
A Medical Database Case Study for Reflective Database
Access Control ∗

Lars E. Olson, Carl A. Gunter
University of Illinois at Urbana-Champaign

Sarah Peterson Olson, M.D.
University of Nebraska Medical Center

ABSTRACT
Reflective Database Access Control (RDBAC) is a model in
which a database privilege is expressed as a database query
itself, rather than as a static privilege in an access control
matrix. RDBAC aids the management of database access
controls by improving the expressiveness of policies, enabling
enforcement at the database level rather than at the appli-
cation level. This in turn facilitates the creation of new
applications without the need for duplicating security en-
forcement in each application. Past work has proposed the
use of the Transaction Datalog (TD) language as a theoreti-
cal basis for RDBAC. We present a case study for a medical
database using TD. This case study includes a wide range of
access patterns for which RDBAC provides a simple method
for formulating policies, demonstrating the flexibility of RD-
BAC as well as the practicality and scalability of using such
a system in real-world applications that require non-trivial
policy definitions on large data sets.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls

General Terms
Security

Keywords
Reflective Database Access Control, Case Study, Medical
Database

1. INTRODUCTION
∗ c©ACM, 2009. This is the author’s version of
the work. It is posted here by permission of
ACM for your personal use. Not for redistribution.
The definitive version was published in SPIMACS’09.
http://doi.acm.org/xx.xxxx/xxxxxxx.xxxxxxx

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPIMACS’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-790-5/09/11 ...$10.00.

Current databases use a conceptually simple model for ac-
cess control: the database maintains an access control ma-
trix (ACM) describing which users are allowed to access each
database resource, along with which operations each user is
allowed to use. If a user should only be granted access to
certain portions of a database table, then a separate view
is created to define those portions, and the user is granted
access to the view. This model is flexible enough to allow
users to define access privileges for their own tables, without
requiring superuser privileges. However, ACMs are limited
to expressing the extent of the policy, such as “Alice can
view data about Alice,” “Bob can view data about Bob,”
etc., rather than the intent of the policy, such as “each em-
ployee can view their own data.” This makes policy admin-
istration more tedious in the face of changing data, such as
adding new users, implementing new policies, or modifying
the database schema. Many databases attempt to ease ad-
ministration burdens by implementing roles in addition to
ACMs to group together common sets of privileges, but this
does not fully address the problem. In a scenario such as
the policy of “each employee can view their own data in the
table,” each user requires an individually-defined view of a
table as well as a separate role to access each view, which
yields no benefit over a standard ACM-based policy.

Reflective Database Access Control (RDBAC) is an access
control model that addresses this problem [13]. We define
a policy as reflective when it depends on data contained in
other parts of the database. While most databases already
do store ACMs within the database itself, the policy data are
restricted to the form of a triple 〈user, resource, operation〉
and separated from the rest of the database; and the query
within the policy is limited to finding the permission in the
ACM. RDBAC removes these restrictions and allows poli-
cies to refer to any part of the database. Previous work
has shown how formal security analysis of RDBAC policies
can be tractably performed [13], and how an RDBAC sys-
tem can be implemented in standard, off-the-shelf relational
databases [12].

The purpose of this paper is to present a case study for
a medical database using RDBAC policies. The case study
described here is more complete than any other in this do-
main that we are aware of. It is designed to balance current
practice in medical access control with new ideas for exper-
imental access patterns, such as allowing access by patients
as well as by medical staff. While such access patterns are
not generally implemented in current medical databases, we
envision such a system facilitating patient access to data and
input on disclosure of data, perhaps through web interfaces.

It also contains policies for business data, such as hiring,
payroll, and patient billing. Our case study database is not
based on any particular medical database system, but it is
generic and represents the general type and scale that might
be seen in such a system. We also demonstrate an example
of formal security analysis using this policy configuration.

Many database application designers who require compli-
cated policies such as those required by a medical database
implement the access control checks at the application level,
rather than at the database level. Such an architecture is
shown in Figure 1(a), in which the database connection from
the application is able to access the entire database, and sim-
ply uses its program logic to limit the privileges of the user
running the application. While such an architecture does al-
low enforcement of more complex policies, it also suffers from
two drawbacks: first, because the database connection is at
an elevated privilege compared to the privileges of any single
user that runs the application, the application is prone to
privilege escalation attacks, such as SQL injection. Second,
if other applications are written for the same data, the policy
logic must be duplicated within each application. This re-
dundancy increases the likelihood of coding errors and may
lead to policy violations, depending on which application
is used to access the data. RDBAC mitigates this prob-
lem by increasing the expressiveness of policy definitions at
the database level, enabling application designers to push
policy enforcement from the application to the database as
shown in the architecture design in Figure 1(b). In this ar-
chitecture, the application makes the database connection
on behalf of the user running it, and the connection only
has the privileges of that user.

RDBAC offers several other advantages for the implemen-
tation of access policies for medical information. As already
mentioned, it allows the intent of the policy to be expressed,
and thus changing relationships between patients and medi-
cal providers can automatically update the appropriate priv-
ileges. Because RDBAC allows arbitrary database opera-
tions to be included as part of a policy, it can implement
policies that require certain operations to trigger the cre-
ation of an audit record that can be reviewed later. Fi-
nally, because RDBAC has a mathematical basis, we can use
formal analysis to prove compliance with regulations such
as the Health Insurance Portability and Accountability Act
(HIPAA), which was recently passed by the United States
Congress and includes requirements on protecting patients’
medical records from unauthorized disclosures [14].

The rest of this paper is divided into five sections. In Sec-
tion 2 we present the medical database case study. Section 3
gives an overview of RDBAC and describes our implementa-
tion of the case study policies using RDBAC. In Section 4 we
formally verify the security of one aspect of this case study.
Related work is described in Section 5, and we conclude with
Section 6.

2. CASE STUDY DESCRIPTION

2.1 Overview
Legislation such as HIPAA requires facilities that main-

tain electronic health records to protect the privacy of the
subjects of the records. Specifically, they are to “develop
and implement policies and procedures that restrict access
and uses of protected health information based on the spe-
cific roles of the members of their workforce.” [15] While

it is tempting to write simple policies that only allow a pa-
tient’s data to be accessible by his primary care physician, in
practice there are frequent cases in which emergency access
must be granted to other users, such as when the primary
care physician is out of town and unreachable.

Reflective access control policies offer a unique solution
to resolve the conflicting goals of privacy and ease of access
in emergencies. Regular-use policies could allow restricted
access to a patient’s records only to primary-care physicians
or to other professionals who have been invited to consult
the patient’s case. Emergency-use, or “break-the-glass”poli-
cies could allow broadened access to a patient’s records, and
these accesses can be audited for later review. This audit
record may be used to comply with legislative requirements
to notify the patient of any abuse of privacy and to take
disciplinary action against the offender, if necessary. Etalle
and Winsborough argue that in cases where exceptions to
preventative access control are commonly needed, the knowl-
edge that actions are audited and the threat of punitive ac-
tion when misuse occurs are generally sufficient deterrent for
preventing abuses [7].

In our case study, user data is stored in several tables,
including a general person table that contains information
relevant to all users of the system, such as name and con-
tact information. Users may be considered as patients or
employees, possibly both. This is indicated by listing the
user’s identifier from the person table in the patient or the
employee table, respectively. Data stored in the patient table
includes the identifier of the patient’s primary care physician
and the patient’s insurance data. Other patient data will
be described later. Employee data includes salary and tax
information and office location. Some employees may addi-
tionally be managers, such as shift supervisors. We must
also account for the facts that employees sometimes leave
and must have their access privileges revoked, and that their
records may need to be maintained for archival purposes—
for example, a new doctor may need to check a patient’s
history and find out who ordered a particular treatment,
even if it was ordered by an employee that is no longer ac-
tive. To address this, the employee table contains a boolean
value indicating whether the employee is currently active
and should be given system access. Employees may be secre-
taries, human resource directors (HR), accountants, nurses,
lab technicians, pharmacists, or doctors, indicated by cre-
ating tables for each employee type and listing the user’s
identifier in the appropriate table. Employee payroll infor-
mation, including the date and amount of each paycheck and
the tax withholding amounts, are stored in another table.

General medical information, including instructions for
drugs, information for adverse drug interactions, and codes
for symptoms and diagnoses is stored in the database.

Other tables containing patient data include visits, cur-
rent medications, measurements taken, treatments admin-
istered, prescriptions written, lab tests administered, and
teams of medical professionals who assist during the pa-
tient’s visit. These tables for patient data contain the fol-
lowing:

• A record for a patient’s visit includes the identifier of
the treating physician (which may not be the same
as the primary care physician), the date admitted, the
symptom for which the patient is requesting treatment,

Database

Application A

Access Control
Rules

aUser a

User b b

cUser c

A

(a) Privileges using application-level enforcement

Database

Rules
Access Control

Optional

Application A

Additional
Controls

Layer
Enhanced Security

a
User a

b

c
User b

User c

a

b

c

(b) Privileges using database-level or middleware-level en-
forcement

Figure 1: Security architectures for database applications

and the diagnosis reached.1 Some visits may be hos-
pital admittances which require overnight stays, for
which we also store a room number and the date when
the patient is discharged.

• The table of current medications contains an identifier
for the drug that the patient is currently taking.

• The table of measurements lists the identifier of the
employee taking the measurement, the type of mea-
surement, and the result.

• The table of treatments lists the identifier of the em-
ployee administering the treatment and either the iden-
tifier of the drug administered or the name of the pro-
cedure administered. A treatment record may also rep-
resent a past immunization that was imported from an
external health record, in which case the record also
contains information about where and by whom the
treatment was given.

• The table of prescriptions lists the identifier of the doc-
tor who wrote the prescription and the date it was
written, the identifier of the pharmacist who filled the
prescription and the date it was filled, the identifier of
the drug prescribed, the quantity, and the number of
refills.

• The table of lab results lists the identifier of the tech-
nician who performed the lab test, the type of test,
and the result of the test.

• The table of medical team consultants lists the iden-
tifiers of employees who are consulting on a patient’s
visit.

For each table containing patient data, doctors may opt not
to release certain information to patients, which can be in-
dicated with a boolean value called ReleaseToPatient. Each
of the tables containing patient data may be accessed in an
emergency. In such cases, the database also maintains tables
to audit such accesses.

Finally, the database also contains tables for tracking billing
and payment information. This includes invoice items for
visit fees and for treatments administered. Multiple pay-
ments for each invoice may be recorded.

1Multiple symptoms and diagnoses could be stored as set-
valued attributes, if supported by the database system, or
stored in a separate table. For simplicity, we treat them as
single-valued attributes.

2.2 Policies
The following policies apply to general user data:

• Users may view their own data in the person, patient,
or employee tables.

• Users registered as employees, whether active employ-
ees or previous employees, may view any person’s name
data.

• Users may view their own contact information data.

• Current employees who are registered as managers may
view contact data for the employees they manage.

• Current employees may view e-mail data and office
phone contact data for other current employees.

• Medical staff with a working relationship with a pa-
tient may view contact data for that patient. A user
has a “working relationship” with a patient if any of
the following are true:

– The user is the patient’s primary care physician.

– The user has admitted the patient for a visit of
any kind.

– The user has consulted with the patient as part
of an assigned medical team.

• Current doctors and pharmacists may view contact
data for patients for whom they have written or filled
prescriptions.

• Current secretaries may view any user’s contact data.

• Current accountants may view any user’s address data.

• Users may update their own contact data.

• Current secretaries may update any patient’s contact
data.

Many of the policies already listed motivate the need for
RDBAC enforcement. For instance, many of the users in
the database are patients, not employees. The first policy
requires that patients be able to view their own data, and
no other policy allows them to view anyone else’s data. This
means that each patient will require his own view of each of
the tables. If we were to enforce this policy using traditional
ACM-based access control by creating an explicit view defi-
nition for each of these views, one per patient per table, the
number of view definitions would be too difficult to man-
age. By contrast, if we use RDBAC, we can use the data in

Table 1: Example TD policies

1. view.labResult(User, ResultID, Date, Type, Value, PatientID, TechID, ReleaseToPatient) :-
labResult(ResultID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),
person(PatientID, User, _), ReleaseToPatient = 1.

2. view.labResult(User, ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient) :-
labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),
person(UserID, User, _), hasAccess(UserID, PatientID).

3. view.emergency_labResult(User, ResultID, Date, Type, Value, PatientID, TechID, ReleaseToPatient, Note) :-
labResult(ResultID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),
person(UserID, User, _), employee(UserID, _, _, _, _, _, _, _, 1),
ins.labResultEmergAccessLog(ResultID, UserID, now, Note).

4. view.ins.labResult(User, ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient) :-
employee(TechID, _, _, _, _, _, _, _, 1),
person(TechID, User, _), labtechnician(TechID),
ins.labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient).

the database table itself to enforce the policy: if the person

record matches the user executing the query, it is returned.
Similarly, using RDBAC to implement the policies defin-

ing which employees have access to a patient’s record (i.e.
the“working relationship”definition) takes advantage of data
already in the database, such as a patient’s visit records or
the data listing medical teams that consult with a patient.
RDBAC gives the added advantage that the policy auto-
matically updates itself when new data is added. When a
doctor is brought in to consult with a patient, for exam-
ple, as soon as the doctor is added to the medical team, she
automatically gains access to the patient’s records.

The following policies apply to employee-specific data:

• Current employees may view the offices, managers, and
active status of other employees.

• Current accountants may view all employee data.

• Current HR directors may add or delete employees.
The new employee’s manager must be an existing em-
ployee. “Deleting” an employee should not actually
remove the record from the database, but rather set
their current status as inactive for archival purposes.

• Accesses to data specific to the employee type (secre-
tary, HR director, etc.) follow the same policies as the
employee table.

• Employees may view their own payroll data.

• Current accountants may view all payroll data.

• Current accountants may insert new payroll data for
any employee except themselves, providing a rudimen-
tary separation of duty policy.2 The tax information
must follow particular formulas: in our case we will
require the state tax withheld to be 10% of the salary
minus $500 for each exemption, and the federal tax
withheld to be 20% of the salary minus $1000 for each
exemption. The payroll must not be applied retroac-
tively; that is, it must occur at some point in the fu-
ture.

2A more complex separation of duty policy, such as assigning
each employee to an accountant, who is the only user allowed
to add payroll data for that employee, could be implemented
similarly to the policy that assigns each patient to a primary
care physician.

The following policies apply to patient-specific data:

• Current doctors, nurses, secretaries, and accountants
may view the primary care provider and insurance data
for any patient.

• Users may update their own insurance data, and cur-
rent accountants may update anyone’s insurance data.

• Current doctors and secretaries may update anyone’s
insurance data and add new patients. The new pa-
tient’s primary care physician must be an existing doc-
tor in the database.

• Patients may view their own data, if it has been re-
leased for viewing.

• Users with a working relationship with a patient, as
previously defined, may view, update, or add to that
patient’s data. When a patient is admitted for a new
visit, the treating physician must be a current doctor.

• Any current employee may gain emergency access to a
patient’s data, but the access must be logged for later
review. This rule could easily be adapted to allow such
access only to certain users, such as doctors and nurses.

• Any current employee may enter new data for a pa-
tient’s measurements or treatments administered, but
the employee’s identifier must be recorded with the
measurement or treatment.

• Current lab technicians may enter new data for a pa-
tient’s lab test results.

• Current doctors may write a prescription for any pa-
tient.

• Current pharmacists may fill existing prescriptions.

• Current secretaries, admitting physicians, and shift su-
pervisors (managers) may change members of a medi-
cal team.

• All users can access symptom code data, diagnosis
code data, and general drug data.

The following policies apply to invoice data:

• Patients may view their own invoice and payment data.

• Current accountants may view all invoice and payment
data.

• Current accountants may add new invoice and pay-
ment data except on invoices sent to themselves.

3. CASE STUDY IMPLEMENTATION

3.1 RDBAC Using Transaction Datalog
Transaction Datalog (TD) is an extension to classical Dat-

alog that adds syntax and semantics for database updates [4].
Specifically, it defines assertion predicates and retraction
predicates for each base table. For example, if the database
contains the table labResult, the assertion predicate
ins.labResult inserts a new value into the labResult table,
and the retraction predicate del.labResult deletes a value
from the table. Thus, executing a TD rule can result in
changing the underlying database. Base tables may not ap-
pear in the head of any rule in TD, thus preventing conflicts
between rules that allow values to be inferred and retraction
predicates that remove the values from the database.

TD also defines for each base table an empty predicate to
determine if the base table is empty. For example, the empty
predicate empty.labResult() is true if and only if there are
no records in the labResult table. This provides a simple
form of negation, but is rather limited since it can only be
applied to base tables. We have found it useful to consider
an extension to the syntax of empty predicates by allowing
them to check only for the existence of values that satisfy
certain conditions. Formal syntax and semantics is beyond
the scope of this paper, so we only briefly describe this ex-
tension here. For a base table t and a subset {c1, c2, . . .} of
the columns of t, we define empty{c1 ,c2,...}.t(v1, v2, ...) to
be true if and only if there do not exist any rows in t such
that c1 = v1, c2 = v2, etc. We assume the existence of a
canonical ordering of the columns in the subset, such as num-
bering the columns and listing them from lowest to highest,
in order to match the columns with the predicate values un-
ambiguously. For example, empty{2,3}.labResult(‘2009-06-

10’, ‘WBC count’) is true if there are no records in labResult

where column 2 is ‘2009-06-10’ and column 3 is ‘WBC count’.
Our access control model uses TD logic by defining for

each base table a view predicate with the same attributes
as the base table, but with one additional attribute rep-
resenting the identity of the user. For example, consider
Rule 1 in Table 1. This rule retrieves the values from the
base table labResult and returns them in the view predicate
view.labResult, but with two added conditions. First, the
user executing the query must be recorded in the person ta-
ble as the username of the patient on whom the lab test was
performed. Second, the attribute ReleaseToPatient must be
set to 1. The underscore symbol as the third attribute of
the person predicate is a “don’t care” symbol, meaning no
restrictions are placed on its value.

Consider Rule 2 in Table 1. This rule defines a different
access rule for the same view predicate as Rule 1, which re-
quires that the querying user must satisfy a hasAccess rule.
For brevity, this rule is not included, however it will be de-
scribed in Section 2.2. TD semantics require only one rule
to be satisfied in order to infer when a predicate is satisfied,
thus, these two rules are combined disjunctively.

Other arbitrary view predicates may also be defined for
more complex queries, but always contain at least one at-
tribute representing the user. For example, consider Rule
3. The head predicate in this rule is different than in the
previous two rules. Note that this rule uses one of the exten-
sions to classical Datalog provided by TD, since it contains
the assertion predicate ins.labResultEmergAccessLog at the
end of its body. This rule only requires the querying user

to be an active employee (the value 1 at the end of the em-

ployee predicate refers to an attribute of the employee table
signifying whether the employee record refers to a current
employee, rather than an archival record of a past employee).
Note that all accesses to data through this predicate cause a
record to be inserted into the labResultEmergAccessLog table.

Finally, consider Rule 4, which is a view predicate for the
assertion predicate ins.labResult. It first checks that the
user is a current employee, then checks whether the employee
is a lab technician. It then allows data to be inserted into the
labResult table, but only if the TechID attribute is the same
as the querying user’s identifier as recorded in the person

table.

3.2 Encoding of Case Study Policies
We first define a rule for active employees that are consid-

ered to have a working relationship with each patient. These
include the primary care physician, the admitting physician
(if different than the primary care physician), and those
medical professionals that have consulted with a patient as
part of an assigned medical team.

1. hasAccess(EmpID, PtntID) :-
employee(EmpID, _, _, _, _, _, _, _, _, 1),
patient(PtntID, EmpID, _, _).

2. hasAccess(EmpID, PtntID) :-
employee(EmpID, _, _, _, _, _, _, _, _, 1),
visit(_, PtntID, EmpID, _, _, _, _).

3. hasAccess(EmpID, PtntID) :-
employee(EmpID, _, _, _, _, _, _, _, _, 1),
visit(VisitID, PtntID, _, _, _, _, _),
medicalTeam(VisitID, EmpID, _).

Users may view their own data in the person table. Other
employees (active or not) may view any person’s name data.

4. view.person(User, ID, Username, FullName) :-
person(ID, Username, FullName), User = Username.

5. view.person(User, ID, Username, FullName) :-
person(ID, Username, FullName),
employee(UserID, _, _, _, _, _, _, _, _),
person(UserID, User, _).

A record is added to the person table through the
view.ins.employee and view.ins.patient views; thus, we do
not define policies for modifying this table directly.

Users may view their own data in the contactInformation

table. Active managers may view contact data for their em-
ployees. Active employees may view e-mail data and office
phone data for other employees. Users with a working re-
lationship with a patient, as previously defined, may view
contact data for that patient. Doctors and pharmacists may
view contact data for patients for whom they have written or
filled prescriptions. Active secretaries may view any user’s
contact data. Active accountants may view any user’s ad-
dress data. Users may update their own contact data, and
active secretaries may update any patient’s contact data.

6. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
person(ID, User, _).

7. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
employee(ID, _, _, _, _, _, _, MgrID, _),
employee(MgrID, _, _, _, _, _, _, _, _, 1),
person(MgrID, User, _).

8. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _),
Type = ’e-mail’.

9. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _),
Type = ’office phone’.

10. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
person(UserID, User, _), hasAccess(UserID, ID).

11. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
prescription(_, ID, UserID, _, _, _, _, _, _, _),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _).

12. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
prescription(_, ID, _, _, UserID, _, _, _, _, _),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _).

13. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID).

14. view.contactInfo(User, ID, Type, Value) :-
contactInfo(ID, Type, Value),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
Type = ’address’.

15. view.ins.contactInfo(User, ID, Type, Value) :-
person(ID, User, _),
ins.contactInfo(ID, Type, Value).

16. view.del.contactInfo(User, ID, Type, Value) :-
person(ID, User, _),
del.contactInfo(ID, Type, Value).

17. view.ins.contactInfo(User, ID, Type, Value) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID),
ins.contactInfo(ID, Type, Value).

18. view.del.contactInfo(User, ID, Type, Value) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID),
del.contactInfo(ID, Type, Value).

Employees (active or not) may view their own data in the
employee table. Active accountants may view all employee
data. Active employees may view the offices, managers, and
active status of other employees. Active HR directors may
add or delete employees. An employee’s manager must be
an existing employee. “Deleting” an employee does not ac-
tually remove the record from the database, but rather sets
the Active field to 0. Note that because employee inherits
from person, either a record with the same ID must already
exist in the person table or the insertion must propagate to
the person table. We assume that a Username and FullName

together uniquely identify a person.

19. view.employee(User, EmpID, Salary, SSN, Exmptns,
BankNum, AcctNum, Office, Mgr, Active) :-

employee(EmpID, Salary, SSN, Exmptns, BankNum,
AcctNum, Office, Mgr, Active),

person(EmpID, User, _).

20. view.employee(User, EmpID, Salary, SSN, Exmptns,
BankNum, AcctNum, Office, Mgr, Active) :-

employee(EmpID, Salary, SSN, Exmptns, BankNum,
AcctNum, Office, Mgr, Active),

employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID).

21. view.employee(User, EmpID, null, null, null, null,
null, Office, Mgr, Active) :-

employee(EmpID, _, _, _, _, _, Office, Mgr, Active),
person(UserID, User, _),
employee(UserID, _, _, _, _, _, _, _, 1).

22. view.ins.employee(User, EmpID, Username, FullName,
Salary, SSN, Exmptns, BankNum, AcctNum, Office, Mgr,
Active) :-

employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), hr(UserID),
person(EmpID, Username, FullName),
employee(Mgr, _, _, _, _, _, _, _, _),
ins.employee(EmpID, Salary, SSN, Exmptns, BankNum,

AcctNum, Office, Mgr, Active).

23. view.ins.employee(User, EmpID, Username, FullName,
Salary, SSN, Exmptns, BankNum, AcctNum, Office, Mgr,
Active) :-

employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), hr(UserID),
empty{1}.person(EmpID),
employee(Mgr, _, _, _, _, _, _, _, _),
ins.employee(EmpID, Salary, SSN, Exmptns, BankNum,

AcctNum, Office, Mgr, Active),
ins.person(EmpID, Username, FullName).

24. view.del.employee(User, EmpID, Salary, SSN, Exmptns,
BankNum, AcctNum, Office, Mgr, Active) :-

employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), hr(UserID),
del.employee(EmpID, Salary, SSN, Exmptns, BankNum,

AcctNum, Office, Mgr, Active),
ins.employee(EmpID, Salary, SSN, Exmptns, BankNum,

AcctNum, Office, Mgr, 0).

Accesses to the secretary, hr, accountant, nurse, labTech-
nician, pharmacist, and doctor tables follow the same poli-
cies as the employee table. Note both that these rules use the
policy invoker’s privilege on the employee table, and that the
updates on any of these tables cause cascading updates on
the employee table. This assumes that each of the employee
categories are mutually exclusive. We will only include here
the policy rules for secretary. The others are similarly de-
fined.

25. view.secretary(User, EmpID) :-
view.employee(User, EmpID, _, _, _, _, _, _, _, _),
secretary(EmpID).

26. view.ins.secretary(User, EmpID, Username, FullName,
Salary, SSN, Exmptns, BankNum, AcctNum, Office,
Mgr, Active) :-

view.ins.employee(User, EmpID, Username, FullName,
Salary, SSN, Exmptns, BankNum, AcctNum, Office,
Mgr, Active),

ins.secretary(EmpID).

27. view.del.secretary(User, EmpID, Salary, SSN, Exmptns,
BankNum, AcctNum, Office, Mgr, Active) :-

view.del.employee(User, EmpID, Salary, SSN, Exmptns,
BankNum, AcctNum, Office, Mgr, Active),

del.secretary(EmpID).

Employees may view their own data in the payroll ta-
ble. Active accountants may view all payroll data. Active
accountants may insert new payroll data for any employee

except themselves, providing a rudimentary separation of
duty policy. This rule also checks that tax withheld follows
a particular formula, and that the payment is not applied
retroactively.

28. view.payroll(User, EmpID, Date, Gross, FedTax,
StTax) :-

payroll(EmpID, Date, Gross, FedTax, StTax),
person(EmpID, User, _).

29. view.payroll(User, EmpID, Date, Gross, FedTax,
StTax) :-

payroll(EmpID, Date, Gross, FedTax, StTax),
employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID).

30. view.ins.payroll(User, EmpID, Date, Salary, FedTax,
StTax) :-

employee(EmpID, Salary, _, Exmptns, _, _, _, _, _),
FedTax = Salary*0.2 - 1000*Exmptns,
StTax = Salary*0.1 - 500*Exmptns,
Date >= now,
employee(UserID, _, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
UserID \= EmpID,
ins.payroll(EmpID, Date, Salary, FedTax, StTax).

Users may view their own data in the patient table. Ac-
tive doctors, nurses, secretaries, and accountants may view
primary care provider and insurance data. Users may up-
date their own insurance data, and active accountants may
update anyone’s insurance data. Active doctors and sec-
retaries may update any data in the patient table. The
primary care physician must be an existing doctor in the
database. Note that because patient inherits from person,
either a record with the same ID must already exist in the
person table or the insertion must propagate to the person

table.

31. view.patient(User, ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, Provider, Policy),
person(ID, User, _).

32. view.patient(User, ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, Provider, Policy),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), doctor(UserID, _).

33. view.patient(User, ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, Provider, Policy),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), nurse(UserID).

34. view.patient(User, ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, Provider, Policy),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID).

35. view.patient(User, ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, Provider, Policy),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID).

36. view.ins.patient(User, ID, PCPhys, Provider,
Policy) :-

patient(ID, PCPhys, _, _),
person(ID, User, _),
ins.patient(ID, PCPhys, Provider, Policy).

37. view.del.patient(User, ID, PCPhys, Provider,
Policy) :-

patient(ID, PCPhys, _, _),
person(ID, User, _),
del.patient(ID, PCPhys, Provider, Policy).

38. view.ins.patient(User, ID, PCPhys, Provider,
Policy) :-

patient(ID, PCPhys, _, _),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
ins.patient(ID, PCPhys, Provider, Policy).

39. view.del.patient(User, ID, PCPhys, Provider,
Policy) :-

patient(ID, PCPhys, _, _),
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
del.patient(ID, PCPhys, Provider, Policy).

40. view.ins.patient(User, ID, Username, FullName,
PCPhys, Provider, Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), doctor(UserID, _),
person(ID, Username, FullName),
doctor(PCPhys, _),
ins.patient(ID, PCPhys, Provider, Policy).

41. view.ins.patient(User, ID, Username, FullName,
PCPhys, Provider, Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), doctor(UserID, _),
empty{1}.person(ID),
doctor(PCPhys, _),
ins.patient(ID, PCPhys, Provider, Policy),
ins.person(ID, Username, FullName).

42. view.del.patient(User, ID, PCPhys, Provider,
Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), doctor(UserID, _),
del.patient(ID, PCPhys, Provider, Policy).

43. view.ins.patient(User, ID, Username, FullName,
PCPhys, Provider, Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID),
person(ID, Username, FullName),
doctor(PCPhys, _),
ins.patient(ID, PCPhys, Provider, Policy).

44. view.ins.patient(User, ID, Username, FullName,
PCPhys, Provider, Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID),
empty{1}.person(ID),
doctor(PCPhys, _),
ins.patient(ID, PCPhys, Provider, Policy),
ins.person(ID, Username, FullName).

45. view.del.patient(User, ID, PCPhys, Provider,
Policy) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), secretary(UserID),
del.patient(ID, PCPhys, Provider, Policy).

The policy rules for patient-specific data are demonstrated
by the labResult table already shown in Table 1. Policies
protecting the other tables containing patient-specific data
are similarly defined, but are omitted here for brevity.

All users can access symptom code data, diagnosis code
data, and general drug data.

46. view.symptomCodes(User, Code, Description) :-
person(_, User, _),
symptomCodes(Code, Description).

47. view.diagnosisCodes(User, Code, Description) :-
person(_, User, _),
diagnosisCodes(Code, Description).

48. view.drugs(User, Name, Instructions, Cost,
Manufacturer, Quant, Mechanism) :-

person(_, User, _),
drugs(User, Name, Instructions, Cost,

Manufacturer, Quant, Mechanism).

49. view.adverseDrugInteractions(User, Drug1ID, Drug2ID,
Description) :-

person(_, User, _),
adverseDrugInteractions(Drug1ID, Drug2ID,

Description).

Patients may view their own invoice and payment data.
Current accountants may view all invoice and payment data.
Current accountants may add new invoice and payment data
except on invoices sent to themselves.

50. view.invoice(User, InvID, InvoiceTo, Date) :-
person(InvoiceTo, User, _),
invoice(InvID, InvoiceTo, Date).

51. view.invoice(User, InvID, InvoiceTo, Date) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
invoice(InvID, InvoiceTo, Date).

52. view.ins.invoice(User, InvID, InvoiceTo, Date) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
UserID \= InvoiceTo,
ins.invoice(InvID, InvoiceTo, Date).

53. view.del.invoice(User, InvID, InvoiceTo, Date) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
UserID \= InvoiceTo,
del.invoice(InvID, InvoiceTo, Date).

54. view.invoiceItem(User, InvID, VisitID,
PrescriptionID, Cost) :-

view.invoice(User, InvID, _, _),
invoiceItem(InvID, VisitID, PrescriptionID, Cost).

55. view.ins.invoiceItem(User, InvID, VisitID,
PrescriptionID, Cost) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
invoice(InvID, InvoiceTo, _),
UserID \= InvoiceTo,
ins.invoiceItem(InvID, VisitID, PrescriptionID,

Cost).

56. view.del.invoiceItem(User, InvID, VisitID,
PrescriptionID, Cost) :-

employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
invoice(InvID, InvoiceTo, _),
UserID \= InvoiceTo,
del.invoiceItem(InvID, VisitID, PrescriptionID,

Cost).

57. view.paymentRcvd(User, InvID, Amt, Cleared) :-
view.invoice(User, InvID, _, _),
paymentRcvd(InvID, Amt, Cleared).

58. view.ins.paymentRcvd(User, InvID, Amt, Cleared) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
invoice(InvID, InvoiceTo, _),
UserID \= InvoiceTo,
ins.paymentRcvd(InvID, Amt, Cleared).

59. view.del.paymentRcvd(User, InvID, Amt, Cleared) :-
employee(UserID, _, _, _, _, _, _, _, 1),
person(UserID, User, _), accountant(UserID),
invoice(InvID, InvoiceTo, _),
UserID \= InvoiceTo,
del.paymentRcvd(InvID, Amt, Cleared).

4. FORMAL SECURITY ANALYSIS
Because executing a TD rule to retrieve data may cause

the database state to change, it is important to consider
whether a set of policies in our access control model are safe;
that is, whether we can guarantee that no combination of
operations executed by any untrusted users can ever result
in gaining access to protected data. Because a particular
policy configuration may contain a large number of rules, we
wish to have an automated process to perform this analysis.
Unfortunately, this is an undecidable problem in general;
however, it has been shown that under certain reasonable
restrictions on the rules, there exists an algorithm to solve
this problem. The following are due to Olson et al. [13]:

Definition: The rewrite operation ⊲ is a function mapping
a retraction-free and negation-predicate-free rule to a set
of rules, defined recursively as follows: given a rule r =
p(

−→
t) :- p1(

−→
t1), ..., pn(

−→
tn)., if the body of r contains no

assertion predicates, then ⊲(r) = {r}. Otherwise, let pi(
−→
ti)

be the first assertion predicate ins.q(
−→
ti), so that no pj(

−→
tj)

for j < i is an assertion predicate. Let r1 be the rule q(
−→
ti) :-

p1(
−→
t1), ..., pi−1(

−−→
ti−1). and r2 be the same as rule r but

with pi(
−→
ti) omitted. That is, r2 = p(

−→
t) :- p1(

−→
t1), ...,

pi−1(
−−→
ti−1), pi+1(

−−→
ti+1), ..., pn(

−→
tn). Then ⊲(r) = {r1} ∪

⊲(r2).

Definition: We call a set of TD rules {r1, . . . , rn} safely
rewritable if each of {⊲(r1), . . . , ⊲(rn)} is safe.3

Theorem 1. Security analysis is decidable for a database
with rules that contain no retractions or negations and are
safely rewritable, given a finite number of users.

Olson et al. propose various strategies for security analysis
algorithms, one of which is to calculate a maximal database
using the classical Datalog evaluation of the rewritten rules.
If the security property that we wish to verify holds in the
maximal database, then it will hold in the current and any
future states of the database. This is not a necessary con-
dition; however it is sufficient for establishing the security
property. We will use this algorithm for our verification pro-
cess.

There are many security properties that would be desir-
able for the policy configuration for a medical database case
study. We will demonstrate the process of proving one such
property: no non-employee users can ever view any patient
records in the labResult table besides their own. Such a
property requires us not only to consider whether the rules
for the labResult table prevent unauthorized accesses, but
also to consider all of the other rules to guarantee that none
of them inadvertently change the database in such a way as
to cause the rules for the labResult table to allow unautho-
rized accesses. Following the lead of Li and Tripunitara [10],
we will assume that all employee users are trusted users, and
only consider operations invoked by untrusted users. Other-
wise, the configuration would be unsafe since any employee
can view any patient’s labResult data using Rule 3 from
Table 1.

Unfortunately, the policy rules do not all satisfy the con-
ditions of Theorem 1 for guaranteeing a decidable algorithm

3Safety in this context refers to the property defined in clas-
sical Datalog which guarantees that rule evaluation only re-
quires a finite domain [2].

for security analysis. Several of them contain negations or
retractions, or are not safely rewritable. The audit policies
(such as Rule 3 from Table 1) and those policies that call the
audit policies have only one unbound variable that prevents
safe rewritability: Note. For instance, rewriting Rule 3 gives
the following rules, the second of which is unsafe due to the
unbound Note variable in the head of the rule:

• view.emergency_labResult(User, ID, Date, Type, Value,
PatientID, TechID, ReleaseToPatient, Note) :-

labResult(ID, Date, Type, Value, PatientID,
TechID, ReleaseToPatient),

person(UserID, User, _),
employee(UserID, _, _, _, _, _, _, _, 1),
labResultEmergAccessLog(ID, UserID, now, Note).

• labResultEmergAccessLog(ID, UserID, now, Note) :-
labResult(ID, Date, Type, Value, PatientID,

TechID, ReleaseToPatient),
person(UserID, User, _),
employee(UserID, _, _, _, _, _, _, _, 1).

We can mitigate this by leaving the variable unbound in the
rewritten rule, and assuming that any value can be assigned
to it. This accurately models the values that might be pos-
sible, since there are no constraints over what may appear
in this field of the database. While this technically causes
an infinite domain, preventing an actual computation of the
classical Datalog model, in practice we can still guarantee
a finite domain as far as our security analysis is concerned
because we do not need to enumerate every possible value
for Note to determine the users that can access the labResult

table. Indeed, the Prolog interpreter we use for verification
can already logically interpret rules with unbound variables
in the head predicate.

It is tempting to treat the rules that allow untrusted users
to insert data similarly, namely, Policies 15 and 36 from Sec-
tion 3.2. Policy 15 can indeed be rewritten to allow unbound
variables in the head of the rule. Policy 36, however, requires
special consideration. Rewriting this rule gives the following
rules:

• view.ins.patient(User, ID, PCPhys, Provider,
Policy) :-

patient(ID, PCPhys, _, _), person(ID, User, _),
patient(ID, PCPhys, Provider, Policy).

• patient(ID, PCPhys, Provider, Policy) :-
patient(ID, PCPhys, _, _), person(ID, User, _).

Because the head of the second rule contains the unbound
variables Provider and Policy, this causes Prolog to infer an
infinite number of patient predicates for each patient. This
directly affects its ability to evaluate any query on the hasAc-

cess view, since Policy 1 contains patient in its body and
therefore similarly causes Prolog to infer an infinite number
of hasAccess predicates. This in turn prevents the evaluation
of the view.labResults view. For the purposes of verifying
the security property we need, we may safely omit this rule
because the only other rules in our policy configuration that
depend on the Provider and Policy attributes are the rules
for the view.patient view. Since the other rules can be eval-
uated without reading these values from the patient table,
omitting Policy 36 from our analysis does not affect their
evaluation. Policy 37 may similarly be omitted.

For now, we will omit the other rules containing assertions,
retractions, and negations for our automatic analysis, and
then manually prove that the omitted rules do not change
the result.

Table 2: Execution time results for verifying secu-

rity of labResult table

Database size Running Time A Running Time B
10,000 1.13 1.57
20,000 4.19 3.10
40,000 16.5 6.31
80,000 65.3 12.9
100,000 105 15.7
200,000 416 32.3
400,000 1,630 67.0
800,000 7,140 145
1,000,000 12,200 190

We ran the verification process using SWI-Prolog ver-
sion 5.6.64 on a 2.4 GHz Intel Core2 machine with Win-
dows Vista Business 64-bit Edition. We generated sample
databases with various numbers of patients, ranging from
1,000 to 100,000 patients, each with 10 records in the labRe-

sult table. For one set of sample databases, we also varied
the number of employees to 1/25 the number of patients
(equally divided among the different types of employees),
and for another set we kept a constant number of 50 em-
ployees. These databases along with the rewritten rules were
analyzed to verify that for every row in the labResult table,
only the patient on whom the lab test was performed and
the trusted users can ever gain access to the data. This was
accomplished by executing the following commands:
view.labResult(User, _, _, _, _, PtntID, _, _),

\+trustedUser(User),

\+person(PtntID, User, _).

view.emergency_labResult(User, _, _, _, _, PtntID, _, _, _),

\+trustedUser(User),

\+person(PtntID, User, _).

where \+ is Prolog’s negation operator and the predicate
trustedUser is populated with the initial set of employees.
No results are returned for either command, indicating that
the defined safety condition on the labResult table does in-
deed hold. Table 2 shows the time required to perform the
analysis, where the database size represents the number of
records in the labResult table (10 times the number of pa-
tients), each running time shows the time to perform the
automated analysis (measured in seconds and rounded to
three significant digits), “Running Time A” represents the
databases in which the number of employees is proportional
to the number of patients, and “Running Time B” uses the
constant number of employees. Figure 2 shows these results
graphically, using a logarithmic scale.

Running Time A follows a quadratic running time. This
is because each employee is allowed to view each patient’s
records, at least through the emergency access rule. Thus,
when the number of patients double and the number of em-
ployees double, the number of ways to satisfy the
view.emergency_labResult predicate quadruples. Running
Time B, which keeps the number of employees constant,
thus follows a linear running time.

We now address analysis of the rules we previously omit-
ted. One of these rules, Policy 16, may still be executed
by untrusted users, but it simply allows users to remove
records that had been added by its corresponding insertion
policy, Policy 15. Because our automated verification pro-
cess has already found the policy configuration to be secure

Figure 2: Execution time results from Table 2

for the maximal database, even when the variables in the
corresponding insertion policies are unbound, any sequence
of policy invocations that use the deletion policy will still
constitute a subset of the maximal database, and thus the
security guarantee will still hold.

All the other omitted policies can only be executed by
trusted users. This can be verified on most of the rules
simply by noting that one of the conditions in each rule’s
body constrains the querying user to be an active employee.
The other rules constrain the querying user to satisfy the
hasAccess predicate with the patient, which is defined by
Policies 1, 2, and 3, and all three of these policies require
the user to be an active employee.

We must also ensure that untrusted users cannot execute
operations that would cause any of these policies to exe-
cute on behalf of a trusted user. This can be verified by
building a transitive closure: starting with the names of the
head predicates for the omitted policies, add the names of
the head predicate of any rule that contains in its body one
of the predicate names in the transitive closure. For ex-
ample, to compute the transitive closure of Policies 22 and
23, we start with their head predicate, view.ins.employee.
We then add the head predicates of any rule that contains
view.ins.employee in its body, namely: view.ins.secretary,
view.ins.hr, view.ins.accountant, view.ins.nurse,
view.ins.labTechnician, view.ins.pharmacist, and
view.ins.doctor. There are no other rules that contain any
of these predicate names in the body, so this forms the com-
plete transitive closure. None of the rules with head pred-
icates in the closure can be executed by untrusted users;
thus, there is no operation initiated by an untrusted user
that could ever cause any of these rules to execute. Other-
wise, one of these operations must have in its body one of
the predicate names contained in the closure, and thus the
head predicate of such a rule would also have to appear in
the closure.

5. RELATED WORK
RDBAC is a novel access control model that has recently

been developed [12, 13]. Our work demonstrates the feasi-
bility of using RDBAC and highlighting the advantages of
using the TD language in a real-world application.

Motivation for flexible and fine-grained access control in
medical applications was provided by Verhanneman et al. [16],
although they focused more on the lack of programmatic
controls using J2EE or .NET rather than on database en-
forcement. Anderson proposed a set of principles for clinical
information systems [1], which provides a good set of prac-
tical guidelines for use in the medical field. While these
guidelines emphasize the use of access control lists, which
are not used by our security model, our policies do gener-
ally follow the intent of the guidelines related to policy en-
forcement (with a few exceptions that better accommodate
current medical practices).

The trust management prototype Cassandra [3] was cre-
ated with a case study that provided policies for interact-
ing between health organizations under the UK National
Health Service, although its focus is on communicating full
records between independent organizations, rather than on
fine-grained access control. Another case study for access
control policies in medicine was provided by Dekker and
Etalle [6], using a novel technique called Audit-Based Ac-
cess Control [7]. This technique does not prevent unau-
thorized accesses, it only provides an audit method for de-
tecting unauthorized accesses after the fact, and assumes
the existence of external deterrents to allow users to po-
lice themselves. Such a system, however, requires that all
users know and understand the access policies beforehand,
and would not be helpful against accidental disclosures. A
relational database schema designed jointly by database de-
signers and medical experts was briefly described by Fried-
man et al. [8]. The authors motivate the use of off-the-shelf
DBMS products over customized databases and describe a
tradeoff between storing all patient data in a single table,
which clusters all relevant data for a patient together but
requires a very generalized table structure to handle the
different data types, and storing data for each domain in
separate tables, which allows more natural table structures
but scatters patient data over various tables. They chose
the former approach while we chose the latter. They do not
provide full details, although they do show the schemas of
two tables. They also do not address access control policies.
Nadkarni also acknowledges the challenges of designing a
relational database schema for heterogeneous data such as
clinical data [11] and briefly lists some common proprietary
medical record systems.

6. FUTURE WORK AND CONCLUSION
This case study forms a foundation for RDBAC-based ac-

cess policies to medical information, but there are still other
common policies that could be added. For instance, many
clinical facilities allow a patient to specify certain people,
such as spouses or parents, that may also access the patient’s
medical records. Indeed, HIPAA legislation also allows for
access to health information by “personal representatives”
of the patient [15]. Such a policy could easily be encoded
in TD by defining another table to contain the usernames
of authorized users for each patient. For security analysis,
the list of trusted users in this case must be constructed
for each patient individually. One complication for such a
policy is that we must also be able to specify exceptions,
such as when abuse by the personal representative is sus-
pected, or when specific state laws protect the privacy of
minors from their parents [15]. TD only specifies positive
authorizations; it does not include semantics for denying ac-

cess. Thus, the logic for enforcing such exceptions must be
programmed into every TD rule that allows access. These
exceptions may often apply only to certain types of infor-
mation, such as when a teenage child receives birth control
treatments. Thus, each row of each table containing patient
data may potentially require annotations to specify when the
record should not be disclosed to personal representatives.
A simple implementation of this model could include an-
other Boolean value, similar to the ReleaseToPatient value,
to indicate this. A more complicated implementation might
allow the patient to specify a subset of the personal repre-
sentatives that should be granted access. Additionally, it
may be desirable to allow patients such discretionary access
control over only a portion of their records, rather than all of
their records. Exceptions also introduce possible conflicts,
such as when a user may be granted access to a record by
virtue of being listed on a medical team for a patient, but
may be denied access by virtue of being a personal repre-
sentative of the patient that is listed as an exception4. We
leave the resolution of such problems as future work.

The case study described in this work establishes secu-
rity policies for protecting medical data. It does not address
user authentication. While the authentication mechanisms
for off-the-shelf database systems can be used, it may not be
desirable to create full database accounts for every user that
might access the system. For example, patients would likely
only gain access to their data through a web application.
Other applications might benefit from allowing medical de-
vices to authenticate a user with RFID tags or bar codes [9].
Integrating our access control policies with more flexible au-
thentication mechanisms would increase the usability of our
RDBAC system.

The automated security verification process we used is
dependent on the database state, and requires more time
for larger databases. Data indexing, which is not provided
by Prolog, should decrease the verification time. State-
independent security analysis techniques would also be help-
ful.

While the expressiveness of TD is already powerful, it is
somewhat limited in expressing negations. A rudimentary
form of negation is provided by semantics for a special type
of predicate that detects whether a particular table is empty.
It is not clear whether other types of negations, such as nega-
tions of a query, can be expressed using this type of pred-
icate [5]. Formally establishing a connection with general-
ized negations, or extending TD with generalized negations,
would enable useful policies such as preventing doctors from
writing prescriptions for a patient that may cause adverse
reactions with previously-written prescriptions.

We have developed a case study for a medical database
containing detailed RDBAC policies, thereby demonstrating
the usability of RDBAC in real-world applications. Using
this case study, we have shown an example of how to prove
formal security properties about a policy configuration.

Acknowledgements This work was supported in part by
NSF CNS 07-16626, NSF CNS 07-16421, NSF CNS 05-24695,
ONR N00014-08-1-0248, NSF CNS 05-24516, DHS 2006-CS-
001-000001, and grants from the MacAruthur Foundation
and Boeing Corporation. The views expressed are those of
the authors only.

4In practice, such conflict-of-interest cases are often avoided
by referring the patient to a different medical team.

7. REFERENCES
[1] R. J. Anderson. A security policy model for clinical

information systems. In IEEE Symposium on Security
and Privacy, pages 30–43, Oakland, CA, May 1996.

[2] F. Bancilhon and R. Ramakrishnan. An amateur’s
introduction to recursive query processing strategies.
In SIGMOD 86, Washington, DC, May 1986.

[3] M. Y. Becker. Cassandra: flexible trust management
and its application to electronic health records.
Technical Report UCAM-CL-TR-648, University of
Cambridge, Computer Laboratory, Oct. 2005.

[4] A. J. Bonner. Transaction Datalog: A compositional
language for transaction programming. Lecture Notes
in Computer Science, 1369:373–395, 1998.

[5] A. J. Bonner. Personal communication, Apr. 2008.

[6] M. A. C. Dekker and S. Etalle. Audit-based access
control for electronic health records. Electronic Notes
in Theoretical Computer Science, 168:221–236, 2007.

[7] S. Etalle and W. H. Winsborough. A posteriori
compliance control. In SACMAT 07, Sophia Antipolis,
France, 2007.

[8] C. Friedman, G. Hripcsak, S. B. Johnson, J. J.
Cimino, and P. D. Clayton. A generalized relational
schema for an integrated clinical patient database. In
14th Symposium on Computer Applications in Medical
Care (SCAMC), Nov. 1990.

[9] E. L. Gunter, A. Yasmeen, C. A. Gunter, and
A. Nguyen. Specifying and analyzing workflows for
automated identification and data capture. In
HICSS’09, Waikoloa, HI, Jan. 2009.

[10] N. Li and M. V. Tripunitara. On safety in
discretionary access control. In IEEE Symposium on
Security and Privacy, Oakland, CA, May 2005.

[11] P. M. Nadkarni. Clinical patient record systems
architecture: An overview. Journal of Postgraduate
Medicine, 46(3):199–204, 2000.

[12] L. E. Olson, C. A. Gunter, W. R. Cook, and
M. Winslett. Implementing reflective access control in
SQL. In DBSec’09, Montreal, QC, Jul. 2009.

[13] L. E. Olson, C. A. Gunter, and P. Madhusudan. A
formal framework for reflective database access control
policies. In CCS’08, Alexandria, VA, Oct. 2008.

[14] United States Congress. Health Insurance Portability
and Accountability Act of 1996 (HIPAA). Public Law
104-191, 1996.

[15] United States Department of Health and Human
Services. Summary of the HIPAA privacy rule. World
Wide Web electronic publication, May 2003.
http://www.hhs.gov/ocr/privacy/hipaa/

understanding/summary/privacysummary.pdf.

[16] T. Verhanneman, L. Jaco, B. de Win, F. Piessens, and
W. Joosen. Adaptable access control policies for
medical information systems. In DAIS, Paris, France,
Nov. 2003.

