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Abstract

The emerging paradigm for using the wireless spectrum more efficiently is based on enabling
secondary users to exploit white-space frequencies that are not occupied by primary users. An
enabling technology for forming networks over white spaces is distributed spectrum measurement
to identify and assess the quality of unused channels. This spectrum availability data is often
aggregated at a central base station or database to govern the usage of spectrum. This process,
also referred to as radio spectrum telemetry, is vulnerable to integrity violations if the devices
are malicious and misreport spectrum sensing results. There may be nodes that seek to exploit a
spectrum in a given region by falsely reporting that a primary signal is present, or, dually, seek
to vandalize a primary by reporting that its signal is not present, thereby encouraging interference
from secondaries.

This dissertation focuses on assuring robustness of radio spectrum telemetry against exploitation
and vandalism attacks. This problem is particularly challenging when: (1) attackers are omniscient
and coordinated, and constitute a large fraction of the nodes in an area, and (2) the quantity under
measurement (signal power) faces natural spatial and temporal variations, as well as uncertainties
due to noise, shadowing, and fading. These circumstances make it easier for sophisticated attack-
ers to hide the likely abnormalities of their reports. As illustrative examples, this work investigates
two new applications for white-space networks; the communications of the advanced meter infras-
tructure (AMI) and broadband Internet access for public school students. These applications are
utilized to underline the importance of the considered security attacks in practical settings. In addi-
tion, the thesis offers communication architectures for these applications and shows the practical,
economical, and societal benefits.

This work formulates the problem of robust radio spectrum telemetry using a grid-based model
and offers a range of solutions. The solutions include (1) model-based techniques that probabilis-
tically detect abnormalities using knowledge about signal propagation and shadowing formulas,
(2) data-based techniques based on machine learning classifiers that do not assume prior knowl-
edge about signal propagation models and only rely on direct training data, and (3) trust-based
techniques that use a small subset of remotely-attestable nodes as a foundation for trust, and sub-
sequently deter attacks using a combination of statistical sequential estimation and classification
techniques. The proposed techniques are evaluated using a novel methodology that relies in part
on predicted propagation data derived from real-world registered TV transmitter and terrain data
(from the databases of the FCC and NASA) for areas in Illinois and Pennsylvania.
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Chapter 1

Introduction

The proliferation of smartphones, and a subsequent demand for wireless Internet services, has

highlighted the scarcity of spectrum for data communications. The Cellular Telecommunications

Industry Association (CTIA), which includes AT&T and Verizon, recently requested the Federal

Communications Commission (FCC) to grant an additional 800 MHz of spectrum for data com-

munications by 2015 [13]. However, nearly all the spectrum that is ideal for long-range data

communications, i.e., between 300 MHz and 3 GHz, has been allocated to various primary users.

The FCC’s recent ‘white space’ ruling, which allows unlicensed devices to operate in unused

TV spectrum is a significant step towards alleviating this spectrum crunch. White spaces refer

to portions of spectrum that have been allocated to licensed users but are not in use at that time.

Devices determine if a TV channel is not in use at their location before using it to send and receive

data. This ruling has met with enthusiasm from industry, academia, and policy makers. The key

reason for this enthusiasm is two-fold. White spaces not only provide additional spectrum, they

also enable long-range communication since they are in the lower frequencies (below 700 MHz).

An important functionality when forming networks over white spaces is the aggregation of spec-

trum availability data from multiple white space devices. The need for aggregation arises in several

contexts. First, nearly all existing standards or proposals for white space networks, i.e. CogNeA,

IEEE 802.22, IEEE 802.11af and WhiteFi [1,4,18], require the white space base station to receive

spectrum availability reports from clients and operate on TV channels that are available at all nodes

in the network. The spectrum reports from clients can be very diverse, since white space networks

are expected to span a radius of up to 100 km [70]. Second, it has been shown that aggregating

spectrum sensing data from other devices (also called collaborative sensing) enables white space
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devices to sense at a higher threshold than when sensing alone. This is very useful since sensing

at low thresholds is very challenging [36, 74]. Finally, aggregation of spectrum sensing data from

white space devices can be used to build a nationwide database of spectrum availability across

locations [31]. This is similar to Wi-Fi wardriving data, and can be used for several purposes, for

example to improve the accuracy of the white space geo-location database that is being mandated

by the FCC [2, 3].

A threat to aggregating spectrum sensing reports, also referred to as radio spectrum telemetry, is

that some nodes may maliciously report inaccurate data. There may be nodes that seek to exploit

a spectrum in a given region by falsely reporting that a primary signal is present, or, dually, nodes

that seek to vandalize a primary by reporting that its signal is not present, thereby encouraging

interference from secondaries. The first attack denies the legitimate users’ access to the spectrum

and provides exclusive access to attackers, whereas the second attack creates chaos and interference

for primary and secondary users. Detecting these attacks is particularly challenging when (1)

attackers are coordinated and sophisticated and constitute a large fraction of nodes in an area, and

(2) the quantity under measurement (signal power) faces natural spatial and temporal variations,

as well as uncertainties due to noise, shadowing, and fading. These circumstances make it easier

for attackers to hide the potential abnormalities of their reports.

Countermeasures to prevent mischief are a key enabling technology for white space networks.

Existing strategies have focused on an instance of this problem – in the context of collaborative

sensing – for the detection of malicious nodes by identifying them as abnormal or outlier nodes

within a small ‘cell’ [26, 45, 59]. If one divides a service region into cells of sufficiently small

size, then nodes within a given cell can be expected to give similar readings. If a preponderance of

nodes in a given cell provide a reading in a common range, then other readings may be discarded as

outliers. Ideally this will prevent malicious nodes from being effective. Unfortunately, this strategy

suffers from a key drawback; there is the possibility that a given cell will have a preponderance

of malicious nodes. In addition, the solutions are often based on unrealistic assumptions about the

models and parameters of signal propagation, depend on detection threshold parameters which are
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usually tuned manually, or are often too conservative and not able to detect nimble manipulations

of data by sophisticated attackers.

In this thesis, we provide a range of mechanisms by which, despite the existence of coordinated

malicious false reporting attacks, spectrum measurement data can be robustly aggregated. The

following thesis statement summarizes what this work aims to prove:

Radio spectrum telemetry can be made quantifiably robust against coordinated malicious

misreporting attacks through the use of security-aware protocols and feasible trust infrastructure.

In Chapter 2, we lay the foundation for addressing the problem. First, we provide background

information on white space networking, spectrum sensing, and remote attestation. Second, we

describe the general setting, assumptions, and problem statement for the rest of the thesis. In

particular, we define the range of attacker models we consider throughout the thesis. This in-

cludes non-collaborating adversaries who act individually (also uncoordinated), collaborating ad-

versaries who act as a group (also coordinated), and omniscient adversaries who act as a group

and possess complete knowledge of the defense mechanism and sensor data, including that of the

non-adversaries.

In Chapter 3 (also [30]), we elaborate on Advanced Meter Infrastructure (AMI) communications

and broadband access for public school students as two applications for white-space networking.

We provide communication architectures for using white spaces, and show the practical, econom-

ical, and societal benefits. We also investigate the associated security issues, and further motivate

the importance of robust radio spectrum telemetry in this context.

In Chapter 4 (model-based protection [31]), we propose viewing the area of interest for detecting

primary presence (or absence) as a grid of square cells and use it to identify false reports. The pro-

posed mechanism starts by identifying outlier measurements inside each cell and ‘punishing’ them.

The punishment is in the form of exclusion or a low weight assignment in the proposed weighted

aggregation process. The mechanism proceeds by corroboration and merging of neighboring cells

in a hierarchical structure to identify cells with outlier aggregates, as a sign of significant malicious

3



node presence in a cell. The solution uses a simple model based on exponential decay and log-

normal distribution to account for the uncertainties in signal propagation. The chapter includes a

novel framework for quantifying the expected legitimate variations in measurements, which sys-

tematically reduces the likelihood of inaccurate classification of valid measurements as outliers.

We use simulations to evaluate the effectiveness of the proposed approach against attackers with

varying degrees of sophistication. The results show that depending on the attacker type and the

distance from primary to the region of interest, in the worst case we can nullify the effect of up

to 41% of attackers nodes. This figure is as high as 100% for areas that are not near the border of

primarys protection region.

In Chapter 5 (data-based protection [32]), we address an important limitation of the model-based

solution in Chapter 4. The model-based solution requires fairly accurate knowledge about the

signal propagation formula and parameters. In addition, one of the introduced detection thresholds

requires manual tuning, a strategy that is error prone and not easily scalable. Instead, we offer

an alternative called CUSP (for Classification Using Signal Propagation) using which a central

aggregation server can protect against malicious reports of spectrum availability. The key idea is

to let the data speak for itself. CUSP uses natural signal propagation data in a region to learn

a classifier that effectively understands the patterns of signal propagation in the region. It can

then use the learned classifier to efficiently filter out the malicious spectrum reports as they often

represent unnatural propagation patterns. We evaluate the performance of CUSP in detail. We

drive our evaluation on predicted propagation data derived from registered digital TV stations and

terrain data from the FCC and National Aeronautics and Space Administration (NASA), as well

as house density data from the US Census Bureau. We compute the signal strengths from the TV

stations for two regions in the states of Illinois and Pennsylvania. We find that our techniques

are quite effective with all three types of attacks, but regional variations have an impact that must

be properly addressed to assure consistent quality of detection. In particular, areas with hilly

terrain and urban activity must be treated in smaller cells. The resulting approach is practical and

effective for application in all areas and avoids arbitrary assumptions about models, parameters,
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and thresholds in favor of direct training data.

In Chapter 6 (trust-based protection [33]), we initiate a new direction in reliable radio spectrum

telemetry by relying on a small subset of nodes that can perform remote attestation. These nodes

can securely attest their operating state to a remote server, and will be excluded if they are detected

as compromised. Otherwise, they will be used as a foundation for security and reliability. To

that end, we propose a practical framework for using data from both attested and regular nodes

to deter attacks, while achieving precise results in the absence of attacks. More specifically, we

explore a strategy based on statistical sequential sampling and inference to obtain an estimate

for signal power in each small region. The sampling method uses data from all of the attested

nodes, as well as the minimum required data from the rest of the nodes to achieve results with a

pre-specified margin of error. Next, the data contributed by non-attested nodes is verified against

data from attested nodes in the neighboring areas. This step is performed using SVM classifiers

with quadratic kernels that are trained with an initial set of trusted data in the region of interest.

We evaluate this scheme using predicted signal power data obtained from applying empirical signal

propagation data on real-world TV transmitter and terrain data from the FCC and NASA databases.

We instantiate the evaluations to a hilly urban/suburban area in Pennsylvania and measure the

performance of our approach in the absence and presence of omniscient coordinated attackers. We

show the scheme is effective against such attacks even in cases where only a small subset of the

sensors can be remotely attested. In addition, we systematically enumerate the costs associated

with remote attestation and shed light on these costs for prototypes based on Trusted Platform

Modules (TPMs) and AVR32 microcontrollers. The data shows attestation may introduce non-

trivial costs, which motivates our approach to leveraging attestation efficiently to establish trust in

spectrum sensing results.

In Chapter 7, we provide a comprehensive review of the related work in two categories, white-

space networks, and sensor and ad-hoc networks. In each category, we enumerate the closest pieces

of related work and contrast them with this thesis. Finally, in Chapter 8 we conclude the thesis and

identify areas of future work.
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To summarize the original contributions, this thesis:

• Identifies and formulates a key threat to distributed spectrum measurements in white space

networks; attacks in which omniscient and coordinated attackers report false spectrum sens-

ing results in order to obtain exclusive spectrum access (exploitation) or create chaos (van-

dalism).

• Proposes two novel applications for white spaces, namely advanced meter infrastructure

communications and Internet access for public school students, and further motivates the

significance of exploitation and vandalism attacks through the lens of these applications.

• Provides a comprehensive treatment of the considered attacks using a grid-based model and

offers three general solutions: (1) model-based techniques that probabilistically detect abnor-

malities using knowledge about signal propagation and shadowing formulas; (2) data-based

techniques based on machine-learning classifiers; and (3) trust-based techniques that rely on

a small subset of trusted nodes.

• Introduces a novel method to build classifiers from location-tagged signal propagation data.

This obviates the need for relying on closed-form formulas, models, parameters, and thresh-

olds when analyzing signal propagation data. This approach detects misreporting attacks in

the process of centrally aggregating spectrum sensing data by building SVM classifiers.

• Creates a new direction in secure radio spectrum telemetry against coordinated misreporting

attacks that relies on a small subset of attestation-capable sensors, and offers a practical

framework for using statistical sequential estimation coupled with classifiers to deter attacks

and achieve quantifiably precise outcome.

• Presents a novel way to evaluate white-space applications using real-world transmitter and

terrain data.
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Chapter 2

Background and Problem Formulation

In this chapter we provide background information on white space networking, spectrum sensing,

and remote attestation. Next, we describe the general setting, assumptions, problem statement, and

attacker models considered in the rest of the thesis.

2.1 Background

2.1.1 White Space Networks

On November 4, 2008 (and subsequently on September 23, 2010) the FCC made historic rulings

that allowed unlicensed devices to operate over the licensed TV bands [2,3]. Wireless communica-

tions in this spectrum (below 700 MHz) benefit from favorable signal propagation and penetration

properties, which enable long transmission ranges. The opening of these bands for unlicensed use

represents the first significant increase in unlicensed spectrum below 5 GHz in over 20 years, and

is expected to promote more efficient spectrum use.

Access to this spectrum could enable more powerful public Internet connections (‘super Wi-Fi’

hot spots) with extended range, fewer dead spots, and improved individual speeds as a result of

reduced congestion on existing networks. Many other applications are possible, such as broadband

access to schools particularly in rural areas, campus networks that are better able to keep pace with

user’s increasing demands for bandwidth, home networks that are better able to support real time

streaming video applications, remote sensing of water supplies by municipalities and support for

the communications of the advanced meter infrastructure in the smart grid [30].

A number of TV band device applications are already operating on an experimental basis. The
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city of Wilmington North Carolina is trialing ‘smart city’ applications, including public ‘hot spots,’

low-cost broadband to a low-income housing development, and water level and water purity sen-

sors for compliance with Environmental Protection Agency requirements and flood controls. In

addition, a demonstration project in Claudville Virginia is bringing broadband access to a rural

elementary school, as well as to consumers in their homes, and newly established public hot spots

in the community. Plumas County California has undertaken a ‘smart grid’ trial for electricity

networks, which allows the electric cooperative to manage the electrical system, obtain data from

substations, and manage power flow. The network in that trial also enables free energy monitoring

tools that allow consumers to save energy and money, for example, by identifying appliances that

are always on and using energy [3].

2.1.2 Spectrum Sensing and Aggregation

Sensing the spectrum to identify unused channels can be used to improve the performance of white

space networks. This is despite the FCC’s September 2010 ruling which exempts the devices

that incorporate geo-location and can access a new TV band database from mandatory spectrum

sensing: (1) The ruling still allows for operation of sensing-only devices that cannot or do not

access the database. (2) The database is built from conservative propagation models, which results

in declaring many unused channels as occupied in places far from the transmitters. Real-time

spectrum sensing data can provide a more accurate view of spectrum availability, or be used to

improve the database results. (3) In places where multiple channels are available, the spectrum

sensing details can reveal the highest quality channels for communications.

Energy detection is the most popular approach for signal detection. This is often attributed to

its simplicity and small sensing time (less than 1ms). An energy detector measures the signal

power on a target frequency and compares it against a detection threshold λ to determine whether

a primary is present. For example, in the case of primary digital TV (DTV) transmitters, FCC has

mandated -114 dBm as the detection threshold [2]. If a specific signature of a signal such as pilot,

field sync, or segment sync is known, the more sophisticated feature detectors may be employed
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to detect primary signals. Feature detectors are often more accurate, but are more complex to

implement, and require additional information and sensing time (up to 24ms) [36, 47].

There exist three scenarios for centrally aggregating spectrum sensing results from sensors in a

large region.

• Spectrum sensing data from deployed spectrum sensors or volunteer (mobile) white-space

devices can be used to build a regional or nationwide spectrum availability database. Such

a database can be used to augment the white space geo-location database mandated by the

FCC, or to learn spectrum usage as part of the recently passed Spectrum Inventory Bill [8].

• A white-space service provider or base station may collect spectrum sensing data to de-

termine areas of primary presence from cognitive radios in its network. This centralized

approach has been endorsed by the IEEE 802.22 WRAN standard draft [4], CogNeA [1]

and recent research publications [18]. The spectrum sensing data collected by the service

provider may be provided by not only in-network cognitive radios, but also deployed spec-

trum sensors, and additional volunteer (mobile) devices to determine areas of primary pres-

ence.

• Collaborative Sensing, which refers to the process of combining spectrum sensing results

from cognitive radios for the purpose of primary detection. The main benefit of this approach

is the mitigation of multi-path fading and shadowing effects, which improves the detection

accuracy in highly shadowed environments [36]. In addition, it allows for relaxation of

sensitivity requirements at individual CRs [74].

To capture the common nature of the above scenarios, we focus on the case of building a regional

spectrum availability database by a service provider. The database may then be combined with

databases from other regions to form a nationwide database of spectrum sensing. The spectrum

sensing data used to populate the database is provided by one or more of the following sources.

• Volunteer Radios: a set of (mobile) devices with different owners. The data would be col-

lected by a modern ‘mobile app’ built to perform spectrum sensing at its current location and
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report the results to a central server. This form of participatory sensing is often referred to

as crowdsourcing in this context.

• In-Network Cognitive Radios: cognitive radios that are part of the service provider’s net-

work.

• Dedicated Sensors: sensors (in the form of a wireless sensor network) deployed for the

specific task of spectrum sensing alongside the main white-space network [27].

At a fine-grained level, there exist two broad classes of strategies for combining individual

spectrum sensing reports (within a small region, or cell). Soft-combining techniques combine

raw signal power measurements from CRs, whereas hard-combining techniques combine binary

decisions from CRs. Note that directly combining individual results happens only within small

cells where nodes are expected to provide similar readings.

One of the most popular methods for soft-combining is Equal Gain Combining (EGC). In EGC,

each node Ni of the m nodes inside a small area periodically provides its signal power measure-

ment pi to the central server. Assuming a vector of received power observations (p1, p2, . . . , pm),

and a nominal Gaussian model for shadowing and multi-path distribution, EGC is the maximum

likelihood detector. It simply averages the power measurements of individual nodes and compares

it to a detection threshold λ. That is, the primary is present if Pavg = 1
m

∑m
i=1 pi ≥ λ. The

threshold λ is determined based on the power of the transmitter and the radius around it, r, that

needs to be protected. This is done such that the probability of missed detection stays below a

threshold (e.g. .95), while the probability of false alerts are minimized [72]. EGC is known to have

near-optimal performance in a diverse set of fading channels with more realistic assumptions [71].

2.1.3 Remote Attestation

Remote attestation is a technique for a system to provide certified information about its operating

state (i.e. software, firmware, or configuration) to a remote party. This process is typically initi-

ated by a request from the remote party. Upon receipt of the request, the queried system creates
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a (signed) record of the system’s operating state and sends it to the initiator. To securely record

and certify its current state, the system needs to contain a number of components. Trusted hard-

ware components are often used to this end, although software can also be used in some cases.

Regardless, remote attestation imposes additional computational, storage, energy, time, and poten-

tially manufacturing costs on both parties. On desktop PCs, the Trusted Platform Module (TPM)

is often used to provide remote attestation functionality. The Trusted Computing Group (TCG) is

developing trusted computing standards specifically for mobile devices to minimize costs and sup-

port appropriate usage models, and have specified several primitives for a Mobile Trusted Module

(MTM). MTMs are expected to be available for many new mobile applications in the near fu-

ture [10]. Previous work has also shown that remote attestation can feasibly be implemented in

software on-chip for embedded processors such as AVR32 micro-controllers [53].

2.2 Setting and Problem Statement

We consider building a spectrum availability database from received signal power data from a

combination of volunteer radios, in-network cognitive radios, and deployed sensors. Unless specif-

ically differentiated, we refer to all of them as nodes or sensors in the rest of this paper. Due to its

widespread adoption, ease of implementation, and small sensing time, we consider sensors to be

energy detectors [15, 70]. We also assume the primary signal faces path loss and shadow fading

due to irregular terrain and obstacles such as trees, buildings, walls, and windows.

The spectrum availability database represents the region of interest as a grid of small cells (or

tiles) on the map of the region. Each cell may be a 1km× 1km square and is the unit in which com-

bining individual results, or collaborative sensing, occurs. Within a tile, we combine the raw signal

power measurements from nodes to determine primary presence (as opposed to binary yes/no re-

sults). This allows for using signal power as a measure of quality among the available channels

and enables us to detect misreporting attacks. Unless otherwise specified, we consider EGC to be

the method for combining individual measurements in each cell. EGC simply averages the power
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measurements of individual nodes in each frequency channel and compares it to a detection thresh-

old λ. In the case of primary Digital TV (DTV) transmitters, we often use the FCC-mandated -114

dBm as the detection threshold.

2.2.1 Exploitation and Vandalism

We are specifically focused on addressing robust aggregation of spectrum measurements in pres-

ence of compromised nodes among the distributed set of nodes. An attacker may compromise

a (large) subset of the nodes and make them act in cooperation in order to change the spectrum

sensing outcome. For example, they may seek to change the primary signal power for a tile (cell)

in the database from a value below threshold (-120 dBm) to a value above threshold (-100 dBm),

or vice versa. The first attack is called exploitation, and the second is called vandalism.

In Chapters 4 and 5 we assume no prior knowledge about the legitimacy of nodes, and therefore

we mostly focus on detecting attacker nodes, or attacker-dominated cells using (the irregularities)

in their measurements. However, in Chapter 6 we assume an additional means to establishing

trust; we assume that a small subset of nodes are able to perform remote attestation. For any such

attestation-capable node, the aggregation server can detect whether it is compromised and thus

running illegitimate code. In that chapter, we investigate ways to efficiently and effectively use

this capability to obtain reliable spectrum sensing results. This question is particularly important

when the attestation-capable nodes constitute a small fraction of the nodes. This may be due to the

low penetration of the technology among the volunteer nodes, or cost considerations of deploying

and using this capability by the service providers in the deployed sensor scenarios. Regardless of

the cause, it is desirable to achieve highly reliable spectrum aggregation results using only a small

set of attestation-capable nodes.
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2.2.2 Attacker Sophistication

We consider the following general attacker models throughout the thesis. Note that the attackers’

behavior should be considered through the lens of a particular cell that the attackers aim to dom-

inate. The exact details of domination depend on the combining rule. For example, for the EGC

rule it involves changing the average signal power from a status indicating primary absence to one

indicating primary presence, or vice versa. In addition, note that due to differences in the proposed

defense mechanisms (model-based in Chapter 4, data-based in Chapter 5, and trust-based in Chap-

ter 6) the specific instantiations if these models may vary slightly. The details of such instantiations

and differences will be explained in corresponding chapters.

1. Uncoordinated attackers do not have precise information on the number and power mea-

surements of other legitimate or attacker nodes in the cell. Each attacker node aims to dominate

the cell without cooperation with other attackers, if any. This may be due to lack of information,

unavailability of communication channels, or to reduce the likelihood of being detected as a result

of communicating with peers. In this case, a compromised node that senses a signal power below

(above) the detection threshold may falsely report a value such that the average power in the cell

changes to a value below (above) the detection threshold. The attacker may use rough estimates of

the number and measurements of other nodes for this purpose (for example, for the latter it would

be a close value to the attacker’s true measurement).

2. Coordinated attackers do not know the number and power measurements of the legitimate

nodes in the cell, but may roughly estimate them. They do, however, know their own number and

measurements, and act according to a coordinated strategy; they collude and use the estimates to

calculate the value that each of them should report so that they can dominate the cell and change

the detection outcome to a value above (or below) threshold.

3. Omniscient attackers are coordinated attackers that know the exact number and measure-

ments of other legitimate users. Therefore, they can simply calculate the exact power levels they

should report to change the average power level to a value slightly above (or below) threshold, e.g.

1dB. In addition, when possible, we assume the attackers know the exact details of the deployed
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defense mechanism(s) and can carefully craft their misreporting strategy to avoid or minimize their

chances of being detected.

2.2.3 Additional Assumptions

While some of the nodes may be unreliable, malicious, or compromised insider attackers, we as-

sume that each node maintains a secure link to the base station for sending spectrum sensing results,

and that attackers are unable to fabricate nodes or identities arbitrarily (‘Sybil’ attacks [62]). The

secure links can be realized using pre-shared keys or a PKI, which may also serve as a foundation

for preventing Sybil attacks by being associated with the identity of each node. Alternatively, one

can take the dual view that we aim to demonstrate a method that forces adversaries to discover and

deploy a practical Sybil attack, which requires a higher level of sophistication on the attacker’s

side (e.g. faking multiple link layer addresses). We also assume that the locations of nodes are

reliably known through GPS or other localization techniques and nodes do not misreport their lo-

cations. This assumption is easily achievable in two of the most popular proposed applications

of white space networking that assume fixed nodes with known locations: (1) Internet access for

consumer premises using IEEE 802.22 wireless regional area networks [70], and (2) advanced me-

ter infrastructure communications [30]. In cases where the network contains untrustworthy mobile

devices, secure localization and location verification techniques may be employed to ensure nodes’

locations are not forged [23, 51, 54, 55, 64]. In addition, for exploitation, attackers do not gain any

tangible benefit from misreporting their location. The above assumptions are common for the type

of analysis we perform here [26, 45, 59]; if they are violated then additional protective measures

are required.
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Chapter 3

Illustrative Examples

In this chapter we propose two speculative applications for white-space networking: Advanced Me-

ter Infrastructure (AMI) communications, and high-speed Internet for public school students. For

each application, we provide a communication architecture using white-spaces and show the band-

width, deployment, cost, and societal benefits. We also investigate security issues associated with

the proposed architectures, and emphasize the importance of robust spectrum data aggregation1.

3.1 Advanced Meter Infrastructure

Advanced Meter Infrastructure is an integral part of the recent smart grid initiatives. It refers to

systems that measure, collect, and analyze energy usage and interact with smart (advanced) meters

through some communication media. The reconfigurable nature and communication capabilities

of smart meters allow for deploying a rich set of applications in the smart grid. Prime application

instances are automated meter reading, outage management, demand response, electricity theft

detection, and support for distributed power generation. The communication architecture for AMI

must meet the needs of current and future applications in a cost-effective, scalable, reliable, and

secure way. Of particular interest are two-way communications between the smart meters and

service providers such as the utility companies. Figure 3.1 depicts a common approach to AMI

communication in the existing deployments.

In this model, hundreds to thousands of meters form a mesh network using proprietary protocols

in the public industrial scientific and medical (ISM) frequency bands. The mesh network is used to

1A substantial portion of the material in this chapter is adopted from Fatemieh, Chandra, and Gunter’s recent
publication [30].
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Figure 3.1: Current AMI communication architecture.

route the data to an access point (often mounted on a telephone pole). The access point aggregates

and relays data between the meters and the utility. This part is often performed using cellular data

services such as GPRS or EVDO. This approach suffers from at least three shortcomings. First, the

ISM bands are noisy and crowded in urban areas and not well suited to the distances needed in rural

areas. Second, cellular links incur the extra expense associated with licensed bands. Moreover,

there is considerable competition for this bandwidth in urban areas and limited availability in rural

areas. Third, the use of proprietary mesh network technology reduces inter-operability and impedes

meter diversity.

In this section we consider the idea of using white spaces as part of AMI. White space com-

munications leverage licensed spectrum opportunistically when it is not being used by incumbent

transmitters such as digital TV transmitters. We believe the high bandwidth and long transmis-

sion ranges offered by white spaces can provide substantial benefits to the AMI. To that end, we

propose a two-layer architecture for AMI communication using a combination of standardized

protocols and successful research prototypes. We show that the proposed architecture can address

some limitations of the state of the art, particularly in terms of bandwidth, deployability, and cost.

In addition, we investigate reliability and security issues associated with the proposed architecture.

Power Grids in Rural Regions AMI provides a number of general benefits, some of which we

enumerated earlier, but are there any benefits of white space AMI for rural regions beyond these
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general benefits? We speculate here on at least one such possibility. Power grids in rural regions

typically have the characteristic that loads are sparsely distributed along the power lines, often

only at farm houses and machine sheds. Such loads must be metered and meters are expensive to

monitor. Thus a 200 acre farm might have a half a mile of adjacent power line but have power only

from a meter at the farm house on a corner of the property. If, for example, there is an electric fence

on a remote part of the property then power must be supplied with a battery since it is impractical

to run a power line from the meter. The value of power harvesting for military purposes is well

recognized [6, 7] but civilian uses will require metering. If it were feasible to add meters and

power links easily along the utility power lines then this problem could be significantly diminished.

Generally power companies do not wish to add new meters for such low loads, but when the cost

of collecting billing data is diminished by suitable wireless communications infrastructure (based

on white space for instance), then costs can be contained and a valuable service becomes feasible.

3.1.1 Proposed Architecture

We believe the bandwidth, range, and cost improvements offered by white spaces can provide sub-

stantial benefits to AMI. Figure 3.2 depicts the proposed architecture for AMI communication.

This architecture involves two types of wireless networks in a hierarchy. At the lower level, there

are small-scale white space networks which are represented as small circles in the picture. A prime

candidate for implementing such networks would be WhiteFi [18]. For simplicity we refer to the

general class of such networks as WhiteFi in the rest of this chapter. Due to the favorable propaga-

tion characteristics of the TV spectrum, WhiteFi networks can easily expand in areas with radius

of up to 2km, while using commodity Wi-Fi transmitters and conforming to FCC regulations. The

WhiteFi networks are envisioned to be established and maintained by the utility companies.

At the upper level in the hierarchy there exist 802.22 networks that provide connectivity between

WhiteFi access points and the utility company. As it will be shown below, this provides benefits in

terms of cost and broadband penetration in rural areas, while the standardization improves inter-

operability. The 802.22 networks do not need to be operated by the utility companies. We envision
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Figure 3.2: Proposed architecture for AMI communications over white spaces.

them to be operated by independent broadband service providers that offer service to a utility

by admitting the utility’s access points in their network. The 802.22 service provider may serve

other clients such as residential households and mobile devices as well. This provides broadband

access similar to ADSL and cable modems. The two-tier architectures provides a balance between

independence and cost savings for the utility, while maintaining high data rate connections to the

meters.

The large number and geographical separation of smart meters makes them a valuable resource

for distributed spectrum sensing. The smart meters are owned by the utility, however, the 802.22

service provider can obtain the spectrum sensing data from the meters through the WhiteFi base

stations. This reduces the number of spectrum sensing units the 802.22 service provider needs to

deploy in order to build dynamic spectrum availability maps. This can be an important service that

the utility can provide to the 802.22 service provider, and in exchange, receive low service rates

and reimbursement for deploying meters with spectrum sensing capability.

In order to diversify its sources for spectrum sensing and avoid relying only on meters that are

owned by another entity (the utility), the 802.22 service provider may need to collect spectrum

sensing data from other means as well. Such sources could be other clients of the 802.22 service

or sensors deployed specifically for this purpose [68]. In addition, in the case of availability of
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transmitter geo-location databases, the list of available channels from both sources (i.e. spectrum

sensing and transmitter databases) should be combined to derive the prioritized list of available

channels. In all these scenarios, the WhiteFi and 802.22 base stations must coordinate their usage

of the spectrum using co-existence techniques similar to those proposed in the 802.22 standard

draft.

We argue that the proposed architecture provides the following benefits. First, compared to the

state of the art, it allows for higher data rates at an economical cost for communication between

the meters and the utility. Second, the penetration and long-range transmission properties in white

spaces allow for direct communication between the meters and the (WhiteFi) access points. This

obviates the need to form complex and unreliable mesh networks that consume considerable power

for maintenance and routing. Third, it provides a valuable base of spectrum sensors (the smart

meters) for the 802.22 service providers, which may lower their costs and improve their spectrum

sensing. This will also provide a leverage to the utilities for discounts from the 802.22 service

providers. In addition, this will result in better protection for primary transmitters, which has been

the subject of substantial concern by FCC and spectrum license holders. Fourth, since the proposed

solution provides cost savings and a revenue stream for 802.22 service providers, it contributes to

the cause of providing affordable broadband service to rural communities. Fifth, since the approach

insists on standardized protocols, it allows for inter-operability between products from different

vendors.

One may consider the following limitations for the proposed approach. First, it requires a one-

time cost of equipping smart meters with cognitive radios. The cost, however, may be small if

the meters are produced at a large scale and could be covered by the spectrum sensing service

they provide to the 802.22 provider. Second, there might be times or locations where no white

space is available. In this case, the networks can temporarily operate in the ISM bands at lower bit

rates. Therefore, in the worst-case scenario the performance would be similar to that of the existing

architectures. Alternatively, a narrow band can be purchased at a small cost for emergency backup

usage. Either of the above approaches guarantee that the network maintains minimum connectivity.

19



Third, there may exist various security concerns associated with the proposed architecture. These

concerns are discussed in Section 3.3.

3.2 Public School Network

Providing free Wi-Fi broadband access in public areas or entire cities has been pursued by a number

of municipalities around the world. Such efforts are often aimed at making wireless access to the

Internet a universal service. While there exist a number of modestly successful instances (e.g.

Luxembourg [14]), many attempts have failed due to assorted economical and technical challenges

(e.g. Philadelphia [12]). One particularly important technical challenge is the limited range of

service offered by commodity Wi-Fi base stations. This results in the need for deploying a large

number of (routing-capable) base stations in order to form meshes, maintain connectivity, and

provide extensive coverage.

In this section, we speculate on a sample application for achieving a similar goal to that of

city-wide Wi-Fi. More specifically, we propose using white-spaces for providing city-wide (or

neighborhood-wide) broadband Internet access to students enrolled in public schools; both at times

when they are in school and out. In the case of small to mid-size cities, such a service may

cover the entire city, while in the more urban metropolitan areas, the unit of coverage may be

a neighborhood. This service increases broadband access for students, which can alleviate the

‘digital divide’ problem affecting impoverished communities, and potentially improve the quality

of education.

3.2.1 Proposed Architecture

We believe the long range and favorable penetration properties offered by white spaces can play a

key role in providing widespread mobile Internet access to public school students. To that end, we

propose an architecture similar to that of AMI communications, which is illustrated in Figure 3.3.

The large tower in the figure represents an 802.22-like long-range access point that is directly
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connected to the Internet. These long-range access points extend Internet access to the WhiteFi

base stations. The idea of using white spaces to provide the ‘middle mile’ connection between

802.22-like white space access points and short-range wireless hot-spots has been successfully

deployed in rural Virgina [9]. In that instantiation the hot spots use Wi-Fi technology to reach to

the end devices, which suffers from limited range and bandwidth. However, as discussed earlier in

this chapter, each WhiteFi base station can provide coverage in areas up to 2km, and can potentially

access large portions of unused spectrum to provide higher bit rates. Therefore, for this application

we propose using white spaces for both the ‘middle mile’ and ‘last mile’ communications.

Internet 

Public School 

Local Business or 
City Building 

IEEE 802.22 
Access Point 

White-Fi 
Access Point 

Figure 3.3: Proposed architecture for white space public school network.

As it can be seen in Figure 3.3, a small number of the WhiteFi base stations would be installed

at the schools, while a larger portion of them would have to be installed throughout the area to

provide comprehensive coverage. With proper prior configuration, the installation can be as simple

as plugging an access point box to power. Plausible places for deploying access points would be

city buildings and local businesses, which in return can be provided with window stickers showing

their support for the local school system.
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The end-users are students with (mobile) laptops or tablets that are equipped with cognitive ra-

dios; either built-in like WiFi, or through external PCMCIA cards or USB tokens. The students

connect to their closest WhiteFi access point to obtain internet access. The authentication is per-

formed through username and password provided by their school. Similar to AMI, on a periodic

or on-demand basis, these devices perform spectrum sensing and report the results to the central

(802.22) base station, or a regional/national spectrum availability database. Similarly, the WhiteFi

base station can also perform spectrum sensing and report the results. The results are centrally

aggregated to improve knowledge about spectrum availability, which is used to govern spectrum

usage between the 802.22 access point and WhiteFi bases stations, as well as between WhiteFi

base stations and end-devices. Therefore, the spectrum sensing task is effectively crowdsourced to

the mobile student devices and a few WhiteFi base stations.

3.3 Security Threats

In both applications, primary emulation attacks can disrupt communications over white spaces. In

a primary emulation attack, an attacker may modify the air interface of a CR to mimic a primary

transmitter signal’s characteristics, thereby causing legitimate secondary users to erroneously iden-

tify the attacker as a primary user, and abandon the channel. Of the body of existing work, LocDef

utilizes both signal characteristics and location of the transmitter to verify a primary signal trans-

mitters’ location [27]. If it does not match the known locations for primary transmitters, the signal

is from an attacker. This approach, however, requires knowledge of the location of the primary

transmitter, and thus may not be practical in some circumstances.

An alternative is using cryptographic and wireless link signatures to authenticate primary users’

signal in presence of attackers that may mimic the same signal [58]. This is achieved by using a

helper node close to a primary user to enable a secondary user to verify cryptographic signatures

carried by the helper node’s signals and then obtain the helper node’s authentic link signatures to

verify the primary users signals. Liu et al. [57] also study the problem of detecting unauthorized
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spectrum usage, where the authorized transmitter may be mobile. They propose two analytical

methods and a solution based on machine learning to detect anomalous transmission by using the

characteristics of radio propagation.

Another key threat, which is the focus of this thesis, is malicious false reporting of spectrum

sensing results by end devices. The majority of end devices are cognitive-radio equipped advanced

meters in the case of AMI, and mobile laptop or tablet PCs in the case of public school network. In

both applications, spectrum measurement and reporting by end devices can significantly improve

the operation of the network. The base stations collect spectrum sensing reports from the cognitive

radios and store them in a database to govern the usage of the spectrum. In both cases, there exists

the possibility that the software on end-devices be compromised by viruses or self-propagating

worms. Therefore, the attacker may gain control of multiple such devices and use them as a plat-

form to launch coordinated exploitation and vandalism attacks. For example, in the case of AMI

an adversary may be interested in compromising the software on advanced meters in a neighbor-

hood to make them falsely declare available spectrum as occupied. He can then exclusively use

that spectrum for his/own benefit. Similarly, college students’ computers may be manipulated by

themselves, or their classmates, in order to perform vandalism attacks and create chaos and inter-

ference. Defense against these attacks is the subject of this thesis, and will be explored in the rest

of this thesis.
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Chapter 4

Model-Based Protection

In this chapter we propose viewing the area of interest for detecting primary presence (or absence)

as a grid of square cells and use it to identify and disregard false reports. The proposed mechanism

starts by identifying outlier measurements inside each cell and ‘punishing’ them. The punishment

is in the form of exclusion or a low weight assignment in the proposed weighted aggregation pro-

cess. The mechanism proceeds by corroboration and merging of neighboring cells in a hierarchical

structure to identify cells with outlier aggregates, as a sign of significant malicious node presence

in a cell. The solution uses a simple model based on exponential decay and log-normal distribution

to account for the uncertainties in signal propagation. The chapter includes a novel framework

for quantifying the expected legitimate variations in measurements, which systematically reduces

the likelihood of inaccurate classification of valid measurements as outliers. We use simulations

to evaluate the effectiveness of the proposed approach against attackers with varying degrees of

sophistication. The results show that depending on the attacker-type and the distance from primary

to the region of interest, in the worst case we can nullify the effect of up to 41% of attackers nodes.

This figure is as high as 100% for areas that are not near the border of primarys protection region1.

4.1 Grid-Based Hierarchical Approach

In this section we first introduce the soft-combining technique for collaborative sensing based on

maximum likelihood estimation. Our approach is based on this method of collaboration among

nodes. Next we provide a ‘basic approach’ which incorporates the basic ideas in the proposed

1The majority of the material in this chapter is adopted from Fatemieh, Chandra, and Gunter’s recent publica-
tion [31].
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scheme. We extend the basic approach to a ‘weighted approach’ which is the main protocol we

use to evaluate our solution in Section 4.3.

4.1.1 Maximum Likelihood Detector

Consider a square grid consisting of n× n square cells. Each cell is the basic unit of collaborative

sensing and we call it a level 0 cell, or simply cell. The dimensions of a level 0 cell C are denoted

by r0 × r0. Consider a level 0 cell containing m nodes. The outcome of sensing by node Ni is

pi, which represents an estimate of the received primary power at node Ni. In dB, this is written

as pi = pt − (10 log10 r
α
i + Si + Mi) where pt is the transmit power of the primary signal, ri is

the distance from Ni to the primary transmitter, 10 log10 r
α
i represents the signal attenuation with

exponent α (typically 2 < α < 4), and Si andMi are losses due to shadowing and multipath fading.

We adopt the log-normal shadowing model [63] and therefore consider Si and Mi to follow a

Gaussian distribution (Si+Mi ∼ N(µs, σ
2)) on the dB scale. Therefore we have pi ∼ N(µ(r), σ2),

where µ(r) = pt − (10 log10 r
α
i + µs). For simplicity of analysis, unless otherwise noted, we

consider µs to be 0 and σ to be independent of the distance to the transmitter [72].

Given a vector of received power observations (p1, p2, . . . , pm) for this cell, a maximum likeli-

hood (ML) detector would determine the primary presence by averaging the power measurements

of individual nodes and comparing it to detection threshold λ [36, 72]:

Primary is

 Present, if Pavg = 1
m
∑m

i=1 pi ≥ λ

Absent, otherwise.
(4.1)

λ is determined based on the power of the transmitter and the radius around it, r, that needs to

be protected. This is done such that the probability of missed detection stays below a threshold

(e.g. .95), while the probability of false alerts are minimized. λ can be determined for a cell with

m nodes as follows. If each measurement at distance r is distributed according to a normal distri-

bution with mean pr = pt − (10 log10 r
α) and standard deviation σ, we have Pavg ∼ N(pr,

σ2

m
).
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We can determine λ such that:

Pr(Pavg ≥ λ) = .95⇒ λ =
σ√
m
Q−1(.95) + pr (4.2)

where Q is the standard Gaussian distribution tail function and Q−1 is its inverse.

4.1.2 Basic Approach

It is easy to show that a few malicious nodes that report extremely high or low measurements can

significantly skew the average in Equation 4.1, and thus alter the detection outcome. To that end,

we propose a hierarchical structure for reducing or eliminating the effect of maliciously misreport-

ing nodes. At the lowest level of the hierarchy (level 0) there exist level 0 cells. At higher levels of

the hierarchy, each level l cell constitutes the area covered by b level l − 1 cells that are adjacent.

b is called the branching factor of the hierarchy and we assume
√
b is an integer greater than one.

Figure 4.1 provides an illustration for b = 4.

In simple words, our scheme first aims to detect outlier measurements inside a cell by peer

comparisons. If the attackers compromise a large fraction of nodes in a cell, they effectively take

over the call and may no longer be detectable as outliers in the cell. Therefore, we use the hierarchy

to compare each cell’s average with its neighbors to detect if it is unexpectedly high or low. This

corroboration allows our protocol to identify ‘outlier cells’ with significant attacker presence.

Consider a level 0 cell Cj that contains m secondary nodes. We define a dispute threshold for

level 0, d0, as the maximum acceptable difference between the measurements of two nodes inside

that cell. In Section 4.2 we provide a disciplined mechanism for deriving the dispute thresholds.

As it will be shown, the dispute thresholds may vary for different cells. At level 0, pairwise

comparisons between measurements of individual nodes are performed inside each cell. In each

pairwise comparison between nodes Ni and Nj , if the difference is greater than d0, Ni and Nj’s

dispute counts, ci and cj , are increased by one. After all pairwise comparisons, if ci
m

is greater than

or equal the outlier threshold for level 0, τ0 (0 < τ0 < 1, e.g. τ0 = .75), the node is flagged as an
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outlier and is excluded in the primary presence calculation in Equation 4.1. In other words, for a

node not to be an outlier, at least a fraction (1− τ0) of the nodes in its cell should be within its d0

distance. This method for outlier detection is an instance of the well-known distance-based outlier

detection techniques in the literature. Formally, an object o in a data set D is a distance-based

outlier with parameters pct and dmin if at least a fraction pct of the objects in D lie at a distance

grater than dmin from o [40].

C3:L0 C4:L0

C1:L0 C2:L0C5: L1

C6: L2

C7 ≈ Entire Grid : L3

Secondary Nodes 
in a level 0 cell Ck

Primary 
Transmitter

r0

Figure 4.1: Cells of different levels in a hierarchy with branching factor b = 4. Ci : Lj denotes
cell Ci at level j.

The higher levels of the hierarchy are formed as follows. A collection of b adjacent level 0 cells

form a r1 × r1 level 1 cell, where r1 =
√
br0. At this step, after discarding outliers, the average

signal presence at each of the consisting level 0 cells is calculated. The b resulting averages are

compared in a pairwise fashion, and at each comparison, the dispute count is increased for a level

0 cell that has a difference greater than the dispute threshold for level 1, d1, with a neighboring

cell. Again, after all comparisons, if a cell’s dispute count divided by the number of cells (b) is

greater than the outlier threshold ratio τ1 (0 < τ1 < 1, e.g. τ1 = .75), the cell is flagged as an

outlier and its result is considered unacceptable. The same procedure (averaging and neighbor

comparison) is applied for up to lmax levels, and at each level if a cell j is flagged as outlier, all the

cells it contains are flagged as ‘indeterminate’ for which primary presence cannot be accurately
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determined. For example in Figure 4.1, if C5 is an outlier, the primary presence at C1, C2, C3, and

C4 is indeterminate. For indeterminate cells, we consider primary presence to be difficult to tell, in

which case an alternative source of information or method should be used for decision-making. For

example, if there exist out-of-band mechanisms for establishing high trust in a subset of nodes, we

can rely only on the measurements of the (few but trusted) nodes in that region. We do not explore

this particular method in this chapter, and leave it as an item of future work. Therefore, in our

first set of simulations (see Section 4.3) we simply report these cells as indeterminate. However,

in Section 4.4, once we provide other means (based on median) to identify indeterminate cells,

we propose and evaluate a simple method based on the average of 8 surrounding cells for primary

detection in indeterminate cells.

The following Propositions state the limits that the basic approach imposes on exploitation at-

tacks. Similar results can be derived for vandalism attacks.

Proposition 1 Consider a level 0 cell with dispute threshold d0 and outlier threshold τ0 under an

exploitation attack. Let α < (1− τ0) be the fraction of compromised nodes. If the average power

of the un-compromised nodes and the average power including compromised nodes are denoted

by m and m′, under the basic approach we have: m′ ≤ m+ 2d0α.

Proposition 2 Consider level i cells Cl, . . . , Cl+b with averages ml, . . . ,ml+b that constitute the

level i+ 1 cell Ct with dispute threshold di+1. Let the outlier threshold τj = (b− 1)/b for all level

j > 0 cells. Consider a level i cell Cn ∈ {Cl, . . . Cl+b} under an exploitation attack. In order

for Cn with the attacker influenced average m′n to stay undetected as an outlier under the basic

approach, the following property should hold: m′n ≤ maxk∈{l,...,l+b}−{n}(mk) + di+1.

As an example for exploitation, consider a level 0 cell Ck (dispute threshold = d0
k) with a

fraction α of attackers. Assume the conditions of Propositions 1 and 2 hold, and lmax = 2. Ck

is in level 1 cell Cl (dispute threshold = d1
l ). For ease of exposition, we represent all level 0

cells (excluding Ck) that are in Cl by Ck+1, . . . , Ck+b−1. Also assume that Cl is in level 2 cell
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Cm (dispute threshold = d2
m). For ease of exposition, we represent all level 1 cells (excluding Cl)

that are in Cm by Cl+1, . . . , Cl+b−1. Propositions 1 and 2 provide the following constraints on the

attacker influenced average for Ck, denoted by m′k:

(1) m′k ≤ mk + 2d0
kα,

(2) m′k ≤ max
k+1≤i≤k+b−1

(mi) + d1
l ,

(3) m′k ≤ b max
l+1≤i≤l+b−1

(mi) + bd2
m −

k+b−1∑
i=k+1

mi.

4.1.3 Weighted Approach

The basic approach may result in flagging a number of nodes, level 0 cells, and higher level cells

as outliers. The outlier nodes are excluded in the averaging for their respective cells. Likewise,

the outlier cells are excluded in the averaging at higher levels, and the primary presence status in

them is considered indeterminate. We propose using the results of the basic approach to assign and

update weights to individual nodes over time (at the end of each round). In a level 0 cell Ci, each

node Nj is assigned a weight wj such that
∑

Nj∈Ci wj = 1. In a cell with m nodes, each node’s

weight is initialized to 1
m

. We do not assign weight to cells. At level 0, the weighted sum of node’s

measurements is compared to the detection threshold:

Primary is

 Present, if
∑m

i=1 wipi ≥ λ

Absent, otherwise.
(4.3)

Outlier detection is performed similar to the basic scheme. The only difference is that cells (not

nodes) that are flagged as outliers can be assigned a ‘low’ or ‘high’ label; if the average value at an

outlier cell is considered too low compared to its peers, it is flagged as a low-outlier, otherwise it

is a high-outlier. After all the outlier detection and averaging is performed (starting from level 0,

up to level lmax), Algorithms 1 and 2 are used to update the weights of nodes for the next round. In

these algorithms, functions LowOutlier(C) (HighOutlier(C)) are considered to return ‘true’ if C is
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Algorithm 1 Determine Level 0 Cell Status
Input: Level 0 cell C
lowCount← 0; highCount← 0
for each Ci ∈

(
Ancestors(C) ∪ {C}

)
s.t. Level(Ci) ≤ lmax

if LowOutlier(Ci) then
lowCount ++

else if HighOutlier(Ci) then
highCount ++

end if
if highCount + lowCount > 1 then

UpdateWeights(C,‘conflicted’)
else if highCount == 1 then

UpdateWeights(C,‘high’)
else if lowCount == 1 then

UpdateWeights(C,‘low’)
else // Neither C nor any of its ancestors is an outlier

UpdateWeights(C,‘neutral’)
end if

a low-outlier (high-outlier) cell.

4.2 Dispute Threshold Calculation

The dispute thresholds introduced in Section 4.1 aim to define maximum ‘reasonable’ differences

between the observed signal powers among nodes (or averaged measurements among cells), be-

yond which the differences are highly questionable. Deriving the thresholds entails identifying and

analyzing the sources of such power differences. The observed signal strength p (in dBm) at a sec-

ondary node is determined by the power of the transmitted signal pt minus losses in power due to

(1) attenuation at a distance r from the transmitter l(r), (2) shadowing S, and (3) multi-path fading

M , that is p = pt−(l(r)+S+M) [72]. Therefore, in order to characterize the differences, we need

to study the effects of these three factors. We study the problem of determining thresholds at two

different levels: (1) Intra-cell dispute thresholds (d0) that are used to compare individual power

measurements between nodes in a level 0 cell (2) Inter-cell dispute thresholds (di, 1 ≤ i ≤ lmax)

that are used to compare averaged measurements from each of the level i − 1 cells contained in a

level i cell.
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Algorithm 2 UpdateWeights (C, status)
Input: Level 0 cell C, and status ∈ {‘conflicted’, ‘high’, ‘low’, ‘neutral’}
switch (status)

case ‘conflicted’: return
case ‘high’:

sort the nodes in C based on power measurement
cut the weights of the last 25% by half and equally
distribute it to others in C

case ‘low’:
sort the nodes in C based on power measurement
cut the weights of the first 25% by half and equally
distribute it to others in C

case ‘neutral’:
cut the weights of the outlier nodes in C by half
and equally distribute it to others in C

end switch

4.2.1 Intra-Cell Dispute Thresholds

Consider honest nodesNi andNj in a level 0 cell at distances ri and rj from the primary transmitter.

Without loss of generality assume rj > ri. Therefore, rj = ri + ∆ri,j (0 < ∆ri,j ≤
√

2r0). Our

goal is to find a value d0 such that with high probability (e.g. 0.9) we have: pi−pj ≤ d0. Assuming

independent, identically distributed (i.i.d.) Gaussian shadowing and fading at both nodes we have

pi ∼ N(pt − 10 log10(rαi )− µs, σ2) and pj ∼ N(pt − 10 log10(rαj )− µs, σ2). Therefore we obtain

the distribution of the difference as:

pi − pj = N(10α log10

ri + ∆ri,j
ri

, 2σ2)

For a fixed ri, choosing ∆ri,j =
√

2r0 maximizes the mean of the distribution. However, since

we do not know the exact location of the transmitter, we do not know ri. In an ideal world

where α is accurately known, and there is no loss due to shadowing and fading, one can use

pi = pt − 10 log10(rαi ) to obtain ri. We propose the following approach to estimate ri in a more

realistic environment where α is not accurately known and the effect of shadowing and fading is

not negligible.

In order to reduce the uncertainty due to α, we take a conservative approach by taking the value
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of α that creates the largest attenuation from ri to ri +
√

2r0. This is achieved by assuming a large

α (e.g. α = 4). In addition, the signal power, pi, may have faced shadowing and fading. Therefore,

pi may not be the most valid choice for determining ri. Since the size of a level 0 cell is relatively

small compared to the distance to the transmitter, the average power reported by the nodes inside a

cell may seem as an obvious candidate to estimate pi. This average, however, is highly vulnerable

to excessively high (or low) reports by malicious or deeply faded nodes. Therefore we opt for

using the robust statistic of median [75] of the reported powers inside the cell for determining a

conservative estimate of ri. For a level 0 cell C, if prep is the representative power of this cell, and

rrep is the representative distance from this cell to the transmitter, we have:

prep = median(pj), for all nodes Nj in level 0 cell C

prep = pt − 10 log10(rαi )⇒ ri ∼ rrep = 10
pt−prep

10α

Therefore, if we aim to determine d0 such that Pr
(
pi − pj < d0

)
> .9, we have:

pi − pj ∼ N(10α log10

rrep +
√

2r0

rrep
, 2σ2)

Pr
(
pi − pj ≥ d0

)
≤ .1⇒

Q
(d0 − 10α log10

rrep+
√

2r0
rrep√

2σ

)
= .1

d0 =
√

2σQ−1(.1) + 10α log10

rrep +
√

2r0

rrep

whereQ is the standard Gaussian tail probability function. Note that using this scheme, the dispute

thresholds for different cells will likely be different. For future use, we denote 10α log10
rrep+

√
2r0

rrep

for a level 0 cell Ck by ∆µrep
k . We introduce the notation of d0

k to represent the dispute threshold

for a level 0 cell Ck. We generalize this notation to represent the dispute threshold and average

power for a level i cell Ck by dik and pik.
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4.2.2 Inter-Cell Dispute Thresholds

For simplicity, we first provide details on how d1
k, the dispute threshold for a level 1 cell Ck, is

calculated. Then we generalize the obtained result to higher levels. Consider a hierarchy with

branching factor b. After outlier nodes are detected, and (weighted) averages for level 0 cells are

calculated, we advance to level 1. At level 1, we perform pairwise comparisons between averages

provided by each of the b level 0 cells contained in Ck, identify and leave-out outliers, and average

the values of the rest to be passed to level 2. Consider two neighboring level 0 cells Ci and Cj (in

Ck), with corresponding computed average powers p0
i , and p0

j . Assume there are m nodes in each

cell. We have:

p0
i ∼ N(µi,

σ2

m
), p0

j ∼ N(µj,
σ2

m
)

p0
i − p0

j ∼ N(µi − µj,
2σ2

m
)

Ideally, if we were absolutely sure about the integrity of the majority of the nodes in each of

the cells Ci and Cj , we could have replaced µi and µj by the averages of the corresponding cells.

However, either of the cells may be populated by a large number of malicious nodes in a way not

detectable at level 0. Hence, either of the averages could be highly skewed. As a result, using the

difference between the sample averages is not a safe way to determine the probability distribution

of the difference. Otherwise, very high dispute thresholds may be created that allow attackers to

hide their presence. Besides, for simplicity, we are interested in using only one dispute threshold

for each level 1 cell (as opposed to one dispute threshold for each level 0 pair). We employ a

similar strategy to the intra-cell case and estimate µi − µj by: ∆µrepk =
√
b×median(∆µrepi ), for

all level 0 cells Ci ∈ Ck. We can generalize this method to any level greater than 0. Therefore, we

have p0
i − p0

j ∼ N(∆µrepk , 2σ2

m
). If we aim to determine d1

k such that Pr
(
p0
i − p0

j < d1
k

)
> .9, we

obtain:
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Pr
(
p0
i − p0

j ≥ d1
k

)
≤ .1⇒

Q
(d1

k −∆µrepk√
2σ√
m

)
= .1

d1
k =

√
2σ√
m
Q−1(.1) + ∆µrepk

It can be easily shown that the same argument could be used for higher layers of hierarchy. There-

fore, if we represent the dispute threshold for a level i cell Ck by dik, we have:

dik =

√
2σ√

bi−1m
Q−1(.1) + ∆µrepk

where ∆µrepk =
√
b×median(∆µrepj ), for all level i− 1 cells Cj ∈ Ck.

Note that the dispute thresholds do not depend on the detection threshold, λ. It is easy to verify

that as we go up in the hierarchy, the mean of the distribution for determining the dispute threshold

is increased, while its standard deviation is decreased. This stems from the fact that the mean of

the distribution mainly represents variation due to signal power attenuation over distance, whereas

the standard deviation represents variations due to shadowing, which (as expected) is reduced as a

result of aggregating increasing number of individual measurements.

4.3 Simulation Study (Part 1)

In this section we first provide the simulation setup used for evaluating the proposed scheme. The

attacker model, results, and a brief analysis of the results are followed.

4.3.1 Simulation Setup

The simulation environment is a 4096m × 4096m area in which secondary users are deployed

uniformly at random with the density of 0.0008 per square meter. The branching factor, b, is 4.
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The size of each level 0 cell is 128m× 128m, creating a total of 1024 level 0 cells. Therefore, the

expected number of nodes per cell is about 13. A primary transmitter with transmission power of

50mW (17 dBm) is located at the center of the area to represent a wireless microphone [21]. We

consider a circular area with radius 1000m around the primary as the area that needs to be protected.

This represents the area in which the primary signal must be detected with high probability. In

particular, we require that primary signal be detectable by collaborating nodes in a level 0 cell with

probability greater than .95 (max false negative rate of 5%). Using the formulation in Equation 4.2,

this translates to the detection threshold of λ = −74.4dBm. We set the attenuation exponent, α, to

3 [72], and the standard deviation for the fading and shadowing process, σ, to 3 (in dB scale) [36].

The dispute threshold for each cell is determined based on the framework proposed in Section 4.2.

The outlier threshold for level 0 cells, τ0, is 0.6, and for all i > 0, τi = b−1
b

= .75.

4.3.2 Attack Scenarios

We first study exploitation attacks. We pick two cells outside the protection radius of the primary

transmitter. First cell is selected randomly in such a way that is located at a distance marginally

greater than the protection radius. This choice helps us gauge the worst-case performance of our

protocol. We call this cell the borderline-outside cell. Next we randomly select another cell with

the constraint that it is located at about two times the protection radius of the transmitter. We call

this cell the well-outside cell. In each scenario, the attacker has compromised a certain fraction

of the nodes inside the cell. Compromised nodes work in cooperation to report values higher than

their true measurements to change the detection outcome. For a given cell and attack type, we

vary the fraction of compromised nodes and study the results. The compromised nodes’ behavior

is according to one of the following models.

• Uncoordinated attackers do not have any information about the number or measurements

of others in their cell. They only know λ, and simply report measurements that are a fixed

amount greater than λ.
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• Coordinated attackers do not know the exact number or measurements of others. They know

true measurements of themselves, the ‘expected’ number of nodes per cell, and λ. Assuming

similar measurements by non-compromised nodes, they report measurements such that the

estimated cell average is a few decibels (e.g. 4 dB) over λ. This to guarantee that if they

underestimate the total number of nodes, they still succeed.

• Omniscient attackers know the number and measurements of all nodes in their cell, and λ.

Using this information, they report measurements such that the final average for the cell is

slightly over λ and not greater than (pavg + d0). Here, pavg is the average power of the cell

assuming honest reports, and d0 is the dispute threshold for the cell. This helps attackers

reduce the chances of being detected as outliers at level 0.

For vandalism attacks, similar to exploitation scenarios, we pick two cells inside the protection

radius of the primary transmitter. One cell is randomly selected from cells at a distance marginally

smaller than the protection radius of the primary transmitter. We call this cell the borderline-

inside cell. We randomly select another cell located at about half the protection radius away from

the transmitter. We call this cell a well-inside cell. Attacker strategies are defined similar to the

exploitation case, except here they aim to lower the average power measurement below λ for their

cell.

4.3.3 Results

Figures 4.2, 4.3, and 4.4 (pictures on left) depict the measured average and final detection outcome

for exploitation attacks. Results are collected after running the simulations for enough number of

runs so that the weights (and thus the final outcomes) are stabilized. Note that in all graphs the

y-axis represents the weighted and outlier-excluded average of the power of the nodes in the cell.

For indeterminate cells (low, high, or conflicted based on Algorithm 1; represented by a ‘×’), we

do not provide any disambiguation solution in this section. Later, in Section 4.4, we introduce

and evaluate one such solution. The results from an unmodified ML detector are provided in the
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captions for comparison.

It can be seen that for the well-outside cell, none of the attacker models can succeed. As a com-

monly observed pattern (except for omniscient attackers), when attackers constitute small fractions

of the population in the cell, they are detected as outliers, and their weights are reduced. Therefore,

they cannot move the cell average above the threshold. Once the attackers gain enough population

to meaningfully increase the average without being individually detected, the entire cell is detected

as an outlier at higher levels (level 1 here).

The picture is not as rosy in the case of the borderline-outside cell. It can be seen that once

attackers obtain enough population (23% to 35% depending on the attacker model), they are able

to successfully flip the detection outcome. This is not a surprise, and is in fact a direct consequence

of our uncertainty model. In other words, once the mean of the distribution is close to λ, very few

compromised nodes with reported measurements that are acceptable by the uncertainty model can

move the average and flip the outcome without being detected. Note that such measurements could

have come from a valid distribution, and thus been legitimate.

Figures 4.2, 4.3, and 4.4 (pictures on right) depict the measured average and final detection

outcomes for vandalism attacks. The results from an unmodified ML detector are provided in the

captions for comparison. Since the results and analysis are similar to the exploitation attacks we

do not discuss them in detail.

4.4 Extensions & Simulation Study (Part 2)

The simulation results in Section 4.3 show that in areas where the average (mean) of signal power

is close to the detection threshold, a modest fraction of compromised nodes in a cell can change the

outcome of spectrum sensing without being detected. This is due to the difficulty of distinguishing

between legitimate variations in signal power and slightly skewed false reports by attackers. There-

fore, the attackers succeed by effectively ‘hiding’ under the ‘acceptable’ measurement variations.

In this section we propose extending our solution by using median as a safeguard, in conjunction
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Figure 4.2: (left) Exploitation by +15dB uncoordinated attackers. ML detector is beat when 7 (4)
nodes are compromised in the well-outside (borderline-outside) cell. (right) Vandalism by -15dB
uncoordinated attackers. ML detector is beat when 7 (3) nodes are compromised in the well-inside
(borderline-inside) cell.

with mean, for secure primary detection. We show that our solution achieves a desirable mix of

accuracy (from mean), and robustness (from median).

4.4.1 Median: A Safeguard for Collaborative Sensing

An alternative estimator for signal power in a cell is the median of measurements. The median of a

sample is known to be robust to outliers. The median, however, has the disadvantage that it does not

use all the data available in the sample, and therefore is often not as accurate as the mean [75]. For

a normal distribution, it is well known that the sample mean is the most ‘efficient’ estimator, that

is no other unbiased statistic for estimating µ can have smaller variance. The efficiency of median,

measured as the ratio of the variance of the mean to the variance of the median, depends on the

sample size m = 2n + 1 as 4n
π(2n+1)

, which tends to the value 2/π ≈ .63 as m becomes large [46].

So, we can consider the following distribution for the median power in a cell: Pmed ∼ N(µ, πσ
2

2m
).

Therefore, similar to Equation 4.2, in order to use median for primary detection we can derive the

threshold λ′ such that the probability of missed detection stays below a certain value (e.g. .95):

λ′ =

√
πσ√
2m

Q−1(.95) + pr (4.4)
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Figure 4.3: (left) Exploitation by coordinated attackers. ML detector is beat when one node is
compromised in both the well-outside and borderline-outside cases. (right) Vandalism by coordi-
nated attackers. ML detector is beat when one node is compromised in both the well-inside and
borderline-inside cases.

whereQ−1 is the inverse of standard Gaussian distribution tail function. Note that sinceQ−1(.95) <

0 we have λ′ < λ.

The next question that arises is how we can integrate median into our existing approach. To that

end, we propose a framework based on the following principles: (1) safety (in terms of causing

interference to primaries) is not compromised, and (2) a reasonable combination of efficiency (i.e.

mean) and robustness (i.e. median) is achieved. In a given cell, we first perform the hierarchical

grid-based scheme proposed in Section 4.1. If the status of the cell is ‘neutral’ (see Algorithm 1),

then we perform the following additional operations. Consider Pmed and Pavg to be the median

and weighted mean of the power measurements. We have the following four cases:

1. Pmed >= λ′ and Pavg >= λ: Since both estimators agree on the positive outcome, we

consider primary signal to be present.

2. Pmed < λ′ and Pavg < λ: Since both estimators agree on the negative outcome, we consider

primary signal to be absent.

3. Pmed >= λ′ and Pavg < λ: There exists a conflict; primary is present based on the median,

but is absent based on the mean. Considering the importance of not causing interference

to primary users, we disregard the potential optimality of the outcome from mean and opt
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Figure 4.4: (left) Exploitation by omniscient attackers. ML detector is beat if one node is com-
promised in both the well-outside and borderline-outside cases. (right) Vandalism by omniscient
attackers. ML detector is beat if one node is compromised in both the well-inside and borderline-
inside cases.

for the conservative choice of declaring primary present. This choice is expected to reduce

the chances of successful vandalism attacks, but may increase the chances of mistakenly

declaring a borderline-outside cell as occupied (due to the relative inefficiency of median).

4. Pmed < λ′ and Pavg >= λ: There exists a conflict; primary is present based on the

mean, but is absent based on the median. The difference in opinions may be caused by an

exploitation attack, or simply a legitimate inaccuracy by either of the two estimators. Given

the previous choices, if we go with the mean’s decision, we are effectively taking the decision

to be the ‘or’ of the two. This choice has the drawback that would not make exploitation

attacks any harder to launch. On the other hand, if we go with the median’s decision, we are

effectively ignoring mean in all the four cases, which is not desirable. Since we know that

λ′ < λ, the mean and median are at least separated by λ−λ′. This may be a sign of anomaly

(e.g. an exploitation attack). We propose considering this cell as indeterminate and using

the average power of the 8 neighboring cells (and compare it to λ) to determine the cell’s

status. We propose to use a similar disambiguation technique for indeterminate cells from

Section 4.1 (‘conflicted’, ‘low,’ or ‘high’ in Algorithm 1). For the cells at the border of the

area of interest (that do not have 8 neighbors), we consider the status to stay indeterminate.
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4.4.2 Simulation Study (Part 2)

We first study the effect of using median in conjunction with mean in absence of attackers. This

evaluation is done in terms of false positive and false negative rates.

Table 4.1: The number of false positives and false negatives.
Algorithm False Positives False Negatives

Hierarchical Average-Based 16 10
(Section 4.1)

Extended Median-Based 49 0
(Section 4.4)

Consider any cell that is entirely outside the no-talk radius of the primary transmitter. If either

of our approaches mistakenly declare primary to be present in this cell, we count this as a false

positive. Similarly, consider a cell that is (in part) in the no-talk radius of the primary. If either

of our approaches mistakenly declare primary to be absent for this cell, we count this as a false

negative. We measure false positive and false negative rates in two cases: (1) when only the

average-based framework in Section 4.1 is used, and (2) when it is combined with the median-

based framework introduced in this section. The results are summarized in Table 4.1. The table

shows the number of false positives and false negatives for the final decision (after disambiguating

indeterminate cells) for both approaches. The total number of cells is 1024. It can be seen that in

the absence of attackers the extended approach provides an extra level of safety. This comes at the

cost of higher false positive rates.

Next, we study the effectiveness of the extensions in this section against exploitation and van-

dalism attacks. For this purpose, we run the same experiments as in Section 4.3 with the added

extensions in this section. Figures 4.5, 4.6, and 4.7 represent the results for uncoordinated, co-

ordinated, and omniscient attackers respectively. The new changes are represented by arrows. In

particular, arrows originating from a ‘+’ or ‘−’ represent scenarios for which cases (3) or (4) ap-

ply, that is when the mean and median do not agree. The symbol at the head of the arrow represents

the final decision. Arrows originating from a × represent cases that are considered indeterminate

based on the hierarchical scheme in Section 4.1, and the sign at the head of the arrow represents
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the final outcome after neighbor averaging rule.
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Figure 4.5: Exploitation (left) and Vandalism (right) by uncoordinated attackers. Arrows represent
change of final detection outcome based on extensions in Section 4.4.
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Figure 4.6: Exploitation (left) and Vandalism (right) by coordinated attackers. Arrows represent
change of final detection outcome based on extensions in Section 4.4.

The results show that for the well-inside (well-outside) case, in almost all scenarios, our solution

completely nullifies the effect of attackers. For borderline-inside (borderline-outside) case, the

attackers need to compromise at least 47% (41%) of nodes to be able to succeed. Note that these

ratios are higher for the cases of less sophisticated attackers. The difference between the results for

exploitation and vandalism can be explained by our conservative approach that prioritizes safety

(non-interference) over security. Overall, the results show a considerable improvement over the

original grid-based hierarchical scheme.
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Figure 4.7: Exploitation (left) and Vandalism (right) by omniscient attackers. Arrows represent
change of final detection outcome based on extensions in Section 4.4.

4.5 Conclusions

In this chapter, we provided an approach to achieving robust radio spectrum telemetry that is

applicable to large regions where no single ground truth is viable at all places. Our solution uses

outlier detection at two levels: (1) intra-cell among individual CR measurements and (2) inter-

cell by corroboration among cells in a hierarchical structure. The results are used in a weighted

detection mechanism, in conjunction with a median-based framework, to eliminate or lower the

effect of the attackers. We provided a novel framework for deriving the dispute thresholds for

outlier detection based on the underlying propagation and uncertainty model of the signal power.

We provided analytical and simulation results to quantify the extent to which attackers can suc-

ceed. The attackers in the simulations ranged from ones with very little sophistication, to those

with complete knowledge about their neighbors and the detection mechanism (who use it to avoid

detection). Our results showed that in cases where attackers are not near the border of the primary’s

protection area, we can detect and fully eliminate the effect attackers in a particular region. For

our worst-case scenarios, that is cells that are close to the border of primary’s protection area in

which coordinated omniscient attackers employ smart strategies, we can nullify the effect of up to

41% of attackers nodes.
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Chapter 5

Data-Based Protection with Classifiers

In this chapter we propose CUSP, a technique based on machine learning that uses a trusted ini-

tial set of signal propagation data in a region as input to build a classifier using Support Vector

Machines. The classifier is subsequently used to detect integrity violations. Using classification

eliminates the need for arbitrary assumptions about signal propagation models and parameters or

thresholds in favor of direct training data. Extensive evaluations using TV transmitter data from

the FCC, terrain data from NASA, and house density data from the US Census Bureau for ar-

eas in Illinois and Pennsylvania show that our technique is effective against attackers of varying

sophistication, while accommodating for regional terrain and shadowing diversity1.

5.1 Motivation and Approach

The two problems of detecting individual maliciously false reporting nodes [45, 59] and that of

detecting attacker-dominated cells [31] have been mainly formulated as abnormality or outlier

detection problems. Despite moderate degrees of success, these approaches suffer from several

technical and practical issues. First, they often involve unrealistic assumptions about the models

and parameters of signal propagation. Second, the performance of almost all of these methods

highly depend on detection threshold parameters which are usually tuned by hand, or depend

on the parameters of the signal propagation model. This is impractical, because it requires too

much ‘conjecturing’ and ‘manual tuning’ for each given region and frequency band of interest. In

addition, outlier detection techniques are often very conservative and are not designed for detecting

1The majority of the material in this chapter is adopted from Fatemieh, Farhadi, Chandra, and Gunter’s recent
publication [32].
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nimble manipulations of data by sophisticated attackers. This limitation is particularly important

in the context of spectrum sensing in which there exist natural variations in signal power due to

factors such as fading and noise [72].

As an illustrative example consider Figure 5.1 to be a subset of the area of interest. Each cell

is the unit for averaging signal power measurements from sensors to determine primary presence.

The average power from the nodes inside a cell are represented by a number (in dBm) in that

cell, and the primary detection threshold is -114dBm. Cells A and B are normal, whereas C

is dominated by attacker nodes. Therefore, the attacker nodes are able to decrease the average

power to -115, which, if undetected, results in a successful vandalism attack. It is tempting to

devise heuristics or simple outlier detection techniques based on approximate signal propagation

formulas to catch cells like C. For example one may claim the difference between B’s average

power and its neighbors looks normal since its average is smaller than a threshold α, but this is

not true for C, therefore C is compromised. But ‘why is comparing the average distance to α

is a good idea?’ Why is C suspicious, but A is not? Many other questions may still linger; for

example ‘how do we know we chose the right threshold’, ‘how do we know we are not mistaking

an attacker-dominated cell with one behind a hill’, ‘how do we make sure we have taken all the

factors into account’, or ‘can we do better’?

We believe that we should directly use signal propagation data for this purpose. Leveraging

patterns latent in the data will lead to more practical, robust and accurate solutions. The key

intuition is to learn the propagation behavior of the signal from the observed signal propagation

data (we will discuss the practicality of obtaining data later). There are patterns in which the

signal propagates. We can extract these ‘patterns’ and utilize them to predict how we expect the

signal to behave in the (often large) region of interest. Naturally, the actual behavior of the signal

should be similar to what we can predict from the observed propagation patterns. This is mainly

because we learn to predict the patterns of propagation from the signal itself. We claim that if the

propagation of signal in a given location within the region of interest is not similar to patterns of

signal propagation extracted from the same or ‘similar’ signals in the region of interest, the location
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Figure 5.1: Sample grid with normal and attacker-dominated cells.

should be considered suspicious or un-natural. As a simplistic example, assume we somehow learn

that in a particular flat desert, digital TV signals weaker than -70dBm attenuate by at most 5dB

every 5 kilometers. Then, a 10dB decrease or an 8dB increase over a three kilometer distance may

be considered suspicious, or at least unusual.

We believe that we can spot unnatural propagation of signal in local neighborhoods of adja-

cent cells by carefully analyzing samples from the actual signals in the same and several different

neighborhoods (within the region of interest) in the past. For a given neighborhood, we are now

concerned with a new type of question. Is the propagation of the signal natural in this neighbor-

hood? Before answering this question, we must define and show how to represent the pattern of

signal behavior in a neighborhood of cells. So, we first address the following question. How to

represent the pattern of signal propagation in neighborhoods?

5.1.1 Representation of Signal Propagation

In order to better understand the patterns by which the signal propagates, we need to define a

way to represent them. We start by a simple representation as follows. We consider the local
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neighborhood of any cell A to contain A and its 8 neighboring cells. For example, in Figure 5.1

the local neighborhood for A, B, and C are shown and referred to as NA, NB, and NC respec-

tively. Using this definition for a local neighborhood, we represent a cell A by a 9-element tu-

ple containing the power level in A, and the difference in power between A and the rest of the

neighbors in a pre-specified order. For example the neighborhood for cell A, is represented as

〈−97.5,−.5, 3.5, 7.5, 8.5, 6.5, 1.5, 4.5,−1.5〉. We call this the neighborhood representation of A.

Note that the representation can be expanded to include, for example, the neighbors of neighbors

of A as well to provide additional context for learning patterns. However, as we will show later,

the 9-tuple representation is sufficient for our purposes. This representation provides us with a

way to encode the pattern by which the data propagates in this neighborhood. Using this definition

for the neighborhood of a cell, our original question can be re-phrased as: For a given cell, is the

propagation of the signal natural in its local neighborhood?

5.1.2 Using Patterns of Signal Propagation

Let us assume that we have access to reliable power measurements in all of the region of interest.

An example for a region would be a 50km by 50km area with a roughly uniform (flat, hilly, etc.)

terrain. It is easy to see that the data can be used to create one neighborhood representation for

each cell in the region. We refer to each of such representations as an ‘example.’ Therefore,

we can assume access to a large number of such examples representing the ‘natural’ propagation

of signal in local neighborhoods. Also, for now assume that we are magically provided with

the neighborhood representation for a sufficiently large and diverse set of ‘un-natural’ (attacker-

dominated) cells.

Having access to representations for patterns of signal propagation as natural and un-natural ex-

amples, we believe the best way of approaching our question is to learn the common characteristics

in each group and use it to differentiate between natural and un-natural examples. This means that

by discovering the key characteristics of signal propagation patterns, we can superimpose a bound-

ary in our space of representations. This boundary works as the decision making module. For a
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new example, we need to check which side of the boundary the example lies; the natural side or

the un-natural side. This is a classic classification problem. We have now reduced our problem

to a more specific question: How to cast the problem of detecting attacker-dominated cells as a

classification problem. Before answering this question, we provide an analogy and the background

on classification.

A useful analogy to this problem is that of spam detection in email systems: given a set of emails

each marked as spam or normal, the goal is to learn the common characteristics among the normal

emails, the common characteristics among the spam emails, and characteristics that differentiate

between the two groups. Going back to our problem, we would like to discover a model that

best describes the behavior of signal, and use it to make predictions about the normalcy of signal

propagation in subsequent examples.

5.1.3 Background on Classification

Classification is one of the mainstreams of machine learning and has been widely adopted in many

domains ranging from spam email detection [39] and unauthorized spectrum usage [57] to fraud

detection [48], object detection [34], and speech recognition [69].

In a binary classification problem we are given a set of training examples with their corre-

sponding labels, (−→xi , yi) where −→xi is the representation of the ith example in the feature space and

yi ∈ {1,−1} (yes or no?) is the corresponding binary label. Each example is described by a vector

of its attributes which is often called the feature vector. For example, in detecting if a person has a

significant risk of heart attack, the features can be the blood pressure, cholesterol level, and body

mass index. The goal is to predict a binary label for an example for which we do not know the

label (a.k.a. a test example) using the training examples [19]. In the heart attack example, we want

to predict whether a person is under a certain risk of heart attack, given her feature vector. We do

this by learning the patterns in the features of several different persons with and without the risk of

the heart attack.

Looking underneath the surface, a classifier tries to partition the input feature space into regions
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where positive examples lie versus regions where negative examples lie. The boundary between

regions for positive and negative examples is called the decision boundary. Training involves

learning the decision boundary and classification involves determining on which side of the deci-

sion boundary a test example lies. In the simplest case, it is assumed that the decision boundary is

a linear function of the input feature vector −→x . Later, we relax this assumption and consider more

complex decision boundaries. This linear function usually takes the form of

y(−→x ) = −→w .−→x + w0 (5.1)

where−→w is the weight vector and w0 is the bias [19]. One might think about the decision boundary

as a (N − 1)-dimensional hyperplane in the N -dimensional feature space. The classification is

done by determining the side of the hyperplane on which each point in the feature space lies. If

y(−→x ) ≥ 0 then −→x gets the label 1 and if y(−→x ) < 0 it gets the label −1.

5.1.4 Casting Attacker-Dominated Cell Detection as a Classification Problem

We need to learn a classifier to predict whether a cell seems natural or not. To that end, we represent

signal propagation in a local neighborhood of a cell, by the power average in the cell, as well as the

8 numbers representing the difference between the power averages of the cell with its neighbors.

We denote these features by −→x . To automatically discover these patterns we search for parameters

−→w and w0 that best explain the training data and provide reliable generalization properties. To be

more specific, we are optimizing for −→w and w0 that, if used for classification, provide the best

prediction accuracy over the training data set while not overfit to it. More formally, the prediction

of train set label y, which takes the form of −→w .−→x + w0 should be similar to the actual train set

label y. At the same time, to avoid too much fine tuning to the train set examples, the size (norm)

of the weight vector −→w should be controlled. One drawback of this model is the assumption of

linear separability. Our predictions are linear in the feature space, thus form a linear decision

boundary. To be able to model nonlinear decision boundaries, we project the data −→x to higher
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dimensional spaces where the decision boundaries are linear on that higher dimensional space. Our

new predictions take the form of
−→
W.Φ(−→x ) + W0 where Φ is a mapping to the higher dimensional

feature space. We postulate that the decision boundaries in the feature space can be modeled more

reliably by quadratic functions, thus modeling Φ by a quadratic kernel. To be more specific, we

are solving the following optimization problem:

min
1

2
‖
−→
W‖2 + γ

N∑
i=1

ξi (5.2)

subject to yi(
−→
W.Φ(−→x ) +W0) ≥ 1− ξi ∀i

where N is the number of training examples, ξi is a collection of non-negative slack variables

that account for possible misclassifications and γ is the tradeoff factor between the slack variables

and the regularization on the norm of the weight vector
−→
W . The constraint in this minimization

implies that we want our predictions,
−→
W.Φ(−→x ) + W0, to be similar to labels yi ∈ {1,−1}. The

objective function works as a regularizer to avoid overfitting to the training data set. We solve this

optimization by quadratic programming in dual. This is an example of SVMs [29].

The only parameter that needs to be estimated is γ. We estimate the γ by cross validating it in

the validation set, a part of train set which set aside for parameter estimation. This parameter is set

using the data itself and there is no need of any assumption about data distribution.

Given a
−→
W ∗ and

−→
W ∗

0, which are the outputs of the Optimization 5.2, we can predict whether a

cell is natural or not by looking at the sign of
−→
W ∗.Φ(−→x ) +W ∗

0 .

Data Collection. The main remaining question is how to obtain the training examples needed

to build the classifier. We argue that normal (negative) instances can be obtained in a practical

one-time process based on a trusted sensor grid. By one-time we mean that in a particular region,

we only need to collect signal propagation data once to build the classifier for that region. Once

the classifier is built, it can be used forever (or until there is a significant environmental change
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in the region). A typical strategy for collecting this data is war-driving where a sensor is moved

though the region collecting training data as it goes. This data can also be extrapolated by signal

propagation models such as Longley-Rice, but our approach does not require the use of any such

model. War-driving for collecting spectrum data is similar to the current practice of taking images

for street-view capabilities of online map applications in Google and Bing.

An alternative may be realized in the context of 802.22 internet service for residences, as well as

the envisioned application of white-spaces for advanced meter communications [30]. In this case,

the (one-time) measurements may be collected at the time of deploying radios (meters) at each

house by the operator. They may also be collected by a temporary sensor network developed for

this purpose alongside the main CR network [68].

Once negative instances are collected, we use a methodology to inject attacker-dominated (pos-

itive) training instances to incorporate attacker-dominated cells containing attackers of varying

degrees of sophistication. For further details please refer to Section 5.2.1.

5.1.5 A Unified Classifier for each Region

At this point, provided with labeled training examples for a transmitter, we are able to build a

classifier that can predict if a cell is attacker-dominated or not. This is still far from practical for

the following reasons. First, it requires training and maintaining a classifier for each transmitter.

Second, as it will be concretely shown in Section 5.2, each transmitter may only provide a partic-

ular distribution of power levels in the region of interest. This leads to insufficient or non-existent

training examples for some power levels, which can lead to low classification accuracy. Given

enough training examples for a frequency range (e.g. 620-698 MHz for DTVs), we argue that our

classifiers are capable of discovering decision boundaries in the feature space which are indepen-

dent of the transmitter. This is due to the fact that signal propagation is mainly a function of power,

propagation environment, and the frequency of transmission. From a practical perspective, this

means that we do not need to learn a separate classifier for each transmitter in the same frequency

range. We show this property in Table 5.3 in the context of six DTV transmitters in Illinois.
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We introduce the concept of Unified Classifiers that are trained by pooling data from multiple

transmitters in such a way that there exist sufficient number of training examples at any power

level in the power range of interest. For example for DTV transmitters this range will be between

90 dBm (maximum DTV transmission power) and -130 dBm (weakest signals considered). The

new question we are facing is which transmitters to select so that we can ensure sufficient number

of examples at any power level; the ‘transmitter selection problem.’ This problem can be reduced

to the set covering problem, which is a well-known NP-Complete problem [73]. We divide the

larger power spectrum of interest to a number of smaller power ranges and aim to enforce a lower

bound on the number of examples per power range. Our goal is to select the minimum number of

transmitters so that we are guaranteed to have at least a fixed number of examples per power range.

We greedily select the transmitter that covers the largest number of uncovered power ranges at each

stage. This is known to have an approximation ratio of ln(n) + 1 where n is the number of power

ranges [73]. Having selected transmitters that cover the entire power range, we can now learn a

classifier from the data from all selected transmitters. This is our unified classifier. We show that

we can detect attacker-dominated cells for transmitters we never observe during training. This is

of practical significance as one does not need to be concerned with providing information from all

the transmitters in a frequency range, or those that may start transmission in future.

Another practical property of our unified classifier is its relative independence to the frequency.

We later show that the unified classifier is not considerably sensitive to the frequency change

in DTV transmitters in the UHF channels 14-51 (470 − 698MHz). This means that our unified

classifier is capable of detecting attacker-dominated cells when trained with data from transmitters

in different frequency ranges. Therefore, as we will show with evaluations for both Illinois and

Pennsylvania, it is sufficient to build one classifier for the entire 470-698 MHz range.

Once the unified classifier detects a cell as compromised, the detection outcome in that cell

should be reversed to cancel the attackers’ misreporting effect. In cases where the actual power

level is important, the power level should be replaced by the average powers reported by the ma-

jority of its neighboring cells. This strategy, which is motivated from image smoothing techniques
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in vision applications, has been validated in the context of white space networks [31]. This strat-

egy, when combined with a multi-resolution deployment of CUSP enables nullifying the affect of

attackers at different granularity levels, as well as those that are able to dominate multiple adjacent

cells. Alternatively, in the case of using white-spaces for AMI communications, or 802.22 Internet,

the firmware for the suspicious devices may be (physically or remotely) examined by the utility or

802.22 service provider.

5.2 Instantiating CUSP

In this section we show how CUSP can be instantiated in a region to provide protection against

attacker-dominated cells when aggregating spectrum sensing reports at a central server. To that end,

we provide general guidelines as well as specific details for an illustrative environment, namely

East-central Illinois. Since it was not practical for us to do wardriving through this region we

instead rely on the FCC and NASA databases and the Longley-Rice empirical outdoor signal prop-

agation model to generate sensor data (see [5, 61] for more details). Longley-Rice is endorsed by

FCC for determining propagation contours in the TV spectrum and takes into account the effects

of terrain as well as transmitter’s location, height, and power. For the purpose of these experiments

we treat these models as the ground truth provided by sensors and use this to test our method. Note,

however, that our method does not rely on any specific choice of a model. Hence if these models

have some inaccuracies then we believe that accurate training data and proper application of CUSP

will achieve the necessary foundation for integrity protections. We defer the experiments in which

we account for additional variations and uncertainties in signal propagation to Section 5.3.

5.2.1 Environment and Data Collection

We start by considering a 160km × 160km square area in the flat Midwest area in the US. The

following points in (latitude, longitude) format define the boundaries of the region: 〈 (39.56, -89.4),

(41, -89.4), (41, -87.5), (39.56, -87.5) 〉. The area is located in East-central Illinois and mainly
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consists of rural farmlands and a few small cities with populations under 100,000. Figure 5.2

depicts this area. We use registered DTV transmitter data from the FCC databases as well terrain

data from the NASA database to build our grid-based crowdsourcing data. For any given location

we can retrieve the list of nearby DTV transmitters as well as their properties such as channel

(frequency), transmission power, and antenna height. We then combine this data with terrain data

and use the Longley-Rice propagation model to estimate signal power from each of the DTV

transmitters at that location.

Figure 5.2: Initial evaluation area and the first set of considered DTV transmitters in East-central Illinois.

Cell Size and Density. An important factor when using CUSP in any environment is the cell size

and density of sensors (or wardriving samples). To make an informed decision about the cell size

and sensor density, the following factors should be taken into consideration. First, the cell size must

be large enough that about 10 to 20 sensors exist in each cell. Mishra et al. [60] show that this many

independent sensors provide as much collaborative gain as many more correlated sensors whose

collaborative gain is limited by geographical correlation in shadowing. Second, the variation of

average signal power in a cell must not be significant (e.g. less than 5dB) in order for combining

individual reports to be meaningful. Using a similar criteria, Kim et al. [47] proposed a maximum

radius of 5.6 km for a circular cell for detecting the TV transmitters at the edges of their contours.
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Third, collaborative sensing often works best when there exists independence in the (shadow)

fading among different sensors. Using Godmunson’s exponential shadow correlation decay model,

it is shown that the maximum sensor density of 3.2 sensors/km2 ensures independence between

individual reports [47]. This factor, however, is more a recommendation than a requirement.

Considering an application such as advanced meter communications or 802.22 Internet, one

may use the estimate of one sensor per house for spectrum sensing. To that end, we studied house

density per square kilometer of the 102 counties in the state of Illinois from the US Census Bureau

data [11]. The results show that the least dense county (Pope county) contains 2.5 houses/km2.

The 5th percentile of the data is 3.5 and median is 8.5 houses/km2. In view of the discussion

above, we opt for the following parameters. We consider base cells of size 2km×2km with the

average density of 3.2 sensors per km2. We consider nodes to be uniformly distributed at random.

It is known that the actual distribution of the sensors (houses in this case) may not be uniform in

real-world, however, for the following reasons we argue that this assumption is reasonable for the

evaluations. First, since we take conservative estimates for sensor density, it is likely that in most

areas there exist more than the assumed 3.2 sensors per km2. In such cases, the central server can

choose from the existing nodes in order to create a relatively uniform distribution. Second, in the

rare cases (given the conservative choice of density) that some cells contain less number of sensors,

or sensors are closely clustered, the service provider may deploy additional sensing units.

Attacker Model and Example Generation. Based on the assumptions in Chapter 2, the fol-

lowing four attacker models may be considered in this context. Note that the attackers’ behavior

should be considered through the lens of a particular cell that the attackers aim to dominate.

1. Uncoordinated attackers do not have precise information on the number and power mea-

surements of other legitimate or attacker nodes in the cell. Each attacker node aims to dominate

the cell without cooperation with other attackers, if any. This may be due to lack of information,

unavailability of communication channels, or to reduce the likelihood of being detected as a result

of communicating with peers. In this case, a compromised node that senses a signal power below
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(above) the detection threshold may falsely report a value such that the average power in the cell

changes to a value below (above) the detection threshold. The attacker may use rough estimates of

the number and measurements of other nodes for this purpose (for example, for the latter it would

be a close value to the attacker’s true measurement).

2. Coordinated attackers do not know the number and power measurements of the legitimate

nodes in the cell, but may roughly estimate them. They do, however, know their own number and

measurements, and act according to a coordinated strategy; they collude and use the estimates to

calculate the value that each of them should report so that they can dominate the cell and change

the detection outcome to a value above (or below) threshold.

3. Omniscient attackers are coordinated attackers that know the exact number and measure-

ments of other legitimate users. Therefore, they can simply calculate the exact power levels they

should report to change the average power level to a value slightly above (or below) threshold, e.g.

1dB. This is to reduce the chances of being detected.

4. Mimicry-capable Omniscient attackers are omniscient attackers that have the (non-trivial)

resources to build a classifier similar to that used in our detection technique. However, we can hide

(or simply randomize) the schedule, frequencies, and locations in which we enable the detection

scheme. Therefore, before any misreporting attempt the attackers can predict whether our classi-

fier can catch them if it is enabled at that particular time, location, and frequency. In the small

percentage of cases that they know it cannot detect them (even if enabled), they will misreport ac-

cording to the omniscient strategy above. Otherwise, they may choose to misreport based on their

risk appetite. In any case, if they choose not to misreport, we have achieved our goal of preventing

attackers from manipulating the detection outcome. Otherwise, we will detect them as we would

have detected omniscient attackers. Therefore, we do not report separate results for this class of

attacks and rely on results for omniscient attackers.

For each selected cell, we include the value of the cell’s average power (e.g. -65) as well the

difference of this cell with its immediate neighbors as the features for a normal example. There-

fore, a normal example takes the form 〈−65, 5,−2.5, 0.6,−3, 3, 2,−3,−1.2〉. Generating attacker
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instances is a non-trivial problem. The instances have to be general enough to train the classi-

fier in such a way that it is able to detect attacks mounted using unknown strategies with varying

fractions of attackers inside the cell. We opt for a randomized approach for generating attacker

data in order to provide substantial variations in the training data. For uncoordinated attackers,

we replace the actual power in the cell with Rand(λ+ 1, λ+ 10) for exploitation attacks and with

Rand(λ − 1, λ − 10) for vandalism attacks, where Rand(a, b) returns a random number between

a and b and λ = −114 is the primary detection threshold. Similarly, we use Rand(λ + 1, λ + 5),

or Rand(λ − 1, λ − 5) for coordinated attackers. For omniscient attackers, we simply replace the

value with λ + 1 or λ− 1 for exploitation and vandalism attacks respectively. These attackers are

knowledgeable and coordinated, and therefore they can only move the average exactly as much

as needed to flip the detection outcome (1dB is the unit of measurements). This minimizes the

attacker’s chance of being detected.

5.2.2 Initial Evaluation

Of the tens of DTV transmitters in this area, we initially choose six DTV transmitters listed in

Table 5.1 as a representative set. These transmitters are identified in Figure 5.2 as green antennas.

This choice aims to serve two purposes; first, geographical diversity, and second, obtaining a wide

range of received power levels across the area. Figure 5.3 represents the distribution of received

signal powers from each of the six transmitters in the area. Later, we use the lessens learned in this

section to perform a comprehensive analysis on other transmitters in the area of interest in Illinois,

as well as all the transmitters that affect the area of interest in Pennsylvania.

Table 5.1: Initially-selected DTV transmitters.

Call Sign Chan. Fq. (MHz) Tx Pow. (kW)
WAOE (MyN) 39 620-626 151

WCIA (CBS) 48 674-680 1000

WEIU-TV (PBS) 50 686-692 255

WICS (ABC) 42 638-644 954

WQAD-TV (ABC) 38 614-620 1000

KTVI (Fox) 43 644-650 1000

57



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P>-65 -87œR@-85 -:7œR@-105 -327œR@-114 -336œR

F
ra

ct
io

n
 o

f 
C

el
ls

 

Received Signal Power 'P' (dBm) 

WICS WQAD-TV KTVI

Figure 5.3: Distribution of received signal powers from six DTV transmitters in Illinois.

In our first set of experiments, we consider each transmitter separately. For the labeled data

for each transmitter, we perform ‘K-fold cross validation,’ which is a commonly used technique

to evaluate the performance of classifiers. We randomly partition the data into K subsamples.

Of the K subsamples, a single subsample is retained as the test data for testing the model, and

the remaining K - 1 subsamples are used as training data. The cross-validation process is then

repeated K times (the folds), with each of the K subsamples used exactly once as the validation

data. The K results from the folds then are averaged to produce a single estimation. The advantage

of this method over repeated random sub-sampling is that all observations are used for both training

and validation, and each observation is used for validation exactly once. In our experiments we

set K = 10. The results are summarized in Table 5.2. Note that these results are obtained with

an equal mix among the three attacker models. We will provide further breakdown based on the

attack-type later in this section.

Table 5.2: Detection accuracy (D.A.) and false positive (F.P.) for six DTV transmitters in Illinois.

WAOE WCIA WEIU-TV WICS WQAD-TV KTVI
D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 100 0 100 0 100 0 100 0 - - - -
−65 ≥ P > −85 100 0 100 0 100 0 100 0 99 0 - -
−85 ≥ P > −105 100 0 100 0 100 0 100 0 99.8 0 100 0
−105 ≥ P > −114 99.1 2.2 - - 99.8 4.8 99.7 2 99.8 1.5 98.7 2.9
−114 ≥ P 95.3 8.7 - - 87.8 15 87.1 8.6 95.5 11.9 99.2 2.3

Overall 98.9 2 100 0 99 3 99.5 1 99.4 2.1 99 2.5
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5.2.3 Building a Unified Classifier

The results in Table 5.2 are obtained by considering each transmitter separately. From a practical

perspective, it is ideal to use just one classifier. Such a classifier is trained by pooling data from

multiple transmitters in a way that there exist sufficient number of training examples at any power

level. According to CUSP’s greedy method for transmitter selection (Section 5.1.5), we pick the

data from WEIU-TV and KTVI for training the classifier. We test the classifier on the data from

the other four transmitters. Table 5.3 summarizes the performance of the unified classifier. The

important outcome is that the unified classifier trained with data from only two transmitters can

perform very well on data from four other transmitters.

Table 5.3: Unified classifier’s performance; detection accuracy (D.A.) and false positive (F.P.) for four DTV
transmitter using the unified classifier trained with WEIU-TV and KTVI data.

WAOE WCIA WICS WQAD-TV
D.A. (%) F.P. (%) D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 100 0 99.8 0 100 0 - -
−65 ≥ P > −85 100 0 100 0 99.7 0 100 0

−85 ≥ P > −105 100 0 100 0 99.9 0 100 0

−105 ≥ P > −114 99.1 .9 - - 99.7 1.6 99.6 .8

−114 ≥ P 97.3 3.2 - - 97 2.4 95.1 7.6

Overall 99.3 .8 99.9 0 99.7 .5 99.3 1.3

It is well-known that signal path loss is directly proportional to the logarithm of frequency [63].

However, the approach of considering a unified classifier appears to ignore the difference in path

loss between different frequency channels. We argue that in practice, for the limited frequency

ranges of our interest, this factor can be ignored in favor of other dominating factors such as the

environment and terrain. We show this here and later when we consider a hilly urban/suburban

area in Pennsylvania. The success of the unified classifier in detecting attackers in frequencies that

differ from its training data (Table 5.3) only validates this assumption for DTVs in the channels

38-50 (614 - 692 MHz). Ideally it is best to have a unified classifier for up to 100 MHz of spectrum.

For example, for the current UHF DTV channels in the US (Channel 14-50; 470-698 MHz), one

may consider building three classifiers; one for approximately each 75 MHz of spectrum. However,

due to practical considerations such as insufficient data or increased complexity, we argue in favor
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of building only one classifier for the entire 470-698 MHz range. To study this idea, we evaluate

the effectiveness of our classifier, which is trained on data from the last third of the UHF DTV

spectrum, for detecting attackers operating in frequencies near the first third of the spectrum. For

this purpose, we consider the few DTV transmitters in this range in Table 5.4.

Table 5.4: Three DTV transmitters in the 400 MHz UHF channels.

Call Sign Chan. Fq. (MHz) Tx Power (kW)
KNLC (IND) 14 470-476 891

WAND (NBC) 18 494 - 500 347

WYIN (PBS) 17 488-494 301

The performance of the unified classifier on this data is represented in Table 5.5. The results

approve our statements about the unified classifier.

Table 5.5: Unified classifier’s performance; detection accuracy (DA) and false positive (FP) for three DTV
transmitters in the 400 MHz UHF channels.

KNLC WAND WYIN
D.A. F.P. D.A. F.P. D.A. F.P.

P > −65 - - 100 0 100 0

−65 ≥ P > −85 - - 100 0 100 0

−85 ≥ P > −105 100 0 100 0 99.9 0

−105 ≥ P > −114 98.8 3.4 100 1.2 98.3 9

−114 ≥ P 98.6 3.1 - - 99.3 2.5

Overall 98.7 3.2 100 .1 99.2 3.3

Effect of Attack-Type. In order to evaluate the effect of attack-type on the performance of our

detection scheme, we create test datasets that only include normal examples and attacker examples

of one type. We next evaluate these datasets using the unified classifier. We studied the four

transmitters in Table 5.3. The results for WCIA were identical to the results reported earlier for

all three attackers. This can be attributed to the fact that the data from this transmitter are mostly

far away from λ and mostly in the first three power brackets, where detection is very accurate and

robust. For the other 3 transmitters, we observed that the results in the first two brackets (P > −65

and −65 ≥ P > −85), are identical to the results in the third bracket ( −85 ≥ P > −105 ).

Therefore, we only report the results in the last three brackets for WAOE, WICS, and WQAD-
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TV. Figures 5.4 and 5.5 report detection accuracy and false positive rates for these transmitters.

The results show decreased detection accuracy and increased false positive rates as the attackers

gain more sophistication. Overall, the results show that our scheme performs well even against

omniscient attackers.
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Figure 5.4: Detection accuracy classified by attacker-type for WAOE (left), WICS (center), and WQAD-TV
(right).
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Figure 5.5: False positive rates classified by attacker-type for WAOE (left), WICS (center), and WQAD-TV
(right).

5.3 Stress Test and Comparison

In this section, we extend the initial evaluations in the relatively flat and detection-favorable Illi-

nois environment, to a particularly unfavorable one, i.e. urban/suburban areas in hilly Southwest

Pennsylvania. To account for additional shadow fading and signal variations in urban/suburban

environments (not represented by Longley-Rice), we probabilistically add extra variations to the

predicted signal powers. In a subset of our evaluations, where we simulate wireless microphones

to compare our work to the state-of-the art, we use the log-distance path loss and log-normal

shadow-fading [63] to model signal propagation.
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5.3.1 Hilly Urban/Suburban Area: Southwest Pennsylvania

Figure 5.6: (a) Transmitters in parts of Southwest Pennsylvania / East Ohio. (b) Distribution of received
signal for the training and testing data in Southwest Pennsylvania.

Table 5.6: Detection accuracy (D.A.) and false positive (F.P.) percentages when variations with dB-spread
of σ is added to test data from 8 DTVs. The classifier is trained with data from a disjoint set of 29 DTVs
with no added variations.

Standard Deviation of Added Variations in Test Data
σ = 0 σ = 2 σ = 4 σ = 6

D.A. F.P. D.A. F.P. D.A. F.P. D.A. F.P.
P > −65 100 0 100 0 100 0 100 0

−65 ≥ P > −85 100 0 100 0 100 0 100 0
−85 ≥ P > −105 99.8 .5 99.9 .5 99.8 .8 99.8 1.5
−105 ≥ P > −114 92.7 6.8 92.2 8.3 91 12 89.2 17
−114 ≥ P 92.1 9 92.5 9.8 92.4 15 91 21

Overall 97.2 2.9 97.1 3.4 96.5 5.2 96.3 7.3

In this section we evaluate the performance of CUSP when instantiated to a hilly urban/suburban

area near Pittsburgh in Southwest Pennsylvania. We focus on signal from all DTV transmitters

within 150 mile radius of this 20km by 20km area with estimated received powers higher than

-130dBm. This results in a list of 37 DTV transmitters. As before, we use the Longley-Rice model

to take into consideration the effect of terrain in signal propagation. In addition, in order to repre-

sent un-accounted fading and signal variations in urban/suburban environments, we supplement the

data with Gaussian variations mean zero and standard deviation σ (dB-spread) of up to 6dB. This

is in line with the log-normal distribution model commonly used in this context [72]. Figure 5.6(a)
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depicts the majority of transmitters affecting this area.

We pool the data from different frequencies to obtain a sufficiently large set of training and

testing examples across all power levels. To evaluate the performance of CUSP in cases that it is

not practical to use the algorithm in Section 5.1.5 to carefully choose the training data, we randomly

divide the set of transmitters to subsets of size 29 and 8, for training and testing respectively. We

call these 29-DTV and 8-DTV data. We train a unified classifier from the 29-DTV data, and test it

on the 8-DTV data. The distribution of the received signal powers for training and testing data are

provided in Figure 5.6(b). The cell sizes are 500m by 500m, resulting in a 40 × 40 grid of cells.

The area is assumed to be populated with sensors at the density of 20 per km2, which is achievable

in suburban/urban areas. In particular, this is well below the average house density the Pittsburgh

area [11]. The results before adding any additional variations are illustrated in the first column of

Table 5.6.

Training and Testing Under Different Conditions. To test the classifier in an extremely unfa-

vorable setting, we add Gaussian variations with mean 0 and standard deviation σ to each power

measurement in the test data. The classifier, however, remains trained with the data with no added

signal variations. Table 5.6 summarizes the results. It can be seen that despite the significant

amount of variation we added to signal propagation data, the classifier still performs reasonably

well. As expected, the gradual degradation of performance is explained by the difference of ex-

amples that the classifier is trained with and those on which it is being tested. In particular, the

relatively high false positive rates at high variation levels reflect the case that some of the variations

seem ‘too much’ to the classifier, and therefore it mistakenly classifies them as malicious.

In general, the effectiveness of our approach can be reduced in environments with considerable

natural variations in signal power within short distances. The reduced effectiveness presents itself

as lower detection accuracy and higher false positive rates compared to environments in which

signal propagation is ‘smoother.’ This is attributed to the descriptive power of our choice of fea-

tures; there might be neighborhoods in which the classifier has difficulty differentiating between
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significant natural variations and an unusual signal propagation pattern created by the false reports

of attackers. At a high-level, a remedy would entail modifying the feature space to increase its

descriptive power. As an item of future work, we consider adding elevation data to the feature

space to improve the classifier’s performance (see Section 5.4). In addition, the cell-size may be

optimized for maximized classifier performance.

Effect of Attack-Type. Table 5.6 provides results for an equal mix of the three attack-types

(note that we assume each cell is occupied by attackers of one type only). Here, we break the

results by the type of attack. Since the false positive results are similar to those of Table 5.6, we

only provide results for detection accuracy. The results are summarized in Table 5.7. It can be seen

that the classifier provides respectable detection accuracies, even for the most difficult scenarios,

that is defending against omniscient attacks in a hilly area with added variations of up to 6dB.

Table 5.7: Breakdown by attacker type; detection accuracy (D.A.) when variations with dB-spread of σ is
added to the test data from 8 DTVs. The classifier is trained with data from a disjoint set of 29 DTVs with
no added variations. Uncoordinated, coordinated, and omniscient attacks are represented by UC, CO, and
OM.

Standard Deviation of Added Variations in Test Data
σ = 0 σ = 2 σ = 4 σ = 6

Type of Attacker
UC CO OM UC CO OM UC CO OM UC CO OM

P > −65 100 100 100 100 100 100 100 100 100 100 100 100
−65 ≥ P > −85 100 100 100 100 100 100 100 100 100 100 100 100
−85 ≥ P > −105 100 100 100 100 100 100 100 100 99 100 100 99
−105 ≥ P > −114 97 93 88 97 93 88 95 91 88 93 89 87
−114 ≥ P 92 87 84 92 87 84 91 85 84 89 85 84

Overall 98 96 95 98 96 95 97 96 95 97 95 94

5.3.2 Comparison to Model-Based Scheme

The solution in Chapter 4 requires knowledge of the parameters of the log-normal shadowing

model in order to detect compromised cells. We are not able to evaluate that approach in the evalu-

ation environment of this chapter, since that approach only works with the assumption of using the

log-distance path loss and log-normal shadow-fading. In order to provide a fair comparison, we

evaluate the data-based approach in an environment similar to that of the model-based approach.
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The signal power at nodeNi is written as pi = pt−(10 log10 r
α
i +Si) where pt is the transmit power

of the primary, ri is the distance from Ni to the primary transmitter, 10 log10 r
α
i represents the path

loss with exponent α (typically 2 < α < 4), and Si ∼ N(µs, σ
2) is the loss due to shadow-fading.

µs is often considered to be 0, and the dB-spread σ independent of the distance to the transmitter

(typically 2 ≤ σ ≤ 6). Therefore we have pi ∼ N(µ(r), σ2), where µ(r) = pt− (10 log10 r
α
i +µs).

Note that the simulation setup and parameters are chosen based on the model-based scheme we

simply replicate them here in a larger scale. The simulation environment is an 8192m × 8192m

area in which secondary users are deployed uniformly at random with the density of 0.0008 per

square meter. The area is divided into 64 × 64 = 4096 square cells of size 128m × 128m each.

Therefore, the expected number of nodes per cell is about 13. Depending on the scenario, primary

transmitters with power ranging from 17dBm to 20dBm are placed at different locations in this

area to represent wireless microphone primaries. The detection threshold is λ = −74dBm, α = 3

and the standard deviation for the fading and shadowing process, σ = 3 (in dB scale).

The results are summarized in Table 5.8. It can be seen that the data-based approach outperforms

the model-based approach in terms of detection accuracy, however this comes at the cost of mod-

erate false positive rates. Note that data-based approach does not use any information about the

nature or specification of signal propagation model, whereas the model-based detection approach

requires knowledge of λ, α, and primary powers.

Table 5.8: Model-based vs data-based.

Fraction Model-based Data-based
of Cells (Classification)

D.A. F.P. D.A. F.P.
P > −55 .02 81 0 100 0

−55 ≥ P > −65 .04 95 0 100 0
−65 ≥ P > −74 .14 67 0 95 7.4
−74 ≥ P > −80 .29 85 0 96.7 7.6
−80 ≥ P > −85 .30 99 0 100 0
−85 ≥ P .19 100 0 100 0

Overall 1 89.0 0 98.3 3.5
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5.4 Conclusions and Future Work

In this chapter we presented CUSP, a new technique for detecting such attacks while aggregat-

ing spectrum sensing data from white space devices spanned over large regions. Our approach

uses classification techniques based on SVMs with quadratic kernels to learn to differentiate be-

tween natural and un-natural signal propagation patterns in the region of interest. We evaluated

the performance of CUSP using real-world transmitter, terrain, and sensor density data from two

regions in the US. We showed that CUSP can achieve high detection accuracies even in the most

unfavorable situations, i.e. hilly urban/suurban areas with significant amounts of additional signal

uncertainty.

Multi-Resolution Analysis. In the future, we will enhance the approach to detect attacker-

dominated cells at different resolutions. A high-resolution view entails dividing existing cells to

smaller cells, whereas a low-resolution view allows for considering a set of neighboring cells as

one cell. This enables detecting attackers at a fine level, coarse level, or those that are able to

dominate multiple adjacent cells.

Elevation Data as Features. We will add elevation data as features to the training and testing

data. This will provide the classifier with more information to learn and decide whether an ob-

served signal propagation pattern is natural. Our preliminary experiments with this approach show

improvements of performance in areas with irregular and hilly terrain.
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Chapter 6

Trust-Based Protection using Remote Attestation

In this chapter we consider robust radio spectrum telemetry, with focus on the case where a subset

of the sensors can be remotely attested. We propose a practical framework for using statistical

sequential estimation coupled with machine learning classifiers to deter attacks and achieve quan-

tifiably precise outcome. We provide an application-oriented case study in the context of spectrum

measurements in the white spaces. The study includes a cost analysis for remote attestation, as

well as an evaluation using real transmitter and terrain data from the FCC and NASA1.

6.1 Motivation and Approach

Consider Figure 6.1 as a part of the region of interest for performing reliable aggregation of spec-

trum measurement data. There exist two types of nodes; attestation-capable nodes (triangles), and

regular nodes (circles). In any particular cell, the goal is to obtain an estimate of the signal power

in that tile, and compare it to a primary detection threshold to determine whether the channel is

unused. Assume for now that we have performed remote attestation on all attestation-capable

nodes and have excluded those we believe are compromised. Therefore, the remaining attestation-

capable nodes are considered trusted or attested. For regular nodes, however, we do not have any

prior information regarding their legitimacy.

Consider tile A in Figure 6.1 in which about half of the nodes are attested. One may argue

that the high number of reliable nodes provides enough diversity to absorb the variations due to

path loss and shadow-fading, and therefore there is no need to include the results of regular nodes.

1The majority of the material in this chapter is adopted from Fatemieh, LeMay, and Gunter’s recently submitted
manuscript [33].
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A B C 
Attested Node 

Regular Node 

Figure 6.1: Illustration of a few cells with attestation-capable and regular nodes.

This approach is probably safer than using the values from the regular nodes that may include

compromised nodes, but what if the rest of the regular nodes are also legitimate? Is the safety

worth the reduced precision? How would we determine whether it make sense to rely only on

trusted nodes, or we should use the data from regular nodes as well? And if so, which ones?

Now consider tile B where unlike tile A there are very few reliable nodes. Therefore, there is

a high chance that aggregating the measurements from such a small number of nodes does not

provide enough diversity to obtain a precise measurement (estimate) of the signal power. A similar

situation can be seen in tile C; not only do there exist few attested nodes, but their positioning

also makes it more likely that they do not provide enough diversity as they may all be behind an

obstruction that attenuates the signal. Therefore, it seems necessary to include results from at least

some of the regular nodes. But what if some or all of them are compromised, and they skew the

results to achieve their malicious goal instead of adding legitimate diversity?

6.1.1 Key Issues and Overview

The examples above underline the importance of addressing the following issues. First, there must

be a systematic strategy to determine when we have achieved enough diversity in the results that

we can stop collecting additional data within a cell. Second, if we decide we need additional data

beyond those from attested nodes, there should exist a strategy to decide which nodes to include.

Third, for each cell in which additional regular nodes are added to the data ‘pool,’ we need a

strategy to ensure that the added nodes are not dominated by attackers. The rest of this section

aims to address the above concerns.
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At a high level, our approach consists of three main phases, as summarized in Algorithm 3.

First, within each tile we rely on basic statistical inference to aggregate data from all of attested

sensors as well as ‘enough’ regular nodes to achieve the application-specified precision goal. Note

that we only include the least required regular sensors to limit the unnecessary exposure from

untrustworthy data. As will be discussed later in this section, various inclusion strategies may be

used for this purpose. Second, the regular nodes that were included in the aggregation process in

the cell are compared against the data from the reliable nodes of the neighboring cells. This process

is performed using machine learning SVM classification to detect irregular signal propagation

patterns that most likely represent a coordinated misreporting attack. Third, as will be detailed in

the rest of this section, an aggregate (e.g., mean or median) is calculated.

Algorithm 3 Simplified Overview of Approach (for Each Cell)
Input:
(1) Green Data: measurements from attested nodes,
(2) Yellow Data: measurements from regular nodes,
(3) Strategy: strategy for including data from regular nodes

Phase 1: Node Selection
Add Green Data to aggregation pool
while

(
!Satisfy-Precision-Requirements (data in pool)

)
if
(
size(Yellow Data)> 0

)
Move-Next-Element-To-Pool(Strategy, Yellow Data);

else
Remove all Yellow Data from pool; Go to Phase 3

end

Phase 2: Attack Detection
Yellow Suspects← Yellow Data in pool from Phase 1
Green Neighbors← averages of Green Data in the neighboring cells (i.e. 8 numbers)
attack = SVM-Detection(Yellow Suspects, Green Neighbors)
if (attack)

Remove all Yellow Suspects from pool

Phase 3: Aggregate Calculation
Compute aggregate based on data in pool
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6.1.2 Intra-Cell Node Selection

The two main options for aggregating measurements in a cell are calculating the average (EGC)

or median of the data (observations). A collection of observations is referred to as a sample. The

goal is to use all of attested nodes plus a dynamically selected set of regular nodes such that we

can ensure the computed aggregate is within a pre-defined distance of the real mean or median for

the signal in the cell. The median has a key advantage over the mean as an aggregate; it is less

vulnerable to natural outliers or attacker nodes that constitute a minority of nodes in a cell [31,75].

However, computing the sample median with a pre-specified confidence interval requires more

data (compared to mean). Or dually, with a fixed number of observations, the confidence intervals

achieved for the median are larger than those computed for the mean. We present the corresponding

calculation procedures in the next section.

However, if the attackers obtain even a weak majority in a cell, they can move the median to their

desired number while being less ‘abnormal.’ Figure 6.2 illustrates this observation. The additional

abnormality facilitates detecting them in Phase 2 of our approach, and therefore may be desired.

Hence, we will rely on median when the attested nodes represent the majority of nodes in the cell

and rely on the mean otherwise. This approach is detailed in Section 6.1.5.

-100 -120 -80 

-100 -120 -80 

Average of attested nodes   : -122 dBm 

Average of attackers     : -105.5 dBm 

Average of all: -113 dBm 

 

 

Average of attested nodes   : -122 dBm 

Average of attackers    : -113 dBm 

Median of all:  -113 dBm 

 

 Signal Power (dBm) 

Signal Power (dBm) 

Figure 6.2: A simplified illustration of why attackers are forced to deviate more when they can
only affect the mean rather than the median.
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6.1.3 Using Statistical Inference to Ensure Precision

For many applications, including aggregation of spectrum sensing data, it is not clear in advance

how many sensors (observations) should be used in each aggregation effort in order to achieve

the desired precision in the (estimation) outcome. Instead, data is evaluated as it is collected, and

further sampling is stopped in accordance with a pre-defined stopping rule. This process is also

referred to as sequential estimation. In our case, we aim to achieve an acceptable precision in the

results while using as few data points from regular nodes as possible. We argue that applying basic

sequential estimation for achieving fixed width confidence interval for the estimated aggregate

is an ideal tool to achieve our goal. By stating the acceptable margin of error (half the width

of a confidence interval) for the quantity being estimated, the application can ensure with high

confidence that the estimated outcome from the sample data is ‘close enough’ to the true value. In

other words, with high confidence (e.g. 95%), it can be assured that the true mean (or median) is

within a γ margin of error from the estimated value (e.g. γ = 3dB). This is also referred to in the

form of a coverage probability (e.g. .95 = 1− α).

We first focus on a sequential procedure for finding fixed-width confidence intervals for the

mean. Let x1, x2, ... be a sequence of independent and identically distributed (i.i.d.) random vari-

ables having an unknown density function f(x), x ∈ R. The i.i.d. assumption is not absolutely

true for sensors that are very close and face correlated shadowing; however in view of practical

considerations we proceed with this assumption, which is in-line with the commonly used log-

normal shadowing model. Let µ and σ2 represent the mean and variance of density function f(x).

It is known that no fixed-sample size procedure will provide a fixed-width confidence interval for µ

having a prescribed coverage probability at the same time. The famous Chow-Robbins procedure

for sequential estimation defines the following stopping rule for a confidence interval of size 2γ:

N = inf{n ≥ n0, n ≥ a2γ−2s2
n}

where n0 ≥ 2 is the initial sample size, a = z(1−α/2) is the 100(1−α/2) percentile of the standard
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normal distributionN(0, 1) (e.g. if α = .05 then a = 1.96), and sn is the sample standard deviation

of n observations. The Chow-Robbins procedure is asymptotically tight, in the sense that the

coverage probability is asymptotically 1 − α, and is also asymptotically efficient in the sense

that the average required number of samples is asymptotically equal to an optimal fixed-sample

procedure with known σ2 [37].

Now we turn to the median. We begin by placing the measurements in order, that is: x(1) <

x(2) < ... < x(n). The goal is to find an interval x(a) < m < x(b) such that P (x(a) < m < x(b)) =

1− α, where 1− α is the desired probability that the interval captures the median.

In order to have x(a) < m, at least a of the observations must fall less than m, and in order to

have m < x(b), at most b− 1 of the observations must fall less than or equal to m. Since m is the

median and since the distribution of the X’s is continuous, we have

P (X < m) = P (X ≤ m) = .5.

Assuming independent observations, the probability that at least a and at most b− 1 of the obser-

vations fall less than m is given by the binomial probability with p = .5, that is
∑b−1

k=a

(
n
k

)
(.5)n. To

construct a 100(1 − α)% confidence interval for m, we choose a and b so that this sum is 1 − α.

For large samples, approximate values of a and b may be found by using the normal approxima-

tion to the binomial distribution. We may obtain a and b by solving for them in the following

equations [41]:
a− .5n√
.25n

= −z(1−α/2),
b− 1− .5n√

.25n
= z(1−α/2)

Note that both the confidence intervals were calculated by assuming the distribution of the orig-

inal population is unknown.

6.1.4 Inclusion Strategies

We consider three inclusion strategies for including regular nodes in the aggregate computation in

each cell.
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Random: Randomly adding data from regular nodes to the data from attested nodes has the

advantage that it is in-line with the assumptions made in computing the confidence intervals. In

addition, the randomness reduces the attacker’s chances of selectively compromising nodes and

carefully crafting false measurements with minimum abnormality.

Geo-Diverse: By selecting a geographically diverse set of regular nodes, we add diversity to the

results and reduce the chances of selecting (regular) nodes that are experiencing similar shadowing

effects. To achieve this goal, we use the widely cited Gudmundson shadow correlation model [38].

According to this model, the correlation in shadow-fading in distance ∆x is represented as:

R(∆x) = e
−∆x
dcorr

with the correlation length dcorr dependent on the environment. Empirical studies suggest values

between 25m to 120m for urban areas [16]. Using this model, we suggest the following greedy

approach to adding nodes to the aggregation pool. Before each addition to the pool, we compute

the aggregate correlation of all nodes already in the aggregation pool with the candidates to be

added to the pool. At each step, we add the node with the least aggregate correlation with existing

nodes.

Biased: In this approach, we sort the data from the regular nodes in the increasing order of the

absolute value of their difference to the median of the attested nodes. At each step, we move values

to the aggregation pool according to their rank in the sorted list. This approach has the disadvantage

that creates a ‘bias’ in the aggregate calculation process, which makes the computations in Sec-

tion 6.1.3 inaccurate. However, in many cases, this bias effectively works as an implicit weighting

mechanism in situations where attackers have only compromised a subset of the regular nodes. In

those situations, this approach may limit the number of measurements from compromised nodes

that will be included in the final result (see the results in Section 6.2).
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6.1.5 Aggregate Selection and Inter-Cell Attacker Detection

Based on the earlier observations regarding outlier resilience, the width of confidence intervals, and

ease of detecting coordinated attackers, we finalize Algorithm 3 as follows. In Phase 1, we start by

considering the data from all of the attested nodes in the aggregation pool and initially use median

as the aggregator. Consider a cell with k attested nodes. We iteratively add up to k − 1 elements

from regular nodes to the aggregation pool according to the desired inclusion strategy. After each

addition, if the margin of error for median is reduced to a value lower than γ, we transition to Phase

2. If this condition is not met at any point and there exist additional measurements, we switch to

using mean as the aggregator. Again, we continue adding new data from the regular nodes to the

aggregation pool until the stopping rule is satisfied. If so, we transition to Phase 2. Otherwise, if

adding all of the regular nodes does not result in satisfying the stopping rule, we simply ignore all

the added regular nodes and compute the median of attested nodes as the aggregator.

In Phase 2, we have an aggregate (either mean or median) from data provided by all of the

attested nodes, as well as some or all of the regular nodes in the cell. In this phase, we aim

to ensure that the regular nodes are not mounting an exploitation or vandalism attack. To that

end, we separate the data points from those regular nodes that have contributed to the aggregate

(‘yellow suspects’) and compare them to the data from attested nodes in the neighboring cells.

More specifically, we first compute the average of the reports from the yellow suspects. Next, we

consider the averages of attested nodes in each of the eight neighboring cells (see Figure 6.3). We

refer to these nodes as ‘green neighbors.’ We use these 9 data points in a 9-element tuple; the first

element represents the average power from yellow suspects in the cell under investigation, and the

next 8 cells represent the difference between averages of yellow suspects and each of the 8 green

neighbors.

Having obtained the 9-element representation for each cell, we feed it to an attacker-detection

classifier. The classifier is pre-built in a one-time process using an initial trusted set of data. Build-

ing such a classifier has been discussed in detail in earlier work [32], and has proven to effectively

detect attacker-dominated regions in regular settings where there is no separation between regular
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Figure 6.3: Classification-based attacker detection setting: regular nodes included in the aggrega-
tion for cell E and attested nodes from neighboring cells.

and attestation-capable nodes. In our setting, however, we know that none of the 8 neighboring

cells is dominated by attackers. We suggest using the same classifier for detecting whether the yel-

low suspects in a cell look abnormal compared to the green neighbors. If the classifier considers

the data to be anomalous, we only rely on the median of the attested nodes in that cell. Otherwise,

the aggregate computed in Phase 1 (using a mix of attested and regular nodes) is valid and should

be used as the representative signal power in that cell.

6.2 Evaluation

We evaluate our system using predicted signal propagation data obtained from real transmitters

and terrain data. More specifically, the TV transmitter location, signal power, height, and fre-

quency is obtained from FCC databases and terrain (i.e. elevation for any given point) is obtained

from NASA databases [5]. We choose the FCC-endorsed Longley-Rice empirical outdoor signal

propagation model to generate predicted signal power for any location and frequency of interest.

Longley-Rice takes into account the effects of terrain as well as transmitter’s power, location, fre-

quency, and height. To account for additional uncertainties due to factors such as shadow-fading

we add log-normal variations with a mean of zero and a standard deviation (dB-spread) of σdB = 6

to the predicted signal power for each point [72]. For evaluation purposes, we consider this data as
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the ground truth.

We instantiated our evaluation to a flat rural/suburban area surrounding Champaign, Illinois and

a hilly urban/suburban area surrounding Pittsburgh, Pennsylvania. We only provide results for

Pittsburgh due to space constraints, since in almost all aspects our approach is challenged more in

that area. The following points in (latitude, longitude) format define the southwest and northeast

corners of the considered 20km × 20km square area in Pennsylvania: 〈 (40.35, -80.12), (40.53,

-79.884)〉. Each cell is 1km × 1km. We focus on signals from all DTV transmitters within a 150

mile radius of this area with estimated received powers higher than -130dBm. This results in a

list of 37 DTV transmitters. Guided by approximate sample size requirements based on methods

in Section 6.1.3, we consider nodes to be scattered with an expected density Ed of 50 nodes per

cell. To add variation and randomness, we consider the number of nodes to be normally distributed

with a mean of Ed, and a standard deviation of 10. Such densities will be easily achievable in

urban areas, and need to be achieved through provisioning or other means in suburban areas for

our approach to be effective.

6.2.1 No-Attack Performance

We first evaluate the precision of predictions generated by our approach when there is no attack.

We compare the aggregate produced by our approach to the ground truth (real average power in the

cell). In Figure 6.4(a) we show the percentage of cells for which the real average power is within

the chosen margin of error ε = 3dB from the calculated aggregate.

As a second performance metric in the absence of attacks, we introduce the false outcome rate,

representing the fraction of un-attacked cells with ground truth power above (below) the primary

detection threshold of -114dBm that due to errors in our approach are mistakenly assigned an

aggregate below (above) -114dBm.
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Figure 6.4: No attack; percentage of cells with ground truth average within the margin of error from the
calculated aggregate (left) and false outcome rate (in percentage) as a function of the fraction of attested
nodes (right).

6.2.2 Performance against Omniscient Attackers

To gauge performance in the presence of attacks, we simulate omniscient (and coordinated) attack-

ers that perform exploitation and vandalism attacks. Attacker nodes act in cooperation and know

the exact number, measurements, and type of all the other nodes, as well as the inclusion strategy

in use (Random, Geo-diverse, or Biased). In cells where the ground truth is below the -114dBm

threshold, they cooperate to perform exploitation to change the aggregate to a value above the

threshold. Similarly, in cells where the ground truth is above -114dBm, they aim for vandalism by

moving the aggregate to a value below the threshold. In the both cases, the attackers minimize the

deviation of their false reports from the measurements of un-compromised nodes by choosing to

report values that move the aggregate slightly below (above) the threshold (.5 dB here) in order to

perform exploitation (vandalism). This maximizes their chances of being included in the aggregate

pool in Phase 1 and minimizes their chances of being detected in Phase 2. If the attackers conclude

that the protections in Phase 1 do not allow them to ‘flip’ the aggregate, they refrain from reporting

false reports to avoid detection.

To evaluate effectiveness against omniscient attacks, we introduce the deterrence rate. This met-

ric represents the fraction of attacks by omniscient attackers that our approach thwarts. Deterrence

may occur in phase 1 (by partial or total exclusion from the pool), or in phase 2 where their attack

is detected by the classifier. We use data from 29 of the transmitters to build a unified classifier for
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the region [32] and test deterrence of attacks on the remaining 8 channels. The deterrence rates for

cases with average attested fractions ranging from .15 to .35, and average attacker fraction rang-

ing from .25 to .85 are presented in Figure 6.5. For attested fractions higher than .35, our results

(omitted due to space constraints) show that it is more beneficial to avoid the complexities of our

approach and only rely on the average of attested nodes.
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Figure 6.5: Attack deterrence rate (in percentage) when the average fraction of attested nodes is .15 (left),
.25 (center), and .35 (right).

In Figure 6.5, a surprising phenomenon can be seen in the case of Biased attacks. In some cases,

when the attested fraction is increased (particularly from .25 to .35), the deterrence rate decreases.

While this can be considered a flaw for the biased scheme, it can be described as follows. When

the attested fraction is increased, there is less competition from regular un-compromised nodes

(for attacker nodes) to report values close to the average of attested nodes and enter the aggre-

gation pool. Therefore, the attackers have a higher chance of entering the pool with false reports,

influencing the results, and passing Phase 1. The results in Figure 6.6 show this observation; unlike

Random and Geo-diverse cases in which the deterrence at phase 1 does not change or increases as

the attested fraction increases, the rate decreases for the Biased strategy.

Overall, the results show the following. (1) All three approaches are highly effective against

omniscient attacks, even in cases where a small fraction of nodes (.15) are attested. (2) In terms

of attack deterrence, the Biased inclusion strategy outperforms others. This is particularly true

with lower attested and attacker fraction. This can be attributed to the difficulty of influencing the

aggregate by attackers in these situations, since the attacker has to fulfil two conflicting goals of

reporting values close to the attested average (to be included in pool) and at the same time far from
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Figure 6.6: The fraction of attack deterrences in Phase 1. For each bar with value x, 1 − x is the fraction
deterred in Phase 2. The average fraction of attested nodes is .15 (left), .25 (center), and .35 (right). Results
for Geo-diverse (similar to Random) are omitted.

the attested average (to move the aggregate and perform attack). (3) The relative outperformance

of the Biased approach comes at the price of relatively higher false outcome rates when there is no

attack.

6.3 Cost Considerations

Remote attestation can introduce potentially significant additional costs into a system. This section

briefly surveys these costs for implementations of two remote attestation architectures. The first

uses a TPM, which is a distinct coprocessor, whereas the second is implemented primarily in soft-

ware, requiring only small hardware adaptations. The TPM-based architecture represents an upper

bound on the cost of attestation, since the TPM is intended for use in desktop PCs with practically

unlimited power supplies. The software-based architecture represents a low-cost alternative, al-

though hardware and software innovations may result in architectures with even lower costs. The

reason we include this section is to emphasize the fact that attestation introduces significant costs,

which motivates our approach to leveraging relatively few attested nodes to establish trust in spec-

trum sensing results. The specific tradeoff between trust and cost can be made on a case-by-case

basis.

Costs arise from various sources. Remote attestation support often requires additional hardware

resources, which increase manufacturing costs. Some schemes involve a coprocessor, and even

those primarily implemented in software may necessitate larger memories to store their code and
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data. Additional energy may be consumed by several components involved in a remote attestation

transaction. Coprocessors and processors executing software routines both consume energy. Ad-

ditionally, coprocessors usually consume some energy when inactive, and enlarged memories may

require additional energy. Remote attestation transactions also increase the amount of data that

is transmitted and received over the network, which may increase the energy consumption of the

wireless radio in addition to its obvious network bandwidth cost. Increased network utilization can

also impose time costs, as can remote attestation transaction processing.

We evaluated an Atmel AT97SC3203 TPM installed in a desktop PC. It imposes a manufacturing

cost for the TPM chip itself, and potentially for expanded memories to support interface software

installed on the attested processor. We measured its energy consumption using a Digital Multi-

Meter (DMM). It draws 10.6mW of power when idle, which is likely to account for the bulk

of its total energy consumption. It consumes around 58.9 mJ when an attestation certification is

generated. Other operations require some energy, but are unlikely to contribute significantly to total

consumption either due to their infrequent invocation or the fact that they do not involve expensive

routines such as digital signature generation. Attestation operations require around 1.1 second to

execute and generate at least 296 bytes of uncompressed data if the TPM uses a 2048-bit RSA key

and the 160-bit SHA-1 hash algorithm, regardless of the specific protocol in use. For reference,

we measured the energy consumption of a Digi XBee 802.15.4 radio using an oscilloscope, and

determined that transmitting a packet with an x-byte payload consumed about (0.017x+ 1.83) mJ

of energy at 1mW.

We also evaluated a software-based attestation scheme on an Atmel AVR32 AT32UC3A0512

microcontroller [53]. It only consumes extra energy when it is active. It uses Elliptic-Curve Cryp-

tography (ECC) rather than RSA, which uses shorter keys (192 bits in this prototype) and simpler

computations. Thus, although it does not use any hardware accelerators such as those in the TPM,

it still consumes similar amounts of energy during attestation operations. Each operation actually

only takes about 0.6 seconds to execute. Due to the significantly shorter keys, each attestation

operation only generates at least 44 bytes of data.
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6.4 Conclusions and Future Work

The use of statistical sequential estimation and classification methods can help evaluate and im-

prove the trustworthiness of spectrum sensing results generated by a network containing a limited

number of attested sensors. These methods reduce the total cost incurred by attestation. Our eval-

uation determined that the Biased node inclusion strategy is the most effective at deterring attacks,

but also generates more false positives than Random or Geo-diverse strategies. All three strategies

result in substantial attack deterrence. These are not the only strategies that can be used, and future

research should evaluate other strategies.

Another direction for further research is developing framework for formulating costs associated

with including regular and attested nodes, and systematically striking a balance between the costs

(from spectrum data aggregation and remote attestation) and achieving robust aggregation results.

Solving the following minimization problem may yield one such solution:

min
αi∆,α

j
◦

[
DISTANCE

( 1

S

[ N∑
i=1

αi∆∆i +
M∑
j=1

αj◦ψ(◦j)◦j
]
, Preal

)
+C∆

N∑
i=1

αi∆ + C◦

M∑
i=1

αi◦

]
,

S =
N∑
i=1

αi∆ +
M∑
j=1

αj◦ψ(◦j)

where αi∆, α
i
◦ ∈ {0, 1} denote whether an attestation-capable node i or regular node j will be

included in the aggregate calculation, and N,M are the total number of attestation-capable and

regular nodes in the cell, respectively. ∆i is the measurement by the i-th attestation-capable node

and ◦j is the measurement by the j-th regular node in the cell. Preal is the ground truth average

power in the cell; since it is not known, we will substitute it with a representative value (e.g.

average of neighboring cells). ψ(◦j) denotes the probability that the reading ◦j by a regular node

is legitimate (and will be estimated by an SVM classifier). C∆ is the cost associated with using

each attestation-capable node, and C◦ is the cost associated with using each regular node. Note
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that these costs are uniform within each class of nodes.
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Chapter 7

Related Work

This chapter covers the related works in two general categories: white space networks, and sensor

and ad-hoc networks. We also briefly discuss related work in the context of remote attestation

in distributed sensing, which complements the background material on remote attestation in Sec-

tion 2.1.3.

7.1 White Space Networks

Most prior work in the context of white space networks considers identifying individual attackers

within a cell as part of collaborative sensing. Such approaches are not capable of detecting cells

that are dominated by attackers. Min et al. [59] group sensors in a neighborhood to clusters (cells),

and exclude or minimize the effect of abnormal sensor reports using shadow fading correlation-

based filters. However, it fails to detect attackers that constitute more than 1/3 of the population

of the nodes in a cell. Kaligineedi et al. [45] address a similar problem by pre-filtering outlying

sensing data, and a strategy to assign trust factors to nodes for weighting measurements and poten-

tially omitting some nodes. In addition to the general problems enumerated with outlier-detection

techniques, the attacker model is too simplistic and falls short in cases where attackers constitute a

large fraction of nodes in a cell, or employ sophisticated misreporting strategies.

also consider malicious false reporting in collaborative sensing. They propose a reputation-

based data fusion technique named weighted sequential probability ratio test which is based on

the sequential probability ratio test. The proposed scheme, however, heavily depends on apriori

knowledge of the reporting values of radios given the true state of the world. It also does not
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account for spatial variability of spectrum availability and only focuses on detection in a small re-

gion. In addition, the proposed mechanism is limited to hard-combining collaboration techniques,

whereas we consider soft-combining techniques to obtain more information from each node.

Chen et al. [25, 26] propose a weighted, reputation-based data fusion technique based on the

sequential probability ratio test. Their approach only considers hard 0/1 decisions from each node,

requires prior knowledge about the false positive and false negative ratios at each node. In addition,

it does not account for spatial variability of spectrum availability and only focuses on detection

in a small region. Therefore, it cannot detect attacker-dominated regions. Lee et al. [52] have

considered clustering of nodes and weighted collaborative sensing, but they do not particularly

focus on security aspects of collaborative sensing.

Chen et al. [27] consider primary user emulation attacks in which an attacker may modify the

air interface of a radio to mimic a primary transmitter signal’s characteristics, thereby causing

legitimate secondary users to erroneously identify the attacker as a primary user. They propose

LocDef, which utilizes both signal characteristics and location of the transmitter to verify primary

transmitter signals. An alternative is using cryptographic and wireless link signatures to authenti-

cate primary users’ signal in presence of attackers that may mimic the same signal. Liu et al. [58]

achieve this by using a helper node close to a primary user to enable a secondary user to verify

cryptographic signatures carried by the helper node’s signals and then obtain the helper node’s

authentic link signatures to verify the primary users signals. We consider this problem to be com-

plementary to the problem we address.

A number of proposals motivate and identify various security issues in cognitive radio net-

works [22, 28, 67]. Although the attacks we consider, or a variation of them, are mentioned in

these works and high-level ideas for mitigating them are proposed, none of them provide detailed

solutions for addressing them.
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7.2 Sensor and Ad-Hoc Networks

There exists a rich body of related work on this topic in the sensor network security literature. We

consider the following to be the most relevant ones. Wagner introduced resilient aggregation [75],

where he studies resilience of various aggregators to malicious nodes in an analytical framework

based on statistical estimation theory and robust statistics. However, his work is limited to small

regions and does not consider attacker detection as we do. Zhang et al. [77] propose a framework

that identifies readings not statistically consistent with the distribution of readings in a cluster of

nearby sensors. Their proposal, however, is local, that is only works for a small region. For

example, it is not able to handle situations where attacker can compromise a large fraction of the

nodes in a cluster. It also assumes the data comes from a distribution in the time domain, which

in not a valid assumption in our domain. Hur et al. [44] propose a trust-based framework in a grid

in which each sensor builds trust values for neighbors and reports them to the local aggregator.

Our work is similar to this work in that it is based on a grid. Their solution, however, does not

provide a global view for a centralized aggregator, and also cannot identify compromised ‘regions.’

They also do not consider uncertainties in the data. An avid reader may refer to following list for

additional resources in the related are of secure data aggregation in wireless sensor networks [17,

24, 35, 42].

Insider attacker detection in wireless networks is another area of related work. This problem

has been explored in a general setting [20, 43, 78] as well as more specific contexts such as insider

jammers [50]. As an illustrative example in the general context of sensor networks, Liu et al. [56]

propose a solution in which each node builds a distribution of the observed measurements around

it and flags deviating neighbors as insider attackers. This work is again local and peer to peer and

does not work in areas with more than 25% attackers. Krishnamachari et al. [49] consider fault

tolerant event region detection in sensor networks using a Bayesian framework. This work differs

from our work in that it only considers faulty nodes that are not necessarily malicious, the faulty

nodes are assumed to be uniformly spread, and the node itself participates in the detection process.

Ganeriwal et al. [35] propose a reputation-based trust framework, where each sensor maintains
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a local reputation and trust for its neighbors. This work is very general, and is mainly focused on

local decision making at each sensor. It is also local and peer to peer, meaning that the reputation

is typically considered to be updated based on the quality of pairwise interactions between nodes.

Remote Attestation There has been a number of works on utilizing remote attestation capability

to achieve security in sensor networks. For example, there has been efforts on proposing architec-

tures and building platforms [66], detecting compromised nodes [76], and other activities such as

secure code update and key establishment [65]. To the best of our knowledge, no prior work has

considered the problem of using attestation to defend against malicious false reports by omniscient

attackers in the context of white-space distributed spectrum measurement.
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Chapter 8

Conclusions

In this dissertation, we motivated the importance of protection against exploitation and vandalism

attacks in the context of spectrum telemetry in white-space networks. This importance is magnified

in view of the growing interest in using white-spaces for a wide range of applications. Unlike

the thin body of related work on this subject, we focused on a range of attacks, including those

originating from omniscient attackers that may constitute the majority of nodes in a small area, and

launch carefully crafted attacks. To defend against these attacks, we offered a problem formulation

based on a grid of small cells and three general solutions.

The first solution, also called model-based, relies on models for signal propagation and shadow-

fading to build an attacker-detection model based on outlier detection. Attackers are either individ-

ually detected inside each cell, or detected as a group by corroboration among neighboring cells in

a hierarchical structure. This approach, while shown to be effective against attacks, suffers from

at least two shortcomings. First, it relies on fairly accurate knowledge about signal propagation

and shadow fading models and parameters in order to succeed, which is an unrealistic assumption.

This is particularly true in urban areas or hilly terrains. Second, while some of the threshold pa-

rameters for attacker detection are automatically derived by the proposed approach, there exists

one important threshold that requires conjecturing and manual tuning for each given region, which

makes it impractical.

The second solution, CUSP, is a data-based technique that aims to address the limitations of the

model-based scheme by solely relying on an initial trusted set of signal propagation data. CUSP

uses the data to build SVM classifiers with quadratic kernels that are trained to differentiate be-

tween natural and un-natural signal propagation patterns in the region of interest. The resulting
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approach is practical and effective for application in all areas and avoids arbitrary assumptions

about models, parameters, and thresholds in favor of direct training data. We showed the effective-

ness of this approach using a novel evaluation method based on real transmitter and terrain data.

We showed that CUSP can achieve high detection accuracies even in the most unfavorable situ-

ations, i.e., hilly urban/suburban areas with significant amounts of additional signal uncertainty.

We also compared the performance of this technique with the model-based approach and showed

that, despite not relying on closed-form formulas, parameters, and manual tuning, it outperforms

the model-based technique in terms of attacker detection. A potential drawback is higher false

positive rates, which is aggravated in environments with considerable natural variations in signal

power within short distances. At a high-level, a remedy would entail modifying the feature space

to increase its descriptive power. Adding elevation data to the feature space used in classification

was discussed as a promising direction for future work.

In the third solution, we considered the case where the network constitutes a limited number of

attestation-capable sensors. We presented a trust-based approach and showed that using statistical

sequential estimation and classification methods can help deter attacks, while achieving quantifi-

ably percise spectrum sensing outcome when possible. We showed that these methods reduce the

total cost incurred by attestation. Our evaluation determined that the Biased node inclusion strat-

egy is the most effective at deterring attacks, but also generates more false positives than Random

or Geo-diverse strategies. All three strategies result in substantial attack deterrence. These are not

the only strategies that can be used, and future research should evaluate other strategies. We also

discussed another area for further research: developing a framework for formulating costs associ-

ated with using regular and attested nodes, and systematically striking a balance between the costs

(from spectrum data aggregation and remote attestation) and achieving robust aggregation results.
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