
Mitigating DoS Attack Through Selective Bin Verification

Micah Sherr†, Michael Greenwald‡, Carl A. Gunter?, Sanjeev Khanna†, and Santosh S. Venkatesh†

† School of Engineering and Applied Science, University of Pennsylvania
{msherr,sanjeevk,venkatesh}@seas.upenn.edu

‡ Bell Labs
greenwald@research.bell-labs.com

? Department of Computer Science, University of Illinois at Urbana-Champaign ∗

Abstract

Despite considerable attention from both the academic
and commercial communities, denial-of-service (DoS) at-
tacks represent a growing threat to network administrators
and service providers. A large number of proposed DoS
countermeasures attempt to detect an attack in-progress
and filter out the DoS attack packets. These techniques often
depend on the instantiation of sophisticated routing mech-
anisms and the ability to differentiate between normal and
malicious messages. Unfortunately, neither of these prereq-
uisites may be practical or possible.

We propose and evaluate a defense against DoS attacks
which we call selective bin verification. The technique
shows promise against large DoS attacks, even when at-
tack packets are able to permeate the network and reach
the target of their attack. We explore the effectiveness of
our technique by implementing an experimental testbed in
which selective bin verification is successfully used to pro-
tect against DoS attacks. We formally describe the mathe-
matical properties of our approach and delineate “tuning”
parameters for defending against various attacks.

1. Introduction

The increasing number and severity of denial-of-service
(DoS) and distributed denial-of-service (DDoS) attacks
have become a growing annoyance to network administra-
tors and service providers [7]. Consequently, there has been
a significant body of work in which countermeasures are

∗In: Workshop on Secure Network Protocols (NPSec), November
2005, Boston, Massachusetts.

proposed to alleviate or eliminate the effects of these at-
tacks. Typically, human operators defend against DoS by
augmenting their networks with additional equipment or
by employing some filtering mechanism that prevents mali-
cious packets from reaching their target [5].

While these approaches may be appropriate for several
types of DoS attacks, they unfortunately are not always ap-
plicable or practical. The deployment of additional com-
putational and network resources may be technologically
or financially infeasible. Techniques that discriminate be-
tween normal and malicious traffic assume that these two
traffic streams are somehow distinguishable. For some pro-
tocols, it may be prohibitively expensive to reliably make
this distinction.

In this paper, we study the effectiveness of a novel coun-
termeasure to DoS called selective verification. First intro-
duced in [4], our technique allows the receiver to tolerate
large DDoS attacks while providing service to legitimate
senders. Unlike more orthodox approaches in which suc-
cess is measured by the ability to prevent bogus requests
from entering the targeted network, selective verification is
effective even when attack packets reach the receiver.

In particular, this paper investigates a class of selective
verification called selective bin verification. While previous
work [4] has illustrated the ability of sequential selective
verification to protect authenticated broadcasts from DoS,
we show that bin verification is an effective technique to
protect point-to-point protocols.

The remainder of the paper is organized as follows. In
the following section, we discuss related work. In Section 3,
we describe the selective bin verification protocol. To test
the efficacy of our approach, we describe and analyze vari-
ous selective bin verification experiments in Section 4. We
conclude and discuss areas of future research in Section 5.

2. Related Work

Much prior work has investigated the problem of pro-
tecting against DoS. Existing defenses generally fall into
two categories: those that mitigate the attack by adding
additional resources and those that attempt to differenti-
ate between legitimate and malicious (or anomalous) traf-
fic. While the former approach is often used in practice to
mitigate the effects of an ongoing attack [2], most of the
academic literature has focused on the latter category.

In particular, automated detection and response mecha-
nisms present promising defenses. Network intrusion de-
tection systems [8] are effective at detecting certain types
of DoS attacks. However, approaches that rely on signa-
ture or anomaly detection make the assumption that the at-
tack packets are distinguishable from the legitimate traffic.
While this may be true for certain attacks (e.g., “smurf” at-
tacks [3]), other DoS techniques merely inundate a service
with requests that appear valid.

Additional work has focused on curbing DoS attacks at
the source [5, 6]. Here, a router detects an anomalous traffic
flow and actively responds to the attack. However, since
distributed DoS attacks are often carried out by unwitting
zombie hosts that may be dispersed throughout the Internet,
this task is non-trivial without the widespread adoption of
cooperating DoS-aware routers.

An important advantage of selective bin verification is
that it reduces the effects of a DoS attack even in the case
where the attack fails to be detected. It is a software-based
approach and requires no hardware modifications. While
our technique is not a panacea to the DoS problem, its use
in conjunction with existing approaches may significantly
reduce the effects of many DoS attacks. In the section that
follows, we describe our technique more formally.

3. Selective Bin Verification

3.1. Sequential Selective Verification

Selective verification has previously been introduced
as an effective approach to thwarting DDoS attacks [4].
Specifically, the focus of the prior work was to alleviate
the effects of a DoS attack against an authenticated broad-
cast stream. The authors considered a protocol in which the
receiver must exert significant processing resources to au-
thenticate a message (for example, carry out a public-key
operation). Furthermore, they imposed the restriction that
the attack traffic attempted to overwhelm the computational
resources of the receivers but was not able to prevent all
legitimate traffic from being delivered. Under such an at-
tack model, there is a disparity between the bandwidth used
by the sender and by the attacker. While the sender broad-
casts only the legitimate stream, the attacker must flood the

network with superfluous packets in order to mount an ef-
fective attack.

Selective verification exploits this asymmetry to protect
the broadcast message stream from a DoS attack. Rather
than process all arriving packets, a host using selective ver-
ification processes only a subset of the received packets.
To ensure that legitimate messages are not lost, the sender
transmits multiple copies of each message.

Upon first inspection, selective verification appears to
worsen the DoS attack by increasing the amount of traffic
received by the receiver. However, due to the asymmetry
in the cost of sending versus processing messages, the large
reduction in processing cost outweighs the increase in net-
work traffic during an attack. For the sender, sending du-
plicate copies of a packet is cheap. Conversely, the receiver
must exert significant computational resources to process
messages. To alleviate this potential high cost, the receiver
randomly drops packets with probability p (randomly drop-
ping packets is, again, a cheap operation). On average, the
receiver still may process multiple copies of legitimate mes-
sages (nonces may be used to quickly discard duplicates),
however, DoS packets are also discarded with probability p.
Thus, to sustain the same level of attack, the adversary must
increase his traffic by a factor of 1/p. While the legitimate
senders must also send multiple copies of their messages,
senders use only a small fraction of the receiver’s bandwidth
during a DoS attack and transmitting duplicates adds little
overhead to either the sender or the receiver. The primary
cost of using selective verification is therefore borne by the
attackers.

3.2. Selective Bin Verification

In this work, we explore the effectiveness of using selec-
tive bin verification to defend against DoS attacks. Here,
we consider a typical client-server system in which multi-
ple independent clients (senders) simultaneously access a
single server (the receiver). Concurrently, the system may
be subject to a DoS or DDoS attack in which the receiver is
inundated with seemingly valid requests.

Like sequential verification, bin verification operates by
processing only a randomly-selected subset of received
messages. However, unlike sequential verification in which
all messages are stored in the same queue, bin verification
utilizes a set of n bins, labeled 0, . . . , n − 1. When a le-
gitimate sender transmits her request, she sends c copies
of her message. Each copy includes a bin identifier (b) and
successive copies are numbered sequentially starting from a
randomly chosen initial point. Upon receiving a copy of the
request, the receiver queues the message in bin (b mod n).
Each sender hence “stripes” the n bins with packet copies.
If the sender packets are lost with probability l, then the
average number of sender packets per bin is (1− l)c/n.

Attack packets are processed and assigned to bins in an
identical fashion though, conservatively, we do not assume
that attack packets are subject to loss.

After some fixed amount of time (which we call the col-
lection interval), the receiver chooses k bins, where k ≤ n.
For example, a simple (and effective) technique is to choose
the k bins that contain the least (but non-zero) number of
queued messages. Regardless of how the bins are selected,
the receiver proceeds by processing each message in the k
bins. For each valid request (e.g., messages that are success-
fully authenticated through a digital signature), the receiver
responds to the request according to the particular protocol
being carried out1.

3.3. Sequential vs. Bin Verification

While sequential verification is effective at protecting an
authenticated broadcast stream against DoS, bin verification
is more appropriate for protocols in which multiple senders
simultaneously send requests to a single receiver. In the lat-
ter case (which is the impetus of this paper), the binning
technique increases the probability that a sender and the re-
ceiver will be able to participate in a successful exchange.

Consider a configuration in which we have n bins and m
senders. Suppose each sender sends n copies. In the ab-
sence of network loss, we are guaranteed that by choosing
a single bin we satisfy all m senders. The receiver’s load
is therefore m, or 1 packet per sender. On the other hand,
in sequential verification, in order to generate an expected
load of 1 packet/sender, the receiver needs to discard pack-
ets with probability (1 − 1/n). Then the probability that
none of the packets of a sender are received is roughly 1/e.
Thus, approximately m/e senders will have none of their
packets received. In other words, with a comparable work
load, we expect only 63.21% of the senders to now succeed
as opposed to 100% with binning.

The calculations remain unchanged in the presence of a
DoS attack. To scale down the attack by a factor of n, the
receiver can inspect one of his n bins. Here, the load on
the receiver is m + γ/n, where γ is the number of received
attack messages. Assuming no network loss, all sender re-
quests will be processed.

3.4. Memory Requirements of Selective Verification

For bin verification to be most effective, the receiver
must have sufficient memory to enqueue all arriving mes-
sages during the collection interval. With diminishing
prices for memory and increasing speeds of hard disks (i.e.,
for virtual paging), we believe that processing power rather

1Since multiple copies of a message may appear in the k bins, request
identifiers may be used to both speed the processing of redundant messages
and prevent non-idempotent requests from being executed multiple times.

than memory is more often the scarce resource. (Many com-
modity hard disks have transfer rates exceeding 100Mb/s
and could therefore be used to buffer packets when memory
becomes unavailable.) Moreover, for many protocols, par-
ticularly those that rely on expensive cryptographic opera-
tions and are thus more susceptible to DoS (e.g., X.509 [1]
and SSL/TLS), the bottleneck is the receiver’s computa-
tional resources. For example, according to OpenSSL
benchmarks we conducted on a 2.4GHz Pentium IV, the
maximum number of signatures that can be computed per
second using a 2048-bit key is only 34.4 for RSA and 122.0
for DSA, far below the number of requests that can be trans-
mitted in one second using a 100Mb/s connection.

While bin verification is effective for computationally in-
tensive protocols, sequential verification is more appropri-
ate for protecting against attempts to overwhelm the mem-
ory resources of the receiver. In such cases, the receiver can
discard packets with a probability sufficient to ensure that
the nondropped packets can be buffered in memory.

In the remainder of this paper, we make the assumption
that there is sufficient memory to hold all incoming mes-
sages. That is, we concentrate on attacks in which process-
ing power is the scarce resource and show how bin verifica-
tion can alleviate the effects of these attacks.

4. Experiments

We have conducted a series of experiments to verify the
ability of selective bin verification to mitigate the effects of
DoS. In each experiment, multiple senders attempt to carry
out a modified version of the X.509 two-pass protocol [1].

4.1. Modified X.509 Two-pass Protocol

(1) A → B : certA, DA, SA(DA)
(2) B → A : OK

where
certA is a certificate from a certificate authority used for

authenticating A’s public key
DA is defined as (rA, B, PB(k1))
PB(k1) denotes the encryption of k1 using B’s public key
SA(DA) denotes the signing of DA using A’s private key
rA is a nonce

Figure 1. Modified version of the X.509 proto-
col

The goal of the X.509 protocol is for a sender to securely
transmit a symmetric key, k1, to a receiver. As shown in
Figure 1, a sender encrypts k1 using the receiver’s public
key and signs the result using its private key. The message
is then sent to the receiver, where the receiver ensures that

the nonce is fresh, validates the signature (using the sup-
plied certificate), and decrypts PB(k1). If the receiver is
successful in learning k1, it transmits an OK message to the
sender.

It is worthwhile to note that the cost of conducting the
protocol is quite high for the receiver. For a request that
contains a fresh nonce, the receiver must conduct an expen-
sive signature check. An adversary who uses fresh nonces
but sends random bits for DA and SA(DA) forces the re-
ceiver to perform this operation. Thus, the protocol’s high
cost causes the receiver to be particularly vulnerable to DoS.
We therefore use the modified X.509 protocol to measure
the ability of bin verification to mitigate the effects of DoS.

4.2. Experimental Setup

The X.509 server (the receiver) was implemented using
OpenSSL version 0.9.7. The server operated on a 800MHz
Pentium III machine. Request initiators (senders) ran on
a 2.4GHz Pentium IV and were constructed using POSIX
threading and OpenSSL libraries. The sender software was
capable of running approximately 80 concurrent connec-
tions with the receiver. In the cases where a greater number
of senders were needed, a 700MHz Pentium III was also
used. DoS attacks initiated from a 700MHz Pentium III
computer. All machines ran Linux 2.4 and were connected
using 100Mbps Ethernet network interfaces and switches.

All communication occurred over TCP/IP. Network loss
was simulated at the sender by failing to send a request with
probability l, which we call the loss probability. We chose
to use TCP rather than UDP in order to more accurately
control the loss rate visible to the application layer. DoS
messages from the attack host experienced no loss.

The receiver software utilized 20 bins and a six sec-
ond collection interval. Incoming messages were enqueued
into a bin using the modulo technique described in Sec-
tion 3.2. In all experiments, the collection interval was suf-
ficient to capture all messages transmitted by the senders.
A simulated loss probability of 0.20 was experienced by the
senders. To compensate, each sender sent 25 copies of her
requests. Each sender chose uniformly at random an ini-
tial bin from [0, 19] and proceeded by sending subsequent
copies in a round-robin fashion.

After the collection interval, the receiver selected three
bins. With the exception of the experiment described in Sec-
tion 4.5, the three non-empty bins with the smallest number
of messages were chosen. The receiver processed all mes-
sages in each bin (i.e., it verified the freshness of the nonce,
validated the signature, and in the case of legitimate mes-
sages, decrypted PB(k1)). If the message passed all checks,
the receiver sent an OK message to the corresponding sender.

4.3. Failure Rate of Bin Verification

A sender’s message may fail to be processed due to the
simulated network loss probability (fixed in our experimen-
tation at 0.20). After the collection interval has expired, the
receiver processes messages only from a small subset of the
nonempty bins. It is therefore possible that due to the loss
probability, no copies of a particular request are present in
any of the selected bins. We call this a failure and the frac-
tion of unique sender requests (as opposed to sender copies)
that end in failure the failure rate. Here, we show that by
checking just a small number of bins, the failure rate be-
comes quite low.

For simplicity, we consider a bin selection algorithm in
which the receiver chooses k random bins rather than the
k smallest. Although this strategy is not optimal from the
receiver’s point of view (see Section 4.5 for an analysis of
different DoS attacker techniques), it serves as a simple and
useful baseline for understanding the anticipated loss rate of
selective bin verification. Let l be the loss probability, c be
the number of copies sent by a sender, and n be the number
of bins used by the receiver. Additionally, we assume that
the sender stripes her request across the n bins. We can
then calculate the probability, f ′, that a randomly chosen
bin does not include a message from the sender as:

f ′ =
(c mod n

n

)
ld

c
n e +

(
1− c mod n

n

)
lb

c
n c ≤ lb

c
n c

(1)
Since the probability that messages arrive in a given bin are
independent, the failure rate, f , when k bins are examined
is therefore

f ≤ lb
c
n ck (2)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6

F
a
i
l
u
r
e

R
a
t
e

Bins Checked

Figure 2. Failure Rate vs. Bins Checked (100
senders)

To verify our analysis, we conducted an experiment us-
ing the X.509 testbed. For this experiment, 100 senders si-
multaneously sent X.509 requests. Here, however, the re-

ceiver used a more intelligent strategy and chose the small-
est (rather than random) three bins. Although the failure rate
is slightly higher for this technique as compared to the ex-
pected value calculated using Equation 2, the rate becomes
quite negligible when checking a small number of bins with
a sufficiently large number of senders. This trend can be
seen in Figure 2, with the failure rate approaching 1% after
only three bins are checked.

4.4. Protection against DoS Attack

In this experiment, we show the efficacy of our selective
bin verification approach against DoS attacks. We use as
our metric the number of inspections carried out by the re-
ceiver. Here, we define an inspection to occur when the re-
ceiver processes a message, regardless of whether the mes-
sage is legitimate, a duplicate, or invalid.

We compare the results of our binning technique against
a straightforward implementation in which every message
is considered. Let a be the attack rate (i.e., the number of
attack messages arriving at the receiver per second), i be
the collection interval (measured in seconds), and n be the
number of bins. When binning is not used and each sender
sends only one request, then the expected number of inspec-
tions required for m senders is

inspnb = ai + m(1− l) (3)

where l is the loss probability of the sender.
For the binning technique, the m senders are expected to

cause mc(1− l)(k
n) inspections, where c denotes the num-

ber of copies sent by each sender and k is the number of
bins inspected by the receiver. Since the receiver only in-
spects k bins, the contribution of the DoS is ai(k

n). Thus,
the expected number of inspections is

inspb =
k(mc(1− l) + ai)

n
(4)

Thus, when the attack rate a is much larger than n and
m = O(n), then the attack rate is diminished by approx-
imately a factor of k/n. For a receiver with 20 bins and
k = 3, we would thus expect to process roughly 3/20 of the
DoS packets. Furthermore, we note that Equation 4 is an
upper-bound on the number of inspections since the receiver
selects the k-smallest bins rather than k bins at random.

We conducted an experiment to confirm our analysis.
Figure 3 shows the number of inspections for the binning
and non-binning approaches. 50 senders simultaneously
sent requests in both the non-binning and binning trials. For
the non-binning trials, each sender sent only one copy of her
message. As in all binning experiments, a six second collec-
tion interval was used. In addition, an adversary flooded the
receiver with requests that appeared valid but that contained
invalid signatures. These extraneous messages were striped

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500

I
n
s
p
e
c
t
i
o
n
s

Attack Rate (attacks/sec)

1 bin
20 bins

Figure 3. Inspections vs. Attack Rate

across all bins. Although both are linear, the slope resulting
from the binning approach is significantly less than that of
the non-binning technique. While the specific results shown
in the Figure are a function of our chosen parameters (e.g.,
50 senders, 20 bins, and 3 selected bins), we believe that
our configuration is appropriate for real-world deployment
and is effective at alleviating DoS.

4.5. Bin Selection Algorithm

In the previous experiments, the receiver processed mes-
sages in the three smallest but non-empty bins. We call this
technique the k-smallest approach. With a small number of
senders, this approach can lead to a higher failure rate. For
example, if a small number of senders each transmits 25
copies of their requests across the 20 bins with some loss
probability, the selection strategy will favor bins that con-
tain no messages from some of the senders. As a result, the
failure rate for each sender is relatively high. With a large
number of senders, the distribution of bin loads as a fraction
of the total number of senders becomes more uniform, and
hence the failure rate decreases.

To counter this effect and increase the probability that
each sender’s request is processed, we propose the α-
random approach for selecting k bins. Here, the receiver
chooses the k − α smallest but non-empty bins, where
1 ≤ α < k. Let B be the set of remaining, non-selected
bins. The receiver proceeds by computing the mean bin
load (i.e., the total number of received messages divided by
the number of bins). It then uniformly at random chooses α
bins from the subset of B which consists of bins that contain
less than the mean bin load.

Figure 4 illustrates the failure rates for both bin selection
strategies. As before, we let k = 3, and in the case of the
α-random selection algorithm, assign α = 1. As can be
seen in the Figure, the failure rate is significantly higher for
the k-smallest selection technique with a small number of
senders (e.g., less than 10). This effect is less pronounced

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80

F
a
i
l
u
r
e

R
a
t
e

Clients

k=3,alpha=1
standard binning

Figure 4. Failure Rate vs. Number of Senders

for the α-random approach.

4.6. Subset Attack

In Section 4.4, we described how selective bin verifica-
tion can reduce the effect of DoS when the adversary stripes
his attack across all bins. Here, we show that our binning
technique is resilient even when the attacker constrains his
attack to a chosen subset of bins. As before, we assume that
the receiver uses the k-smallest approach. Furthermore, we
denote the attacker’s measure of success as the number of
inspections he can force the receiver to undergo.

Theorem: The contribution of inspections due to DoS is
maximized when the attack is evenly distributed across all
n bins.

Proof. Let L(σ) be the total number of adversary packets
in the S smallest bins, where σ is the attacker’s chosen dis-
tribution function such that σ(i) denotes the number of DoS
packets that the adversary sends to bin i. Also, let σ be the
equal distribution (i.e., ∀i, j, |σ(i) − σ(j)| ≤ 1). For sim-
plicity, we consider the case where

∑n−1
i=0 σ(i) is a multiple

of n (that is, ∀i, j, σ(i) = σ(j)). Since the k-smallest bins
can never contain more messages than k times the average
bin load (i.e., σ(i)), then ∀σ, L(σ) ≤ L(σ).

Lastly, we note that the senders’ requests do not affect
the efficacy of the attacker’s chosen bin distribution tech-
nique. Legitimate senders evenly distribute their message
copies among the n bins. Hence, the contribution of the
senders’ requests is constant and independent of the man-
ner in which the DoS packets are distributed.

5. Conclusions and Future Work

Existing research concerning DoS has focused almost
exclusively on preventing malicious packets from reach-

ing their intended targets. While such research is worth-
while and is useful for thwarting particular classes of at-
tack, these approaches alone are not sufficient to protect
service providers. Particularly for protocols in which the
receiver has a high processing cost, traditional approaches
fail to protect against attacks in which the adversary can
overwhelm the receiver by sending malicious messages that
appear entirely valid.

In this paper, we have investigated the ability of selective
bin verification to protect services from attack, even when
the DoS flood reaches the receiver. We show that bin ver-
ification is a promising technique for mitigating the effects
of even large DoS attacks. Furthermore, we have analyzed
the ability of bin verification to protect against attack under
different configurations and attack strategies.

There are several interesting areas of future research re-
lating to selective bin verification. Currently, the technique
requires communication overhead even in the absence of an
ongoing attack. Thus, an appropriate extension incorporates
intrusion detection. For example, bin verification could be
deactivated in the steady state and automatically enabled
during an attack. A formal analysis of which protocols may
best benefit from selective verification is another useful fu-
ture research area. Finally, solutions that employ selective
verification in concert with network-based DoS defenses are
worthy of future study.

Acknowledgements

This work was partially supported by ONR Grant
N00014-02-1-0715.

References

[1] ITU-T (CCITT) recommendation X.509, Mar. 1988. Also
ISO 9594-8.

[2] S. Berinato. How a bookmaker and a whiz kid took on an
extortionist - and won. CSO Magazine, May 2005. http:

//www.csoonline.com/read/050105/extortion.html.
[3] CERT Advisory CA-1998-01 Smurf IP Denial-of-Service At-

tacks, Jan. 1998.
[4] C. A. Gunter, S. Khanna, K. Tan, and S. S. Venkatesh. Dos

protection for reliably authenticated broadcast. In Proceed-
ings of the Network and Distributed System Security Sympo-
sium (NDSS), 2004.

[5] J. Ioannidis and S. M. Bellovin. Implementing pushback:
Router-based defense against DDoS attacks. In Proceed-
ings of Network and Distributed System Security Symposium,
February 2002.

[6] P. Jelena and M. Greg. Attacking DDoS at the source, 2002.
[7] D. Moore, G. Voelker, and S. Savage. Inferring internet denial

of service activity. In Proceedings of the 10th USENIX Secu-
rity Symposium, Washington, D.C., Aug. 2001. USENIX.

[8] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks (Amsterdam, Netherlands:
1999), 31(23–24):2435–2463, 1999.

