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Abstract. Reflective Database Access Control (RDBAC) is a model in
which a database privilege is expressed as a database query itself, rather
than as a static privilege in an access control matrix. RDBAC aids the
management of database access controls by improving the expressiveness
of policies. The Transaction Datalog language provides a powerful syn-
tax and semantics for expressing RDBAC policies, however there is no
efficient implementation of this language for practical database systems.
We demonstrate a strategy for compiling policies in Transaction Datalog
into standard SQL views that enforce the policies, including overcoming
significant differences in semantics between the languages in handling
side-effects and evaluation order. We also report the results of evalu-
ating the performance of these views compared to policies enforced by
access control matrices. This implementation demonstrates the practical
feasibility of RDBAC, and suggests a rich field of further research.

1 Introduction

Current databases use a conceptually simple model for access control: the
database maintains an access control matrix (ACM) describing which users are
allowed to access each database resource, along with which operations each user
is allowed to use. If a user should only be granted access to certain portions of
a database table, then a separate view is created to define those portions, and
the user is granted access to the view. This model is flexible enough to allow
users to define access privileges for their own tables, without requiring superuser
privileges. However, ACMs are limited to expressing the extent of the policy,
such as “Alice can view data about Alice,” “Bob can view data about Bob,”
etc., rather than the intent of the policy, such as “each employee can view their
own data.” This makes policy administration more tedious in the face of chang-
ing data, such as adding new users, implementing new policies, or modifying
the database schema. Many databases attempt to ease administration burdens
by implementing roles in addition to ACMs to group together common sets of
privileges, but this does not fully address the problem. In a scenario such as the
policy of “each employee can view their own data in the table,” each user re-
quires an individually-defined view of a table as well as a separate role to access
each view, which yields no benefit over a standard ACM-based policy.
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Reflective Database Access Control (RDBAC) is an access control model that
addresses this problem [16]. We define a policy as reflective when it depends on
data contained in other parts of the database. While most databases already
do store ACMs within the database itself, the policy data are restricted to the
form of a triple 〈user, resource, operation〉 and separated from the rest of the
database; and the query within the policy is limited to finding the permission in
the ACM. RDBAC removes these restrictions and allows policies to refer to any
part of the database.

The goal of this paper is to describe how an RDBAC system can be im-
plemented in a standard SQL-based relational database management system,
using Transaction Datalog (TD) as a policy language, which provides a theo-
retical formalism for expressing policies that is also compact and conceptually
easy to understand. TD is an extension to classical Datalog that includes for-
mal semantics for atomicity and for database updates [2]. Updates are encoded
as assertion predicates and retraction predicates to insert or remove data from
the database state, respectively. For example, the assertion predicate ins.a(1,2)

(respectively, the retraction predicate del.a(1,2)) changes the database state to
add (respectively, remove) the tuple (1,2) in table a. Using a language such as
TD enables us to apply security to an overall transaction, rather than to each
individual query in the transaction. This type of security policy is not available
in transaction managers for general-purpose databases, and must be enforced
at the application level. We chose to use TD due to its formal semantics that
enable provable security properties for certain policies [16]. Similar compilation
strategies applied to other more common policy languages, such as XACML [15],
could be implemented.

Benchmark Policies. For the purposes of this paper we will use an example
database that contains data for a consulting firm that contains branch offices
in multiple locations. The database includes tables for employee data, financial
records for each location, and data for the firm’s clients.

The company has various access policies for the data. The user Alice creates
all tables relevant to this scenario, and is allowed full access to them. All HR
personnel are allowed full access to the employee data. Regional managers are
allowed access to data of the employees in their region, indicated by the ID of
the store in which they work: stores 100-199 are in region 1, stores 200-299 are
in region 2, etc. The company also grants insurance agents access to employees’
names and addresses, but only for those employees who have opted to release
their data, and all accesses by insurance agents must be audited.

Each store location has an owner, who is allowed to view all financial records
for that location. An owner may own more than one location.

Finally, the firm’s clients may pose conflicts of interest. A Chinese Wall pol-
icy [4] is imposed on data for such clients: any employee may initially view any
client’s data, but after viewing the data, the employee may not view any other
data that creates a conflict of interest.

Table 1 contains access rules for the employees and store data tables that
implement these policies, encoded in TD. We call the predicates defined by these



Table 1. Benchmark Policies: employees and store data tables

% base policy, automatically generated
1. view employees(‘alice’, Name, Addr, StoreID, Salary, Optin) :-

employees(Name, Addr, StoreID, Salary, Optin).

% hr policy
2. view employees(User, Name, Addr, StoreID, Salary, Optin) :-

view hr(‘alice’, User),

view employees(‘alice’, Name, Addr, StoreID, Salary, Optin).

% manager policy
3. view employees(User, Name, Addr, StoreID, Salary, Optin) :-

view manager(‘alice’, User, Region),

view employees(‘alice’, Name, Addr, StoreID, Salary, Optin),

>=(StoreID, Region*100), <(StoreID, (Region+1)*100).

% insurance policy
4. view employees(User, Name, Addr, null, null, null) :-

view insurance(‘alice’, User),

view employees(‘alice’, Name, Addr, , , Optin), =(Optin, ‘true’),

ins.accesslog(User, Name, ‘Name & Addr’, current time).

% policy for branch office data
5. view store data(User, StoreID, Data1, Data2) :-

view owner(‘alice’, StoreID, User),

view store data(‘alice’, StoreID, Data1, Data2).

rules view predicates. Rule 1 is defined for a particular user ‘alice’ and is true
for all rows in the employees table. In other words, the view on table employees

for user ‘alice’ is the entire table.
Rules 2 and 3 demonstrate how we can leverage the recursive semantics of

Datalog to define other useful policies. In Rule 2, the first predicate in the body
of the policy is true if and only if the querying user is in the hr table. The second
predicate, as we explained for Rule 1, is true for all records in the employees table.
In other words, this rule enforces the policy that any HR user can see the data
for all employees. In Rule 3, the first predicate in the body of the policy is true
if and only if the querying user is in the manager table; if so, the variable Region

is bound to the value of the region that manager is assigned to. The second
predicate is true for all employees in the table, however the final two predicates
are only true for the employees with a StoreID number between Region * 100 and
(Region + 1) * 100. In other words, managers can see the data for all employees
in their region.

Rule 4 uses one of the extensions defined in TD to implement an audit policy.
The first predicate in the body checks whether the querying user is an authorized
insurance agent. The second retrieves the names and addresses of each employee,
but uses “don’t care” values for the StoreID, Salary, and Optin fields (represented



Table 2. Benchmark Policies: client data

% Chinese Wall policy
6. view client1(User, Data1, Data2) :-

view cwUsers(‘alice’, User, 1, OldVal),

view client1(‘alice’, Data1, Data2),

del.cwUsers(User, 1, OldVal), ins.cwUsers(User, 1, 0).

7. view clientData(User, Client, Data1, Data2) :-

view cwUsers(‘alice’, User, 1, OldVal),

view clientData(‘alice’, Client, Data1, Data2), =(Client, ‘client1’),

del.cwUsers(User, 1, OldVal), ins.cwUsers(User, 1, 0).

by the underscore character). The corresponding fields in the head of the rule
contain null values. The third predicate filters the table to only those rows
with the Optin value set to true. This demonstrates how cell-level security, using
both column-level and row-level restrictions, can be implemented with a TD rule.
Finally, an audit record containing the name of the querying user, the name of
the user whose record is accessed, an explanatory string, and the current time
is added to the accesslog table for each user accessed.

Rule 5 implements the policy for the store data table that branch office own-
ers can view data for the offices they own. This rule depends on data from other
policies for the store data table and an owner table, which are omitted for brevity.

Table 2 contains two alternative rules for implementing the Chinese Wall pol-
icy that protects client data, depending on whether each client’s data is stored in
a separate table (Rule 6), or a single table contains the data for all clients (Rule
7). We provide rule 7 only to demonstrate the expressive power of RDBAC;
hereafter we will only use rule 6. Either alternative requires some initial setup in
creating a table called cwUsers with the following schema: User of type varchar,
CanAccessClient1 of type int, and CanAccessClient2 of type int. The last two
columns could equivalently be defined as booleans. Initially, this table contains
a row for every authorized employee, with both columns set to 1. The first pred-
icate in rule 6 checks whether the user is allowed to access the client1 table,
based on whether his entry in the cwUsers table has a 1 in the CanAccessClient1

column. Assuming this is satisfied, the second predicate returns the data re-
quested by the user. The third and fourth predicates remove the user’s row from
the cwUsers table, whatever the value of CanAccessClient2 may have been, and
replace it with an entry that only allows future access to the client1 data and
turns off future access to the client2 data. Other rules, not shown, would be
similarly defined for accessing the data for client2, except reversing the columns
on the cwUsers table: they would check whether CanAccessClient2 is 1, and would
set CanAccessClient1 to 0.

The access control model used by most modern commercial databases offers
a compelling case for decentralized policy administration, in which table and
view owners define their own access control policies for the resources they cre-
ate. Ideally, more advanced access control models should still give users the same



kind of autonomy in defining their own policies. However, this autonomy comes
at a price. We have shown that careless definitions of reflective policies can be
vulnerable to a Trojan Horse attack if untrusted users are also allowed to define
policies [16]. This problem can easily be mitigated using TD-based policies by
restricting a policy definer from performing any operations beyond what that
user can perform manually: we simply make the user’s ID an explicit parameter
to all view predicates, and for all predicates in the body of a policy, that param-
eter is bound to the ID of the policy definer, thereby executing the policy under
the policy definer’s privileges. The database system can automatically generate
basic privileges that access the table directly, such as the first rule in Table 1, to
the table owner. All other user-defined policies must query the database through
the view predicates.

The rest of the paper is divided into three sections. In Section 2 we de-
scribe a prototype implementation of our RDBAC system, including challenges
in matching TD semantics with SQL. In Section 3 we evaluate the performance of
our system, compared to a baseline implementation that uses static ACM-based
policies. We describe related work and conclude in Section 4.

2 Implementation

2.1 Strategy

Our goals in implementing a prototype system to demonstrate the usability of
a reflective database access control system included the following: use a flexi-
ble, expressive policy definition language; use, as much as possible, an existing
database management system following the SQL standard; minimize the over-
head running time for executing queries; and allow scalability both in the number
of users and in the amount of data stored.

TD provides a very concise syntax that is capable of expressing a wide range
of policies, as demonstrated in Section 1. Translating classical Datalog rules
into SQL statements has been well-studied in the past [10, 11] and we took a
similar approach for our prototype, in which we compile a set of TD rules into
a set of SQL view definitions. These view definitions can then be added to the
database and used normally, with no additional overhead. Because rules may be
recursively defined, it was necessary to use a database system that implements
recursive views as defined by the SQL:1999 standard. We chose to use Microsoft’s
SQL Server 2005.

Unfortunately, there are two significant semantic gaps between TD and SQL.
One problem is that SQL does not allow database update statements within a
data retrieval query. SQL triggers, while designed to perform updates as side-
effects to user actions, cannot be defined for read-only queries. In some databases,
the restriction against side-effects can be bypassed by calling a user-defined func-
tion (UDF) from within the query which performs the update. Other databases,
including SQL Server, preclude this by disallowing the invocation of any func-
tion that causes side-effects on the database from within read-only queries. In-
deed, this is generally a safer configuration; otherwise, functions with side-effects



could be invoked without the user’s knowledge, causing a vulnerability with
Trojan-Horse code. However, we have argued that under certain reasonable con-
ditions, such code can be analyzed to prevent undesirable side-effects [16]. One
workaround for executing side-effects in SQL Server is to execute it from within
a Common Language Runtime (CLR) function, which can then be registered as
an external function within the SQL Server database. This workaround is not
an ideal solution; it is considered an egregious hack [14] that requires a separate
connection to the database, which adversely affects performance. However, it
suffices for a proof-of-concept prototype.

The other semantic gap between TD and SQL is that the former includes
a well-defined execution ordering in its definition, the latter does not. In other
words, SQL provides no way to distinguish the policies a1 :- b, c and a2 :- c, b.
For traditional SQL queries, this is advantageous to the query optimizer, which
can reorder query plans to find highly efficient executions of the query. However,
there are two reasons why lack of ordering is a cause for concern in implement-
ing TD: the compiled SQL view may not be a valid execution of the original
TD rule, and the order of operations in a query plan may cause information
leakage [12]. To solve both problems, our prototype only implements policies in
which all side-effects occur at the end of the policy execution, after all relevant
data has been retrieved and filtered. It combines all of the read operations into
a subquery along with dynamically-generated parameters to the UDF that exe-
cutes the side-effect, making the side-effects dependent on the results of the read
operations and thus ensuring that the execution order is followed and preventing
information leakage by guaranteeing that no side-effects will occur until it knows
the transaction will definitely run to completion.

Our approach for implementing RDBAC policies is to write a compiler that
parses a TD-based policy and generates a standard SQL:1999 view definition
that enforces the policy. In order to demonstrate the compilation process, we
will walk through an example of the process using rule 4 of our benchmark
policies from Table 1.

On the first pass, our compiler determines the schema for the view, comprised
of an explicit parameter for the user executing the query, the schema of the base
table, and parameters for any assertions or retractions that any rule for that view
might execute. In this case, the generated schema is: User, Name, Addr, StoreID,
Salary, Optin, Assert flag (a boolean flag to indicate whether the rule triggers
the assertion), Assert param0, and Assert param1 (parameters to the UDF that
will execute the assertion).

The compiler also generates a UDF that creates and executes an SQL insert

statement, corresponding to the assertion predicate ins.accesslog(User, Name,

’Name & Addr’, current time). The values for the string constant ’Name & Addr’

and the keyword current time can be directly translated into the generated
insert statement (the latter is translated to the built-in function GETDATE()).
The other parameters, User and Name (not to be confused with the schema at-
tributes User and Name), are determined at execution time.



During the second pass, the compiler maintains a list of tables and views
accessed in the rule (which will form the SQL FROM clause), a list of variables
and variable bindings that appear in the rule, and a list of conditions imposed by
built-in predicates or constants (which together will form the SQL WHERE clause).
After this information is gathered, it uses the variable bindings to form the list
of attributes to appear in the view (which will form the SQL SELECT clause).

First, it examines the body of the rule. The first literal is the view predicate
view insurance(’alice’, User). The view view insurance is added to the FROM

clause list, and given an alias i. The constant ’alice’ adds a condition to the
WHERE clause; using the available metadata for the view, the compiler determines
that this condition should be i.User = ’alice’. The predicate variable User (not
to be confused with the table attribute i.User) is bound to the second attribute
in view insurance, i.Name, which is added to the list of variable bindings.

Similarly, the second literal is the view predicate view employees(’alice’,

Name, Addr, , , Optin). The view view employees is added to the FROM clause
list and given an alias e. The constant ’alice’, together with the metadata for
the view, indicates that e.User = ’alice’ is added to the WHERE clause list. The
variables Name, Addr, and Optin are bound to the attributes e.Name, e.Addr and
e.Optin, respectively, all of which are added to the list of variable bindings. The
don’t-care symbols (underscores) are ignored, since they impose no conditions
on the values in the view.

The third literal is the built-in predicate =(Optin, ’true’). Because the vari-
able Optin was bound to the attribute e.Optin, this adds the condition e.Optin

= ’true’ to the WHERE clause list.
Next, the fourth literal is the assertion predicate ins.accesslog(User, Name,

’Name & Addr’, current time). As previously described, during the first pass this
literal triggered the creation of a UDF. During the second pass, the compiler
uses the list of variable bindings to determine which values will be passed as
parameters to this function, contained in the view schema as Assert param0 and
Assert param1. In this case, i.Name is added to the SELECT clause list as the former,
and e.Name is added as the latter. The value for Assert flag is also added to the
SELECT clause list as 1, indicating that the side-effect should be executed. For the
other rules, which do not contain assertion predicates, the value for Assert flag

is added as 0, and the other parameters are given null values.
Finally, the head literal is examined to determine the attributes that should

appear in the SELECT clause. The User variable, bound previously to i.Name, is
added as User. Similarly, e.Name is added as Name and e.Addr is added as Addr.
The constant null is added as the other selected attributes: StoreID, Salary, and
Optin. In order for the recursive view to compile properly, SQL Server requires
that the null values be cast with the proper types, which can be retrieved from
the metadata for the view employees view.

The other rules are similarly translated, and connected by the UNION ALL

operator. Finally, the compiler takes the result of the union and passes the



appropriate parameters into each UDF. The complete3 generated view for all the
policies for view employees is shown in Table 3, along with another automatically-
generated view view employees public that queries view employees on behalf of
the current user and may be safely queried by any user in the system. The portion
of the generated code which we stepped through is indicated by the comment
“-- insurance policy.”

Table 3. Generated SQL view definition for benchmark policies.

--...function assert accesslog definition omitted...
create view view employees as

with view employees as (

select ’alice’ as User, e.Name as Name, e.Addr as Addr, e.StoreID as

StoreID, e.Salary as Salary, e.Optin as Optin, 0 as Assert flag,

NULL as Assert param0, NULL as Assert param1

from employees e -- base policy
union all

select h.Name as User, e.Name as Name, e.Addr as Addr, e.StoreID as

StoreID, e.Salary as Salary, e.Optin as Optin, 0 as Assert flag,

NULL as Assert param0, NULL as Assert param1

from view employees e, view hr h

where e.User = ’alice’ and h.User = ’alice’ -- hr policy
union all

select m.Name as User, e.Name as Name, e.Addr as Addr, e.StoreID as

StoreID, e.Salary as Salary, e.Optin as Optin, 0 as Assert flag,

NULL as Assert param0, NULL as Assert param1

from view employees e, view manager m where e.User = ’alice’

and m.User = ’alice’ and e.StoreID >= m.Region*100

and e.StoreID < (m.Region+1) * 100 -- manager policy
union all

select i.Name as User, e.Name as Name, e.Addr as Addr, NULL as

StoreID, NULL as Salary, NULL as Optin,

1 as Assert flag, i.Name as Assert param0, e.Name as Assert param1

from view employees e, view insurance i where e.User = ’alice’

and i.User = ’alice’ and e.Optin = ’true’ -- insurance policy
) select distinct User, Name, Addr, StoreID, Salary, Optin

from view employees where (Assert flag = 1 and assert accesslog(

Assert flag, Assert param0, Assert param1) != 0) or Assert flag = 0;

create view view employees public as

select Name, Addr, StoreID, Salary, Optin from view employees

where User = CURRENT USER;

grant select on view employees public to public;

3
For clarity, the cast operations required by SQL Server for its recursive query definitions have
been omitted from the view presented here.



2.2 Optimization

Translating the view definition into standard SQL allows the execution of re-
flective access policies to take advantage of the large body of work in query op-
timization that has been implemented in commercial databases. There are also
additional possible optimizations we developed using partial evaluation tech-
niques [3] on the TD rules.

As described in Section 1, our system prevents information leakage in re-
flective policies by forcing them to run under the definer’s privileges. Only the
basic privileges, defined automatically by the database management system, ac-
cess the tables directly. Thus, all user-defined privileges are by nature recursive,
since they must in turn be based on another access rule. However, it should be
noted that without this restriction, we can sometimes define equivalent policies
that are recursion-free. For example, the second, third, and fourth rules in Ta-
ble 1 all depend on the first rule. Since we know from the first rule that the user
‘alice’ is allowed access to the entire employees table with no restrictions or fil-
ters, the compiler could have simply replaced the references with direct accesses
to the table.

This suggests that unfolding predicates in the rule before compiling it to an
SQL view could yield a significant performance benefit. While more complex
partial evaluation techniques would require a sophisticated TD interpreter, it
is simple to keep track of the basic privileges and unfold them into the rules
in which they appear. In our running example of the policies from Table 1,
using this optimization generates code that is similar to the generated view in
Table 3; hence, we have not included it. The key difference is that each sub-
select accesses the tables employees, hr, etc. directly, rather than through the
views view employees, view hr, etc.

Removing the recursion from a view also enables us to remove the redundant
cast operations, as SQL Server is better able to match types in recursion-free
views. Additionally, the select distinct to remove duplicate rows at the end of
the union is another costly operation. While this operation technically ensures
that the result strictly adheres to the semantics of TD, removing it still yields
the same answer set in our test cases, and it would similarly be redundant in
many other practical cases. We have implemented all of these optimizations in
our prototype system, which we assess in Section 3.

An opportunity for further optimization would be to pre-compute the parts
of the view that are checks on the user’s identity. For instance, consider the
policy rules from Table 1. If a given user is recorded in the insurance table
but not in any other table, when that user logs in, the database could partially
compute the view to determine that only rule 4 is applicable to this user, not
rules 1, 2, or 3. This would enable us to avoid calculating extraneous UNION ALL

operations by constructing the view definition dynamically. We have written a
simulated version of such an optimization using a stored procedure, and assess
its performance in Section 3 as well.



3 Evaluation

We evaluated the execution time of running queries on views generated from the
benchmark policies by our implementation, such as the view from Table 3, to a
baseline of running queries on custom-written views, such as those in Table 4.
To test these views, we used Microsoft’s SQL Server 2005 database management
system, running on a 2.4 GHz Intel Core2 machine with Windows Vista Business
64-bit Edition. The base tables all have appropriately-defined indexes on the user
names, in order to minimize the cost of performing joins.

Table 4. Hand-coded baseline SQL views.

-- base policy
grant select on employees to alice;

-- hr policy
grant select on employees to {username(s)};

-- manager policy
create view region1 view as

select * from employees where StoreID >= 100 and StoreID < 200;

grant select on region1 view to {username(s)};
create view region2 view as

select * from employees where StoreID >= 200 and StoreID < 300;

grant select on region2 view to {username(s)};
-- similar views created for each region

-- insurance policy
create view insurance view as

select Name, Addr from employees where Optin=’true’ and

assert accesslog(CURRENT USER, Name, ’Name & Addr’, GETDATE())=true;

grant select on insurance view to {username(s)};

Each test was performed using an external application written in C# and
compiled by Microsoft’s Visual C# 2008 compiler version 3.5. The application
was run locally so as not to include network latency. For each user, the applica-
tion constructed a query for the entire table and iterated through each row of
the table. The query was repeated until the query time reached a stable state,
after which we gathered multiple execution times, of which we report the aver-
age query time. Thus, our results represent the time for “hot” queries, or queries
which have been loaded and executed recently.

We tested two versions of our prototype code: one which directly translates
the policies into a recursive view, and another which performs the unfolding opti-
mization defined in Section 2.2. We also tested a simulated version of the partial-
evaluation optimization, also described in Section 2.2, using a stored procedure.
To assess the scalability of the generated views, the experiment was repeated on



(a) Fixed database size (100,000 empl.) (b) Fixed query type (HR query)

Fig. 1. Comparison of execution time results (in sec) for employee policies

databases with 1000 users, 10,000 users, and 100,000 users, each with a record
in the employees table. The size of the hr, manager, and insurance tables also
increase proportionally in each experiment, with 100 entries each, 1000 entries
each, and 10,000 entries each, respectively. For brevity, we will not include the
raw results here, but will make them available in a later publication. Figure 1(a)
shows these results graphically for the database with 100,000 users, and Fig-
ure 1(b) shows the results of querying each view as an HR user as the database
size increases from 1000 to 100,000. Queries from the other users scaled similarly,
so those results are not shown. The data labeled “Baseline 1” and “Baseline 2”
are the results of querying the hand-coded views from Table 4. The difference be-
tween the two baselines lies in how they handle queries that contain side-effects.
For the first baseline, the view directly calls a UDF that executes the side-effect.
For the second baseline, the side-effect is not enforced by the view at all, but
rather by the querying application. This allows us to measure the cost of using
UDFs, apart from the cost of using a compiled view. The data labeled “Recur-
sive” are the results of querying the compiled view from Table 3, “Optimized”
are the results of querying the compiled view using our predicate unfolding op-
timization, and “Target” are the results of executing the stored procedure that
uses partial evaluation with dynamic view construction. Because Baseline 2 is no
different than Baseline 1 for the HR query, we omitted the data for Baseline 2 in
Figure 1(b) for clarity. Notice that on both charts we use a logarithmic scale for
the execution time; in Figure 1(a) this helps demonstrate the successive improve-
ments each optimization makes, and in Figure 1(b), this shows the scalability of
executing the views as the size of the database increases exponentially.

The queries with side-effects show the cost of using the workaround in SQL
Server which opens a separate connection to execute the update. Our results
show that this does indeed noticeably affect all three views that use the
workaround. Databases that could handle allowing side-effects in selection queries
would not experience this effect as dramatically.

For the Chinese Wall query, which uses the workaround twice on each row,
the recursive view behaves as expected. However, neither the optimized view nor



the first baseline, both of which also use the workaround, show much effect from
its use. After tracing the execution of the query, we discovered the cause of this
unexpected result. SQL Server recognized that the same parameters are being
passed to the UDF, and rather than re-executing the function on each row, it
cached the return value after executing on the first row and used the cached value
on each subsequent row. Effectively, the side-effects are being executed once per
query rather than once per row. While this still correctly enforces the Chinese
Wall policy (access to the other table is prohibited, whether the user queries one
row or all of the rows), the execution order is not semantically equivalent to the
recursive query.

Increasing the database size shows that while the recursive view does not
scale very well, the optimized view and the stored procedure handle larger data
sizes much better, remaining at roughly the same proportion to the performance
of the baseline views for all our tests. The workaround for executing side-effects
drastically affects queries for small data sizes, so seeing the same effect on queries
for large data sizes is no surprise. This should be a major focus for improvement
in the future.

The unfolding optimization from Section 2.2 is clearly beneficial, since it
removes the recursion from the rules, eliminating the need for executing a fixed-
point algorithm to evaluate queries. The additional optimization using partial
evaluation further improves the performance to nearly as fast as the baseline.

In cases where fewer policies protect a table, the performance of the com-
piled view is even better. Recall the policy for the store data table from Table 1.
This policy poses additional administration difficulties when using traditional
ACM-based approaches, which are automatically solved by an RDBAC-based
approach. Because a single owner may need access to multiple parts of the table,
and there is no simple, single encapsulation of the conditions describing all of
these parts, a traditional ACM-based view requires more complicated conditions
than those described in the baseline for the employees table. These more compli-
cated conditions therefore become more difficult to keep updated when the data
or the permissions on the data change.

We describe four baselines for querying this table using traditional ACM-
based views, each of which requires a somewhat different configuration by the
database administrator. One approach, which we will call “Union Baseline,” is
where the administrator creates a separate view for each franchise, and the owner
executes a union all over each view. A similar approach, “App-Level Baseline,”
queries each view individually but aggregates the data at the application level,
rather than at the database level. These two approaches minimize the work
needed when a store location is sold to a different owner, requiring only one
revoke and one grant statement and no view redefinitions; however, the pro-
cessing times for queries using these baselines are considerably more costly, as
demonstrated by the results. Another approach, “Disjunction Baseline,” requires
the administrator to create a customized view for each owner that includes data
from each store he owns, implemented as a disjunction of the Store ID’s in the
where clause of the view. This approach makes the store owners’ jobs much eas-



Fig. 2. Comparison of execution time results (in sec) for store data policy

ier, since it does not require them to query multiple views, and also executes
faster than the other two baselines. However, it also requires more upkeep by
the administrator, who must redefine two views each time a location changes
hands. A fourth approach, “Join Baseline,” joins the data from the owner table,
but is otherwise similar to the Disjunction Baseline in creating a customized
view for each owner. This requires less upkeep from the Disjunction Baseline
when owners are changed, but still requires new views to be defined when new
owners are added. Note that this is nearly the same approach as described in
the TD rule, except that the Join Baseline does not use a single all-purpose view
that depends on the user’s identity.

Figure 2 shows a graph of the results of running the optimized compiled
view for the store data table compared with the results of using each of the
four baselines, again using a logarithmic scale. The reflective view generated by
our compiler offers performance comparable to the fastest of these baselines, and
requires less maintenance than any of the baselines when the data changes. Only
a single view is created, and if a store location changes owners, this information
simply needs to be updated in the owner table, which must still be maintained
even when using the other baselines anyway.

4 Related Work and Conclusion

4.1 Predicated Grants

While our translation algorithm can already be used for current SQL database
systems, the translation process could be made easier using a proposed extension
to SQL called predicated grants [8], in which access rules to tables and views are
defined in the SQL grant statement, rather than in a view definition. The grant

syntax is extended to include a where clause (similar to what might be found
in a select statement) and optionally a query-defined user group, in which the
grantees are defined by the result set of another query.

For example, the hr policy from Table 1 can be expressed in a predicated
grant as



grant select on employees where userId() in (select Name from hr) to public

or by defining a query-defined user group for all hr users as
create group hrGrp as (select Name from hr);

grant select on employees to hrGrp

Column-level privileges simply follow the SQL standard of listing the allowed
columns after the table name, such as grant select on employees(Name, Addr)

e where e.Optin=’true’ to insuranceGrp.
Predicated grants do not currently support side-effects, required by policies

such as the insurance policy from Table 1 or the Chinese Wall policy from
Table 2, so further extensions would be necessary to implement them. One pos-
sibility might be simply to use UDFs, as our implementation does. Another
possibility might be to allow compound statements in the predicate of the grant,
such as:
grant select on employees(Name, Addr) e where e.Optin=’true’ and

userId() in (select Name from insurance i;

insert into accesslog values(i.Name, e.Name, ’Name & Addr’, GETDATE()))

to public

Such an extension would facilitate a more direct translation from TD semantics
into SQL, including execution ordering.

Besides not implementing side-effects, predicated grants also currently dis-
allow policies that refer back to the same table they protect, as well as policy
cycles. Our prototype easily handles such policies, which can occur very naturally
in practice. For instance, consider the policy “all employees may view names and
addresses of other employees that work in the same store.” This policy protects
the employees table, but also needs to query that table itself to find out what
store the querying user works in. The authors briefly mention a prototype im-
plementing portions of their extended syntax, however no details are provided
so it is unknown how well the prototype performs.

4.2 Other Related Work

We have previously described the concept of RDBAC using TD in other work [16],
which contains a more complete list of references for other literature describ-
ing similar concepts. In particular, Oracle’s VPD technology [17] allows UDFs,
possibly containing other queries itself, to be used as filters on any table or
view. While this is an already-widely-deployed DBMS with reflective capabil-
ities, this functionality is intended only for users with superuser privileges, as
unskilled definers may write unsafe policies [16]. Additionally, policies that refer
back to the same table they protect are also disallowed. The patent by Cook
and Gannholm [9] describes another reflective system in which policies contain
queries. Their system also allows policies on entire transactions as well as on
individual queries, but assumes an omniscient policy definer that can access the
entire database, rather than requiring such queries to satisfy policies themselves.

The relationship between the expressive powers of Datalog and relational
algebra has long been recognized [1, 6, 18], although few systems that analyze the
practical use of Datalog or Prolog together with database management systems



have actually been built [7, 10, 11, 13]. Draxler’s work offers the most details
and is most similar to ours, in describing a translation process from a subset
of general-purpose Prolog syntax into SQL [10]. He also offers a survey of other
earlier literature describing the translation process. Disjunctions, negations, and
aggregates are all supported, as are some non-Datalog features of Prolog such
as findall and nested predicates; however it does not handle recursive view
definitions, or even views that depend on the results of other queries defined in
the program (unless, of course, the query is copied verbatim, making the system
susceptible to update anomalies). Additionally, applications using this interface
must also be written in Prolog. The report mentions two proposed approaches
to incorporating database updates in their system; however both approaches are
only described at a high level, and neither appears to have been implemented.
Other publicly-available translation engines from Prolog to SQL exist, but all
are derived from Draxler’s code base.

U-Datalog [5] is an alternative extension to Datalog that defines update se-
mantics, in which all updates are deferred until the end of a query evaluation,
similarly to the restriction on TD that we used in our implementation. Conflict-
ing updates, in which reordering the updates results in a different final database
state, are detected and aborted. U-Datalog could offer a reasonable alternative
language to TD; however, ordering of updates are very important in certain
policies. Consider, for instance, a policy in which only one user may access a
data item at one time, which could be implemented as token(X), del.token(X),

read data, ins.token(X). Clearly the ordering of these predicates is significant,
as other orderings may cause a policy violation or deadlock.

4.3 Conclusion and Future Work

We have described an implementation of reflective database access control based
on the semantics of Transaction Datalog. This implementation compiles a set of
policies into standard SQL views that can be used in current database man-
agement systems. We have evaluated this implementation and demonstrated an
optimization that eliminates recursion in many common cases.

Further improvements can still be made with this work, including generaliz-
ing our algorithm further to handle view predicates on assertions or retractions;
creating an enforcement mechanism that disallows unsafe policies; and augment-
ing TD with syntax for atomic update policies that may depend on both the old
and the new database states, as opposed to separate policies for insertion and
deletion. RDBAC theory itself is a rich field for future research, including finding
other useful classes of analyzable policy configurations, and developing efficient
algorithms for policy analysis.
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