
Distributed Non-Intrusive Load Monitoring
David C. Bergman, Dong Jin, Joshua P. Juen, Naoki Tanaka, Carl A. Gunter

University of Illinois at Urbana-Champaign
{dcbergma, dongjin2, juen1, tanaka5, cgunter}@illinois.edu

Andrew K. Wright
N-Dimension

andrew.wright@n-dimension.com

Abstract—Smart grid support for demand response provides
strategies for an electricity service provider to shed loads during
peak usage periods with minimal consumer inconvenience. Direct
load control is a strategy for doing this in which consumers
enroll appliances such as electric water heaters, air conditioners,
and battery vehicles in a program to respond to load shed
instructions in exchange for a discount on electricity prices or
other incentive. The effectiveness of direct control depends on
the ability of the provider to verify that appliances respond
to load shed instructions. A technique called non-intrusive load
monitoring, in which electric power meter readings are used
to identify loads generated by specific appliances, provides a
practical strategy for load shed verification in residences. Non-
intrusive load shed verification (NLSV) promises to greatly
simplify trust assumptions required for the deployment of direct
control.

Implementing NLSV on resource constrained smart meters is
problematic. This paper describes and evaluates a distributed
non-intrusive load monitoring algorithm that is split between a
capable backend system and a typical smart meter in the field.

1

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) [1] is a technique
for analyzing aggregate electrical load data together with
appliance profile data to decompose the aggregate load into
a family of appliance loads that explain it. NILM algorithms
have developed significantly [2]–[13] since their introduction,
and current algorithms are able to provide accurate decom-
positions in many practical cases. However, these advanced
techniques rely on significant computational capabilities. This
leaves a role for distributed NILM, where the algorithms can
be split into two parts, one that runs on a capable backend
system and another that can be run on a typical residential
advanced meter. For example, the genetic algorithms used to
eliminate the interactive training phase take ten minutes to run
on a 3GHz Pentium 4 machine while the typical AMI meter is
running at below a hundred megahertz. Advanced techniques
such as the frequency analysis require meter readings at the
millisecond scale [6]–[13] while AMI meters typically provide
no better than one reading per second. Moreover, NILM
techniques work best on large data sets while AMI meters have
little memory and AMI networks do not have large bandwidth.

There are at least two potential uses for dNILM: (1) demand
response verification [14] and (2) user recommendations. As

1David C. Bergman, Dong Jin, Joshua Juen, Naoki Tanaka, Carl Gunter and
Andrew Wright. Distributed Non-Intrusive Load Monitoring. In Proceedings
of the IEEE/PES Conference on Innovative Smart Grid Technologies (ISGT
2011), Anaheim, CA, USA, January 2011

for (1), in order to provide a stable electrical system, load
must not exceed what can be provided. Various tactics exist
to keep this balance in check. For instance, an Energy Service
Provider (ESP) may offer discounts to users that reduce their
load whenever the ESP sends a request. Without having to au-
thenticate with each individual appliance, dNILM can instead
allow the ESP to observe compliance through the trusted meter
with only a limited amount of data being collected by the
utility. As for (2), after an appliance profile is generated for a
household, it can be compared to other households’ appliance
profiles. By observing similar households, it may be possible
to give recommendations to the users. For instance, one family
of four may be interested in knowing how its phantom load
total compares to the average family of four’s phantom load
total. Again, with dNILM this can be done with only limited
amounts of data being collected by the utility.

The goal of this paper is to describe and analyze a dNILM
algorithm. The main insight is that by utilizing a network of
semi-capable meters, we can distribute the NILM workload
and avoid transfering large amounts of data in the process. The
contribution of this work is, therefore, the ability to distribute
the NILM workload and gain performance while enduring only
a small accuracy penalty.

The paper is divided into two primary parts, one devoted to
the description of our dNILM algorithm and the other to its
analysis using data collected from a typical residence.

II. A DISTRIBUTED NILM ALGORITHM

A. Overview
The goal of dNILM is to utilize computationally limited

meters to analyze as much data as possible while still allowing
advanced NILM techniques to be employed at the backend.
The system must carefully limit the amount of bandwidth
required between the controller at the backend and the meters,
and also efficiently utilizing the processing power required on
both while still maintaining accuracy. Thus the fully functional
NILM algorithm must be designed across the meters and the
controller.

The first step in typical NILM is the scanning for discrete
step events, a process which is not computationally expensive.
By only requiring the meters to log edge events, the amount
of recorded data is reduced by two orders of magnitude.
Furthermore, with an accurate table of load characteristics,
a simple matching algorithm can be employed to identify
large loads. These observations led to the following scheme
composed of two phases. In the normal operating phase, the



meters will take readings and conduct real time edge detection.
Upon encountering an edge, they will parse a static table of
load signatures and use a matching algorithm in an attempt
to detect what loads are currently operating. The meter will
then update a dynamic table to keep track of what appliances
are currently running. By keeping this table up to date, the
meters will always be prepared to respond to status requests
from the backend controller. The learning phase is designed to
identify which loads exist in the meter’s environment. During
this phase, the meters will collect data and parse it to produce
edge events, but will then transmit them back to the backend.
The backend will then collect data over a period of time. The
backend will then conduct more advanced computationally
intensive NILM techniques – namely, cluster analysis and
finite state machine creation and optimization – in order to
build the static state table to be used in the monitoring phase on
the meter. Thus, more advanced techniques will be leveraged
in ways that overcome hardware limitations.

Our algorithm implements a simple clustering analysis of
the events and then develops a static state table using a genetic
algorithm to optimize a set of possible finite state machines.
In order for this scheme to be viable, it is necessary to confirm
that the sensor data can be compressed reasonably enough to
send over limited bandwidth links, that the sensors can identify
loads based off of an accurate static table, and that a reasonable
learning phase will allow the controller to build an accurate
static table for the sensors. Ideally, the sensors will be able to
identify the same loads running with limited learning as the
fully functional NILM on the controller.

B. Event Detection
As a part of both the learning phase and the monitoring

phase, the first goal of the meter is to detect abrupt changes
in the power readings which correspond to loads changing
state. Thus, the event detector produces an output whenever
there is sufficient change from the current power value and by
ignoring minor changes, meter readings collected every second
can be represented in a compressed form.

The input is a series of power data tuples. Depending on
the source, this tuple typically includes the following: {time
stamp, real power value, apparent power value, reactive power
value}. For robustness, the algorithms are also written to
handle sources that do not measure reactive power. Hence,
sometimes our tuple is represented as {time stamp, real power
value}. In either case, the algorithm uses a series of tuples as
the input and creates a series of tuples with the same format
for the output. These output tuples represent sudden changes
in power, produced when an appliance changes state.

The algorithm operates by keeping a running average of
power values for a window of data. Every time a new event
is detected, represented by a change above a predefined
threshold, the current running average is output as an event
corresponding to the time from the beginning of that period.
Next, the running average is reset and the algorithm moves on
to the next period. The algorithm also has a notion of stability.
That is, a value has to be relatively constant for a short period

of time before an event is said to have occurred. In this manner,
transient states are ignored as events.

C. The Learning Phase
Power changes must be identified in order to classify what

large appliances are present and group each power change
with the respective load. Once the loads are identified, they
are placed in a static table and returned to the meters to be used
during the real-time phase. The most basic power model is the
on/off model; however, not all loads can be explained by just
on/off states. To accurately identify present loads, we propose
an algorithm based upon genetic algorithms and dynamic
programming [3], [4] that builds finite state machines(FSM)
from clusters of edge events. Our implementation is based
on the Java Genetic Algorithm Package (JGAP) [15]. The
algorithm takes as input the power change clusters and edge
events and generates the static appliance table by calculating
the most likely combination of FSM to fit the input data.

The overall workflow of the algorithm is illustrated in Figure
1 (derived from Baranski’s algorithm [3] with some modifica-
tions). Each step is explained in the following sections.

1) Clustering Algorithm: The first step to analyze the data
on the backend is to establish clusters of on and off events
in order to begin identifying what appliances are being seen
by the meters. The clustering algorithm accomplishes this by
taking an interval of data and grouping like events by their
respective power changes.

The algorithm retrieves the first element of the event list,
determines the power change, and then searches the rest of
the array for matching events by assigning the first event to
a new cluster. Each time an event is found that matches the
current cluster, it is removed from the event list and placed
in a list for that cluster item. If the event is positive, then the
algorithm has found another on event. If the event is negative,
then it has found an off event. The power value for the current
cluster is then averaged again and used to search the list.
That way, the list is searched for the current average of the
events in the cluster. Lastly, the algorithm computes the final
mean and standard deviation for use on the meter and in the
appliance table building algorithm. The algorithm also returns
how many times each cluster event was turned on or off during
the collection period.

2) Building the State Machine: The first step to building a
finite state machine is to select clusters that represent the states
of a load. For Nc clusters, there are 2Nc possible combinations
of clusters to select. Each combination can be a candidate for
the possible states of a load.

Because the number of combinations becomes huge when
Nc is large, it is impossible to examine all possible combi-
nations. Thus, a genetic algorithm is utilized to select only
promising combinations of clusters. The genetic algorithm
creates a matrix X that has Nc columns where each column
corresponds to a cluster and each row corresponds to a
candidate appliance. Each element in the matrix is binary, i.e.,
0 or 1. If it is 1, then the corresponding cluster is considered
to be one of the states of a load. The maximum number of



Create initial 
population

Calculate quality 
of individual

Evolve

Calculate quality 
of individual

Better than best 
solution?

Yes

No

(1)
Select Promising 
Combinations of 

Clusters

Results of 
Edge 

Detection & 
Clustering

(3)
Optimize FSM

Appliance 
State Table

Found
enough 

candidates or 
unable to find 

more?

Yes

No

Generate all 
possible sequence 

patterns

Exclude invalid 
variations

Create complete 
series of 

sequences

Initialize target 
values

Improved?

No

Search best path

Calculate total 
quality

Change target 
values

Yes

Finished all 
candidates?

Yes

No

Select best 
appliance

Finished all 
clusters?

Yes

No

Exist 
overlaps?

No

Yes

Recreate FSM for 
non-bests without 

overlapping cluster
(2)

Initialize FSM

(1)
Select Promising Combinations of Clusters

(2)
Initialize FSM

(3)
Optimize FSM

Fig. 1. Algorithm for Building Appliance Static State Table

rows is configurable. The genetic algorithm repeats until it
finds the maximum number of combinations or it fails to find
more promising candidates. The quality of each row of X is
evaluated based on how close the sum of power changes is
to zero. This is done because the state transitions of any load
should start and end with an off state.

3) Initialization of the Finite State Machines: Next, every
row of X is used to initialize a finite state machine. In order to
create a finite state machine, the sequence of power changes
must be determined. Because the number of permutations
becomes huge when the number of selected clusters in a row
of X is large, the program puts a limit, which is configurable,
on the number of states for a single load. One example used in
other work [3] is the combination of 100W, 50W and -150W.
There are 3! = 6 possible variations of sequence patterns for
this combination, but not all variations are valid because some
variations result in a negative power value in the middle of the
sequence which is unacceptable. For example, if the sequence

of power changes is 100W, -150W, and 50W, then the power
value becomes -50W after the second power change. Thus,
such variations are excluded from consideration. Similarly, we
also exclude variations that result in 0W in the middle of their
state transitions or that do not come back to 0W in their last
transitions. The algorithm then selects the best variation from
the valid sequence patterns based on the frequency with which
each sequence pattern occurs in the observed switch events
and the quality criterion from Baransky [3]. Here, all observed
switch events included in all the clusters (represented in each
row of X) are used as power values of the states. Additionally,
the series of the sequences that maximize the quality value are
searched using a dynamic programming approach. We use two
properties from Baransky [3] for the calculation of quality:
(1) the time duration between state changes in a sequence,
and (2) the deviation between the observed power value and
the corresponding value of the cluster (i.e., the average of all
power values in the cluster). The target value of each property



is first set to the median of all linked events and is then
optimized by repeating the dynamic programming portion of
the program until no further improvement of the value can be
achieved. These procedures are then repeated for all rows of
X.

4) Optimization of Finite State Machines: The above pro-
cedures create a finite state machine for each row of X.
However, some clusters can be distributed to different loads
simultaneously when the number of ones in any column of
X exceeds one. These overlaps must be solved. Thus, the
program examines overlaps for each column, and if overlaps
exist, it selects the best row based on the quality value of
the best path for each overlapping appliance. The algorithm
then recreates the finite state machines for the non-best loads
without the overlapped cluster. If the combinations of clusters
cannot produce any valid sequences, then such loads are
excluded from the matrix X. This procedure is repeated until
all overlaps are solved and the algorithm has assembled the
best-fit static table which can be returned to the meter. Once
the table is returned, the learning phase is complete.

D. When to Learn
The schedule for learning consists of both reactive learning

initiated from the meters and proactive learning initiated from
the controller. When either detects the need for learning it
informs the other and the meters begin to transmit data until
the controller indicates that it has sufficient information to
build a static table. If the meter finds that it has no static table
(presumable on initiation), believes that a new unique load has
been added, or detects an error in the static table then the meter
will send a learning request. If the controller believes that the
meter is in error, then it can issue a learning request. Loads no
longer present in the static table should be removed in order to
increase the monitoring efficiency on the meter. In general, it
is difficult for the meter to detect that a load has been removed
without conducting advanced analysis. Therefore if a threshold
period is reached since the last learning phase, the meter will
re-enter the learning phase in order to update the static table.

1) Bandwidth Constraint: Assuming the data is not en-
crypted, it should take a 24 byte payload per meter mea-
surement. To send all the information back to the back end,
it would require a bandwidth of 24 B/second and would
need to send about 2.1 MB per day. While this does not
seem excessive, there are thousands of meters reporting to
each server, and this is not the only service the network will
provide. For example, in a typical ZigBee network, payload
bandwidth is limited to an optimal 120 kbps or 15 kB per
second. Thus, if each meter has a 24 B payload, about 625
meters could concurrently talk to each ZigBee transmitter
under ideal conditions. However, noise further reduces these
rates. Therefore, reducing the bandwidth requirement is critical
to making this a viable solution. One such way to reduce
the bandwidth requirement will be finding an optimal learning
frequency so as not to congest the network.

2) State Table Error Detection: An static table error detec-
tion module was implemented on the meter to ensure a high-

fidelity operating environment. These errors can exist due to
either newly added loads or newly seen existing loads which
remained off during the previous learning phase. Three types
of errors can be detected in the detection module:

(1) If the absolute difference between the sum of the power
from the entries computed by the load monitoring module
and the currently detected total power is greater than some
threshold, some loads may be missing in the static state table.
The meter currently uses a threshold, which is two times the
sum of the standard deviation of all possible states of all loads.

(2) If a load changes state too often, it is a strong indication
of an error in the static table; the acceptable change rate is
load-specific. For example, it is reasonable to observe frequent
changes in an air-conditioner or a heater, but it is unreasonable
for a car battery charger.

(3) If more than a certain number of loads change states
during one edge event, an error is indicated.

If any one of the three behaviors is observed, the error
detection module will trigger its alert routine and send a
request to the controller indicating a need for relearning the
static table. We assume that the algorithm that builds the static
table finds similar appliance profiles over multiple learning
phases regardless of the amount of churn in the system. Based
on this assumption, the controller examines the load tables
created from multiple sets of data. If it finds a signature
whose state transition profile is different from the previously
detected loads, it judges that a new load has been added.
The controller ends its learning period when it does not find
new signatures for a specified period of time. The time and
frequency of the learning can be adjusted to avoid congestion
on the communication network. This process can be optimized
if necessary; for instance, it may be sufficient to focus on
periods of heavy use since these periods provide more data in
less time. Furthermore, when requesting to enter the learning
phase, the meters may assign reasoning (a label containing
the type of error) and priority (urgent or not-so-urgent) for
each detected error and embed these labels into the relearning
request. This would facilitate the controller in coordinating
the relearning phase of the entire system in order to avoid
congestion by prioritizing important errors. For example, if
the algorithm is looking for larger loads, it is reasonable to
ignore errors caused by small load signatures.

The additional bandwidth due to this scheme is negligible
when not in learning phase. The requests for relearning
can be sent with the keep-alive heartbeats requiring modest
bandwidth. Additionally, the bandwidth required to conduct
the learning phase can be monitored and controlled by the
backend controller since it instructs the meters when to start
and stop sending the learning information. Thus, the scheme
is both controllable and robust.

E. Building the Dynamic Table.
The meter has a load monitoring module to identify the

current states of all loads in the static state table upon detecting
a real-time edge event, and keeps the latest state information
in a dynamic table. Analysis through either a knapsack or an



incremental algorithm are two commonly used techniques for
appliance monitoring [16]. The knapsack algorithm searches
for a combination of loads whose sum power is maximized
under the constraint that the total power is less than the current
observed power. The incremental analysis determines which
load changed state based on the total power change observed
in each edge event. Error propagation is one major drawback
of the incremental analysis. Comparatively, running the knap-
sack algorithm continuously in real-time is computationally
intensive. Therefore, we propose a hybrid design, which runs
a modified knapsack algorithm on each edge event.

The appliance monitoring process can be formularized as a
0-1 knapsack problem:

Max :
�

i,j

wi,jxi,j , where

�

i,j

wi,jxi,j ≤ W + T

where
W real power observed in an edge event
T tolerance value, the sum of the standard deviation of

all possible loads given the current detected power
xi,j on/off of state j of appliance i, xi,j ∈ {0, 1}
wi,j real power consumption of load i in state j

A brute force algorithm to detect the optimal combination
given a total of n states across all loads in the static state table
requires complexity O(2n). By comparison, the algorithm
described above has complexity O(n(W + T )/M), where
W + T is the total weight, and M is the minimum detection
power unit. For example, if we have 10 loads with 2 states
each (so n = 20) and the values W = 5000W , T = 500W ,
M = 100W , then the brute force method requires O(220),
while our algorithm requires only O(20× 55). This algorithm
works well if three conditions are satisfied: (1) there is an
accurate static table, (2) each load has discrete finite states,
and (3) no two loads have the same power signature.

III. ALGORITHM ANALYSIS

Our proposed dNLIM algorithm must ensure that the meter
data can be compressed reasonably enough to send over
limited bandwidth links, that the meters can identify loads
based off of an accurate static table, and that a reasonable
learning phase will allow the controller to build an accurate
static table for the meters. Ideally, the meters, running with
limited learning, will be able to identify the same loads as the
fully functional NILM on the controller.

A data processing flow was created in order to test these re-
quirements. The event detector and the real time monitor were
implemented on an AVR32 simulator with the UC3A0512
chip and 512KB of memory. All the backend modules were
implemented using Java on an Intel Xeon 2.13GHz desktop
with 4GB of memory. Our approach was first tested using data
taken in the lab using an SEL-734, which can report readings
up to ten times a second for both real and reactive power.

After the initial testing phase, we then tested on data from
a test home. The test home was monitoring its power usage
using a TED 1000. This meter allowed us to take real power
readings once a second and was useful in allowing us to test

0

200

400

600

800

1000

1200

1400

1600

13:22:05 13:22:22 13:22:39 13:22:57 13:23:14 13:23:31
Time

P
ow
er
(W
)

Measured

Edge
Detector

Fig. 2. Event Detection Algorithm

the full process from start to finish. Each portion was first
tested individually; then the whole system was tested from
beginning to end. The end to end tests were conducted by first
running the learning phase to ascertain the major appliances
and then comparing the output of the meter’s monitoring
algorithm against the more complex genetic algorithm. The
results of the testing are summarized below.

A. Event Detection

The event detection algorithm was tested on data collected
both in the lab and on site. Output produced by running the
event detector against lab data is shown in Figure 2.

As the figure shows, the event detector is able to ignore
transient energy spikes. Power readings can be rather noisy
and as such, transient points may introduce incorrect static
and dynamic state tables. This particular figure has 101 data
points for the measured power and 12 data points for the event
detection, thereby achieving nearly 88% compression. In the
household, where appliances switch states less frequently, we
have achieved upwards of 99% compression.

B. Learning Phase Testing

1) Clustering: The biggest problem that faced the cluster-
ing algorithm was what magnitude of granularity would exist
between separate edge events. If the distribution of appliance
on/off events was uniformly distributed in the plane of real
power, it would have been difficult for the clustering algorithm
to make intelligent decisions based upon the data. Extensive
testing revealed that appliances over 1000 Watts seemed to
provide enough granularity to be detectable.

Running against data from the test home, the algorithm
produced eight clusters, all separated by at least 250 Watts,
a configurable threshold. It also recorded the corresponding
number of on/off events associated with each. Judging from
our results, events below 500 Watts, or so, are not easily
distinguishable by the clustering algorithm. Thus, an appliance
must consume at least this much power for it to be detectable
under a scheme based solely on real power. This data is then
passed on to the static table generation procedure.

2) Appliance Table Generation: The appliance table gen-
eration algorithm was tested using data from a controlled test



Fig. 3. Test Input Data

conducted at the test home. The input edge events and cor-
responding clusters were generated as an ideal representation
of the collected data. The input data is illustrated in Figure
3. From this input, the algorithm correctly identified the five
appliances and created a corresponding static state table, as
seen in Figure 4(a).

To analyze the algorithm, let the on/off transitions be rep-
resented by [on,off]. In this test, our program did not produce
an appliance with state transitions [K, D+B] even though that
pattern actually appeared in the input. The reason for this is
because D and B belong to other appliances (i.e., a toaster and
a dryer) whose transitions are [C, D] and [A, B] respectively.
Since the patterns [A, B] and [C, D] appeared more frequently
than the pattern [K, D+B], the appliance with transitions
[K, D+B] was excluded by the optimization phase of the
algorithm that solved the overlapping clusters. Another point
worth mentioning is that the program produced two appliances,
an oven 1 and an oven 2, whose transitions were [E, H] and
[F, G], respectively, instead of producing one appliance whose
transitions were [E+F, G+H]. This occured because the quality
value of the latter appliance with four states was smaller than
the quality values of the other appliances.

Then, using this static table, we keep track of the appliance
states by updating the dynaminc table at each time step, as
shown in Figure 4(b), which can the backend can then query.

C. dNILM Analysis

Due to the nature of our distributed architecture, much of
the computation must take place on the meters. In order to
justify that dNILM preserves sufficient accuracy, we compare
our distributed scheme against a purely centralized scheme.

The distributed scheme we evaluate is the one we have
discussed previously – i.e., the meter runs the appliance
monitoring algorithm and has the ability to relearn once it
detects a high error rate. We also discard the two lowest
power appliance profiles that the backend generates. We do
this because their values of 300W and 700W are below 1000W,
what we generally consider to be noise. We then produce

NANA7422151(C) Oven 2

NANA559611(D) Garage

NANA4515091(E) Toaster

NANA6557331(B) Oven 1

90251020055942(A) Dryer

StdMeanStdMean

State 2 Real Power (W)State 1 Real Power (W)#StatesAppliance

Relearning
(a)

(b) Relearning Time

State (ON/OFF) 

(A)

New Appliance

(B)

(C)

(D)

(E)

Fig. 4. (a) Static Table (b) Dynamic Table Over Time

a single static state table from one day’s worth of data and
generate the dynamic state tables for the following days.

The centralized scheme utilizes purely the analysis offered
by the finite state table generation algorithm at the backend.
This is the scheme that requires higher computational power
to run and thus cannot be run on the meter. We can treat this
as the golden standard, as it affords a much higher accuracy
as to which appliances are active at any given time.

Seen in Figure 5, we compute the accuracy as a/b, where
a = distributed scheme accuracy and b = centralized scheme
accuracy. We can see that on the first day, accuracy is at
77% when comparing the distributed scheme to the centralized
scheme. The accuracy drops as the week goes on, bottoming
out at 60% on the 26th. On the 27th, sufficient error rate is
detected, and relearning occurs, allowing the meter to achieve
79% accuracy on the 28th and peaking at 90% on the 31st.

As for the running times of our algorithms, the monitoring
algorithm is both short and linear with respect to the number
of events. In fact, a day’s worth of events requires on the order
of 10 to 30 seconds to run on the meter and is therefore suited
for use on the low-end meters. In contrast, if the data were to
be transmitted to the backend for computation, this could put
serious bandwidth consumption on a communications network
that must also serve other purposes. Once on the backend, we
will also run into the problem of scale as a single backend
may have a service area of hundreds of thousands of meters.
Even if computing a day’s worth of data for one meter took
one second, this would still require more than a day (almost 28
hours) to compute 100,000 clients. Another reason for using
the meter for monitoring is that it can process information as



it reads it from the power line and thus always has an up-to-
date view of the household. In contrast, the centralized solution
could not answer queries in real-time.

 

Relearning 

Fig. 5. Accuracy of dNILM compared to NILM

As for the learning algorithm, we note that its running time
is supralinear, due to the combinatorics involved in generating
the possible sequence patterns. Thus, it ought to be run on a
computer that can handle its longer running time as well as
provide the proper library support for genetic algorithms. Also,
since it increases supralinearly in regard to the length of the
learning period, this motivates both a need to investigate the
optimal training length for generating an accurate static table
and a need to investigate how to load-balance the relearning
across a large network of meters.

D. Scalability Analyses
For dNILM to be viable, the methods proposed must be

scalable both in bandwidth and processing power on AMI
networks. Throughout experimentation, the test home yielded
an average of 1,000 step events or roughly 15 kB of data
per day. Assuming a highspeed backhaul network, bandwidth
is primarily limited between the meters and backhaul points.
With 4,000 meters per backhaul point, the bandwidth require-
ment would be roughly 4,000 × 15 kB = 60 MB of traffic per
day or 5.5 kb/s of bandwidth. Assuming the use of a network
such as ZigBee operating at a frequency of 2.4 GHz yielding
250 kb/s, the algorithm only consumes 2.2% of network
bandwidth. Even assuming a slower ZigBee network with only
30 kb/s of bandwidth and a three-hop deep mesh network
yielding an effective bandwidth of 10 kb/s, the algorithm can
still support re-learning for every node every day using 55% of
the total network bandwidth. Of course, these are worst case
estimates since learning allows the bandwidth requirements to
be reduced. Using the 10 kb/s ZigBee network with each node
learning one day a week, the algorithm would require 7.9%
of network bandwidth and re-learning one day a month would
require 1.8% of network bandwidth.

Regarding the computational cost, the primary bottleneck is
during the learning phase in the ESP’s control center. Although

it depends on parameters, we needed less than a minute in
our tests to build a static state table from one day of data
on a typical desktop PC. This implies that about 24 × 60 =
1,440 homes can be handled per day with one machine. Thus,
assuming the backend carefully schedules learning in order
to fully utilize computational resources, and the same 4,000
meters per backhaul, each compute cluster would only require
4,000 / 1,440 = 3 cores. With desktop parts supporting up
to six cores on a single die and server parts supporting even
more, this is hardly a substantial obstacle to overcome.

IV. RELATED WORK

A significant amount of research has been conducted in
the area of NILM over the past 30 years beginning with the
initial concept and simple learning technique introduced by
Hart et al. [1] Since then, much work has been done to improve
NILM primarily through load identification using signatures of
transient behavior through spectral frequency analysis. These
methods are computationally similar to the performance of
the adaptive learning technique in that they require more
computational power than is provided on the current smart
meters. Spectral analysis techniques assume a meter capable
of taking measurements at a minimum of 60 Hz with an ideal
capability of 120 Hz and 240 Hz optimal in order to analyze
the transient phase of a device powering on or off. This is
generally a unique signature that allows great accuracy in the
measurement and highly accurate identification of loads. [2],
[5]–[10], [12], [13]

Unfortunately, the architecture of the smart grid severely
limits the usefulness of the recent NILM techniques. First,
smart meters lack the available computational power to con-
duct the spectral analysis locally at the home. Bandwidth
limitations are an important consideration in any design. While
scalability is a primary concern when sending one meter
reading per second, transient analysis requires between 60
to 240 times more data and bandwidth. This limitation has
been identified and work has been done to introduce novel
ways to compress the data. [11] While this may address the
bandwidth problem, it still assumes a meter that can take high
frequency measurements. Unfortunately such meters are more
expensive than the smart meters being currently deployed.
Thus, to implement such techniques, vendors would need to
be convinced to deploy more expensive meters capable of high
frequency measurements.

The goal of our work is to solve the bandwidth problem,
the computation problem and the limited meter problem in
one algorithm. We believe this technique fills a hole in NILM
research due the uniqueness of the smart grid architecture. Our
work is based directly upon Harts contribution [1] due to the
use of only step changes in real power. Our contribution is
to introduce and improve upon recent adaptive learning and
dynamic programming techniques [3], [4] in order to create an
algorithm capable of running on limited meters with minimal
bandwidth while still maintaining a high degree of accuracy.



V. CONCLUSION

Smart grid technologies will enable the information flow
and efficiency required to enter a brave new world. However,
the architectures required to harness these technologies are not
yet in place. Here, we have described one such architecture
that we believe will support many of the current visions for
the smart grid. We have adapted simple event detection and
appliance monitoring schemes for use on the meter and more
complicated NILM techniques for use on a central system.
We have then shown that, through decoupling the learning
and the monitoring, we can achieve nearly the same accuracy
at a large gain in processing power and little overhead due to
data transfer.

ACKNOWLEDGMENT

This work was supported in part by DOE DE-0000097, NSF
CNS 07-16421, NSF CNS 05-24695, and Lockheed Martin.
The views expressed are those of the authors only.

REFERENCES

[1] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of
the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[2] M. L. Marceau and R. Zmeureanu, “Nonintrusive load disaggregation
computer program to estimate the energy consumption of major end uses
in residential buildings,” Energy Conversion and Management, vol. 41,
no. 13, pp. 1389–1403, September 2000.

[3] M. Baranski and J. Voss, “Genetic algorithm for pattern detection
in NIALM systems,” in Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol. 4, 2004, pp. 3462–3468 vol.4.

[4] ——, “Detecting patterns of appliances from total load data using a
dynamic programming approach,” in Data Mining, 2004. ICDM ’04.
Fourth IEEE International Conference on, 2004, pp. 327–330.

[5] K. H. Ting, M. Lucente, G. S. K. Fung, W. K. Lee, and S. Y. R. Hui, “A
Taxonomy of Load Signatures for Single-Phase Electric Appliances,” in
IEEE PESC (Power Electronics Specialist Conference), June 2005, pp.
12–18.

[6] K. D. Lee, S. B. Leeb, L. K. Norford, P. R. Armstrong, J. Holloway, and
S. R. Shaw, “Estimation of Variable-Speed-Drive Power Consumption
From Harmonic Content,” Energy Conversion, IEEE Transactions on,
vol. 20, no. 3, pp. 566–574, 2005.

[7] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and
P. Armstrong, “Power signature analysis,” Power and Energy Magazine,
IEEE, vol. 1, no. 2, pp. 56–63, 2003.

[8] S. Leeb, U. Khan, and S. Shaw, “Multiprocessing transient event detector
for use in a nonintrusive electrical load monitoring system,” Feb. 1998.

[9] G. R. Mitchell, R. W. Cox, J. Paris, and S. B. Leeb, “Shipboard Fluid
System Diagnostic Indicators Using Non-Intrusive Load Monitoring,”
Naval Engineers Journal, vol. 119, no. 2, pp. 109–119, Oct. 2007.

[10] E. Proper, R. Cox, S. Leeb, K. Douglas, and J, “Field demonstration
of a real-time non-intrusive monitoring system for condition-based
maintenance,” Electric Ship Design, 2009.

[11] Z. Remscrim, J. Paris, S. B. Leeb, S. R. Shaw, S. Neuman, C. Schantz,
S. Muller, and S. Page, “FPGA-based spectral envelope preprocessor for
power monitoring and control,” in Applied Power Electronics Conference
and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, 2010, pp.
2194–2201.

[12] S. R. Shaw, C. B. Abler, R. F. Lepard, D. Luo, S. B. Leeb, and L. K.
Norford, “Instrumentation for High Performance Nonintrusive Electrical
Load Monitoring,” Journal of Solar Energy Engineering, vol. 120, no. 3,
pp. 224–229, 1998.

[13] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, “Nonintrusive
Load Monitoring and Diagnostics in Power Systems,” Instrumentation
and Measurement, IEEE Transactions on, vol. 57, no. 7, pp. 1445–1454,
Jul. 2008.

[14] D. C. Bergman, D. Jin, J. P. Juen, N. Tanaka, C. A. Gunter, and
A. K. Wright, “Non-Intrusive Load Shed Verification,” IEEE Pervasive
Computing, 2010, To appear.

[15] “Java Genetic Algorithm Package (JGAP), version 3.4.4,” http://jgap.
sourceforge.net/, 2009.

[16] M. LeMay, J. J. Haas, and C. A. Gunter, “Collaborative Recommender
Systems for Building Automation,” in System Sciences, 2009. HICSS
’09. 42nd Hawaii International Conference on, 2009, pp. 1–10.


