1, f1, f
′

1,msg1), g2 =

(a2, s2, r2, P2, f2, f
′

2,msg2), . . . summarized in an argument series g. Then, unless otherwise

noted, the following definition holds:

Definition 5.5.3 (Command Series Execution) s1
e(g)
−→ sn+1 iff s1

e1(g1)
−→ s2

e2(g2)
−→ s2

...
−→

sn+1. �

In the special case where g1 = g2 = . . . = gn, we write:

Definition 5.5.4 s1
e(g)
−→ sn+1 iff s1

e1(g)
−→ s2

e2(g)
−→ s2

...
−→ sn+1. �

Since a Privacy API φ contains both commands and constraints we use the superscript

notation φe to refer to the commands in φ and φc to refer to the constraints in φ. As in

sets, we use the ∗ notation to refer to the (infinite) set of series of members from a set

with possible repetitions. For instance φe
∗

is the set of series of commands derivable from

a Privacy API.

We define the following functions to denote the differences between two states s1 =

(A1, O1,m1, l), s2 = (A2, O2,m2, l2). Since we use the relations to quantify the changes

necessary to derive one state from another (i.e., to find ω such that s1
ω

−→ s2) we consider

just the one way relation between s1 and s2:

Definition 5.5.5 (Objects Deleted) deletedo(s1, s2) = {o|o ∈ O1, o 6∈ O2} �

Definition 5.5.6 (Objects Created) created(s1, s2) = {o|o 6∈ O1, o ∈ O2} �

Definition 5.5.7 (Tags Modified) tagsm(s1, s2) = {o.t|o ∈ O1, o ∈ O2, s1 ⊢ o.t 6= s2 ⊢ o.t}

�

Definition 5.5.8 (Rights Inserted) inserted(s1, s2) = {(a, o, d)|∃d ∈ s1 ⊢ m(a, o) . d 6∈

s2 ⊢ m(a, o)} �

Definition 5.5.9 (Rights Deleted) deletedr(s1, s2) = {(a, o, d)|∃d ∈ s2 ⊢ m(a, o) . d 6∈ s1 ⊢

m(a, o)} �

151

We also define the following equivalence relation for logs in order to quantify differences

and similarities between logs without respect to the order of the entries. Since logs are

built by concatenating string entries, we need a way to delimit where one note ends and

another begins. We require that the delimiting character not appear in any log entry, a

requirements which varies by the character set used for the policy, so we generalize the

delimiting character as δ where δ is not part of the character set used for entries in the

log. The function entries : Log → String∗ takes a log and divides it into a set of strings

by breaking it up by δ. Using the entries function we define a prefix function for logs as

follows:

Definition 5.5.10 (Log Prefix) prefix(l1, l2) iff entries(l1) ⊆ entries(l2). �

Since we introduce many relations and functions in the section, we begin with a sum-

mary of the relations defined in Table 5.12. The different columns indicate the properties

of the relations and hint towards their usage.

5.5.2 Policy Relations

A Privacy API is a policy for the permitted and forbidden actions that agents may perform

based on the source document. There are many relations and properties of interest that

we may explore with relation to them. We are interested in the evaluation of properties,

however, that are both decidable and versatile. That is, while some properties and relations

are interesting, if we can not construct an evaluation algorithm for them that will eventually

terminate it is not as useful as one that will.

The types of relations we define relate to natural questions individuals and stakeholders

often ask about legal policies such as “What does this legal policy allow?”, “How does it

differ from an older version of the policy?”, and “Does this policy allow an agent A to

perform action B?”

With that restriction in mind we are interested in relations that will let us resolve

policy comparison and permissiveness. At the action level we seek to answer the questions

“Does a Privacy API φ allow the performance of a transition s −→ s′?” and more loosely

“Is there a way that φ at least performs s −→ s′′?” The former question relates to

152

Table 5.12: Relations between commands, command series, and policies

Relation Relates Reflexive Parameter Lists

φ |=(s,g) e (Policy ,Command) No 1

φ |=(s) e (Policy ,Command) No All

φ |=(s,g) e (Policy ,Command ∗) No 1

φ |=(s) e (Policy ,Command ∗) No All

noconflict(s,g)(e2, e1) (Command ,Command) No 1

noconflict(s)(e2, e1) (Command ,Command) No All

noconflict(s,g)(e, e1) Command∗,Command) No 1

noconflict(s)(e, e1) (Command ∗,Command) No All

noconflict(s,g)(e2, e1) (Command ∗,Command ∗) No 1

noconflict(s)(e2, e1) (Command ∗,Command ∗) No All

φ |=∗

(s,g) e (Policy ,Command) No 1

φ |=∗

(s) e (Policy ,Command) No All

φ |=∗

(s,g) e (Policy ,Command ∗) No 1

φ |=∗

(s) e (Policy ,Command ∗) No All

φ1∼̇(s,g)φ2 (Policy ,Policy) Yes 1

φ1∼̇(s)φ2 (Policy ,Policy) Yes All

φ1∼̇φ2 (Policy, Policy) Yes All

φ1 ∼e
(s,g) φ2 (Policy ,Policy ,Command) Yes 1

φ1 ∼e
(s) φ2 (Policy ,Policy ,Command) Yes All

φ1 ∼e
(s,g) φ2 (Policy ,Policy ,Command ∗) Yes 1

φ1 ∼e
(s) φ2 (Policy ,Policy ,Command ∗) Yes All

φ1 ≺(s,a) φ2 (Policy ,Policy) No 1

φ1 ≺(s) φ2 (Policy ,Policy) No All

strict performance: is there a combination of commands that can be executed to perform

precisely the desired transition from s to s′. The latter question is more relaxed: is there

a combination of commands that will lead to the effects of the transition being performed,

even if s′′ includes extra operations not included in the transition. Note that we are

performing our comparison based on the outcome of a command, not the precise format of

the command which led to the transition in question. Such relations are interesting since

they are essential to common understanding of legal policies as they are applied without

respect to their phraseology or structure.

At the primary level, our goal is to be able to answer the questions “Are Privacy

153

APIs φ1 and φ2 equivalent?” and “Is φ1 stricter than φ2?” Relations that answer these

questions are useful in examining the properties of particular legal policies and evaluating

whether one fulfilling one policy is sufficient to fulfill another. At the secondary level we

are interested in evaluating the more generic property of “Does compliance with a policy

φ1 imply compliance with a policy φ2?”

For two policies φ1 and φ2, since each command may be executed on its own, policy

merging is a pairwise union of the two command sets provided that there are no name

collisions. In case of name clashes, alpha-renaming one policy will resolve the conflict. The

resulting policy allows anything that was permitted under either input policy.

In order to concretize what is permitted by a policy we define two metrics for policies,

strong and weak licensing. A transition strong licensed by φ is permitted by it directly.

A transition weakly licensed by φ is permitted by it, so long as some other actions are

performed as well. We develop the relations as an effort at translating the notions of

strong and weak bisimulation from process calculi. The process calculi definitions are

useful as building blocks for comparing running and interactive systems, a useful paradigm

to apply to applying policy requirements.

Strong Licensing

If a policy φ has a command which can precisely perform the effects of another command

e at state s ∈ State with parameters g ∈ ParametersE , g = (a, s, r, P, f, f ′,msg) as above

in Section 5.2.3, we say it strongly licenses it at s with g, denoted φ |=(s,g) e. Let s1, s2 be

states such that s1
e(g)
−→ s2.

First, let us consider a limited definition of strong licensing: when a policy can precisely

perform the operations of e from just a given initial state s1 and argument set g. Then we

write:

φ |=(s1,g) e iff s1
e(g)
−→ s2 =⇒ ∃e′ ∈ φ . s1

e′(g)
−→ s2

If we generalize for all arguments at a given state we have a more flexible definition for

strong licensing:

154

Definition 5.5.11 (Strong Licensing) φ |=(s) e iff ∀g ∈ ParametersE , s1
e(g)
−→ s2 =⇒

∃e′ ∈ φ . s1
e′(g)
−→ s2 �

Generalizing from individual commands to series of commands, if φ can precisely per-

form the effects of all commands in a series e from an initial state s1 = (A,O,m, l) with

parameters g ∈ ParametersE ∗, we say that φ strongly licenses the series at s1 with pa-

rameter list g (φ |=(s1,g) e). Let us denote the resulting state from the execution of e as

s1
e(g)
−→ s2. From a single state we have the following:

φ |=(s1,g) e iff s1
e(g)
−→ s2 =⇒ ∃e2 ∈ φe

∗

. s1
e2(g)
−→ s2.

with the side condition that |e| = |e2| = |g|. Generalizing for all arguments lists combina-

tions at a given state:

Definition 5.5.12 (Strong Licensing Series) φ |=(s1) e iff ∀g ∈ ParametersE ∗, s1
e(g)
−→

s2 =⇒ ∃e2 ∈ φ∗ . s1
e2(g)
−→ s2, requiring that |e| = |g| = |e2| and finite. �

Since |=(s) parameterizes over φe
∗

it is an infinite relation and may not be decidable

in general. We may be certain, however, that the relation is decidable for finite series of

commands. The argument term g also ranges over the infinite set ParametersE ∗, but since

its length is fixed by the e, for finite series of commands the quantification ∀g will also be

finite and decidable provided that Agent , Object and Purpose are finite.

Strong licensing corresponds to a policy precisely performing the actions of a command.

It also restricts the relationship between the policy and the command(s) to be “in lockstep”

meaning that for e or each e ∈ e, the policy has one command which can precisely perform

e’s behavior with the same arguments. It is also useful to define a weaker relation for

policies which perform the actions of a command with some slight modifications. In order

to define that relation, however, we must first define what types of “slight modifications”

we mean.

Non-conflicting Commands

In order to generalize our relations, let us define non-conflicting commands. We define

our relations of non-conflict in terms of commands and command series rather than states

155

in order to let us develop relations between policies rather than outcomes, but since they

are defined in terms of how commands change states based on input, it is straightforward

to adapt them to purely state focussed relations. Doing so would enable analysis and

comparison of knowledge states independent of the policies that operate over them.

Let e1, e2 ∈ Command , g ∈ ParametersE . g = (a, s, r, P, f, f ′,msg), and s ∈ State.

Let us denote the state reached by invoking e1 on s = (A,O,m, l) with parameters g

as s
e1(g)
−→ s1 where s1 = (A1, O1,m1, l1) and the state reached by invoking e2 on s with

arguments g as s
e2(g)
−→ s2 where s2 = (A2, O2,m2, l2).

First let us give a limited definition for non-conflicting commands at a given state

and argument set: when e2 does not conflict with e1 at a given state s with arguments g

(denoted noconflict(s,g)(e2, e1)).

Definition 5.5.13 (Non-conflicting Commands) noconflict(s,g)(e2, e1) iff

(a) O2 ∩ deletedo(s, s1) = ∅ ∧

(b) created(s, s1) ⊆ O2 ∧

(c) ∀o.t ∈ tagsm(s, s1), s2 ⊢ o.t = s1 ⊢ o.t ∧

(d) ∀(a, o, d) ∈ deletedr(s, s1), d 6∈ s2 ⊢ m(a, o) ∧

(e) ∀(a, o, d) ∈ inserted(s, s1), d ∈ s2 ⊢ m(a, o) ∧

(f) prefix(l2, l1).

�

The intuition for the definition is that the state reached by e2 does not conflict with the

state reached by e1 if (a) the objects deleted by e1 are also deleted by e2, (b) the objects

created by e1 are also created by e2, (c) the tags modified by e1 have the same values as

modified by e2 , (d) the rights deleted by e1 are also deleted by e2, (e) the rights added by

e1 are also added by e2, and (f) the log entries added by e1 are also added by e2 without

respect to their order added. Note that noconflict(s,g)(e2, e1) ;noconflict(s,g)(e2, e2).

156

Generalizing for all arguments at an initial state, we have the following definition of

non-conflicting commands. To denote that e2 does not conflict with e1, we write:

Definition 5.5.14 (Non-conflicting Commands) noconflict(s)(e2, e1) = true iff ∀g ∈

ParametersE . noconflict(s,g)(e2, e1). �

The intuition for the definition is that the state reached by e2 does not conflict with the

state reached by e1 if the tags modified by e1 have the same values in as modified by e2,

the objects deleted by e1 are also deleted by e2, the rights deleted by e1 are also deleted

by e2, the rights added by e1 are also added by e2, and the log entries added by e1 are also

added by e2 without respect to their order added. Note that the relation is not necessarily

reflexive, so noconflict(e2, e1) ;noconflict(e2, e2).

We may also generalize the definition of non-conflicting commands to comparing one

command to a series of commands. Let e1, e2, . . . , en be commands. Let us denote the

series of commands e = e2, e3, . . . , en. Let g ∈ ParametersE and s = (A,O,m, l) be as

above. Let us denote the state reached by invoking e1 on s = (A,O,m, l) with arguments g

as s
e1(g)
−→ s1 where s1 = (A1, O1,m1, l1) and the state reached by invoking e2, e3, . . . , en on s

with arguments g as s
e(g)
−→ s2 where s2 = (A2, O2,m2, l2). We restrict the relation to a single

argument list for the entire series e to restrict the comparison to similar inputs. Otherwise,

for instance, if e1 performs an action for purpose p1 which may only be performed by

e2 for purpose p2 6= p1, it is not possible in general to tell whether the two should be

equivalent (e.g., e1 permits disclosure of information for marketing while e2 permits the

same disclosure only for emergency services).

Since we have defined nonconflicting commands in terms of their outcome on the initial

state, our limited definition for a single state s and arguments g is identical to Defini-

tion 5.5.13: e does not conflict with e1 at s with g (denoted noconflict(s1,g)(e, e1)) when:

noconflict(s,g)(e, e1) = true iff O2 ∩ deletedo(s, s1) = ∅, created(s, s1) ⊆ O2,

∀o.t ∈ tagsm(s, s1), s2 ⊢ o.t = s1 ⊢ o.t, ∀(a, o, d) ∈ inserted(s, s1) . d ∈ s2 ⊢ m(a, o),

∀(a, o, d) ∈ deletedr(s, s1) . d 6∈ s2 ⊢ m(a, o), prefix(l1, l2).

Generalizing for all arguments lists at a given initial state, we have the following definition

157

of non-conflicting command series similar to Definition 5.5.14. e does not conflict with e1

if the following relation holds:

Definition 5.5.15 (Non-conflicting Commands Series) noconflict(s)(e, e1) = true iff ∀g ∈

ParametersE . noconflict(s,g)(e, e1). �

We generalize the definitions to comparison of the results of series to other series.

Let e1, e2 be commands series. Let us denote the series of commands e1 = e11
, e12

, . . .,

e2 = e21
, e22

, Let g ∈ ParametersE ∗ and s = (A,O,m, l) be as above. Let us denote

the state reached by invoking e1 on s = (A,O,m, l) with arguments g as s
e1(g)
−→ s1 where

s1 = (A1, O1,m1, l1) and the state reached by invoking e2 on s with arguments g as s
e2(a)
−→ s2

where s2 = (A2, O2,m2, l2).

Our limited definition for a single state s and arguments g is then similar again to

Definition 5.5.13. e2 does not conflict with e1 at s with g (denoted noconflict(s1,a)(e2, e1))

when:

noconflict(s,g)(e2, e1) = true iff O2 ∩ deletedo(s, s1) = ∅, created(s, s1) ⊆ O2,

∀o.t ∈ tagsm(s, s1), s2 ⊢ o.t = s1 ⊢ o.t, ∀(a, o, d) ∈ inserted(s, s1) . d ∈ s2 ⊢ m(a, o),

∀(a, o, d) ∈ deletedr(s, s1) . d 6∈ s2 ⊢ m(a, o), prefix(l1, l2).

Generalizing for all initial arguments at a given initial state, we have the following definition

about e2 not conflicting with e1:

Definition 5.5.16 (Series Non-conflicting with Series) noconflict(s)(e2, e1) = true iff ∀g ∈

ParametersE ∗ . noconflict(s,g)(e2, e1). �

In summary, we have defined relations for describing whether commands and commands

series are non-conflicting. We use the definitions for concretizing what we meant above by

“slight modifications”: that if the resulting states from two commands or command series

are non-conflicting, we may consider one close enough to the other to be equivalent, which

leads us to our definition of weak licensing.

158

Weak Licensing

Using the above definition for non-conflicting commands and commands series, let us define

a more flexible relation between a command and a policy. We define weak licensing in terms

of a policy weakly licensing a command rather than one command weakly licensing another

since we are interested in resolving questions such as whether a policy permits the actions

performed by a single command from one or many states. The definitions can be applied

to the case of one command weakly licensing another by considering cases of |φe| = 1.

If a policy φ can perform the effects of a command e at state s with arguments g with

a command series which is not conflicting with e, we say φ weakly licenses it at s with g,

denoted φ |=∗

(s,g) e. For a single state we would like to write:

φ |=∗

(s1,g)
e iff ∃e ∈ φe

∗

. noconflict(s1,g)(e, e1).

The problem with the above definition is that it is undecidable since φe
∗

is unbounded.

We may use a model checker to explore the space and check if the policy reaches a fixed

point. Otherwise, for decidability we focus on the more limited power set of commands:

φ |=∗

(s1,g)
e iff ∃e ∈ pwr(φe) . noconflict(s1,g)(e, e1).

The intuition for the limitation is that in deciding whether an action is permitted it is

sufficient to try all possible permissions once. This imposes the (reasonable) assumption

on the source policy that permissions are not enabled by repeated performance of the same

action.

Generalizing for all arguments at a given state, we write the following if a policy weakly

licenses the actions of a command:

Definition 5.5.17 (Weak Licensing) φ |=∗

(s) e iff ∀g ∈ ParametersE , ∃e ∈ pwr(φe)

. noconflict(s,g)(e, e). �

Note that |=⊆|=∗.

If φ can perform all of the effects of a series e from an initial state s = (A,O,m, l)

with parameters g = (a, s, r, P, f, f ′,msg) with non-conflicting effects as well, we say that

159

φ weakly licenses the series at s1 with g (φ |=∗

(s1,g)
e). Let us denote the resulting state

from the execution of e as s1
e(g)
−→ s2. For a single state we have:

φ |=∗

(s1,g)
e iff ∃e2 ∈ pwr(φe) . noconflict(s1,g)(e2, e).

Generalizing for all argument lists, we have the following:

Definition 5.5.18 (Weak Licensing Series) φ |=∗

(s) e iff ∀g ∈ ParametersE ∗, ∃e2 ∈

pwr(φe) . noconflict(s,g)(e2, e). �

Intuitively, weak licensing for series of commands e means that the policy φ can execute

a series of one or more commands such that the final result is a state which is non-

conflicting with the result from e. We do not look at the intermediate states reached by

e2, only restricting that they use the same argument list in |=∗

(s1,g)
and Definition 5.5.18.

By forcing the two lists to be the same length, we ensure that both relations are decidable

since for any e chosen, we know precisely that we only have to search for an e2 such that

|e2| = |e|.

We use weak licensing to model constraints of the form: “You may do A if it is permitted

by φ” where φ is an external policy or set of commands. We use |=∗ to quantify what it

means for a policy to permit an action as follows. Let s, s′ ∈ State such that e ∈ Command

with arguments g ∈ ParametersE yields s
e(g)
−→ s′.

Definition 5.5.19 (Permitted By) s
e(g)
−→ s′ is permitted by φ at s with g if φ |=∗

(s,g) e. �

The intuition is that φ permits e(g) if it allows e(g)’s side effects, potentially augmented

with other actions. In Chapter 6 we develop an automated technique for resolving |=∗ and

thereby a mechanism for determining whether actions are permitted by a policy.

A logical extension to the Privacy Commands guards would be a guard of the form

Permitted(e(g)) for e ⊂ Command and g ∈ ParametersE . The guard would then be

satisfied if at the current knowledge state s for a policy φ with commands e, φ |=∗

(s,g) e.

We leave this extension for future work because of the additional complexity for policy

resolution that it imposes, making it difficult to translate for automated verification using

the technique we have developed.

160

5.5.3 Policy Comparison

Using strong and weak licensing we make the following observations and prove the following

theorems about policies permitting transitions or command series. If φ |= s
e(g)
−→ s′, then we

say φ generates e(g) at s. If φ |= e for a series e, then we say φ generates e. If φ |=∗ s
e(g)
−→ s′,

then φ permits e(g) at s, but does not generate it since other actions may be performed as

well. If φ |=∗ e for a series e, then there exists an execution of φ that permits e, but may

perform other actions as well.

Observational Equivalence

In relating policies it is useful to consider when two policies are observationally equivalent.

That is, when the behavior of one policy is indistinguishable from the behavior of another.

Let φ1, φ2 be policies. Let s be an initial state and e be a command.

Definition 5.5.20 φ1 and φ2 are observationally equivalent for s with g (φ1∼̇(s,g)φ2) for

a state s and arguments lists g if ∀e1 ∈ φe
∗

1 ,∃e2 ∈ φe
∗

2 . s
e1(g)
−→ s1 ⇔ s

e2(g)
−→ s1 and

∀e2 ∈ φe
∗

2 ,∃e1 ∈ φe
∗

1 . s
e2(g)
−→ s2 ⇔ s

e1(g)
−→ s2. �

The relation refers to the equivalence of execution from a given initial state and given

argument list. The intuition for it is that at a given snapshot and for a desired combination

of arguments, any command series in φ1 can be mirrored by some command series in φ2

and vice versa. We relate ∼̇(s,g) to |=(s,g) by observing that it is equivalent to showing

strong licensing for any command series that begins from s and uses the argument series

g:

φ1∼̇(s,g)φ2 ⇔ (∀e1 ∈ φe
∗

1 , φ2 |=(s,g) e1 ∧ ∀e2 ∈ φe
∗

2 , |=(s,g) e2)

The intuition of the equivalence is that in order to evaluate whether two policies are

observationally equivalent from a given state s and arguments lists, we must evaluate

whether any command series from s is strongly licensed by the other policy. Of course,

since the command series may be of infinite length, if the set of states is finite it may be

shorter to evaluate observational equivalence by enumerating all of the states reachable

161

from s using either policy. We then can show ∼̇(s,g) by showing strong licensing for all

reachable states from s.

Returning to our definitions for observation equivalence, generalizing for all arguments

for observational equivalence we have:

Definition 5.5.21 (State Equivalence) φ1 and φ2 are observationally equivalent for s

(φ1∼̇(s)φ2) for a state s if ∀g ∈ ParametersE ,∀e1 ∈ φe
∗

1 ∃e2 ∈ φe
∗

2 . s
e1(g)
−→ s1 ⇔ s

e2(g)
−→ s1

and ∀e2 ∈ φe
∗

2 ∃e1 ∈ φe
∗

1 . s
e2(g)
−→ s2 ⇔ s

e1(g)
−→ s2. �

The State Equivalence relation of Definition 5.5.21 means that at a given state, any

command series that φ1 can run can be mirrored by a command series in φ2 and vice versa.

Essentially, from the state s, the two policies are equivalent. Generalizing for all states we

have: φ1 and φ2 are observationally equivalent (φ1∼̇φ2) under the following definitions

Definition 5.5.22 (Policy Equivalence) φ1∼̇φ2 iff ∀s ∈ State ,∀g ∈ ParametersE ,∀e1 ∈

φe
∗

1 ∃e2 ∈ φe
∗

2 . s
e1(g)
−→ s1 ⇔ s

e2(g)
−→ s1 and ∀e2 ∈ φe

∗

2 ∃e1 ∈ φe
∗

1 . s
e2(g)
−→ s2 ⇔ s

e1(g)
−→ s2. �

The last relation, Policy Equivalence in Definition 5.5.22, generalizes the relation for all

states. Policies which are equivalent under Policy Equivalence may be interchanged since

any state reachable by one is reachable by the other as well. The relation ∼̇ is stronger

than our definitions of |= above, but it follows directly from our argument above that ∼̇ is

equivalent to (∀s ∈ State,∀e1 ∈ φe
∗

1 , φ2 |=(s) e1)
∧

(∀s ∈ State,∀e2 ∈ φe
∗

2 , φ1 |=(s) e2).

The relations ∼̇(s,g), ∼̇(s), ∼̇ are policy comparisons, relating two policies as shown above

in Table 5.12. They are applications of strong licensing to policies, giving us metrics for

relating what actions both policies permit.

Relative Permissiveness

The relations in the ∼̇ family relate policies to each other but it is often useful to discuss

relations between policies as they relate to individual commands and commands series. We

label the relations in this family with ∼e, showing the that the relationship is based on the

behavior of a given command e. The intuition for defining these relations is tied to questions

such as “Do two policies agree on this behavior?” In such queries, we are interested in

162

finding out whether the two policies agree on the behavior, either both permitting or both

forbidding. Relaxing the relations also leads us to comparative relations such as at least

as strict as (≺) which lets us compare whether one policy is stricter than another.

We begin by defining the equal permissiveness relations, variations of the relation ∼.

For the following definitions, let e be a command and e = e1, e2, . . . a command series. Let

φ1, φ2 be policies. Let g ∈ ParametersE . g = (a, s, r, P, f, f ′,msg) be arguments. For a

single state s and argument list g we denote the agreement of φ1 and φ2 on command e as

follows:

φ1 ∼e
(s,g) φ2 iff (φ1 |=(s,g) e iff φ2 |=(s,g) e).

The intuition for the relation is that for a given state and argument list, the two policies

φ1 and φ2 either both strongly license e or neither does. It implies an equivalence for the

two policies with respect to e at s with g. We can generalize the relation for all for all

argument lists and a given command at an initial state:

Definition 5.5.23 (Command Equivalence) φ1 ∼e
(s) φ2 iff (φ1 |=(s) e iff φ2 |=(s) e). �

The Command Equivalence relation means that for every argument list at a given state,

the two policies either both strongly license the command e or neither does. It is a stronger

measure of equivalence for the given command. We can further generalize the relation to

command series e for any argument set at a given state:

Definition 5.5.24 (Series Equivalence) φ1 ∼e
(s) φ2 iff (φ1 |=(s) e iff φ2 |=(s) e). �

Finally, generalizing for all commands, we have a metric for general policy permissiveness:

Definition 5.5.25 (Permissiveness Equality) φ1 ∼(s) φ2 iff ∀e ∈ Command . (φ1 |=(s) e

iff φ2 |=(s) e). �

Generalizing Definition 5.5.25 to command series is straightforward and therefore elided.

The intuition for the relation is that two policies are equally permissive at a given state s

for any command and any argument list. Note that when e or e are in one of the policies,

the ∼̇ and ∼e relations coincide. That is, for e ∈ φ1, ∼̇(s,g) ⇔∼e
(s,g) and ∼̇(s) ⇔∼e

(s) and

163

similarly if e ∈ φ2. Also for e ∈ φe
∗

1 , ∼̇(s) ⇔∼e
(s) and similarly for e ∈ φe

∗

2 . Since one policy

automatically licenses the command(s), the other must as well for ∼e.

The at least as strict as relations ≺ are a relaxation of ∼. Let g, e, e, φ1, and φ2 be as

above. We then define the following relations between two policies about a given command

e. The relation ≺(s) describes a relation where the left hand side is possibly more strict

than the right hand side. That is, we write φ1 ≺ φ2 to indicate that φ1 is potentially less

permissive than φ2. We express the relationship in terms of strong licensing, similar to

∼e. That is, we use ≺ to indicate if φ1 strongly licensing a command implies that φ2 does

too, but not necessarily the opposite. For a given initial state s, a single argument list

g ∈ ParametersE , and any given command, we then write:

φ1 ≺(s,g) φ2 iff ∀e ∈ Command . φ1 |=(s,g) e =⇒ φ2 |=(s,g) e.

Generalizing for any argument list at the single initial state s, we have:

φ1 ≺(s) φ2 iff ∀e ∈ Command . ∀g ∈ ParametersE . φ1 |=(s,g) e =⇒ φ2 |=(s,g) e.

Generalizing for series of commands, we have:

Definition 5.5.26 (At least as strict as) φ1 ≺(s) φ2 iff ∀e ∈ Command∗ . ∀g ∈

ParametersE ∗ . φ1 |=(s) e =⇒ φ2 |=(s) e. �

Based on the definition note that, φ1 ≺(s) φ2 ; φ2 ≺(s) φ1 but that φ1 ≺(s) φ2
∧

φ2 ≺(s)

φ1 ⇒ φ1 ∼(s) φ2.

The relation ≺ is useful since it lets us discover when one policy subsumes another.

That is, if everything that φ1 permits can be performed under φ2 as well, φ2 subsumes φ1.

Alternatively, we may say that φ1 is at least as strict as φ2 since everything that φ1 permits

is permitted by φ2 as well. That which φ1 prohibits (i.e., the operations and transitions

that it does not allow to occur) may be allowed by φ2, however.

5.5.4 Applications of Licensing

We use the relations defined above to better analyze policies. The five families of relations

are summarized above in Table 5.12 and categorized by whether they relate commands,

164

series, or policies as well as whether they are for a single argument list or parameterized for

any argument list. Of the five families, four are directly useful for the following applications:

|= Determining whether an action can be performed by an agent under the jurisdiction of

a particular policy.

|=∗ Determining whether an action is permitted by a policy, but only as part of a larger

operation.

∼̇ Determining whether one policy is equivalent to another in a particular situation.

≺ Determining whether one policy subsumes another.

In Chapter 6 we discuss how we automate the search for |= relationship between com-

mands and policies using SPIN. In Chapter 7 we present case studies for relating policies

using the relations as well, showing their flexibility and descriptiveness. As in Section 4.4,

before we get to the technical details of automation and the applied case studies, we first

develop some simple examples for the use of the relations to explore what kinds of prop-

erties can be expressed using the relations.

For the following examples, let us consider the policy snippet extracted from Exam-

ple 5.2.1 in Section 5.2.6:

(c) Implementation specifications: Treatment, payment, or health care opera-
tions.

(1) A covered entity may use or disclose protected health information for its
own treatment, payment, or health care operations.

In Example 5.2.1 we show the constraint for the paragraph along with the commands

for treatment use and disclosure. For the following examples, let us consider the three

commands for use of information for treatment, payment, health care operations. The full

command set is shown in Appendix C.2.2.

165

1 CST Permitted506c1 (a, s, r, P, f, f’, msg)

2 Scope {TreatmentUse506c1, PaymentUse506c1,

3 HealthCareOperationsUse506c1, TreatmentDisclose506c1,

4 PaymentDisclose506c1, HealthCareOperationsDisclose506c1}

5 Such That f.protected-health-information = true

6 and coveredEntity in Roles(a)

7 and individual in Roles(s)

8 if own ina P

9 then return true

10 else return false

CMD TreatmentUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and use ina P

and treatment ina P

then insert treatment in (a, s)

and return true

else return false

CMD PaymentUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg)

and local in (a, f)

and use ina P

and payment ina P

then insert payment in (a, s)

and return true

else return false

166

CMD HealthCareOperationsUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg)

and local in (a, f)

and use ina P

and healthCareOperations ina P

then insert healthCareOperations in (a, s)

and return true

else return false

The three commands TreatmentUse506c1, PaymentUse506c1, and HealthCareOpera-

tionsUse506c1 share a common structure, beginning with a reference to the constraint

Permitted506c1 and followed by checks that the actor has the right local on the object and

that the purpose of the action is use. The last guard for each command is tailored to the

purpose of the command: treatment, payment, and health care operations respectively.

The inclusion uses permitted semantics since any child purpose of treatment, payment,

or health care operations will suffice as well. The true branch for each command stores

new the right for the agent on the subject and then returns true. The false branch simply

returns false without any other operations.

Let us now define a policy φ1 which contains just the above constraint and

commands. Let C = {Permitted506c1}, E = {Treatment506c1, Payment506c1,

HealthCareOperations506c1}, R = {coveredEntity}, T = {protected-health-information},

P = {use, treatment, payment, healthCareOperations, own}, and Right = {local, treat-

ment, payment, healthCareOperations}. Let φ1 = (C,E,R, T, P).

Example 5.5.1 (Strong Licensing)

Strong licensing gives a mechanism for comparing a command or command series

against a given policy. The policy from HIPAA [§164.506(c)(1), v.2003] permits covered

entities to use protected health information for treatment, payment, or health care oper-

ations. Let us consider the policy of a US state which decides to require covered entities

to acquire consent from patients before using protected health information for payment

purposes:

167

A covered entity may use or disclose protected health information for its own
payment purposes with patient consent.

In order to compare the state’s policy the HIPAA policy, we translate the policy statement

into a command Strong1:

1 CMD Strong1(a, s, r, P, f, f’, msg)

2 if f.protected-health-information = true

3 and coveredEntity in Roles(a)

4 and individual in Roles(s)

5 and own ina P

6 and local in (a, f)

7 and use ina P

8 and payment ina P

9 and consent in (a, s)

10 then insert payment in (a, s)

11 and return true

12 else return false

Since we are considering only Strong1 and not any other constraints on it, Strong1

contains no guard references, only direct examinations of state. The guards for Strong1

are identical to those of Permitted506c1 and PaymentUse506c1 with the addition of a

guard on line 9. Line 9 checks that the actor has the right “consent” on the subject which

indicates that the subject has granted consent to the actor.

Strong1 uses the same sets as φ1 for roles (R), tags (T), and purposes (P), but has an

additional right for consent. Thus Right = {treatment, payment, healthCareOperations,

consent}. We consider several states to explore how φ1 relates to Strong1. Let Cy work for

a covered entity and Ike be an individual. Let there be an object f which is a file which

contains information about Ike. Let us define the following invariant state: si = ({Cy, Ike},

{f}, ∅, ǫ) such that Roles(Cy) = {coveredEntity}, Roles(Ike) = {individual}, f .protected-

health-information = true.

With Consent In a case Ike has granted consent to Cy for access to protected health

information, the knowledge state is as follows: s1 = si except that m(Cy, Ike) =

168

{consent} and m(Cy, f) = {local}.

Without Consent In a case where Ike has not granted consent to Cy, the knowledge

state is as follows: s2 = si except that m(Cy, f) = {local}.

Not Local In a case where the file is not local to Cy, but Ike has granted consent for

Cy to see his records, the knowledge state is as follows: s3 = si except that m(Cy,

Ike) = {consent}.

For each of the states s1, s2, and s3 let us consider the following argument list: g1 = (Cy,

Ike, Cy, {use, payment, own}, f , ∅, ǫ). For brevity, let us denote Strong1 as e1 and

Strong1(g1) as e1(g1). Let us denote Strong1(g1) as e(g1). The following relations then

hold for each state with g1:

1. φ1 |=(s1,g1) e1. Running e1(g1) at s1 yields s′1 = (A′

1, O
′

1,m
′

1, l
′

1) as shown in the

following table:

s1
e1(g1)
−→ s′1

A1 = {Cy, Ike} A′

1 = {Cy, Ike}

O1 = {f} O′

1 = {f}

m1(Cy, Ike) = m′

1(Cy, Ike) =

{consent} {consent,payment}

m1(Cy, f) = m′

1(Cy, f) =

{local} {local}

l1 = ǫ l′1 = ǫ

Since φ1 can perform the same transition by running s1
e′(g1)
−→ s′1 for

e′ =PaymentUse50c1, it strongly licenses Strong1 at s1 with g1.

2. φ |=(s1) e. Running e1 at s1 with any g ∈ ParametersE yields the same result as

running PaymentUse506c1. This is proven directly since for g = (a, s, r, P, f, f ′,msg),

if a =Cy and s =Ike, then line 8 of Strong1 is satisfied. Since the rest of the guards

coincide with Payment506c1 and Permitted506c1, their results are identical. For any

169

other values of g and s, if a 6=Cy, line 3 of Strong1 and line 6 of Permitted506c1 will

not be satisfied and if s 6=Ike, line 4 of Strong1 and line 7 of Permitted506c1 will not

be satisfied. Since the guards otherwise coincide, the results of the two are the same

and therefore φ1 strongly licenses Strong1 at s1 for any arguments.

3. φ1 |=(s2,g1) e1, φ1 6|=(s2) e1. Running e1(g1) at s2 yields s′2 = (A′

2, O
′

2,m
′

2, l
′

2) as shown

in the following table:

s2
e1(g1)
−→ s′2

A2 = { Cy, Ike} A′

2 = {Cy, Ike}

O2 = {f} O′

2 = {f}

m2(Cy, f) = m′

2(Cy, f) =

{local} {local}

l2 = ǫ l′2 = ǫ

Since e1 does not cause any changes to s2 with g1 or any g ∈ ParametersE , it is

trivially strongly licensed by any non-satisfied command which has no operations

in its false branch. In φ1, Treatment506c1 also is not satisfied at s2 with g1, so

φ1 |=(s2,g1) e1. The trivial licensing does not hold for all arguments, however, since for

g2 = (Cy, Ike,Cy, {treatment, payment, healthCareOperations, use, own}, f, ∅, ǫ},

every command in φ1 is satisfied so there is no command which does not cause

changes to s2. Therefore, φ1 6|=(s2) e1.

4. φ |=(s3,g1) e1, φ1 |=(s3) e1. Running e1(g1) at s3 s
′

3 = (A′

3, O
′

3,m
′

3, l
′

3) as shown in the

following table:

s3
e1(g1)
−→ s′3

A3 = {Cy, Ike} A′

3 = {Cy, Ike}

O3 = {f} O′

3 = {f}

m3(Cy, Ike) = m′

3(Cy, Ike) =

{consent} {consent}

l3 = ǫ l′3 = ǫ

170

As in 3, since Strong1 does not cause any updates to the state at s3 with g1 or any

g ∈ ParametersE , it is trivially licensed by any non-satisfied command which has no

operations in its false branch. Treatment506c1 also is not satisfied for s3 with g1 and

so it strongly licenses it. Since local 6∈ (Cy, f), no command in φ1 is satisfied for any

g ∈ ParametersE and therefore φ1 |=(s3) e1.

�

The above example shows how strong licensing allows the evaluation of whether a

command can be modeled precisely by another policy. Note that as shown with s2, |= may

be trivially true for a command which is not satisfied and has no side effects on its false

branch. When a command has no side effects, any other command with no side effects will

strongly license it.

Example 5.5.2 (Weak Licensing)

Weak licensing gives a mechanism for comparing a command or command series against

a given policy with some leeway given for operations which do not conflict. As in Exam-

ple 5.5.1, let us consider the policy of a US state whose policy differs slightly from HIPAA’s.

The state decides that requiring consent for payment is too restrictive for covered entities

and therefore decides that instead, whenever a covered entity gains the right to use pro-

tected health information for payment, the individual is given the right to audit how the

information was used:

A covered entity may use or disclose protected health information for its own
payment purposes and the individual may audit its use.

The modified command for the policy is:

171

1 CMD Weak1(a, s, r, P, f, f’, msg)

2 if f.protected-health-information = true

3 and coveredEntity in Roles(a)

4 and individual in Roles(s)

5 and own ina P

6 and local in (a, f)

7 and use ina P

8 and payment ina P

9 then insert payment in (a, s)

10 and insert audit in (s, a)

11 and return true

12 else return false

As in Example 5.5.1, since we are considering only Weak1 and not any other constraints

on it, Weak1 contains no guard references. The guards for Weak1 are identical to those of

Permitted506c1 and PaymentUse506c1. Weak1 differs from Payment506c1 on line 10 with

the addition of the right “audit” to the subject.

As in Strong1, Weak1 uses the same sets as φ1 for roles (R), tags (T), and purposes (P),

but has an additional right for auditing. Thus Right = {treatment, payment, healthCare-

Operations, audit}. Let us denote Weak1 as e2, and let us consider two states to explore

how φ1 relates to e2. As in Example 5.5.1, let Cy work for a covered entity and Ike be an

individual, and f be an object which contains information about Ike. We define the fol-

lowing invariant state: si = ({Cy, Ike}, {f}, ∅, ǫ) such that Roles(Cy) = {coveredEntity},

Roles(Ike) = {individual}, f .protected-health-information = true.

Payment In a case Cy seeks to access local protected health information for payment,

the knowledge state is as follows: s1 = si except that m(Cy, f) = {local}.

Non-Local In a case where Cy seeks to access non-local protected health information for

payment, the knowledge state is as follows: s2 = si.

For each of the states s1 and s2 let us consider the following argument list: g1 = (Cy,

Ike, Cy, {use, payment, own}, f , ∅, ǫ). Let us denote Weak1 as e2 and therefore Weak1(g1)

172

as e2(g1). The following relations then hold for each state with g1: The following relations

then hold for each state with g1:

1. noconflict(s1,g1)(Payment506c1, e2),noconflict(s1)(Payment506c1, e2). Since the

guards for Payment506c1 and Weak1 are identical, they are both satisfied at s1 with

g1. Running e2(g1) at s1 yields s′1 = (A′

1, O
′

1,m
′

1, l
′

1) as shown in the following table:

s1
e2(g1)
−→ s′1

A1 = {Cy, Ike} A′

1 = {Cy, Ike}

O1 = {f} O′

1 = {f}

m1(Cy, f) = m′

1(Cy, f)) =

{local} {local}

m′

1(Cy, Ike) =

{payment}

m′

1(Ike,Cy) =

{audit}

l1 = ǫ l′1 = ǫ

Running Payment506c1(g1) at s1 yields s′′1 = (A′′

1 , O
′′

1 ,m
′′

1 , l
′′

1):

s1
Payment506c1(g1)

−→ s′′1

A1 = {Cy, Ike} A′′

1 = {Cy, Ike}

O1 = {f} O′′

1 = {f}

m1 = (Cy, f) = m′′

1(Cy, f)) =

{local} {local}

m′′

1(Cy, Ike) =

{payment}

l1 = ǫ l′′1 = ǫ

The conditions for noconflict are satisfied: as defined in Definition 5.5.13:

(a) deletedo(s1, s
′′

1) = ∅ ∩O′

1 = ∅

(b) created(s1, s
′′

1) = ∅ ⊆ O′

1

173

(c) tagsm(s1, s
′′

1) = ∅, so nothing needs to be compared

(d) deletedr(s1, s
′′

1) = ∅ so nothing needs to be compared

(e) inserted(s1, s
′′

1) = {(Cy, Ike, {payment}} and m′

1(Cy, Ike) = {payment}

(f) l′1 ≡ l′′1 so prefix(l′′1 , l
′

1)

A similar argument shows that for any argument set g ∈ ParametersE , either both

Payment506c1 and Weak1 are satisfied in which case the resulting states are as

described or neither are satisfied in which case noconflict is trivially true.

2. φ1 |=∗

(s1,g1)
e2, φ1 |=∗

(s1) e2. Since we have shown in 1 that noconflict(s1)e2, we have by

Definition 5.5.17 that φ1 weakly licenses e2 if we choose e = Payment506c1. Since

noconflict is true for any g ∈ ParametersE for s1, we have that φ1 weakly licenses

Weak1 for any arguments at s1.

3. noconflict(s2,g1)(Payment506c1, e2),noconflict(s2)(Payment506c1, e2). Since the

guards for Payment506c1 and Weak1 are not satisfied at s2 for g1, they do not

perform any updates to s2 and therefore noconflict(s2,g1) holds trivially. A similar

argument shows that for any g ∈ ParametersE , noconflict(s2) is also trivially true.

4. φ1 |=∗

(s2,g1)
e2, φ1 |=∗

(s2) e2. Since we have shown in 3 that noconflict(s1)e2, weak

licensing is true in an argument similar to 2.

Since φ1 |=∗

(s1)
e2 and φ1 |=∗

(s2)
e2, the policy quoted above is licensed by HIPAA

[§164.5069(c)(1), v.2003]. As in Definition 5.5.19, HIPAA therefore permits the above

policy. The additional requirement of Weak1 to give individuals the right to audit the

covered entity makes the policy in fact stricter since it places more requirements on the

covered entity than HIPAA does. We could, however, easily come upon an example where

the additional action would make the policy more lenient.

�

Example 5.5.2 shows how we can use weak licensing to show that a command is per-

mitted by policy. We also see that weak licensing, like strong licensing, may be true in

trivial cases where the command in question is not satisfied. Since we define |=∗ in terms of

174

noconflict, when checking for weak licensing it is logical to first check whether there exists

any commands which do not conflict. If non-conflicting commands are in the policy, we

can easily derive |=∗ relationships.

Example 5.5.3 (Observational Equivalence)

Examples 5.5.1 and 5.5.2 showed relations between individual commands and a policy.

Let us now consider one of the policy-to-policy relations: ∼̇.

Let us return to the command in Example 5.5.1 and let us embed it in a policy φ2 such

that φ2 = (∅, {Strong1}). Let us reuse the state s1 above and examine the relationship

between φ1 and φ2 with respect to ∼̇.

1. φ≁̇(s1,g1)φ2. To show ∼̇, as per Definition 5.5.20, we must show that any transition

which can be taken by φ2 can be taken by φ1 and vice versa. First, we have shown in

Example 5.5.1 that φ |=(s1,g1) Strong1, so we have that the transition by φ2 can be

performed by φ1. Second, for s1 at g1, TreatmentUse506c1 and HealthCareOpera-

tionsUse506c1 do not perform any updates and therefore s1
TreatmentUse506c1(g1)

−→ s1

and similarly for HealthCareOperationsUse506c1. However, since Strong1(a1) causes

a state update at s1 with g1 and there is no other command in φ2, there is no com-

mand that it can perform which does not cause an update. Therefore, the two are

not observationally equivalent.

The result for φ2 is disappointing since we can intuitively see that φ1 and φ2 are very

similar, but ∼̇ fails. If we augment φ2 with a trivial and unsatisfiable command Empty(a,

s, r, P, f, f’, msg), however, we can get the intuitive results:

CMD Empty(a, s, r, P, f, f’, msg)

if false

then return true

else return false

Let φ2 = (∅, {Strong1,Empty}) and let us reconsider the state s1 from Example 5.5.1:

1. φ∼̇(s1,g1)φ2. Returning to the case above, we have shown that φ |=(s1,g1) Strong1.

For Empty(g1), since it is not satisfied for g1, it does not produce an update. Since

175

TreatmentUse506c1(g1) in φ1 also does not produce an update at s1 with g1, we

have that φ |=(s1,g1) Empty and therefore we have that ∀e2 ∈ pwr(φ2), s1
e(g1)
−→

s′ =⇒ ∃e1 ∈ φ . s1
e1(g1)
−→ s′. For the other direction, since TreatmentUse506c1

and HealthCareOperationsUse506c1 are not satisfied for s1 and produce no up-

dates, they can be modeled in φ2 by Empty, so φ2 |=(s1,g1) TreatmentUse506c1

and φ2 |=(s1,g1) HealthCareOperationsUse506c1. For PaymentUse506c1, as we have

shown above in Example 5.5.1, it produces updates if and only if Strong1 does.

When it does produce updates, they are identical as well since we have shown that

φ |=(s1,g2) Strong1 via PaymentUse506c1. Therefore, ∀e1 ∈ pwr(φ) . s1
overlinee1(g1)

−→

s′∃e2 ∈ pwr(φ2) . s1
e2(g1)
−→ s′.

2. φ≁̇(s1)φ2. Although ∼̇ holds for the argument values g1, as we have shown in Exam-

ple 5.5.1, for g2 = (Cy, Ike,Cy, {treatment, use, own}, f, ∅, ǫ), φ 2(s1,g2) Strong1 and

therefore observational equivalence is not true either.

Having shown that φ2 and φ1 are observationally equivalent for s1 with g1, let us

consider another augmentation to φ2:

CMD Marketing(a, s, r, P, f, f’, msg)

if consent in (a, s)

and local in (a, f)

and coveredEntity in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

then insert marketing in (a, s)

and return true

else return false

The command Marketing permits a covered entity to use protected health information

about the individual if the individual has previously given consent. Adding Marketing

to φ2, we have φ2 = (∅, {Strong1,Empty,Marketing}). With the new command in φ2,

let us return to relating it to φ1 at s1 with g1. Note that we must augment the set

Right = {treatment, payment, healthCareOperations, local, marketing} to accommodate

the new right “marketing” in Marketing(a, s, r, P, f, f’, msg).

176

1. φ≁̇(s1,g1)φ2. With the addition of Marketing(a, s, r, P, f, f’, msg), for s1 with g1,

since Ike has given consent already, s1
Marketing(g1)

−→ ({Cy, Ike}, {f}, {m(Cy, f) =

{local},m(Cy, Ike) = {conset, marketing}}, ∅). There is no command in φ1, however,

which can grant the right “marketing” to the actor and therefore φ 2(s1,g1) Marketing

and therefore the two policies are not observationally equivalent.

�

Example 5.5.3 shows that observational equivalence is easily derived from strong li-

censing. The addition of a trivial command which is never satisfied lets φ2 strongly model

φ1 and thereby permit the derivation of observational equivalence. The inclusion of a null

command is important since it is necessary for the modeling of commands which are not

satisfied.

Example 5.5.4 (At Least as Strict)

We have shown in Example 5.5.3 that φ2 = (∅, {Strong1, Empty, Marketing}), let us

consider how they compare using the less strict relation of ≺, the at least as strict as

relation.

Let us again reuse s1 from Example 5.5.1 and argument list g1. Let us also consider

the argument list g2 = (Cy, Ike,Cy, {treatment, use, own}, f, ∅, ǫ):

1. φ1 ≺(s1,g1) φ2. As we have noted above in Example 5.5.3, for g1, any transition that

φ1 can perform is matched by φ2. Therefore, φ1 is at least as strict as φ2 at s1.

2. φ2 ⊀(s1,g1) φ1. As in Example 5.5.3, since at s1 with g1, Marketing can perform an

update which φ1 can not, φ2 is not at least as strict as φ1.

3. φ1 ⊀(s1) φ2. Since as shown in Example 5.5.3, for g2, φ1 can perform a transition

which φ1 can not using TreatmentUse506c1, it is not at least as strict as φ2.

4. φ2 ≺(s1,g2) φ1. Since for g2 none of the commands in φ2 are satisfied, the only tran-

sition it can take leaves s1 unchanged. Using PaymentUse506c1, φ1 can model a

command which causes no updates since Payment506c1 is also not satisfied. There-

fore, φ2 is at least as strict as φ1 at s1 with g2.

177

Even though φ2 has a transition which φ1 can not perform, we can relate the two

policies with ≺ by focusing on the parts where they agree. As shown, for the initial state

s1 with g1, φ2 subsumes the permissions of φ1. Therefore, φ1 is stricter than φ2 since

it offers less permissions to perform. As shown in 3, the relation does not hold for all

argument values since g2 breaks the relation. However, note that for g2 the relation is

reversed, that φ2 is at least as strict as φ1. The relation is trivial since φ2 is not satisfied

for g2 and therefore φ1 can model it with any unsatisfied command as well.

�

Example 5.5.4 shows that we can use ≺ to relate policies that subsume each other,

even if they are not exactly the same. That is, if they offer different permissions but agree

on particular states and argument lists. As shown in the example, two policies may be at

least as strict at one another interchangeably based on the initial state and argument list.

5.6 Conclusion

In this chapter we have presented the formal language for privacy commands based on the

foundational framework in Chapter 3. Privacy APIs are built using the two executable rules

of privacy commands: commands and constraints. Commands encode actions that may be

performed by agents based on the permissions given in a legal text. They may reference

each other and check guards about the knowledge state. Constraints encode limitations

on commands from legal language that limits when actions may be performed. They may

claim a scope of commands that they limit and check such that conditions that limit their

applicability. We also considered several relations between commands and policies that let

us quantify the permissiveness of policies and commands. In the next chapter we show how

to automate the evaluation of Privacy APIs by using SPIN and Promela as the evaluation

engine and a relation evaluator.

178

Chapter 6

Translating Privacy APIs to

Promela

In the previous chapter we presented the formal Privacy Commands language and how

we use commands and constraints in the language to form Privacy APIs which represent

policies. In particular, in section 5.4 we discussed how the evaluation engine evaluates

commands and constraints to update the knowledge state. Strong and weak licensing

are relations which let us compare commands and policies and quantify how permissive

they are. In this chapter we show how to translate Privacy APIs into Promela, the input

language for the SPIN automated state space exploration tool which lets us evaluate the

static properties of a given policy. Such properties include evaluations of what actions

are permitted by the policy and under what circumstances. The translation to Promela

includes the functionality of the commands and constraints as well as the functionality of

the evaluation engine which processes them. Our goal in static exploration (using SPIN)

is to detect properties of the Promela model that give insights into the actions that are

reachable or unreachable using a given formal Privacy API, in particular those related to

the relations discussed in Section 5.5. Since the Privacy API is derived from the legal text

and maintains its structure, we may then map the discovered properties from the Privacy

API back to the source text.

At a high level, in order to translate a Privacy API into an executable model, we must

179

translate the elements from the knowledge state universe as discussed in Section 5.1: Role ,

Purpose , Tag , Right . With the sets, we build commands and constraints based on the

structure of the legal text using the translation methodology discussed in Section 4.2. The

resulting commands and constraints are a static model of the legal document framed in

the above terms.

We assert properties in terms of the values contained in a knowledge state s ∈ State

that are reachable from a given initial state s − (A,O,m, l). With the static model and

initial state, we explore what states are reachable by executing series of commands in

the policy. By observing the evolution of the knowledge state from the commands, we

determine the properties that are true of the static model and thus of the policy. Using

SPIN lets us automate the process by letting it explore the reachable states. For input, we

develop invariants which describe properties of the knowledge state that we want SPIN to

test.

As discussed in Section 3.2, the aspects of the privacy law that are of interest to us are

ones that policy writers and evaluators would normally examine by hand. They commonly

wish to compare policies, combine policies, examine whether one policy complies with

another. Such aspects are amenable for modeling using Privacy Commands since the

language enables us to examine what permissions a legal privacy policy provides. We

use the policy relations defined in Section 5.5 to examine the properties of policy and

derive conclusions. Note that the properties and conclusions that we are able to extract

are subject to the language and style of the source document. Thus we will have more

interesting results with policies that are detailed and less interesting results with vague

ones.

In this chapter we develop the techniques needed for making the transition between the

formal Privacy APIs representation from Chapter 5 and the modeling language Promela.

We first present an overview of how the translation process works in Section 6.1. We

then present the step by step mapping from the Privacy Commands language to Promela

processes in Section 6.2. The Promela processes are framed by auxiliary code to properly

perform evaluation. We present the auxiliary code in Section 6.3. We then show the cor-

rectness of our mapping from Privacy Commands to Promela with an equivalence theorem

180

in Section 6.4. We conclude in Section 6.5 by outlining the uses of the Promela model for

property exploration as we demonstrate in Chapter 7.

6.1 Translation Overview

The process of translation from a Privacy API to a Promela model involves several steps.

We develop the precise methodology for the translation into Promela in Section 6.2, but

we outline the steps here in order to give the reader a clear picture of the process. We first

present an example command and constraint to illustrate the process, shown in Figure 6.1.

The commands are samples from a case study in Section 7.1.2 and are derived from HIPAA

[§164.506(a)(1), v.2000].

1 CST Permitted506a1(a, s, r, P, f, f’, msg)
2 Scope {TreatmentUse506a1, PaymentUse506a1,
3 HealthCareOperationsUse506a1, TreatmentDisclose506a1,
4 PaymentDisclose506a1, HealthCareOperationsDisclose506a1}
5 Such That individual in Roles(s)
6 and f.protected-health-information = true
7 if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}
8 then return true
9 else return false

1 CMD TreatmentUse506a1 (a, s, r, P, f, f’, msg)
2 if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}
3 and individual in Roles(s)
4 and healthCareProvider in Roles(a)
5 and local in (a, f)
6 and treatment inf P
7 and use ina P
8 then insert treatment in (a, s)
9 and return true

10 else return false

Figure 6.1: Sample commands for translation

Let us consider the steps required to translate the above commands and constraints

into an executable model, independent our choice of Promela. Let us presume for this

discussion that we are given only the Privacy API and the purpose hierarchy Purpose .

To illustrate the process, let us consider Permitted506a1 and TreatmentUse506a1 from

181

Figure 6.1.

Step 1 Extraction of sets. We must extract an executable representation of the sets from

the Privacy API: Role , Purpose , Right , Tag . For example, for line 5 of Permit-

ted506a1, we must have a mechanism for establishing when an agent holds a role

and so on.

Step 2 Purposes. Given a set of purposes, Purpose , we construct an executable represen-

tation of the purpose hierarchy. For example, on lines 6–7 of TreatmentUse506a1,

we must check whether the purposes “use” and “treatment” are included in the

purpose set.

Step 3 Commands. For each command in the Privacy API, we need to create an executable

representation of each command. Each command has a generic structure as per

the definition, so we devise a generic structure for each command. We then fill in

the guards and operations which make up the functionality of the command.

Step 4 Constraints. Similar to commands, we devise a generic executable representation

which we fill in with executable versions of the guards and operations. For over-

loaded constraints we need some manner of combining their judgments.

Step 5 References. In order to allow the commands and constraints to reference each

other and properly manage scopes, we need to create a mechanism to enable them

to communicate.

6.2 Translation to Promela

After translating the section of legal text into a Privacy API, we convert the commands

and constraints into Promela in a format suitable for input to the SPIN model checker.

Using SPIN we define invariants and evaluate whether the policy respects them. We use

the SPIN model checker (www.spinroot.com) since it provides a good interface for model

creation and invariant checking, although other similar tools could have been used instead.

At the high level the translation between Privacy Commands and Promela requires the

creation of run-time entities that have the same semantics as commands and constraints.

182

The run time entities (Promela processes) are managed by generic management code de-

signed to handle the functionality of the evaluation engine (Section 5.4). We first discuss

in detail the methodology for translating commands and constraints into Promela in Sec-

tion 6.2.2 and then discuss the management code in Section 6.3. For brevity, full source

and supplementary code is placed in Appendix A.

6.2.1 Promela Fundamentals

During execution, SPIN performs variable inspections and updates using Promela com-

parators and operators. The syntax and semantics of those inspections and updates are

as follows. The operators we use in Promela are shown in Table 6.1. As in standard im-

perative programming languages, users can compose expressions which are combinations

of operators and variables that are evaluated to a resulting value but produce no side ef-

fects. Statements are similar to expressions except that they produce side effects. We list

the expressions and statements used in our Promela models, but since many of them are

standard to imperative programming languages such as C and Java, we offer only limited

elaboration.

Table 6.1: Promela operators

Operator Usage

== Equality comparison

!= Inequality comparison

<, <= Less than, less than or equal

>, >= Greater than, greater than or equal

= Assignment

&& Boolean AND

|| Boolean OR

! Channel send

? Channel receive

[] Array index

++ -- Increment and decrement

run p() Run a process p

atomic Restrict process interruption

->, ; End of statement or expression

The expressions we use in our Promela models are as follows. For this discussion,

183

generic variables or base types (excluding channels) we use the names var1, var2, We

do not refer to a particular base type for them unless noted, so by default the following

explanations apply equally to bits, integers, user defined types, and booleans. We use

bool1, bool2, . . . for boolean variables. We use chan1, chan2, . . . for channel variables.

We denote a generic expression Exp1, Exp2, We denote a generic statement Stmt1,

Stmt2, We denote integer variables int1, int2,

• var1 == var2; a[int1] != var3; var4 < var5; var6 > var7. Variable and ar-

ray index comparison. Result is a boolean value.

• bool1 || bool2; bool3 && bool4; Exp1 && Exp2. Boolean comparison. Result

is a boolean value.

• atomic{Stmt1, Stmt2}. Atomic group of statements which will not be interrupted.

The statements we use in our Promela models are as follows. We use the same variable

notation as for the expressions listing.

• var1 = var2; var3 = (Exp1), a[int1] = var4. Variable and array assignment.

Outcomes are that var1 gets the value of var2, var3 gets the value to which Exp1

evaluates, and a in index int1 gets the value var4.

• chan1!var1; chan2!var2, var3; Sending on a channel. Outcome is that var1 is

sent over chan1 and var2, var3 are sent over chan2. For non-buffered channels, the

send blocks until a corresponding receive is executed on the channel.

• chan1?var4; chan2?var5, var6; Receiving on a channel. Assuming messages are

sent as in the previous item, the outcome is that var4 gets the value of var1, var5

gets the value of var2, and var6 gets the value of var3.

• int1++; int2--;. Integer increment and decrement.

• skip. Nil statement.

• break. Exits the innermost iteration structure.

184

We use the following selection and repetition constructs in our models.

• if ::Exp1 -> Stmt1; Stmt2; ::Exp2 -> Stmt3; ::Stmt4 -> Stmt5; ::else

-> skip; fi. The if/fi statement first evaluates all of the expressions and

statements that immediately follow a double colon (the guards). It then randomly

selects one to execute from all of the choices whose guards are executable (i.e.,

expressions that are true or statements that are executable). If none of the guards

are executable, the else choice is selected.

• do :: Exp1 -> Stmt1; Stmt2; :: Exp2 -> Stmt3; :: else -> skip; ::

Stmt4 -> Stmt5; break; od. The do/od statement behaves similarly to an if/fi

statement except that it iterates indefinitely until a break is executed.

We use the following special statements and functions:

• atomic{Stmt1; Exp1;} Executes the statements and expressions in the clause with-

out preemption by other processes. The enclosed Stmt1 and Exp1 therefore execute

as one atomic action.

• assert(Exp1); Evaluates the expression Exp1 to a boolean result, similar to a C

assertion. If the result is true, the program continues execution. If the result is false,

program execution terminates immediately.

We use atomic and assert statements to enforce invariants on shared, fixed size arrays

whose contents must be protected be properly used by many processes in a safe manner.

Promela includes several basic variable types that we will use for storage: int for

integers, bool for booleans, and bit for bit flags. Table 6.1 includes the operators used in

Promela which we discuss below

There is one enumerated type mtype which is used for enumerating message types. The

message types used in our models are:

mtype = {command request, command response, constraint request,

constraint response, search request, search response, purpose request,

purpose response, hier request, hier response};

185

The use of all the values of mtype is shown in Table 6.5. Complex record types can be

declared in terms of the basic types using typedef. Arrays can be made of any simple of

complex type using a C-like array syntax:

1 int a[20];

2 bool b[5];

The above code creates a zero-indexed array of integers of size 20 called a and a zero-

indexed array of booleans of size 5 called b. Like C, Promela requires array sizes to be

constant integers available at compile time. Promela, however, does not have any features

for dynamic allocation or deallocation of memory, so all arrays are of fixed size.

Selection is performed using a non-deterministic if/fi construct. Options for the

selection statement are denoted with a double colon ::. The first expression for each

option is interpreted as a guard. The set of true or executable guards is collected at run

time and one is selected at random to be executed. An else guard is selected only if all

other options are not executable. If none of the guards are executable and there is no else

statement, the if/fi blocks.

1 if

2 :: x < 5 -> y = 1;

3 :: x < 4 -> y = 2;

4 :: else -> y = 3;

5 fi

Here if x is 4, then only the first option is executable and y will get 1. If x < 4 then

there is an equal chance that y will get 1 or 2. If x > 5 then y will get 3.

Iteration is performed using a non-deterministic do/od construct which behaves similar

to the if/fi construct. At each iteration, the construct randomly selects one of the true

or executable options for execution. After completion, the construct starts the process

again. If no options are executable, the do/od blocks.

1 do

2 :: x < 5 -> x++;

186

3 :: x < 5 -> x--;

4 :: x > 5 -> y++;

5 od

Here if execution begins with x less than 5, there is an equal chance that x will be

incremented or decremented. If x ever reaches 5, the construct will block since none of

the statements will be executed. If x begins execution greater than 5, then y will be

incremented indefinitely.

Figure 6.2: Sample communication

The execution atoms in Promela are processes, encapsulations of code which may accept

and return information via shared variables and communication channels. We model each

command and constraint as a separate process which takes an input query, performs some

processing, and returns a result to it caller. As shown in Figure 6.2, processes communicate

by sending messages across different channels. In the figure, Process1 sends a request to

Process2 along the request channel and then waits for a response from Process2 along the

response channel.

Some example channels are:

1 chan CMD1_chan = [0] of {mtype, bool, bool};

2 chan CMD2_chan = [0] of {mtype, bool};

3 chan A_chan = [2] of {int, bit};

Here, CMD1 chan and CMD2 chan (lines 1–2) are non-buffered channels ([0]), meaning

that if a process sends a message over them, it blocks until another process receives it.

CMD1 chan has a width of 3 and requires that all messages have the signature mtype,

bool, bool. CMD2 chan is similar except that it is 2 wide and requires that all messages

187

have the signature mtype, bool. A chan (line 3) is a buffered channel ([2]), so senders do

not block on it. It is 2 wide and requires that all messages have the signature int, bit.

In our models we do not use buffered channels, so they all are typed [0] of (...), but

they may have different widths and message signatures. Two communicating processes

CMD1 and CMD2 which use the above channels are shown below.

1 active proctype CMD1() {

2 bool result; CMD command = Cmd1;

3 CMD2_chan!request(true);

4 CMD2_chan?response(result);

5 CMD1_chan!command_response(result, result);

6 }

7

8 active proctype CMD2() {

9 bool result; CMD command = Cmd2;

10 int i = 2, j = 3;

11 do

12 :: CMD2_chan?command_request(_) ->

13 if

14 :: i < j ->

15 CMD_chan!command_response(true);

16 :: else ->

17 CMD_chan!command_response(false);

18 fi

19 od

20 }

Here process CMD1 sends (!) a request to CMD2 to execute (line 3) over its channel

CMD2 chan. The message is a tuple, but is written request(true) since SPIN allows

messages to be denoted using a shorthand mtype(var1, var2, ...) which is equivalent

to (mtype, var1, var2, ...). The sent message has a payload true which is included

188

to match the width and signature of CMD2 chan. CMD1 then listens (?) for a message on

CMD2’s channel on Line 4. Since the mtype response is included, CMD1 will only accept

messages with that mtype. The boolean payload is stored in the variable result. On line

5, CMD1 sends out its response in a command response message with two copies of the

result variable to match the type and width of CMD1 chan.

Process CMD2 has an infinitely repeating do/od loop on lines 10–19 which means that

it will loop indefinitely, accepting one message at a time. Line 12 declares the only option

(::) the loop may select from: listening for a command request on CMD2 chan. When a

command request arrives, its payload value is discarded using the symbol. The if/fi

statement then executes (line 13) and if i < j (line 14), CMD2 returns true over its

channel (line 15). Otherwise, the else option is chosen (line 16) and the command returns

false (line 17). After one execution is completed, the loop returns to Line 12 to wait for

more requests.

Most commands in our models behave like CMD2 above. They are active processes

which contain infinite listen/action loops. Due to the constraints of Promela, active or

always running processes can accept parameters only at start up, so the knowledge state is

stored in a set of global variables that can be written and read by any process. Since we do

not allow concurrency (i.e., every process must wait for the completion of any request it

sends before it may proceed), we do not need to worry about race conditions or read/write

conflicts. We elaborate on the translation on commands in Section 6.2.6 and constraints

in Section 6.2.4 and Section 6.2.5.

6.2.2 From Formal Model to Promela Model

Adapting a Privacy API to Promela requires the creation of structures parallel to the sets,

matrices, and logs used in the Privacy Commands language. The correspondence between

the knowledge representation in the formal model and the Promela code depends on the

correspondence in the storage representations which we discuss next. In order to show

correspondence between Privacy Commands and the Promela processes in Section 6.4, we

first discuss the Promela types and language constructs that we use to parallel the formal

language and evaluation engine. In Section 6.4.1 we discuss the semantics of the constructs

189

discussed below to show that they correspond to the operational semantics in Section 5.3.

In the Privacy Commands model, knowledge state is stored in a series of sets and

tables, as delineated in Table 6.2. The representations differ slightly due to the operational

behavior of Promela and so we now detail them and their usage.

Table 6.2: Knowledge state representations

Formal Representation Promela Representation

Agent AGENT variable instantiations

Role Role bit record type

Roles(a) mroles[] array

Object OBJECT variable instantiations and object array

Tag Tag bit record type

tags(o) mtags[] array

Right Rights bit record type

Matrix Matrix m composite matrix type

msg strings Note bit record type

Log of strings log array of Note type

Log of informs inform array of Note type

Purpose PURPOSE variable instantiations

Purpose partial order parent array

We first consider at a high level what the corresponding Promela translation for each

structure and relevant set are. The basis for the discussion is the section Section 5.1

regarding the fundamental sets and types. We then detail the translation in the rest of

this subsection.

Agents and Objects As discussed in Section 5.1, there is a static set Agent with n > 0

members a1, . . . , an, all with unique names, and a dynamic set Object with m > 0

members o1, . . . , om. Correspondingly, in the Promela model we instantiate data

types AGENT and OBJECT which use integer values to uniquely identify agents and

objects, similar to their names in Agent and Object .

Roles As discussed in Section 5.1, roles are static attributes of agents, members of Role .

Any member of Role may be true for any given agent. The corresponding Promela

construct is the mroles array which stores a bit flag for each agent and role using a

190

Role record type. Roles are turned on for an agent setting the bit flag to true for

the corresponding agent and role.

Rights As discussed in Section 5.1, rights are members of a set Right that are set as

relationships between agents and objects. The corresponding Promela construct is

the matrix m which contains records with bit flags for each right and is indexed using

the agent and object names. A right is set between an agent and an object by setting

the corresponding bit flag for the agent and object entry in a Rights record type.

Tags As discussed in Section 5.1, tags are boolean flags from the set Tag which are set to

indicate meta-information. For an object o, we say the tag t is set iff o.t = true. The

corresponding Promela construct is the mtags array which stores a bit flag for each

object and tag in a Tags record type. A tag is set on a given object by assigning a

boolean value to the corresponding object and tag.

Purpose As discussed in Section 5.1, purpose is modeled in a partial ordering between

purpose names. In the Promela model, we simulate the hierarchy by assigning vari-

ables of type PURPOSE for each purpose and indexing them into an array parent which

encodes the hierarchy. Specialiazed functions operate over the array to interpret it

correctly.

Judgments In Section 5.1 we enumerate the judgments which the evaluation engine de-

rives from constraints. We represent each judgment in Promela with a custom type

JUDGMENT and use variables of the type to represent the results of constraints.

Messages As discussed in Section 5.1, free text strings may be entered in the log or sent

to agents. Since Promela does not support a string type, we modify the contents of

messages to a snapshot of the state when the log or inform action is taken which is

appended to the log array.

Commands and Constraints Commands and constraints as defined in Definitions 5.2.8

and 5.2.10 respectively are combinations of guards and operations. The evaluation

engine as described in Section 5.4 evaluates the guards and performs the operations

as described. In Promela we represent each command and constraint as a Promela

191

process. Each process listens on a specified channel for requests. When a request ar-

rives, the process evaluates the guards and performs the operations for the command

or constraint and upon completion sends it return value over its specified response

channel. We elaborate on the translation for commands in Section 6.2.6 and con-

straints in Section 6.2.4 and Section 6.2.5.

Agents and Objects

The knowledge state as defined in Section 5.1 is stored in global variables which can

be examined by all constraints and commands. Variable state such as agents, objects,

purposes, tags, and messages are stored using enumerations with names paired up with

unique integer numbers which are then hard coded into the model. Since agents are a subset

of objects, their numbering must not overlap. For example, the agent set A = {alice, bob,

claire} and object set O = {file1, file2} would be represented as:

1 #define AGENT int

2 #define OBJECT int

3 #define MAXAGENT 3

4 #define MAXOBJECT 20

5

6 AGENT alice = 0;

7 AGENT bob = 1;

8 AGENT claire = 2;

9 OBJECT file1 = 3;

10 OBJECT file2 = 4;

11

12 OBJECT objects[MAXOBJECT] = 0;

13 objects[alice] = 1; objects[bob] = 1; objects[claire] = 1;

14 objects[file1] = 1; objects[file2] = 1;

In order to make the types more obvious we use #define to create custom types for

agents and objects (lines 1–2). They both map to type int, but using the custom types

192

makes the code a bit easier to check for bugs since the intended typing is shown.

The agent set does not evolve over time, so there is no need to create new agents during

execution. The number of agents is defined as MAXAGENT (line 3). The object set may grow

and shrink, however, using the create object and delete object primitive operations,

so we must handle the growth and shrinkage of the object set and consequently, the rights

matrix as well (see next heading below). As noted above, Promela does not support

dynamic allocation of arrays, so we must fix some size for the object set and the rights

matrix, called MAXOBJECT (line 4). This places a limitation on the exploration space of SPIN

and limits us to exploring properties that do not involve the creation of an unbounded or

unknown number of objects at once. Also, for simplicity the slots for deleted objects are

not reused. For an actual implementation of the policy engine over an operating database,

both of these limitations would limit the usability of the database. However, since we are

only interested in the exploration of policy properties they are not severe restrictions.

We instantiate a variable of type AGENT for each ai ∈ Agent . The integer value assigned

to it is AGENT ai = i where ai is the name assigned to the agent and i is an integer which

is equal to ai’s index in Agent . The numbering is done consecutively, so ∀x, y, x 6= y =⇒

xi 6= yi where xi and yi are the indexes of the agents (lines 6–8).

Similar to agents, we instantiate a variable of type OBJECT for each oi ∈ Object . The

integer value assigned to its is OBJECT oi = i where oi is the name assigned to the

object and i is an integer which is equal to oi’s index in Object . The numbering is done

consecutively, so ∀x, y, x 6= y =⇒ xi 6= yi where xi and yi are the indexes of the

objects. Since all entries AGENT are also members of OBJECT, the two types share a common

storage type (i.e., integers) and their indexes are established such that the agents are all

assigned consecutive indexes at the bottom of the OBJECT indexing. That is, if MAXOBJECT

> MAXAGENT, then ∀oi ∈ Object − Agent , the index of oi > MAXAGENT (lines 9–10).

In order to allow the creation and deletion of objects we create an array objects[]

of type OBJECT which maintains the state of whether an object with a given index is

instantiated or not (line 12). In the example, the entries for the instantiated agents and

objects are all set to 1 to indicate that an object or agent with the given index exists (i.e.,

has been defined or created) (lines 13–14) . If an object is deleted, its entry is set to 0.

193

Since agents are also objects, the entries in objects corresponding to them are also set to

1. In order to check whether an object index O is an agent and therefore whether is may

be deleted, the code checks if o < MAXAGENT.

Roles

Roles are represented with a bit record of type Role. For each k1, . . . ∈ Role we create

a bit entry which can be set independently. The array Role mroles[MAXAGENT] stores

MAXAGENT records for the number of agents that exist (MAXAGENT). For each agent a, we say

that a has role k iff roles[a].k == 1. As an example, consider a role record with three

roles is (based on Example 5.2.2):

1 typedef Role

2 {

3 bit covered_entity;

4 bit inmate;

5 bit correctional_institution;

6 }

7 Role mroles[MAXAGENT];

8 mroles[alice].covered_entity = 1;

9 mroles[bob].inmate = 1;

Here there are three roles that may be occupied and the roles array mroles is declared

of size MAXAGENT. Alice is given the role of a covered entity and Bob is given the role of an

inmate. The roles array is static during the execution of the policy since no operations to

modify it.

Rights Matrix

Rights are stored in a rights record, a bit vector which is set to represent the rights that

are held by an agent over an object. The bit flags are named for the rights that they

represent. For example, for the rights set Right = {read, write}, the rights record would

be represented as:

194

1 typedef Rights

2 {

3 bit read;

4 bit write;

5 }

With this representation, a rights record instance can be indexed by the name of its fields.

For example, to create a rights record for Alice and set the “read” permission, we would

write:

1 Rights alices_rights;

2 alices_rights.read = 1;

The rights matrix is represented using a two dimensional matrix of agents and objects

with a rights record as the entry. Since Promela does not directly support multidimensional

arrays, we first use a typedef to create a type called vector which contains just an array of

rights. We then create a second typedef which is an array of vectors. The second typedef

therefore has an array of vectors, the equivalent of a two dimensional array:

1 typedef Vector

2 {

3 Rights objects[MAXOBJECT];

4 }

5 typedef Matrix

6 {

7 Vector mat[MAXAGENT];

8 }

The resulting matrix is indexed using the record names. In a model, we create one

matrix m which stores the rights for all agents and objects. For example, to store Alice’s

read right on file1:

1 Matrix m;

2 m.mat[alice].objects[file1].read = 1;

195

Tags

Tags are boolean flags that are associated with objects. We instantiate a record type Tags

which consists of boolean flags for each tag. The boolean flags in each record may be set

independently. Tags are stored in a special tags vector mtags which is indexed by object

name, similar to the rights matrix. For example, to create two tags, we first create a tags

record:

1 typedef Tags

2 {

3 bool protected_health_information;

4 bool psychotherapy_notes;

5 }

The first tag is a boolean flag for indicating whether an object is protected health infor-

mation. The second is a boolean flag for indicating whether a file contains psychotherapy

notes. Commands may erase tags by setting the boolean flag to false. Erasure is not done

automatically, so maintaining valid combinations of mutually exclusive tags is enforced by

the commands that use them. The tags are stored in a tags vector indexed by object name.

The tag t on an object o is set iff tags[o].t == true. For example:

1 Tags mtags[MAXOBJECT];

2 mtags[file1].protected_health_information = true;

3 mtags[file1].psychotheray_notes = false;

The above example creates a tags matrix the size of the number of objects. It stores

tags indicating that File1 is protected health information and is not psychotherapy notes.

Purposes

We represent purposes in Promela similar to objects and agents, with a set of names that

map to unique, consecutive integer constants. The first purpose indexed is numbered 0,

the second 1, and so on. Like agents and objects, we use #define to create a custom type

PURPOSE. The total number of purposes is stored in a constant MAXPURPOSE and is used for

196

creating the arrays that store information about the purpose hierarchy (Section 5.1) and

for representing purpose sets passed as arguments to commands and constraints. Both the

purpose hierarchy (stored in PURPOSE parent[MAXPURPOSE]) and purpose set parameters

(stored as PURPOSE P[MAXPURPOSE]) are arrays of size MAXPURPOSE.

A purpose set PURPOSE P[MAXPURPOSE] is an array of PURPOSEs which represents a set

of purposes in the formal model P ⊂ Purpose. We include a p ∈ Purpose in the purpose set

P by setting its corresponding integer value in P to 1. All purpose sets therefore have the

same size and ordering, allowing for quick lookup, set union, intersection, and difference

operations.

Since Promela does not offer any support for hierarchies, we simulate one using an array

PURPOSE parent[MAXPURPOSE] which stores the purpose hierarchy. The array parent has

with the property that the value of each array index is the corresponding purpose’s parent

(i.e., parent[C] = P for purposes C and P using the unique integer numbers assigned to

them). Root purposes have a parent value of −1 which is stored in a special purpose called

ROOT. Using the parent array we can traverse up the purpose hierarchy in linear time, but

down traversals have a worst case O(n2) complexity.

1 #define PURPOSE int

2 #define MAXPURPOSE 2

3 PURPOSE ROOT = -1;

4 PURPOSE p1 = 0;

5 PURPOSE p2 = 1;

6 PURPOSE parent[MAXPURPOSE];

7

8 parent[p1] = p2;

9 parent[p2] = ROOT;

In the above example we define two purposes p1 and p2. The array parent is of size

MAXPURPOSE. It indicates p2 is the parent of p1 and that p2 is a root purpose.

We create two purpose set membership checking algorithms, one for allowed semantics

and one for forbid semantics as defined in Section 5.1. Both algorithms use the parent

197

array using only upward traversals for efficiency.

To illustrate how purposes are represented and used in our Promela models, let us

return to the purpose example discussed above in Example 5.1.1.

Example 6.2.1 (Using Purposes in Promela)

In Example 5.1.1 above we presented an example hierarchy of purposes based on differ-

ent types of surgeries that a policy considers: Treatment is the parent of Surgery, Surgery

is the parent of Oral Surgery and Eye Surgery. For convenience, we reproduce the hierar-

chy shown above in Figure 5.1 here in Figure 6.3. Let us assign the purposes indexes in

Treatment (0)
↓

Surgery (1)
ւ ց

Oral Surgery (2) Eye Surgery (3)

Figure 6.3: Hierarchy for surgery example (reprise)

order. In Promela:

1 #define PURPOSE int

2 #define MAXPURPOSE 4

3 PURPOSE ROOT = -1;

4 PURPOSE Treatment = 0;

5 PURPOSE Surgery = 1;

6 PURPOSE Oral_Surgery = 2;

7 PURPOSE Eye_Surgery = 3;

The parent array is of size MAXPURPOSE:

Index 0 1 2 3

Parent -1 0 1 1

In Promela:

1 PURPOSE parent[MAXPURPOSE];

198

2 parent[Treatment] = ROOT;

3 parent[Surgery] = Treatment;

4 parent[Oral_Surgery] = Surgery;

5 parent[Eye_Surgery] = Surgery;

An action which is to be performed for Oral Surgery would provide a purpose set:

Index 0 1 2 3

Value 0 0 1 0

Note that the bits for Treatment and Surgery are set to 0 since Oral Surgery is the

most specific purpose. If Surgery, for example, had been set to 1 as well, it would indicate

that the action is for all types of surgery, including Eye Surgery. �

Using the purpose indexing and parent table we implement lookup functions such

as isParentOf, isChildOf, isAncestorOf, isDescendantOf using algorithms based on the

definitions in Section 5.1. The code for the functions are in Appendix A.1.

The algorithms for set inclusion with permit and forbid semantics are layered on top

of the hierarchical algorithms. For checking p ina P for allowed semantics we check

∃p′ ∈ P : isAncestorOf(p′, p) and for p inf P for forbid semantics we check ∃p′ ∈ P :

isAncestorOf(p′, p) || isDescendantOf(p′, p). The function isPermittedByA(p, P) imple-

ments the check for p ina P and isForbiddenByA implements the check for p inf P . The

implementations for all of the algorithms are provided in Appendix A.1.

Judgments

As defined in Section 5.1 and Section 5.4.2, judgments are derived from the constraint

return values. The evaluation engine derives the judgments based on the values of the

boolean results, whether the constraint is overloaded, and whether is run as part of a

constraint search. We now detail how judgments and their derivations are performed in

the Promela model.

We enumerate the five different judgments as constants, and define a type JUDGMENT

which we #define to int for storage of judgment results:

1 #define JUDGMENT int

199

2 #define ALLOW 0

3 #define FORBID 1

4 #define IGNORE 2

5 #define DONT_CARE_ALLOW 3

6 #define DONT_CARE_FORBID 4

We defer the discussion of judgment derivation in Promela to Section 6.2.7 during our

discussion of translating commands and constraints.

Log and Inform

Since Promela does not support characters or strings, we use records to simulate the storage

of log notes and the sending of messages to agents. The knowledge state therefore includes

an array of log notes and inform messages sent. To perform a log or an inform operation, a

new log or inform record is placed in the next open space in the array. As with the objects

array, this places a limit on the number of log entries and inform messages sent. The types

used for the record fields are as discussed above. The records for log and inform records

are as follows:

1 typedef Note

2 {

3 CMD command;

4 AGENT a;

5 AGENT s;

6 AGENT r;

7 int P[MAXPURPOSE];

8 OBJECT f;

9 OBJECT few;

10 }

11 Note log[MAXLOG];

12 Note inform[MAXINFORM];

200

Global Variables

Each command and constraint is converted into a process which listens and responds

along a named public channel. The constants described in this section are summarized

in Table 6.3. Globally readable arrays contains bit flags for tags, roles, log notes, and

inform messages as described above. Global variables hold the values of the parameters

for commands and constraints: a, s, r, P, f, f’, msg. The names and type declarations the

global variables and arrays are shown in Table 6.4. Table 6.5 shows the different message

types and how they are used.

Table 6.3: Declared Constants for Promela models

Name Use

MAXAGENT Number of agents

MAXOBJECT Maximum objects

MAXPURPOSE Number of purposes

MAXLOG Maximum log slots

MAXINFORM Maximum inform slots

MAXCMD Number of commands

6.2.3 Translating Guards and Operations

In Section 6.2.4 and Section 6.2.6 we discuss the framework for translating constraints and

commands, but first we discuss the translation of the operations and guards. We first

discuss the particulars of each translation based on the notation presented in the Privacy

Commands grammar in Section 5.2.5. We then provide and explain the full translation

tables in Tables 6.7 and 6.8.

Guards and operations are translated line by line using the Promela model structure

described in Section 6.2.2. The following translation tables show how we translate each

guard and operation to Promela. Table 6.7 contains the translation for guards and Table 6.8

contains the translation for operations. Since we will present a detailed explanation for

the Promela translations in Section 6.4.2, we postpone a detailed discussion of Tables 6.7

and 6.8. The proof of Lemma 6.4.4 on Page 226 details the Promela code in Table 6.7.

The proof of Lemma 6.4.5 on Page 230 details the Promela code in Table 6.8.

201

Table 6.4: Global variables for Promela models

Name Declaration Use

a AGENT a; Current active agent

s AGENT s; Subject of current action

r AGENT r; Recipient of current action

f OBJECT f; Object for current action

few OBJECT few; Slot for creating new object

topObj OBJECT topObj; Next open object slot

objects OBJECT objects[MAXOBJECT]; Available objects

mroles Role mroles[MAXAGENT]; Active roles

m Matrix m; Rights matrix

mtags Tags mtags[MAXOBJECT]; Tags for the objects

P int P[MAXPURPOSE]; Purposes for current action

parent PURPOSE parent[MAXPURPOSE]; Purpose hierarchy

topLog int topLog; Next open log slot

log Note log[MAXLOG]; Log

topInform int topInform; Next open inform slot

inform Note inform[MAXINFORM]; Messages sent to inform

Table 6.8 does not include a translation for the operation return b since the placement

of return true and return false is restricted to the true and false branches of commands

and constraints and the logic that they implement is distributed throughout the command

and constraint processes in Figures 6.6 and 6.4. We show in Lemmas 6.4.6 and 6.4.7

that the commands and constraints structures correctly implement the logic in the return

operations.

As discussed in Section 6.2.2, arrays in Promela are of fixed size. Therefore, the oper-

ations which add entries to matrices with fixed sizes (i.e., object creation, logging, inform

messages) are framed in assert statements. The assertions perform bounds checks on the

arrays before adding new records. If an assertion fails, the model’s execution ceases and

the error is caught by SPIN.

6.2.4 Translating Constraints

We use the Promela foundation in Section 6.2.2 in writing the Promela translations of

constraints and commands. We discuss the translation of constraints in this section, the

202

Table 6.5: Message Types

mtype Type Use

command request Request Sent to a command process to start.

command response Response From a command which completed.

constraint request Request Sent to a constraint process to start.

constraint response Response From a constraint which completed.

search request Request Sent to start a constraint search.

search response Response Response from a constraint search.

purpose request Request To the purpose algorithms.

purpose response Response From the purpose algorithms.

hier request Request Initiates a traversal of the purpose hierarchy.

hier response Response Completion of a purpose hierarchy traversal.

translation of scopes in Section 6.2.5, and the translation of commands in Section 6.2.6.

Where needed we write special functions that perform auxiliary tasks in Promela and

provide their code in Appendix A.

As per Definition 5.2.10, constraints have the following structure:

CST c(a, s, r, P, f, f ′,msg)

Scope {e1, . . .}

Such That ψst1

and . . .

if ψr1

and . . .

then return true

else return false

As discussed in Section 5.4.2, there are then three boolean results derived from a

constraint by the evaluation engine: bscp indicating whether the calling command is in

scope, bst indicating whether the such that guards are satisfied, and br indicating whether

the regular guards are satisfied. Judgment derivation is performed by the evaluation engine

depending on whether the constraint is run due to a reference or during a constraint search.

Tables 5.8 and 5.10 show how the evaluation engine determines judgments from the boolean

results.

Constraint processes accept requests with one CMD parameter using an mtype

203

constraint request (as shown in Table 6.5) over a channel type which accepts mes-

sages of type [0] of {mtype, CMD}. For a constraint named CST1, the request channel

type is: CST1_request_chan = [0] of {mtype, CMD}; Constraint processes return three

boolean values using an mtype called constraint result and over a channel of type [0]

of {mtype, bool, bool, bool}. Judgments are derived from the message by the recip-

ient process or the constraint search process. For CST1, the response channel type is:

CST1_response_chan = [0] of {mtype, bool, bool, bool};

Using the notation above for the different guards sets, the generalized Promela structure

for a constraint is listed in Figure 6.4. Line 1 declares the process name, CST1 and that

it takes no parameters. Lines 2–7 declare the local variables that will be used during the

constraint’s execution. The first three, scope, such that, and regular store the boolean

results from the scope check, such that guards, and regular guards respectively. The next

two, result and temp are used as temporary boolean variables during evaluation. The

next local variable, command stores the CMD value for the command that sent the message to

run the constraint. The last local variable, j stores the judgment results from constraints

invoked. Lines 8–22 are the main do/od loop of the constraint. Line 9 declares the

only loop option: listening for a message of type constraint request on the constraint’s

request channel CST1 request chan. The request stores the value for the CMD parameter

in command. Lines 10–11 reset the values of the boolean variables from any stale values

from previous loop iterations.

Lines 13–16 process the constraint’s scope by checking the value of command against

the list of CMD values in the constraint’s scope. Label L1 on line 14 is the location where

the scope checks are inserted. Their format is discussed below in Section 6.2.5. Line 15’s

else option sets scope to false in case command is not in scope.

The such that and regular guards are inserted in lines 18 and 20 at labels L2 and L3

respectively. The format of individual guard translation is in Section 6.2.3. The temporary

variable result is used to accumulate boolean results from the guards that are executed.

After the such that guards have completed, line 19 stores result’s value in such that and

then resets result for use in the regular guards. Similarly, line 21 stores result’s value

in regular at the completion of the regular guards’ evaluation.

204

Lines 22–23 returns the results from the constraint’s execution over CST1’s response

channel CST1 response chan. Line 24–25 closes the do/od loop.

1 active proctype CST1() {

2 bool scope = true;

3 bool such_that = true;

4 bool regular = true;

5 bool result = true;

6 bool temp = true;

7 CMD command; JUDGMENT j;

8 do

9 :: CST1_request_chan?constraint_request(command) ->

10 scope = true; such_that = true; regular = true;

11 result = true; temp = true;

12

13 if

14 L1: (scope checks go here)

15 :: else -> scope = false;

16 fi;

17

18 L2: (such that guards here)

19 such_that = result; result = true;

20 L3: (regular guards here)

21 regular = result;

22 CST1_response_chan!constraint_response(scope, such_that,

23 regular);

24 od;

25 }

Figure 6.4: Promela framework for constraints

Overloaded Constraints

As discussed in Section 5.2.4, constraints may be overloaded with multiple instantiations

sharing a single name and scope. As discussed in Section 5.4, the evaluation engine uses a

most lenient in deriving judgments from the overloaded instantiations. In the formal model

there is no way to specifically reference one instantiation of an overloaded constraint, so

our model translation uses a slightly different representation of overloaded constraints than

the formal model does. Lemma A.2.4 in Section A.2 shows that the modified translation

yields the same results as the evaluation engine. The combination algorithm is derived from

205

Tables 5.11 and 5.9 above. The derived combination truth table is shown in Table 6.6 and

is shown in terms of the resulting values in the local variables shown in Figure 6.4 with

the exclusion of scope since it never needs to be combined.

Table 6.6: Result combination for overloaded constraints in Promela

Constraint 1 Constraint 2 Result

such that regular such that regular such that regular

True True True True True True

True True True False True True

True True False True True True

True True False False True True

True False True True True True

True False True False True False

True False False True True False

True False False False True False

False True True True True True

False True True False True False

False True False True False True

False True False False False True

False False True True True True

False False True False True False

False False False True False True

False False False False False False

We combine the initial values of the variables with new ones using a most lenient

algorithm. Let us denote the results from a constraint as b1/b2 where b1 is the result from

the such that guards and b2 is the result from the regular guards. As shown in Table 6.6

lines 1–5, 9, and 13, if either the initial or the new values are True/True, then the resulting

value is the most lenient result of True/True. As reflected in Tables 5.11 and 5.9, a

such that result equal to true overrides a such that result equals to false. The intuition

is that a result with such that equal to false is not as applicable as one with such that

equal to true, even if its regular guards yield a more lenient result. Thus, in cases such as

on lines 7 and 9 which have False/True + True/False, the result is True/False. We provide

a complete proof for the correctness of Table 6.6 in Lemma A.2.3 in Section A.2.

Denoting the initial variables such that r and regular r the new variables

206

such that n and regular n, and storing the result values back in such that r and

regular r, the logic for truth table may be collapsed to the Promela statements shown in

Figure 6.5. By straightforward enumeration of the truth table resulting from the code we

arrive at the following lemma:

Lemma 6.2.1 The combination of the results from two overloaded constraints using Ta-

ble 6.6 yields true for such that in the Result column if and only if such that r is equal

to true after executing the statements in Figure 6.5. Similarly, Table 6.6 yields true for

regular in the Result column if and only if regular r is equal to true after executing the

statements in Figure 6.5.

1 if

2 :: such_that_r==such_that_n -> regular_r=(regular_r || regular_n);

3 :: such_that_r==true && such_that_n==false -> regular_r=regular_r;

4 :: such_that_r==false && such_that_n==true -> regular_r=regular_n;

5 fi;

6 such_that_r = such_that_r || such_that_n;

Figure 6.5: Promela code for the combination of overloaded constraint results

Since the above result combination method differs from non-overloaded constraints,

the structure for an overloaded constraint differs slightly from Figure 6.4 and due to its

length is located in Appendix A.2. As a summary, let CST2 be an overloaded constraint

process with constraints c1, c2, c3, . . . , cn. CST2 first executes both c1 and c2 and combines

their results using the Promela code above. For each subsequent constraint ei : i > 2, it

executes ci and combines its results with the stored results so far. After executing cn and

combining its results with the stored results, the process sends back the final results along

its response channel CST2 response chan.

6.2.5 Translating Scope

A constraint scope is a list of commands that a constraint applies to. As noted above in

Section 6.2.2, commands are given unique indexes of type CMD. A scope is implemented as a

list of type CMD which is compared against the local variable command. The general format

for a scope check for a scope = {e1, e2, . . . , en} is as follows. The format is equivalent

207

logically to checking an OR of all of the command comparisons and could just as easily

be implemented in that manner. The format presented here makes it slightly easier for

automated translation.

1 :: e1 == command -> scope = true;

2 :: e2 == command -> scope = true;

3 ...

4 :: en == command -> scope = true;

The code above is enclosed in the if/fi selection structures at label L1 in both the

non-overloaded and overloaded constraint structures discussed above.

6.2.6 Translating Commands

As per Definition 5.2.8, commands have the following structure:

CMD e(a, s, r, P, f, f’, msg)

if ψ1

and . . .

then ωt1

and . . .

and return true

else ω
f
1

and . . .

and return false

Command processes accept requests with no parameter other than an mtype called

command request (as per Table 6.5 over a channel of type [0] of {mtype}. For a com-

mand named CMD1, the request channel type is: CMD1_request_chan = [0] of {mtype};

Command processes return one boolean value using an mtype called command result and

over a channel of type [0] of {mtype, bool}. For CMD1, the response channel type is:

CMD1_response_chan = [0] of {mtype, bool};

We assign each command process a unique value of type CMD, defined to be int:

1 #define CMD int

208

2 #define MAXCMD 2

3 CMD Cmd1 = 0;

4 CMD Cmd2 = 1;

Like agent and object numbers, command numbers are unique, consecutive beginning

from 0, and are hard coded into the model. In the above example, there are two CMD

variables defined: Cmd1 (line 3) for the first command and Cmd2 for the second command.

The total number of commands is denoted MAXCMD and defined in line 2. A constraint

scope scope is list of CMD values that it accepts. The list may be searched during

execution using an if/fi selection structure. If the CMD value of the invoking command

matches one of the list, the invoking command is in scope. See Section 6.2.5 for more

details. We also use CMD variables to fill in log and inform notes. As such, each process

stores a local instance of a CMD variable called command which is set to the index of the

executing command.

Commands are translated similarly to constraints, using the same general structure for

the processing of parameters, guards, and return values. Commands differ in structure

from constraints in including operations which update the knowledge state. The general

structure for a command in Promela is shown in Figure 6.6.

1 active proctype CMD1() {

2 bool result = true; CMD command = Cmd1; bool scope; bool such_that;

3 bool temp = true; bool regular; JUDGMENT j;

4 do

5 :: CMD1_request_chan?command_request ->

6 result = true; temp = true;

7 L1: (Guards go here)

8

9 if

10 :: result == true -> L2: (True operations go here)

11 :: else -> L3: (False operations go here)

12 fi;

13

14 CMD1_response_chan!command_response(result);

15 od;

16 }

Figure 6.6: Promela framework for commands

209

Lines 1–3 are as above, declaring the process name and temporary variables. Lines 4–15

are the main do/od loop for the process. Line 5 is the only choice, listening for messages on

the process’ request channel CMD1 request chan. The line listens for messages with mtype

of is command request that have no other payload. Line 6 re-initiates the temporary

variables for a new iteration, wiping them from any stale values. Location L1 on Line 7

is where the translations of all guards ψ1, . . . are placed based on the guard translation

Table 6.7. Line 9 begins an if/fi construct which selects an option based on the value

of result. Line 10 is selected if result is true and the operations ωt1, . . . are inserted

at label L2 there based on the operations translations discussed in Section 6.2.3. Line 11

is selected if result is false and the operations ωf1 , . . . are inserted at label L3. Line 14

returns the command’s result over the command’s response channel CMD1 response chan.

Lines 15–16 close out the process.

To give the reader a feeling for how a full command appears in Promela, we now show

a complete sample command.

Example 6.2.2 (Sample Command Translation)

The rules for use of protected health information for treatment under [§164.506(a)(1),

v.2000] are presented in Example 7.1.1. We show here the translation to Promela of one

sample command from the example, TreatmentUse506a1.

CMD TreatmentUse506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment inf P

and use ina P

then insert treatment in (a, s)

and return true

else return false

The result from translating the above command into Promela is:

1 active proctype pTreatmentUse506a1() {

210

2 bool result = true; CMD command = TreatmentUse506a1;

3 bool scope; bool such_that;

4 bool temp = true; bool regular; JUDGMENT j;

5

6 do

7 :: TreatmentUse506a1_request_chan?command_request ->

8 result = true; temp = true;

9

10 /* Guards go here */

11 /* Permitted506a1(a, s, r, P, f, f’, msg) in {Allow} */

12 Permitted506a1_request_chan!constraint_request;

13 Permitted506a1_response_chan?constraint_response(scope,

14 such_that, regular);

15 reference_judgment(scope, such_that, regular, j);

16 if

17 :: j == ALLOW -> temp = true;

18 :: else -> temp = false;

19 fi;

20 result = result && temp;

21 /* individual in Roles(s) */

22 temp = (a < MAXAGENT && a >= 0 && mroles[s].individual == 1);

23 result = result && temp;

24 /* healthCareProvider in Roles(a) */

25 temp = (a < MAXAGENT && a >= 0 && mroles[s].healthCareProvider == 1);

26 result = result && temp;

27 /* local in (a, f) */

28 temp = (f < MAXOBJECT && f >= 0 && objects[f] == 1 && a < MAXAGENT

29 && a >= 0 && m.mat[a].objects[f].blocal == 1);

30 result = result && temp;

31 /* treatment in_f P */

211

32 run isPermittedByA();

33 isForbiddenByA_request_chan!purpose_request(treatment);

34 isForbiddenByA_response_chan?purpose_response(temp);

35 result = result && temp;

36 /* use in_a P */

37 run isPermittedByA();

38 isPermittedByA_request_chan!purpose_request(use);

39 isPermittedByA_response_chan?purpose_response(temp);

40 result = result && temp;

41

42 if

43 :: result == true ->

44 /* True operations go here */

45 /* insert treatment in (a, s) */

46 if

47 :: (f >= MAXOBJECT || f < 0 || objects[s] == 0 || a < 0 ||

48 a >= MAXAGENT) -> result = false;

49 :: else -> m.mat[a].objects[s].treatment = 1;

50 fi;

51 :: else -> skip; /* False operations go here */

52 fi;

53

54 TreatmentUse506a1_response_chan!command_response(result);

55 od;

56 }

The translation places the functionality for the command inside the Promela structure

for commands shown above in Figure 6.6. The guards and operations are translated as per

Table 6.8 and 6.7. �

212

6.2.7 Judgment Derivation

As noted in Section 6.2.4, constraints return three boolean results: scope, such that, and

regular. The Promela logic for deriving judgments from the boolean results is as follows.

For constraint search, we use the algorithm in Figure 6.7 which implements the logic in

Table 5.10. For constraint references, we use the algorithm in Figure 6.8 which implements

the logic in Table 5.8.

1 inline cst_search_judgment(scope, such_that, regular, j)

2 {

3 if

4 :: scope && such_that && regular -> j = ALLOW;

5 :: scope && such_that && regular == false -> j = FORBID;

6 :: else -> j = IGNORE;

7 fi;

8 }

Figure 6.7: Code for deriving a constraint search judgment

1 inline reference_judgment(scope, such_that, regular, j)

2 {

3 if

4 :: such_that && regular -> j = ALLOW;

5 :: such_that && regular == false -> j = FORBID;

6 :: such_that == false && regular -> j = DONT_CARE_ALLOW;

7 :: such_that && regular == false -> j = DONT_CARE_FORBID;

8 fi;

9 }

Figure 6.8: Code for deriving a constraint reference judgment

The algorithms in both figures are enclosed in inline functions which are similar to C

preprocessor macros. They accept four parameters, the three boolean results to examine

and a result j of type JUDGMENT. As defined, in pre-command invocation the judgment is

Ignore (Allow) if either scope or the such that guards are false and scope is ignored during

regular invocation.

For convenience we show two technical lemmas to formalize the purpose of the above

inline functions. By straightforward enumeration of the truth table derived from the if/fi

213

structure in cst search judgment and compared with Table 5.10 we arrive at the following

lemma:

Lemma 6.2.2 The inline function cst search judgment stores ALLOW (FORBID, IGNORE)

in j if and only if the judgment Allow (Forbid, Ignore) is derived from Table 5.10 with

scope storing the boolean value bscp, such that storing bst, and regular storing br.

By straightforward enumeration of the truth table derived from the if/fi structure in

reference judgment and compared with Table 5.8 we arrive at the following lemma:

Lemma 6.2.3 The inline function reference judgment stores ALLOW (FORBID,

DONT CARE ALLOW, DONT CARE FORBID) in j if and only if the judgment Allow (Forbid,

Don’t Care/Allow, Don’t Care/Forbid) is derived from Table 5.8 with scope storing the

boolean value bscp, such that storing bst, and regular storing br.

6.3 Building Models

Using the translation methodology presented in Section 6.2, we create processes and prop-

erties out of the commands and constraints which make up a Privacy API. In addition to

the processes, however, in order to make the Promela model work we need some structural

code to support queries, constraint search, and transaction monitoring. The structural

code is mostly generic for all models, but requires tailoring in some specific locations to fit

the precise number and names used in the model. We first discuss the code for constraint

search and then the code for transaction processing.

6.3.1 Constraint Search

In Section 5.4.3 we discuss how the evaluation engine in the formal model performs a

constraint search. Figure 5.22 shows a pseudocode representation of the process which we

adapt for use in Promela models. As discussed in Section 6.2.2, each command is assigned

a value of type CMD which is used for checking the scope of constraints (Section 6.2.5) and

recording log notes and inform messages (Section 6.2.3). The constraint search algorithm

214

also uses the CMD value for commands in combination with the rest of the global variables

shown in Table 6.4.

The constraint search is performed by a process called Cst Search shown in Figure 6.9

which listens on the channel Cst Search request chan. Before a command is run at the

top level of the model, Cst Search is sent a message of mtype constraint request (see

Table 6.5) with a parameter e indicating the CMD to be checked. The constraint search

code then runs each constraint process available, providing e as the running command. As

noted in Section 6.2.4, each constraint process evaluates the command name and global

variables and returns three boolean results (scope, such that, regular). Cst Search uses

the return values to derive judgments as per Table 5.10. If any judgment does yields

Forbid, the constraint search returns false and the command CMD will not be run. The

code for investigating a single constraint CST1 is in Figure 6.9.

1 active proctype Cst_Search()

2 {

3 JUDGMENT j; JUDGMENT final; CMD e;

4 bool scope; bool such_that; bool regular;

5 do

6 :: Cst_Search_request_chan?constraint_request(e);

7 j = final = ALLOW;

8 CST1_request_chan!constraint_request(e);

9 CST1_response_chan?constraint_response(scope, such_that,

10 regular);

11 cst_search_judgment(scope, such_that, regular, j);

12 if

13 :: j == FORBID -> final = FORBID;

14 fi;

15 L1: (More constraints)

16 if

17 :: final == FORBID ->

18 Cst_Search_response_chan!command_response(false);

19 :: else ->

20 Cst_Search_response_chan!command_response(true);

21 fi;

22 od

23 }

Figure 6.9: Promela code for single constraint search

215

The code in Figure 6.9 first declares several local variables on lines 3–4. The variables j

and final are used to store judgments from the various constraints as execution proceeds.

The other variables are as in processes in this section. Lines 5–21 are the main loop for the

process. Line 7 resets the judgment variables for use. The others will be overwritten as

constraints are queried. Lines 8–10 query the constraint CST1 and wait for its responses.

Line 11 uses the inline function cst search judgment shown in Figure 6.7 to derive the

judgment from the constraint’s results. Lines 12–14 check the resulting judgment and set

the final judgment to be FORBID if the result is FORBID. Lines 16–21 return a boolean value

(using the command response message type since it takes just one boolean) indicating

whether the command is to be allowed (i.e., true) or forbidden (i.e., false).

The code in Figure 6.9 is structured for just a single constraint. For policies with more

than one constraint, lines 8–14 would be repeated for each constraint and inserted on line

15 at the label L1. The final judgment accumulates in the variable final and is used at the

end to derive the final boolean message to send. Figure 6.12 shows the general structure.

6.3.2 Transaction Processing

As discussed in Section 6.2.6, command processes return boolean results indicating success

or failure (i.e., an operation got stuck). When a command successfully completes its

operations, its updates to the knowledge state need to be made permanent so subsequent

commands and constraints see them. Conversely, when a command gets stuck in any of its

operations because its preconditions were not satisfied, we choose a failure mode wherein

any changes effected by them are not committed to the global variables. The exception to

this rule is array overflows which are caught by asserts as noted in Section 6.2.6 since they

are not recoverable and are not policy based errors (i.e., increasing the maximum array

size would solve the problem).

We implement the transaction enforcement functionality at the top level of the model,

in the code that handles the running of commands. Before each command is run, a snapshot

of the knowledge state (i.e., global variables in Table 6.4) is stored in temporary variables

using the inline function snapshot shown in Appendix A.3.1. If the command returns true,

the next command may be run and the snapshot is forgotten. If the command returns

216

false, the snapshot is restored to the working copy of the variables, undoing any changes

performed by the command that had just run. The snapshot restoration is performed

by the inline function restore shown in Appendix A.3.2. Code to perform checking and

restoration is shown in Figure 6.10. The example shown has one command CMD1 which

is executed and checked for success.

1 snapshot();

2 Constraint_search_request_chan!search(CMD1);

3 Constraint_search_response_chan?command_response(temp);

4 if

5 :: temp -> CMD1_request_chan!command_request;

6 CMD1_response_chan?command_response(temp);

7 if

8 :: temp == false -> restore();

9 :: else -> skip;

10 fi;

11 :: else -> skip;

12 fi;

Figure 6.10: Promela code for pre- and post-command state management

In order to support multiple commands, we copy the code in Figure 6.10 for each

command to be included in the model. Space state exploration is then performed by

letting the SPIN model checker explore execution paths by executing series of commands.

6.4 Equivalence of Promela Model and Privacy Commands

We now have two representations for the operational behavior of a Privacy API: the Pri-

vacy Commands representation detailed in Chapter 5 and the Promela model representa-

tion detailed in this chapter. In Section 6.2 we discussed the structural translation between

Privacy Commands and Promela, but have not proved its correctness. We do so in this

section, proving that the Promela model behaves in a semantically equivalent manner to

the Privacy Commands from which it is derived. We first present a description of the

semantics of the subset of Promela which our models use. We then present the corre-

spondences between the formal model and the Promela model, detailing the definitions

and invariants used in the code. Using the correspondences and definitions, we then show

217

an equivalence theorem for the two representations by proceeding upwards in structural

complexity, considering first operations and guards and then commands and constraints.

Our general approach is illustrated in Figure 6.11. The formal model’s knowledge

state (A,O,m, l) evolves via Privacy Commands to a new state (A,O′,m′, l′). Let us

denote the equivalent Promela variable state for a given knowledge state Pr(A,O,m, l).

In order to show equivalence for commands, therefore we show equivalence mappings be-

tween the initial knowledge state (A,O,m, l) and a corresponding SPIN state in Promela

Pr(A,O,m, l) and the final knowledge state (A,O′,m′, l′) and the resulting SPIN state in

Promela Pr(A,O′,m′, l′). By showing that the initial and final states correspond for every

command, we show that the Privacy Commands and SPIN versions have the same effects.

(A,O,m, l) (A,O′,m′, l′)

Pr(A,O,m, l) Pr(A,O′,m′, l′)

Commands

Processes

∼= ∼=

Figure 6.11: Equivalence mappings

Notation As a convention in this section, we use the following notation. Variables (a),

expressions (true && false), and statements written in teletype font represent code

fragments in Promela. Variables written in mathematical italics (e.g., a, o, P) represent

variables, sets, or functions defined in the formal model. Operators written in mathematical

italics font (e.g., =, <, ≤) have their usual mathematical definitions. Operators written

in teletype font (e.g., =, ==, <, <=) have the semantics of Promela. Thus, the

mathematical expressions a = b and a = b are a comparison between the values stored in

variables a and b while the code fragment a = b in Promela stores the value of variable b

in variable a (see Table 6.1).

The correspondence between the knowledge representation in the formal model and

the Promela code depends on the correspondence in the storage representations which we

discuss in Section 6.2.2. In order to show correspondence between Privacy Commands and

218

the Promela processes in Section 6.4, we must first show that the transitions induced by

the two lead to corresponding states in the respective representations. In order to do so,

we first present the operational semantics for the code in the Promela model and its effects

on the state it stores in terms of variables and arrays. We then show the correspondence

between the semantic effects of the Promela processes and the commands and constraints

that they implement.

6.4.1 Semantics of the Promela Model

We present the semantics of the Promela model in terms of the knowledge state in Promela

code. The universe we consider in the Promela code consists of the following variables and

sets:

Definitions

AGENT The variables assigned type AGENT. The number of variables with the type AGENT

corresponds to the constant MAXAGENT while the members are indexed consecutively on the

interval [0, MAXAGENT). An integer n represents an agent therefore if 0 ≤ n < MAXAGENT.

OBJECT The variables assigned the type OBJECT combined with the variables assigned the

type AGENT. The number of variables corresponds to the constant MAXOBJECT while the

members are indexed consecutively on the interval [0, MAXOBJECT). The variables solely of

type OBJECT are indexed consecutively on the interval [MAXAGENT, MAXOBJECT). An integer

n therefore represents an object if 0 ≤ n < MAXOBJECT and an object which is not an

agent if MAXAGENT ≤ n < MAXOBJECT.

mroles The roles array which is of size MAXAGENT. ∀ n such that 0 ≤ n < MAXAGENT,

the array is defined and its contents are valid.

Roles The record for storing roles. A Roles record contains a bit flag for each right

k ∈ Role which has the same name (i.e., k) as the role in the formal model. For a Roles

record R, if R.k = 1 then the role k (and consequently k) is true for the associated agent.

If R.k = 0 then the right k (and consequently k) is not true for the associated agent.

219

objects The array of objects. The array is of size MAXOBJECT. The array is defined for and

its contents are valid for any index n such that 0 ≤ n < topObj. ∀ n . objects[n] =

0, n does not exist. ∀ n . objects[n] = 1, n exists. The variable topObj points to the

next open slot in objects, so its value is on the interval [MAXAGENT, MAXOBJECT)

and ∀j ∈ [topObj, MAXOBJECT), objects[j] = 0.

mtags The tags array. The array is of size MAXOBJECT. The array is defined for any index n

. 0 ≤ n < MAXOBJECT. ∀ n . 0 ≤ n < topObj and objects[n] = 1, the contents of

mtags[n] are valid.

m The rights matrix. The array is of size MAXAGENT × MAXOBJECT. Index m(a,o) is writ-

ten m.mat[a].objects[o]. The matrix is defined ∀ m(a,o) . a < MAXAGENT ∧ o <

MAXOBJECT. Its contents are valid if objects[o] = 1. Each valid entry m(a,o) contains

a Rights record R.

Rights The record for storing rights. A Rights record contains a bit flag for each right

d ∈ Right which has the same name (i.e., d) as the right in the formal model. For a Rights

record R, if R.d = 1 then the right d (and consequently d) is present. If R.d = 0 then the

right d (and consequently d) is not present.

PURPOSE The variables of type PURPOSE. The number of variables with the type PURPOSE

corresponds to the constant MAXPURPOSE while the members are indexed consecutively on

the interval [0, MAXPURPOSE). An integer n represents a purpose if 0 ≤ n < MAXPURPOSE.

The array parent describes the partial order over the members.

parent The purpose partial order array. The array is of size MAXPURPOSE. ∀ n . 0 ≤

n < MAXPURPOSE, n is defined and its contents are valid. For an index c . parent[c]

= p, p is c’s parent and c is p’s child.

log The log array. The array is of size MAXLOG. ∀ n . 0 ≤ n < MAXLOG, the array is

defined. ∀ n . 0 ≤ n < topLog, the contents are valid. The variable topLog points to

the next open slot in log, so its value is on the interval [0, MAXLOG), ∀i ∈ [0, topLog).

220

inform The record of messages sent. The array is of size MAXINFORM. ∀ n . 0 ≤ n <

MAXINFORM, the array is defined. ∀ n . 0 ≤ n < topInform, the contents are valid. The

variable topInform points to the next open slot in inform, so its value is on the interval

[0, MAXINFORM).

CMD The currently executing command type. The instance variable CMD command stores

the index of the currently executing command.

Invariants

Models enforce the following invariants:

1. topObj ≤ MAXOBJECT. The next available slot for objects may not exceed the number

of object slots available.

2. topObj points to the next open slot in objects: ∀i ∈[topObj,

MAXOBJECT), objects[i] = 0.

3. topLog ≤ MAXLOG. The next available slot for logs may not exceed the number of

object slots available.

4. topLog points to the next open slot in log and 0 ≤ topLog < MAXLOG.

5. topInform ≤ MAXINFORM. The next available slot for inform entries may not exceed

the number of object slots available.

6. topInform points to the top open slot in inform and 0 ≤ topLog < MAXLOG.

7. MAXOBJECT ≥ MAXAGENT. There must be at least MAXAGENT object slots.

8. ∄ p1, p2 ∈ [0, MAXPURPOSE) . p1 6= p2∧p1 ∈ ancestors(p2)∧p2 ∈ ancestors(p1). There

are no loops (cycles) in the purpose partial order.

9. command contains the index of the currently executing command.

221

6.4.2 Translation Correspondence

Based on the above semantics for Promela and the semantics for Privacy Command in

Section 5.3, we argue the following lemmas showing that the Promela model derived from

the above translation methodology yields a model with corresponding semantics to the

formal model from which it is derived. We reach the final theorem showing the desired

correspondence by first showing correspondence lemmas for the constraint search code

(Lemma 6.4.3), guards (Lemma 6.4.4), and operations (Lemma 6.4.5). We then use then

use those lemmas to show correspondence lemmas for commands (Lemma 6.4.6) and con-

straints (Lemma 6.4.7). With those lemmas we prove the final correspondence theorem,

Theorem 2.

Before proceeding to the main correspondence theorem, we first prove a few technical

lemmas for objects and agents.

Lemma 6.4.1 (Object Existence) For a knowledge state s = (A,O,m, l) and a correspond-

ing Promela representation as per Section 6.2.2, an object o ∈ Object if and only if the

Promela expression o < MAXOBJECT && o >= 0 && objects[o] == 1 evaluates to true.

Proof: By the definition of OBJECT above, an integer o represents an object if 0 ≤ o <

MAXOBJECT and it exists if objects[o] = 1, which is checked by the expression. If o is

not in the range 0 ≤ o < MAXOBJECT, then it will fall outsize of the bounds for the array

objects and the array lookup will fail. The expression therefore first checks that o falls in

the correct range. If 0 ≤ o < MAXOBJECT and objects[o] 6= 1 then the object does not

exist and correspondingly, the result of the Promela check is false. �

Lemma 6.4.2 (Agent Existence) For a knowledge state s = (A,O,m, l) and a correspond-

ing Promela representation as per Section 6.2.2, an object a ∈ Agent if and only if the

Promela expression a < MAXAGENT && a >= 0 evaluates to true.

Proof: By the definition of AGENT above, an integer a represents an agent if 0 ≤ a <

MAXAGENT. The expression therefore first checks that a falls in the correct range. If 0 >

o or o ≥ MAXAGENT then the agent does not exist and correspondingly, the result of the

Promela check is false. �

222

Lemma 6.4.3 (Constraint Search) For a knowledge state s and a command to be executed

e, the final result of performing a constraint search as per Section 5.4.3 and derived from

Table 5.10 forbids e to execute if and only if the constraint search code in Figure 6.9 as

adapted for |Constraint | number constraints sends false over its response channel.

Proof: We argue the correctness of the code by induction on the size of the constraint set

|Constraint |. There are two cases to consider: the base case when |Constraint | = 1 and the

step case when |Constraint | = n for n > 1. In the first case, there is only one constraint to

query and so the code to combine the judgments is not exercised. In the second case, the

combination code is exercised to combine the judgments from multiple constraints. The

proof below relies on two invariants. Let CSTn be the process which implements constraint

cn ∈ Constraint such that 1 ≤ n ≤ |Constraint |. After the execution of CSTn, processing

by the inline function cst search judgment, and the if/fi structure on lines 12–14, the

following two properties hold:

Invariant 1: j holds the judgment from cn.

Invariant 2: final holds FORBID if and only if ∃i ≤ n such that the judgment of ci is

Forbid. Otherwise, final holds ALLOW.

Let use refer to lines 8–14 for a constraint CSTn as the evaluation of cn. Our induction

hypothesis is thus the following:

Induction Hypothesis: After evaluation of cn, Invariants 1 and 2 are true.

Case |Constraint | = 1 When there is only one constraint, the code for the constraint

search algorithm is as in Figure 6.9 with the label L1 empty (i.e., a skip; statement).

Let the constraint c ∈ Constraint be CST1 as per the figure. Lines 3–4 of the code de-

clare the temporary variables used during evaluation. Judgment variables j and final

store the temporary and final judgments of the process respectively. Command variable

e stores the command to be executed (i.e., the command for which the constraint search

is being performed). Boolean variables scope, such that, and regular store the results

from constraints as returned over their response channels. Lines 5–21 are the main loop

for the constraint searching algorithm and loop to perform the search process for each

request received. Line 6 listens for a constraint search request on the request channel. The

223

channel’s type is chan Cst Search request chan = [0] of {mtype, CMD};. The listen

request accepts messages of type constraint request with an executing command e.

When a request arrives, the loop begins execution. Line 7 resets the values of j and

final to Allow for the iteration. The judgment from the process is thus Allow by default

unless it’s changed by a response from a constraint as required by Invariant 2. Lines 8–10

query the constraint CST1. As in Lemmas 6.4.7 and A.2.4, querying the process CST1 on

its request channel CST1 request chan with the command e returns the values scope,

such that, and regular on the response channel CST1 response chan. As shown in the

lemmas, regardless of whether CST1 is overloaded, scope= bscp, such that= bst, and

regular= br for command e. Line 11 uses the inline function cst search judgment to

derive the judgment from the boolean values. As shown in Lemma 6.2.2, the function

stores the judgment in j as per Table 5.10. The result is that the judgment from CST1

is stored in j. Thus, j is FORBID if and only if the judgment from CST1 is Forbid. This

maintains Invariant 1 above.

Lines 12–14 check if the judgment from CST1 is Forbid. If it is, final gets the judgment

value FORBID. Otherwise, it retains its previous value of ALLOW. Thus, final is valued

FORBID if and only if j is FORBID, which as shown is only if the judgment from CST1 is

Forbid. Otherwise, final is Allow. If j is IGNORE or ALLOW, note that final is still valued

at ALLOW. This establishes Invariant 2.

Since |Constraint | = 1, Line 15 is ignored. Lines 16–21 return true or false over the

constraint response channel. The code returns false if and only if the value of final is

FORBID which is equivalent to CST1 yielding the judgment Forbid. Otherwise, if final

has the value ALLOW, line 20 returns true. As noted above in Section 5.4.1, e may execute

if the judgment from the constraint search is either Ignore (Allow) or Allow and as shown,

true is sent on the channel if and only if CST1’s judgment is Ignore (Allow) or Allow.

Step: |Constraint | = n When there is more than one constraint, the code for the con-

straint search algorithm is longer by repetition of lines 8–14 for each constraint. For

example, Figure 6.12 shows the constraint search algorithm for n constraints, skipping the

code for constraints 2. . .n− 1.

224

The proof for |Constraint | = 1 proves the correctness of lines 1–14 and shows that both

invariants are true at the end of line 14. For n > 1, from the induction hypothesis we

may assume Invariants 1 and 2 are true, so j holds the value from the constraint cn−1 and

final is FORBID if and only if ∃i < n such that the judgment of ci is Forbid.

Let CSTn be the process that implements constraint cn. Let us refer to the code in

Figure 6.12. From the argument above in the base case we have that lines 15–17 store the

boolean results of CSTn. The inline function cst search judgment stores therefore stores

the judgment for CSTn (and thus cn) in j on line 18, establishing Invariant 1.

Lines 19–21 store FORBID in final if and only if j stores FORBID. There are three cases

to consider:

1. If ∃i < n such that the judgment of ci is Forbid, final already stores FORBID and

regardless of cn’s judgment, final remains FORBID.

2. If ∄i < n such that the judgment of ci is Forbid, then if cn yields Forbid, we have that

∃i ≤ n such that the judgment of ci is Forbid for the case i = n and correspondingly

final is set to FORBID.

3. If cn yields Ignore (Allow) or Allow, then we still have ∄i ≤ n such that the judgment

of ci is Forbid and correspondingly, final remains unchanged. By the induction

hypothesis, we have that final is therefore ALLOW.

We have therefore established Invariant 2.

We have now shown that both Invariants 1 and 2 are true after the evaluation of cn

and thus that final always contains FORBID if and only if ∃ci ∈ Constraint such that ci’s

judgment is Forbid. Otherwise, final contains ALLOW. As shown in the base case, the code

in lines 23–28 sends false over the response channel Cst search response chan if and

only if final contains FORBID. Otherwise, if final contains Allow, the lines send true.

Since as defined in Section 5.4.3, e is forbidden to execute if and only if the judgment of

any constraint is Forbid, we have the desired correspondence. �

Using the above lemma, we now prove an equivalence lemma for guards:

225

Lemma 6.4.4 (Guard Correspondence) For a knowledge state s = (A,O,m, l), an argu-

ment set a = (a, s, r, P, f, f ′,msg), and a corresponding Promela representation for each

as per Section 6.2.2, the result of any guard ψ at s with a is true if and only if the corre-

sponding guard translation as per Section 6.2.3 yields true.

Proof: We proceed in the proof structurally, considering each guard independently. We

consider the if and only if directions simultaneously, showing that the results of the ψ

guards coincide with the result of the Promela code. We use the code translations as per

Table 6.7. Let us assume that the representations have been initialized correctly and are in

a corresponding state. Let a, s, r be integers of type AGENT, o be an integer of type OBJECT,

p be an integer of type PURPOSE, P be of type PURPOSE[MAXPURPOSE], b be a boolean. Let

a, s, r ∈ Agent and a, s, r’s indices in Agent be stored in a, s, r respectively. Let o ∈ Object

and o’s index in Object be stored in o.

d in (a, o) The guard is true iff a ∈ Agent , o ∈ Object , and d is in m(a, o). The

corresponding Promela code examines the logical AND of six expressions. The first three

expressions (1) check that o is an object (o < MAXOBJECT && o >= 0 && objects[o] ==

1), the next two expressions (2) check that a is an agent (a < MAXAGENT && a >= 0), and

the last expression (3) checks for the presence of the right (m.mat[a].objects[o].d ==

1).

The first expressions (1) checks the existence of o as an object as per Lemma 6.4.1.

The second expressions (2) check the existence of a as an agent as per Lemma 6.4.2.

The third expression (3) checks the status of the rights matrix and only is of relevance

if o is an object which exists and a is an agent since if o is not an object or doesn’t

exist, (1) will be false, and if a is not an agent then (2) will be false. By the definition

of AGENT above, an integer a is an agent if 0 ≤ a < MAXAGENT. If a is not in that range,

then the guard is false since a doesn’t correspond to an agent and correspondingly the

lookup m.mat[a] will fail since a will fall out of bounds. If a is in the range, then the array

index m.mat[a].objects[o] will refer to the Rights record that a has over o as per the

definition of the matrix m in Section 6.4.1. As defined in Section 6.2.2, the rights record

m.mat[a].objects[o] has bit flags for each of members of Right . For a right d ∈ Right ,

226

the corresponding bit flag d is set to 1 iff the agent has the right d on the object as is

checked by (2) above.

o.t = b The guard is true iff o ∈ Object and tag t = b for it. The corresponding Promela

code examines the logical AND of four expressions. The first three expressions (1) check

that o is an object (o < MAXOBJECT && o >= 0 && objects[o] == 1) and the last ex-

pression (2) checks that the tag is set to b (2) mtags[o].t == b.

The first expressions (1) checks the existence of o as per Lemma 6.4.1.

The last expression (2) checks the status of the tags arrays and only is of relevance if

o is an object which exists since if o is not an object or doesn’t exist, (1) will be false. By

the definition of mtags in Section 6.4.1, mtags is defined for any index n such that 0 ≤ n

< MAXOBJECT and its contents are valid if objects[o] = 1. If o is not in the valid range

or objects[o] 6= 1 then (1) will be false and we may ignore (2). If o is in the valid range

and objects[o] = 1 then the contents of mtags[o] will be a valid Tags record as per the

definition in Section 6.4.1. As per the definition in Section 6.2.2, the tags record mtags[o]

has boolean flags for each of members of Tag . If the tag t for o is set true then mtags[o].t

will be true and if it is set to false then mtags[o].t will be false. Therefore, expression (2)

examines whether mtags[o].t is equal to b which is the equivalent of checking whether

o.t = b.

k in Roles(a) The guard is true iff a ∈ Agent and a has role k activated. The corre-

sponding Promela code examines three expressions. The first two (1) check that a is an

agent (a < MAXAGENT && a >= 0) and the last one (2) checks the role (mroles[a].k ==

1).

The first expressions (1) check the existence of a as an agent as per Lemma 6.4.2.

The last expression (2) checks the present of the role r for the agent a. By the definition

of mroles above, ∀ n . 0 ≤ n < MAXAGENT the array is defined and its contents are valid.

If a is not in the range 0 ≤ a < MAXAGENT then by the definition of AGENT in Section 6.4.1,

a does not represent an agent and so the expression and guard will both be false. If a is in

the range then a represents an agent and mroles[a] contains a Roles record. As defined

in Section 6.2.2, a Roles record contains a bit flag for each role that may be activated, so

227

if mroles[a].k = 1 then the role k is activated for a. By the definition of Roles, therefore

k is activated for a as well. If mroles[a].k 6= 1 then the role k is not activated for a and

similarly k is not activated for a either.

p ina P The guard is true iff ∃p′ ∈ P . p′ ∈ descendants(p). The corresponding Promela

code (1) starts the isPermittedByA process (run isPermittedByA()), (2) queries it with

the PURPOSE variable p (isPermittedByA request chan!purpose request(p)), and (3)

waits for the response (isPermittedByA response chan?purpose response(temp)).

The first statement (1) begins by running the process isPermittedByA. If the process

count for SPIN is exceeded, this statement will fail, ending the verification run. The

statement does not however, have any effect on the logic of the evaluation.

The second statement (2) sends a message to the process isPermittedByA with the

variable parameter p. The third statement (3) listens for the response from the process on

its response channel. The code for the process is shown in Appendix A.1. Lemma A.1.7

on Page 321 shows that the process returns true if and only if p ina P and the partial order

is acyclic (as per invariant 8).

p inf P The guard is true iff ∃p′ ∈ P . p ∈ {ancestors(p′) ∪

descendants(p′)}. The corresponding Promela code (1) starts the isForbiddenByA

process (run isForbiddenByA()), (2) queries it with the PURPOSE variable p

(isForbiddenByA request chan!purpose request(p)), and (3) waits for the response

(isForbiddenByA response chan?purpose response(temp)). The proof is similar to the

proof for p ina P relying on Lemma A.1.8 on Page 323 instead.

c(a, s, r, P, f, f ′,msg) ∈ J The guard is true if and only if running c with pa-

rameters a, s, r, P, f, f ′,msg by the evaluation engine yields boolean results bscp, bst, br

that yield a judgment j ∈ J = {j1, . . . , jn} as per Table 5.8. The

Promela code (1) sends a request to the constraint process c over its re-

quest channel (c request chan!constraint request) and (2) listens for its response

on its response channel (c response chan?constraint response(scope, such that,

regular)). It then (3) examines the boolean responses using an inline function

228

(reference judgment(scope, such that, regular, j)) which stores the judgment in

j. The code then examines j in an if/fi structure (4) for each j 1, ..., j n to see if any

match. If not, the result is stored as false (if ::j == j 1 -> temp=true; ::...::else

-> temp=false).

The first two statements (1)–(2) send and receive messages from the appropriate

constraint c. If c is not overloaded then it properly models the behavior of c as per

Lemma 6.4.7. If c is overloaded then it properly models the behavior of referencing and

combining all constraints c1, . . . , cn with the name c as shown in Lemma A.2.4. Statement

(3) uses the inline function reference judgment to derive the correct judgment from Ta-

ble 5.8 as is shown in Lemma 6.2.3. Statement (4) compares j against all of the members

of J by using a equivalence test as the guard for each :: option. The if/fi statement

evaluates all of the guards and then randomly selects one for execution. ∀ji ∈ J . ji = j,

the option ::j == j i will evaluate to true and therefore may be selected. The result is

that temp will be set to true. If ∄ji ∈ J . ji = j, then none of the guards will be satisfied

and the else option will be selected, setting the result to false. This corresponds to the

semantics of the formal guard since if the resulting judgment from the constraint is present

in J , its value is true. Otherwise, its value is false.

a1 = a2 The guard is true iff a1, a2 ∈ Agent and they refer to the same agent name. The

corresponding Promela code checks the logical AND of five conditions. First it (1) checks

the interval of a1 (a1 >= 0 && a1 < MAXAGENT). Then it (2) checks the interval of a2 (a2

>= 0 && a2 < MAXAGENT). Finally it (3) checks the equality of the AGENT variables (a1 ==

a2). As per the definition of the variable type AGENT, if both integers a1 and a2 are in the

interval [0, MAXAGENT) then they both represent agents. Expression (1) checks the interval

of a1 to check that it represents an agent. Expression (2) checks the interval of a2 to check

that it represents an agent. If they are both on the interval then both (1) and (2) are true

and comparing their integer values using the == operator is equivalent to examining their

names in the formal model. If they coincide then the result is true, otherwise the result is

false. If either a1 or a2 do not fall on the interval then (1) or (2) will be false respectively

and therefor the entire expression will evaluate to false. This coincides with a1 or a2 not

229

being agents which would make the guard evaluate to false. �

Having now shown the correspondence between the members of Guard and their

Promela translations, we next show a parallel lemma for showing the correspondence of

operations and their Promela translations.

Lemma 6.4.5 (Operation Correspondence) For a knowledge state s = (A,O,m, l), a

corresponding Promela representation as per Section 6.2.2, and an argument list a =

a, s, r, P, f, f ′,msg, the result of any operation ω at s with a such that s
ω

−→ s′ is a knowl-

edge state s′ = (A,O′,m′, l′) with a corresponding Promela representation as derived from

the translation of ω in Table 6.8.

Proof: We proceed in the proof structurally, considering each operation independently

and showing that the results of the ω operations coincide with the outcome of the Promela

code. We use the code translations as per Table 6.8. Our inductive assumption is that

the representations have been initialized correctly and are in a corresponding state. We

show that for each possible update using an operations ω, the resulting state from the

Promela code corresponds to the result from executing ω. Let a, s, r be integers of type

AGENT, o be an integer of type OBJECT, p be an integer of type PURPOSE, P be of type

PURPOSE[MAXPURPOSE], b be a boolean. Let a, s, r ∈ Agent and a, s, r’s indices in Agent

be stored in a, s, r respectively. Let o ∈ Object and o’s index in Object be stored in o.

create object o The operation creates a new object o in O if no object o previously exists

with that name. The resulting state is that O′ = O∪{o}. If o ∈ Object , the outcome of the

operation is undefined. The corresponding Promela code performs its operations under an

atomic statement to ensure that it is not preempted by any other processes. It first (1)

asserts that there is more space for objects to be created (assert(topObj < MAXOBJECT)).

It then (2) stores the value of the next open space (o = topObj) and (3) creates the object

entry in the objects vector (objects[topObj] = 1). Finally (4) it updates the top object

slot (topObj++).

Placing the Promela code in an atomic block ensures that the variable topObj is not

updated between the time that it is read and when the objects matrix is updated. The first

230

statement (1) asserts that there is still space in the objects matrix to create another object

by checking that topObj is less than MAXOBJECT. If the check fails, the model execution

terminates. Since the size of the objects matrix is not part of the logic code, the error is

not caught by the Promela model, but is handed back to the SPIN system for processing.

If the check succeeds, the code continues unhindered.

The second statement (2) stores the value of the next available slot in the variable name

o which corresponds to the new name assigned in the operation. If the name o already

exists in Object , Section 5.3 indicates that the outcome is undefined. In the Promela model,

we create a new object with the index of topObj and proceed. Statement (3) then sets the

objects vector to indicate the new slot is occupied by an object as per the definition of

objects above that a vector entry set to 1 corresponds to object creation. The setting of

objects[o] = 1 corresponds to the addition of o to Object . Statement (4) then updates

topObj to maintain invariant 2 above.

In order to handle two create object operations in a single command, the naming of

the new variable in the Promela code is kept identical to the naming of the variable in the

formal operation. Therefore subsequent operations may use the name o for any operations.

For instance, if the operation create object o1 is followed by create object o2, the code

maintains the names of the objects as per the formal model in case o1 and o2 are reused

during the rest of the command.

delete object o The operation delete an object o that already exists in O. If o already

exists then the result is that O′ = O − {o}. If o does not exist then the operation is

ignored. The corresponding Promela code predicates its actions on the existence of o

using an if/fi structure. The first option checks two conditions (1) that the name o

corresponds to an object and not an agent (o < MAXOBJECT && o >= MAXAGENT). If both

conditions are satisfied then (2) the object is deleted (objects[o] = 0). If the conditions

are not satisfied, the else just continues with the next operation (3) (else -> skip).

The first expression (1) checks two conditions. As defined above, an integer o represents

an object if it falls in the range 0 ≤ o < MAXOBJECT and it represents an agent if it falls

in the range 0 ≤ o < MAXAGENT. Since only objects can be deleted, we must check that o

231

is an object but not an agent, in other words that MAXAGENT ≤ o < MAXOBJECT. The two

expressions o < MAXOBJECT and o >= MAXAGENT check that condition. If both are satisfied

then o is an object and may be deleted with the operation. Otherwise, the operation is

ignored (3).

If (1) is satisfied then the option is selected by the if/fi structure and statement

(2) is performed. Statement (2) performs deletion by setting objects[o] = 0 as per the

definition of objects above. The result is that o is deleted from the existing objects,

paralleling the deletion of o from O′.

set o.t = b The operation sets the value of the tag t on o to the boolean value b. The

operation succeeds if o is an object and t is a tag on o. The result is that O′ = O except for

o where o.t = b. The corresponding Promela code predicates its actions on the existence of

o. It first checks that o is an object (1) (o >= MAXOBJECT || o < 0 || objects[o] ==

0). If o is not an object then the operation is stuck. We indicate that by settings its result

to to false (2) (result = false) which the model uses to indicate that the command got

stuck. Otherwise, the tag t is set on o to the new boolean value (3) (mtags[o].t = b).

The first expression (1) checks that o is an existing object as per Lemma 6.4.1. The

second statement (2) is run if o is not an object, leading to a stuck result if o does not

exist.

The last statement (3) executes only if o is an existing object. As defined in Sec-

tion 6.4.1, the array mtags is defined for and has valid contents for all existing objects

(i.e., ∀n . 0 ≤ n < MAXOBJECT ∧ objects[n] = 1). Since (3) only runs if (1) is false (i.e.,

if o is an existing object) we are sure that mtags[o] has valid contents of a Tags record.

As defined in Section 6.2.2, the Tags record stores a boolean flag for each tag t that is set

to true if and only the tag o.t is true in the formal representation. Statement (3) stores

the new boolean value for mtags[o].t which corresponds to the updating of o.t = b in the

new object set O′.

insert d in (a, o) The operation sets the right d for a on o. It succeeds if a ∈ Agent

and o ∈ Object . The result is that m′ = m except for m′(a, o) = m(a, o) ∪ {d}. The

corresponding Promela code inserts the new right for a on o in m. It first checks if o is an

232

object (1) (o >= MAXOBJECT || o < 0 || objects[o] == 0) and if (2) a is an agent (a

< 0 || a >= MAXAGENT). If o is not an object or a is not an agent then the operation is

stuck which we indicate by setting the command’s result to false (3) (result = false).

Otherwise, (4) the right r is set (m.mat[a].objects[o].d = 1).

The first expression (1) checks that o is an existing object as per Lemma 6.4.1. The

second expression (2) checks that a is an agent as per Lemma 6.4.2. Statement (3) executes

if o is not an object or a is not an agent, leading to a stuck result if o or a do not exist.

Statement (4) executes only if o is an object and a is an agent. As defined in Sec-

tion 6.4.1, the matrix m is defined for and contains valid contents for m.mat[a].objects[o]

if a is an agent and o is an object. As defined in Section 6.2.2, its contents is a Rights

record with bit flags for each right that an agent may hold over an object. The bit flags have

the same name as the corresponding right in the formal model. Statement (4) sets the bit

flag m.mat[a].objects[o].r = 1, corresponding to the update of m′(a, o) = m(a, o)∪{r}

as per the definition of m and Rights.

delete d from (a, o) The operation removes the right d for a on o. It succeeds if a ∈

Agent and o ∈ Object . If d ∈ m(a, o), the result is that m′ = m except for m′(a, o) =

m(a, o) − {d}. If d 6∈ m(a, o), the operation has no effect so m′ = m. The corresponding

Promela code is similar to the code for insert d in m(a, o) except that statement (4)

remove the right (m.mat[a].objects[o].d = 0) instead of inserting it.

The correctness proof is identical to the proof for insert d in m(a, o) for (1)–(3).

For statement (4) it is sufficient to note that if a is an agent and o is an object then

the Rights record in m.mat[a].objects[o] has a bit flag d for the corresponding right

d. As per the definition of m in Section 6.4.1 and Rights in Section 6.2.2, setting

m.mat[a].objects[o].d = 0 corresponds to the update of m′(a, o) = m(a, o) − {d}

if a previously had the right d on o. If a did not have the right d on o then

m.mat[a].objects[o].d = 0 has no effect, corresponding to the formal operation which

also has no effect.

insert s in log, inform a of msg The log operation inserts a new log en-

try. It always succeeds and its effect is that the log l is appended with the

233

string s, denoted l′ = l + s with + the string concatenation operator. The cor-

responding Promela code creates a new entry in the log array and fills it with

the values for the current query. As in create object, it frames the operations

in an atomic statement to prevent preemption. It begins by (1) checking the

bounds for the log array and updating the topLog variable (atomic{assert(topLog

< MAXLOG); l = topLog; topLog++;}). If then (2) enters in the values for the

new log entry (log[l].command = command; log[l].a = a; log[l].s = s; log[l].r

= r; arrayCopy(P, log[l].P, MAXPURPOSE); log[l].f = f; log[l].fnew = few;).

As in create object, the first statements (1) assert that there is an empty slot in

the log array by examining topLog < MAXLOG. If the assertion fails, the execution of the

model is terminated. If it succeeds, execution continues unhindered, the variable l stores

the new slot’s index, and the variable topLog is incremented to maintain invariants 3 and 4.

The next statements (2) store the current global variable values in log[l] along with

the value of the current command (in the local variable command as per invariant 9) in

log[l].command. The inline function arrayCopy is defined in Appendix A. It copies

the purpose array P by copying MAXPURPOSE elements from P to log[l].P as explained

Appendix A on page 314.

The inform operation is similar to the log operation, but uses the inform array and

topInform and MAXINFORM variables.

The correctness proof for log insertion and inform differs from proofs above. Since

Promela does not support strings, we can not implement directly the semantics of the

formal model. Instead of strings we therefore store the full query information for the

command being executed, copying all global variables to a new spot in the array. The

resulting semantics are such that log and inform are updated with new entries if there is

space in their respective arrays. Since no members of ψ inspect l or i, the change does not

affect the outcome or behavior of the model.

invoke e(args) The invoke operation first performs a constraint search for a

command e and runs it if the constraints allow. The operation leaves the

states s unchanged except for the changes performed by e while it is run.

234

The corresponding Promela code first performs the constraint search by (1)

sending a message to the search process with the name of the command to

be executed and listening for its response (Cst request chan!search request(e);

Cst response chan?search response(temp);). Using an if/fi structure, the

code checks (2) if the response is true (i.e., Allow) (if ::temp == true). If

it is, (3) the command’s process e is sent a message to begin its execu-

tion and the operation listens for its response (e request chan!command request;

e response chan?command response(temp);). If the response if false (i.e., Forbid), the

else option (4) is chosen, setting the command’s result to false (result = false;) and

indicating that the operation was stuck.

The first statements (1) invoke the constraint search process Cst Search defined above

in Section 6.3.1 and listens for its response. As shown in Lemma 6.4.3, the constraint

search returns true if and only if the constraint search in the formal model would return

Allow or Ignore (Allow). Otherwise it returns false.

If the result is true, statement (2) is chosen in the if/fi structure and the next

statements (3) run the process e by sending it a message on its request channel and then

listening for its response. This corresponds to running a command if the constraint search

permits it. Running the command using its Promela process corresponds to executing the

formal command e as shown in Lemma 6.4.6.

If the result is false, the else option is chosen and statement (4) is chosen and the

operation is stuck. This corresponds to not running the formal command if the constraint

search forbids it or any operation in it get stuck.

return b The return operation returns the boolean value b from the executing command

or constraint. As noted in Section 6.2.3 the logic for returning the correct boolean result

is distributed throughout the command and constraint processes. Therefore there is no

explicit code generated for a return operation. The correctness of the return value is

shown in Lemmas 6.4.6 and 6.4.7. �

Having shown correspondence lemmas for the members of Guard and Operation and

their Promela translations in Tables 6.7 and 6.8, we now use the proofs for two important

235

lemmas which show the correctness of the translation of commands and constraints into

Promela.

Lemma 6.4.6 (Commands) A command e in the Privacy Commands formal language

which is run by the evaluation engine with arguments a, s, r, P, f, f ′,msg on a knowledge

state (A,O,m, l) leads to a resulting state (A,O′,m′, l′) if and only if the corresponding

Promela process Pr(e) leads from Pr(A,O,m, l) to Pr(A,O′,m′, l′) for the same parameters

as global variables as per Table 6.4 when predicated by the transaction code in Figure 6.10.

Proof: The structure for a command in Promela is shown in Figure 6.6 and is explained

in Section 6.2.6. As defined in Section 5.4.1, when running a command, the evaluation

engine first checks the boolean values of its guards ψ and based on their outcome either

runs the operations in the true branch ωt or the operations in the false branch ωf . If the

true branch is selected and any ω ∈ ωt is stuck, we introduce in the translation a guarantee

of atomicity that the knowledge state will remain unchanged with the exception of the log

(i.e., (A,O,m, l′) is the result). Since the operational semantics do not define a behavior

for stuck operations and commands, we choose this as the failure mode.

Let us denote Pr(e) as the process e. It listens on the channel e request chan for a

request. Receiving a message on the channel is the equivalent of a command invocation

in the formal model. The process then proceeds through a translation of each guard

ψ ∈ ψ, collecting the result of each translated guard in the variable result. As shown

in Lemma 6.4.4, each guard stores its result in temp which is then logically AND-ed with

result. After line 7, result is true if and only if
∧n
i=0 ψi = true.

If the variable result is true after the guard evaluation, the first option of the if/fi

structure is chosen. It executes the Promela translations of the operations in ωt which yield

the Promela translation Pr(A,O′,m′, l′) as per Lemma 6.4.5. If any of them are stuck, the

result variable is set to false, but the rest of the operations are executed.

If the variable result is false after the guard evaluation, the second option of the if/fi

structure is chosen. It executes the Promela translations of the operations in ωf which

yield the Promela translation Pr(A,O′,m′, l′) as per Lemma 6.4.5.

236

The final value of result is sent back on the response channel. The transaction han-

dling code in Figure 6.10 performs the final commit for the operations and if result is

true (Pr(A,O′,m′, l′)), otherwise it only commits the log (Pr(A,O,m, l′)). �

Lemma 6.4.7 (Constraints) A constraint c in the Privacy Commands formal language

which is run by the evaluation engine with arguments a, s, r, P, f, f ′,msg on a knowledge

state (A,O,m, l) yields three boolean results bscp, bst, br if and only if the corresponding

Promela process Pr(c) on state Pr(A,O,m, l) and arguments a, s, r, P, f, f ’, msgin global

variables as per Table 6.4 sends boolean values scope, such that, and regular on its

response channel where bscp =scope, bst =such that, and br =regular.

Proof: The structure for a constraint in Promela is shown in Figure 6.4 and is explained

in Section 6.2.4. As defined, constraints return three boolean values over their response

channels. Those boolean values correspond to the checks for scope, such that guards, and

regular guards.

After receiving a message on its request channel, a constraint process c evaluates

whether the command variable passed with the message is equal to any of CMD values in its

scope. The code for the search a straightforward if/fi selection as shown in Section 6.2.5.

If command matches any of the options, scope is set to true. Otherwise it set to false.

This corresponds to the scope checking for constraints and scope is true iff the command

represented by command is in scp, the scope of c.

After checking scope, c checks the such that guards which store true in result iff
∧n
i=0 ψ

i
st = true for all ψist ∈ ψst as per Lemma 6.4.4. The value in result is stored

in such that and result is reset. A similar procedure is then performed for the regu-

lar guards and their result is stored in regular which is true iff
∧n
i=0 ψ

i
r is true as per

Lemma 6.4.4. �

Using the above lemmas, we prove the following theorem regarding the correspondence

between the formal representation and the Promela model.

Theorem 2 For a Privacy API (C,E,R, T, P) consisting of a command set E ∈

Command and a constraint set C ∈ Constraint and the Promela translation of both sets

237

denoted Pr(E) and Pr(C) respectively, for any knowledge state (A,O,m, l) which transi-

tions to a state (A′, O′,m′, l′) via a command e ∈ E, the corresponding Promela state

Pr(A,O,m, l) transitions to Pr(A′, O′,m′, l′) via Pr(e).

Proof: As shown in Lemmas 6.4.6, the translation of any command e yields a Promela

process denoted Pr(e) which has equivalent behavior. Constraint search for e in the formal

model allows commands to execute if and only if the corresponding Promela constraint

search allows Pr(e) to execute as per Lemma 6.4.3. Therefore, command Pr(e) may execute

if and only if e may execute. If it does execute, its results are equivalent to e. �

Theorem 2 shows the correspondence between the knowledge state transformations per-

formed by commands and the Promela state evolution performed by the Promela processes.

An important corollary to this result is the following.

Corollary 1 (Properties) For a Privacy API (C,E,R, T, P) and an initial knowledge

state (A,O,m, l), the knowledge state (A,O′,m′, l′) is reachable via a series of commands

e1(args1), e2(args2), . . . , en(argsn) where args1, args2, . . . , argsn are the respective param-

eters for the commands if and only if the Promela translations Pr(E) and Pr(C) from the

initial state Pr(A,O,m, l) can reach Pr(A′, O′,m′, l′) by sending request messages to pro-

cesses Pr(e1),Pr(e2), . . . ,Pr(en) with global variables Pr(args1),Pr(args2), . . . ,Pr(argsn) at

each respective request.

Proof: The argument is a straightforward application of Theorem 2 from single step tran-

sitions to a chain of n transitions. �

6.5 Conclusion

In this chapter we have presented a methodology for the translation of Privacy APIs to

Promela models which can be evaluated using the SPIN model checker. Our mapping

includes direct translations from the guard and operation sets in the Privacy Commands

language to checks and changes on a Promela model built on a set of global variables. We

238

build Promela processes based on the commands and constraints in the formal model and

show some of the extra code necessary for the processing of command invocations.

An important result from this chapter is that we may use Corollary 1 to use a Promela

model for the exploration of reachable properties in of a Privacy API. It tells us that any

knowledge state which is reachable in the formal model is also reachable in the Promela

model, so we are guaranteed that the model is complete. Importantly, it also tells us that

any state which is reached in the Promela model is also reachable in the formal model via

the commands which correspond to the Promela processes. Therefore, any properties that

we discover via SPIN space exploration in the Promela model correspond to knowledge

states reachable in the formal model and we may use the trace of the SPIN exploration to

see which commands led to it. We use this observation in Chapter 7 where we use SPIN

to explore the properties of the Promela models and map them back to the source text.

239

1 active proctype Cst_Search()

2 {

3 JUDGMENT j; JUDGMENT final; CMD e;

4 bool scope; bool such_that; bool regular;

5 do

6 :: Cst_Search_request_chan?constraint_request(e);

7 j = final = ALLOW;

8 CST1_request_chan!constraint_request(e);

9 CST1_response_chan?constraint_response(scope, such_that,

10 regular);

11 cst_search_judgment(scope, such_that, regular, j);

12 if

13 :: j == FORBID -> final = FORBID;

14 fi; ...

15 CSTn_request_chan!constraint_request(e);

16 CSTn_response_chan?constraint_response(scope, such_that,

17 regular);

18 cst_search_judgment(scope, such_that, regular, j);

19 if

20 :: j == FORBID -> final = FORBID;

21 fi;

22

23 if

24 :: final == FORBID ->

25 Cst_Search_response_chan!command_response(false);

26 :: else ->

27 Cst_Search_response_chan!command_response(true);

28 fi;

29 od

30 }

Figure 6.12: Promela code an n constraint search

240

Table 6.7: Promela translation for members of Guard

d in (a, o) temp = (o < MAXOBJECT && o >= 0 &&

objects[o] == 1 && a < MAXAGENT && a >= 0

&& m.mat[a].objects[o].d == 1);

result = result && temp;

o.t = b temp = (o < MAXOBJECT && o >= 0 &&

objects[o] == 1 && mtags[o].t == b);

result = result && temp;

k in Roles(a) temp = (a < MAXAGENT && a >= 0 && mroles[a].k == 1);

result = result && temp;

p ina P run isPermittedByA();

isPermittedByA request chan!purpose request(p);

isPermittedByA response chan?purpose response(temp);

result = result && temp;

p inf P run isForbiddenByA();

isForbiddenByA request chan!purpose request(p);

isForbiddenByA response chan?purpose response(temp);

result = result && temp;

c(a, s, r, P, f, f ′,msg) c request chan!constraint request;

∈ {j1, . . .} c response chan?constraint response(scope,

such that, regular);

reference judgment(scope, such that, regular, j);

if

:: j == j 1 -> temp = true;

:: ...

:: else -> temp = false;

fi;

result = result && temp;

a1 = a2 temp = (a1 >= 0 && a1 < MAXAGENT && a2 >= 0

&& a2 < MAXAGENT && a1 == a2);

result = result && temp;

241

Table 6.8: Promela translation for members of Operation

create atomic{assert(topObj < MAXOBJECT); o = topObj;

object o objects[topObj] = 1; topObj++;}
delete if

object o :: o < MAXOBJECT && o >= MAXAGENT -> objects[o] = 0;

:: else -> skip;

fi;

set o.t = b if

:: o >= MAXOBJECT || o < 0 || objects[o] == 0 ->

result = false;

:: else -> mtags[o].t = b;

fi;

insert d if

in (a, o) :: (o >= MAXOBJECT || o < 0 || objects[o] == 0 ||

a < 0 || a >= MAXAGENT)-> result = false;

:: else -> m.mat[a].objects[o].d = 1;

fi;

delete d if

from (a, o) :: (o >= MAXOBJECT || o < 0 || objects[o] == 0 ||

a < 0 || a >= MAXAGENT)-> result = false;

:: else -> m.mat[a].objects[o].d = 1;

fi;

insert s atomic{assert(topLog < MAXLOG); l = topLog; topLog++;}
in log log[l].command = command; log[l].a = a; log[l].s = s;

log[l].r = r; arrayCopy(P, log[l].P, MAXPURPOSE);

log[l].f = f; log[l].fnew = few;

inform a of s atomic{assert(topInform < MAXINFORM); i = topInform;

topInform++;} inform[i].command = command;

inform[i].a = a; inform[i].s = s; inform[i].r = r;

arrayCopy(P, inform[i].P, MAXPURPOSE);

inform[i].f = f; inform[i].fnew = few;

invoke Cst request chan!search request(e);

e(args) Cst response chan?search response(temp);

if

:: temp == true -> e request chan!command request;

e response chan?command response(temp);

result = result && temp;

:: else -> result = false;

fi;

return b No additional code.

242

Chapter 7

Case Studies

The techniques that we have delineated in previous chapters give us the machinery to do

two types of analysis. First, we can use the mapping from Privacy Commands to Promela

to let us explore the permissions granted by a legal text. We do this by translating the

legal document to a Privacy API, designing an initial knowledge state and invariants,

mapping them to a Promela model, and using SPIN to explore the model’s reachable

states to see if the invariants are true. Second, we can use the formal model itself to

evaluate conformance metrics such as strong and weak licensing between Privacy APIs.

The metrics let us compare the permissiveness of legal policies and determine whether one

document is at least as strict as the another document.

Our goal in this chapter is to exercise our techniques to show their effectiveness at

addressing a variety of real world legal documents. We present here three case studies in

the evaluation and comparison of legal privacy policies. We first demonstrate the ability to

compare different versions of legal policies using HIPAA as an example in Section 7.1. To

exercise policy comparison we also show how to compare parts of HIPAA to the Insurance

Council of Australia’s Privacy Code [72] in Section 7.2. As an exercise in conformance

determination, we develop a case study comparison between the US Cable TV Privacy Act

of 1984 [48] (CTPA) and the TiVo corporation’s (tivo.com) privacy policy [62] that is

subject to it in Section 7.3. We conclude in Section 7.4.

243

7.1 HIPAA Consent

As noted in Section 2.1.3, the HIPAA Privacy Rules was issued by the HHS’s Office for

Civil Rights to regulate the usage and disclosure of health information. As a document,

the Privacy Rule presents an interesting case study since it has gone through several major

revisions during its lifetime. The initial version of HIPAA’s Privacy Rule was published

in the Federal Register in 2000 [42]. It was published by the Department of Health and

Human Services (HHS) with the intent of gathering public comments and criticisms from

the entities affected by the Rule and so there was a comment period before it was to go

into effect. After the comment period, the HHS published list of major comments along

with its responses to them [43]. In 2003 it released a new version of the Privacy Rule with

significant changes from the initial version [46]. Since 2003, the Privacy Rule has had some

minor revisions as well which are reflected in the currently available version on the HHS’s

web site.

Since we have access to both versions of the HIPAA Privacy Rule along with a complete

listing of relevant comments, it is of interest to ask whether the new version of the Rule

changed to meet the public comments. Conveniently, we can use Privacy APIs and their

corresponding Promela models to help answer the question in an semi-automated fashion.

We do so by translating the 2000 and 2003 versions of HIPAA into Privacy APIs, converting

them to Promela model, interpreting the comments as properties of the models, and using

SPIN to determine whether the comment properties are true in them.

For this case study we limit our translation to one section of the Privacy Rule which

deals with consent for treatment, payment, and health care operations. We show the

document level differences between the two versions, translate the sections to Privacy

APIs and Promela models, and show how we use SPIN to explore the differences between

the models with respect to the comments issued. We have discussed the consent rules in

§164.506 above in Example 3.2.3.

244

7.1.1 Model Development

As noted above, the consent rules were considerably rewritten between 2000 and 2003.

The 2000 version was about one page long in the Federal Register. The 2003 version was

shortened to one third of a column. The content and style of the document changed as

well, with the 2003 version using many more references to other parts of the document

than the 2000 version. The result of the modifications is that direct comparison between

the documents at the text level is somewhat complicated. We can, however, use Privacy

APIs to make the job easier.

Our goal in this case study is to translate the relevant sections of HIPAA from text to

Privacy APIs, attempt to discover the three properties relevant to the comments mentioned

above in Example 3.2.3 in the 2000 version, and explore if they are still true in the 2003

version. Finding the properties in the 2000 version shows the correctness of the model

in extracting known properties of the text. Exploring the properties in the 2003 version

shows the usefulness of the model since it shows how to find differences between policies.

In order to discover the desired properties, we follow the steps enumerated in Figure 1.1.

First, we translate the text into the Privacy Commands language, enumerating the roles,

tags, rights, and purposes relevant to the consent section. Second, we devise commands

and constraints which parallel the paragraphs and sentences of the consent rules, capturing

the contents and intent of the phrases as shown in the previous chapters. Next, we devise

initial knowledge states for the comments that we are looking for based on the comments

documents and translate everything into three Promela models. We then derive the LTL

properties implied by the comments and encode them in terms of the Promela model.

Finally, we use SPIN to explore the properties of the models, exploring whether the LTL

properties are maintained.

In designing and analyzing the models that we are developing, it is important to keep

in mind the types of properties that we are examining. The Privacy Rule contains rules

that relate to the processing of private information, a policy that entities covered by the

law must follow. Since the Privacy API is a derivative of the Privacy Rule document, the

model derived will be at the same level of abstraction. The models we derive therefore are

at the policy level, not the implementation level. Thus, the model consider aspects such as

245

the granting, revocation, and creation of rights over objects. It does not consider aspects

such as the management of identities, the consumption of rights, or the creation of state

that the policy uses to make decisions. For example, for a policy statement which permits

health care providers to use information about an individual for the purpose of treatment,

the model will check the roles, properties, and purposes for the access request and grant

the right “treatment” on the object if satisfied. The model will not check, however, how

actors are designated as “health care providers”, how the object is marked protected health

information, and how a computer database will interpret the right for treatment in terms

of the data that it sends back from a database query. Such implementation level models are

describable using Privacy Commands, but since the Privacy Rule does not discuss them,

they are not included in the case study.

7.1.2 Consent from 2000

The rules regarding the need for consent for treatment, payment, and health care opera-

tions from the 2000 version of the Privacy Rule have six major divisions (paragraphs) as

described in Section 2.1.3. The paragraphs have different purposes and therefore different

levels of specificity. In creating the Privacy API based on the model, we must carefully

analyze the text to establish the different roles, purposes, actions, and agents which are to

be included. For reference we include the full text for [§164.506, v.2000] in Appendix B.1.

The regulatory text in paragraph (e) deals with the resolution of conflicting consent

forms and the contacting of individuals to verify their intent. The resolution and document

level discussions that are necessary to properly model its rules are beyond the scope of the

Privacy APIs language since the policy steps required deal too deeply with the semantics

of a consent form and not with the permission that it yields. If we are given two consent

forms with differing permissions we could translate them to Privacy APIs and then use the

strong and weak licensing relations to analyze their relative permissiveness, but since this

case study is concerned with analysis at the regulatory level, such implementation level

analysis is not possible. The ability to express guards at the meta-policy level (e.g., If A

is more restrictive than B then you may do C) is an exciting extension that merits further

study. In particular, the need to merge document and instance level requirements into a

246

single evaluation engine makes the task of modeling far more complex.

Roles

The text in §164.506 mentions the following roles. They are the members of Role . The

definitions below are as per [§164.501, v.2000] and the list is in alphabetical order.

Covered Entity An individual or organization that is either a health care provider, a

health insurance company, or a health information clearinghouse. Entities designated

as covered entities are subject to the Privacy Rule while others are not.

Health Care Provider An individual or organization which provides health care ser-

vices.

Health Plan An organization which provides health insurance coverage.

Individual A person with protected health information.

Purposes

The text mentions the following purposes for actions. They are the members of Purpose .

The definitions below are as per [§164.501, v.2000] and the list is in alphabetical order.

Disclose The transfer (disclosure) of information held by one entity to another.

Emergency Health service provided in an emergency.

Enrollment Enrolling an individual in a health care plan.

Grant Consent An individual wishes to grant consent to an entity for protected health

information.

Health Care Operations Any one of a list of actions performed by an entity that relate

to health care.

Indirect Treatment A relationship of treatment where the doctor and patient are not

in direct contact.

247

Joint Consent An individual wishes to grant consent to more than one entity at a time

for protected health information.

Payment Any one of a list of actions performed by an entity to perform that relates to

billing and payment processing.

Research Actions related to systematic research to lead to generalizable knowledge.

Revoke An individual wishes to retract consent from an entity.

Transfer Consent An entity wishes to act using a consent granted to another entity.

Treatment Any one of a list of actions performed by an entity that relate to the provision,

management, and coordination of health care services.

Use Accessing or processing some protected health information in order to use it for a

particular purpose.

Voluntary Consent Obtaining consent from an individual when not strictly required to

by the law or regulation.

Rights

The text mentions the following relationships between agents and objects. They repre-

sented as rights and therefore are the members of Right . The rights represent one way

relationships between an agent and object and are not reflexive. For instance, if d in (a,

b), then we say that a has right d on b, but not the reverse. As needed the descriptions

will refer to a and b for clarity.

Attempted Consent Agent a has attempted to receive consent from agent b.

Begin Treat Agent a begins a treatment relationship with agent b.

Consent Agent a has received consent from agent b.

Health Care Operations Agent a has received permission to use objects about agent b

for health care operations.

248

Indirect Agent a has an indirect treatment relationship with agent b.

Local Agent a has object b locally and may access it if allowed by the Privacy API.

Organized Health Care Arrangement Agent a participates in an organized health

care arrangement with agent b.

Payment Agent a has received permission to use objects about agent b for payment

purposes.

Required To Treat Agent a is required by law to treat agent b.

Research Agent a has received consent from b to use files about b for research.

Treatment Agent a has received permission to use objects about agent b for treatment

purposes.

Tags

The text mentions a large number of properties and checks that we include in tags. Since

there are many tags they are listed in Table C.1. Individual tags are elaborated on as

necessary during the rest of the discussion.

Command and Constraint Examples

We translate the legal text into commands and constraints as described in Chapter 5. The

commands and constraints include references as necessary. Constraint scopes are applied

as per the explicit and implicit references included in the text. To give a good feel for the

depth and breadth of the model, we next present a few sample commands and constraints

from the full Privacy API which is included in Appendix C.1.

Example 7.1.1 ([§164.506(a)(1), v.2000]) As an example of constraint overloading and

basic commands, we consider the following text from [§164.506(a)(1), v.2000]:

Except as provided in paragraph (a)(2) or (a)(3) of this section, a covered
health care provider must obtain the individual’s consent, in accordance with
this section, prior to using or disclosing protected health information to carry
out treatment, payment, or health care operations.

249

The text provides three options for a covered health care provider to use or disclose

protected health information: if (a)(2) permits it, if (a)(3) permits it, or if the health

care provider has the individual’s consent. Since options are joined with a logical OR,

if any of them are true, the paragraph permits the use or disclosure. The three options

are therefore mapped to three separate overloaded constraints. This is an example of

constraint overloading since we may take the most lenient result from all three constraints

as described in Section 5.2.4. The three constraints are as follows:

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a3(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

250

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if consent in (a, s)

then return true

else return false

The first constraint’s scope includes the commands that implement actions under para-

graph (a)(1). It checks if the constraint for (a)(2) allows the action to be performed, that

subject of the information is an individual, and that the object is protected health in-

formation. The such that guards check if the subject of the information is an individual

and the object is protected health information, since if they are not, the paragraph is not

applicable. The Permitted506a2 constraint reference in the regular guard checks that the

judgment received is Allow.

The second and third constraints are similar with the second one checking the constraint

for (a)(3) and the third checking if the individual has given consent.

Each of the above constraints implement the logic of the paragraph by checking one of

the options. As noted in Section 5.2.4 and explained in Section 5.4.2, when a command

references the constraint Permitted506a1 or a command in its scope is about to be executed,

the evaluation engine derives judgments from the constraints are combined using a most

lenient algorithm (see Tables 5.11 and 5.9). The result is that if any of the three constraints

yields Allow, the resulting judgment is Allow, permitting the command to be run.

The commands that we derive from the above quote are divided by purpose - use and

disclosure for treatment, payment, and health care operations. The first one we present

relates to the use of information for treatment.

251

CMD TreatmentUse506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment inf P

and use ina P

then insert treatment in (a, s)

and return true

else return false

The command TreatmentUse506a1 is invoked when an agent wishes to acquire permis-

sion to use an object for treatment. It first checks if the constraint for (a)(1) allows the

intended action. If it does, it checks that the subject is an individual and that the actor is

a health care provider. It then checks that the object is locally visible to the actor and that

the purpose of the action is to use the object for treatment. The purpose is checked using

forbidden semantics since if treatment or any of its ancestors are present, the requirements

apply. If all of the guards are satisfied, the command inserts the treatment right for the

actor on the object and returns true. Otherwise it returns false. The commands for use for

payment and health care operations are similar and shown in Section C.1.2 on page 350.

Note that the permission to use an object for treatment is indicated by the right

“treatment” in the matrix at entry (actor, subject). Therefore, once an agent has the

treatment right on the subject, it can be used to permit accesses in the future to any

object about the subject until the right is removed. This parallels the real world notion in

the HIPAA rules that a consent gives permission for an agent to use information until the

consent is revoked and that consent is a contract between people, not related to a specific

data object.

While the constraint Permitted506a1 already checked that the subject is an individual,

the command repeats the check in its guard list. This done as a safety measure for com-

mands which depend on the status of a particular guard to operate. Since the constraint

invoked may be overloaded and therefore be satisfied by multiple combinations of guards, it

252

is a good practice for commands to include all guards which must be true for their correct

operation.

In addition to the use action, the paragraph permits disclosure of protected health

information for treatment, payment, and health care operations. We model the disclosure

of information by the granting of the local right to the recipient. The recipient actor can

then operate of the object since it is locally visible.

CMD TreatmentDisclose506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment inf P

and disclose ina P

then insert local in (r, f)

and return true

else return false

The command TreatmentDisclose506a1 implements the action of disclosing protected

health information for the purpose of treatment. As in TreatmentUse506a1, it checks that

the relevant constraint allows the action, that the subject is an individual, that the actor

is a health care provider, that the object is locally visible to the actor, and that purpose

of the action is for disclosing information for treatment purposes. If all of the guards are

satisfied, the command grants local visibility on the file to the recipient. The commands for

disclosure for payment and health care operations are similar and shown in Section C.1.2

on page 350. �

The above example demonstrates the use of commands and constraints reflecting a

single paragraph. The commands and constraints derived exercised a common set of Pri-

vacy Command features: rights, roles, and objects tags. We now show an example which

exercises the don’t care judgments to allow for restrictions.

Example 7.1.2 ([§164.506(b), v.2000])

253

Paragraph (b) of the consent rules discusses general requirements for the acquisition

and maintenance of consent documents. Each subparagraph relates to a different aspect

of consent. In this example we consider one subparagraph of (b):

(b) Implementation specifications: General requirements.

(1) A covered health care provider may condition treatment on the provision
by the individual of a consent under this section.

Subparagraph (b)(1) permits health care providers to refuse treatment to individuals

who do not grant consent. Since health care providers are not required to refuse care, the

constraint in (b)(1) may issue a judgment which is ignored. The constraint for (b)(1) is as

follows:

CST Condition506b1(a, s, r, P, f, f’, msg)

Scope {BeginTreatment506b1}

Such That a.refuse-without-consent = true

and individual in Roles(s)

if consent in (a, s)

then return true

else return false

The scope is the command BeginTreatment506b1 which we discuss next. Its such that

guards check that the actor intends to refuse treatment without consent and that the

subject is an individual. If the actor does not intend to refuse treatment without consent

or the subject is not an individual then the constraint is not applicable. The regular

guard checks that the subject has given consent. If the subject has given consent then the

constraint permits the treatment. Otherwise it does not.

Since the text gives permission to health care providers to condition treatment based on

the receipt of consent but does not require it, we place the a.refuse-without-consent check

in a such that guard. By doing that we enable commands to use the Don’t Care/Allow and

Don’t Care/Forbid judgments appropriately. For instance, if the health care provider does

not wish to condition treatment on the receipt of consent (i.e., a.refuse-without-consent =

false) and the individual has not granted consent (i.e., consent 6∈ (a, s)), the constraint’s

returned judgment will be Don’t Care/Forbid. However, if the health care provider does

254

intend to condition treatment on the receipt of consent (i.e., a.refuse-without-consent =

true), the returned judgment will be Forbid. Commands can thereby use the different

judgments to take appropriate action as we show next.

The command for the paragraph applies the notion of beginning treatment using the

beginTreat right. It uses the constraint Condition506b1 above described above.

CMD BeginTreatment506b1 (a, s, r, P, f, f’, msg)

if Condition506b1(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and healthCareProvider in Roles(a)

and treatment ina P

then insert beginTreat in (a, s)

and return true

else return false

Command BeginTreatment506b1 first checks constraint Condition506b1’s judgment.

The constraint check is true if the judgment returns is either Allow, Don’t Care/Allow,

or Don’t Care/Forbid. As we noted above, we use the Don’t Care/Allow and Don’t

Care/Forbid judgments to separate cases where the actor doesn’t intend to condition

treatment on the receipt of consent. The next guards check that the actor is a health

care provider and that the purpose of the action is treatment. If all of the guards are

satisfied, the command inserts the right beginTreat in the matrix to indicate that the

health care provider will begin treatment for the subject. If the guards are not satisfied,

the command returns false. �

Having shown two examples involving rights, roles, tags, and judgments, we now present

a more involved example showing the complexity of interactions between commands and

constraints as illustrated in the rules regarding the granting of consent for treatment,

payment, and health care operations. The complexity in the example is not due to the

Privacy APIs formulation, but rather due to the inherent complexity of the Privacy Rule

document. Privacy Commands make the references and complexity explicit, enabling users

to envision the relationships between different parts of the regulation.

Example 7.1.3 (Granting Consent)

255

The granting of consent by an individual to an health care provider is the subject

of many rules in §164.506. The regulations require that consent must be granted in the

majority of cases as quoted above [§164.506(a)(1), v.2000]:

(1) Except as provided . . . a covered health care provider must obtain the in-
dividual’s consent, in accordance with this section, prior to using or disclosing
protected health information. . .

In order to properly model the granting of consent as per (a)(1), we include a command

which grants consent to an agent from a subject:

CMD GrantConsent506a(a, s, r, P, f, f’, msg)

if individual in Roles(s)

and healthCareProvider in Roles(a)

then insert consent in (a, s)

and RecordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

The command checks that the subject is an individual and that the recipient actor

is a health care provider. If both are satisfied, the command inserts the right “consent”

into the actor’s rights over the subject. The command does not mention any constraints

explicitly, but it is subject to the constraints of paragraph (c) regarding the content of the

consent document that created the right as we describe below.

Note that there are other circumstances described in the section for the granting of con-

sent. For brevity in this example we include only GrantConsent506a. The other cases are

included in the full Privacy API in Appendix C.1. There are many rules in the section that

limit the manner in which consent is granted. Let us consider two of them: §164.506(b)(6)

which requires the retention of the records of granted consent and §164.506(c) which places

requirements on the content of the consent document.

First let us consider subparagraph (b)(6) [§164.506(b)(6), v.2000]:

(b) Implementation specifications: General requirements.

(6) A covered entity must document and retain any signed consent under this
section as required by Sec. 164.530(j).

256

It requires covered entities to retain any signed consent forms as required by §164.530(j).

The text in §164.530(j) requires entities to maintain electronic or written records of commu-

nications and actions that occur in the context of health care activities. The relevance to

(b)(6) is that the communication of consent or revocation must be recorded electronically

or in writing [§164.530(j), v.2000]:

(j)(1) Standard: Documentation. A covered entity must:

(ii) If a communication is required by this subpart to be in writing, maintain
such writing, or an electronic copy, as documentation; and

The full text of §164.530(j) is included in Section B.1.2 on page 339 for convenience.

The constraint for (b)(6) is as follows:

CST ReqRecordConsent506b6 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4, CombineConsent506b4i,

CombinedConsent506b4ii, GrantJointConsent506f1}

Such That coveredEntity in Roles(a)

if grant-consent ina P

and s.consent-in-writing = true

and a.will-record = true

and Maintain530j(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

then return true

else return false

The scope for the constraint is all of the commands that involve the granting of consent

from a subject. The such guard checks that the actor is a covered entity since otherwise the

subparagraph does not apply. The regular guards check that the purpose of the action is

granting consent, that the consent is in writing, and that the actor will record the consent

once granted. The last guard checks that the constraint Maintain530j returns an Allow,

Don’t Care/Allow, or Don’t Care/Forbid judgment. The don’t care judgments permit

cases where retention is not required as per §164.530 as we show below.

The constraint uses the tag will-record to check whether the actor will record the

consent that is granted. The tag implies an obligation on behalf of the actor to record

257

the consent in the future. Privacy Commands do not have any way to impose and fulfill

obligations since they are not designed as models of a particular implementation. Specific

implementations will impose and record the fulfillment of obligations to be in compliance

with the regulation, but unless the particulars of the obligation system are included in the

regulatory text they are not included in the Privacy API.

The constraint for §164.530(j) is as follows:

CST Maintain530j(a, s, r, P, f, f’, msg)

Scope {RevokeConsent506b5, RevokeJointConsent506f2ii, GrantConsent506a,

OptionalConsent506a4, CombineConsent506b4i, CombinedConsent506b4ii,

GrantJointConsent506f1}

if Policies530ji(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and MaintainWritten530jii(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

then return true

else return false

The constraint’s scope is all commands that are involved in the creation of communi-

cations. For the model we present, we include all such commands, but a wildcard symbol

could be used as well if it were added to the syntax of Privacy Commands scopes. The

constraint checks that both of its subparagraphs are fulfilled. The first subparagraph (j)(i)

checks that policies mentioned in §164.530(i) are maintained. The second checks that

communications that are required to be in writing are maintained in written or electronic

format. For brevity, we elide the details of the constraints from this example, but they can

be found in full in Section C.1.2 beginning on page 379.

Commands fulfill their obligation to record the granting of consent as per §164.506(b)(6)

using the following command:

258

CMD RecordConsent506b6 (a, s, r, P, f, f’, msg)

if consent ina P

then insert “Consent granted” in log

and invoke Record530j(a, s, r, P, f, f’, msg)

and return true

else return false

The command RecordConsent506b checks that the intended action is the granting of

consent. If it is, it records the granting using the log and then invokes the command

Record530j to comply with the rules in section §164.530(j) as per the requirement in the

constraint ReqRecordConsent506b6. Invoking the command is a fulfillment of the tag

will-record that is checked by ReqRecordConsent506b6 and Maintain530j.

The command Record530j is as follows:

CMD Record530j(a, s, r, P, f, f’, msg)

if true

then insert msg in log

and return true

else return false

Its guard is nil (only the trivial value true) since there are no preconditions for its

recording in the log. It records the message (in msg) in the log, corresponding to the

recording of the communication that has taken place.

As noted above, RecordConsent506b6 is invoked by GrantConsent506a in the course

of noting the granting of consent. All other commands related to the granting of consent

invoke RecordConsent506b6 as well. Other command which depend on communications of

agents invoke Record530j directly as part of their execution. See for example RevokeCon-

sent506b5 on page 371.

Now let us consider the rules for the content of consent documents are listed in

§164.506(c). The text in the paragraph begins as follows [§164.506(c), v.2000]:

(c) Implementation specifications: Content requirements. A consent under this
section must be in plain language and:

(1) Inform the individual that protected health information may be used and
disclosed to carry out treatment, payment, or health care operations;

259

The paragraph contains rules regarding the contents of the consent document which

are submitted to subjects for approval. The contents of the consent document are detailed

in (c) with respect to the kinds of information which must be included. Paragraph (c)(1) is

an example of the requirements from the paragraph. It requires that the document inform

the individual that the information covered in the consent may be used for treatment,

payment, and health care operations. The 6 subparagraphs under (c) are combined with

a logical AND and therefore must all be satisfied. The full text of the paragraph and its

subparagraphs is in Section B.1.1 on page 337.

The requirements in paragraph (c) are constraints which limit the granting of consent

by individuals to health care providers. Therefore, the constraints refer to all consents

received in §164.506 and all commands which grant consent in the section are in their

scope. The top level constraint for (c) reflects this by including all of its subparagraph

constraints in its guards:

CST ConsentContent506c (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-plain-language = true

and ConsentContent506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c2(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c3(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c4(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c5(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c6(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

The constraint begins enumerating its scope to include all commands which grant

consent. Included in the scope is GrantConsent506a discussed above in Example 7.1.1.

The other commands are included in Appendix C.1 for reference. The constraint first

checks that the actor has given a consent document which is plain language, the limitation

mentioned in the first sentence of (c). The rest of the guards check that all six subparagraph

260

constraints of (c) allow the consent document. If all of the guards are true, the constraint

returns true. Otherwise, it returns false.

Note that the check for plain language in the consent document is performed by ex-

amining a tag attached to the actor. In our model, all attributes of documents issued by

a specific agent are recorded in tags associated with the agent. That is, we do not model

the consent document as an object by itself, but as attributes of the agent who issues it.

The constraint for (c)(1) checks tags on the actor as per the requirements of the text:

CST ConsentContent506c1 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.informs-may-be-used-for-treatment = true

and a.informs-may-be-used-for-payment = true

and a.informs-may-be-used-for-health-care-operations = true

then return true

else return false

The constraint declares the same scope as ConsentContent506c since it also discusses

a requirement for all consent documents. The guards in the constraint are checks for tags

indicating that the actor has included clauses informing the subject that the information

may be used for treatment, payment, or health care operations. The rest of the constraints

for subparagraphs (c)(2)–(6) are in Section C.1.2 on pages 373–375.

As noted above, before the any command is run by the evaluation engine, a constraint

search is performed to find all applicable constraints and check their judgments. For

example, before the execution of command GrantConsent506a above, the constraints Con-

sentContent506c and ConsentContent5061 would be executed to check that they allow its

execution. �

The previous examples have exercised almost all of the features of Privacy Commands

with the exception of the inform operation. We now present an example from the Privacy

Rule which depends on it.

Example 7.1.4 ([§154.506(f)(2)(ii), v.2000])

261

The early sections of §164.506 discuss the details of when consent is required and how is

it obtained by health care providers. Paragraph (f), the last paragraph in §164.506 details

the rules for consent given to health care providers which behave as part of a organized

health care arrangement. The rule that we consider in this example concerns the revocation

of joint consent [§164.506(f)(2)(ii), v.2000]

(f)(1) Standard: Joint consents. Covered entities that participate in an or-
ganized health care arrangement and that have a joint notice under Sec.
164.520(d) may comply with this section by a joint consent.

(2) Implementation specifications: Requirements for joint consents.

(ii) If an individual revokes a joint consent, the covered entity that receives the
revocation must inform the other entities covered by the joint consent of the
revocation as soon as practicable.

Subparagraph (f)(2)(ii) requires that if a joint consent is revoked, then the covered

entity which receives the revocation must inform all members of the organization. The

command which implements this is:

CMD RevokeJointConsent506f2ii (a, s, r, P, f, f’, msg)

if revoke ina P

and jointConsent ina P

then invoke RevokeConsent506b5 (a, s, r, P, f, f’, msg)

and inform r of “Consent revoked”

and invoke Record530j(a, s, r, P, f, f’, msg)

and return true

else return false

The command begins checking that the purpose of the action is the revocation of a

consent and that the consent is a joint consent. If both are true, it deletes the consent

from the actor using the command RevokeConsent506b5 (see page 371). It then informs

the recipient agent that the consent has been revoked. Since revocations are performed

by communication, the recording command Record530j is invoked as well (see above in

Example 7.1.3).

The inform operation here sends a notice only the agent referred to in the recipient

parameter. This is because the model does not have any way of determining which agents

262

are part of the organized health care arrangement relevant to the consent that has been

revoked. Implementations would use a database to store the other agents who must be

informed about the revocation of any particular consent, but the above mechanism suffices

for our model. �

The above examples are an excerpt of the 80 commands and constraints in the Privacy

API as shown in Section C.1. The commands and constraints are mostly restricted to

the text in §164.506 with a few commands and constraints from §164.530 as noted in

Example 7.1.3.

We next discuss the 2003 version of the Privacy Rule, how it differs from the 2000

version, and how those differences manifest in its corresponding Privacy API.

7.1.3 Consent from 2003

In Section 2.1.3 we summarize the paragraphs from §164.506 and §164.508 which relate to

use and disclosure of protected health information for treatment, payment, and health care

operations. The full text for [§164.506, v.2003] is in Section B.2.1. Since only a portion of

[§164.508, v.2003] is applicable to the consent rules, we include only the relevant portion

of the rules in Section B.2.3, paragraph §164.508(a). The full text is available online and

from the Government Printing Office. As for the 2000 Privacy API in Section 7.1.2, we

list the roles, rights, purposes, and tags used in the 2003 Privacy API. The full commands

and constraints for it are in Section C.2.

Roles

The text in §164.506 and §164.508(a) mentions the following roles. They are the members

of Role : Covered Entity, Health Care Provider, Individual. Since the roles are a subset of

the roles from the 2000 model, we refer the reader to the previous section Section 7.1.2 on

page 247 for their definitions.

Purposes

The text mentions the following purposes for actions. They are the members of Purpose .

The definitions are as per [§164.501 and §164.508, v.2003] and the list is in alphabetical

263

order. Purposes which overlap with those of the 2000 model retain their definitions for the

2003 model. We refer the read to the previous section Section 7.1.2 on page 247 for their

definitions.

Communication Facilitate communication between two entities.

Compliance Aid in the evaluation of legal compliance.

Defend From Individual Aid in an entity’s legal defense from the claims of the indi-

vidual.

Disclose As above.

Face To Face A communication to an individual performed in his presence.

Health Care Fraud Abuse Detection Aid in the detection of health care fraud and

abuse.

Health Care Operations As above.

Improve Counseling Aid in training programs “in which students, trainees, or practi-

tioners in mental health learn under supervision to practice or improve their skills in

group, joint, family, or individual counseling”

Legal Action Aid in a legal action.

Marketing Used for the marketing of goods or services.

Nominal Value Use for the granting of an item of nominal value.

Own Purposes stated are relevant to the actor.

Paragraph1, Paragraph2 Shorthand for the purposes listed in paragraphs (1) and (2)

of the definition of health care operations as per [§164.501, v.2003]. For convenience,

the definitions are listed in Section B.2.2 and the hierarchy shown in Section C.2.1.

Payment As above.

Proceedings Use in a review or legal proceedings.

264

Promotional Gift Use for the granting of a promotional gift.

Recipient Purposes stated are relevant to the recipient of the action.

Related Relationship Action relates to a relationship currently or previously held by

an agent on another.

Treatment As above.

Use As above.

Rights

The text mentions the following relationships between agents and objects. They are rep-

resented as rights and are the members of Right . As in Section 7.1.2, the rights represent

one way relationships between an agent and object and are not reflexive. As needed, the

descriptions refer to the agent a and object b for clarity. Rights which overlap with those

of the 2000 model retain their definitions for the 2003 model. We refer the reader to the

previous section Section 7.1.2 on page 248 for their definitions.

Authorization The agent b has granted a written authorization to a to use or disclose

information about b.

Consent As above.

Health Care Operations As above.

Local As above.

Organized Health Care Arrangement The agents a and b participate in an organized

health care arrangement together.

Originator The agent a created or originated object b.

Payment As above.

Relationship The agent a has a relationship with the agent b.

Treatment As above.

265

Tags

The 2003 regulatory text mentions fewer tags than the 2000 version. As in Section 7.1.2,

they are intuitively named and are listed in Table 7.1. Specific tags are elaborated on as

necessary during the rest of the discussion.

Table 7.1: Tags for the HIPAA 2003 Privacy API

authorization-states-remuneration direct-remuneration
from-third-party past-relationship
protected-health-information psychotherapy-notes

Constraint Example

The Privacy API for the 2003 text is similar to the 2000 model in its roles, rights, and

purposes. The tag sets have less of an overlap due to textual differences. For instance, the

2000 version has a significant discussion about the required contents of consent documents

which is missing in the 2003 version. Conversely, the 2003 version refers to the rules

regarding the use and disclosure of psychotherapy notes and information for the purpose

of marketing. The rules for them are present in the 2000 version, but are not referenced

explicitly in [§164.506, v.2000]. We have presented extensive examples from the 2000

model in Section 7.1.2 and so present only a short example from the 2003 Privacy API

which illustrates the flexibility necessary for handling purposes in the model.

Example 7.1.5 ([§164.506(c)(4), v.2003])

The definitions for the purposes in the Privacy API come from the definitions in

§164.501. The general purposes treatment, payment, and health care operations include

many different types and categories of actions which are enumerated in the definitions. In

our discussions of the 2000 model we did not enumerate the child purposes of treatment,

payment, or health care operations since they are all subsumed under the general headings

without exception. The 2003 text differs, however, in §164.506(c)(4) where it specifies

permitted actions based on a subset of the purposes included in health care operations:

266

(4) A covered entity may disclose protected health information to another cov-
ered entity for health care operations activities of the entity that receives the
information, if each entity either has or had a relationship with the individual
who is the subject of the protected health information being requested, the
protected health information pertains to such relationship, and the disclosure
is:

(i) For a purpose listed in paragraph (1) or (2) of the definition of health care
operations; or

(ii) For the purpose of health care fraud and abuse detection or compliance.

The purposes listed in paragraphs 1 and 2 are a subset of the purposes included in

the definition of health care operations. The full definition of health care operations is in

Section B.2.2 on page 340. The purpose hierarchy for the definition in §164.501 is shown

in Section C.2.1. By including only the purposes in paragraphs 1 and 2, §164.506(c)(4)

limits the purposes for which the action is permitted. In the model we enforce the separate

child purposes by denoting the purposes mentioned in paragraphs 1 and 2 as children of

the purposes “Paragraph 1” and “Paragraph 2” respectively.

The constraints which implement the purpose checks for §164.506(c)(4) are as follows:

CST Permitted506c4i (a, s, r, P, f, f’, msg)

Scope {}

if Paragraph1 ina P

then return true

else return false

CST Permitted506c4i (a, s, r, P, f, f’, msg)

Scope {}

if Paragraph2 ina P

then return true

else return false

CST Permitted506c4ii (a, s, r, P, f, f’, msg)

Scope {}

if healthCareFraudAbuseDetection ina P

then return true

else return false

267

CST Permitted506c4ii (a, s, r, P, f, f’, msg)

Scope {}

if compliance ina P

then return true

else return false

The constraints themselves are similar to the constraints discussed in the 2000 model,

but their usage of the purpose hierarchy in an unusual way shows the flexibility of the

Privacy Commands. Other guards which check “healthCareOperations ina P” would be

true if any child purpose of health care operation were true. �

The above example is an excerpt of the 77 commands and constraints in the Privacy

API as shown in Section C.2. The commands and constraints include text from §164.506

and §164.508. There are many external references (e.g., see §164.508(a)(2)(ii)) due to the

textual style of the 2003 Privacy Rule text. We do not include the translations of all of

the external references or commands for §164.508 since they greatly increase the size of

the model. Since they refer specifically to psychotherapy notes and marketing, they do not

affect the queries we are interested in.

7.1.4 Queries

We translate the Privacy APIs for the 2000 and 2003 rules into Promela models using the

methodology of Chapter 6. Due to the length of the Promela models (each thousands of

lines long and repetitive) we elide the full models from this document. To give the reader

a sample of the models, we provide a sample command from the 2000 Privacy API in

Example 6.2.2. The queries that we perform on the models are derived from the three

comments mentioned above on Page 52. We reproduce them here for convenience:

[(1)] Emergency medical providers were also concerned that the requirement
that they attempt to obtain consent as soon as reasonably practicable after
an emergency would have required significant efforts and administrative bur-
den which might have been viewed as harassing by individuals, because these
providers typically do not have ongoing relationships with individuals.

[(2)] The transition provisions would have resulted in significant operational
problems, and the inability to access health records would have had an adverse

268

effect on quality activities, because many providers currently are not required
to obtain consent for treatment, payment, or health care operations.

[(3)] Providers that are required by law to treat were concerned about the mixed
messages to patients and interference with the physician-patient relationship
that would have resulted because they would have had to ask for consent to use
or disclose protected health information for treatment, payment, or health care
operations, but could have used or disclosed the information for such purposes
even if the patient said “no.”

Let us denote the Privacy API for the 2000 rules φ2000 and the Privacy API for the 2003

rules φ2003. The queries that we derive are in terms of the relations defined in Section 5.5.

The queries for the comments above are as follows.

Ambulance Workers

For the first comment regarding ambulance workers in an emergency situation, we must ex-

amine whether the two policies permit them to use or disclose protected health information

for treatment in an emergency situation without prior consent and without requirements

to gain consent after the fact. Although the comment addressed emergency workers in

general, we concretize the query to ambulance workers, a class of emergency workers, to

make the roles more specific and the policy slightly more readable. The resulting query

and policies, though, are not specific to ambulance workers and our conclusions are appli-

cable to any emergency medical providers. For brevity let us consider the case for use of

protected health information since the disclosure case is similar.

Initial State The initial state for the query is as follows. Let the agent set A1 =

{ambulance, patient} where Roles(ambulance) = {healthCareProvider, ambulanceWorker}

and Roles(patient) = {individual}. All tags for ambulance and patient are set to false.

Let the object set O1 = {o1} where o1.protected-health-information = true. Let the rights

matrix m1 be the following:

m1 =

ambulance patient o1

ambulance local

patient local

Let l1 be the log. Let us denote the initial state s1 = (A1, O1,m1, l1).

269

Resulting State The transition that we are interested in can be described in a command:

CMD AmbulanceUse(ambulance, patient, ambulance, P , o1, null, ǫ)

if healthCareProvider in Roles(a)

and ambulanceWorker in Roles(a)

and individual in Roles(s)

and emergency ina P

and treatment ina P

and use ina P

then insert treatment in (a, s)

and return true

else return false

Since the ambulance workers may be interested in using information that is not classified

as protected health information, AmbulanceUse does not check that f.protected-health-

information = true. Their intent is to be able to carry out their jobs for treatment in

emergency situations with all the information necessary. Also note that the second guard

checks for a role ambulanceWorker which is not present in the definitions for the two

Privacy APIs. The check is included because the intent of the comment was to allow

ambulance workers to perform their duties without hindrance, not to permit all covered

entities to use information without acquiring consent.

The desired result from the transition is a state s2 = (A2, O2,m2, l2) with the following

properties. The agent and object sets as well as the log should remain unchanged A2 = A1,

O2 = O1 maintaining all tag states and l2 = l1. Importantly, it should be the case that

ambulance.will-obtain-consent-asap = false. The rights matrix m2 should be the following:

m2 =

ambulance patient o1

ambulance treatment local

patient local

Let the purposes set P = {emergency, treatment, use}. Let us denote the argument

list g = (ambulance, patient, ambulance, P , o1, null, ǫ). Our query is then whether the

2000 policy φ2000 and the 2003 policy φ2003 permit the transition s1
AmbulanceUse(g)

−→ s2.

270

We are interested in proving therefore two relations - φ2000 |=∗

(s1,g)
AmbulanceUse(g) and

φ2003 |=∗

(s1,g)
AmbulanceUse(g). In order to prove the two relations we use SPIN to evaluate

the Promela models. We translate s into a Promela initial state and queried invariant as

in Figure 7.1. Since the role ambulanceWorker doesn’t appear in the 2000 or 2003 models,

it is elided from the query. The query for the SPIN checker is then whether result is

eventually true. Since we have restricted the purposes in the query, we do not allow the

running of actions for other purposes which might affect the reachability of result.

Results Spin found the Ambulance query to be true in the 2000 version as expected.

Since there the commands in 2003 do not use an after the fact consent requirement, the

invariant was never true, a trivial false.

Transition Provisions

The second comment refers to the transitional rules in the 2000 Privacy Rule which required

covered entities to acquire consent for the use and disclosure of protected health information

collected previously. The aim of the comment was to request that the rules requiring

consent be removed entirely since it would change the way that health care providers deal

with their records. For this query let us consider just one aspect of their request, that

health care providers be permitted to use existing protected health information without

acquiring consent. This lets us focus on perhaps the strongest aspect of their argument:

that the new rules would make it impossible to access already existing records without

first acquiring consent. To evaluate the query, we must examine whether φ2000 and φ2003

permit the use and disclosure of existing protected health information without consent. As

with the previous query let us consider just the use case since the disclose case is similar.

Initial State The initial state for the query is as follows. Let the agent set A1 = {ce,

patient} where Roles(ce)= { healthCareProvider} and Roles(patient) = {individual}. All

tags for ce and patient are set to false. Let the object set be O1 = {o} where the tag

o.protected-health-information=true. Let the rights matrix m1 be:

271

m1 =

ce patient o

ce local

patient local

Let l1 = ǫ be the (empty) log.

Resulting State The transition that we are interested in for the query is represented in

the following commands:

CMD TransitionTreatmentUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and f.before-transition = true

and local in (a, f)

and use ina P

and treatment ina P

then insert treatment in (a, s)

and return true

else return false

CMD TransitionPaymentUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and f.before-transition = true

and local in (a, f)

and use ina P

and payment ina P

then insert payment in (a, s)

and return true

else return false

272

CMD TransitionHealthCareOperationsUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and f.before-transition = true

and local in (a, f)

and use ina P

and healthCareOperations ina P

then insert healthCareOperations in (a, s)

and return true

else return false

The commands TransitionTreatmentUse, TransitionPaymentUse, and Transition-

HealthCareOperationsUse are identical except for the purposes for which permission is

sought (i.e., treatment, payment, or health care operations). The commands include a

reference to a tag which is not present in either Tag of φ2000 or φ2003, “before-transition.”

Objects tagged with “before-transition” are those which were created before the transition

provisions came into effect. Since the tag is not present in either Privacy API, we add it

to the tag set for both φ2000 and φ2003. Since no commands in either policy reference the

tag, however, it may be ignored by the query engine.

The desired result is a state where the covered entity has rights to treatment, payment,

or health care operations even though the patient has not yet given consent. Any of the

configurations of the rights matrix below meet that result:

mt =

ce patient o

ce treatment local

patient local

mp =

ce patient o1

ce payment local

patient local

273

mh =

ce patient o1

ce healthCareOperations local

patient local

The rights matrices mt, mp, and mh are the outcomes of successfully running Tran-

sitionTreatmentUse, TransitionPaymentUse, and TransitionHealthCareOperationsUse re-

spectively. Our query for φ2000 and φ2003 is therefore if there is any command which will

lead from m1 to mt, mp, or mh. Since the additional right in (ce, patient) is different

for each matrix above, we are in fact checking three queries, one for each right. We may

therefore denote the desired resulting states as follows for treatment, payment, and health

care operations respectively. Let A1, O1, and l1 be as defined above for the initial state.

st = (A1, O1,mt, l1) sp = (A1, O1,mp, l1) sh = (A1, O1,mh, l1)

Let the purpose set P = {treatment, payment, heathCareOperations, use}. Let

us denote the argument list g = (ce, patient, ce, P , o, ∅, ǫ). We include treat-

ment, payment, and healthCareOperations in the purpose list P for simplicity. Let

us denote et = TransitionTreatmentUse, ep = TransitionPaymentUse, and eh =

TransitionHealthCareOperations. Note then that:

s1
et(g)
−→ st s1

ep(g)
−→ sp s1

eh(g)
−→ sh

Our queries then amount to evaluating the following relations:

1. φ2000 |=∗
s1,g

et and φ2003 |=∗
s1,g

et.

2. φ2000 |=∗

s1,g
ep and φ2003 |=∗

s1,g
ep.

3. φ2000 |=∗

s1,g
eh and φ2003 |=∗

s1,g
eh.

We translate the commands above to Promela as described in Chapter 6 and evaluate

the following invariant called result:

1 result = (m.mat[ce].objects[patient].treatment == 1 ||

2 m.mat[ce].objects[patient].payment == 1 ||

3 m.mat[ce].objects[patient].healthCareOperations == 1);

274

We then create a SPIN model similar to the one shown for Ambulance query in Fig-

ure 7.1 use SPIN to evaluate whether result is eventually true.

Result The transition rules query diverged for the 2000 model, indicative that SPIN

could not find a command which lead to the satisfaction of the invariant in the 2000

model. A manual evaluation of |=∗ shows that no command in the 2000 rules will grant

treatment, payment, or health care operations without consent from state s1. The query

for the 2003 version returns true as expected.

Treatment Required By Law

The third comment refers to situations where a health care provider is required by law to

treat an individual. In such cases, the health care provider is permitted to use or disclose

protected health information for treatment, payment, or health care operations without

consent, but still must ask for it anyway. The law would put the health care provider in

a difficult situation where the individual must be asked for consent, but an answer in the

negative could be ignored.

We are interested in evaluating for both Privacy Rules, then, whether there are situa-

tions where a health care provider asks for consent, but may gain the right to treatment,

payment, or health care operations even if the consent is refused. The query as phrased is

slightly more general than the intent of the content which was concerned that the health

care provider was required to request consent. This relaxation is motivated partially by a

technical concern in it is difficult to express required actions in Privacy APIs. It is also

motivated by a general interest in broadening the scope of the stakeholder’s comment since

they undoubtedly would be concerned about any situation where health care providers may

ignore a negative response from an individual.

Initial State The initial state for the query is as follows. Let the agent set be

A1 = {ce, patient} where Roles(ce) = {healthCareProvider} and Roles(patient) =

{individual}. All tags for ce and patient are false. Let the object set be O = {o} where

o.protected-health-information = true. Let the rights matrix m1 be:

275

m1 =

ce patient o

ce requiredToTreat local

patient local

Let l1 = ǫ be the (empty) log.

Resulting State The transition that we are interested in is described in the following

commands. As in the previous queries we present just the commands related to use since

disclose is similar.

CMD DenyConsent(a, s, r, P, f, f’, msg)

if individual in Roles(a)

and healthCareProvider in Roles(r)

and a = s

and denyConsent ina P

and use ina P

then delete consent from (r, a)

and insert deniedConsent in (r, a)

and insert attemptedConsent in (r, a)

and return true

else return false

The command DenyConsent is run when an individual denies consent to a health

care provider to use protected health information. It indicates the denial using a right

“deniedConsent” which is inserted in the rights matrix after removing the consent right.

We also use to following commands for the insertion of treatment, payment, and health

care operations rights:

276

CMD IgnoreConsentTreatmentUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and local in (a, f)

and use ina P

and treatment ina P

and requiredToTreat in (a, s)

then insert treatment in (a, s)

and return true

else return false

CMD IgnoreConsentPaymentUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and local in (a, f)

and use ina P

and payment ina P

and requiredToTreat in (a, s)

then insert payment in (a, s)

and return true

else return false

277

CMD IgnoreConsentHealthCareOperationsUse(a, s, r, P, f, f’, msg)

if healthCareProvider in Roles(a)

and individual in Roles(s)

and f.protected-health-information = true

and local in (a, f)

and use ina P

and healthCareOperations ina P

and requiredToTreat in (a, s)

then insert healthCareOperations in (a, s)

and return true

else return false

The commands IgnoreConsentTreatmentUse, IgnoreConsentPaymentUse, and Ignore-

ConsentHealthCareOperationsUse permit health care providers who are required to treat

individuals to obtain rights for treatment, payment, and health care operations. The rights

are given ignoring whether consent has been granted or denied to the health care provider.

We are interested then in discovering whether φ2000 and φ2003 permit running Deny-

Consent followed by IgnoreConsentTreatmentUse, IgnoreConsentPaymentUse, IgnoreCon-

sentHealthCareOpertionsUse. The command DenyConsent uses the right “deniedCon-

sent” and the purpose “denyConsent” which are not present in either φ2000 and φ2003,

so both must be added to both models. Since no commands in either policy use “de-

niedConsent” or “denyConsent”, we must also add the command DenyConsent to both

models. For the query we therefore modify the policies in the following manner. Let us

denote the rights and purpose sets for the 2000 and 2003 models as Right2000, Purpose200,

Right2003, and Purpose2003 respectively. Let us denote the rights sets as Right ′2000 =

Right2000 ∪ {deniedConsent} and Right ′2003 = Right2003 ∪ {deniedConsent} respectively

and the purpose sets are Purpose ′

2000 = Purpose2000 ∪ {denyConsent} and Purpose ′

2003 =

Purpose2003 ∪{denyConsent} respectively. Let us denote the tag set for the 2000 policy as

shown in Table C.1 as Tag2000 and the tag set for the 2003 policy as shown in Table 7.1 as

Tag2003. Let us denote the roles for the 2000 policy as shown in Section 7.1.2 as Role2000

and the roles for the 2003 policy as shown in Section 7.1.3 as Role2003. The modified

278

policies are then: φ2000 = (C2000, E2000 ∪ {DenyConsent},Role2000,Tag2000,Purpose ′

2000)

and φ2003 = (C2003, E2003 ∪ {DenyConsent},Role2003,Tag2003,Purpose ′

2003).

Our desired result is the transition of the rights matrix in two stages. First m1 should

transition to the following configuration which we label m2:

m2 =

ce patient o

ce denyConsent local

patient local

This corresponds to the patient first denying consent to the health care provider. The

matrix should then transition to one of the following configurations:

mt =

ce patient o

ce denyConsent, treatment local

patient local

mp =

ce patient o

ce denyConsent, payment local

patient local

mh =

ce patient o

ce denyConsent, healthCareOperations local

patient local

As in the query for the transition rules, if the matrix reaches any one of configurations

mt, mp, or mh, the desired state has been reached since the health care provider then has

the right to perform treatment, payment, or health care operations. Our query for φ2000

and φ2003 is therefore if there is any command series which will lead from m1 to m2 and

then from m2 to mt, mp, or mh. Since the additional right in (ce, patient) is different

for each matrix above, we are in fact checking three queries, one for each right. We may

therefore denote the desired resulting states as follows for treatment, payment, and health

care operations respectively. Let the two purpose sets be as follows: P1 = {denyConsent,

use} and P2 = {treatment, payment, healthCareOperations, use}. Let the two argument

279

lists then be: g1 = (patient,patient, ce, P1, o, ∅, ǫ) and g2 = (ce,patient, ce, P2, o, ∅, ǫ). Let

us denote the following resulting states, where A1, O1, l1 are as defined in the initial state.

s2 = (A1, O1,m2, l1) st = (A1, O1,mt, l1) sp = (A1, O1,mp, l1) sh = (A1, O1,mh, l1)

Let us denote et = IgnoreConsentTreatmentUse, ep = IgnoreConsentPaymentUse, and

eh = IgnoreConsentHealthCareOperationsUse. Note then that:

s1
DenyConsent(g1)

−→ s2
et−→ st s1

DenyConsent(g1)
−→ s2

ep
−→ sp

s1
DenyConsent(g1)

−→ s2
eh−→ sh

Our queries then amount to evaluating the following relations. Let e1 =

{DenyConsent, et}, e2 = {DenyConsent, ep}, and e3 = {DenyConsent, eh}. Let g1 =

{g1, g2}.

1. φ′2000 |=∗

(s1,g1)
e1 ∧ φ

′

2003 |=∗

(s1,g1)
e1

2. φ′2000 |=∗

(s1,g1)
e2 ∧ φ

′

2003 |=∗

(s1,g1)
e2

3. φ′2000 |=∗

(s1,g1)
e3 ∧ φ

′

2003 |=∗

(s1,g1)
e3

As in the previous queries we translate the above states into Promela and evaluate an

LTL property based on the following two invariants, deny and result:

1 deny = (m.mat[ce].objects[patient].denyConsent == 1);

2 result = (m.mat[ce].objects[patient].treatment == 1 ||

3 m.mat[ce].objects[patient].payment == 1 ||

4 m.mat[ce].objects[patient].healthCareOperations == 1);

We are interested in evaluating whether the provider can gain rights over the patient’s

information even after the patient has denied consent and so we wish to restrict that result

should be false until deny is true. After deny is true, result should be false. The intuition

is that we wish to exclude a case where the provider gains rights on the information before

the refusal of the patient. In LTL we would write:

(¬result U deny) U result

280

In order to speed up the search we may help the search by first instructing SPIN to run

DenyConsent before performing the search so that we may reduce the search to a simple

invariant check whether result is eventually true.

Results Spin found the required by law query to be true for the 2000 model, but sur-

prisingly returned true for the 2003 model as well. Upon inspection we found that there

was a provision in the (current) 2003 rules stating that even though consent is not re-

quired for treatment, payment, or health care operations, health care entities optionally

may request consent anyway [164.506(b)(1), v.2003]. No paragraph in the section declares

that an optional consent is binding, however. To find out what this omission meant, we

consulted with Lauren Steinfeld, Privacy Officer of the University of Pennsylvania. Ms.

Steinfeld remarked that a situation of denial of an optional consent request for treatment,

payment, and health care operations is legally complex because it has a conflict of patient

expectations of privacy and potential medical necessity. In practice, this case may be af-

fected by state laws which preempt the federal guidelines. In short, the section of HIPAA

studied here is not sufficient to resolve to case discussed here since it is affected by other

laws. To resolve a particular situation of this type of conflict would require examination

of the details of the case including the jurisdiction in which it occurs and the manner in

which the denial of consent occurred.

7.1.5 Discussion

We learned a number of lessons from our experiments.

First, following the structure and style of the law let us discover a somewhat subtle

policy property in required by law treatment query. We had expected that the result for

the 2003 version would be negative since the paragraph about entities required by law to

provide health care was removed. However, since the 2003 version is silent on the need

to respect optional consent, our query found an ambiguity in the legal text that requires

deeper legal analysis to resolve.

Second, we can discover properties of the system based on the presence or absence of

permissions or environmental flags in the model. For some concerns, an assertion that no

281

command includes a particular obligation is sufficient as in our first query.

Third, we have indication that our current model may suffer from an undecidability

property noted by HRU. The original HRU paper [56] proved that the general question of

safety, whether granting a general right to one principal can eventually lead to it being

leaked to an unauthorized principal, for systems described in their syntax is undecidable.

They note that certain systems may not be subject to their conclusion, but we have not yet

explored that question for our system. We will consider ways of modifying our model or

queries to further explore this problem. The undecidability issue does not preclude manual

inspection of the model, however.

Finally, we have an indication as to the limits of automated evaluation of our models.

SPIN returns speedy positive results, but may not converge for negative results. In cases

where the model checker does not converge, it is a hint that the property may be false, a

conclusion which may be verified by manual inspection.

7.2 ICA Privacy Code and HIPAA

In Section 2.1.3, we quoted a section of the Insurance Council of Australia’s (ICA) Privacy

Code with respect to the disclosures of patient information. For a hypothetical Australian

health insurer interested in expanding to the US market, the insurer would need to evaluate

whether its policies need to be changed to conform to the US’ HIPAA Privacy Rule which

applies to health insurers.

The ICA policy includes a rule for “Disclosure by a health service provider” which per-

mits the disclosure of health information by an organization for the purposes of treatment

when the individual (i.e., patient) is incapable of consenting. The surrounding text for the

quote below is included in Appendix B.3.

2.4 Despite the rules on use and disclosure of personal information in Privacy
Principle 2.1, an organisation that provides a health service to an individual
may disclose health information about the individual to a person who is re-
sponsible for the individual if:

(a) the individual:

(i) is physically or legally incapable of consenting to the disclosure; or

282

(ii) physically cannot communicate consent to the disclosure; and

(b) a natural person (the carer) providing the health service for the organisation
is satisfied that either:

(i) the disclosure is necessary to provide appropriate care or treatment of the
individual; or

(ii) the disclosure is made for compassionate reasons; and

(c) the disclosure is not contrary to any wish:

(i) expressed by the individual before the individual became unable to give or
communicate consent; and

(ii) of which the carer is aware, or of which the carer could reasonably be
expected to be aware; and

(d) the disclosure is limited to the extent reasonable and necessary for a purpose
mentioned in paragraph (b).

7.2.1 Broadening Constraints

Sections 2.5 and 2.6 list individuals who are responsible for an individual as required in

2.4. The full Privacy API for sections 2.4, 2.5 and 2.6 is in Appendix C.3. The listing of

responsible individuals in 2.5 is essentially a list of roles. Section 2.6 is unusual in that it

includes definitions which widen the permissions of 2.5 (i.e., include more types of people).

We model the extra permissions of 2.6 by including overloaded constraints in 2.5 which

reference the permissions in 2.6 as shown in the following example.

Example 7.2.1 (Broadening Permissions)

Section 2.5 of the Insurance Council of Australia’s Privacy Code lists people who are

responsible for an individual. People who meet the requirements of 2.5 are eligible to receive

health information about individuals as provided in 2.4. The permissions in 2.5 include a

list of roles which a person must satisfy in order to be responsible for an individual. For

instance, the first role listed is as follows:

2.5 For the purposes of 2.4, a person is responsible for an individual if the
person is:

(a) a parent of the individual; or

Since “parent” is a relationship between two agents, not a generic role (i.e., it is not

correct to label an agent as having the role “parent” since the agent can not be the parent

283

of everyone), it is implemented as right entered in the matrix. The constraint which

implements 2.5(a) checks that the recipient of the information has the right “parent” as

per the text:

CST Responsible2.5a(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if parent in (r, s)

then return true

else return false

Taken independently, the natural interpretation of 2.5(a) is the natural father or mother

of an individual, which is the implication of agents who hold the right “parent”. Section

2.6, however, broadens the definition to include step-parents, adoptive parents, and foster-

parents:

2.6 For the purposes of 2.5: . . .

parent of an individual includes a step-parent, adoptive parent and a foster-
parent, of the individual.

While we could perhaps ignore definition of 2.6 by simply defining that agents who

are step-parents, adoptive parents, and foster-parents may also hold the right “parent”,

doing so would make the model less expressive accurate to the text. Additionally, other

locations in the document where “parent” may have the natural definition would create

unnecessary confusion of semantics. We therefore define specific rights for step-parents,

adoptive parents, and foster-parents which we check in the following constraints:

CST Parent2.6(a, s, r, P, f, f’, msg)

Such That individual in Roles(s)

if stepParent in (r,s)

then return true

else return false

284

CST Parent2.6(a, s, r, P, f, f’, msg)

Such That individual in Roles(s)

if adoptiveParent in (r,s)

then return true

else return false

CST Parent2.6(a, s, r, P, f, f’, msg)

Such That individual in Roles(s)

if fosterParent in (r,s)

then return true

else return false

In order to broaden Responsible2.5a, we must include an option to follow the broadened

definition of 2.6 for parents and so we create an overloaded constraint Responsible2.5a:

CST Responsible2.5a(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if Parent2.6(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

The effect of including the above constraint is that a reference Responsible2.5a (for

instance Responsible2.5 on page 419) may be satisfied by fulfilling either one of the two

copies of Responsible2.5a.

�

In Example 7.2.1 we would rather have made the broad definition of 2.6 able to affect

2.5(a) without needing to include a reference to 2.6 via an overloaded constraint. First,

since 2.6 references 2.5 but not vice versa, doing so would preserve the reference structure

of the text better. Second, if 2.6 is ever changed or modified, 2.5(a) would need to be

modified as well, breaking some of the encapsulation of paragraphs. We can not do so,

however, for two reasons which illustrate some of the limitations of the Privacy Commands

language:

285

1. Section 2.5 is translated as constraints only and constraints can not have other con-

straints in their scope. This limitation is placed to prevent circular references and

scope for the evaluation engine.

2. Constraints can only place limitations on other constraints or commands, not over-

ride them with more permissive judgments. In order to allow constraints to grant

permissions which override prohibitions we need to include some notion of precedence

for constraints’ judgments.

The first limitation could be solved by relaxing the definition of scope in Defini-

tion 5.2.10 to permit constraints in scope lists. Doing so would, however, require extra

restrictions to prevent circular references in scopes. While not overly burdensome to add to

the model, permitting constraints to modify other constraints may lead to policy construc-

tions that are harder for policy writers to understand. The second limitation is inherent to

the semantics of the language. Since there is no notion of priority or precedence between

constraints, there is no way for one to override another without using overloading, as shown

in Example 7.2.1.

7.2.2 Comparison of Disclosure Rules

Let us return to our hypothetical case of an insurance company in Australia interested

in discovering whether compliance with the ICA’s code is sufficient for compliance with

HIPAA. For this case study let us focus on the quote from 2.4 above which grants permission

to health providers to disclose health information about individuals when they are an

incapable of providing consent. We consider only a selection of the constraints from 2.4

here and provide the full Privacy API in Appendix C.3.

286

1 CST Permitted2.4(a, s, r, P, f, f’, msg)

2 Scope {Disclose2.4}

3 Such That healthProvider in Roles(a)

4 and individual in Roles(s)

5 and f.health-information = true

6 if Permitted2.4a(a, s, r, P, f, f’, msg) ∈ {Allow}

7 and Permitted2.4b(a, s, r, P, f, f’, msg) ∈ {Allow}

8 and Permitted2.4c(a, s, r, P, f, f’, msg) ∈ {Allow}

9 and responsibleFor in (r, s)

10 and disclose ina P

11 then return true

12 else return false

The constraint Permitted2.4 permits the disclosure of health information about an

individual by a health care provider when all of the conditions in 2.4(a), (b), and (c) are

fulfilled. For brevity, the referenced constraints with the exception of one are elided here,

but are provided in full in Appendix C.3.

Section 2.4(b) requires that the disclosure be for either treatment or compassionate

purposes. Section 2.4(b)(i) permits disclosure if “the disclosure is necessary to provide

appropriate care or treatment of the individual;” and it is implemented with the following

overloaded constraints:

1 CST Permitted2.4bi(a, s, r, P, f, f’, msg)

2 Scope {}

3 if treatment ina P

4 and a.satisfied-disclosure-necessary-to-provide-appropriate-care = true

5 then return true

6 else return false

287

1 CST Permitted2.4bi(a, s, r, P, f, f’, msg)

2 Scope {}

3 if treatment ina P

4 and a.satisfied-disclosure-necessary-to-provide-appropriate-treatment = true

5 then return true

6 else return false

Both constraints check that the purpose includes treatment, but differ with respect to

a tag check on line 4. If either constraint is satisfied, the requirements of 2.4(b)(i) are

satisfied.

The disclosure command for 2.4 is as follows:

1 CMD Disclose2.4(a, s, r, P, f, f’, msg)

2 if Permitted2.4(a, s, r, P, f, f’, msg)

3 and individual in Roles(s)

4 and healthProvider in Roles(a)

5 and responsible in (r, s)

6 and disclose ina P

7 and f.health-information = true

8 and local in (a, f)

9 then insert local in (r, f)

10 and return true

11 else return false

The command Disclose2.4 performs the disclosure of health information to a recipient

person when Permitted2.4 is satisfied and other side conditions are satisfied. If all of the

guards are satisfied, the command performs the disclosure on line 9.

For comparison, let us consider parallel permissions in 2000 Privacy Rule

[§164.506(a)(3)(i)(C), v.2000] regarding disclosure of health information for treatment pur-

poses when an individual is unable to communicate consent:

(3)(i) A covered health care provider may, without prior consent, use or disclose
protected health information created or received under paragraph (a)(3)(i)(A)–
(C) of this section to carry out treatment, payment, or health care operations:

288

. . . or (C) If a covered health care provider attempts to obtain such consent from
the individual but is unable to obtain such consent due to substantial barriers
to communicating with the individual, and the covered health care provider de-
termines, in the exercise of professional judgment, that the individual’s consent
to receive treatment is clearly inferred from the circumstances.

(ii) A covered health care provider that fails to obtain such consent in accor-
dance with paragraph (a)(3)(i) of this section must document its attempt to
obtain consent and the reason why consent was not obtained.

Paragraph §164.506(a)(3)(i)(C) permits the disclosure of health information for treat-

ment purposes, regardless of the recipient. When any disclosure is performed under the

paragraph, (a)(3)(ii) requires that the health care provider document its attempt. Let us

consider a subset of the commands and constraints which implement the above quote. The

full Privacy API for the 2000 rules is in Section B.1.1.

1 CST Permitted506a3(a, s, r, P, f, f’, msg)

2 Scope {TreatmentUse506a3, PaymentUse506a3,

3 HealthCareOperationsUse506a3, TreatmentDisclose506a3,

4 PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

5 Such That individual in Roles(s)

6 and f.protected-health-information = true

7 if Permitted508a3i(a, s, r, P, f, f’, msg) ∈ {Allow}

8 then return true

9 else return false

The constraint for (a)(3), Permitted506a3 checks that the subject is an individual and

the object is protected health information. The sole regular guard on line 7, a reference to

Permitted506a3i checks that the conditions in the subparagraph are satisfied as well.

289

1 CST Permitted506a3i(a, s, r, P, f, f’, msg)

2 Scope {TreatmentUse506a3, PaymentUse506a3,

3 HealthCareOperationsUse506a3, TreatmentDisclose506a3,

4 PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

5 Such That individual in Roles(s)

6 and f.protected-health-information = true

7 if Permitted506a3iC (a, s, r, P, f, f’, msg) ∈ {Allow}

8 then return true

9 else return false

The overloaded constraints for (a)(3)(i), Permitted506a3i, check the same such that

guards as (a)(3) and include a single regular guard on line 7 which is a reference to the

subparagraph (a)(3)(i)(A), (a)(3)(i)(B), and (a)(3)(i)(C). For brevity we show only the

one which refers to (a)(3)(i)(C). The other two are shown in Appendix C.1.2 beginning on

page 362.

1 CST Permitted506a3iC (a, s, r, P, f, f’, msg)

2 Such That s.barriers-to-communication = true

3 and s.professional-judgment-indicates-consent = true

4 and individual in Roles(s)

5 and f.protected-health-information = true

6 and healthCareProvider in Roles(a)

7 if a.attemptedConsent = true

8 then return true

9 else return false

The constraint for (a)(3)(i)(C), Permitted506a3iC, checks tags on the subject to see

that there are barriers to communication from the individual (line 2) and that the subject

indicates consent which is discernable by professional judgment (line 3). It also checks that

the subject is an individual (line 4), that the object is protected health information (line

5), that the actor is a health care provider (line 6), and that the actor has attempted to

obtain consent from the individual (line 7).

290

1 CMD TreatmentDisclose506a3 (a, s, r, P, f, f’, msg)

2 if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

3 and individual in Roles(s)

4 and healthCareProvider in Roles(a)

5 and local in (a, f)

6 and treatment ina P

7 and disclose ina P

8 then insert local in (r, f)

9 and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

10 and return true

11 else return false

The command TreatmentDisclose506a3 is one of several from (a)(3) as shown in Ap-

pendix C.1.2 beginning on page C.1.2. Since it is the most relevant to our comparison

to the ICA Privacy Code, we include it. It checks that the constraint for the paragraph,

Permitted506a3, is satisfied (line 2), and that the purposes and roles are correct (lines 3–7).

If all of the guards are satisfied, line 8 performs the disclosure to the recipient and line 9

references noteAttempt506a3ii to record the reason for the disclosure despite the lack of

consent.

1 CMD noteAttempt506a3ii (a, s, r, P, f, f’, msg)

2 if a.attemptedConsent = true

3 then insert attemptedConsent in (a, s)

4 and insert “Attempted consent and failed” in log

5 and return true

6 else return false

The command noteAttempt506a3ii performs the recording requirement mentioned in

(a)(3)(ii), checking that the actor attempted to receive consent (line 2). Line 3 then grants

the right “attemptedConsent” for the actor on the recipient to indicate that the actor has

attempted to receive consent from the individual. Line 4 enters a note in the log indicating

the reason for the granting of the permission, that consent was attempted and failed.

291

Let us refer to the Privacy API for the ICA Privacy Code as φica and the Pri-

vacy API for the 2000 Privacy Rule as φ2000. The roles, purposes, rights, and tags for

φ2000 are shown in Section 7.1.2. Let use denote them Role2000, Purpose2000, Right2000,

and Tag2000 respectively. The roles, purposes, rights, and tags for φica are as follows.

Let us denote them Role ica, Purpose ica, Right ica, and Tag ica respectively. Denoting

the commands for the ICA privacy code at Eica and the constraints Cica, we define

φica = (Cica, Eica,Role ica,Tag ica,Purpose ica).

Roles

The roles mentioned in 2.4, 2.5, and 2.6 are as follows. They are the members of Role ica.

The definitions are derived based on the usage and intent of the text.

Cannot Physically Communicate Consent An individual who can not communicate

consent due to physical incapacity.

Health Provider An individual of organization which provides health services.

Individual A natural person about whom health information is held by a health provider.

Legally Incapable An individual who is legally incapable of granting consent.

Natural Person A person (to the exclusion of an organization).

Physically Incapable An individual who is physically incapable of granting consent.

Providing Health Service A natural person who provides health services on behalf of

a health provider organization.

Purposes

The purposes mentioned in 2.4, 2.5, and 2.6 are as follows. They are the members of

Purpose ica. The definitions are based on the usage and intent of the text.

Compassion An action performed for compassionate reasons.

Disclose Disclosure of information to another agent.

292

Necessary An action deemed necessary for another purpose.

Reasonable An action deemed reasonable for fulfillment of another purpose.

Treatment An action performed to aid the treatment of an individual.

Rights

The rights mentioned in 2.4, 2.5, and 2.6 are as follows. They are the members of Right ica.

The definitions are based on the usage and intent of the text and as defined in 2.6 For

clarity, in the following definitions we use the variables a and b to represent members of

Agent and o to represent members of Object −Agent . Let us consider each right below as

being held by a over b (i.e., (a, b)) or held by a over o (i.e., (a, o)).

Guardian Agent a is the legal guardian of b.

Household Member Agent a is a member of b’s household.

Intimate Personal Relationship Agent a has an intimate personal relationship with b.

Local Agent a has local access to o.

Nominated Emergency Contact Agent a has been nominated as an emergency contact

for b.

Power of Attorney Agent a holds power of attorney over b.

Responsible Agent a is responsible for b.

The text also includes the following familial relationships which are self explanatory:

Parent, Step Parent Adoptive Parent Foster Parent, Child, Adopted Child, Step Child,

Foster Child, Sibling, Half Brother, Half Sister, Adoptive Brother, Adoptive Sister, Step

Brother, Step Sister, Foster Brother, Foster Sister, Spouse, Defacto Spouse, Relative,

Grandparent, Grandchild, Uncle, Aunt, Nephew, and Niece. Each relationship is rep-

resented as a right in the matrix. The relation “Relative” is special in that it is defined

only in terms of other relations (i.e., grandparent, grandchild, uncle, aunt, nephew, and

niece) and therefore can not be held independently.

293

Tags

The tags which we derive from conditions mentioned in 2.4, 2.5, and 2.6 are as follows.

They are the members of Tag ica. For clarity, in the following definitions we use the variable

a to represent members of Agent and o to represent members of Object − Agent .

At Least 18 Agent a is at least 18 years of age.

Aware Of Wish Agent a is aware of a wish from an agent.

Health Information Object o contains health information about an agent.

Nominated By Individual Agent a has been nominated by an individual for a purpose.

Power Exercisable To Health Agent a has been granted power which is exercisable

with respect to health information.

Power Granted By Individual Agent a has been granted power of attorney by an in-

dividual.

Reasonably Expected To Be Aware Of Wish Agent a is aware of a wish of which it

is reasonable that the agent should be aware.

Satisfied Disclosure Necessary To Provide Appropriate Care Agent a is satisfied

that a proposed disclosure is necessary to provide appropriate care to an agent.

Satisfied Disclosure Necessary To Provide Appropriate Treatment Agent a is

satisfied that a proposed disclosure is necessary to provide appropriate treatment

to an agent.

Wish Contrary Agent a has expressed a wish contrary to an action.

Wish Expressed Before Unable To Consent Agent a has expressed a wish before be-

coming unable to grant consent.

We now compare the relative permissiveness of φica and φ2000 in the following scenarios.

Since φica and φ2000 use different roles, purposes, rights, and tags, we must express scenarios

in terms of the set-wise union of each set. Let us denote the combined sets as follows:

294

Role = Role2000∪Roleica, Purpose = Purpose2000∪Purpose ica, Right = Right2000∪Right ica,

and Tag = Tag2000 ∪ Tag ica.

Example 7.2.2 (Non-responsible recipient)

Let us consider the case where a care giver working on behalf of a health care provider

needs to disclose health information about an individual for purposes of treatment. The

care giver is satisfied that the disclosure is necessary for the provision of appropriate

care, however the recipient is a second health care provider rather than a person who is

responsible for the individual. The individual is incapacitated and thus unable to respond

to the health care providers first attempt to gain consent to the disclosure, but has not

previously expressed a wish contrary to the disclosure.

The agents for the scenario are then: Agent = {hcp1, patient, hcp2} where

Roles(patient) = {individual, physicallyIncapable}, Roles(hcp2) = {healthProvider,

healthCareProvider}, and Roles(hcp1) = {healthProvider, healthCareProvider, nat-

uralPerson, providingHealthService}. If we observe that the role healthProvider

∈ Role ica is identical to the role healthCareProvider ∈ Role2000, we may

collapse the two roles into a single role, but for this example we preserve

the two roles. The following tags are set to true: hcp1.satisfied-disclosure-

necessary-to-provide-appropriate-treatment, hcp1.attempted-consent, patient.barriers-to-

communication, patient.profesional-judgment-indicates-consent. All other tags on hcp1,

patient, and hcp2 are set to false.

We define one object for the scenario Object = {o} where information about agent

patient is included in o. The tags o.health-information and o.protected-health-information

are set to true. All other tags on o are set to false.

The rights matrix before the disclosure is to occur is m1 as shown:

m1 =

hcp1 patient hcp2 o

hcp1 local

patient

hcp2

The log begins empty l1 = ǫ.

295

The purposes for the disclosure are P = {disclose, treatment, reasonable, necessary}.

The initial state for the scenario is then s1 = (A1, O1,m1, l1) where A1 = {hcp1,

patient, hcp2} and O1 = {o}. Let us consider the following argument list g1 = (hcp1,

patient, hcp2, P , o, null, ǫ). In order for the first health care provider to perform the

disclosure, we must reach a state where hcp2 has local access to o (i.e., local in (hcp2, o)).

The target matrix is therefore:

m2 =

hcp1 patient hcp2 o

hcp1 local

patient

hcp2 local

We may characterize the transition then as s1
e(g1)
−→ s2 where s2 = (A1, O1,m2, l1) and

e is some command which performs the desired update of m1 with arguments g1:

CMD e(a, s, r, P, f, f’, msg)

if true

then insert local in (r, f)

and return true

else return false

Analyzing φ2000 we find that TreatmentDisclose506a3 weakly licenses e at s1 with

g1 since it performs the transition s1
TreatmentDisclose506a3(g1)

−→ sh where sh =

(A1, O1,mh, lh), lh = l1+ “Attempted consent and failed”, and mh is as follows:

mh =

hcp1 patient hcp2 o

hcp1 attemptedConsent local

patient

hcp2 local

Since noconflict(s2, s1) by Definition 5.5.13, we have that φ2000 |=∗

(s1,g1)
e.

Analyzing φica we find that there are no commands which can reach m2 or any state

which weakly licenses s2. Since hcp2 is not responsible for patient (i.e., !responsible in

296

(hcp2, patient)), the constraints in 2.4 are not satisfied. As a result, the ICA rules are

more strict than the HIPAA rules and therefore compliance with the ICA rules is sufficient

for compliance with the HIPAA rules. Since φica does not license any transitions for any

arguments, we have trivially then that φica ≺s φ2000 as per Definition 5.5.26. Conversely,

since φ2000 does license TreatmentDisclose506a3 at s1 while φica does not, φ2000 ⊀s φica.

�

Let us now consider a different scenario where the recipient is responsible for the sub-

ject.

Example 7.2.3 (Responsible recipient)

Let us modify the case in Example 7.2.2 slightly to a case where a health care provider

needs to disclose health information about an individual for purposes of treatment to

an aunt who is responsible for the individual. As in Example 7.2.2, the health provider

is satisfied that the disclosure is necessary for the provision of appropriate care. The

individual is incapacitated and thus unable to respond to the health care providers first

attempt to gain consent to the disclosure, but has not previously expressed a wish contrary

to the disclosure.

The agents for the scenario are then: Agent = {hcp1, patient, aunt} where

Roles(patient) = {individual, physicallyIncapable}, Roles(hcp1) = {healthProvider,

healthCareProvider, naturalPerson, providingHealthService}, Roles(aunt) = {}, and If

we observe that the role healthProvider ∈ Role ica is identical to the role healthCare-

Provider ∈ Role2000, we may collapse the two roles into a single role, but for this example

we preserve the two roles. The following tags are set to true: hcp1.satisfied-disclosure-

necessary-to-provide-appropriate-treatment, hcp1.attempted-consent, patient.barriers-to-

communication, patient.profesional-judgment-indicates-consent, and aunt.at-least-18. All

other tags on hcp1, patient, and hcp2 are set to false.

We define one object for the scenario Object = o where information about agent patient

is included in o. The tags o.health-information and o.protected-health-information are set

to true. All other tags on o are set to false.

The rights matrix before the disclosure is to occur is m1 as shown:

297

m1 =

hcp1 patient aunt o

hcp1 local

patient

aunt aunt, responsible, householdMember

The log begins empty l1 = ǫ. The purposes for the disclosure are P = {disclose, treat-

ment, reasonable, necessary}. The initial state for the scenario is then s1 = (A1, O1,m1, l1)

where A1 = {hcp1, patient, aunt} and O1 = {o}. Let us consider the following argument

list g1 = (hcp1, patient, aunt, P , o, null, ǫ). In order for the health care provider to

perform the disclosure, we must reach a state where aunt has local access to o (i.e., local

in (aunt, o)). The target matrix is therefore:

m2 =

hcp1 patient aunt o

hcp1 local

patient

aunt aunt, responsible, householdMember local

We may characterize the transition then as s1
e(g1)
−→ s2 where s2 = (A1, O1,m2, l1) and

e is some command which performs the desired update of m1 with arguments g1:

CMD e(a, s, r, P, f, f’, msg)

if true

then insert local in (r, f)

and return true

else return false

Analyzing φ2000 we find that as in Example 7.2.2, TreatmentDisclose506a3 weakly

licenses e at s1 with g1 since it performs the transition s1
TreatmentDisclose506a3(g1)

−→ sh

where sh = (A1, O1,mh, lh), lh = l1+ “Attempted consent and failed”, andmh is as follows:

mh =

hcp1 patient aunt o

hcp1 attemptedConsent local

patient

aunt aunt, responsible, householdMember local

Since noconflict(s2, s1) by Definition 5.5.13, we have that φ2000 |=∗

(s1,g1)
e.

298

Analyzing φica we find that Disclose2.4 can reach m2 from s1 with g1, so φica |=(s1,g1) e.

However, φ2000 2(s1,g1) e since TreatmentDisclose506a3 requires the addition of the right

“attemptedConsent” and appending to the log. As a result, the HIPAA rules are more

strict than the ICA rules and therefore compliance with the ICA rules is not sufficient for

compliance with the HIPAA rules. Since at s1 with g1, φica strongly licenses Disclose2.4

but not TreatmentDisclose506a3 while φ2000 strongly licenses Treatment506a3 but not Dis-

close2.4, neither is at least as strict as the other even under the more restrictive definition:

φ2000 ⊀(s1,g1) φica and φica ⊀(s1,g1) φ2000.

�

Examples 7.2.2 and 7.2.3 illustrate that for complex, real world policies it is unlikely

to find situations where one policy strictly subsumes another from all states and with any

argument list. Example 7.2.2 shows a case where the ICA is trivially at least as strict as

the 2000 Privacy Rule for all arguments at a given state since it does not strongly license

any commands at s1. In Example 7.2.3 we find that neither policy is at least as strict as

the other for the given state even restricted to one argument list. Even though we can not

easily find policy level comparisons, we can use strong and weak licensing to examine the

permissiveness of policies on a command by command level, checking whether one policy

strongly or weakly licenses the commands of another. This illustrates the usefulness of

the flexibility of our definitions. By defining flexible relations which let us denote policy

comparisons at smaller levels of granularity we can express relations applicable to real

world legal policies and situations.

7.3 Cable TV Privacy Act and TiVo

In Section 2.1.3 we discuss the US Cable TV Privacy Act. As discussed, the Cable TV

Privacy Act restricts the uses and disclosures that cable operators may perform. Since

TiVo’s DVR service runs over cable, it is interesting to explore whether the privacy policy

as published by TiVo is compliant with the Cable TV Privacy Act. To do so, we translate

sections of the policies into commands and constraints and evaluate whether CTPA strongly

or weakly licenses TiVo’s policy [62].

299

7.3.1 Cable TV Privacy Act

Section 551(a) of the CTPA discusses the situations when a cable operator may disclose

personal information about its subscribers. The text of the CTPA is included for reference

in Appendix B.4. Let us consider the following quote from 551(c)(1) regarding the rules

for disclosure:

(c) Disclosure of personally identifiable information.

(1) Except as provided in paragraph (2), a cable operator shall not disclose
personally identifiable information concerning any subscriber without the prior
written or electronic consent of the subscriber concerned and shall take such
actions as are necessary to prevent unauthorized access to such information by
a person other than the subscriber or cable operator.

(2) A cable operator may disclose such information if the disclosure is

(A) necessary to render, or conduct a legitimate business activity related to, a
cable service or other service provided by the cable operator to the subscriber;

Paragraph (c)(1) forbids all disclosures of personally identifiable information without

prior consent with three exceptions listed in (c)(2)(A), (c)(2)(B), and (c)(2)(C). Let us

consider the permission in (2)(A), the one quoted above. The corresponding commands

and constraints for the above paragraphs are as follows.

Paragraph (c)(1) permits the disclosure of personally identifiable information in three

situations: (1) in the cases permitted by (c)(2), (2) if the subscriber had previously granted

written consent, or (3) if the subscriber has previously granted written consent. The

constraints corresponding to the paragraph are the three overloaded constraints Permit-

ted551c1:

300

1 CST Permitted551c1(a, s, r, P, f, f’, msg)

2 Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

3 Such That cableOperator in Roles(a)

4 and subscriber in Roles(s)

5 and f.personally-identifiable-information = true

6 and f.subject-subscriber = true

7 and disclose ina P

8 if Permitted551c2(a, s, r, P, f, f’, msg) ∈ {Allow}

9 then return true

10 else return false

The first constraint Permitted551c1 permits disclosure of personally identifiable infor-

mation if the constraint Permitted551c2 (i.e., 551(c)(2)) permits the disclosure (line 8).

The such that guards check the roles of the actor and subject (lines 3–4), that the object

is personally identifiable information (line 5) and about the subject (line 6), and that the

purpose of the action is disclosure (line 7).

1 CST Permitted551c1(a, s, r, P, f, f’, msg)

2 Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

3 Such That cableOperator in Roles(a)

4 and subscriber in Roles(s)

5 and f.personally-identifiable-information = true

6 and f.subject-subscriber = true

7 and disclose ina P

8 if consent in (a, s)

9 and written in (a, s)

10 then return true

11 else return false

301

1 CST Permitted551c1(a, s, r, P, f, f’, msg)

2 Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

3 Such That cableOperator in Roles(a)

4 and subscriber in Roles(s)

5 and f.personally-identifiable-information = true

6 and f.subject-subscriber = true

7 and disclose ina P

8 if consent in (a, s)

9 and electronic in (a, s)

10 then return true

11 else return false

The second and third Permitted551c1 constraints are similar to the first with the ex-

ception of line 8. In the second constraint lines 8–9 checks that the subject has granted

written consent to the cable operator. The third constraint checks that the subject has

granted electronic consent to the cable operator.

1 CMD Disclose551c1(a, s, r, P, f, f’, msg)

2 if Permitted551c1(a, s, r, P, f, f’, msg) ∈ {Allow}

3 and f.personally-identifiable-information = true

4 and cableOperator in Roles(a)

5 and subscriber in Roles(s)

6 and disclose ina P

7 then insert local in (r, f)

8 and return true

9 else return false

The command Dislcose551c1 allows cable operators (line 4) to disclose (line 6) person-

ally identifiable information (line 3) about subscribers (line 5) provided that the paragraph

permits the disclosure (line 2). Since Permitted551c1 is overloaded, if any of the three con-

straints shown above permit the action, the disclosure is performed (line 7).

302

1 CST Protect551c1(a, s, r, P, f, f’, msg)

2 Scope { }

3 Such That cableOperator in Roles(a)

4 if a.takes-actions-prevents-unauthorized = true

5 then return true

6 else return false

The constraint Protected551c1 represents the requirement in 551(c)(1) that the cable

operator “shall take such actions as are necessary to prevent unauthorized access to such

information by a person other than the subscriber or cable operator.” We implement

the requirement using a constraint which checks a tag indicating that the cable operator

has taken such actions as required. The constraint illustrates a limitation of the Privacy

Commands language in that policies can not describe actions which must be performed

unless they are preconditions for other actions. Since the legal text does not delineate

what actions are to be taken to prevent access and does not proscribe any actions based

on the non-fulfillment of the clause, the Privacy API formal model has no mechanism for

enforcing the fulfillment of the requirement.

The roles, purposes, rights, and tags for the CTPA Privacy API are as follows. Let

us denote the CTPA Privacy API as φctpa = (Cctpa, Ectpa,Rolectpa,Tagctpa,Purposectpa)

where Cctpa and Ectpa are the constraints and commands for the Cable TV Privacy Act

as shown in Appendix C.4 and Rolectpa, Tagctpa, and Purposectpa are the roles, tags, and

purposes for the policy as we define next.

Roles

The roles included in the CTPA text are as follows. They are the members of Rolectpa and

are defined as per their usage in the policy.

Subscriber An agent subscribed to a service provided by a cable operator.

Cable Operator A provider of cable services, including cable television.

Cable Subscriber An agent who subscribes to cable services.

303

Other Service Subscriber An agent who subscribes to services from a cable operator

other than cable service.

Government Entity An entity which is part of the government.

Purposes

The purposes included in the CTPA text are as follows. They are the members of

Purposectpa and are defined as per their usage in the policy.

Business Activity For the purpose of conducting a business activity.

Cable Communications For the purpose of detecting access to cable communications.

Cable Service For the purpose of providing cable service.

Collect For the purpose of collecting information.

Collect PII For the purpose of collecting personally identifiable information.

Conduct For the purpose of conducting another purpose.

Detect Unauthorized For the purpose of detecting unauthorized usage of a service.

Disclose For the disclosure of information.

Legitimate For the purpose of conducting a legitimate activity.

Not Directly Reveal Action which does not directly reveal information.

Not Indirectly Reveal Action which does not indirectly reveal information.

Obtain Necessary Info For the purpose of obtaining necessary information for the com-

pletion of another purpose.

Order Authorizes Action performed which is authorized by a court order.

Other Service For the purpose of providing a service other than cable service.

Provide Prohibit Purpose of providing the opportunity for an agent to prohibit an ac-

tion.

304

Table 7.2: Tags for the Cable TV Privacy Act
clear-conspicuous clear-convincing-evidence
cable-service entered-before-effective
entering-agreement extent-of-viewing
extent-of-use frequency-disclosure
identification-types-persons-disclosure information-material-evidence
limitations-collection-disclosure maintained-period
message-notifies nature-disclosure
nature-of-transactions-over-system nature-personally-identifiable-info
nature-use-information opportunity-to-appear
opportunity-to-contest other-service
personally-identifiable-information purpose-disclosure
right-subscriber-f-h-enforce separate-statement
subject-suspected-criminal-activity subject-subscriber
takes-actions-prevents-unauthorized times-place-subscriber-access
written-statement

Provide Limit Purpose of providing the opportunity for an agent to limit an action.

Pursuant Court Order Action performed pursuant to court order.

Render For the purpose of rendering a service.

Yearly Notice For the purpose of delivering a yearly privacy policy notice.

Tags

The tags for the CTPA in the text as follows. They are the members of Tagctpa and are

listed in Table 7.2. The tags are descriptively named and so are self-explanatory.

7.3.2 Comparing Disclosure Rules

The TiVo privacy policy includes a section of definitions (section 1) followed by eight more

sections. Section 2 describes how TiVo uses subscriber information. Section 3 describes

how TiVo discloses user information. Let us consider a quote from paragraph 3.4 regarding

how TiVo discloses subscriber information to companies related to TiVo.

3.4 The “Corporate Family.” TiVo may share some or all of your User Informa-
tion with any parent company, subsidiaries, joint ventures, or other companies
under a common control (collectively ”Affiliates”). In such event, TiVo will

305

require its Affiliates to honor this Privacy Policy. If another company acquires
TiVo, or acquires assets of TiVo that comprise or include your User Informa-
tion, that company will possess the User Information collected by TiVo and
it will assume the rights and obligations regarding your User Information as
described in this Privacy Policy.

Paragraph 3.4 describes that TiVo may share some User Information with companies

which are affiliated with TiVo, including those which are not directly related to TiVo’s

service. The disclosure of User Information in such cases is not predicated on the receipt

of consent from the subscriber. A command which implements the disclosure action is as

follows:

CMD DiscloseFamily3.4(a, s, r, P, f, f’, msg)

if f.user-information = true

and corporateFamily in (r, a)

and local in (a, f)

and disclose ina P

then insert local in (r, f)

and return true

else return false

In order to evaluate how DiscloseFamily3.4 compares to the CTPA’s rules on disclosure

in 551(c) we must first compare the definitions of “personally identifiable information” in

CTPA and “user information” in TiVo’s policy. The definition in CTPA is in 551(a)(2)(A):

(2) For purposes of this section, other than subsection (h) of this section —

(A) the term ”personally identifiable information” does not include any record
of aggregate data which does not identify particular persons;

Since (a)(2)(A) defines “personally identifiable information” by indicating what is not

included in it (i.e., aggregate data), the implication is that any information which is per-

sonally identifiable is included. The definition in TiVo’s policy is in 1.1. Due to its length,

we do include a direct quote here, but refer the reader to Appendix B.5 on page 346.

The policy defines “User Information” as a generic term for many forms of information,

including account information, contact information, and service information. Account and

306

contact information are personally identifiable since they include addresses, phone num-

bers, and TiVo device service number. Service information includes technical information

about the TiVo device and its software status and so is likely non-personally identifiable.

Since “User Information” may include personally identifiable information in the form of

account or contact information, we may safely assume that when 3.4 mentions disclosure

of user information it may include personally identifiable information under the CTPA

definition.

Let us now consider two scenarios for the comparison of the CTPA and the TiVo

command. For convenience let us denote the CTPA policy φctpa.

Example 7.3.1 (No consent)

Let us consider the case of a subscriber to TiVo who has not granted consent for TiVo to

send information to TiVo’s corporate family. Let us compare whether the CTPA strongly

or weakly licenses the TiVo policy.

The agent set for the scenario is Agent = {tivo, sub, fam} where Roles(tivo) =

{cableOperator}, Roles(sub) = {subscriber}, and Roles(fam) = {}. The tags for the

agents are all set to false.

The object set is Object = {o}. The following tags are set to true: o.user-information,

o.personally-identifiable-information, o.subject-subscriber. All other tags for o are set to

false.

The initial state for the matrix is as in m1:

m1 =

tivo sub fam o

tivo local

sub

fam corporateFamily

The log is initially empty l1 = ǫ.

Thee initial knowledge state is then s1 = (A1, O1,m1, l1) where A1 = {tivo, sub, fam}

and O1 = {o}. The purpose set for the action is P = {disclose}. The argument list for the

action is g1 = (tivo, sub, fam, P , o, null, ǫ).

307

The transition performed by the TiVo command is then s1
DiscloseFamily3.4(g1)

−→ s2

where s2 = (A1, O1,m2, l1) where m2 is as follows.

m2 =

tivo sub fam o

tivo local

sub

fam corporateFamily local

The effect of the command is the granting of “local” for fam on o. Examining φctpa

we find that there is no command which can perform the transition s1 −→ s2 since tivo

does not have consent from sub and no other circumstances are indicated. Therefore

φctpa 2∗

(s1,g1)
DiscloseFamily3.4. A close examination shows that the property holds for all

argument values and therefore φctpa 2∗

(s1)
DiscloseFamily3.4. The meaning of the result is

that the TiVo command does not comply with the CTPA policy for the state s1. �

Let us consider an alternative scenario for φctpa and DiscloseFamily3.4.

Example 7.3.2 (Consent)

Let us consider the opposite case from Example 7.3.1 when a subscriber to TiVo has

granted written consent for TiVo to send information to TiVo’s corporate family. Let us

compare whether the CTPA strongly or weakly licenses the TiVo policy.

The agent set Agent and object set Object are identical to the sets in Example 7.3.1.

The tags for the agents are all set to false. The following tags for o are set to true: o.user-

information, o.personally-identifiable-information, o.subject-subscriber. All other tags for

o are set to false.

The initial state for the matrix is as in m3:

m3 =

tivo sub fam o

tivo consent, written local

sub

fam corporateFamily

The log is initially empty l3 = ǫ.

308

Thee initial knowledge state is then s3 = (A3, O3,m3, l3) where A3 = {tivo, sub, fam}

and O3 = {o}. The purpose set for the action is P = {disclose}. The argument list for the

action is g3 = (tivo, sub, fam, P , o, null, ǫ).

The transition performed by the TiVo command is then s3
DiscloseFamily3.4(g3)

−→ s4

where s4 = (A3, O3,m4, l3) where m4 is as follows.

m4 =

tivo sub fam o

tivo consent, written local

sub

fam corporateFamily local

The effect of the command is the granting of “local” for fam on o. Examining φctpa

we find that command Disclose551c1 strongly licenses the transition since tivo has written

consent from sub. Therefore φctpa |=(s3,g3) DiscloseFamily3.4. A close examination shows

that the property holds for all argument values and therefore φctpa |=(s1) DiscloseFamily3.4.

The meaning of the result is that the TiVo command complies with the CTPA policy for

the state s3. �

Examples 7.3.1 and 7.3.2 show two scenarios for comparing the CTPA policy and the

TiVo policy. Example 7.3.1 shows an example where TiVo’s policy is not compliant with

the CTPA, however personal communication with several TiVo subscribers indicates that

all subscribers are required to grant consent for disclosures before they can receive TiVo

service. Since consent for disclosures is mandatory for all subscribers, the scenario in

Example 7.3.1 is likely only theoretical.

7.4 Conclusion

The case studies in this chapter illustrate the flexibility of the Privacy Commands language

in modeling five diverse privacy policies: the 2000 Privacy Rule, the 2003 Privacy Rule,

the Insurance Council of Australia Privacy Code, the Cable TV Privacy Act, and TiVo

Corporation’s privacy policy. We have illustrated the methodology of translation from

policy text to Privacy APIs described in Section 4.2 through several involved examples.

309

We have also illustrated the usefulness of the licensing relations developed in Section 5.5

by showing how they can be used to characterize the permissiveness of different policies.

During the course of the examples we raise three difficulties in translation from text to

Privacy Commands which we solve through various methods.

310

1 AGENT ambulance = 1;

2 AGENT patient = 2;

3 OBJECT o1 = 3;

4 #define MAXAGENT 2

5 #define MAXOBJECT 3

6 OBJECT objects[MAXOBJECT];

7 PURPOSE P[MAXPURPOSE];

8 PURPOSE parent[MAXPURPOSE];

9

10 (Commands and Constraints go here)

11

12 init{

13 mroles[ambulance].healthCareProvider = 1;

14 mroles[patient].individual = 1;

15 P[emergency] = 1;

16 P[treatment] = 1;

17 P[use] = 1;

18 m.mat[ambulance].objects[o1].local = 1;

19 m.mat[patient].objects[o1].local = 1;

20

21 a = ambulance;

22 s = patient;

23 r = ambulance;

24 f = o1;

25 topObj = 3;

26 f_new = topObj;

27

28 do

29 :: (Select Commands)

30 od;

31

32 result = (m.mat[ambulance].objects[patient].treatment == 1 &&

33 mtags[ambulance].will_obtain_consent_asap == 0 &&

34 m.mat[ambulance].objects[patient].consent == 0);

35 }

Figure 7.1: Initial state and invariant for ambulance query

311

Chapter 8

Conclusion

In summary, this dissertation has developed the formal language called Privacy Commands

which we use to model legal privacy policies. We use the language to translate natural

language legal privacy policies into commands and constraints which mimic the logic and

actions of the text on a paragraph by paragraph basis. The Privacy Commands language

is characterized by the use of commands and constraints as policy atoms and a robust and

flexible means for modeling references between different policy paragraphs.

Our goal in developing Privacy Commands is to aid the understanding and comparison

of legislative privacy regulations by leveraging the techniques of computer science access

control and privacy policies. There are three aspects to our work: the Privacy Commands

formal language for describing legal privacy requirements, a methodology for using auto-

mated model checker SPIN to examine properties of policies and a proof of the correctness

of the translation, and policy oriented relations that allow the examination and comparison

of different policies in various circumstances. Together these aspects yield a foundation for

understanding legal policies and a beginning stage for tools to help in their analysis and

enforcement.

The foundational models described in Chapter 3 motivates the requirements for analysis

of privacy policies and how the Formal Privacy framework can address them. Chapter 4

develops Auditable Privacy Systems, a Formal Privacy model which is the basis for the

Privacy Commands formal language. Chapter 5 develops the Privacy Commands language

formally including its syntax and semantics. Section 5.5 develops policy relations based

312

on Privacy Commands including strong licensing (|=) and weak licensing (|=∗). Chapter 6

develops a methodology for translating Privacy APIs into Promela for automated analysis

and shows a correctness proof for the translation.

Chapter 7 uses the structures developed in the previous chapters and shows their use-

fulness in a series of in dept case studies examining five diverse privacy policies. The

policies are interesting in their own right, but also serve as illustrative examples for how

we exercise the functionality of commands and constraints and how we can use strong and

weak licensing to compare and contrast complex policies under various scenarios.

Our contribution to the computer science discipline in general is the design and analysis

of a formalism which is well tuned to the analysis of certain aspects of privacy legislation.

There is considerable work left to be done in the vein, including proper ways for modeling

the legal formulations found in many privacy laws which are beyond the scope of this

work. Examples of such formulations include conditional obligations, temporal obligations

and rights, contingencies, and interaction requirements. We hope that this work will be

a foundation for future studies and research in using computational methods to better

understand, model, and enforce privacy legislation.

313

Appendix A

Supplementary Promela Code

The translation between Privacy Commands and Promela in Chapter 6 uses a number of

helper functions and supplemental code to produce a complete and runnable SPIN model.

This appendix contains the source code and algorithms that are necessary along with a

brief explanation for its purpose.

An important auxiliary function used throughout this appendix is the array copying

inline function shown below.

1 inline arrayCopy(ac_from, ac_to, ac_size)

2 {

3 ac_upto = 0;

4 do

5 :: ac_upto < ac_size -> to[ac_upto] = from[ac_upto]; ac_upto++;

6 :: ac_upto == ac_size -> break;

7 od;

8 }

The function copies the first ac size elements of array ac from to array ac to and uses

the temporary variable ac upto for storage. Since inline functions do not define their own

scopes, any function which uses the arrayCopy function must define a temporary variable

called ac upto or else a syntax error will result.

Since typedef objects can not be copied with a single assignment statement, we need

314

to create specialized copying functions for the rights matrix and tag records which behave

similarly to the above code.

1 inline objectsCopy(oc_from, oc_to, oc_size)

2 {

3 oc_upto = 0;

4 do

5 :: oc_upto < oc_size ->

6 to[oc_upto].right1 = from[oc_upto].right1;

7 to[oc_upto].right2 = from[oc_upto].right2;

8 to[oc_upto].... = from[oc_upto]....;

9 oc_upto++;

10 :: oc_upto == oc_size -> break;

11 od;

12 }

13 inline matrixCopy(mc_from, mc_to, mc_dim1, mc_dim2)

14 {

15 mc_upto = 0;

16 do

17 :: mc_upto < mc_dim1 ->

18 objectsCopy(mc_from.mat[mc_upto].objects,

19 mc_to.mat[mc_upto].objects, mc_dim2);

20 mc_upto++;

21 :: mc_upto == mc_size -> break;

22 od;

23 }

24 inline tagsCopy(tc_from, tc_to, tc_size)

25 {

26 tc_upto = 0;

27 do

28 :: tc_upto < tc_size ->

315

29 tc_to[tc_upto].tag1 = tc_from[tc_upto].tag1;

30 tc_to[tc_upto].tag2 = tc_from[tc_upto].tag2;

31 tc_to[tc_upto].... = tc_from[tc_upto]....

32 tc_upto++;

33 :: tc_upto == tc_size -> break;

34 od;

35 }

The sections in this appendix are as follows. Section A.1 contains auxiliary code used

for the managing of purpose sets. Section A.2 contains the Promela structure for over-

loaded constraints. Section A.3 contains the Promela code for taking and restoring a state

snapshot.

A.1 Purposes Code

The code in this section implements the purposes hierarchy described in Section 6.2.2. For

efficiency purposes, a few of the simple functions are declared as inline functions rather

than proctype processes. Inline functions behave similarly to C preprocessor macros in

that their bodies are cut-and-pasted inside the statements that invoke them. Additionally,

since recursion is used in some of the processes, they do not have the same do/od structure

of the command and constraint processes. Instead, processes are started (using the keyword

run) as needed by the execution and stop upon completion of their tasks. This makes the

code a bit more efficient and also will aid in keeping below the 255 process limit for the

SPIN model checker.

We describe the functionality of each function or process and present lemmas where

appropriate relating the code to the formal representation of the purpose partial order.

The function isParentOf checks if pa is the parent of pb.

1 inline isParentOf(p_pa, p_pb, p_result)

2 {

3 if

4 :: parent[p_pb] == p_pa -> p_result = true;

316

5 :: else -> p_result = false;

6 fi;

7 }

Lemma A.1.1 The inline function isParentOf stores true in p result if and only if the

purpose represented by p pa is the parent of p pb in the purpose partial order.

Proof: By the definition of the array parent above in Section 6.4.1, an entry parent[c]

= p if and only if the purpose represented by p is the parent of the purpose represented by

c. By inspection, line 4 of the function stores true in p result if parent[p pb] = p pa as

per the definition. Otherwise the else option is selected and false is stored in p result.

�

The function isChildOf checks if pa is a child of pb.

1 inline isChildOf(c_pa, c_pb, c_result)

2 {

3 isParentOf(c_pb, c_pa, c_result);

4 }

Lemma A.1.2 The inline function isChildOf stores true in p result if and only if the

purpose represented by p pa is the child of p pb in the purpose partial order.

Proof: By Lemma A.1.1, isParentOf stores true in its result if c pb is the parent of c pa.

If it is, then by definition c pa is a child of c pb. Otherwise it is not. �

The process isAncestorOf checks if pa is an ancestor of pb.

1 proctype isAncestorOf()

2 {

3 PURPOSE pa; PURPOSE pb; bool isParentResult;

4

5 isAncestorOf_request_chan?hier_request(pa, pb) ->

6 isParentOf(pa, pb, isParentResult);

317

7 if

8 :: pb == pa || isParentResult == true ->

9 isAncestorOf_response_chan!hier_response(true);

10 :: parent[pb] == -1 ->

11 isAncestorOf_response_chan!hier_response(false);

12 :: else -> run isAncestorOf();

13 isAncestorOf_request_chan!hier_request(pa, parent[pb]);

14 fi;

15 }

Lemma A.1.3 If the process isAncestorOf receives a request of type hier request with

purpose parameters pa and pb, it returns true over its response channel if and only if

the purpose represented by pa is an ancestor of the purpose represented by pb (i.e., pb ∈

ancestors(pa)).

Proof: As defined above, ancestorsis the transitive closure of the parent relation. The

process isAncestorOf performs a recursive search maintaining the invariants pa 6= −1

and pb 6= −1. First, the inline function isParentOf determines if pa is pb’s parent (as

per Lemma A.1.1 (line 6). The if/fi structure then examines if pb == pa or if pa is the

parent of pb. If either is the case then pa is pb’s ancestor and the result sent back is true

(line 9). If pb 6= pa and pb is a root (parent[pb] == -1 as per the definition of parent)

then pa can not be pb’s ancestor and the result sent back is false (line 11). If neither option

is satisfied then the else option runs a new instance of the process and sends it a request

with pa and parent[pb], querying if pa is the ancestor of pb’s parent (lines 13–13). The

newly created process correctly determines if pa is parent[pb]’s ancestor by the inductive

assumption and sends back the result over the response channel. Since isAncestorOf

processes only respond on isAncestorOf response chan if they have a definite response

(pa is or is not pb’s ancestor), the requesting process sees only the correct answer over it.

�

The process isDescedantOf checks if pa is a descendant of pb.

1 proctype isDescendantOf()

318

2 {

3 int pa; int pb; bool result;

4

5 isDescendantOf_request_chan?hier_request(pa, pb) ->

6 run isAncestorOf();

7 isAncestorOf_request_chan!hier_request(pb, pa);

8 isAncestorOf_response_chan?hier_response(result);

9 isDescendantOf_response_chan!hier_response(result);

10 }

Lemma A.1.4 If the process isDescendantOf receives a request of type hier request

with purpose parameters pa and pb, it returns true over its response channel if and only

if the purpose represented by pa is a descendant of the purpose represented by pb (i.e.,

pb ∈ descendants(pa)).

Proof: As per the definition of descendants, in order to determine if pa is a descendant

of pb it is sufficient to show that pb is an ancestor of pa. Lines 6–8 run an isAncestorOf

process which determines that correctly as per Lemma A.1.3. The result is sent back over

the response channel (line 9). �

The function isPermittedBy checks if pa ina {pb}. It does so be checking if pa is an

ancestor of pb.

1 inline isPermittedBy (pb_pa, pb_pb, pb_result)

2 {

3 if

4 :: pb_pa == pb_pb -> pb_result = true;

5 :: else -> isAncestorOf_request_chan!hier_request(pb_pa, pb_pb);

6 isAncestorOf_response_chan!hier_response(pb_result);

7 fi;

8 }

319

Lemma A.1.5 The inline function isPermittedBy stores true in pb result if and only if

the purpose represented by pb pa includes the purpose represented by pb pb using permitted

semantics.

Proof: By definition, pa ina {pb} is true if and only if pa ∈ ancestors(pb). As per

Lemma A.1.3, the process isAncestorOf returns true (which is then stored in pb result

on line 6) if and only if pb pa is an ancestor of pb pb. �

The function isForbiddenBy checks if pa inf {pb}. It does so be checking if pa is an

ancestor or a descendant of pb.

1 inline isForbiddenBy (fb_pa, fb_pb, fb_result)

2 {

3 /* Check if pa is a descendant of pb*/

4 isDescendantOf_request_chan!hier_request(fb_pa, fb_pb);

5 isDescendantOf_response_chan?hier_response(fb_result);

6

7 /* If not, check if pa is an ancestor of pb*/

8 if

9 :: fb_result == false ->

10 isAncestorOf_request_chan!hier_request(fb_pa, fb_pb);

11 isAncestorOf_response_chan?hier_response(fb_result);

12 :: else -> skip;

13 fi;

14 }

Lemma A.1.6 The inline function isForbiddenBy stores true in fb result if and only if

the purpose represented by fb pa includes the purpose represented by fb pb using forbidden

semantics.

Proof: By definition, pa inf {pb} is true if and only if pa ∈ {ancestors(pb) ∪

descendants(pb)}. s per Lemma A.1.4, the process isDescendantOf returns true (which is

then stored in pb result on line 5) if and only if fb pa is a descendant of fb pb. Lines

320

8–12 are an if/fi structure which selects the first option (lines 9–11) if isDescendantOf

sends back false. It sends a message to the process isAncestorOf which sends back true

if and only if fb pa is an ancestor of fb pb as per Lemma A.1.3. The final result is stored

in fb result which is true if either process returns true and false if both processes return

false. �

The process isPermittedByA checks if pa ina P where P is the for representation of P,

global PURPOSE array defined above in Table 6.4. It does so be checking if pa ina {pb}

for any pb ∈ P .

1 proctype isPermittedByA()

2 {

3 PURPOSE upto = 0; bool result; PURPOSE pa;

4

5 isPermittedByA_request_chan?purpose_request(pa) ->

6 do

7 :: P[upto] == 1 && upto < MAXPURPOSE ->

8 isPermittedBy(pa, upto, result);

9 if

10 :: result == true -> break;

11 fi;

12 :: upto == MAXPURPOSE -> result = false; break;

13 :: else -> upto++;

14 od;

15 isPermittedByA_response_chan!purpose_response(result);

16 }

Lemma A.1.7 (Permitted By) For a purpose p and purpose set P under a partial or-

der properly defined in Purpose the process isPermittedByA sends true over its response

channel if and only if ∃pb ∈ P . pa ina{pb}.

Proof: By definition, pa ina P is true if any member of P is included in pa with permitted

semantics. The process isPermittedByA therefore iterates over all the members of P (which

321

corresponds to P by definition) and uses isPermittedBy to determine if any member is

permitted by pa (as per Lemma A.1.5).

The main loop of the process (lines 6–14) iterate over the array P using the index upto.

At each iteration, the first option (lines 7–11) is selected if the purpose represented by

upto is in P (P[upto] == 1) and the index of upto is still below the maximum value for

PURPOSE. If the option’s guards are satisfied (i.e., the purpose upto is a valid purpose index

and it is present in P), the inline function isPermittedBy checks if pa includes upto. As

per Lemma A.1.5, the function stores true in result iff pa includes upto using permitted

semantics. If the result is true, the loop quits with a break (lines 9–11).

If the first option’s guards are not satisfied, the second option’s (mutually exclusive)

guard may be true if upto no longer refers to a valid purpose (upto == MAXPURPOSE) (line

12). If the second option is satisfied, the result is false and the loop quits with a break.

The else option (line 13) is selected if neither the first or second options are satisfied.

It increments the upto variable to the next PURPOSE.

The loop terminates eventually since at every iteration either upto is incremented or

a break statement is executed. The final result is sent back over the response channel.

The first option will check pa ina {pb} for all pb ∈ P and return true if it is satisfied. The

second option will catch when all pb ∈ P have been examined and return false, indicating

that pa ina P is false. �

The process isForbiddenByA checks if pa inf P where P is the for representation of P,

global PURPOSE array defined above in Table 6.4. It does so be checking if pa inf {pb}

for any pb ∈ P .

1 proctype isForbiddenByA()

2 {

3 int upto = 0; bool result; PURPOSE pa;

4

5 isForbiddenByA_request_chan?purpose_request(pa) ->

6 do

7 :: P[upto] == 1 && upto < MAXPURPOSE->

322

8 isForbiddenBy(pa, upto, result);

9 if

10 :: result == true -> break;

11 fi

12 :: upto == MAXPURPOSE -> result = false;

13 :: else -> upto++;

14 od;

15 isForbiddenByA_response_chan!purpose_response(result);

16 }

Lemma A.1.8 (Forbidden By) For a purpose p and purpose set P under a partial or-

der properly defined in Purpose the process isForbiddenByA sends true over its response

channel if and only if ∃pb ∈ P . pa inf{pb}.

Proof: The proof is similar to Lemma A.1.7 using the inline function isForbiddenBy and

Lemma A.1.6. �

A.2 Overloaded Constraints Structure

Since the judgment derived from the boolean values differs depending on whether it is being

invoked as part of a constraint search or an explicit invocation, the code does not operate

on judgments. Above in Section 6.2.4 we argued that the truth table in Table 6.6 combined

the results of overloaded constraints as per Tables 5.11 and 5.9 correctly. Table 6.6 ignored

the scope because it is not needed for the combination, a decision that we justify in the

following lemmas.

First we consider the constraint search case. We show the following lemma:

Lemma A.2.1 (Combining for pre-command search) Let c1 and c2 be overloaded con-

straints. Derive judgments j1 from c1’s boolean results and j2 from c2’s boolean results

using Table 5.10. Combine j1 and j2 using Table 5.11 and let j be the resulting judgment.

Combine c1 and c2’s boolean results using Table 6.6 and derive judgment j′ from Table 5.10.

The following property then holds: j = j′.

323

Proof: We consider all possible combinations of the results from the two constraints c1

and c2. Let the boolean results be bscp, bst, and br as in Table 5.8 and the judgment

combination as per Table 5.10. The derived judgments are shown in Table A.1. For

brevity we use T for True, F for False, A for allow, I for Ignore (Allow), and F for Forbid.

Note that since the scopes of overloaded constraints must be the same, the values for bscp

must be identical and we therefore only show cases where they agree.

�

Next let us consider the explicit command invocation case. We show the following

lemma:

Lemma A.2.2 (Combining for invocation) Let c1 and c2 be overloaded constraints. Derive

judgments j1 from c1’s boolean results and j2 from c2’s boolean results using Table 5.8.

Combine j1 and j2 using Table 5.9 and let j be the resulting judgment. Combine c1 and

c2’s boolean results using Table 6.6 and derive judgment j′ from Table 5.8. The following

property then holds: j = j′.

Proof: We consider all possible combinations of the results from the two constraints c1

and c2. Let the boolean results be bscp, bst, and br as in Table 5.8. The derived judgments

are shown in Table A.2. For brevity we use T for True, F for False, A for allow, F for

Forbid, DCA for Don’t Care/Allow, DCF for Don’t Care/Forbid. As in Table A.1, since

the scopes of overloaded constraints must be the same, the values for bscp must be identical

and we therefore only show cases where they agree.

�

By combining the results from Lemma A.2.1 for pre-command execution and

Lemma A.2.2 for invocation, we directly arrive at the following general lemma:

Lemma A.2.3 (Boolean result combination) Combining boolean results from c1 and c2

using Table 6.6 and then obtaining a judgment is equivalent to deriving judgments from

the boolean results using Table 5.10 for pre-command search and Table 5.8 for invocation

and then combining the judgments using Table 5.11 for pre-command search and Table 5.9

for invocation.

324

The overloaded constraint code uses the following inline function combineOverload

to combine the boolean results from the different constraints. The code is identical to

Figure 6.5 substituting co st r for such that r, co st n for such that n, co r r for

regular r, and co r n for regular n due to technical language restrictions of Promela.

As shown in Lemma 6.2.1, the logic produces the same result as in Table 6.6, storing the

results in co st r and co r r.

1 inline combineOverload (co_st_r, co_st_n, co_r_r, co_r_n)

2 {

3 if

4 :: co_st_r == co_st_n -> co_r_r = (co_r_r || co_r_n);

5 :: co_st_r == true && co_st_n == false ->

6 co_r_r = co_r_r;

7 :: co_st_r == false && co_st_n == true ->

8 co_r_r = co_r_n;

9 fi;

10 co_st_r = co_st_r || co_st_n;

11 }

As discussed in Section 6.2.4, the structure for overloaded constraints differs slightly

from the structure of normal constraints. We present here the full formulation for an

overloaded constraint due to its length and similarity to the structure in Figure 6.4.

1 active proctype CST2() {

2 bool scope_r; bool scope; bool such_that_r; bool such_that_n;

3 bool such_that; bool regular_r; bool regular_n; bool regular;

4 bool result; bool temp; CMD command; JUDGMENT j;

5 do

6 :: CST2_request_chan?constraint_request(command) ->

7 scope = true; such_that_r = true; such_that_n = true;

8 regular_r = true; regular_n = true; result = true; temp = true;

9 if

325

10 L1: (scope checks go here)

11 :: else -> scope = false;

12 fi;

13 L2a: (first such that guards here)

14 such_that_r = result; result = true;

15 L3a: (first regular guards here)

16 regular_r = result;

17

18 L2b: (second such that guards here)

19 such_that_n = result; result = true;

20 L3a: (second regular guards here)

21 regular_n = result; result = true;

22 combineOverload(such_that_r, such_that_n, regular_r, regular_n);

23

24 CST2_response_chan!constraint_response(scope_r, such_that_r,

25 regular_r);

26 od;

27 }

The structure of the overloaded constraint CST2 differs from the non-overloaded con-

straint CST1 in Figure 6.4 in that it executes the logic contained in multiple constraints

and combines their results using the truth table in Table 6.6. Lines 2–4 declare the vari-

ables for the execution including the extra variables needed for storing the results of the

different individual constraints. Note that since overloaded constraints share the same

scope there is no need for a duplicate scope variable, but since constraint invocations may

overwrite the variable scope, we keep a result scope r which is sent back at the completion

of execution. The scope determination on lines 9–12 is made as usual with the scope code

inserted at label L1. Lines 13–16 execute the first constraint in the overloaded set and

store the resulting values in such that r and regular r. Labels L2a and L3a indicate

the location where the such that and regular guards code are inserted. Lines 18–21 then

execute the second overloaded constraint and store the resulting values in such that n

326

and regular n. Line 22–36 invokes the inline function combineOverload shown above to

combine the results from the two constraints as per Table 6.6. The final resulting scope,

such that, and regular variable values are then sent back along the constraint’s response

channel on lines 24–25.

The above structure shows the format for an process implementing two overloaded

constraints. For each constraint greater than 2, lines 18–22 would be inserted for the extra

constraint between lines 22 and 24. The response on lines 24–25 would remain unchanged

at the end of all of the guard logic.

We use the overloaded constraint code above to implement multiple constraints in the

formal model as a single large Promela process. As part of our correctness argument, we

show that the code properly imitates multiple overloaded constraints and combines their

results as per Table 6.6.

Lemma A.2.4 (Overloaded Constraints) For overloaded constraints c1, . . . , cn, the cor-

responding process constructed as per process CST2 above sends boolean results scope r,

such that r, regular r over the response channel that coincide with the results of invok-

ing c1, . . . , cn individually and combining their results as per Table 6.6.

Proof: Let us denote the set of overloaded constraints C. We then argue the proof using

induction on the number of overloaded constraints that are simulated by the process: |C|.

Let us denote the Promela equivalent for a constraint cn as CSTn as per Section 6.2.4.

Let us denote the boolean value bst for cn as bist and br for cn as bir. Let us denote the

execution of lines 18–2 for cn as the execution of cn. We maintain the following invariants

which comprise our induction hypothesis.

Invariant 1: After the execution of cn, scope r contains true if and only if command e

is in scope for cn.

Invariant 2: After the execution of cn:

327

such that r = true and regular r = true iff ∃ci ∈ C . (bist = true, bir = true)

such that r = true and regular r = false iff ∃ci ∈ C . (bist = true, bir = false)

and ∄cj ∈ C . (bjst = true,

bir = true)

such that r = false and regular r = true iff ∃ci ∈ C . (bist = false, bir = true)

and ∄cj ∈ C . b
j
st = true

such that r = false and regular r = false iff ∀ci ∈ C(bist = false, bir = false)

Note that the logic in Invariant 2 is equivalent to the repeated application of the truth

table in Table 6.6 for n > 2 constraints which can be shown by direct enumeration of the

cases. If the above invariants are maintained, at the end of execution the resulting values

sent back over the response channel correspond to the results of Table 6.6 since the scope

is calculated correctly for the constraints and the combination maintains the table’s logic

and the overloaded constraint logic from Section 5.4.

The induction hypothesis is thus as follows: Induction Hypothesis: After completing

the execution for n, both Invariants 1 and 2 hold.

Base Case |C| = 1 The base case is when there is only one constraint. As shown

in Lemma 6.4.7, lines 9–16 of the code in CST2 above store the scope value in scope r,

the such that guards result in such that r, and the regular guards result in regular r.

Invariant 1 is established since the scope is stored in scope r. Invariant 2 is established

because for |C| = 1, the properties are true trivially since c1 is the only constraint and its

results are stored directly in such that r and regular r.

Step |C| = n The induction hypothesis for this case presumes that after n−1 constraints,

both invariants are true. Since scope r is not modified by any of the code for cn, the

invariant remains true trivially.

Lines 18–21 for cn evaluate its such that and regular guards and store the results in

such that n and regular n are is shown in Lemma 6.4.7. Line 22 then combines the

results for cn with the tallied results for the other ci . i < n. The boolean results are

combined using the inline function combineOverload. There are four cases to consider:

328

Case 1: such that n = true, regular n = true Lines 3–9 of the function examine

the values of such that r and such that n. Since such that n = true, only the first

and third options in the if/fi structure are possible.

If such that r is true, then the first option on line 4 is selected. Since regular n =

true, a logical OR with regular r always yields true, so regular r gets true.

If such that r = false, option 3 of the if/fi structure is selected, storing true in

regular r.

Line 10 stores the logical OR of such that r and such that n in such that r which

is always true since such that n = true. The result is that after executing the function

such that r = regular r = true which satisfied Invariant 2 for n since ∃ci, i ≤ n . bist =

true, bir = true for i = n.

Case 2: such that n = true, regular n = false As in the previous case, options 1

and 3 of the if/fi structure are possible.

If such that r = true then the first option is selected. It stores the OR of regular r

and regular n = false in regular r, leaving regular r unchanged. As in the previous

case, such that r is assigned true on line 10 since such that n = true and such that r

= true. If the old value of regular r was true, by the induction hypothesis ∃ci ∈ C, i <

n . (bist = true, bir = true) and the new values are unchanged: such that r = true,

regular r = true as noted, maintaining Invariant 2 for n since ci satisfies the first line of

the invariant. If the old value of regular r was false, the new values are such that r =

true, regular r = false. By the induction hypothesis ∄ci ∈ C, i < n . (bist = true, bir =

true). Now we have that ∃ci ∈ C, i ≤ n . (bist = true, bir = false) for i = n which maintains

Invariant 2 for n.

If such that r = false then the third option is selected. The new value for regular r

is then false and such that r is assigned true. By the induction hypothesis, if the old

value of regular r was true then ∄ci ∈ C, i < n . bist = true. Similarly, if the old value

of regular r was false then ∀ci ∈ C, i < n . (bist = false, bir = false). The new values are

now such that r = true, regular r = false which fulfills the second option of Invariant

2 for n since ∃ci ∈ C, i ≤ n . (bist = true, bir = false) for i = n and in either case for the old

329

value of regular r, ∄cj ∈ C, j ≤ n . (bist = true, bir = true).

Case 3: such that n = false, regular n = true Options 1 and 2 are possible in the

if/fi structure of combineOverload.

If such that r = true, the second option of the if/fi is selected. The value for

regular r is then unchanged. The value for such that r = true is also unchanged on

line 10. By the induction hypothesis, since such that r = true, if regular r = true

∃ci ∈ C, i < n . (bist = truebir = true) and since cn yields (bnst = false , bir = true), it

remains unchanged for n as per the first option of Invariant 2. If regular r = false

∃ci ∈ C, i < n . (bist = true, bir = false) and ∄ci ∈ C, i < n . (bist = true, bir = true) which is

unchanged by cn and therefore the second option in Invariant 2 is true for n.

If such that r = false, the first option of the if/fi is selected. If the old value for

regular r = true, its new value remains true. If its old value is regular r = false, its

new value is true. The new value for such that r is unchanged at false. By the induction

hypothesis, since such that r = false, if regular r = true ∃ci ∈ C, i < n . (bist =

false, bir = true) and ∄cj ∈ C, j < n . b
j
st = true. Now since the new values are such that r

= false, regular r = true the third option for Invariant 2 is still valid for n since bnst =

false. If the old value for regular r = false, by the induction hypothesis ∀ci ∈ C, i <

n(bist = false , bir = false). Now since the new values are such that r = false, regular r

= true which valid under the third option for Invariant 2 for n since ∃ci ∈ C, i ≤ n . (bist =

false, bir = true) for i = n and ∄cj ∈ C, i ≤ n . bist = true by the induction hypothesis.

Case 4: such that n = false, regular n = false As in the previous case, options 1

and 2 are possible in the if/fi structure of combineOverload.

If such that r = true, the same argument for Case 3 applies since bnst = false and

bnr = false .

If such that r = false, the first option of the if/fi is selected. The new value for

regular r is unchanged from the old value. The new value for such that r is unchanged

at false. By the induction hypothesis, since such that r = false, if regular r = true

∃ci ∈ C, i < n . (bist = false, bir = true) and ∄cj ∈ C, j < n . b
j
st = true. Now since the new

values are such that r = false, regular r = true the third option for Invariant 2 is

330

still valid for n since bnst = false. If the old value for regular r = false, by the induction

hypothesis ∀ci ∈ C, i < n(bist = false , bir = false). Now since the new values unchanged,

option four of Invariant 2 is still valid for n since ∀ci ∈ C, i ≤ n(bist = false, bir = false). �

A.3 Transaction Processing Code

In order to support transactional processing for commands, we take a snapshot of the

knowledge state (i.e., the global variables in Table 6.4) before each command is executed.

After the command returns, if it was successful the snapshot may be forgotten. However,

if it got stuck, the snapshot is used to restore the knowledge state to its pre-execution

state. In this section we provide the Promela code used to support the taking of the state

snapshot and the restoration of state.

A.3.1 Taking a snapshot

The code for taking a state snapshot of the global variables is shown below. It consists

of the inline function snapshot which records the global variable state in an extra set of

variables as shown.

1 inline snapshot()

2 {

3 arrayCopy(objects, b_objects, MAXOBJECT);

4 b_fnew = few;

5 matrixCopy(m, b_m, MAXAGENT, MAXOBJECT);

6 tagsCopy(mtags, b_mtags, MAXOBJECT);

7 }

Note that the inform and log arrays are not saved in the snapshot. Since they may

be updated by the false branch of commands, they can not be saved and restored using

the snapshot. Since, however, the log and inform records are not examined by any guards,

extraneous records in them will not cause incorrect policy decisions.

331

A.3.2 Restoring a snapshot

The code for restoring a state snapshot is shown below. It consists of the inline function

restore which restores the global variable state from a previously stored snapshot.

1 inline restore()

2 {

3 arrayCopy(b_objects, objects, MAXOBJECT);

4 few = b_fnew;

5 matrixCopy(b_m, m, MAXAGENT, MAXOBJECT);

6 tagsCopy(b_mtags, mtags, MAXOBJECT);

7 }

The restore code is similar to the snapshot code in Section A.3.1 and simply reverses

the copying procedure performed in it. As noted there, the log and inform records are not

saved or restored.

332

Table A.1: Judgment comparison for overloaded constraints in pre-command search

c1 c2 Results

bscp bst br bscp bst br j j′

T T T T T T A A

T T T T T F A A

T T T T F T A A

T T T T F F A A

T T F T T T A A

T T F T T F F F

T T F T F T F F

T T F T F F F F

T F T T T T A A

T F T T T F F F

T F T T F T I I

T F T T F F I I

T F F T T T A A

T F F T T F F F

T F F T F T I I

T F F T F F I I

F T T F T T I I

F T T F T F I I

F T T F F T I I

F T T F F F I I

F T F F T T I I

F T F F T F I I

F T F F F T I I

F T F F F F I I

F F T F T T I I

F F T F T F I I

F F T F F T I I

F F T F F F I I

F F F F T T I I

F F F F T F I I

F F F F F T I I

F F F F F F I I

333

Table A.2: Judgment comparison for overloaded constraints invocation

c1 c2 Results

bscp bst br bscp bst br j j′

T T T T T T A A

T T T T T F A A

T T T T F T A A

T T T T F F A A

T T F T T T A A

T T F T T F F F

T T F T F T F F

T T F T F F F F

T F T T T T A A

T F T T T F F F

T F T T F T DCA DCA

T F T T F F DCA DCA

T F F T T T A A

T F F T T F F F

T F F T F T DCA DCA

T F F T F F DCF DCF

F T T F T T A A

F T T F T F A A

F T T F F T A A

F T T F F F A A

F T F F T T A A

F T F F T F F F

F T F F F T F F

F T F F F F F F

F F T F T T A A

F F T F T F F F

F F T F F T DCA DCA

F F T F F F DCA DCA

F F F F T T A A

F F F F T F F F

F F F F F T DCA DCA

F F F F F F DCF DCF

334

Appendix B

Privacy Law Texts

This appendix contains excerpts from the privacy laws and policies discussed in the body

of the dissertation. The texts are current as of the writing of this document except where

noted.

This appendix is organized as follows. We first quote an excerpts from the Privacy

Rule as issued by the US Department of Health and Human Services. The full text of the

Rules is available on the Congress’ General Printing Office web site, but for convenience

relevant sections are included below. The versions of the regulatory text are as indicated

in the section headings. All emphases are as in the original text in the Federal Register or

Code of Federal Regulations. Section B.1 contains an excerpt from the 2000 version of the

Privacy Rule. Section B.2 contains a parallel excerpt from the 2003 version. Section B.4

contains an excerpt from the Cable TV Privacy Act.

B.1 Privacy Rule December 28, 2000

The following text is as published in the Federal Register on December 28, 2000 pages

82462–82829. It is archived in the Code of Federal Regulations (CFR), Title 45, Subtitle

A, Section 164 as issued on October 1, 2001.

335

B.1.1 §164.506

Sec. 164.506 Consent for uses or disclosures to carry out treatment, payment,
or health care operations.

(a) Standard: Consent requirement.

(1) Except as provided in paragraph (a)(2) or (a)(3) of this section, a covered
health care provider must obtain the individual’s consent, in accordance with
this section, prior to using or disclosing protected health information to carry
out treatment, payment, or health care operations.

(2) A covered health care provider may, without consent, use or disclose pro-
tected health information to carry out treatment, payment, or health care op-
erations, if:

(i) The covered health care provider has an indirect treatment relationship with
the individual; or

(ii) The covered health care provider created or received the protected health
information in the course of providing health care to an individual who is an
inmate.

(3)(i) A covered health care provider may, without prior consent, use or disclose
protected health information created or received under paragraph (a)(3)(i)(A)-
(C) of this section to carry out treatment, payment, or health care operations:

(A) In emergency treatment situations, if the covered health care provider
attempts to obtain such consent as soon as reasonably practicable after the
delivery of such treatment;

(B) If the covered health care provider is required by law to treat the individual,
and the covered health care provider attempts to obtain such consent but is
unable to obtain such consent; or

(C) If a covered health care provider attempts to obtain such consent from the
individual but is unable to obtain such consent due to substantial barriers to
communicating with the individual, and the covered health care provider de-
termines, in the exercise of professional judgment, that the individual’s consent
to receive treatment is clearly inferred from the circumstances.

(ii) A covered health care provider that fails to obtain such consent in accor-
dance with paragraph (a)(3)(i) of this section must document its attempt to
obtain consent and the reason why consent was not obtained.

(4) If a covered entity is not required to obtain consent by paragraph (a)(1)
of this section, it may obtain an individual’s consent for the covered entity’s
own use or disclosure of protected health information to carry out treatment,
payment, or health care operations, provided that such consent meets the re-
quirements of this section.

(5) Except as provided in paragraph (f)(1) of this section, a consent obtained
by a covered entity under this section is not effective to permit another covered
entity to use or disclose protected health information.

336

(b) Implementation specifications: General requirements.

(1) A covered health care provider may condition treatment on the provision
by the individual of a consent under this section.

(2) A health plan may condition enrollment in the health plan on the provision
by the individual of a consent under this section sought in conjunction with
such enrollment.

(3) A consent under this section may not be combined in a single document
with the notice required by Sec. 164.520.

(4)(i) A consent for use or disclosure may be combined with other types of
written legal permission from the individual (e.g., an informed consent for
treatment or a consent to assignment of benefits), if the consent under this
section:

(A) Is visually and organizationally separate from such other written legal
permission; and

(B) Is separately signed by the individual and dated.

(ii) A consent for use or disclosure may be combined with a research authoriza-
tion under Sec. 164.508(f).

(5) An individual may revoke a consent under this section at any time, except
to the extent that the covered entity has taken action in reliance thereon. Such
revocation must be in writing.

(6) A covered entity must document and retain any signed consent under this
section as required by Sec. 164.530(j).

(c) Implementation specifications: Content requirements. A consent under this
section must be in plain language and:

(1) Inform the individual that protected health information may be used and
disclosed to carry out treatment, payment, or health care operations;

(2) Refer the individual to the notice required by Sec. 164.520 for a more
complete description of such uses and disclosures and state that the individual
has the right to review the notice prior to signing the consent;

(3) If the covered entity has reserved the right to change its privacy practices
that are described in the notice in accordance with Sec. 164.520(b)(1)(v)(C),
state that the terms of its notice may change and describe how the individual
may obtain a revised notice;

(4) State that:

(i) The individual has the right to request that the covered entity restrict
how protected health information is used or disclosed to carry out treatment,
payment, or health care operations;

(ii) The covered entity is not required to agree to requested restrictions; and

(iii) If the covered entity agrees to a requested restriction, the restriction is
binding on the covered entity;

337

(5) State that the individual has the right to revoke the consent in writing,
except to the extent that the covered entity has taken action in reliance thereon;
and

(6) Be signed by the individual and dated.

(d) Implementation specifications: Defective consents. There is no consent
under this section, if the document submitted has any of the following defects:

(1) The consent lacks an element required by paragraph (c) of this section, as
applicable; or

(2) The consent has been revoked in accordance with paragraph (b)(5) of this
section.

(e) Standard: Resolving conflicting consents and authorizations.

(1) If a covered entity has obtained a consent under this section and receives
any other authorization or written legal permission from the individual for a
disclosure of protected health information to carry out treatment, payment, or
health care operations, the covered entity may disclose such protected health
information only in accordance with the more restrictive consent, authorization,
or other written legal permission from the individual.

(2) A covered entity may attempt to resolve a conflict between a consent and an
authorization or other written legal permission from the individual described
in paragraph (e)(1) of this section by:

(i) Obtaining a new consent from the individual under this section for the
disclosure to carry out treatment, payment, or health care operations; or

(ii) Communicating orally or in writing with the individual in order to deter-
mine the individual’s preference in resolving the conflict. The covered entity
must document the individual’s preference and may only disclose protected
health information in accordance with the individual’s preference.

(f)(1) Standard: Joint consents. Covered entities that participate in an or-
ganized health care arrangement and that have a joint notice under Sec.
164.520(d) may comply with this section by a joint consent.

(2) Implementation specifications: Requirements for joint consents.

(i) A joint consent must:

(A) Include the name or other specific identification of the covered entities, or
classes of covered entities, to which the joint consent applies; and

(B) Meet the requirements of this section, except that the statements required
by this section may be altered to reflect the fact that the consent covers more
than one covered entity.

(ii) If an individual revokes a joint consent, the covered entity that receives the
revocation must inform the other entities covered by the joint consent of the
revocation as soon as practicable.

338

B.1.2 §164.530

The text in §164.530 is referenced in §164.506(b)(6) and therefore included here below for

reference.

Sec. 164.530 Administrative requirements.

(j)(1) Standard: Documentation. A covered entity must:

(i) Maintain the policies and procedures provided for in paragraph (i) of this
section in written or electronic form;

(ii) If a communication is required by this subpart to be in writing, maintain
such writing, or an electronic copy, as documentation; and

(iii) If an action, activity, or designation is required by this subpart to be
documented, maintain a written or electronic record of such action, activity, or
designation.

(2) Implementation specification: Retention period. A covered entity must re-
tain the documentation required by paragraph (j)(1) of this section for six years
from the date of its creation or the date when it last was in effect, whichever
is later.

B.2 Privacy Rule August 14, 2002

The following text is as published in the Federal Register on August 14, 2002, page 53268.

It is archived in the Code of Federal Regulations (CFR), Title 45, Subtitle A, Section 164

as issued on October 1, 2003.

B.2.1 §164.506

Sec. 164.506 Uses and disclosures to carry out treatment, payment, or health
care operations.

(a) Standard: Permitted uses and disclosures. Except with respect to uses or
disclosures that require an authorization under Sec. 164.508(a)(2) and (3), a
covered entity may use or disclose protected health information for treatment,
payment, or health care operations as set forth in paragraph (c) of this sec-
tion, provided that such use or disclosure is consistent with other applicable
requirements of this subpart.

(b) Standard: Consent for uses and disclosures permitted. (1) A covered en-
tity may obtain consent of the individual to use or disclose protected health
information to carry out treatment, payment, or health care operations.

339

(2) Consent, under paragraph (b) of this section, shall not be effective to permit
a use or disclosure of protected health information when an authorization, under
Sec. 164.508, is required or when another condition must be met for such use
or disclosure to be permissible under this subpart.

(c) Implementation specifications: Treatment, payment, or health care opera-
tions.

(1) A covered entity may use or disclose protected health information for its
own treatment, payment, or health care operations.

(2) A covered entity may disclose protected health information for treatment
activities of a health care provider.

(3) A covered entity may disclose protected health information to another cov-
ered entity or a health care provider for the payment activities of the entity
that receives the information.

(4) A covered entity may disclose protected health information to another cov-
ered entity for health care operations activities of the entity that receives the
information, if each entity either has or had a relationship with the individual
who is the subject of the protected health information being requested, the
protected health information pertains to such relationship, and the disclosure
is:

(i) For a purpose listed in paragraph (1) or (2) of the definition of health care
operations; or

(ii) For the purpose of health care fraud and abuse detection or compliance.

(5) A covered entity that participates in an organized health care arrangement
may disclose protected health information about an individual to another cov-
ered entity that participates in the organized health care arrangement for any
health care operations activities of the organized health care arrangement.

B.2.2 §164.501

Sec. 164.501 Definitions.

As used in this subpart, the following terms have the following meanings:

Health care operations means any of the following activities of the covered
entity to the extent that the activities are related to covered functions:

(1) Conducting quality assessment and improvement activities, including out-
comes evaluation and development of clinical guidelines, provided that the ob-
taining of generalizable knowledge is not the primary purpose of any studies
resulting from such activities; population-based activities relating to improving
health or reducing health care costs, protocol development, case management
and care coordination, contacting of health care providers and patients with
information about treatment alternatives; and related functions that do not
include treatment;

340

(2) Reviewing the competence or qualifications of health care professionals,
evaluating practitioner and provider performance, health plan performance,
conducting training programs in which students, trainees, or practitioners in
areas of health care learn under supervision to practice or improve their skills as
health care providers, training of non-health care professionals, accreditation,
certification, licensing, or credentialing activities;

(3) Underwriting, premium rating, and other activities relating to the creation,
renewal or replacement of a contract of health insurance or health benefits, and
ceding, securing, or placing a contract for reinsurance of risk relating to claims
for health care (including stop- loss insurance and excess of loss insurance),
provided that the requirements of Sec. 164.514(g) are met, if applicable;

(4) Conducting or arranging for medical review, legal services, and auditing
functions, including fraud and abuse detection and compliance programs;

(5) Business planning and development, such as conducting cost- management
and planning-related analyses related to managing and operating the entity,
including formulary development and administration, development or improve-
ment of methods of payment or coverage policies; and

(6) Business management and general administrative activities of the entity,
including, but not limited to:

(i) Management activities relating to implementation of and compliance with
the requirements of this subchapter;

(ii) Customer service, including the provision of data analyses for policy holders,
plan sponsors, or other customers, provided that protected health information
is not disclosed to such policy holder, plan sponsor, or customer.

(iii) Resolution of internal grievances;

(iv) The sale, transfer, merger, or consolidation of all or part of the covered
entity with another covered entity, or an entity that following such activity will
become a covered entity and due diligence related to such activity; and

(v) Consistent with the applicable requirements of Sec. 164.514, creating de-
identified health information or a limited data set, and fundraising for the
benefit of the covered entity.

B.2.3 §164.508

Sec. 164.508 Uses and disclosures for which an authorization is required.

(a) Standard: authorizations for uses and disclosures.

(1) Authorization required: general rule. Except as otherwise permitted or
required by this subchapter, a covered entity may not use or disclose protected
health information without an authorization that is valid under this section.
When a covered entity obtains or receives a valid authorization for its use

341

or disclosure of protected health information, such use or disclosure must be
consistent with such authorization.

(2) Authorization required: psychotherapy notes. Notwithstanding any provi-
sion of this subpart, other than the transition provisions in Sec. 164.532, a
covered entity must obtain an authorization for any use or disclosure of psy-
chotherapy notes, except:

(i) To carry out the following treatment, payment, or health care operations:

(A) Use by the originator of the psychotherapy notes for treatment;

(B) Use or disclosure by the covered entity for its own training programs in
which students, trainees, or practitioners in mental health learn under super-
vision to practice or improve their skills in group, joint, family, or individual
counseling; or

(C) Use or disclosure by the covered entity to defend itself in a legal action or
other proceeding brought by the individual; and

(ii) A use or disclosure that is required by Sec. 164.502(a)(2)(ii) or permitted by
Sec. 164.512(a); Sec. 164.512(d) with respect to the oversight of the originator
of the psychotherapy notes; Sec. 164.512(g)(1); or Sec. 164.512(j)(1)(i).

(3) Authorization required: Marketing.

(i) Notwithstanding any provision of this subpart, other than the transition
provisions in Sec. 164.532, a covered entity must obtain an authorization for
any use or disclosure of protected health information for marketing, except if
the communication is in the form of:

(A) A face-to-face communication made by a covered entity to an individual;
or

(B) A promotional gift of nominal value provided by the covered entity.

(ii) If the marketing involves direct or indirect remuneration to the covered
entity from a third party, the authorization must state that such remuneration
is involved.

B.3 Insurance Council of Australia Privacy Code

In Section 7.2 we consider the Insurance Council of Australia’s Privacy Code. The rules

in Chapter 2 regarding disclosure of personal information by a health service provider are

as follows:

Disclosure by a health service provider

2.4 Despite the rules on use and disclosure of personal information in Privacy
Principle 2.1, an organisation that provides a health service to an individual

342

may disclose health information about the individual to a person who is re-
sponsible for the individual if:

(a) the individual:

(i) is physically or legally incapable of consenting to the disclosure; or

(ii) physically cannot communicate consent to the disclosure; and

(b) a natural person (the carer) providing the health service for the organisation
is satisfied that either:

(i) the disclosure is necessary to provide appropriate care or treatment of the
individual; or

(ii) the disclosure is made for compassionate reasons; and

(c) the disclosure is not contrary to any wish:

(i) expressed by the individual before the individual became unable to give or
communicate consent; and

(ii) of which the carer is aware, or of which the carer could reasonably be
expected to be aware; and

(d) the disclosure is limited to the extent reasonable and necessary for a purpose
mentioned in paragraph (b).

2.5 For the purposes of 2.4, a person is responsible for an individual if the
person is:

(a) a parent of the individual; or

(b) a child or sibling of the individual and at least 18 years old; or

(c) a spouse or de facto spouse of the individual; or

(d) a relative of the individual, at least 18 years old and a member of the
individuals household; or

(e) a guardian of the individual; or

(f) exercising an enduring power of attorney granted by the individual that is
exercisable in relation to decisions about the individuals health; or

(g) a person who has an intimate personal relationship with the individual; or

(h) a person nominated by the individual to be contacted in case of emergency.

2.6 For the purposes of 2.5:

child of an individual includes an adopted child, a step-child and a foster-child,
of the individual.

parent of an individual includes a step-parent, adoptive parent and a foster-
parent, of the individual.

relative of an individual means a grandparent, grandchild, uncle, aunt, nephew
or niece of the individual.

sibling of an individual includes a half-brother, half-sister, adoptive brother,
adoptive sister, step-brother, step-sister, foster-brother and foster-sister, of the
individual.

343

B.4 Cable TV Privacy Act of 1984

The Cable TV Privacy Act of 1984 is recorded in US Code Title 47, Chapter 5, Subchapter

V-A, Part IV, Section 551. An excerpt of the regulatory text from the current version of

the Act is as follows.

(a) Notice to subscriber regarding personally identifiable information; defini-
tions.

(1) At the time of entering into an agreement to provide any cable service
or other service to a subscriber and at least once a year thereafter, a cable
operator shall provide notice in the form of a separate, written statement to
such subscriber which clearly and conspicuously informs the subscriber of —

(A) the nature of personally identifiable information collected or to be collected
with respect to the subscriber and the nature of the use of such information;

(B) the nature, frequency, and purpose of any disclosure which may be made of
such information, including an identification of the types of persons to whom
the disclosure may be made;

(C) the period during which such information will be maintained by the cable
operator;

(D) the times and place at which the subscriber may have access to such infor-
mation in accordance with subsection (d) of this section; and

(E) the limitations provided by this section with respect to the collection and
disclosure of information by a cable operator and the right of the subscriber
under subsections (f) and (h) of this section to enforce such limitations.

In the case of subscribers who have entered into such an agreement before the
effective date of this section, such notice shall be provided within 180 days of
such date and at least once a year thereafter.

(2) For purposes of this section, other than subsection (h) of this section —

(A) the term ”personally identifiable information” does not include any record
of aggregate data which does not identify particular persons;

(B) the term ”other service” includes any wire or radio communications service
provided using any of the facilities of a cable operator that are used in the
provision of cable service; and

(C) the term ”cable operator” includes, in addition to persons within the defi-
nition of cable operator in section 522 of this title, any person who

(i) is owned or controlled by, or under common ownership or control with, a
cable operator, and

(ii) provides any wire or radio communications service.

(b) Collection of personally identifiable information using cable system.

344

(1) Except as provided in paragraph (2), a cable operator shall not use the cable
system to collect personally identifiable information concerning any subscriber
without the prior written or electronic consent of the subscriber concerned.

(2) A cable operator may use the cable system to collect such information in
order to —

(A) obtain information necessary to render a cable service or other service
provided by the cable operator to the subscriber; or

(B) detect unauthorized reception of cable communications.

(c) Disclosure of personally identifiable information.

(1) Except as provided in paragraph (2), a cable operator shall not disclose
personally identifiable information concerning any subscriber without the prior
written or electronic consent of the subscriber concerned and shall take such
actions as are necessary to prevent unauthorized access to such information by
a person other than the subscriber or cable operator.

(2) A cable operator may disclose such information if the disclosure is —

(A) necessary to render, or conduct a legitimate business activity related to, a
cable service or other service provided by the cable operator to the subscriber;

(B) subject to subsection (h) of this section, made pursuant to a court order
authorizing such disclosure, if the subscriber is notified of such order by the
person to whom the order is directed; or

(C) a disclosure of the names and addresses of subscribers to any cable service
or other service, if —

(i) the cable operator has provided the subscriber the opportunity to prohibit
or limit such disclosure, and

(ii) the disclosure does not reveal, directly or indirectly, the —

(I) extent of any viewing or other use by the subscriber of a cable service or
other service provided by the cable operator, or

(II) the nature of any transaction made by the subscriber over the cable system
of the cable operator.

. . .

(h) Disclosure of information to governmental entity pursuant to court order. A
governmental entity may obtain personally identifiable information concerning
a cable subscriber pursuant to a court order only if, in the court proceeding
relevant to such court order —

(1) such entity offers clear and convincing evidence that the subject of the
information is reasonably suspected of engaging in criminal activity and that
the information sought would be material evidence in the case; and

(2) the subject of the information is afforded the opportunity to appear and
contest such entity’s claim.

345

B.5 TiVo Privacy Policy

The privacy policy for TiVo Corporation lists its business practices with respect to the

subscriber information that it collects. The most current edition of the policy can be

found on the company’s web site www.tivo.com. For reference we include a selection of

the full policy which is current as of this writing. It was last updated in May 2006. We

use the policy selection below in a case study in Section 7.3.

Section 1 of the privacy policy includes definitions of terms used in the policy.

1. Our User Information Definitions

In discussing the kind of information TiVo collects, it is important to distin-
guish between anonymous information and other information that specifically
identifies you or your household. Too often people refer to “personal informa-
tion” or “personally identifiable information” without really making clear what
they mean. TiVo has developed the following definitions to help clarify this
important issue. We use “User Information” as a general term that refers to
any information relating to you or your use of the TiVo service. The following
are more specific types of User Information.

1.1 “Account Information” means information about you and your TiVo DVR,
including your Contact Information (defined below) and other information
linked to your Contact Information such as the model and Service Number
of your TiVo DVR, your ZIP code, software version used, your TV program-
ming source (cable, satellite or an antenna), the type of cable hook-up (digital
or analog) and level of TiVo service (TiVo Basic, TiVo Plus, premium services,
etc.), privacy preferences, and the cable or satellite box model that you use.
You provide us with this information when (a) you set up your TiVo DVR with
TiVo Basic service or (b) when you register as a user of the TiVo Plus service.
This Service Information (defined below) is sent to TiVo on an ongoing basis to
enable TiVo to provide the TiVo service to your TiVo DVR. Account Informa-
tion also includes information we may receive about you in a communication
from you or a Third Party. Account Information does not include any Person-
ally Identifiable Viewing Information, or Anonymous Viewing Information, as
defined below.

a “Contact Information” means information that allows someone to identify or
contact you, including, for example: your name, address, telephone number,
and e-mail address. Contact Information is a subset of Account Information
and is thus linked to your TiVo DVR’s Service Number. Your ZIP code by
itself, while part of your address, is not Contact Information because your ZIP
code alone does not allow someone to identify or contact you. NOTE: If your
TiVo DVR is receiving the TiVo Basic service, you are not required to provide
TiVo with any Contact Information from that TiVo DVR.

346

b “Service Information” means information necessary for TiVo to provide ser-
vice to your TiVo DVR. Examples of Service Information include your software
version number, your TV programming source, level of service, and the suc-
cess status of the last attempted service connection (e.g., periodic call). This
information is always transmitted to TiVo when connected to the TiVo servers.

1.2 “Personally Identifiable Viewing Information” means information about the
viewing choices that you and those in your household make while using your
TiVo DVR, if that information is linked to or associated with your Account
Information. Your TiVo DVR stores your viewing information so that it may
recommend viewing choices and personalize your viewing experience. We have
worked very hard to design our system to ensure that no Personally Identifi-
able Viewing Information may be sent to, or collected by, TiVo without your
express consent. If you use the TiVo Plus service, you may choose to consent
to TiVo’s collection of Personally Identifiable Viewing Information by chang-
ing your privacy preferences. NOTE: If your TiVo DVR is receiving the TiVo
Basic service, you may not be able to consent to TiVo’s collection of Personally
Identifiable Viewing Information from that TiVo DVR.

1.3 “Anonymous Viewing Information” means information about viewing
choices that you and those in your household make while using your TiVo
DVR, but is not associated with or linked to any Contact Information. Your
TiVo DVR sends Anonymous Viewing Information to TiVo on an ongoing basis.
This information allows TiVo to know that a TiVo service user from a particu-
lar ZIP code watched certain programming but we are unable to associate those
viewing choices with you. If you use the TiVo Plus service, you may request
that TiVo block the collection of Anonymous Viewing Information from your
TiVo DVR. NOTE: If your TiVo DVR is receiving the TiVo Basic service, you
may not opt out of TiVo’s collection of Anonymous Viewing Information from
that TiVo DVR. . . .

Section 3 of the policy describes the situations when TiVo discloses user information.

3. Disclosure of User Information

3.1 Generally. We disclose aggregated Account Information and aggregated
Anonymous Viewing Information and any reports or analyses derived there-
from, to unaffiliated third parties including advertisers, broadcasters, consumer
and market research companies and other organizations (“Third Parties”).

3.2 Manufacturing and Service Provider Partners. In certain instances we will
disclose to our hardware manufacturing partners and service provider partners
(for example DIRECTV) the Account Information of users who have a DVR
made by that manufacturing partner or receive a service from that service
provider partner. However, TiVo contractually binds our manufacturing and
service provider partners to comply with the provisions of this Privacy Policy.
Our manufacturing and service provider partners are legally liable for misuse
of User Information.

347

3.3 Contractors and Vendors. We use contractors to help with some of our
operations. Some of these contractors will have access to our databases of User
Information on a temporary basis for specific tasks. TiVo also uses vendors
to help with certain aspects of its operations, which may require disclosure of
your User Information to them. For example, TiVo may use a vendor to com-
municate with you (via telephone, e-mail, or letter) about your TiVo service or
upcoming features or services, to mail rebate checks, to generate demographic
profiles based on User Information of current TiVo service users, and to per-
form other work that we may need to outsource. If you are a TiVo Plus service
user, TiVo may additionally use a vendor to process and collect payment for
your TiVo Plus service via your credit card. TiVo contractually binds these
contractors and vendors to use your User Information only as necessary to per-
form the services they are asked to perform. Such contractors and vendors are
legally liable for misuse of User Information.

3.4 The “Corporate Family.” TiVo may share some or all of your User Informa-
tion with any parent company, subsidiaries, joint ventures, or other companies
under a common control (collectively “Affiliates”). In such event, TiVo will
require its Affiliates to honor this Privacy Policy. If another company acquires
TiVo, or acquires assets of TiVo that comprise or include your User Informa-
tion, that company will possess the User Information collected by TiVo and
it will assume the rights and obligations regarding your User Information as
described in this Privacy Policy.

3.5 Commerce Partners. When you elect to participate in a special offer or
engage in a transaction with TiVo or a Third Party advertiser or promoter,
TiVo will collect and disclose your Commerce Information to the commerce
partner sponsoring and/or fulfilling the promotion. In addition to fulfilling your
request, that commerce partner may also use your Commerce Information to
send you other information in which you might be interested consistent with its
own privacy policies. This information is disclosed only upon your affirmative
response to an offer. NOTE: Depending on your level of TiVo service and the
model of your TiVo DVR, such features may not be available to you.

3.6 Factors Beyond Our Control. Your privacy is very important to us. Due
to factors beyond our control, however, we cannot fully ensure that your User
Information will not be disclosed to Third Parties. For example, we may be
legally obligated to disclose User Information to local, state or federal gov-
ernmental agencies or Third Parties under certain circumstances (including in
response to a subpoena), or Third Parties may circumvent our security mea-
sures to unlawfully intercept or access your User Information.

348

Appendix C

Full Privacy APIs for Case Studies

This chapter contains the Privacy APIs for the case studies presented above in Chapter 7.

The formal code in this chapter is derived from the legal texts considered in the case studies

and is designed to model it directly. The roles, rights, tags, and purposes for each Privacy

API are discussed above in the relevant case study.

C.1 Privacy Rule 2000 Privacy API

The Privacy API as derived for the Privacy Rule [§164.506, v.2000] section on consent

for treatment, payment, and health care operations is as follows. For reference, the full

regulatory text for the section is presented in Section B.1.

C.1.1 Tags

Due to the large number of tags in the Privacy API, we list them here in Table C.1 rather

than in Section 7.1.2. They are the members of Tag for the Privacy API for the 2000

Privacy Rule.

349

Table C.1: Tags for the HIPAA 2000 Privacy API
attempted-consent barriers-to-communication
combined-research consent-changed-to-multiple-entities
consent-combined consent-in-writing
consent-includes-classes consent-includes-names
consent-includes-specific-identifiers consent-is-dated
consent-is-signed consent-refers-to-notice
consent-request-consistent-with-164.506 consent-separately-dated
consent-separately-signed
consent-states-entity-not-required-to-agree consent-visibly-separate
created-while-inmate
consent-states-if-entity-agrees-must-comply consent-states-individual-may-revoke
consent-states-may-request-restriction
consent-states-revocation-only-for-future consent-states-right-to-review
describes-how-to-obtain-new health-plan-member
in-writing
informs-may-be-used-for-health-care-operations informs-may-be-used-for-payment
informs-may-be-used-for-treatment joint-notice
must-be-in-writing must-obtain-consent
policies-mentioned-in-530i
professional-judgment-indicates-consent protected-health-information
received-while-inmate record-electronically
record-in-writing refuse-without-consent
reserves-right-to-update-notice revocation-in-writing
revoked-consent states-right-to-modify
will-obtain-consent-asap will-record

C.1.2 Privacy API

§164.506(a)(1)

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

350

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a3(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506a1(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a1, PaymentUse506a1,

HealthCareOperationsUse506a1, TreatmentDisclose506a1,

PaymentDisclose506a1, HealthCareOperationsDisclose506a1}

Such That individual in Roles(s)

and f.protected-health-information = true

if consent in (a, s)

then return true

else return false

CMD TreatmentUse506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment inf P

and use ina P

then insert treatment in (a, s)

and return true

else return false

351

CMD PaymentUse506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and payment inf P

and use ina P

then insert payment in (a, s)

and return true

else return false

CMD HealthCareOperationsUse506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and healthCareOperations inf P

and use ina P

then insert healthCareOperations in (a, s)

and return true

else return false

352

CMD TreatmentDisclose506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment inf P

and disclose ina P

then insert local in (r, f)

and return true

else return false

CMD PaymentDisclose506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and payment ina P

and disclose ina P

then insert local in (r, f)

and return true

else return false

353

CMD HealthCareOperationsDisclose506a1 (a, s, r, P, f, f’, msg)

if Permitted506a1(a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and healthCareOperations ina P

and disclose ina P

then insert local in (r, f)

and return true

else return false

CMD GrantConsent506a(a, s, r, P, f, f’, msg)

if individual in Roles(s)

and healthCareProvider in Roles(a)

then insert consent in (a, s)

and RecordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

§164.506(a)(2)

CST Permitted506a2(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a2, PaymentUse506a2,

HealthCareOperationsUse506a2, TreatmentDisclose506a2,

PaymentDisclose506a2, HealthCareOperationsDisclose506a2}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a2i (a, s, r, P, f, f’, msg)

then return true

else return false

354

CST Permitted506a2(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a2, PaymentUse506a2,

HealthCareOperationsUse506a2, TreatmentDisclose506a2,

PaymentDisclose506a2, HealthCareOperationsDisclose506a2}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a2ii (a, s, r, P, f, f’, msg)

then return true

else return false

CMD TreatmentUse506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and treatment inf P

and use ina P

then insert treatment in (a, s)

and return true

else return false

CMD PaymentUse506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and payment inf P

and use ina P

then insert payment in (a, s)

and return true

else return false

355

CMD HealthCareOperationsUse506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and healthCareOperations inf P

and use ina P

then insert healthCareOperations in (a, s)

and return true

else return false

CMD TreatmentDisclose506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and treatment inf P

and disclose ina P

then insert local in (r, f)

and return true

else return false

CMD PaymentDisclose506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and payment inf P

and disclose ina P

then insert local in (r, f)

and return true

else return false

356

CMD HealthCareOperationsDisclose506a2 (a, s, r, P, f, f’, msg)

if Permitted506a2(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and healthCareOperations inf P

and disclose ina P

then insert local in (r, f)

and return true

else return false

§164.502(a)(2)(i)

CST Permitted506a2i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a2, PaymentUse506a2,

HealthCareOperationsUse506a2, TreatmentDisclose506a2,

PaymentDisclose506a2, HealthCareOperationsDisclose506a2}

Such That individual in Roles(s)

and f.protected-health-information = true

if healthCareProvider in Roles(a)

and indirectTreatment ina P

and indirect in (a, s)

then return true

else return false

357

§162.506(a)(2)(ii)

CST Permitted506a2ii (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a2, PaymentUse506a2,

HealthCareOperationsUse506a2, TreatmentDisclose506a2,

PaymentDisclose506a2, HealthCareOperationsDisclose506a2}

Such That individual in Roles(s)

and f.protected-health-information = true

if f.received-while-inmate = true

and healthCareProvider in Roles(a)

then return true

else return false

CST Permitted506a2ii (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a2, PaymentUse506a2,

HealthCareOperationsUse506a2, TreatmentDisclose506a2,

PaymentDisclose506a2, HealthCareOperationsDisclose506a2}

Such That individual in Roles(s)

and f.protected-health-information = true

if f.created-while-inmate = true

and healthCareProvider in Roles(a)

then return true

else return false

358

§164.506(a)(3)

CST Permitted506a3(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a3, PaymentUse506a3,

HealthCareOperationsUse506a3, TreatmentDisclose506a3,

PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted508a3i(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CMD TreatmentUse506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment ina P

and use ina P

then insert treatment in (a, s)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

359

CMD PaymentUse506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and payment ina P

and use ina P

then insert payment in (a, s)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

CMD HealthCareOperationsUse506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and healthCareOperations ina P

and use ina P

then insert healthCareOperations in (a, s)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

360

CMD TreatmentDisclose506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and treatment ina P

and disclose ina P

then insert local in (r, f)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

CMD PaymentDisclose506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and payment ina P

and disclose ina P

then insert local in (r, f)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

361

CMD HealthCareOperationsDisclose506a3 (a, s, r, P, f, f’, msg)

if Permitted506a3 (a, s, r, P, f, f’, msg) ∈ {Allow}

and individual in Roles(s)

and healthCareProvider in Roles(a)

and local in (a, f)

and healthCareOperations ina P

and disclose ina P

then insert local in (r, f)

and invoke noteAttempt506a3ii(a, s, r, P, f, f’, msg)

and return true

else return false

§164.506(a)(3)(i)

CST Permitted506a3i(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a3, PaymentUse506a3,

HealthCareOperationsUse506a3, TreatmentDisclose506a3,

PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a3iA (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

362

CST Permitted506a3i(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a3, PaymentUse506a3,

HealthCareOperationsUse506a3, TreatmentDisclose506a3,

PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a3iB (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506a3i(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506a3, PaymentUse506a3,

HealthCareOperationsUse506a3, TreatmentDisclose506a3,

PaymentDisclose506a3, HealthCareOperationsDisclose506a3}

Such That individual in Roles(s)

and f.protected-health-information = true

if Permitted506a3iC (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.506(a)(3)(i)(A)

CST Permitted506a3iA(a, s, r, P, f, f’, msg)

Such That emergency ina P

and individual in Roles(s)

and f.protected-health-information = true

and healthCareProvider in Roles(a)

if a.will-obtain-consent-asap = true

and return true

else return false

363

§164.506(a)(3)(i)(B)

CST Permitted506a3iB (a, s, r, P, f, f’, msg)

Such That requiredToTreat in (a, s)

and individual in Roles(s)

and f.protected-health-information = true

and healthCareProvider in Roles(a)

if a.attemptedConsent = true

then return true

else return false

§164.506(a)(3)(i)(C)

CST Permitted506a3iC (a, s, r, P, f, f’, msg)

Such That s.barriers-to-communication = true

and s.professional-judgment-indicates-consent = true

and individual in Roles(s)

and f.protected-health-information = true

and healthCareProvider in Roles(a)

if a.attemptedConsent = true

then return true

else return false

§164.506(a)(3)(ii)

CMD noteAttempt506a3ii (a, s, r, P, f, f’, msg)

if a.attemptedConsent = true

then insert attemptedConsent in (a, s)

and insert “Attempted consent and failed” in log

and return true

else return false

364

§164.506(a)(4)

CST VoluntaryConsent506a4(a, s, r, P, f, f’, msg)

Scope {OptionalConsent506a4}

Such That Consent506a1(a, s, r, P, f, f’, msg) ∈ {Forbid}

and individual in Roles(s)

if voluntaryConsent ina P

and a.consent-request-consistent-with-164.506 = true

and healthCareProvider in Roles(a)

and treatment ina P

then return true

else return false

CST VoluntaryConsent506a4(a, s, r, P, f, f’, msg)

Scope {OptionalConsent506a4}

Such That Consent506a1(a, s, r, P, f, f’, msg) ∈ {Forbid}

if voluntaryConsent ina P

and a.consent-request-consistent-with-164.506 = true

and individual in Roles(s)

and healthCareProvider in Roles(a)

and payment ina P

then return true

else return false

365

CST VoluntaryConsent506a4(a, s, r, P, f, f’, msg)

Scope {OptionalConsent506a4}

Such That Consent506a1(a, s, r, P, f, f’, msg) ∈ {Forbid}

if voluntaryConsent ina P

and a.consent-request-consistent-with-164.506 = true

and individual in Roles(s)

and healthCareProvider in Roles(a)

and healthCareOperations ina P

then return true

else return false

CMD OptionalConsent506a4 (a, s, r, P, f, f’, msg)

if VoluntaryConsent506a4(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and use ina P

then insert consent in (a, s)

and RecordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

366

§164.506(a)(5)

CST TransferConsent506a5 (a, s, r, P, f, f’, msg)

Scope {OtherConsent506a5}

Such That transfer-consent ina P

and consent in (a, s)

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and individual in Roles(s)

if JointConsent506f1 (a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

then return true

else return false

CMD OtherConsent506a5 (a, s, r, P, f, f’, msg)

if TransferConsent506a5(r, s, a, P, f, f′, msg) ∈ {Allow}

then insert consent in (a, s)

and return true

else return false

§164.506(b)(1)

CST Condition506b1(a, s, r, P, f, f’, msg)

Scope {BeginTreatment506b1}

Such That a.refuse-without-consent = true

and individual in Roles(s)

if consent in (a, s)

then return true

else return false

367

CMD BeginTreatment506b1 (a, s, r, P, f, f’, msg)

if Condition506b1(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and healthCareProvider in Roles(a)

and treatment ina P

then insert beginTreat in (a, s)

and return true

else return false

§164.506(b)(2)

CST Condition506b2(a, s, r, P, f, f’, msg)

Scope {Enroll506b2}

Such That a.refuse-without-consent = true

and consent in (a, s)

and individual in Roles(s)

if true

then return true

else return false

CMD Enroll506b2 (a, s, r, P, f, f’, msg)

if Condition506b2(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and healthPlan in Roles(a)

and enrollment ina P

then set s.healthPlan-member = true

and return true

else return false

§164.506(b)(3)

No Commands

368

§164.506(b)(4)(i)

CST PermittedCombine506b4i(a, s, r, P, f, f’, msg)

Scope {CombineConsent506b4i}

Such That s.consent-combined = true

if PermittedCombine506b4iA(a, s, r, P, f, f’, msg) ∈ {Allow}

and PermittedCombine506b4iB(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CMD CombineConsent506b4i (a, s, r, P, f, f’, msg)

if PermittedCombined506b4i(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow}

and s.consent-in-writing = true

then insert consent in (a, s)

and recordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

§164.506(b)(4)(i)(A)

CST PermittedCombine506b4iA(a, s, r, P, f, f’, msg)

Scope {CombineConsent506b4i}

Such That s.consent-combined = true

if s.consent-visibly-separate = true

then return true

else return false

369

§164.506(b)(4)(i)(B)

CST PermittedCombine506b4iB(a, s, r, P, f, f’, msg)

Scope {CombineConsent506b4i}

Such That s.consent-combined = true

if s.consent-separately-signed = true

and s.consent-separately-dated = true

then return true

else return false

§164.506(b)(4)(ii)

CST PermittedCombine506b4ii(a, s, r, P, f, f’, msg)

Scope {CombinedConsent506b4ii}

Such That s.consent-combined = true

and s.combined-research = true

and research ina P

if PermittedResearch508f(a, s, r, P, f, f’, msg) ∈ {Allow,

Don’t Care/Allow}

then return true

else return false

CMD CombinedConsent506b4ii (a, s, r, P, f, f’, msg)

if PermittedCombine506b4ii(a, s, r, P, f, f’, msg) ∈ {Alow, Don’t Care/Allow}

then insert consent in (a, s)

and insert research in (a, s)

and RecordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

370

§164.506(b)(5)

CMD RevokeConsent506b5 (a, s, r, P, f, f’, msg)

if s.revocation-in-writing = true

and consent in (a, s)

and revoke inf P

then delete consent from (a, s)

and invoke Record530j(a, s, r, P, f, f’, msg)

and return true

else return false

§164.506(b)(6)

CST ReqRecordConsent506b6 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4, CombineConsent506b4i,

CombinedConsent506b4ii, GrantJointConsent506f1}

Such That coveredEntity in Roles(a)

if grant-consent ina P

and s.consent-in-writing = true

and a.will-record = true

and Maintain530j(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

then return true

else return false

CMD RecordConsent506b6 (a, s, r, P, f, f’, msg)

if consent ina P

then insert “Consent granted” in log

and invoke Record530j(a, s, r, P, f, f’, msg)

and return true

else return false

371

§164.506(c)

CST ConsentContent506c (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-plain-language = true

and ConsentContent506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c2(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c3(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c4(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c5(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c6(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.506(c)(1)

CST ConsentContent506c1 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.informs-may-be-used-for-treatment = true

and a.informs-may-be-used-for-payment = true

and a.informs-may-be-used-for-health-care-operations = true

then return true

else return false

372

§164.506(c)(2)

CST ConsentContent506c2 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-refers-to-notice = true

and a.consent-states-right-to-review = true

then return true

else return false

§164.506(c)(3)

CST ConsentContent506c3 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4, CombineConsent506b4i,

CombinedConsent506b4ii, GrantJointConsent506f1}

Such That a.reserves-right-to-update-notice = true

if a.states-right-to-modify = true

and a.describes-how-to-obtain-new = true

then return true

else return false

§164.506(c)(4)

CST ConsentContent506c4 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if ConsentContent506c4i(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c4ii(a, s, r, P, f, f’, msg) ∈ {Allow}

and ConsentContent506c4iii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

373

§164.506(c)(4)(i)

CST ConsentContent506c4i (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-states-may-request-restriction = true

then return true

else return false

§164.506(c)(4)(ii)

CST ConsentContent506c4ii (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-states-entity-not-required-to-agree = true

then return true

else return false

§164.506(c)(4)(iii)

CST ConsentContent506c4iii (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-states-if-entity-agrees-must-comply = true

then return true

else return false

374

§164.506(c)(5)

CST ConsentContent506c5 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-states-individual-may-revoke = true

and a.consent-states-revocation-only-for-future = true

then return true

else return false

§164.506(c)(6)

CST ValidConsent506c6 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if a.consent-is-signed = true

and a.consent-is-dated = true

then return true

else return false

§164.506(d)

CST DefectiveConsent506d (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if DefectiveConsent506d1(a, s, r, P, f, f’, msg)

or DefectiveConsent506d2(a, s, r, P, f, f’, msg)

then return true

else return false

375

§164.506(d)(1)

CST DefectiveConsent506d1 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if ConsentContent506c (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.506(d)(2)

CST DefectiveConsent506d2 (a, s, r, P, f, f’, msg)

Scope {GrantConsent506a, OptionalConsent506a4,

CombineConsent506b4i, CombinedConsent506b4ii, GrantJointConsent506f1}

if s.revoked-consent = false

then return true

else return false

§164.506(e)

No Commands

§164.506(f)(1)

CST JointConsent506f1 (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

if organizedHealthCareArrangement in (a, r)

and a.joint-notice = true

and r.joint-notice = true

then return true

else return false

376

CMD GrantJointConsent506f1 (a, s, r, P, f, f’, msg)

if JointConsent506f1 (a, s, r, P, f, f’, msg) ∈ {Allow}

and JointConsentContent506f2(a, s, r, P, f, f’, msg) ∈ {Allow}

and jointConsent ina P

then insert consent in (a, s)

and insert consent in (r, s)

and insert “Joint consent granted” in log

and RecordConsent506b6 (a, s, r, P, f, f’, msg)

and return true

else return false

§164.506(f)(2)

CST JointConsentContent506f2 (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

if JointConsentContent506f2iA (a, s, r, P, f, f’, msg) ∈ {Allow}

and JointConsentContent506f2iB (a, s, r, P, f, f’, msg) ∈ {Allow,

Don’t Care/Allow}

then return true

else return false

§164.506(f)(2)(i)(A)

CST JointConsentContent506f2iA (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

Such That jointConsent ina P

if a.consent-includes-names = true

then return true

else return false

377

CST JointConsentContent506f2iA (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

Such That jointConsent ina P

if a.consent-includes-specific-identifiers = true

then return true

else return false

CST JointConsentContent506f2iA (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

Such That jointConsent ina P

if a.consent-includes-classes = true

then return true

else return false

§164.506(f)(2)(i)(B)

CST JointConsentContent506f2iB (a, s, r, P, f, f’, msg)

Scope {GrantJointConsent506f1}

Such That jointConsent ina P

and a.consent-changed-to-multiple-entities = true

if ConsentContent506c (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

378

§164.506(f)(2)(ii)

CMD RevokeJointConsent506f2ii (a, s, r, P, f, f’, msg)

if revoke ina P

and jointConsent ina P

then invoke RevokeConsent506b5 (a, s, r, P, f, f’, msg)

and inform r of “Consent revoked”

and invoke Record530j(a, s, r, P, f, f’, msg)

and return true

else return false

§164.530(j)

CST Maintain530j(a, s, r, P, f, f’, msg)

Scope {RevokeConsent506b5, RevokeJointConsent506f2ii, GrantConsent506a,

OptionalConsent506a4, CombineConsent506b4i, CombinedConsent506b4ii,

GrantJointConsent506f1}

if Policies530ji(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and MaintainWritten530jii(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

then return true

else return false

§164.530(j)(i)

CST Policies530ji(a, s, r, P, f, f’, msg)

Such That a.policies-mentioned-in-530i = true

if a.maintain-policies-in-electronic-form = true

then return true

else return false

379

§164.530(j)(ii)

CST MaintainWritten530jii(a, s, r, P, f, f’, msg)

Scope {RevokeConsent506b5, RevokeJointConsent506f2ii, GrantConsent506a,

OptionalConsent506a4, CombineConsent506b4i,

CombinedConsent506b4ii, GrantJointConsent506f1}

Such That a.in-writing = true

and communication inf P

and a.must-be-in-writing = true

if a.will-record = true

and a.record-in-writing = true

then return true

else return false

CST MaintainWritten530jii(a, s, r, P, f, f’, msg)

Scope {RevokeConsent506b5, RevokeJointConsent506f2ii, GrantConsent506a,

OptionalConsent506a4, CombineConsent506b4i,

CombinedConsent506b4ii, GrantJointConsent506f1}

Such That a.in-writing = true

and communication inf P

and a.must-be-in-writing = true

if a.will-record = true

and a.record-electronically = true

then return true

else return false

CMD Record530j(a, s, r, P, f, f’, msg)

if true

then insert msg in log

and return true

else return false

380

C.2 Privacy Rule 2003 Privacy API

The Privacy API as derived for the Privacy Rule [§164.506, v.2000] section on consent

for treatment, payment, and health care operations is as follows. For reference, the full

regulatory text for the section and other essential texts are presented in Section B.2.

C.2.1 Health Care Operations Hierarchy

The purpose hierarchy for health care operations as mentioned above in Section 7.1.5 is as

follows. Note that the top level purpose health care operations is the parent of Paragraphs

1–6 below although it is not listed. The hierarchy is as defined in Section B.2.2.

Paragraph 1 (a) Conducting quality assessment and improvement activities

i. Outcomes evaluation

ii. Development of clinical guidelines

(b) Population-based activities relating to improving health or reducing

health care costs

(c) Protocol development

(d) Case management and care coordination

(e) Contacting of health care providers and patients with information about

treatment alternatives

(f) Related functions that do not include treatment

Paragraph 2 (a) Reviewing the competence or qualifications of health care professionals

(b) Evaluating practitioner and provider performance

(c) Health plan performance

(d) Conducting training programs in which students, trainees, or practition-

ers in areas of health care learn under supervision to practice or improve

their skills as health care providers

(e) Training of non-health care professionals

(f) Accreditation

381

(g) Certification

(h) Licensing

(i) Credentialing activities

Paragraph 3 (a) Underwriting

(b) Premium rating

(c) Other activities relating to the creation, renewal or replacement of a

contract of health insurance or health benefits

(d) Ceding, securing, or placing a contract for reinsurance of risk relating to

claims for health care provided that the requirements of Sec. 164.514(g)

are met, if applicable;

i. Stop-loss insurance and excess of loss insurance

Paragraph 4 (a) Conducting or arranging for medical review

(b) Conducting or arranging for legal services

(c) Conducting or arranging for auditing functions

i. Fraud and abuse detection

ii. Compliance programs

Paragraph 5 Business planning and development

(a) Conducting cost-management and planning-related analyses related to

managing and operating the entity

(b) Formulary development and administration

(c) Development or improvement of methods of payment or coverage policies

Paragraph 6 Business management and general administrative activities of the entity

Subparagraph (i) i. Management activities relating to implementation of

and compliance with the requirements of this sub-

chapter;

382

Subparagraph (ii) i. Customer service, including the provision of data

analyses for policy holders, plan sponsors, or other

customers, provided that protected health informa-

tion is not disclosed to such policy holder, plan spon-

sor, or customer.

Subparagraph (iii) i. Resolution of internal grievances;

Subparagraph (iv) i. The sale, transfer, merger, or consolidation of all

or part of the covered entity with another covered

entity, or an entity that following such activity will

become a covered entity and due diligence related to

such activity

Subparagraph (v) i. Consistent with the applicable requirements of Sec.

164.514, creating de-identified health information or

a limited data set, and fundraising for the benefit of

the covered entity.

C.2.2 Commands and Constraints

The commands and constraints for the Privacy Rule 2003 are as follows.

383

§164.506(a)

CST Permitted506a(a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That Permitted508a2(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and Permitted508a3(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

and f.protected-health-information = true

and coveredEntity in Roles(a)

if Permitted506c(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.506(b)(1)

CST OptionalConsent506b1(a, s, r, P, f, f’, msg)

Scope {OptionalUseConsent506b1, OptionalDiscloseConsent506b1}

Such That a.optional-consent = true

and coveredEntity in Roles(a)

if treatment ina P

and consent in (a, s)

and return true

else return false

384

CMD OptionalUseConsent506b1 (a, s, r, P, f, f’, msg)

if individual in Roles(s)

and local in (a, f)

and use ina P

then insert consent in (a, s)

and return true

else return false

CMD OptionalDiscloseConsent506b1 (a, s, r, P, f, f’, msg)

if individual in Roles(s)

and local in (a, f)

and disclose ina P

then insert consent in (a, s)

and return true

else return false

164.506(b)(2)

CST ConsentValidAsIn506b (a, s, r, P, f, f’, msg)

Scope {OptionalUseConsent506b1, OptionalDiscloseConsent506b1}

Such That consent ina P

if Permitted508 (a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow,

Don’t Care/Forbid}

then return true

else return false

385

§164.506(c)

CST Permitted506c (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1, HealthCareOperationsUse506c1,

TreatmentDisclose506c1, PaymentDisclose506c1,

HealthCareOperationsDisclose506c1, TreatmentDisclose506c1,

PaymentDisclose506c3, Disclose506c4, Disclose506c5}

if Permitted506c1 (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506c (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1, HealthCareOperationsUse506c1,

TreatmentDisclose506c1, PaymentDisclose506c1,

HealthCareOperationsDisclose506c1, TreatmentDisclose506c1,

PaymentDisclose506c3, Disclose506c4, Disclose506c5}

if Permitted506c2 (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506c (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1, HealthCareOperationsUse506c1,

TreatmentDisclose506c1, PaymentDisclose506c1,

HealthCareOperationsDisclose506c1, TreatmentDisclose506c1,

PaymentDisclose506c3, Disclose506c4, Disclose506c5}

if Permitted506c3 (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

386

CST Permitted506c (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1, HealthCareOperationsUse506c1,

TreatmentDisclose506c1, PaymentDisclose506c1,

HealthCareOperationsDisclose506c1, TreatmentDisclose506c1,

PaymentDisclose506c3, Disclose506c4, Disclose506c5}

if Permitted506c4 (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted506c (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1, HealthCareOperationsUse506c1,

TreatmentDisclose506c1, PaymentDisclose506c1,

HealthCareOperationsDisclose506c1, TreatmentDisclose506c1,

PaymentDisclose506c3, Disclose506c4, Disclose506c5}

if Permitted506c5 (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.506(c)(1)

CST Permitted506c1 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, HealthCareOperationsDisclose506c1}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and individual in Roles(s)

if own ina P

then return true

else return false

387

CMD TreatmentUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and use ina P

and treatment ina P

then insert treatment in (a, s)

and return true

else return false

CMD PaymentUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg)

and local in (a, f)

and use ina P

and payment ina P

then insert payment in (a, s)

and return true

else return false

CMD HealthCareOperationsUse506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1 (a, s, r, P, f, f’, msg)

and local in (a, f)

and use ina P

and healthCareOperations ina P

then insert healthCareOperations in (a, s)

and return true

else return false

388

CMD TreatmentDisclose506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and coveredEntity in Roles(a)

and local in (a, f)

and treatment ina P

and disclose ina P

then insert local in (r, f)

and return true

else return false

CMD PaymentDisclose506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and coveredEntity in Roles(a)

and local in (a, f)

and payment ina P

and disclose ina P

then insert local in (r, f)

and return true

else return false

CMD HealthCareOperationsDisclose506c1 (a, s, r, P, f, f’, msg)

if Permitted506c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and coveredEntity in Roles(a)

and local in (a, f)

and healthCareOperations ina P

and disclose ina P

then insert local in (r, f)

and return true

else return false

389

§164.506(c)(2)

CST Permitted506c2 (a, s, r, P, f, f’, msg)

Scope {TreatmentDisclose506c2}

Such That coveredEntity in Roles(a)

and f.protected-health-information = true

if healthCareProvider in Roles(r)

and treatment ina P

and recipient ina P

then return true

else return false

CMD TreatmentDisclose506c2 (a, s, r, P, f, f’, msg)

if Permitted506c2 (a, s, r, P, f, f’, msg)∈ {Allow}

and local in (a, f)

and treatment ina P

and recipient ina P

and disclose ina P

then insert treatment in (a, s)

and insert local in (r, f)

and return true

else return false

390

§164.506(c)(3)

CST Permitted506c3 (a, s, r, P, f, f’, msg)

Scope {PaymentDisclose506c3}

Such That coveredEntity in Roles(a)

and f.protected-health-information = true

if coveredEntity in Roles(r)

and payment ina P

and recipient ina P

then return true

else return false

CST Permitted506c3 (a, s, r, P, f, f’, msg)

Scope {PaymentDisclose506c3}

Such That coveredEntity in Roles(a)

and f.protected-health-information = true

if healthCareProvider in Roles(r)

and payment ina P

and recipient ina P

then return true

else return false

CMD PaymentDisclose506c3 (a, s, r, P, f, f’, msg)

if Permitted506c3 (a, s, r, P, f, f’, msg)∈ {Allow}

and local in (a, f)

and payment ina P

and recipient ina P

and disclose ina P

then insert local in (r, f)

and insert payment in (r, f)

and return true

else return false

391

§164.506(c)(4)

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and relationship in (a, s)

and relationship in (r, s)

if Permitted506c4i (a, s, r, P, f, f’, msg) ∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and relationship in (a, s)

and relationship in (r, s)

if Permitted506c4ii (a, s, r, P, f, f’, msg)∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

392

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and a.past-relationship = true

and relationship in (r, s)

if Permitted506c4i (a, s, r, P, f, f’, msg) ∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and a.past-relationship = true

and relationship in (r, s)

if Permitted506c4ii (a, s, r, P, f, f’, msg) ∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

393

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and relationship in (a, s)

and r.past-relationship = true

if Permitted506c4i (a, s, r, P, f, f’, msg)∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and relationship in (a, s)

and r.past-relationship = true

if Permitted506c4ii (a, s, r, P, f, f’, msg)∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

394

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and a.past-relationship = true

and r.past-relationship = true

if Permitted506c4i (a, s, r, P, f, f’, msg) ∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

CST Permitted506c4 (a, s, r, P, f, f’, msg)

Scope {Disclose506c4}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

and a.past-relationship = true

and r.past-relationship = true

if Permitted506c4ii (a, s, r, P, f, f’, msg) ∈ {Allow}

and healthCareOperations ina P

and recipient ina P

and relatedRelationship ina P

then return true

else return false

395

CMD Disclose506c4 (a, s, r, P, f, f’, msg)

if Permitted506c4 (a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

then insert local in (r, f)

and insert healthCareOperations in (r, f)

and return true

else return false

§164.506(c)(4)(i)

CST Permitted506c4i (a, s, r, P, f, f’, msg)

Scope {}

if Paragraph1 ina P

then return true

else return false

CST Permitted506c4i (a, s, r, P, f, f’, msg)

Scope {}

if Paragraph2 ina P

then return true

else return false

§164.506(c)(4)(ii)

CST Permitted506c4ii (a, s, r, P, f, f’, msg)

Scope {}

if healthCareFraudAbuseDetection ina P

then return true

else return false

396

CST Permitted506c4ii (a, s, r, P, f, f’, msg)

Scope {}

if compliance ina P

then return true

else return false

§164.506(c)(5)

CST Permitted506c5 (a, s, r, P, f, f’, msg)

Scope {Disclose506c5}

Such That organizedHealthCareArrangement in (a, r)

and f.protected-health-information = true

and organizedArrangement ina P

if healthCareOperations ina P

and individual in Roles(s)

and coveredEntity in Roles(a)

and coveredEntity in Roles(r)

then return true

else return false

CMD Disclose506c5 (a, s, r, P, f, f’, msg)

if Permitted506c5 (a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

and healthCareOperations ina P

then insert local in (r, f)

and return true

else return false

397

§164.508(a)(2)

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and use ina P

if Transition532(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and disclose ina P

if Transition532(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

398

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and use ina P

if authorization in (a, s)

then return true

else return false

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and disclose ina P

if authorization in (a, s)

then return true

else return false

399

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and use ina P

if Permitted508a2i(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and disclose ina P

if Permitted508a2i(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

400

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and use ina P

if Permitted508a2ii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted508a2 (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.psychotherapy-notes = true

and disclose ina P

if Permitted508a2ii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.508(a)(2)(i)

CST Authorization508a2i (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if Notes508a2iA(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

401

CST Authorization508a2i (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if Notes508a2iB(a, s, r, P, f, f’, msg)∈ {Allow}

then return true

else return false

CST Authorization508a2i (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if Notes508a2iC(a, s, r, P, f, f’, msg)∈ {Allow}

then return true

else return false

§164.508(a)(2)(i)(A)

CST Notes508a2iA (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if originator in (a, f)

and treatment ina P

and use ina P

then return true

else return false

402

§164.508(a)(2)(i)(B)

CST Notes508a2iB (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if local in (a, f)

and coveredEntity in Roles(a)

and own ina P

and improveCounseling ina P

and use ina P

then return true

else return false

CST Notes508a2iB (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

if local in (a, f)

and coveredEntity in Roles(a)

and own ina P

and improveCounseling ina P

and disclose ina P

then return true

else return false

403

§164.508(a)(2)(i)(C)

CST Notes508a2iC (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and defendFromIndividual ina P

and legalAction ina P

and coveredEntity in Roles(a)

if local in (a, f)

and use ina P

then return true

else return false

CST Notes508a2iC (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and defendFromIndividual ina P

and legalAction ina P

and coveredEntity in Roles(a)

if local in (a, f)

and disclose ina P

then return true

else return false

404

CST Notes508a2iC (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and defendFromIndividual ina P

and proceedings ina P

and coveredEntity in Roles(a)

if local in (a, f)

and use ina P

then return true

else return false

CST Notes508a2iC (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and defendFromIndividual ina P

and proceedings ina P

and coveredEntity in Roles(a)

if local in (a, f)

and disclose ina P

then return true

else return false

§164.508(a)(2)(ii)

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Required502a2ii (a, s, r, P, f, f’, msg) ∈ {Allow}

if use ina P

then return true

else return false

405

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Required502a2ii (a, s, r, P, f, f’, msg) ∈ {Allow}

if disclose ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512a (a, s, r, P, f, f’, msg) ∈ {Allow}

if use ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512a (a, s, r, P, f, f’, msg) ∈ {Allow}

if disclose ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512d (a, s, r, P, f, f’, msg) ∈ {Allow}

and notesOriginator ina P

if use ina P

then return true

else return false

406

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512d (a, s, r, P, f, f’, msg) ∈ {Allow}

and notesOriginator ina P

if disclose ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512g1 (a, s, r, P, f, f’, msg) ∈ {Allow}

if use ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512g1 (a, s, r, P, f, f’, msg) ∈ {Allow}

if disclose ina P

then return true

else return false

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512j1i (a, s, r, P, f, f’, msg) ∈ {Allow}

if use ina P

then return true

else return false

407

CST Notes508a2ii (a, s, r, P, f, f’, msg)

Scope {}

Such That f.psychotherapy-notes = true

and Permitted512j1i (a, s, r, P, f, f’, msg) ∈ {Allow}

if disclose ina P

then return true

else return false

§164.508(a)(3)(i)

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and use ina P

and marketing inf P

if Transition532(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

408

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and disclose ina P

and marketing inf P

if Transition532(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and use ina P

and marketing inf P

if authorization in (a, s)

then return true

else return false

409

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and disclose ina P

and marketing inf P

if authorization in (a, s)

then return true

else return false

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and use ina P

and marketing inf P

if Marketing508a3iA (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

410

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and disclose ina P

and marketing inf P

if Marketing508a3iA (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and use ina P

and marketing inf P

if Marketing508a3iB (a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

411

CST Marketing508a3i (a, s, r, P, f, f’, msg)

Scope {TreatmentUse506c1, PaymentUse506c1,

HealthCareOperationsUse506c1, TreatmentDisclose506c1,

PaymentDisclose506c1, TreatmentDisclose506c1,

HealthCareOperationsDisclose506c1, PaymentDisclose506c3,

Disclose506c4, Disclose506c5}

Such That f.protected-health-information = true

and coveredEntity in Roles(a)

and disclose ina P

and marketing inf P

if Marketing508a3iB(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§164.508(a)(3)(i)(A)

CST Marketing508a3iA (a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

and coveredEntity in Roles(a)

if communication ina P

and faceToFace ina P

then return true

else return false

412

§164.508(a)(3)(i)(B)

CST Marketing508a3iB (a, s, r, P, f, f’, msg)

Scope {}

if promotionalGift ina P

and nominalValue ina P

and coveredEntity in Roles(a)

then return true

else return false

§164.508(a)(3)(ii)

CST AuthValidAsIn508a3ii (a, s, r, P, f, f’, msg)

Scope {}

Such That marketing inf P

and a.direct-remuneration = true

and a.from-third-party = true

if a.authorization-states-remuneration = true

then return true

else return false

CST AuthValidAsIn508a3ii (a, s, r, P, f, f’, msg)

Scope {}

Such That marketing inf P

and indirectRemuneration inf P

and fromThirdParty inf P

if a.authorization-states-remuneration = true

then return true

else return false

413

C.3 Insurance Council of Australia Privacy Code

The commands and constraints from the Insurance Council of Australia’s Privacy Code

section 2.4 are as follows. Section 2.4 deals with disclosure of personal information by health

service providers. Health service providers may make such disclosures to people who are

responsible for an individual (i.e., the subject of the data) in cases where the individual is

unable to communicate consent. Section 2.5 lists the people who are considered responsible

for an individual. Section 2.6 widens some of the definitions of 2.5. The source text for

the Privacy API in this section is found in Appendix B.3.

2.4

CST Permitted2.4(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

Such That healthProvider in Roles(a)

and individual in Roles(s)

and f.health-information = true

if Permitted2.4a(a, s, r, P, f, f’, msg) ∈ {Allow}

and Permitted2.4b(a, s, r, P, f, f’, msg) ∈ {Allow}

and Permitted2.4c(a, s, r, P, f, f’, msg) ∈ {Allow}

and responsible in (r, s)

and disclose ina P

then return true

else return false

414

CMD Disclose2.4(a, s, r, P, f, f’, msg)

if Permitted2.4(a, s, r, P, f, f’, msg)

and individual in Roles(s)

and healthProvider in Roles(a)

and responsible in (r, s)

and disclose ina P

and f.health-information = true

and local in (a, f)

then insert local in (r, f)

and return true

else return false

2.4(a)

CST Permitted2.4a(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

if Permitted2.4ai(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted2.4a(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

if Permitted2.4aii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

415

2.4(a)(i)

CST Permitted2.4ai(a, s, r, P, f, f’, msg)

Scope {}

if physicallyIncapable in Roles(s)

then return true

else return false

CST Permitted2.4ai(a, s, r, P, f, f’, msg)

Scope {}

if legallyIncapable in Roles(s)

then return true

else return false

2.4(a)(ii)

CST Permitted2.4aii(a, s, r, P, f, f’, msg)

Scope {}

if cannotPhysicallyCommunicateConsent in Roles(s)

then return true

else return false

2.4(b)

CST Permitted2.4b(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

if naturalPerson in Roles(a)

and providingHealthService in Roles(a)

and Permitted2.4bi(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

416

CST Permitted2.4b(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

if naturalPerson in Roles(a)

and providingHealthService in Roles(a)

and Permitted2.4bii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

2.4(b)(i)

CST Permitted2.4bi(a, s, r, P, f, f’, msg)

Scope {}

if treatment ina P

and a.satisfied-disclosure-necessary-to-provide-appropriate-care = true

then return true

else return false

CST Permitted2.4bi(a, s, r, P, f, f’, msg)

Scope {}

if treatment ina P

and a.satisfied-disclosure-necessary-to-provide-appropriate-treatment = true

then return true

else return false

2.4(b)(ii)

CST Permitted2.4bii(a, s, r, P, f, f’, msg)

Scope {}

Such That disclose ina P

and compassion ina P

then return true

else return false

417

2.4(c)

CST Permitted2.4c(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

Such That disclose ina P

if s.wish-contrary = false

and Permitted2.4ci(a, s, r, P, f, f’, msg) ∈ {Allow}

and Permitted2.4cii(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

2.4(c)(i)

CST Permitted2.4cii(a, s, r, P, f, f’, msg)

Scope {}

if s.wish-expressed-before-unable-to-consent = false

then return true

else return false

2.4(c)(ii)

CST Permitted2.4cii(a, s, r, P, f, f’, msg)

Scope {}

if a.aware-of-wish = false

and a.reasonably-expected-to-be-aware-of-wish = false

then return true

else return false

418

2.4(d)

CST Permitted2.4d(a, s, r, P, f, f’, msg)

Scope {Disclose2.4}

if reasonable ina P

and necessary ina P

and Permitted2.4b(a, s, r, P, f, f’, msg) ∈ {Allow, Don’t Care/Allow}

and disclose ina P

then return true

else return false

2.5

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5a(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

CST Responsible2.5(a, s, r, P, f, f’, msg)

Such That responsible in (r, s)

and individual in Roles(s)

if responsible in (r, s)

and Responsible2.5b(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

419

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5c(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5d(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5e(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5f(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

420

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5g(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

CST Responsible2.5(a, s, r, P, f, f’, msg)

Scope {Permitted2.4}

Such That responsible in (r, s)

and individual in Roles(s)

if Responsible2.5h(a, s, r, P, f, f’, msg) in {Allow}

then return true

else return false

2.5(a)

CST Responsible2.5a(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if parent in (r, s)

then return true

else return false

CST Responsible2.5a(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if Parent2.6(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

421

2.5(b)

CST Responsible2.5b(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if child in (r, s)

and r.at-least-18 = true

then return true

else return false

CST Responsible2.5b(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if Child2.6(a, s, r, P, f, f’, msg) ∈ {Allow}

and r.at-least-18 = true

then return true

else return false

CST Responsible2.5b(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if sibling in (r, s)

and r.at-least-18 = true

then return true

else return false

CST Responsible2.5b(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if Sibling2.6 ∈ {Allow}

and r.at-least-18 = true

then return true

else return false

422

2.5(c)

CST Responsible2.5c(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if spouse in (r, s)

then return true

else return false

CST Responsible2.5c(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if defactoSpouse in (r, s)

then return true

else return false

2.5(d)

CST Responsible2.5d(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if relative in (r, s)

and r.at-least-18 = true

and householdMember in (r, s)

then return true

else return false

423

CST Responsible2.5d(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if Relative2.6(a, s, r, P, f, f’, msg) ∈ {Allow}

and r.at-least-18 = true

and householdMember in (r, s)

then return true

else return false

2.5(e)

CST Responsible2.5e(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if guardian in (r, s)

then return true

else return false

2.5(f)

CST Responsible2.5f(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if powerOfAttorney in (r, s)

and r.power-granted-by-individual = true

and r.power-exercisable-to-health = true

then return true

else return false

424

2.5(g)

CST Responsible2.5g(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if intimatePersonalRelationship in (r, s)

then return true

else return false

2.5(h)

CST Responsible2.5h(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if nominatedEmergencyContact in (s, r)

and r.nominated-by-individual = true

then return true

else return false

2.6

Child

CST Child2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if adoptedChild in (r,s)

then return true

else return false

425

CST Child2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if stepChild in (r,s)

then return true

else return false

CST Child2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if fosterChild in (r,s)

then return true

else return false

Parent

CST Parent2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if stepParent in (r,s)

then return true

else return false

CST Parent2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if adoptiveParent in (r,s)

then return true

else return false

426

CST Parent2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if fosterParent in (r,s)

then return true

else return false

Relative

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if grandparent in (r,s)

then return true

else return false

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if grandchild in (r,s)

then return true

else return false

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if uncle in (r,s)

then return true

else return false

427

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if aunt in (r,s)

then return true

else return false

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if nephew in (r,s)

then return true

else return false

CST Relative2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if niece in (r,s)

then return true

else return false

Sibling

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if halfBrother in (r,s)

then return true

else return false

428

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if halfSister in (r,s)

then return true

else return false

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if adoptiveBrother in (r,s)

then return true

else return false

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if adoptiveSister in (r,s)

then return true

else return false

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if stepBrother in (r,s)

then return true

else return false

429

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if stepSister in (r,s)

then return true

else return false

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if fosterBrother in (r,s)

then return true

else return false

CST Sibling2.6(a, s, r, P, f, f’, msg)

Scope {}

Such That individual in Roles(s)

if fosterSister in (r,s)

then return true

else return false

430

C.4 Cable TV Act Privacy API

§551(a)(1)

CST MustNotify551a(a, s, r, P, f, f’, msg)

Such That s.entering-agreement = true

if cableService in P

and a.written-statement = true

and a.separate-statement = true

and a.clear-conspicuous = true

and Notice551a1A(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1b(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1C(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1D(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1E(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST MustNotify551a(a, s, r, P, f, f’, msg)

Such That yearlyNotice ina P

if cableService in P

and a.written-statement = true

and a.separate-statement = true

and a.clear-conspicuous = true

and Notice551a1A(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1b(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1C(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1D(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1E(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

431

CST MustNotify551a(a, s, r, P, f, f’, msg)

if s.entered-before-effective = true

and subscriber in Roles(s)

and a.written-statement = true

and a.separate-statement = true

and a.clear-conspicuous = true

and Notice551a1A(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1b(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1C(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1D(a, s, r, P, f, f’, msg) ∈ {Allow}

and Notice551a1E(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CMD Noice551a1(a, s, r, P, f, f’, msg)

if MustNotify551a(a, s, r, P, f, f’, msg) ∈ {Allow}

and subscriber in Roles(s)

and cableOperator in Roles(a)

then inform s of “notice”

and return true

else return false

§551(a)(1)(A)

CST Notice551a1A(a, s, r, P, f, f’, msg)

if a.nature-personally-identifiable-info = true

and a.nature-use-information = true

then return true

else return false

432

§551(a)(1)(B)

CST Notice551a1B(a, s, r, P, f, f’, msg)

if a.nature-disclosure = true

and a.frequency-disclosure = true

and a.purpose-disclosure = true

and a.identification-types-persons-disclosure = true

then return true

else return false

§551(a)(1)(C)

CST Notice551a1C(a, s, r, P, f, f’, msg)

if a.maintained-period = true

and cableOperator in Roles(a)

then return true

else return false

§551(a)(1)(D)

CST Notice551a1D(a, s, r, P, f, f’, msg)

if a.times-place-subscriber-access = true

and subscriber in Roles(s)

then return true

else return false

§551(a)(1)(E)

CST Notice551a1E(a, s, r, P, f, f’, msg)

if a.limitations-collection-disclosure = true

and a.right-subscriber-f-h-enforce = true

then return true

else return false

433

§551(a)(2)

Definitions section, no commands.

§551(b)(1)

CST Collect551b1(a, s, r, P, f, f’, msg)

Scope {Collect551b1}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and collectPII inf P

if Collect551b2(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Collect551b1(a, s, r, P, f, f’, msg)

Scope {Collect551b1}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and collectPII inf P

if writtenConsent in (a, s)

then return true

else return false

CST Collect551b1(a, s, r, P, f, f’, msg)

Scope {Collect551b1}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and collectPII inf P

if electronicConsent in (a, s)

then return true

else return false

434

CMD CollectInformation551b1(a, s, r, P, f, f’, msg)

if Collect551b1(a, s, r, P, f, f’, msg) ∈ {Allow}

and cableOperator in Roles(a)

then insert collectPII in (a, s)

and return true

else return false

§551(b)(2)

CST Collect551b2(a, s, r, P, f, f’, msg)

Scope {CollectInformation551b2A, CollectInformation551b2B}

Such That cableOperator in Roles(a)

and collectPII ina P

if Collect551b2A(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Collect551b2(a, s, r, P, f, f’, msg)

Scope {CollectInformation551b2A, CollectInformation551b2B}

Such That cableOperator in Roles(a)

and collectPII ina P

if Collect551b2B(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

435

§551(b)(2)(A)

CST Collect551b2A(a, s, r, P, f, f’, msg)

Scope {CollectInformation551b2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and collectPII ina P

if obtainNecessaryInfo ina P

and cableService ina P

then return true

else return false

CST Collect551b2A(a, s, r, P, f, f’, msg)

Scope {CollectInformation551b2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and collectPII ina P

if obtainNecessaryInfo ina P

and otherService ina P

then return true

else return false

CMD CollectInformation551b2A(a, s, r, P, f, f’, msg)

if Collect551b2A(a, s, r, P, f, f’, msg) ∈ {Allow}

and collectPII ina P

then insert collect in (a, s)

and insert cableSystem in (a, s)

and return true

else return false

436

§551(b)(2)(B)

CST Collect551b2B(a, s, r, P, f, f’, msg)

Scope {CollectInformation551b2B}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

if detectUnauthorized ina P

and cableCommunications ina P

and collectPII ina P

then return true

else return false

CMD CollectInformation551b2B(a, s, r, P, f, f’, msg)

if Collect551b2B(a, s, r, P, f, f’, msg) ∈ {Allow}

and collect ina P

then insert collect in (a, s)

and insert cableSystem in (a, s)

and return true

else return false

§551(c)(1)

CST Permitted551c1(a, s, r, P, f, f’, msg)

Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and f.personally-identifiable-information = true

and f.subject-subscriber = true

and disclose ina P

if Permitted551c2(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

437

CST Permitted551c1(a, s, r, P, f, f’, msg)

Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and f.personally-identifiable-information = true

and f.subject-subscriber = true

and disclose ina P

if consent in (a, s)

and written in (a, s)

then return true

else return false

CST Permitted551c1(a, s, r, P, f, f’, msg)

Scope {Disclose551c1, Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and f.personally-identifiable-information = true

and f.subject-subscriber = true

and disclose ina P

if consent in (a, s)

and electronic in (a, s)

then return true

else return false

438

CMD Disclose551c1(a, s, r, P, f, f’, msg)

if Permitted551c1(a, s, r, P, f, f’, msg) ∈ {Allow}

and f.personally-identifiable-information = true

and cableOperator in Roles(a)

and subscriber in Roles(s)

and disclose ina P

then insert local in (r, f)

and return true

else return false

CST Protect551c1(a, s, r, P, f, f’, msg)

Scope { }

Such That cableOperator in Roles(a)

if a.takes-actions-prevents-unauthorized = true

then return true

else return false

§551(c)(2)

CST Permitted551c2(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and f.personally-identifiable-information = true

and disclose ina P

if Permitted551c2A(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

439

CST Permitted551c2(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and f.personally-identifiable-information = true

and disclose ina P

if Permitted551c2B(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CST Permitted551c2(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A, Disclose551c2B, Disclose551c2C }

Such That cableOperator in Roles(a)

and f.personally-identifiable-information = true

and disclose ina P

if Permitted551c2C(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§551(c)(2)(A)

CST Permitted551c2A(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and disclose ina P

if businessActivity ina P

and legitimate ina P

and render ina P

and cableService ina P

then return true

else return false

440

CST Permitted551c2A(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and disclose ina P

if businessActivity ina P

and legitimate ina P

and conduct ina P

and cableService ina P

then return true

else return false

CST Permitted551c2A(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and disclose ina P

if businessActivity ina P

and legitimate ina P

and render ina P

and otherService ina P

then return true

else return false

441

CST Permitted551c2A(a, s, r, P, f, f’, msg)

Scope {Disclose551c2A}

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

and disclose ina P

if businessActivity ina P

and legitimate ina P

and conduct ina P

and otherService ina P

then return true

else return false

CMD Disclose551c2A(a, s, r, P, f, f’, msg)

if Permitted551c2A(a, s, r, P, f, f’, msg) ∈ {Allow}

and cableOperator in Roles(a)

and subscriber in Roles(s)

and local in (a, f)

and disclose ina P

then insert local in (r, f)

and return true

else return false

442

§551(c)(2)(B)

CST Permitted551c2B(a, s, r, P, f, f’, msg)

Scope {Disclose551c2B }

Such That Permitted551h(a, s, r, P, f, f’, msg) ∈ {Allow}

and disclose ina P

if pursuantCourtOrder ina P

and orderAuthorizes ina P

and notified in (a, s)

then return true

else return false

CMD Disclose551c2B(a, s, r, P, f, f’, msg)

if Permitted551c2B(a, s, r, P, f, f’, msg) ∈ {Allow}

and cableOperator in Roles(a)

and subscriber in Roles(s)

and local in (a, f)

and disclose ina P

then insert local in (r, f)

and return true

else return false

443

CMD NotifySubscriber551c2B(a, s, r, P, f, f’, msg)

if Permitted551h(a, s, r, P, f, f’, msg) ∈ {Allow}

and cableOperator in Roles(a)

and subscriber in Roles(s)

and pursuantCourtOrder ina P

and orderAuthorizes ina P

and a.message-notifies = true

and disclose ina P

then inform s of msg

and insert notified in (a, s)

and return true

else return false

§551(c)(2)(C)

CST Permitted551c2C(a, s, r, P, f, f’, msg)

Scope {Dislclose551c2C }

Such That f.names = true

and f.addresses = true

and f.subject-subscriber = true

and Permitted551c2Ci(a, s, r, P, f, f’, msg) ∈ { Allow}

and Permitted551c2Cii(a, s, r, P, f, f’, msg) ∈ { Allow}

if disclose ina P

and cableSubscriber in Roles(s)

then return true

else return false

444

CST Permitted551c2C(a, s, r, P, f, f’, msg)

Scope {Dislclose551c2C }

Such That f.names = true

and f.addresses = true

and f.subject-subscriber = true

and Permitted551c2Ci(a, s, r, P, f, f’, msg) ∈ { Allow}

and Permitted551c2Cii(a, s, r, P, f, f’, msg) ∈ { Allow}

if disclose ina P

and otherServiceSubscriber in Roles(s)

then return true

else return false

CMD Dislclose551c2C(a, s, r, P, f, f’, msg)

if Permitted551c2C(a, s, r, P, f, f’, msg) ∈ {Allow}

and cableOperator in Roles(a)

then insert local in (r, f)

and return true

else return false

§551(c)(2)(C)(i)

CST Permitted551c2Ci(a, s, r, P, f, f’, msg)

Scope { }

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

if opportunityProhibit in (a, s)

and !prohibit in (a, s)

then return true

else return false

445

CST Permitted551c2Ci(a, s, r, P, f, f’, msg)

Scope {Dislclose551c2C }

Such That cableOperator in Roles(a)

and subscriber in Roles(s)

if opportunityLimit in (a, s)

and !limit in (a, s)

then return true

else return false

CMD ProvideProhibit551c2Ci(a, s, r, P, f, f’, msg)

if cableOperator in Roles(a)

and subscriber in Roles(s)

and provideProhibit ina P

then inform s of msg

and insert opportunityProhibit in (a, s)

and return true

else return false

CMD ProvideLimit551c2Ci(a, s, r, P, f, f’, msg)

if cableOperator in Roles(a)

and subscriber in Roles(s)

and provideLimit ina P

then inform s of msg

and insert opportunityLimit in (a, s)

and return true

else return false

446

§551(c)(2)(C)(ii)

CST Permitted551c2Cii(a, s, r, P, f, f’, msg)

Scope {Dislclose551c2C }

if disclose ina P

and notDirectlyReveal inf P

and notIndirectlyReveal inf P

and Permitted551c2CiiI(a, s, r, P, f, f’, msg) ∈ {Allow}

and Permitted551c2CiiII(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

§551(c)(2)(C)(ii)(I)

CST Permitted551c2CiiI(a, s, r, P, f, f’, msg)

Scope { }

Such That subscriber in Roles(s)

and f.cable-service = true

if f.extent-of-viewing = false

and f.extent-of-use = false

then return true

else return false

CST Permitted551c2CiiI(a, s, r, P, f, f’, msg)

Scope { }

Such That subscriber in Roles(s)

and f.other-service = true

if f.extent-of-viewing = false

and f.extent-of-use = false

then return true

else return false

447

§551(c)(2)(C)(ii)(II)

CST Permitted551c2CiII(a, s, r, P, f, f’, msg)

Scope { }

Such That subscriber in Roles(s)

if f.nature-of-transactions-over-system = false

then return true

else return false

§551(h)

CST Permitted551h(a, s, r, P, f, f’, msg)

Scope {Disclose551h }

Such That governmentEntity in Roles(r)

and pursuantCourtOrder ina P

and f.personally-identifiable-information = true

if subscriber in Roles(s)

and Permitted551h1(a, s, r, P, f, f’, msg) ∈ {Allow}

and Permitted551h2(a, s, r, P, f, f’, msg) ∈ {Allow}

then return true

else return false

CMD Disclose551h(a, s, r, P, f, f’, msg)

if Permitted551h(a, s, r, P, f, f’, msg) ∈ {Allow}

and local in (a, f)

then insert local in (r, f)

and return true

else return false

448

§551(h)(1)

CST Permitted551h1(a, s, r, P, f, f’, msg)

Scope {Disclose551h }

if r.clear-convincing-evidence = true

and r.subject-suspected-criminal-activity = true

and r.information-material-evidence = true

then return true

else return false

§551(h)(2)

CST Permitted551h2(a, s, r, P, f, f’, msg)

Scope {Disclose551h }

if s.opportunity-to-appear = true

and s.opportunity-to-contest = true

then return true

else return false

449

Appendix D

Glossary of Sets, Functions,

Relations, and Notation

Given the extensive use of notation and shorthand in this dissertation, we present a glossary

of terms used in this appendix. Where applicable, a reference to the full definition of a

particular term is given.

D.1 General Notation

We use the following mathematical notation consistently throughout this work. In general,

we use lower case variable names (e.g., a, b) for individuals and upper case variable names

(e.g., A,B) for sets or collections of individuals.

pwr The power set operator.

= The mathematical equality operator.

= The C-style assignment operator.

== The C-style equality operator.

&&, ∧ The logical AND operator.

! The logical NOT operator.

450

||, ∨ The logical OR operator.

− The set difference operator.

ǫ The empty string.

|A| The cardinality of set A.

+ The string concatenation operator.

D.2 Fundamental Sets and Types

We use the following sets in our presentation of Privacy Commands. See Section 5.1 for

formal definitions and usage.

Agent Agents.

Object Objects. Agent ⊆ Object .

Role Roles held by agents. Roles are implemented as atomic properties of agents.

Roles(a) = {k|a.k = true,∀k ∈ Role}.

Tag Tags which are meta-data properties of objects. tags(a) = {t|a.t = true,∀t ∈ Tag}.

Log Append-only log of notes and messages to inform agents.

State Knowledge state. State ⊆ Agent × Object × Matrix × Log .

Operations, guards, commands, and constraints are the fundamental pieces of Privacy

APIs. We use the following sets and symbols for items in the sets.

Operation , ω, ω The set of operations, a single operation, and an operation sequence. See

Section 5.2.1 for definitions, Table 5.3 for structure definition, and Section 5.3 for

semantics.

Guard , ψ, ψ The set of guards, a single guard, and a guard sequence. See Section 5.2.1 for

definitions, Table 5.2 for structure definition, and Section 5.3 for semantics.

451

Command , e, e The set of commands, a single command, and a command sequence. See

Section 5.2.3 for definition, Table 5.6 for BNF grammar definition, and Section 5.3

for semantics.

Constraint , c, c The set of constraints, a single constraint, and a constraint sequence. See

Section 5.2.4 for definition, Table 5.6 for BNF grammar definition, and Section 5.3

for semantics.

Policy , φ The set of Privacy APIs and a single Privacy API. We often refer to a Privacy

API as a policy. See Definition 5.2.7 for the definition of a well formed Privacy API.

We represent parameters to commands and constraints using tuples built from the

above types.

ParametersE The set of parameters used for a command. They are denoted

a, s, r, P, f, f ′,msg and are typed as in Table D.1.

ParametersC The set of parameters used for a constraint. They are denoted

a, s, r, P, f, f ′,msg, e and are typed as in Table D.1.

D.3 Variable Name Bindings

Throughout this dissertation we use single and multiple letter variable names for ranging

over values of different types. We reference we include the commonly used variable names

in Table D.1. As a rule, variable names which begin with lower case character are scalars

and those that begin with upper case letters are sets. Variable names which end in a

trailing asterisk ∗ and those indicated with top bar (ex. ψ) are ordered series of scalar

values.

D.4 Transitions

Commands and constraints accept parameters a, s, r, P, f, f ′,msg for commands and

a, s, r, P, f, f ′,msg, e for constraints which are used by guards during evaluation. The

parameters, their types, and informal names are shown in Table D.1.

452

Table D.1: Variable Names
Name Type Usage

a Agent Actor

a1, a2, . . . Agent Agents

A pwr(Agent) Set of agents

b Bool A boolean

c Constraint A constraint

C pwr(Constraint) Set of constraints

c∗ Constraint∗ Series of constraints

d Right A right

e Command A command

E pwr(Command) A set of commands

e∗ Command∗ A series of commands

f Object An object

f ′ Object A fresh object

g Agent × Agent × Agent × Purpose∗ Command parameters
×Object× Object× String

h Agent × Agent × Agent × Purpose∗ Constraint parameters
×Object× Object× String× Command

j Judgment A judgment

J pwr(Judgment) A set of judgments

k Role A role

l Log A log

m Agent × Object → Right∗ Rights matrix

msg String A message string

o, o1, o2, . . . Object An object

O pwr(Object) A set of objects

p Purpose A purpose

P pwr(Purpose) A set of purposes

r Agent Recipient

s Agent Subject

t Tag An object tag

453

We use the −→ symbol to denote transitions between members of State via com-

mands. As defined in Section 5.3, if e is a valid command and accepts parameter list

a ∈ ParametersE , we write (A,O,m, l)
e(a)
−→ (A′, O′,m′, l′) when e is run. The updates

applied for (A,O,m, l)
e(a)
−→ (A′, O′,m′, l′) are from one of the following cases. The function

most-strict is a summary of the behavior of the operational semantics shown there:

1. If most-strict({c|e ∈ c.E}) ∈ {Allow, Ignore (Allow)},
∧

ψ∈ψ

ψ = true for a then

(A,O,m, l)
ωt

−→ (A′, O′,m′, l′) for a and the return value is true.

2. If most-strict({c|e ∈ c.E}) = Forbid or
∧

ψ∈ψ

ψ = false for a then (A,O,m, l)
ωf

−→

(A′, O′,m′, l′) and the return value is false.

D.5 Purposes

We use the following functions and set inclusion operators for purposes. See Section 5.1

for formal definitions and usage.

parent(p) Parent purpose of p.

children(p) The direct children of p.

ancestors(p) Transitive and reflexive closure of parent(p). p ∈ ancestors(p).

descendants(p) Transitive and reflexive closure of children(p). p ∈ descendants(p).

p ina P Set inclusion using allowed semantics. True iff ∃p′ ∈ P . p′ ∈ descendants(p).

p inf P Set inclusion using forbidden semantics. True iff ∃p′ ∈ P . p′ ∈ {ancestors(p) ∪

descendants(p)}.

D.6 Functions

We use the following functions for deriving sets and describing transformations.

454

Pr The Promela translation of formal artifact. The function is defined over the following

domains:

• State Translation of a knowledge state snapshot into Promela. Defined in Sec-

tion 6.4.

• Constraint Translation of a single constraint or overloaded constraint into a

Promela process. Defined in Lemma 6.4.7.

• Constraint ∗ Translation of a set of constraints into a list of Promela processes.

Defined in Theorem 2

• Command Translation of a single command into a Promela process. Defined in

Lemma 6.4.6.

• Command ∗ Translation of a set of commands into a list of Promela processes.

Defined in Theorem 2

deletedo The objects deleted from an initial state to reach a final state. Defined in Defini-

tion 5.5.5.

created The objects added to an initial state to reach a final state. Defined in Defini-

tion 5.5.6.

tagsm Tags modified in an initial state to reach a final state. Defined in Definition 5.5.7.

inserted The rights inserted in the rights matrix of an initial state to reach a final state.

Defined in Definition 5.5.8.

deletedr The rights deleted from the rights matrix of an initial state to reach a final state.

Defined in Definition 5.5.9.

prefix Determines whether one log is subsumed by another by comparing the entries in

each without respect to the order of the entries. Defined in Definition 5.5.10.

noconflict Relationship between commands and commands series that the updates per-

formed by one do not conflict with the updates performed by the other. Defined in

Section 5.5.2.

455

Roles(a) Derives the roles currently held by the agent a : Agent.

456

Bibliography

[1] Alan S. Abrahams. Developing and Executing Electronic Commerce Applications with

Occurrences. PhD thesis, University of Cambridge, 2002.

[2] Alan S. Abrahams, David M. Eyers, and Jean M. Bacon. An asynchronous rule-based

approach for business process automation using obligations. In Proceedings of the 3rd

ACM SIGPLAN Workshop on Rule-Based Programming (RULE’02), pages 93–103,

Pittsburgh, Pennsylvania, October 2002.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. An XPath-

based preference language for P3P. In WWW ’03: Proceedings of the 12th interna-

tional conference on World Wide Web, pages 629–639, New York, NY, USA, 2003.

ACM Press.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In

Proceedings of the 2000 ACM SIGMOD international conference on Management of

data, pages 439–450. ACM Press, 2000.

[5] Ross J. Anderson. A security policy model for clinical information systems. In Pro-

ceedings of the IEEE Symposium on Security and Privacy, pages 30–43. IEEE, May

1996.

[6] Annie I. Antón, Julia B. Earp, Matthew W. Vail, Neha Jain, Carrie Gheen, and

Jack M. Frink. An analysis of web site privacy policy evolution in the presence of

hipaa. Technical Report TR-2004-21, North Carolina State University, 24 July 2004.

457

[7] Grigoris Antoniou. A tutorial on default logics. ACM Comput. Survey., 31(4):337–359,

1999.

[8] Paul Ashley, Santoshi Hada, Günter Karjoth, Calvin Powers, and Matthias Schunter.

Enterprise Privacy Authorization Langugae (EPAL 1.2). W3C Member Submission,

www.w3c.org/Submission/EPAL, November 2003.

[9] Paul Ashley, Satoshi Hada, Günter Karjoth, and Matthias Schunter. E-P3P privacy

policies and privacy authorization. In Proceeding of the ACM workshop on Privacy in

the Electronic Society, pages 103–109. ACM Press, 2002.

[10] Paul Ashley, Calvin Powers, and Matthias Schunter. From privacy promises to privacy

management: a new approach for enforcing privacy throughout an enterprise. In

Proceedings of the 2002 Workshop on New Security Paradigms, pages 43–50. ACM

Press, 2002.

[11] Michael Backes, Markus Dürmuth, and Günter Karjoth. Unification in privacy policy

evaluation - translating epal into prolog. In Fifth IEEE International Workshop on

Policies for Distributed Systems and Networks (POLICY’04), 2004.

[12] Michael Backes, Markus Dürmuth, and Rainer Steinwandt. An algebra for composing

enterprise privacy policies. In European Symposium on Research in Computer Security

(ESORICS), 2004.

[13] Michael Backes, Günter Karjoth, Walid Bagga, and Matthias Schunter. Efficient

comparison of enterprise privacy policies. In SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 375–382, New York, NY, USA, 2004. ACM

Press.

[14] Michael Backes, Birgit Pfitzmann, and Matthias Schunter. A toolkit for managing

enterprise privacy policies. In European Symposium on Research in Computer Security

(ESORICS), 2003.

458

[15] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy

and contextual integrity: Framework and applications. In Proceedings of the IEEE

Symposium on Security and Privacy. IEEE, May 2006.

[16] Moritz Y. Becker and Peter Sewell. Cassandra: distributed access control policies

with tunable expressiveness. In 5th IEEE International Workshop on Policies for

Distributed Systems and Networks, June 2004.

[17] Moritz Y. Becker and Peter Sewell. Cassandra: flexible trust management, applied to

electronic health records. In 17th IEEE Computer Security Foundations Workshop,

June 2004.

[18] D. Bell and L. La Padula. Secure computing systems: Mathematical foundations and

model. Technical Report MTR–2547, MITRE Corp, 1973.

[19] Artur Bergman. Law is code. O’Reilly Radar, 6 August 2007. radar.oreilly.com/

archives/2007/08/code_looks_like.html.

[20] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical frame-

work for reasoning about access control models. In SACMAT ’01: Proceedings of the

sixth ACM symposium on Access control models and technologies, pages 41–52, New

York, NY, USA, 2001. ACM Press.

[21] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions

and obligations in policy management and security applications. In 28th Conference

on Very Large Data Bases (VLDB’02), Aug 2002.

[22] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. Secure

Internet Programming: Issues in Distributed and Mobile Object Systems, chapter The

Role of Trust Management in Distributed Systems Security, pages 185–210. Lecture

Notes in Computer Science State-of-the-Art Series. Springer-Verlag Berlin, 1999.

[23] Jan Bormans and Keith Hill. Mpeg-21 multimedia framework. Standard 5, Motion

Picture Experts Group, 2002.

459

[24] Travis Breaux and Annie I. Antón. Mining rule semantics to understand legislative

compliance. In CCS Workshop on Privacy in the Electronic Society. ACM, Nov 2005.

[25] D. Brewer and M. Nash. The chinese wall security policy. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 206–214, 1989.

[26] Elaine Callas and Karl Brockmeier. HIPAA compliance readiness assessment: A case

study. Healthcare Financial Management, Oct 2001.

[27] Marco Casassa-Mont. Dealing with privacy obligations in enterprises. Tech Report

HPL-2004-109, HP Labs, 2004.

[28] Marco Casassa-Mont. A system to handle privacy obligations in enterprises. Tech

Report HPL-2005-180, HP Labs, 2005.

[29] Electronic Privacy Information Center. Double trouble. www.epic.org/privacy/

doubletrouble/, March 2000.

[30] Electronic Privacy Information Center and Junkbusters. Pretty poor privacy: An as-

sessment of P3P and internet privacy. www.epic.org/reports/prettypoorprivacy.

html, 2000.

[31] Inc. Certus Software. Certus 404/302. www.certus.com, 2007.

[32] D. Clark and D. Wilson. A comparison of commercial and military computer security

policies. In Proceedings of the IEEE Symposium on Security and Privacy, pages 184–

194. IEEE, 1987.

[33] Roger Clarke. Platform for Privacy Preferences: A critique. www.anu.edu.au/

people/Roger.Clarke/DV/P3PCrit.html, 1998.

[34] Federal Trade Commission. Children’s online privacy protection act of 1998 (COPPA).

Federal Register, 64(212):59888–59915, 3 November 1999. 16 CFR Part 312.

[35] Senate Banking Committee. Financial modernization act of 1999 (Gramm-Leach-

Bliley act) – disclosure of nonpublic personal information. 15 USC, Subchapter I, Sec.

6801-6809, 1999.

460

[36] Lorrie Cranor. Web privacy with P3P. O’Reilly and Associates, 2002.

[37] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Bonnie Webber. Extracting formal spec-

ifications from natural language regulatory documents. In Inference in Computational

Semantics, Buxton, England, 20–21 April 2006.

[38] Julia B. Earp, Annie I. Antón, and Olli Jarvinen. A social, technical and legal frame-

work for privacy management and policies. In Americas Conference on Information

Systems (AMCIS), pages 605–612, August 2002.

[39] David Ferrailo and Richard Kuhn. Role–based access control. In Proceedings of the

15th National Computer Security Conference, 1992.

[40] Simone Fischer-Hübner and Amon Ott. From a formal privacy model to its implemen-

tation. In Proceedings of the 21st National Information Systems Security Conference,

Oct 1998.

[41] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz.

Verification and change-impact analysis of access-control policies. In ICSE ’05: Pro-

ceedings of the 27th International Conference on Software Engineering, pages 196–205,

New York, NY, USA, 2005. ACM Press.

[42] Office for Civil Rights. Standards for privacy of individually identifiable health infor-

mation; final rule. Federal Register, 65(250):82462–82829, December 28 2000. Una-

mended Version.

[43] Office for Civil Rights. Standards for privacy of individually identifiable health in-

formation; final rule. Federal Register, 67(157):53182–53273, August 14 2002. Final

modifications to privacy rule.

[44] Office for Civil Rights. Fact Sheet: Protecting the privacy of patients’ health informa-

tion, 14 April 2003. www.hhs.gov/news/facts/privacy.html.

[45] Office for Civil Rights. Health insurance reform: Security standards; final rule. Federal

Register, 68(34):8334–8381, 20 February 2003. 45 CFR Parts 160, 162, and 164.

461

[46] Office for Civil Rights. Standards for privacy of individually identifiable health in-

formation. Regulation Text (Unofficial Version) 45 CFR Parts 160 and 164, U.S.

Department of Health and Human Services, August 2003. As amended: May 31,

2002, Aug 14, 2002, Feb 20, 2003, and Apr 17, 2003.

[47] Christopher Giblin, Alice Y. Liu, Samuel Müller, Birgit Pfitzmann, and Xin Zhou.

Regulations expressed as logical models (realm). In M.-F. Moens and P. Spyns, editors,

Legal Knowledge and Information Systems, pages 37–48. IOS Press, 2005.

[48] US Government. Cable tv privacy act of 1984 (as amended). 47 USC, Chapter 5,

Subchapter V-A, Part IV, Sec. 551, 1984.

[49] G. S. Graham and P. J. Denning. Protection: Principles and Practices. In Proceedings

of the AFIPS Spring Joint Computer Conference, volume 40, pages 417–429. AFIPS

Press, Montvale, N.J., 1972.

[50] Richard Graubart. On the need for a third form of access control. In 12th National

Computer Security Conference Proceedings, pages 296–303, October 1989.

[51] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A reference

model for requirements and specifications. IEEE Software, 17(3):37–43, May 2000.

[52] Carl A. Gunter, Michael J. May, and Stuart Stubblebine. A formal privacy system and

its application to location based services. In Privacy Enhancing Technologies (PET),

Toronto, May 2004.

[53] Susanne Guth, Gustaf Neumann, and Mark Strembeck. Experiences with the en-

forcement of access rights extracted from odrl-based digital contracts. In DRM ’03:

Proceedings of the 3rd ACM workshop on Digital rights management, pages 90–102,

New York, NY, USA, 2003. ACM Press.

[54] Satoshi Hada and Michiharu Kudo. XML access control language (XACL): Provisional

authorization for XML documents. Standard, OASIS, 2001. xml.coverpages.org/

xacl.html.

462

[55] Joseph Y. Halpern and Vicky Weissman. A formal foundation for XrML. In Proceed-

ings of the Seventeenth IEEE Computer Security Foundations Workshop (CSFW-04),

pages 251–263. IEEE, 2004.

[56] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating

systems. Commun. ACM, 19(8):461–471, 1976.

[57] Katia Hayati and Mart́ın Abadi. Language-based enforcement of privacy policies. In

Privacy Enhancing Technologies (PET), May 2004.

[58] Manuel Hilty, David Basin, and Alexander Pretschner. On obligations. In European

Symposium on Research in Computer Security (ESORICS), 2005.

[59] Giles Hogben. A technical analysis of problems with P3P 1.0 and possible solutions. In

W3C Workshop on the Future of P3P. World Wide Web Consortium, Dulles, Virginia,

November 2002. www.w3.org/2002/p3p-ws/pp/jrc.html.

[60] Renato Iannella. Open digital rights management language (ODRL) 1.1. W3C note,

World Wide Web Consortium, 2002. odrl.net.

[61] ContentGuard Inc. eXtensible rights Markup Language 2.0 (XrML2.0). Technical

report, ContentGuard, Inc., 2001. www.xrml.org.

[62] TiVo Inc. TiVo privacy policy. Privacy policy, www.tivo.com/abouttivo/policies/

tivoprivacypolicy.html, May 2006. Accessed Nov 2007.

[63] Sushil Jajodia, Michiharu Kudo, and V.S. Subrahmanian. Provisional authorizations.

In Recent Advances in Secure and Private E-Commerce, pages 133–159. Kluwer Aca-

demic Publishers, 2001.

[64] Günter Karjoth, Matthias Schunter, and Els Van Herreweghen. Translating privacy

practices into privacy promises–how to promise what you can keep. In Fourth IEEE

International Workshop on Policies for Distributed Systems and Networks (POL-

ICY’03), pages 135–146, 2003.

463

[65] Bradley A. Malin. An evaluation of the current state of genomic data privacy pro-

tection technology and a roadmap for the future. Journal of the American Medical

Informatics Association, 12(1):28–34, Jan/Feb 2005.

[66] Bradley A. Malin. Trail Re-identification and Unlinkability in Distributed Databases.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2006.

[67] Stony Hill Management. GetHIP: Automated HIPAA compliance solution. www.

hipaahomecare.com, 2006.

[68] David Martin. Tivo’s data collection and privacy practices. Web page accessed Nov

06, Privacy Foundation, 2001. www.cs.uml.edu/~dm/pubs/TiVo%20report.htm.

[69] Timothy D. Miller and Ravinder J. Singh. A five phase process for HIPAA compliance:

A case study in process. Phoenix Health Systems, Nov 2000. www.hipaadvisory.

com/action/CaseStudy.htm.

[70] Tim Moses. eXtensible Access Control Markup Language (XACML). Standard Ver-

sion 2.0, OASIS, February 2005.

[71] Commonwealth of Australia. Privacy act 1988 (as amended up to act no. 25 of 2006.

Act No. 119 of 1988, 1988.

[72] Insurance Council of Australia. General insurance information privacy code. online,

Australia, April 2002. app01.ica.com.au/PrivacyPrinciples/default.jsp.

[73] Department of Justice. The privacy act (as amended). 5 USC, Section 522a, 1964.

[74] Association of Market and Social Research Organizations. Market and social research

privacy principles. www.amro.com.au/index.cfm?p=1635, Australia, September 2003.

[75] Government of Ontario. Freedom of information and protection of privacy act. Re-

vised Statues of Ontario 1990, Chapter F.31, 2005. www.e-laws.gov.on.ca/DBLaws/

Statutes/English/90f31_e.htm.

464

[76] Jaehong Park and Ravi Sandhu. Towards usage control models: beyond traditional

access control. In Proceedings of the seventh ACM symposium on Access control models

and technologies, pages 57–64. ACM Press, 2002.

[77] Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Trans-

actions on Information and System Security, 7(1):128–174, 2004.

[78] Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM Trans.

Information. and Systems. Security., 7(1):128–174, 2004.

[79] European Parliament. Directive 95/46/ec on the protection of individuals with regard

to the processing of personal data and on the free movement of such data. Official

Journal of the European Communities L 281, 24 October 1995.

[80] European Parliament. Directive 2002/58/ec concerning the processing of personal

data and the protection of privacy in the electronic communications sector (directive

on privacy and electronic communications). Official Journal of the European Com-

munities L 201, 12 July 2002.

[81] Calvin Powers, Steve Adler, and Bruce Wishart. EPAL translation of the freedom of

information and protection of privacy act. www.ipc.on.ca/docs/EPAL%20FI1.pdf,

March 2004. White Paper.

[82] VNU Business Publications. Doubleclick apologises for privacy outcry. Global News

Wire, 3 March 2000.

[83] Riccardo Pucella and Vicky Weissman. A formal foundation for ODRL. In Workshop

on Issues in the Theory of Security (WITS-04), 2004.

[84] Health Resources and Services Administration. Health insurance portability and ac-

countability act of 1996. Public Law 104-191, 1996. H.R. 3103.

[85] Reuters. Privacy groups see danger in a merger. The New York Times, 22 June 1999.

Section C, Page 6, Column 3.

465

[86] Matthias Schunter and Els Van Herreweghen. Enterprise privacy practices vs. privacy

promises–how to promise what you can keep. Technical Report RZ 3452 (#93771),

IBM Research, September 2002.

[87] Richard Shim. Tivo, comcast reach DVR deal. News.com accessed Nov

2006, 15 March 2005. news.com.com/TiVo,+Comcast+reach+DVR+deal/2100-1041_

3-5616961.html.

[88] Einar Snekkenes. Concepts for personal location privacy policies. In EC ’01: Pro-

ceedings of the 3rd ACM conference on Electronic Commerce, pages 48–57, New York,

NY, USA, 2001. ACM Press.

[89] William E. Spangler, Kathleen S. Hartzel, and Mordechai Gal-Or. Exploring the

privacy implications of addressable advertising and viewer profiling. Commun. ACM,

49(5):119–123, 2006.

[90] Robert Thibadeau. A critique of P3P: Privacy on the Web. dollar.ecom.cmu.edu/

p3pcritique/, 2000.

[91] W3C. XML path language (XPath). Recommendation, World Wide Web Consortium,

Nov 1999. www.w3c.org/TR/XPath.

[92] W3C. A P3P preference exchange language 1.0 (APPEL1.0). Working draft, World

Wide Web Consortium, April 2002. www.w3.org/TR/P3P-preferences.

[93] W3C. The Platform for Privacy Preferences 1.1 (P3P1.1). Working draft, World Wide

Web Consortium, Feb 2006. www.w3c.org/P3P.

[94] Xin Wang, Guillermo Lao, Thomas DeMartini, Hari Reddy, Mai Nguyen, and Edgar

Valenzuela. XrML – eXtensible rights Markup Language. In XMLSEC ’02: Proceed-

ings of the 2002 ACM workshop on XML security, pages 71–79, New York, NY, USA,

2002. ACM Press.

[95] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harvard Law Review,

IV(5), December 1890.

466

[96] Duminda Wijesekera and Sushil Jajodia. Policy algebras for access control: the propo-

sitional case. In CCS ’01: Proceedings of the 8th ACM conference on Computer and

Communications Security, pages 38–47, New York, NY, USA, 2001. ACM Press.

[97] Duminda Wijesekera and Sushil Jajodia. A propositional policy algebra for access

control. ACM Trans. Information. and System. Security., 6(2):286–325, 2003.

[98] Ting Yu, Ninghui Li, and Annie I. Antón. A formal semantics for P3P. In SWS ’04:

Proceedings of the 2004 workshop on secure web services, pages 1–8, New York, NY,

USA, 2004. ACM Press.

467

