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Abstract

We give an illustration of a construction useful in producing and describing models of Girard
and Reynolds’ polymorphic A-calculus. The key unifying ideas are that of a Grothendieck
fibration and the category of continuous sections associated with it, constructions used in indexed
category theory; the universal types of the calculus are interpreted as the category of continuous
sections of the fibration. As a major example a new model for the polymorphic A-calculus is
presented. In it a type is interpreted as a Scott domain. In fact, understanding universal
types of the polymorphic A-calculus as categories of continuous sections appears to be useful
generally. For example, the technique also applies to the finitary projection model of Bruce and
Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard’s and arose
through trying to extend the construction of his model to Scott domains.) Tt is hoped that by
pin-pointing a key construction this paper will help towards a deeper understanding of models

for the polymorphic A-calculus and the relations between them.

1 Introduction.

Jean-Yves Girard presented his discovery of the polymorphic A-calculus in the paper [Gir72]. His
motivations came from proof-theory and his use of the calculus to represent proofs in second-order
arithmetic. Later, in [Rey74], John Reynolds rediscovered the calculus independently though his
motivation was different, being to provide a formal basis to certain polymorphic type disciplines in
programming languages. In designing the calculus, Girard and Reynolds each extended the typed
A-calculus to allow a form of parametric polymorphism. Types include universal types which are
types of polymorphic terms, thought of as describing those functions which are defined in a uniform

manner at all types. Terms can be applied to types and in this sense can be parameterised by types.
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In more detail, type variables a are introduced into the typed A-calculus so, for instance,
Az @ a.z should be thought of as the identity function on the type denoted by a. The polymorphic
identity function, the term which denotes the identity function on any type, is denoted by the term
Aa Az : a.x. It has a universal type denoted by Ila.a — a. Given a type o1, a term Aa.t of
universal type Ila.oy can be instantiated to a term [oy/a]t which then has type [01/a]os, and so,
for instance, the polymorphic identity above instantiates at type o to the identity Az : o.x of type
c— 0.

While the pioneering work of Girard contains most of the results on the syntax of the calculus,
an understanding of its models and semantics has developed more slowly and is still incomplete.
There is a trivial model got by interpreting types as either the empty or one-point set. While from
a proof-theoretic view there may be some use in this when the one-point set represents true and
the empty set false (e.g. to prove consistency as in [Smi88]), it is clearly inadequate as a model of
polymorphism. In essence, the difficulty of providing nontrivial models arises from the impredicative
nature of the calculus; in the abstraction of a universal type Ila.o the type-variable a is understood
to range over all types including the universal type itself. This makes it impossible to interpret
types as nontrivial sets in a classical set theory (see [Rey84]) although, lately, Pitts has shown
how polymorphism can be interpreted in a constructive set theory [Pit87]. Until recently the only
nontrivial models known were either term models or realisability models [Gir72] or, following ideas
of McCracken [McC79] and Scott, models based on a universal domain in which types are coded-up
as particular kinds of retracts. The latter are models for stronger calculi with a type of types and
so are not tailored directly to the requirements of polymorphic A-calculus and do not in themselves
suggest a general definition of model for the calculus. In his paper [Gir86], Girard produced an
interesting new model in which types of the polymorphic A-calculus are represented as certain
kinds of objects called qualitative domains, work which was extended in [CGWR8T7]. The category
of domains used in [Gir86] and [CGWS8T7] is not the usual one taken in denotational semantics—in
particular the morphisms are functions which are stable in the sense of Berry and not just Scott
continuous. The work left open the question of whether or not a model similar to Girard’s could
be found in the more traditional category of Scott domains and continuous functions.

One achievement of this paper is to present such a model for the polymorphic A-calculus. It can
be viewed as doing with Scott domains and continuous functions what Girard did with qualitative
domains and stable functions. Types will be interpreted as Scott domains and types with free type
variables, called “variable types” by Girard, as continuous functors on a category of Scott domains.
Although Girard’s work provided inspiration, the construction of domains to denote universal types
is different.

We have taken trouble to expose the abstract construction of which our model is an instance.
A key unifying idea is that of a Grothendieck fibration and the category of its continuous sections.
A universal type is interpreted as a category (in this case a domain) of continuous sections of a

fibration. Looked at in this way, Girard’s construction, the retract models of McCracken and Scott,
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and the construction here are all based on instances of a common idea, that universal types are
interpreted as continous sections of a Grothendieck fibration.

We briefly outline the paper. The following section, section 2, introduces the basic ideas of
domain theory and category theory on which we shall rely. Section 3 contains a treatment of
Grothendieck fibrations and continuous sections, instances of which are given for domains; taking
the base category to be a domain we obtain constructions to represent the dependent sum and
product types as used in, e.g., Martin-Lof type theory while taking a suitable category of domains
as the base category we get a construction we shall use later as the denotation of universal types.
For concreteness, we show how the construction can be carried out in the framework of informa-
tion systems—an elementary representation of domains. Section 4 contains proofs of several of the
technical lemmas needed for the demonstration that our construction yields a model of the poly-
morphic A-caluculus. Section 5 gives the syntax of the polymorphic A-calculus with its equational
rules and Section 6 its denotational semantics accompanied by proofs of the soundness of the rules.
In section 7 where we show how the traditional domain models of polymorphism of McCracken
and Scott using retracts can be cast in this light (very similar ideas appear in the thesis work of
Taylor, [Tay87]). Finally, in the conclusion, we present our views on the state of the art of models
for polymorphism.

As we have already stated the work of Girard has been a guiding influence on this work. We have
received encouragement and advice from a number of people whom we thank; we are grateful to
Martin Hyland for pointing-out that a construction we produced could be based on a Grothendieck
fibration, to Fugenio Moggi for the remark that this construction applied to Girard’s model as
well, and to Pino Rosolini for valuable discussions. The significance of fibrations in modelling
polymorphism has been anticipated in the thesis work of Paul Taylor (see [Tay87]) who gave a
category-theoretic analysis of the concept of a type of types using indexed category theory (but
exclusively, it seems, considering domains indexed by partial orders and not as here by categories

of embeddings).

2 Categories and domains.

In this section we review basic concepts from category and domain theory. Its purpose is largely to
establish notation and terminology. We assume the reader has some familiarity with these topics.
A knowledge of the results in [SP82] would be a good starting point; most of the proofs for results
stated in this section can be found there.

Let (I,<) be a partial order. We say that [ is directed if it is nonempty and, for any 7 and j
in I, there is a k € I such that ¢ < k and j < k. A partial order (D, <) having a least element L
is said to be complete (and we say that D is a complete partial order, abbreviated to cpo) if every
directed subset M C D has a least upper bound \/ D. A point z of a cpo D is said to be finite
if, for every directed collection M C D such that 2 < \/ M, there is a y € M such that z < y.
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Let Bp denote the collection of finite elements of D. The cpo D is algebraic if, for every z € D,
the set M = {xg € Bp | 29 < 2} is directed and @ = \/ M. A cpo D is bounded complete if every
bounded subset of D has a least upper bound. We call bounded algebraic cpo’s Scott domains or
just domains. In a domain, least upper bounds of finite sets of finite elements are finite, when they
exist.

A function f : D — F between cpo’s D and F is monotonic if it is order preserving, i.e. if
x < ythen f(z) < f(y). A monotonic function f: D — F between cpo’s D and F is continuous if
fVM) =V f(M) for any directed M C D. Domains with continuous functions form a category
D which is very important for denotational semantics. It is cartesian-closed. Let D and F be two
domains. Their product is the domain D X E consisting of pairs of elements ordered coordinatewise,
with the obvious projections. Their function space D — F consists of the continuous functions

from D to E ordered pointwise, sometimes called the extensional order, i.e.
J < giftvde D. f(d) < g(d).

A pair of continuous functions (f,¢), with f: D — F and ¢ : £ — D between cpo’s D, E, is
said to be an embedding-projection pairif go f(d) = d, for all d € D, and fog(e) < e, forall e € E;
then fis called the embedding and g the projection. We use equally the notations fog or fg for the
composition of functions, and use the following notation to pick out the embedding and projection
parts of an embedding-projection pair A = (f,g): let A = f and A = g. We remark that as
embedding-projection pairs are an example of an adjunction, in this case between very simple partial
order categories, it follows that an embedding determines its accompanying projection uniquely
and vice versa. The category of domains with embedding-projection pairs as morphisms will be of
central importance to us. We call the category DPF, and write h € D*F (D, F) to mean & is an
embedding-projection pair, with embedding part a function h” : D — E. We take the composition
of two embedding-projection pairs h = (h%, hf*) € DFF(D, E)and k = (k*, k%) € DEY(E, F) to be
koh = (k¥ oh* hf o kf) € D (D, F). The identity of a domain D in this category is the pair
(idp,idp).

A partial order (I, <) forms a category in which the objects are the elements of I and the
set of morphisms from point z to point y, written D(z,y), is a one point set when 2 < y and
is empty otherwise. A directed family in DFF consists of a functor from a directed set (I,<) to
DPP: as such it provides an indexing of a family of objects D; € DFF, for i € I, and morphisms
fi; € DEP(XZ',X]'), for i < j, so that f; = idp, and fir = f;rfi; whenever ¢+ < j < k. A cone
for such a directed family is a family of morphisms (p; € D¥F(D;, D))ser, for a domain D, such
that p; = p;j o f;; for all ¢,5 € I. Note that because embeddings are monic the morphisms f;;
of the directed family are uniquely determined by the cone. And in future we shall most often
speak of a cone for a directed family without troubling to mention the directed family of which
it is a cone; this will always be understood to be that uniquely determined directed family with

morphisms f;; = pfpf, fori,j € I. A directed colimit is a cone (p; € DEP(DZ', D))ier for a directed
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family, with the universal property that for any other cone, (p! € D¥F(D;, D’));c;, there is a unique
mediating morphism h € DEP(D, D'y such that p! = p; o h for all i € I. That is, an initial object
in the category of cones. In general, we say that a category C is directed complete if it has colimits
for all directed families. So, in particular, a cpo is directed complete when regarded as a category.

The category DEF is another example of a directed complete category, and we shall often be
concerned with calculations involving its directed colimits. It will be useful to relate embedding-
projection pairs into a common domain D via certain morphisms in DEP(D, D) which correspond

to the images of the embeddings in D.
Lemma 1 Let X,Y, D be domains. Let f € D¥F(X, D) and g € DEY(Y, D). Then
(g o st [Togh) e DEV(X,Y) iff [P o S < gPogt.1

Theorem 2 The category DEY is directed complete. A cone {p; € D¥Y(D;, D))ies is a directed
colimit iff {p¥ o pFli € I} is directed in D — D and

idp = \/{p}' o pl’li € 1}
Theorem 3 Let D be a domain. Then
{f¥ o fB|f € DEY(X, D) for some finite X}
s a directed subset of finite elements in D — D and
idp = \/{fL o fB1f € DY (X, D) for some finite X} )

By virtue of Theorem 2 we see Theorem 3 implies that a domain is the colimit of the finite
domains which embed into it. From the fact that the set in the theorem is directed we deduce the

following:

Lemma 4 Let fo € D (Xq, D) and f; € D¥F (X4, D) where Xo, X1 are finite domains. Then
there is a finite domain X and g € DFY(X, D) so that go = (g% o f¥, fit o g*) € DFF(X¢, X) and
g1 = (9% o fl, flt o gl) € DFF(X1, X) with fo = ggo and fi = gg1. 1

From the fact that the elements in the set in Theorem 3 are finite we deduce:

Lemma 5 Suppose {p; € D¥F'(D;, D))ics is a directed colimit in DY, If X is a finite domain and
f € DEY(X, D) then there is some i € I and h € DY (X, D;) such that f = p; o h. |

Given categories C and C’, we define the product category C x C’ to be the category which has
as objects pairs (C,C") where C' and C’ are objects of C and C’ respectively. The arrows are pairs
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(f,9): (X, X") — (Y,Y') where f € C(X,Y) and g € C'(X’,Y’) with the obvious composition and

identity. There are also projections

FStC7C/ :CxC' —=C
SndC,C’ :CxC' — C.

When understood from context, the subscripts will usually be dropped. If F; :C — C; and
Fy:C — Cy are functors, then there is a unique functor (Fi,F3): C — Cy x Cy such that
Fst o (F1, F3) = Iy and Snd o ([}, Fy) = F5. In particular, the diagonal functor A : C — C x C is
(lde,lde). If F: Cy — Cy and F' : C| — CY, then we define

FxG=(FoFst,GoSnd):C; x Cy — C} x Ci.

We write 1 for the terminal category which has one object and one arrow and 1¢ for the unique
functor from a category C to 1. Given a category C and a number n > 0, we define the n’th power
C" of C by taking C° = 1 and C"*! = C" x C. More generally, we define the multiary product of
a list of categories by setting x() = 1 and x(Cy,...,Cpy1) = (X(Cq,...,C;)) X Cpyr.

A functor F' : C — C’ between directed complete categories C and C’ is continuous just in
case it it preserves directed colimits. A continuous function is thus an example of a continuous
functor on categories which are partial orders. It is easy to check that a functor F/: C; x C; — C
is continuous iff it is continuous in each of its arguments individually. As our categories C will
often have the form (D)™ the problem of verifying continuity we often reduce to the problem of
whether or not functors F : D¥F — DPP are continuous. To verify the continuity of such a functor

it is very useful to employ the following:

Lemma 6 A functor F : DFY — DPFis continuous iff whenever X is a domain and there is a
family of domains X; and functions f; € D¥Y(X;, X), such that {f* o fE|i € I} is directed and
V; fiL o) fiR =idx, then V, FL(fZ) ) FR(fZ) = 'dF(X) |

The product operator X on categories cuts down to a continuous functor
X :DEP X DEP N DEP.

When D and E are domains, we write idp, fstp g and sndp g rather than ldp, Fstp i and Sndp g.
The function space operator — is also a functor on DFF. Suppose f € DFF(X, X’) and ¢ €
DPF (Y, Y"). Then we define f — g € DFF(X — Y, X’ — Y) by setting

(f = 9)"(h)=g"oho f
for h € D(X,Y) and

(f N g)R(h/) — gROh/OfL
for B € D(X',Y").
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When functors on DEF take several arguments we can make their manipulation a little tidier by
introducing the following notation. Given a functor F': C — DFF we define a functor F*: C — D
as follows. The action of F” on objects of C is the same as F. Given a function f € C(X,Y),
we define FZ(f) = (F(f))* € D(F(X), F(Y)). We also define a functor F: C? — D by taking
the action of F'F on objects to be that of F and defining FF(f) = (F(f))F € D(F(Y), F(X)). We
may also write (F'f)F or even F(f)® when the meaning is clear from context.

In our semantic treatment of type expressions we will have to cope with the presence of free
type-variables and a type expression will denote a functor whose arguments provide an environment
associating values with these variables. It is convenient to define generalisations of the product and

function space functors on DFF to cope with these extra parameters. Given functors F : C — DFP
and G : C — DPF we define

F#G=xo0(FxG)oA:C— DFF
F=G=—o(FxG)oA:C— DF

We also define a multiary version of the # operation by taking #() to be the functor 1¢ into the
trivial domain and setting #(F1, ..., Foy1) = #(F1, ..., Fo) # Foqpq1. Given functors Fy, ..., F, and

numbers n > 7 > 1, we define ¢’th projection
Py X(FUX), ..., Fo(X)) = Fi(X)

by taking '
ol = { FSt s (F1 (X )P (X)) Fu(X) O P+ i i<
SNy (Fy (X)), Fm1 (X)) Fn(X) otherwise.

To keep the number of parentheses to a minimum in the calculations we make, it is helpful to
introduce some binding conventions. We will assume that association is to the left, so an expression
such as fay or f(z)(y) will be parsed as (f(«))(y). This convention also holds for the application of
a section to an object; so f(t)x parses as (f(t))x. However, we read an expression such as {g(x) as
tia(x)) so that ftgx) parses as (f(1))(g(x)).- We assume that application binds more tightly than
composition; so FE(f)o FF(g) parses as (FF(f))o(F(g))and fotx parsesas fo(ty). For functors,
we assume that # binds more tightly than =, so that Fy # Fy = F parses as (Fy # Fy) = F. We
assume that II"™ (introduced in section 3) binds more tightly than either # or =-. Application will
bind more tightly than X or —, so that F(X) x G/(X) parses as (F(X)) x (G(X)).

3 Interpreting types.

In our approach, closed types (those with no free type variables) will denote domains. Types
with free variables will denote functors on domains which yield a domain once they are given an

instantiation of their free variables. Thought of in this way the denotation of a type Ila.c should
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be a functor taking one less argument than that for ¢ in a way which respects the rules of the
polymorphic A-calculus. In this section we work towards the definition of an operation on functors
to achieve this. The operation, again called 1I, shares many properties with universal quantification,
and indeed can be viewed abstractly in a similar way, as right adjoint to the operation of “padding
out” a functor with an extra argument. Our treatment conforms to the category-theoretic definition
of model for the polymorphic A-calculus proposed by Seely [See87], though for the most part we
shall express our ideas concretely, through giving particular constructions on domains. Our more
concrete approach will, however, be enough here (in the same way that it is not necessary to know
what a cartesian-closed category is in order to understand what it means to be a model of simple
typed lambda-calculus). A slight exception to this approach arises in the construction of II which
we show is a special case of a general one, traditional in category theory, that of sections of the
Grothendieck fibration of a functor. Other familiar constructions on types like dependent sum and

product arise as special cases too.

3.1 Fibrations and sections.

Let F : C — Cat be a continuous functor from a category C to the category of all categories.
Define the Grothendieck fibration of F to be the category ¥ F consisting of

e objects which are pairs (X,?x) where X € C and tx € FI(X), and

e morphisms (X,tx) — (Y,ty) which are pairs (f,a) where f : X — Y in C and o :
F(f)(tX) — 1y in F(Y)

with the composition of two morphisms (f,a) : (X,tx) — (Y,ty) and (g,08) : (Y,ty) — (Z,tz)
given by
(9,8)0(fie) =(go f,B0F(g)(a)).

Then X F is a category with the identity morphism on (X,tx) being (idx,id¢, ).

The projection p : ¥ F — C is defined to be the functor which takes (f,a): (X,tx) — (Y,ty)
to f: X =Y.

We remark that our definition of Grothendieck fibration is not quite standard as it is tradi-
tional to work with opposite categories and, consequently, have the functor F' take arguments in a
category C (so that cofibration would perhaps be a better name); for our purposes this would be
inconvenient.

The construction IIF has continuous sections as objects. A section of Y F is a functor
s : C — XF such that pos = idg, and, of course, a continuous section is such a functor which is
continuous. Taking sections as objects we form a category by taking morphisms to be cartesian
natural transformations, 7.e. those natural transformations which project under p to identity mor-

phisms in C. A typical morphism between sections is a natural transformation v from a section
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s to section s’ consisting of a family (vx)yec of morphisms vy : s(X) — s/(X) in ¥F where
p(rx) =idx for all X € C. Of course, each component vx of such a natural transformation must
have the form vx = (idx,ax) with ax : tx — t’y where s(X) = (X,tx) and ¢(X) = (X, ty).
Being a natural transformation ensures that for all f : X — Y we have vy os(f) = s'(f)ovyx. The

category ILF is defined to be the full subcategory of continuous sections.

3.2 Families indexed by a domain.

We shall be concerned with fibrations and sections solely for the case in which the functor F takes
values which are domains. Then for special forms of base category C the structure ILF’, in general a
category, will be isomorphic to a domain. A simple example arises when C is a domain itself and the
functor F goes from the domain to the category of domains with embeddings; in this case not only
is IIF a domain but so is X F. We shall call these constructions dependent product and dependent
sum, following the terminology in Martin-Lof type theory [Mar71], [Mar84]. (The constructions
seem to be well-known and appear in the exercises of [Plo82].) A more abstract presentation would
have been to use the ideas of [See87] in order to give a categorical characterisation of the dependent
product and sums, and to show that the constructions we give verify these properties (see also
[T'T8T7]). See section 7 for an application of dependent products.

Let C' be a domain regarded as a category so there is a unique morphism from z to y precisely
when = < y; thinking of the graph of the order relation as being the set of morphisms, we shall
write (z,y) for the unique morphism from = to y. Let F' : C — DFF be a continuous functor to
the category of domains with embedding-projection pairs. The functor F' provides a domain F(z)
for each element = of C' and embeddings F(z,y)" : F(2) — F(y) for < y in C. These satisfy the
functor laws so F(z,2)" = idp(z) and if 2 <y < 2 then F(x,2)" = F(y,2)* o F(z,y)". In this
case the category X F has objects (x,1;) where x € C' and 1, € F(z). A morphism (z,%;) — (y,1,)
arises when and only when z <y in € and F(x,y)*(t;) < t, in F(y). It follows that the category
3 F is isomorphic to a partial order defined on objects of X F by

(z,1,) < (y, 1) iff @ <y and F(z,y)E(t,) < 1y,

It is easy to check this relation is a partial order, and, perhaps not surprisingly, ¥ F is a domain

too.

Proposition 7 Let C' be a domain. Let F : C — DY be a continuous functor. Then LF is a

domain. In this case the projection functor is a continuous function p : X F — C' between domains.

Proof: Y1 has a least element (L, Lp(y1y). Suppose V' = {(z;,1;) | 7 € I} is a directed subset of
YF. Then {x; | i € I} is a directed subset of C' and so has a least upper bound = = \/;c;2; in
C. Tt is easy to see the set {F(z;,2)l(t;) | i € I} is directed. Taking t = \/;e; Fxi, 2)E(t;) we
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show that (z,1) is the least upper bound of V in X F. Clearly it is an upper bound and supposing
(25,1;) < (2',1"), for all i € I, we see & < 2’ and F(z;,2")*(t;) <t for all i € I whence

Fa,a")H(1) = F(waw’)L(\/IF(wiaw)L(ti))
::ng@;;oF@“@%ugbymmmmw
ZSFW%ffm)

o,

which makes (x,t) < (2/,t"). Hence X F is a cpo.

A routine argument shows Y F' is bounded complete. Let W = {(z;,%;) | i € I} be a set with
upper bound (y,u). Then because x; < y for all i € I there is a least upper bound z = \/;c;z; in C.
Because F(x;, )l (t;) < uforalli € I wesee F(z;,2)M(t;) = (F(z,y)FoF(z;,9)1) () < F(x,y)P(u)
for all i € I'in F(z). Hence their least upper bound ¢ = \/;c; Fi(z;,2)E(t;) exists in F(z). It follows
that (z,t) is a least upper bound of W.

The cpo X F' is also algebraic with finite elements of the form (e, f) where e € Bc and f € Bp().
Such elements are certainly always finite by the following argument. Suppose (e, f) <\ V where V
is a directed subset of X F, assumed to be of the form V' = {(2;,t;) | i € I}. As we have seen such a
directed set V' has least upper bound (z,?) where z = \/;,c;2; and ¢ is the least upper bound of the
directed set {F(z;,z)r(¢;) | i € I}. Because e < \/;c;@; and e is finite there is some j € I for which
e < z;. Because F(e,2)E(f) < Vier Fzi,2)E(t:) and F(e,z)E(f) is finite, being the image under
an embedding of a finite element f, there is some k € [ such that F(e,2)2(f) < F(ay,2)(t) and
r; < xp. From

F(ag, )l o Fle,ap)t = Fe,z)*,

we see Fe,xp) = F(ap,2)% o F(e,x). Hence F(e,zp)"(f) < F(ag, 2) o F(ay, x)*(ty) = tx so
(e, f) < (@p,tk). Thus (e, f) is indeed finite.
Let (z,t) € X F. Consider the set

V={(e,f) <(2,1) | e € Bc and f € Bp(y)}.

If (eo, fo), (€1, f1) € V then, as we saw when showing X F' is bounded complete, their least upper

bound has the form
(eo Ver, Feg,eqVer)(fo)V Fler,eoVer)(fi))

, and this is an element of V using the fact that least upper bounds of finite elements are finite.
Thus V is directed. From the fact that I’ is continuous we now show V' has least upper bound
(z,1). Certainly, the set {e < z | e € B¢} is directed with least upper bound z. We are assuming

that F'f is continuous, i.e. that it preserves directed colimits, so the colimiting cone {(e,z) | e <
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z and e € Bg}in C is sent to the colimiting cone {F(e,z) : F(e) — F(z) | e <z and e € B¢} in
DPP. By Theorem 2, this ensures

t= \/{F(e,x)L o Fe,z)®(t) | e < x and e € Bg}.
But now we see
t = \/{F(e,x)L(f) |e <z ande € Bgand f < Fle,z)(t) and f € Br(e)}-

This makes (z,t) =V V.

Now we can see directly that any finite element (z,¢) must be such that z € B¢ and ¢ € Br(z);
because (x,1) is finite and the lub of a directed set of elements of this form it must be equal to one
such element. And, of course, any element of X F is a least upper bound of finite elements. Clearly
the set of finite elements is countable. This completes the proof that ¥ F is a domain.

It is easy to see it comes equipped with a continuous projection function p: X F — C. |

Now we turn our attention to IIF when F is a continuous functor C' — DFF from a domain
C'. Its elements are continuous sections. A section is a functor s : €' — X F such that pos = id¢.
Bearing in mind the nature of ¥F we take the image of € ' under s to be s(z) = (2,1;). As

both categories C' and 3 F are partial orders, s being a functor amounts to monotonicity, i.e.

z <y implies s(z) < s(y),
i.e. x < yimplies (z,;) < (y,ty),
i.e. x <yimplies F(z,y)(t;) <t, (1)

for all ,y € C. Sections thus correspond to families (¢;),ec which satify (1). Continuous sections

correspond to families which satisfy the monotonicity condition (1) and

tyv =V Fe\/V)it) (2)
veV

for any directed set V of €. We call such families continuous. Two continuous sections s, s’
correspond to continuous families t = (t;).ec and t' = (t),cc respectively. A morphism between
them corresponds to a family of morphisms (a, : ¢, — #.),cc but each such component a, simply
amounts to an ordering t, < t,.. Hence, a morphism s — s’ between sections corresponds to a
pointwise ordering

t<t'iffveeC.t, <t

between the corresponding families.
Not surprisingly, to show I F’ is a domain it is convenient to work with the isomorphic category
of continuous families with morphisms given by the pointwise order. Clearly this category is a

partial order, and, as we now show, it is a domain.
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Proposition 8 Let C' be a domain. Let F : C' — DY be a continuous functor. Then IIF is a

domain.

Proof: There is a least family with each component consisting of L, for 2 € C. Let {9 | ier1}
be a directed set in IIF. Define the family ¢ = <\/z’elt§b’i)>x60- Clearly it satisfies (1). Let V be a
directed subset of C'. Then

tyv =\ th

1€l

=\ V Fe.\/ V)
€l veV

=\ V F, )k
veV el
=\ Flo, V)V 1))
veV 1€l
=V o, \/ V)X
veV

so t satisfies (2) and is therefore a continuous family. Thus ILF is a cpo.

To show I F is bounded complete, assume {t(i) | i € I}, a set of continuous families, has upper
bound w. As F(z) is a domain and so bounded complete for all # € C' we can define a family
t= <\/Z»€It¥)>x € C. It satisfies (1) above. Let V' be a directed subset of C'. Then, to show (2), we
notice

tyv = \/th

=3
=V V Fv.\/ V)X (1(D)
€l veV
SAVAYRACAVARRCSY
veV iel ’
= \/ Flo,\/ V)R 1)
veV =3
=V Fo,\/ V)M
veV

where we have used the fact that embeddings preserve least upper bounds.

Let e € Bo and f € Bp(). Define the family [e, f] to have component

e fl, = {F(e,w)L(f) ife<u,

Lr@) otherwise,

for 2 € C. It is easy to check [e, f] satisfies (1) and (2) and so is a continuous family. Consider a

family ¢, obtained in the following way as the least upper bound of a finite number of such families,

t= [elvfl] VeV [envfn]'
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We show ¢ finite. Suppose t < \/V where V is a directed subset of ¢'. Then for any ¢, with
1< < n, we get
fi<te, <\ V)ey =V oess
veV
the least upper bound of a directed set. As f; is finite, f; < véf) for some v() € V. But then
[eis fi] < o). As V is directed there is some v € V which dominates each »(9 for 0 < i < n which
ensures ¢t < v. This shows ¢ is finite.

A continuous family ¢ is easily seen to be the least upper bound of the directed set

{[elvfl] VeV [envfn] | fl < t61&' : &fn < ten}7

where we are assured that the least upper bounds mentioned exist because they are bounded above
in a bounded-complete partial order. It follows that any family which is a finite element of IIF
must have the form [ey, fi] V- -V [en, fn]. Clearly such elements form a countable set. Hence I1F

is a domain. |

3.3 Families indexed by a category of domains.

Our other important example arises when F : D' — DFEP is a continuous functor. In this case, as
we shall see, while I can only be considered as a category, I1F is isomorphic to a domain when
both are viewed as categories.

Assume F' : DFF — DFF i a continuous functor. In this case, X F is a category with objects
pairs (X,tx), where X € D¥F and tx € F(X), and morphisms (X,tx) — (Y,ty) correspond to
morphisms f: X — Y for which (Ff)LtX < ty. Note, X I is not a partial order—it simply has
too many morphisms. We need to consider the form of colimits in X F. A directed family in XF
corresponds to a directed set (I, <) indexing a family of objects (X;,#;) in X F and morphisms
fi;; € DPP(X;, X;) so that (Ffi;)"t; < t;, for i < j. A colimit for such a family corresponds to a
pair (X, 1) with a collection of morphisms (g; : X; — X );e; making a colimiting cone in DFF and
so that t = \/.(Fg:)"t,.

As in the earlier case, when F': DEY — DFF the category IIF of continuous sections can be
seen as consisting of certain kinds of continuous families ordered pointwise. As before, sections

correspond to families ({x)ycper, where ty € F(X), which are monotonic in that they satisfy
feDEP(X,Y) implies (Ff)ltx <ty (1)

for any f. Continuous sections preserve directed colimits. Thus if (p; : X; — X);es is a directed
colimit in DFF | then (spi + sX; — sX)er is a directed colimit in /. Considering the form of
directed colimits in X F, it follows that continuous sections correspond to families which satisfy

(1) and also the requirement that for such directed colimits (p; : X; — X);es in DFF we have
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tx = V;(Fpi)¥tx,. Recalling Theorem 2 we can write this condition as follows. For any cone
(pi: Xi — X)ier we have
{pLoplt|ie I} is directed and \/ pb o plt =idy implies tx = \/(Fpi)LtXi. (2)

el 7

We call families satisfying (1) and (2) continuous. As before, morphisms between continuous

sections correspond to their associated families being ordered pointwise, i.e.
t <t iff VX e DEV 1y <t

where t and ¢/ are two continuous families.

At this point it is tempting to conclude that II1F is a partially ordered set and press on with
the demonstration that it is a domain. Unfortunately, it is not quite, as its objects, the continuous
sections, are not sets. Even though the elements of I1F are classes they can be put in 1-1 correspon-
dence with the elements of a suitable set. To see this, take S to be some countable subcategory of
domains equivalent to the full subcategory of all finite domains with embedding-projection pairs as
morphisms. Then any continuous section is determined by its restriction to the standard domains
S. Ordered pointwise these restrictions are in 1-1 order preserving correspondence with IIF. In
this sense I F is isomorphic to a partially ordered set, in fact a domain. This more generous sense
of isomorphism is quite standard in category theory; according to the usual notion of isomorphism
there, I1F is isomorphic to a domain when both are viewed as categories. This has described the
sense in which we mean IIF is isomorphic to a domain. Details are given in the proof of the

following theorem.

Theorem 9 Let F' : DY — DEY be o continuous functor. The category ILF is isomorphic to a

domain.

Proof: Take IlgF to be the partial order consisting of families (fx)xes which are monotonic in
the sense that
feDEY(X,Y) implies (Ff)Ftx < ty,

for all X,Y € S, ordered pointwise. It is clear that IIgF is a set because S is. Now we show that
IIF and I gF are isomorphic as categories, and, later, that IIgF is a domain.
Clearly, any continuous section ¢ € IIF determines, by restriction, an element rest € IlgF.

Conversely, any element of ¢t € IlIgF can be extended to a continuous section ezt t by taking
(ext )p = \{(F/*ix | X €S & f e D™ (X, D)},

for any domain D. This must be checked to be well-defined however.
We note the set {(Ff)*tx | X € S & f € D¥P(X, D)} is directed so that the least upper bound
really does exist. To show this, take two elements of the set yo = (Ffo)"tx, and y; = (Ff1)tx,
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arising from morphisms fo € D¥F( Xy, D) and f; € DFF(X,, D) where Xg, X; are finite domains.
By Lemma 4 there is a finite domain X and ¢ € D*F(X, D), go € D*F(Xg, X)and ¢; € DFF (X, X)
with fo = gogo and fi = g o g1. Because t is monotonic it follows that yg, 11 < (Fg)LtX, an
element of the set. Hence the set is directed, and the definition above does at least yield a family.

It remains to show that the family is continuous. Firstly, to show the family is monotonic, assume
g € DEY(D, E) and notice

~
&
h
(@]
~
=
h
™
S
b
M
wn
V)
=
o,
—y
M
w
eal
av]
=
S
—

This shows monotonicity. Suppose now that {p; € DY (D;, D));c;is a directed colimit. To complete

the demonstration of continuity we require that

(ext t)p = \/{(Fpi)L(ext tp;) | i €1}

Note first that the set is directed because ezt t is monotonic. Again by monotonicity we obtain
(ext t)p > \/{(Fpi)L(ext tp;) | i €1}

According to its definition (ext t)p is the least upper bound of elements (Ff)*tx for X € S and
f € DFF(X, D). Consider such an element. By Lemma 5, there is some i € I and h € D¥F(X, D;)
such that f = p; o h. Now we see

(Ff)*tx = (F(pio h))ix = (Fp)"((FR)"tx) < (Fpi)*(eat tp,).

It follows that (ext t)p < \/;(Fp;)*(ext tp,), and now the equality required for continuity is obvious.
Now, it is easy to see that the two operations restriction res : IIF — llgF and extension
ext : llgF — ILF preserve the order relation. For ¢t € IlgF, we certainly have ¢ty < (ext t)y for

Y € S—consider the identity morphism on Y—and by the monotonicity of ¢t we see
(res ext t)y = \/{(Ff)LtX | X € Sand f e D (X,V)} < ty.

Hence res ext t =t for t € lIgF. For X € S we have (res t)x = tx, so from the definition of ext

and res we see

(ext res t)p = \/{(Ff)LtX | X € Sand f € DFF(X, D)},

for a domain D. However, because t is continuous and D is the colimit of finite embeddings in the

sense of Theorem 3, we also have

tp = \/{(Ff)"tx | X € S and f € DPV(X, D)}
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Hence ext rest = t, for all t € IIF. We conclude that res : IIF — IlgF and ext : llgF — IIF
form an order isomorphism.

We now show Ilg}' is a domain. It has a least element, the family (L x)xes. Suppose {0 |
i € I} is a directed set in I[gF. Define the family ¢ by taking

Ix :\/tgé),

for all X € S—the least upper bound exists because the set {t()? | ©+ € I} is directed because
{t@) | i € I} is. Tt is monotonic because, supposing f € DEF(X,Y), we see

(FP(ex) = (FOMV ) = VN ) <V i,

using the fact that (Ff)* is continuous. A very similar argument shows that IlgF is bounded
complete though in this case the argument uses the fact that embeddings preserve all existing least
upper bounds.

Suppose there is a monotone family ¢ such that txy = e € F'X is finite for some X € S. Define

[Xoely = \VA(FNHMe) | f: X =Y}

This is well-defined since ty is a bound for the set whose join is being taken on the right. It is
possible to show that it is a monotone family which does not depend on the choice of . Now, any

least upper bound which exists of the form
[le 61] VeV [Xnv en]v

where ey € FXq,---,¢e, € FF X, is afinite element of I[lgF. The remaining argument, showing that
any element of IIgF is the lub of such elements and that all finite elements have this form, echoes
that in the proof of Proposition 8, and we omit it. Having chosen S to be countable it follows that

the finite elements form a countable set, and hence that IIgF is a domain isomorphic to ILF. |

Thus although strictly speaking the category ILF is not a partial order because its objects are
classes, not sets, it is nevertheless isomorphic to a domain. Because of this, in the future, we
shall treat 11} as a domain, in fact as the domain with continuous families as elements, and not
fuss about this problem with foundations. The more fastidious reader can after all replace our

construction of IIF with the isomorphic small category IlgF provided in the proof above.

3.4 II with parameters.

In the discussion later we will often need to use the II operator with parameters. If
F:C x DY — DPF is continuous, then we write IIC€F:C — DEP for the continuous functor
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defined as follows. The action of II®F on objects is given by (ICF)(C) = M(F(C, _)). Given
feC(C,D), we define
(MCF)(f) € D (MEF)(C), (TCF)(D))
by taking
(CF) (f)(s)z = F*([,idz)(s2)
MERR()(1)z = FR(f.idz)(12)
for each section s € (IICF)(C) and t € (IICF)(D).

Of course, we must show that this definition makes sense. First of all, let us check
that (MCF)L(f)(s) € (MCF)(D). Suppose s € (MICF)(C) = M(F(C, _)) and let tx =
(MICHE(f)(s)x = FE(f,idx)(sx), we wish to show that tx € IL(F(D, _)). Suppose g €
D*F(X,Y). Then

FY(idp, g)(tx) = F"(idp, g)(F"(f,idx )(sx))
= FE(f.idx)(F (idp. 9)(sx))
< FU(f,idx)((sy))
= ty.
This proves monotonicity. To prove continuity, suppose g; € DPF(X;, X) and the functions g% o g/
form a directed collection such that \/; ¥ o gF = idx, then

VI (idp, gi)(tx,) =\ FH(idp, ) (FH(fidx,)(sx,)
Z - \}FL(f,idx)(FL(idDagi)(SXi))
= ];L(f,idX)(\/FL(idDygi)(SXi))
= FL(faidX)(SZX)
= tx

so (IICF)X(f)(s) € (HCF)(D).
Now suppose t € (IICF)(D) = I(F(D, _)) and let sx = (MCF)R(f)(t)x = FE(f,idx)(tx).
We wish to show that s € (IICF)(C) = TI(F(D, _)). Suppose g € DEP(X,Y). Then

R

7

This proves monotonicity. To prove continuity, suppose g; € DEP(XZ', X) and the functions gZL og
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form a directed collection such that \/; g% o g/* = idx. To keep the notation simple, let

B = F(ido, ¢;) € DEY(F(C, X)), F(C, X))
6= F(f, dx) e D*Y(F(C, X), F(D, X))
Note that
fogfoal = F(ido, gi) o FP(f,idx) o F*(idp, g)
= F(f,idx,) o F*(idp, g;) o F*(idp, gi)
= F(f,idx,)
= ¢F.
Since \/; aF o af =idp(p,x) and V; Blo gl = idp(c,x), we have

F=(Vropfosto\aioa
=V plo(sflodoaf)oaf
=\/ 5t o

Now, let sx = (ICF)E(f)(t)x = ¢T(tx) and sx, = (HCF)F(f)(t)x, = 6"(tx,). Then

sx = ¢M(tx)
\/ﬂL (bR oa \/a (tx,)
:\/ﬁfo C)(tx,)
:\/@L(SXJ

That is, sx = \; FX(ido, g;)(sx,) and therefore s € (IICF)(C) = II(F(D, _)).
We have now shown that the definitions of (1€ F)%(f) and (II€ F)%( f) make sense. The proof
that (IICF)(f) € DEP((MCF)(C), (TICF)(D)) and the proof that TC F is a continuous functor are

both routine.

Notation: Later we shall be concerned with functors F : C x DEF — DFEF and the associated TI¢
in the case where C = (DF)™. In this case we shall write II"” for I1¢.

3.5 Information systems.

The inspiration for our work came originally from Girard’s paper [Gir86]. There he uses a repre-

sentation of qualitative domains with morphisms stable functions and rigid embeddings to give a
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model for the second-order A-calculus. For domains, we can use the representation of information
systems in a similar way to give an interesting, elementary contruction of IIF for a functor F on
domains. We give a sketch of the approach based on the presentation of information systems in
[WL84] following [Sco82]. Because the proofs are straightforward and not essential for what follows
we omit them.

Recall the definition of an information system:

Definition: An information systemis defined to be a structure (4, Con, ), where A is a countable
set (the tokens), Con is a non-null subset of finite subsets of A (the consistentsets) and F is a subset

of Con x A (the entailment relation) which satisfy:
o X CY € Conimplies X € Con
e a € Aimplies {a} € Con
e X+ aimplies X U{a} € Con
e X eConandae X implies X Fa

e (X,YeConandVbeY. X FbandY F ¢)implies X | c.
An information system determines a domain:

Proposition 10 The elements of an information system (A, C'on,F) are defined to be those subsets
x of A which satisfy:

o X C x implies X € Con for any finite set X,
o X Cux and X - a implies a € .

Ordering the elements by inclusion we obtain a domain |A| with finite elements precisely the sets
{a € A|3X CY. X I a}, obtained from X € Con.

A domain determines an information system:
Definition: Let D be a domain. Define ID = (Bp,Con, ) where Bp is the set of finite elements
of D and C'on and F are defined as follows:
X € Coniff X C Bp and X is finite and X is bounded,
Xl—eiffXEConandeg\/X.

Proposition 11 Let D be a domain. Then ID is an information system with domain of elements

|ID| isomorphic to D. The isomorphism pair is

6:D — |ID]| given by 0 :d— {e € Bp | e < d},
¢:|ID|—>Dgz'venbyq§:xn—>\/x.
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As is well-known a continuous function f between domains is determined by its action on finite
elements and so by the relation f° between finite elements that it induces, a relation defined as

follows.

Definition: Let f : D — E be a continuous function between domains. Define f© = {(d,e) €

Bp x Bg | e < f(d)}.

Embeddings between domains correspond to the following kinds of mappings between the finite

elements of the associated information systems.

Proposition 12 Let f: D — E be a continuous function between domains D and E. The function

f is an embedding iff
o fY s a 1-1 function Bp — B,
o X € Conp iff fX € Cong, for all finite subsets X of Bp, and

o X tpdiff fX g f(d), for all elements d and finite subsets X of Bp.

To define the information system of IIF’ of a continuous functor on domains, as earlier, we use S,
a countable category equivalent to the full subcategory of finite domains with embedding-projection

pairs.

Definition: Let F : DEF — DFP he a continuous functor on domains. Take Tt to consist of those
pairs (X,b) where X € S and b € Bp(x). For W, a finite subset of T+, define

W e Coniff VY € S. {(Ff)Fb | IX. (X,b) € W and f € DY (X,V)} € Conpy.

Define the tokens T' to be those elements (X,b) of Tt for which {(X,b)} € Con. For W € Con
and (Y,c) € T, define

Wk (Y, e)iff {(Ff)*b|3IX. (X,b) € W and f € D¥(X,Y)} Fpy b.
Finally, define II; F' to be (C,Con,|).

Theorem 13 Let F : DPY — DY pe o continuous functor on domains. Then
(i) L1 F' is an information system.
(ii) ILF = |11 F| with isomorphism pair 6 : 11F — |1 F| and ¢ : |11 F| — ILF given by

0(t) = {(X,0) [ b < tx and b € Bp(x)},

olz) = <tY>Y€DEP where
ty ={(FH* |3X. f: X =Y and (X,b) € z}. 1
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4 Basic combinators.

Here we introduce the notation and results we shall use to provide a semantics for the polymorphic A-
calculus. We are concerned with functors on the category DY, Suppose Fi, ..., F, are continuous

functors from (DFF)™ into D¥P. We claim that p’, the projection map defined earlier, is a section
of #(Fy,..., F,) = F;. To check this, suppose f € (D*F)™(X,Y). Then

(FZR(f) o pY o #(Flv .- '7Fn)L(f))($1v .- '7$n)
FEDE) )

= pr(acl,...,xn).

It is clear that p’* will be a continuous section.

Let P, F.G: (DEP)m — DPF be continuous functors. Suppose s is a continuous section
of the functor P = (F = G): (D)™ — DEF and ¢ is a continuous section of the functor
P = F:(DFF)™ — DFF_ We define a continuous section apply(s,t) of P = (& by the equation

apply(s,t)x(z) = (sx())(tx(2))

where 2 € P(X). To show that apply(s,?) really is a section, suppose f € (D*F)"(X,Y). Then

(P = GY"(f)(apply(s, t)x)(x)
= (GT(f)o (apply(s, t)x) o P
=GMf )(PE(f)
=GM(f
<GE(f
=GM(f
< (sy (2))(ty(w ))

= apply(s, )y ().

~~

apply(s t)x

To see that apply(s,t) is continuous, suppose f; € D¥F(X,, X) and the functions f¥ o f7 form a
directed collection such that \/; fL 0 fR idx, then

\/(P = G) (fi)(apply(s, t)x,)()

= \/G (i) ((sx, (PR @) (Ex, (PR(fi)(2))))

= \/GL FIOF = GYf)(P = (F = GNP (sx)@))EHf)(P = FYH(fi)(tx)())))
= \:/GL(fi)(((F = P fi)(sx(@))ER(fi)(tx(2))))
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=V(( (GH(fi) o GR(f))(sx (@) (F(fi) o FR(fi))(tx(2))
= apply(s, t)x ().
Let
P (DEP)m N DEP7
F: (DFPYy™ x DEP . DEFand
G - (DEP)m N DEP

be continuous functors. Suppose ¢ is a continuous section of the functor
P = 1I"F : (D)™ . DEF,
We define a continuous section Apply(t, &) of the functor
P = (Fo(idprrym,G)): (DFF)™ — DEF

by the equation
Apply(t, G)x(z) = tx()g(x)
where z € P(X). We check that Apply(t, &) is indeed a section; suppose f € (DFF)™(X,Y), then

(P = (Fo(ldperym, G))"(f)(Apply(t, G)x)

= (FH(f,G([)) o Apply (1, G)x o PR([))(2)

= FH(f,G()((tx o PP(M(@)ax))

= PRGN E)(f) o (M F)Y(f) o tx o PE(f))(@)a(x))
= PHL GO )Y (f) o (P = " E)(f)(tx)(@)a(x))
< FHL GO EY(f) o ty )(@)a(x))

= FH(f, GO P)YR )ty (2))ax)))

= FEf, GUNEFR(fLidax))(ty (2)ax)))

= (F(idy, G(f)) o F*(f,idgix)) o F(f,idgx)(ty (2)a(x))
< F(idy, G(f))(ty(z)a(x))

< (tv(2))ay)

= Apply(t, Gy

where the penultimate step follows from the fact that #y(z) is a section of F(Y, _ ) and
G(f) € DPF(G(X),G(Y)). To see that Apply(t,() is continuous, suppose f; € D¥F(X;, X) and
the functions fL 0 fR form a directed collection such that \/, fL 0 fR idx, then

\/(P = (F o (ldperym, G))"(fi)(Apply(t, G)x,)

7



Domain theoretic models of polymorphism 23

= \/FL (i GUNEYE(fi) o (P = T FYH(fi)(tx)) (@) x,))
= \/FL (fi GUNATFYR (i) 0 tx)(2) 6 x)

_ \/ (FM(idx, G(f:) o F™(fisidagx,y) o FT(fisidaix)(tx (2)ax,))
= \:/FL(ianG(fi))(tX(w)G(Xi))

= (tx(7))a(x)
= Apply(1, G)y.

Let P, F, G : (DFF)™ — DEF be continuous functors and suppose ¢ is a continuous section of the
functor P# F = G : (DEP)™ — DEP. Then we define a continuous section curry(t) of the functor
P = (F = () by setting

curry(t)x(z)(y) = tx(z,y)

for € P(X) and y € F(X). To see that this does define a section, suppose f € (DFF)™(X,Y).
Then

(P= (F G (f)(eurry(t)x)(2)(y)
= ((F = G)"(f) o (curry(t)x) o P(f))(2)(y)
= (G ( ) o ((curry()x J(P(f)(@))) o FT())(y)
= G N)(tx(PT(f) (), FH(f)(y)))
=((P#F = &)"(N)tx)(z,y)
< ty(z,y)
= curry(t)y (2 )(y)-

To see that curry(?) is continuous, suppose f; € DPF(X;, X) and the functions f& o f# form a
directed collection such that V/; fL 0 fR idx, then

V(P = (F = G)M(fi)curry(t)x,)(2)(y)

=\V((P# F = O (f)(tx)),y)
= tX($,@/)
— curry(t)x ()(y).

Let P: (DFPy™ — DFEP o (DFF)™ x DPF — DFF and suppose t is a continuous section of
(PoFst) = F. Let X € (DFF)” and » € P(X). We define Curry(t)x(z) to be the continuous
section of F(X, _) given by the equation

Curry(t)x(2)z = {(x,z)(2).
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This makes sense because I(y z) is a continuous functor in Z. We wish to show that Curry(t) is a

section of P = II"™F. In other words, we want to show that
(P = 1" F)F(f)(Curry(t)x ) < Curry(t)y
where f € (DEF)™(X,Y). Let 2 € P(X) and suppoose Z € DEV'. Then

(P = I F)*(f)(Curry(t)x)(2)7

:((HmF) (f )oCurry(t)XoP

I(HmF) (F)(Curry(t)x (PT(f)

)(Curry(t)x (PR(f)(2))z7)

f,.dZ)(t 2(PT(f)(2)))

= Fl(f,idy) t( 2((PoFst)(f.idz)(2)))
= ((PoFst) = F)X(f,idz)(t(x 7))(z)

<ty,z)(2)

= (Curry(t)y(2))z.

To see that Curry(t) is continuous, suppose f; € DFF(X;, X) and the functions f/ o ff form a
directed collection such that V/; fL 0 fR idx, then

V(P = T"F)(fi)(Curry(t)x, )(2)z

7

— \/((P o Fst) = )L (f;, idz)({(x,,2))(®)

~~

= t(x,7)(2)
= (Curry(t)x(z))z.
Notation: Suppose
P : (DEPym — DEF,
F: (DFPYy™ — DFEP - and
G : (DEP)™ — DFF

are functors. Given continuous sections

sell(P#F = G)
tell(P= 1),

we define a continuous section

[]s € (P = G)

by setting
([1]s)x (x) = apply(curry(s), 1) = sx(z,tx(2)). 1
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We will need the following Lemma later:

Lemma 14 1. If thy(p,b) = tx(p) and sx(p,b,a) = sx(p,a,b) for every X, p, a and b, then

curry([t']s") = [t](curry(s)).
2. Iftix ) = tx. then Curry([t)s) = [f](Curry(s)).
3. apply([t]r, [t]s) = [t](apply(r, 5)).
4. Apply([t]s, &) = [t](Apply(s, G)).

Proof: 1.

curry([t']s") x (p)(0) = ([t']s") x (p, b)
= s’y (p, b, tx(p,))
= sx(p,tx(p),b)
= curry(2)x (p. tx(p))(b)
= ([t)(curry(s)))x(p)(b).

Curry([t']s)x (z)y = sxv)(, tXY (z))
= s (@ x (@)

= [t)(Curry(s))x(2)y .

apply([t]r, [t]s)x(x) = ([t]rx(2))([t]sx(2))
= (rx (2, tx(2)))(sx(x, 1x(2)))
= apply(r, s)x(z,tx(z))
= [1](apply(r, s))x(2).

)
(

Apply([t]s, G)x(x) = ([t]s)x(#)a(x)
=sx(z, tX(x))G
= Apply(s, G)x(z, tX( )
= [t)(Apply(s,G))x(z). 1
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Notation: Suppose
P,K : (D¥F)™ — DEP and
F: (DFF)m x DEP — DEP
are continuous functors and
teIl((PoFst)= F),

then we define a continuous section
[K]t € (P = (F o (ldprrym, G)))
by setting
([&]t)x () = Apply(Curry(t), K)x(2) = t(x c(x)(z)- 1
We will need the following Lemma later:
Lemma 15 1. curry([K]t) = [K](curry(1)).
2 I thx 1y = t(xwiz) Jor cach X, Y and Z, then Curry([K o Fst}t') = [K](Curry(1)).
3. apply([K]s, [K]t) = [K](apply(s.1)).
4. Apply([K]t, H o (Id, K)) = [K](Apply(t, H )).
Proof: 1.
curry([K]t) x(2)(y) = ([K]t)x (s, )
= {x.kx)(®y)

= curry(t)(x,x(x))(*)(y)
= [K](curry(t))x(z)(y).

Curry([K o Fst]t)x(z)z = Curry([K o Fst]t’)(XZ)
= t(x,7.6(x))(2)
= t(x,6(x),72)(®)
= Curry(t)(x a(x)(®)z
= [K](Curry(1))x(2)z.

apply([K]s, [K]t)x(2) = (([K]s)x(2))(([K])x(2))

(
= (s(x, 1 (@)(@)((x,x(x)) (7))
(
=

apply(s, 1)) x,x(x)) (%)
K](apply(s,t))x ().
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Apply([K]t, H o (Id, K)) = ([K]t)X(ﬂU)H(X,K(X))
= {x,k(x) (@) H(X K (X))
= Apply(t, H )(x x (x))(%)
= [K)(Apply(t, H))x(x). 1

5 Syntax of the polymorphic \-calculus.

The types of the polymorphic A-calculus are given by the following abstract syntax:
o = o1=>03 | al lla.o
and the terms of the calculus are described as follows:
M=o | dato. M | Mi(Mz) | Aae M | M{o}.

We distinguish a subcollection of well-typed terms of the calculus to be those terms M for which
F M : o is derivable from the typing rules listed below. The sequents in the typing rules are of
the form H Fy M : o where H = 21 : 01,...0, is a (possibly empty) list of typings for variables
which must include all of the free term variables of M, and ¥ = a4, ..., a, is a list of type variables
which must include all of the free type variables that appear in oy1,...,0, and M. We use Fy M

as an abbreviation for H Fy M where H is the empty list and H - M as abbreviation for H Fy M
where X is the empty list.

Typing rules for the polymorphic A-calculus.
projection: Hi,z:0, HyFsx:0

H, z:00Fg M :09
Hbs Ax:01. M 01 = 09

= introduction:

Hbs o M:o
Hbs Aa. M : lla. o

II introduction:

Hbs My 01 = 03 Hbx My : o4
H "E Ml(MQ) L 09

= elimination:

Hbsy M lla. 0y
H by M{os} : [02/a]oy

II elimination:

Restrictions:
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e In the projection rule, the variable = does not appear in Hy or Hs.

e In the II introduction rule, there is no free occurrence of « in the type of any variable in H.

e In the II elimination rule, all free variiables of o9 are in X.

The terms of the calculus (in particular, the well-typed terms) are taken to satisfy a collection

of equational rules of the form H Fy

My = M, where H and ¥ are lists of variable typings and

type variables as descibed above. Again, we assume that H lists all of the free term variables that

appear in M and X includes all of the free type variables that appear in H and M. The rules are

given as follows:

Equational rules for the polymorphic A-calculus.

reflexivity:

type &:

congruence:

Hi,z:0 HyFsx=2x2:0

H, z:01Fx My =My : 09
HbEs Av:oy. My =Xx:0. My 01 = 09

H"XLO[MlIMQ:O'
HbEsy Aa. My = Aa. My : lla. o

Hbs My =M,y : 0y Hbs Ms=My:01 = 09

type congruence:

H "E Mg(Ml) = M4(M2) L 09

H"EMlezané.O'l
H "E Ml{O'Q} = MQ{O'Q} . [0'2/04]0'1

It is not difficult to see that from these rules, a lambda expression M satisfies H Fx M : o if

and only if it satisfies H by M = M

an abbreviation for H by M = M : 0.

symmetry:

transitivity:

o. Thus, for the remaining axioms, we use H Fy M : ¢ as

Hl_EMleQ:U
HFZMQIMliU

Hl_EMleQ:U HFZMQIMgiU

Hl‘lezMg:O'
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H, z:01Fx Msy:09 Hbs My i 0y

b H by (A : 0. My)(My) = [M;/2]M; : o
type B: Hbs o M:oy
' HFy (Aa. M){o3} = [o2/a]M : [o3/a)oy

Hbs M 01 = 09

T HbExydz:op. M(z)=M :01= 03
Ve - HbEs M 1la. o

ype s HbFy Aa. M{a} = M :1lla. o
Restrictions:

e In the reflexivity axiom, the variable z does not appear in Hy or Hs.

In the type £ rule, there is no free occurrence of « in the type of a variable in H.

In the type 0 rule, there is no free occurrence of a in the type of a variable in H.

In the 7 rule, the variable 2 does not occur free in M.

In the type 7 rule, the variable o does not occur free in M.

6 Semantics of the polymorphic A-calculus.

In this section we provide a detailed description of a semantics for the polymorphic A-calculus,
whose syntax was described in the previous section. We end by showing that our model interprets
types differently from the models based on finitary projections described earlier and we show that
the equational theory of our model is different from that of any such model.

If m >4 > 1, then define P*™ : (DEP)m — DPP to be the i’th projection, i.e. the continuous

functor whose action on objects is given by Pi’m(Dl, ..., D) = D; and whose action on arrows is
Pi7m(f17 .. 7fm) = fz
If ¥ = ay,...,q, is a list of type variables then S[Fy o] will be a continuous functor from

(DEF)™ into DFF. The semantic function S _] is defined inductively as follows:
o %[“_oq,...,ozm Oéi]] = Pi7m

e Sy 01 = 03] = Sfky 1] = SFs 02]
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o ks lla. o] = I"(S[Fx.o o])
We also assign a meaning to a sequent H Fy ¢ by the equation:
[o1,...,02Fs o] = #(S[Fx a1],-..,S[Fs 0n]) = S[Fs o]
Example: The type of the polymorphic identity is given as follows:

SIF a. a = o] = THS[F, @ = a])
= Hl(%[[l—cy a] = Sfka a)
— Hl(Pl’l = Pl’l) I

We now define the semantics of the sequents of the calculus. In general, the value
[v1:01,...,2, 0, Fx M : 0]
will be a continuous section of the functor
[o1,...,0, Fy o] : (DFF)™ — DFF,
The semantic equations are given as follows:
o [x1:01,...,2;:04 ..., 0,0, by ;03] = p"
e [HFys Az :01. M 101 = 03] =curry([H, 2 : 01 Fx M : 02])
o [Htyx Aa. M :1la. o] = Curry([H kg, o M : 0])
o [H by My(My): 03] =apply([H Fx Mz : 01 = o3],[H Fx My : 01])
o [H by M{oy} :[o2/alo1] = Apply([H Fx M : lla. o1], [Fx 02])

For the second equations, one must suppose that the variable z doesn’t appear free in H. To see

that the third line makes sense, we note the following:
Lemma 16 If a does not appear free in the type o, then Sty o 0] = S[Fx o] o Fst.
Proof: Straightforward structural induction on o. |

Example: The polymorphic identity function is the following continuous section of II'(P1:! =
PLL):
[FAa. Az a. 2 lla. a = o] = Curry([Fo Azt a. 2t a = al)
= Curry(curry([z : a b4 2 1 ]))

= Curry(curry(p™')). 1
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Lemma 17 (Permutation) If we have

{1,....n} = {i1,....0,} and
{17"'7m}:{j17"'7jm}
then
[[$1 t01,-..,Tp 1 0p l_oq,...,ozn M - U]](Xl,...,Xm)(plv .. 7pn)
coy, F M :o]x

= [[xil B PRI 73 n QG ey

X, (Piys- s Diy)

J1oee

Proof: Easy structural induction on M. |

Lemma 18 (Substitution) Suppose H s, My : 01 and H, x : 01 Fx My : 02, then
apply(curry([H, @ : 01 Fx My : 03]), [H Fx My :01]) = [H Fx [M1/2]M,].

Proof: To help reduce the amount of notation needed for the arguments below, let

r=[HFx [M;/2]Ms]
s=[H, z:01Fx My : 03]
t=[HFs M :o04]
We must show that r = [t]s. Let n and m be the lengths of H and ¥ respectively. The proof is by
structural induction on the term M;. There are six cases.
Case 1: My = y # . Suppose y is the i’th variable in H. Then r = [H Fy y : 03] = p*" =

i) = ¢
Case 2: My = 2. We have r = t and [t]s = [{](p" ™" 1) = ¢, s0 r = [t]s.
Case 3: My = Ay :0. M. Suppose that 0y =0 = 7sothat H, y:o by M : 7.

r=[HFg Ay:o. [My/2]M : 03]
=curry([H, y:0 by [My/z]M : o])

=curry([[H, y:obks My :o1]][H, y:0, 2 :01Fx M :0]) (hyp)
= [t)(curry([H, z 101, y:oFx M :0])) (Lemmas 14.1 and 17)
= [t]s.

Case 4: My = Aa. M. Suppose that oy = Ila. o so that H Fy o M : 0.

r=[HFy Aa. [My/2]M : 03]

— Curry([H Fx, o [My/a] : 0])

= Curry([[H tFx, o My :0oq]][H, z:01Fx, o M :0]) (hyp)
[t)(Curry([H, z 101 Fx, o M :0])) (Lemmas 14.2 and 17)
= [t]s.
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Case 5: My = M(N). Suppose that H sy M :0 = o3 and H Fy N : 0.

r=[H s ([Mi/2]M)([My/2]N) : 72]
= apply([H by [M1/2]M : 0 = 03], [H Fs [My/z]N :0])

= apply([{][H, z 01 Fx M : 0 = 03], [{][H, z:01Fx N :0]) (hyp)
= [t)(apply([H, 101 Fx M 10 = 03], [H, x:01Fx N :0]))
= [t]s.

Case 6: My = M{c}. Suppose H Fxy M : 7.

r=[H Fx ([Mi/z]M){c} : 02]
= Apply([H ks [My/z]M : 7], [Fx o])

= Apply([t][H, z;01Fx M : 7], [Fx o]) (hyp)
= [1(ARPIY([, w30 s M < 7], [Fs o])) (Lemma 14.)
=[ts. 1

Lemma 19 [Fy [o3/alo1] = [Fs o1] o (ld, [Fx o2]).

Proof: Structural induction on oy. ||

Lemma 20 (Type Substitution) Suppose H s o M : 01, and o does not appear free in H, then
Apply(Curry([H Fx, o M : 0], [Fx 02]) = [H Fx [02/a]M : [03/a]oq].

Proof: To help reduce the amount of notation needed, let

s=[H Fyx [o2/a]lM : [oy]/a]oq]
t=[HbFs o M:0oq]
K = [["E 0'2]].
We must show that s = [K]¢. The proof is by structural induction on M. There are five cases.

Case 1: M = x. This is trivial.
Case 2: M = Ay :0. N. Suppose 01 = 0 = 7 so that N : 7.

s=[H Fx Ay :[oz/alo. [o2/a]N : [oy]/a]oq]
= cury(LH. v : [oa/alo s [o2/alN : [o/alr])
=curry([K][H, y:obFy, o N:7]) (hyp)
= [K](curry([H, y:obts, o N :7])) (Lemma 14.1)
= [K]t.
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Case 3: M = AS. N. Suppose that o1 = 3. ¢ so that N : o.

s=[HFyg AB. [o2/a]N : [o2]/a]oq]
= Curry([H Fx, g[oz/a]N :[og/a]oq])

= Curry([K o Fst][H by g o N :01]) (hyp)
= [K])(Curry([H ks, g N 1 01])) (Lemmas 15.2 and 17 )
= [K]t.

Case 4: M = Ny1(N3). Suppose that Ny :0 = oy and Ny : 0.

s = [H Fz ([o2/a]N1)([02/a]N2) : [02/a]oq]
= apply([# ts [02/a]Ny < [o2/a)(0 = o1)], [H Fx [02/a]Ny : [02/a]a])

= apply([K][H Fs, o Ni: (0= o)), [K][H Fs, o Ny :o]) (hyp)
= [K](apply([H Fx, o N1: (0= 01)], [H Fx, o Ng:0])) (Lemma 15.3)
= [K]t.

Case 5: N{c}. Suppose H Fy N : 7.

s = [H b ([o2/alN ){[o2/alo} : [o3/aloy]
— Apply([H Fs [2/alX : [oz/alr], [ [o2/alo])

= Apply([K][H tx, o N :7], [Fx [02/a]0]) (hyp)
= Apply([K][H Fx, o N :7], [Fz o] o(ld, K)) (Lemma 19)
= [K](Apply([K][H ks, o N : 7], [Fx o)) (Lemma 15.4)
=[K]t. 1

Lemma 21 Suppose H Fx M : 01 = 09. If @ does not appear in H, then
[H, v:01Fxs M :0y = 03] =[HFg M : 0y = 03] ofst.
Proof: By structural induction on M. |
The following is a more dramatic version of Lemma 16:
Lemma 22 Suppose Htx M :0. Ifa g ¥, then [H Fx, o M : 0] =[H Fx M : lla. o] o Fst.
Proof: By structural induction on M. |

We will say that an equation H Fy M; = M, : o is satisfied by our semantics just in case

[HFs My:o] =[HFs My :c]. We are now prepared to state our central result:
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Theorem 23 The semantic function [ _| satisfies the rules for the polymorphic \-calculus.

Proof: There are eleven rules altogether. Those whose proofs are non-trivial are the rules 3, type
G, n and type 5. The [ rule and type  rule are immediate from the Substitution Lemma (18) and
Type Substitution Lemma (20) respectively.
First we consider the 7 rule:
HbFsy M :01 = 09
HbExy dz:oy. M(z)=M : 01 = 03

This is subject to the restriction that the variable z does not occur free in M (and hence does not

appear in H). We have

[HFs Az :oy. M(z): 01 = 0q]

=curry([H, z: 01 Fx M(2): 02])

= curry(apply([H, = : 01 Fx M : 01 = 03], snd))

= curry(apply([H Fx M : 01 = 03] ofst, snd)) (Lemma 21)
=[HFg M:0y= 09]

We now prove the type n rule:

HbEs M 1la. o
HbFy Aa. M{a} = M : lla. o

This is subject to the restriction that the variable o does not occur free in M (and hence does not

appear in X).

[H Fy Aa. M{a} : lla. o]

= Cury([ Fs, o Mia} : 0])

= Curry(Apply([H Fx, o M :Tla. o], [Fx, o @]))

= Curry(Apply([H Fg M : 1la. o] o Fst, Snd)) (Lemma 22)
=[HFg M :1a. o]. |

Example: We wish to compute the interpretation S[Ila. a] of the trivial type. This will show
that our model is distinct from the finitary projection model (and also that the equational theories
are distinct, since the equation A(z : la. a). A(y : Ha. ). 2 = Az : Ha. a). A(y : Haa). y is valid
in our model and not in the finitary projection model).

Let {tx) be a continuous section of the identity functor. For all f € DFF(X,Y), we get
fE(tx) < ty. Given an arbitrary domain X, let us consider Y = X 4 X (the coalesced sum), with
the two morphisms (that are left adjoints) inl : X — Y and inr: X — Y. Let fI (resp.fr) be the
morphism in D®F corresponding to inl (resp. inr). Then, we must have F(fl)*(tx) < ty and
F(fr)(tx) <ty which entails ty =1, and then tx =_1. |
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7 A model of Type:Type.

There are two purposes of this section. Firstly, we want to illustrate the notion of a family of
domains indexed over a domain with the example of domains over a universal domain. Secondly,
we want to explain how the finitary projection model of [ABL86] relates to our model. In order to
illustrate the first point, we shall actually show that the finitary projection model is a model for a
more powerful type system than second-order type system, namely a type system with a type of

all types. A more categorical description of this model may be found in [Tay87].

7.1 A reformulation of Type:Type

The system we use is an extension of intuitionistic type theory [Mar84]!, where we add one universe,
but with a slight change in the axioms for type equalities as compared with the version in [Mar84].
We suppose that we have a special type U, which should be thought of as a type of indices for
types, and an operation T over the element of U, to be regarded as a dependent type over U. We
suppose that there exists an element u of type U such that T'(u) = U, that is, a name for the type
of all types.
We suppose furthermore that there is an “internalisation” of the product operation of dependent

types. Namely, there exists
o 7:1l,v.(T(a)—=U)—=U,

o App: Ha:U'Hb:T(a)ﬁU'T(ﬂ-(av b)) - (HxT(a)T(b(x)))v
o Lambda : Wy My.p(a)—r-(Wg(a). T(0(2))) — T(7w(a,b)).

We ask that these operations are inverses, that is Lambdao App = id, and Appo Lambda = id.? The
ordinary formulation [Mar84] is with a type equality rule T'(7(a, b)) = Il,..7(q).T(b(2)), but this rule
does not seem to square with a “standard” semantics. For our purpose, the “weaker” system with
only isomorphisms is sufficient. It is significant that the Type : Type system, even with this weaker
form of equality, can be translated syntactically into our formalism (in particular, it is possible to
interpret Girard’s paradox [Gir72] in it, and so all types are “syntactically” inhabited).

Rather than describe this syntactic translation in full formal details, let us give some examples.
The universal type of second-order A-calculus Ila.ae — « is first translated by Ila : Type. Iz : a. «
in the T'ype : Type system. Then, it becomes T(7(u, Az. m(z,Ay. ))). And so, if M is of this

!Notice that it should be possible, from the interpretation of the dependent product and sums over a domain
outlined in the previous section, to give an interpretation of intuitionistic type theory in terms of Scott domains (see
[Mar83]). We shall not develop this here, since the precise verification that it is indeed a model is similar to checking

that we get a model for second-order type theory, and we have given this verification in full detail.
2Tt is interesting to note that this system is that obtained by representing the T'ype : T'ype calculus in the LF-

framework [HHP8&7], and also that it may be seen as providing a syntactic condition for what it means to be a model
of Type : Type following the ideas of [BM84].
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type, and N is of type T'(u) (that is N is a type), we can form the application of M to N by
App(u, Az, m(x,Ay. x), M, N). In the same way, the type Ila. a will be interpreted by T'(7(u,id)).

Since App and Lambda are inverses, the (3-n-conversion rules will be satisfied.

7.2 Semantics in domain theory

We can point at once to one important difference between the finitary projection model and our
categorical model. In it, types are not interpreted directly as arbitrary domains, but as finitary
projections of a single “universal domain”. So, for the construction of this model, we must first
pick a domain D so that [D — D] is embedded in D by the pair (®, V) (as is well-known following
Scott, such domains can, for instance, be built using an inverse limit construction). It is important
to note that there are many such domains, that there is nothing canonical in this choice, and that
the influence of this choice over the model is not clear. This is, however, the only part that is “non
canonical” in the construction.

Let D be a domain so that there exists an embedding-projection pair (®,¥) of [D — D]into D.
An element p € D — D is called a finitary projection if, and only if, p < id, pop = p, and the image
of pis a domain with respect to the restriction of the order on D. It is known that the partial order
of finitary projections (with respect to the extensional ordering) is a domain, that we shall write Fp,
and that this domain is embedded in [D — D] [Sco81]. We obtain an embedding-projection pair
(®g, ¥p) from Fp into D, from the composition of this embedding-projection from Fp into [D — D]
with (®,¥). We now take for the interpretation of the set U the image of &g, which we again call
U. This should cause no real confusion. Notice that we do not interpret the type of types U by the
“universal” domain D.

In the sequel, it will be convenient to use the “uncurried” notation “f(z,y)” for “f(x)(y)”. If
a € U, then a defines a finitary projection ¥g(a) and hence a subdomain of D, namely the image
of this finitary projection 7'(a) = {z € D | ¥y(a)(x) = 2}. Notice that T(a) is a subdomain of the
“universal domain” D. Furthermore, ¢ € U, and that if « < b in U then 7T'(a) is a subdomain of
T(b). The family T'(z), z € U, is a good example of a continuous family of domains over a domain.

Fach T'(a), for a € U, is embedded in the “universal domain” D, where the embedding is the
inclusion map, and the projection is defined by z — ¥g(a,z). If b € T(a) — U, since D — D
is embedded into D, there is a “canonical” embedding of Il,.7(,).T(b(2)) into D. Explicitly, the
embedding is defined in the following way: let f € Il,..p(0).T(b()), then the image of f under this
embedding is defined by @ — f(¥g(z,a)). The definition of the projection is: for f € D — D,
the image of f under the projection is defined by & —— Wo(b, f(2)). This embedding will define
an element of Fp, hence an element of U by &, that we shall write as w(a,b). Explicitly, we have
m(a,b) = ®(Azx. (Az. V(b(V(a,z)),¥(z,¥(a,z))))). By construction, we have that T(w(a,b)) is
isomorphic to Il;.p(4). T(b(«)) and App, Lambda are notation for the two halves of this isomorphism.
We find that, if ¢ € T(7(a,b)), and d € T(a), then App(c,d) = ¥(c,d), and if ¢ € .. T(b(2)),
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then Lambda(c) = ®(Az. ¢(Vo(a,z))).
We can then check the desired equalities. For ¢ € T(w(a,b)) we have ¢ = ®(V¥(c) o (Vg(a))).
Indeed, we have
c=V(r(a,b),c)
= ®(Az. U(b(VY(a,z)),¥(c,¥(a,z)))).

Hence ¥(c) = Az. ¥(b(¥(a,z)), ¥ (c,¥(a,z)))and ¥(c)o ¥o(a) = ¥(c) since ¥(a) o ¥o(a) = ¥(a),
because a € U, so that
Lambda(App(c)) = ®(¥(c)o Yy(a))
~ B(w(e)

For the other equality, we suppose that ¢ € Il,..7(q). T(b(2)), and then

App(Lambda(c)) = ¥(P(co (Yo(a))))
= coW¥y(a)

= C.

Finally, we build an element v € U so that T(u) = U. We take u = ®o(®g o ¥y). Since
by oWy € Fp, we have u € U. And 2 € T(u) if, and only if, 2 € D and ®o(¥o(x)) = z, hence if,
and only if, € U. By definition of equality of domain, we get T'(u) = U.

Since one can interpret second-order A-calculus in this calculus, we get a model for second-order

A-calculus (and the reader can check that what we get in this way is indeed the model described

in [ABLS6]).

7.3 An example

As an example, we shall show that, in general, the interpretation of lla..cr, which here is T'(7(u, id)),
is a non-trivial domain. This is significant because it shows that we get an essentially different model
with the categorical approach, since there the interpretation of Ila.a is the trivial domain. Since
T(m(u,1d))is isomorphic to Il,.;7.T(x), it is enough to show that II,.;7.T(2) is not trivial if U is not
trivial (that is if D is not trivial). Let ¢ € U be an element different from L. Then, if z € U, we
have ¥(z,a) € T(x), by definition of T'(z). It results that Az. ¥(xz,a) € I,.. T(2), and we have
Az. U(x,a) # L since a # L.

The intuitive explanation of the difference between the models is that in the finitary projection
model we restrict ourselves to domains that are finitary projections of a given “big” domain, and
the only morphisms we allow are inclusions (and not arbitrary embeddings). We thus get a small
category that is isomorphic to the domain Fp(D) of finitary projections over D. This category is a
subcategory (but not a full one) of the category DPP via the inclusion functor. A dependent type

becomes a continuous function f from Fp(D) = U into itself which defines, by composition with
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this inclusion functor, a dependent domain over the domain U. We can then see that the general
definition of the product of a dependent domain given previously will specialise itself to T'(7(u, f)).
This explains why the interpretation of Ila.a is bigger in the finitary projection model: when we
consider Fp(D) as “the” category of domains, we forget the morphisms that are not inclusions
(for instance, non-trivial automorphisms). In a sense, the categorical model is a refinement of this

model where we take into account embeddings that are not inclusions.

8 Questions and comparisons with related work.

We want first to describe why Girard’s model [Gir86], [CGWS8T7] follows the same pattern as our
present model. The idea is to translate all our definitions to the stable framework of [Ber78]. That
is, instead of requiring the continuity of functors and functions, we require further that pull-backs
are preserved, a property called stability. In place of the extensional ordering on functions, we
take the stable ordering. In place of natural transformations between functors we take cartesian
natural transformations. We can then work in the category DIFP [Ber78, Gir86], or in the full
subcategories of qualitative domains or coherent spaces [Gir86]. The relationship with the work of
J.Y. Girard is then explained by a general result due to I5. Moggi, which we state in the following

special case:

Proposition 24 Let F' be a stable functor from DI to DIFY, then a family <tX>X€DIEP s a
continuous and stable section of F if, and only if, it is uniform, that is F(f)%(ty) = tx whenever
feDIEF (X, Y).

We need first to express what a stable section is. A simple calculation of pull-backs in the
Grothendieck fibration of F' shows that (f, g, u,v)is a pull-back diagram, with f € (7,t) — (X, z),
g € (T,t)— (Y,y), u € (X,2)— (Z,2) and v € (Y,y) — (Z,2) (that is, f € DI*'(T,X), g €
DIV (T,Y), v € DI¥Y(X, 7),v € DI®V(Y, Z), and F(f)“(tr) < tx, F(9)"(t1) < ty, F(u)"(tx) <
tz and F(v)M(ty) < tz), if, and only if, tr = F(f)F(tx) A F(9)F(ty). The key fact is that if
f € DIPP(X,Y) then we can always find a domain Z and two morphisms u, v € DIF(Y, Z) such
that they form a pull-back diagram. This is clear if we think in terms of the representation using
event structures of dl-domains (see section 3 of [CGWS8T7]). By expressing the stability condition
for this diagram, we get the uniformity of (fx).

The stable model leads to a “smaller” interpretation. For instance, in all the known stable
models, the interpretation of lla.c — « is the two-point domain. In the model presented in this
paper, this turns out to be infinite since it contains the following “continuous” operations indexed
by an integer n: fx(x) = x if # bounds more than n finite elements, and fx(z) =L if  does not
bound more than n finite elements (these are examples of “parametric” operations that are not

uniform). It is not clear whether or not these “non uniform” operations are interesting. It seems
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that all the terms we get form the syntax of the second-order A-calculus are uniform, and so the
stable model may be helpful in producing fully abstract models.

A question raised by the last example is whether or not the interpretation of a given syntactic
type is an effectively given domain [Smy77]. We do not even know actually what is the precise
form of the interpretation of Illa.a — « (are there other elements than the ones given?). This
question may be asked of the stable models too [Gir86, CGWS87]. It was one of the motivations
in introducing the notion of coherent domain [Gir86], since, in this case it is possible to give an
“explicit” description of the interpretation of the syntactic types.

An important general question is the connection between these “models” and the general defi-
nition of a model for second-order A-calculus given in [BM84]. A surprising point is that, strictly
speaking, the present model, and Girard’s models as well, are not models in the sense of Bruce and
Meyer (this was pointed out to us by E. Moggi). Indeed, it seems essential that the collection of
types is interpreted as a category, and not as a set. This cannot be done if we follow verbatim the
Bruce and Meyer definition. This is to be contrasted with the finitary projection model of [ABL&6],
which is a model for Bruce and Meyer definition. This adds weight to the proposal of Seely of a
more general definition of model [See87, T'T87], and, indeed, our construction is a model [TT87] in
his sense. It would be also possible to generalise slightly the definition of Bruce and Meyer following
the ideas developed in [Ber78], so that this definition becomes equivalent to Seely’s definition.

We may ask also what are the relationship with other known models for polymorphisms. For
instance, the ideal model of [MPS84], or models in the effective topos (see for instance [Hyl82]). In
contrast with the effective topos model [Hyl82], our model is a direct extension of that commonly
used in denotational semantics of programming languages and it allows us to handle recursion at
all types.

In our construction, we made the choice to use the category of embedding-projection pairs
rather than arbitrary left adjoints. The constructions go through in the same way for with this
category in place of embeddings. For instance, we get a simple model by taking complete algebraic
lattices and left adjoints, model where the interpretation of the polymorphic identity type has only
three points, as expected (see [T'T87] for a brief description of this model). We do not understand
the relationship between this model and the one presented in detail here. Notice that this choice
does not appear in the stable case (as noticed by A. Pitts), due to the following remark: if a stable
function f: D — D is greater than «dp for the stable ordering, then, this function is equal to the
identity. Indeed, we have, for # € D, # < f(z) hence, by stability, 2 = f(z) A idp(f(z)), that is,
z = f(x). From this, we deduce that a left adjoint is, in the stable case, an embedding.

We have explained the central role Grothendieck fibrations and continuous sections play in the
interpretation of polymorphism. Our presentation has been deliberately based on examples, and
on one model in particular; a new model for polymorphism has been worked out in considerable
detail. From another point of view, we have probably not been abstract enough. It is not yet

clear what the right framework is in which to encompass and relate the full range of models, and
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what techniques to use to home-in on the model appropriate to meet certain requirements like

full-abstraction.
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