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Abstract

We give an illustration of a construction useful in producing and describing models of Girard

and Reynolds' polymorphic �-calculus. The key unifying ideas are that of a Grothendieck

�bration and the category of continuous sections associated with it, constructions used in indexed

category theory; the universal types of the calculus are interpreted as the category of continuous

sections of the �bration. As a major example a new model for the polymorphic �-calculus is

presented. In it a type is interpreted as a Scott domain. In fact, understanding universal

types of the polymorphic �-calculus as categories of continuous sections appears to be useful

generally. For example, the technique also applies to the �nitary projection model of Bruce and

Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose

through trying to extend the construction of his model to Scott domains.) It is hoped that by

pin-pointing a key construction this paper will help towards a deeper understanding of models

for the polymorphic �-calculus and the relations between them.

1 Introduction.

Jean-Yves Girard presented his discovery of the polymorphic �-calculus in the paper [Gir72]. His

motivations came from proof-theory and his use of the calculus to represent proofs in second-order

arithmetic. Later, in [Rey74], John Reynolds rediscovered the calculus independently though his

motivation was di�erent, being to provide a formal basis to certain polymorphic type disciplines in

programming languages. In designing the calculus, Girard and Reynolds each extended the typed

�-calculus to allow a form of parametric polymorphism. Types include universal types which are

types of polymorphic terms, thought of as describing those functions which are de�ned in a uniform

manner at all types. Terms can be applied to types and in this sense can be parameterised by types.
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In more detail, type variables � are introduced into the typed �-calculus so, for instance,

�x : �:x should be thought of as the identity function on the type denoted by �. The polymorphic

identity function, the term which denotes the identity function on any type, is denoted by the term

��:�x : �:x. It has a universal type denoted by ��:� ! �. Given a type �1, a term ��:t of

universal type ��:�2 can be instantiated to a term [�1=�]t which then has type [�1=�]�2, and so,

for instance, the polymorphic identity above instantiates at type � to the identity �x : �:x of type

� ! �.

While the pioneering work of Girard contains most of the results on the syntax of the calculus,

an understanding of its models and semantics has developed more slowly and is still incomplete.

There is a trivial model got by interpreting types as either the empty or one-point set. While from

a proof-theoretic view there may be some use in this when the one-point set represents true and

the empty set false (e.g. to prove consistency as in [Smi88]), it is clearly inadequate as a model of

polymorphism. In essence, the di�culty of providing nontrivial models arises from the impredicative

nature of the calculus; in the abstraction of a universal type ��:� the type-variable � is understood

to range over all types including the universal type itself. This makes it impossible to interpret

types as nontrivial sets in a classical set theory (see [Rey84]) although, lately, Pitts has shown

how polymorphism can be interpreted in a constructive set theory [Pit87]. Until recently the only

nontrivial models known were either term models or realisability models [Gir72] or, following ideas

of McCracken [McC79] and Scott, models based on a universal domain in which types are coded-up

as particular kinds of retracts. The latter are models for stronger calculi with a type of types and

so are not tailored directly to the requirements of polymorphic �-calculus and do not in themselves

suggest a general de�nition of model for the calculus. In his paper [Gir86], Girard produced an

interesting new model in which types of the polymorphic �-calculus are represented as certain

kinds of objects called qualitative domains, work which was extended in [CGW87]. The category

of domains used in [Gir86] and [CGW87] is not the usual one taken in denotational semantics|in

particular the morphisms are functions which are stable in the sense of Berry and not just Scott

continuous. The work left open the question of whether or not a model similar to Girard's could

be found in the more traditional category of Scott domains and continuous functions.

One achievement of this paper is to present such a model for the polymorphic �-calculus. It can

be viewed as doing with Scott domains and continuous functions what Girard did with qualitative

domains and stable functions. Types will be interpreted as Scott domains and types with free type

variables, called \variable types" by Girard, as continuous functors on a category of Scott domains.

Although Girard's work provided inspiration, the construction of domains to denote universal types

is di�erent.

We have taken trouble to expose the abstract construction of which our model is an instance.

A key unifying idea is that of a Grothendieck �bration and the category of its continuous sections.

A universal type is interpreted as a category (in this case a domain) of continuous sections of a

�bration. Looked at in this way, Girard's construction, the retract models of McCracken and Scott,
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and the construction here are all based on instances of a common idea, that universal types are

interpreted as continous sections of a Grothendieck �bration.

We brie
y outline the paper. The following section, section 2, introduces the basic ideas of

domain theory and category theory on which we shall rely. Section 3 contains a treatment of

Grothendieck �brations and continuous sections, instances of which are given for domains; taking

the base category to be a domain we obtain constructions to represent the dependent sum and

product types as used in, e.g., Martin-L�of type theory while taking a suitable category of domains

as the base category we get a construction we shall use later as the denotation of universal types.

For concreteness, we show how the construction can be carried out in the framework of informa-

tion systems|an elementary representation of domains. Section 4 contains proofs of several of the

technical lemmas needed for the demonstration that our construction yields a model of the poly-

morphic �-caluculus. Section 5 gives the syntax of the polymorphic �-calculus with its equational

rules and Section 6 its denotational semantics accompanied by proofs of the soundness of the rules.

In section 7 where we show how the traditional domain models of polymorphism of McCracken

and Scott using retracts can be cast in this light (very similar ideas appear in the thesis work of

Taylor, [Tay87]). Finally, in the conclusion, we present our views on the state of the art of models

for polymorphism.

As we have already stated the work of Girard has been a guiding in
uence on this work. We have

received encouragement and advice from a number of people whom we thank; we are grateful to

Martin Hyland for pointing-out that a construction we produced could be based on a Grothendieck

�bration, to Eugenio Moggi for the remark that this construction applied to Girard's model as

well, and to Pino Rosolini for valuable discussions. The signi�cance of �brations in modelling

polymorphism has been anticipated in the thesis work of Paul Taylor (see [Tay87]) who gave a

category-theoretic analysis of the concept of a type of types using indexed category theory (but

exclusively, it seems, considering domains indexed by partial orders and not as here by categories

of embeddings).

2 Categories and domains.

In this section we review basic concepts from category and domain theory. Its purpose is largely to

establish notation and terminology. We assume the reader has some familiarity with these topics.

A knowledge of the results in [SP82] would be a good starting point; most of the proofs for results

stated in this section can be found there.

Let hI;�i be a partial order. We say that I is directed if it is nonempty and, for any i and j

in I , there is a k 2 I such that i � k and j � k. A partial order hD;�i having a least element ?

is said to be complete (and we say that D is a complete partial order, abbreviated to cpo) if every

directed subset M � D has a least upper bound
W
D. A point x of a cpo D is said to be �nite

if, for every directed collection M � D such that x �
W
M , there is a y 2 M such that x � y.
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Let BD denote the collection of �nite elements of D. The cpo D is algebraic if, for every x 2 D,

the set M = fx0 2 BD j x0 � xg is directed and x =
W
M . A cpo D is bounded complete if every

bounded subset of D has a least upper bound. We call bounded algebraic cpo's Scott domains or

just domains. In a domain, least upper bounds of �nite sets of �nite elements are �nite, when they

exist.

A function f : D ! E between cpo's D and E is monotonic if it is order preserving, i.e. if

x � y then f(x) � f(y). A monotonic function f : D ! E between cpo's D and E is continuous if

f(
W
M) =

W
f(M) for any directed M � D. Domains with continuous functions form a category

D which is very important for denotational semantics. It is cartesian-closed. Let D and E be two

domains. Their product is the domain D�E consisting of pairs of elements ordered coordinatewise,

with the obvious projections. Their function space D ! E consists of the continuous functions

from D to E ordered pointwise, sometimes called the extensional order, i.e.

f � g i� 8d 2 D: f(d) � g(d):

A pair of continuous functions (f; g), with f : D ! E and g : E ! D between cpo's D;E, is

said to be an embedding-projection pair if g � f(d) = d, for all d 2 D, and f � g(e) � e, for all e 2 E;

then f is called the embedding and g the projection. We use equally the notations f �g or fg for the

composition of functions, and use the following notation to pick out the embedding and projection

parts of an embedding-projection pair h = (f; g): let hL = f and hR = g. We remark that as

embedding-projection pairs are an example of an adjunction, in this case between very simple partial

order categories, it follows that an embedding determines its accompanying projection uniquely

and vice versa. The category of domains with embedding-projection pairs as morphisms will be of

central importance to us. We call the category DEP, and write h 2 DEP(D;E) to mean h is an

embedding-projection pair, with embedding part a function hL : D! E. We take the composition

of two embedding-projection pairs h = (hL; hR) 2 DEP(D;E) and k = (kL; kR) 2 DEP(E; F ) to be

k � h = (kL � hL; hR � kR) 2 DEP(D;F ). The identity of a domain D in this category is the pair

(idD; idD).

A partial order hI;�i forms a category in which the objects are the elements of I and the

set of morphisms from point x to point y, written D(x; y), is a one point set when x � y and

is empty otherwise. A directed family in DEP consists of a functor from a directed set hI;�i to

DEP; as such it provides an indexing of a family of objects Di 2 DEP, for i 2 I , and morphisms

fij 2 DEP(Xi; Xj), for i � j, so that fii = idDi
and fik = fjkfij whenever i � j � k. A cone

for such a directed family is a family of morphisms h�i 2 DEP(Di; D)ii2I, for a domain D, such

that �i = �j � fij for all i; j 2 I . Note that because embeddings are monic the morphisms fij

of the directed family are uniquely determined by the cone. And in future we shall most often

speak of a cone for a directed family without troubling to mention the directed family of which

it is a cone; this will always be understood to be that uniquely determined directed family with

morphisms fij = �Rj �
L
i , for i; j 2 I . A directed colimit is a cone h�i 2 DEP(Di; D)ii2I for a directed
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family, with the universal property that for any other cone, h�0i 2 DEP(Di; D
0)ii2I , there is a unique

mediating morphism h 2 DEP(D;D0) such that �0i = �i � h for all i 2 I . That is, an initial object

in the category of cones. In general, we say that a category C is directed complete if it has colimits

for all directed families. So, in particular, a cpo is directed complete when regarded as a category.

The category DEP is another example of a directed complete category, and we shall often be

concerned with calculations involving its directed colimits. It will be useful to relate embedding-

projection pairs into a common domain D via certain morphisms in DEP(D;D) which correspond

to the images of the embeddings in D.

Lemma 1 Let X; Y;D be domains. Let f 2 DEP(X;D) and g 2 DEP(Y;D). Then

hgR � fL; fR � gLi 2 DEP(X; Y ) i� fL � fR � gL � gR:

Theorem 2 The category DEP is directed complete. A cone h�i 2 DEP(Di; D)ii2I is a directed

colimit i� f�Li � �
R
i ji 2 Ig is directed in D ! D and

idD =
_
f�Li � �

R
i ji 2 Ig:

Theorem 3 Let D be a domain. Then

ffL � fRjf 2 DEP(X;D) for some �nite Xg

is a directed subset of �nite elements in D ! D and

idD =
_
ffL � fRjf 2 DEP(X;D) for some �nite Xg:

By virtue of Theorem 2 we see Theorem 3 implies that a domain is the colimit of the �nite

domains which embed into it. From the fact that the set in the theorem is directed we deduce the

following:

Lemma 4 Let f0 2 DEP(X0; D) and f1 2 DEP(X1; D) where X0; X1 are �nite domains. Then

there is a �nite domain X and g 2 DEP(X;D) so that g0 = hgR � fL0 ; f
R
0 � gLi 2 DEP(X0; X) and

g1 = hgR � fL1 ; f
R
1 � gLi 2 DEP(X1; X) with f0 = gg0 and f1 = gg1.

From the fact that the elements in the set in Theorem 3 are �nite we deduce:

Lemma 5 Suppose h�i 2 DEP(Di; D)ii2I is a directed colimit in DEP. If X is a �nite domain and

f 2 DEP(X;D) then there is some i 2 I and h 2 DEP(X;Di) such that f = �i � h.

Given categories C and C0, we de�ne the product category C�C0 to be the category which has

as objects pairs (C;C 0) where C and C0 are objects of C and C0 respectively. The arrows are pairs
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(f; g) : (X;X 0)! (Y; Y 0) where f 2 C(X; Y ) and g 2 C0(X 0; Y 0) with the obvious composition and

identity. There are also projections

FstC;C0 : C�C0 ! C

SndC;C0 : C�C0 ! C0:

When understood from context, the subscripts will usually be dropped. If F1 : C! C1 and

F2 : C! C2 are functors, then there is a unique functor hF1; F2i : C! C1 �C2 such that

Fst � hF1; F2i = F1 and Snd � hF1; F2i = F2. In particular, the diagonal functor � : C ! C�C is

hIdC ; IdCi. If F : C1 ! C2 and F 0 : C0
1 ! C0

2 then we de�ne

F �G = hF � Fst; G � Sndi : C1 �C2 ! C0
1 �C0

2:

We write 1 for the terminal category which has one object and one arrow and 1C for the unique

functor from a category C to 1. Given a category C and a number n � 0, we de�ne the n'th power

Cn of C by taking C0 = 1 and Cn+1 = Cn �C. More generally, we de�ne the multiary product of

a list of categories by setting �() = 1 and �(C1; : : : ;Cn+1) = (�(C1; : : : ;Cn))�Cn+1.

A functor F : C ! C0 between directed complete categories C and C0 is continuous just in

case it it preserves directed colimits. A continuous function is thus an example of a continuous

functor on categories which are partial orders. It is easy to check that a functor F : C1 �C2 ! C

is continuous i� it is continuous in each of its arguments individually. As our categories C will

often have the form (DEP)m the problem of verifying continuity we often reduce to the problem of

whether or not functors F : DEP ! DEP are continuous. To verify the continuity of such a functor

it is very useful to employ the following:

Lemma 6 A functor F : DEP ! DEPis continuous i� whenever X is a domain and there is a

family of domains Xi and functions fi 2 DEP(Xi; X), such that ffLi � fRi ji 2 Ig is directed andW
i f

L
i � fRi = idX , then

W
i F

L(fi) � FR(fi) = idF (X).

The product operator � on categories cuts down to a continuous functor

� :DEP �DEP ! DEP:

When D and E are domains, we write idD, fstD;E and sndD;E rather than IdD, FstD;E and SndD;E.

The function space operator ! is also a functor on DEP. Suppose f 2 DEP(X;X 0) and g 2

DEP(Y; Y 0). Then we de�ne f ! g 2 DEP(X ! Y;X 0 ! Y 0) by setting

(f ! g)L(h) = gL � h � fR

for h 2 D(X; Y ) and

(f ! g)R(h0) = gR � h0 � fL

for h0 2 D(X 0; Y 0).
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When functors on DEP take several arguments we can make their manipulation a little tidier by

introducing the following notation. Given a functor F : C! DEP, we de�ne a functor FL : C! D

as follows. The action of FL on objects of C is the same as F . Given a function f 2 C(X; Y ),

we de�ne FL(f) = (F (f))L 2 D(F (X); F (Y )). We also de�ne a functor FR : Cop ! D by taking

the action of FR on objects to be that of F and de�ning FR(f) = (F (f))R 2 D(F (Y ); F (X)). We

may also write (Ff)R or even F (f)R when the meaning is clear from context.

In our semantic treatment of type expressions we will have to cope with the presence of free

type-variables and a type expression will denote a functor whose arguments provide an environment

associating values with these variables. It is convenient to de�ne generalisations of the product and

function space functors on DEP to cope with these extra parameters. Given functors F : C! DEP

and G : C! DEP we de�ne

F #G = � � (F � G) �� : C! DEP

F ) G =! � (F � G) �� : C! DEP

We also de�ne a multiary version of the # operation by taking #() to be the functor 1C into the

trivial domain and setting #(F1; : : : ; Fn+1) = #(F1; : : : ; Fn)#Fn+1. Given functors F1; : : : ; Fn and

numbers n � i � 1, we de�ne i'th projection

p
i;n
X : �(F1(X); : : : ; Fn(X))! Fi(X)

by taking

p
i;n
X =

(
fst�(F1(X);:::;Fn�1(X));Fn(X) � p

i;n�1
X if i < n

snd�(F1(X);:::;Fn�1(X));Fn(X) otherwise.

To keep the number of parentheses to a minimum in the calculations we make, it is helpful to

introduce some binding conventions. We will assume that association is to the left, so an expression

such as fxy or f(x)(y) will be parsed as (f(x))(y). This convention also holds for the application of

a section to an object; so f(t)X parses as (f(t))X . However, we read an expression such as tG(X) as

t(G(X)) so that ftG(X) parses as (f(t))(G(X)). We assume that application binds more tightly than

composition; so FR(f)�FR(g) parses as (FR(f))�(FR(g)) and f �tX parses as f �(tX). For functors,

we assume that # binds more tightly than ), so that F1#F2 ) F parses as (F1#F2)) F . We

assume that �m (introduced in section 3) binds more tightly than either # or ). Application will

bind more tightly than � or !, so that F (X)�G(X) parses as (F (X))� (G(X)).

3 Interpreting types.

In our approach, closed types (those with no free type variables) will denote domains. Types

with free variables will denote functors on domains which yield a domain once they are given an

instantiation of their free variables. Thought of in this way the denotation of a type ��:� should
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be a functor taking one less argument than that for � in a way which respects the rules of the

polymorphic �-calculus. In this section we work towards the de�nition of an operation on functors

to achieve this. The operation, again called �, shares many properties with universal quanti�cation,

and indeed can be viewed abstractly in a similar way, as right adjoint to the operation of \padding

out" a functor with an extra argument. Our treatment conforms to the category-theoretic de�nition

of model for the polymorphic �-calculus proposed by Seely [See87], though for the most part we

shall express our ideas concretely, through giving particular constructions on domains. Our more

concrete approach will, however, be enough here (in the same way that it is not necessary to know

what a cartesian-closed category is in order to understand what it means to be a model of simple

typed lambda-calculus). A slight exception to this approach arises in the construction of � which

we show is a special case of a general one, traditional in category theory, that of sections of the

Grothendieck �bration of a functor. Other familiar constructions on types like dependent sum and

product arise as special cases too.

3.1 Fibrations and sections.

Let F : C ! Cat be a continuous functor from a category C to the category of all categories.

De�ne the Grothendieck �bration of F to be the category �F consisting of

� objects which are pairs (X; tX) where X 2 C and tX 2 F (X), and

� morphisms (X; tX) ! (Y; tY ) which are pairs (f; �) where f : X ! Y in C and � :

F (f)(tX)! tY in F (Y )

with the composition of two morphisms (f; �) : (X; tX) ! (Y; tY ) and (g; �) : (Y; tY ) ! (Z; tZ)

given by

(g; �) � (f; �) = (g � f; � � F (g)(�)):

Then �F is a category with the identity morphism on (X; tX) being (idX ; idtX).

The projection p : �F ! C is de�ned to be the functor which takes (f; �) : (X; tX) ! (Y; tY )

to f : X ! Y .

We remark that our de�nition of Grothendieck �bration is not quite standard as it is tradi-

tional to work with opposite categories and, consequently, have the functor F take arguments in a

category Cop (so that co�bration would perhaps be a better name); for our purposes this would be

inconvenient.

The construction �F has continuous sections as objects. A section of �F is a functor

s : C ! �F such that p � s = idC , and, of course, a continuous section is such a functor which is

continuous. Taking sections as objects we form a category by taking morphisms to be cartesian

natural transformations, i.e. those natural transformations which project under p to identity mor-

phisms in C. A typical morphism between sections is a natural transformation � from a section
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s to section s0 consisting of a family h�XiX2C of morphisms �X : s(X) ! s0(X) in �F where

p(�X) = idX for all X 2 C. Of course, each component �X of such a natural transformation must

have the form �X = (idX ; �X) with �X : tX ! t0X where s(X) = (X; tX) and s0(X) = (X; t0X).

Being a natural transformation ensures that for all f : X ! Y we have �Y � s(f) = s0(f) � �X . The

category �F is de�ned to be the full subcategory of continuous sections.

3.2 Families indexed by a domain.

We shall be concerned with �brations and sections solely for the case in which the functor F takes

values which are domains. Then for special forms of base categoryC the structure �F , in general a

category, will be isomorphic to a domain. A simple example arises when C is a domain itself and the

functor F goes from the domain to the category of domains with embeddings; in this case not only

is �F a domain but so is �F . We shall call these constructions dependent product and dependent

sum, following the terminology in Martin-L�of type theory [Mar71], [Mar84]. (The constructions

seem to be well-known and appear in the exercises of [Plo82].) A more abstract presentation would

have been to use the ideas of [See87] in order to give a categorical characterisation of the dependent

product and sums, and to show that the constructions we give verify these properties (see also

[TT87]). See section 7 for an application of dependent products.

Let C be a domain regarded as a category so there is a unique morphism from x to y precisely

when x � y; thinking of the graph of the order relation as being the set of morphisms, we shall

write (x; y) for the unique morphism from x to y. Let F : C ! DEP be a continuous functor to

the category of domains with embedding-projection pairs. The functor F provides a domain F (x)

for each element x of C and embeddings F (x; y)L : F (x)! F (y) for x � y in C. These satisfy the

functor laws so F (x; x)L = idF (x) and if x � y � z then F (x; z)L = F (y; z)L � F (x; y)L. In this

case the category �F has objects (x; tx) where x 2 C and tx 2 F (x). A morphism (x; tx)! (y; ty)

arises when and only when x � y in C and F (x; y)L(tx) � ty in F (y). It follows that the category

�F is isomorphic to a partial order de�ned on objects of �F by

(x; tx) � (y; ty) i� x � y and F (x; y)L(tx) � ty ;

It is easy to check this relation is a partial order, and, perhaps not surprisingly, �F is a domain

too.

Proposition 7 Let C be a domain. Let F : C ! DEP be a continuous functor. Then �F is a

domain. In this case the projection functor is a continuous function p : �F ! C between domains.

Proof: �F has a least element (?;?F (?)). Suppose V = f(xi; ti) j i 2 Ig is a directed subset of

�F . Then fxi j i 2 Ig is a directed subset of C and so has a least upper bound x =
W
i2I xi in

C. It is easy to see the set fF (xi; x)
L(ti) j i 2 Ig is directed. Taking t =

W
i2I F (xi; x)

L(ti) we
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show that (x; t) is the least upper bound of V in �F . Clearly it is an upper bound and supposing

(xi; ti) � (x0; t0), for all i 2 I , we see x � x0 and F (xi; x
0)L(ti) � t0 for all i 2 I whence

F (x; x0)L(t) = F (x; x0)L(
_
i2I

F (xi; x)
L(ti))

=
_
i2I

(F (x; x0)L � F (xi; x)
L)(ti) by continuity

=
_
i2I

F (xi; x
0)L(ti)

� t0;

which makes (x; t) � (x0; t0). Hence �F is a cpo.

A routine argument shows �F is bounded complete. Let W = f(xi; ti) j i 2 Ig be a set with

upper bound (y; u). Then because xi � y for all i 2 I there is a least upper bound x =
W
i2I xi in C.

Because F (xi; y)
L(ti) � u for all i 2 I we see F (xi; x)

L(ti) = (F (x; y)R�F (xi; y)
L)(ti) � F (x; y)R(u)

for all i 2 I in F (x). Hence their least upper bound t =
W
i2I F (xi; x)

L(ti) exists in F (x). It follows

that (x; t) is a least upper bound of W .

The cpo �F is also algebraic with �nite elements of the form (e; f) where e 2 BC and f 2 BF (e).

Such elements are certainly always �nite by the following argument. Suppose (e; f) �
W
V where V

is a directed subset of �F , assumed to be of the form V = f(xi; ti) j i 2 Ig. As we have seen such a

directed set V has least upper bound (x; t) where x =
W
i2I xi and t is the least upper bound of the

directed set fF (xi; x)L(ti) j i 2 Ig. Because e �
W
i2I xi and e is �nite there is some j 2 I for which

e � xj . Because F (e; x)
L(f) �

W
i2I F (xi; x)

L(ti) and F (e; x)L(f) is �nite, being the image under

an embedding of a �nite element f , there is some k 2 I such that F (e; x)L(f) � F (xk; x)
L(tk) and

xj � xk. From

F (xk; x)
L � F (e; xk)

L = F (e; x)L;

we see F (e; xk)
L = F (xk ; x)

R � F (e; x)L. Hence F (e; xk)
L(f) � F (xk; x)

R � F (xk ; x)
L(tk) = tk so

(e; f) � (xk; tk). Thus (e; f) is indeed �nite.

Let (x; t) 2 �F . Consider the set

V = f(e; f) � (x; t) j e 2 BC and f 2 BF (e)g:

If (e0; f0); (e1; f1) 2 V then, as we saw when showing �F is bounded complete, their least upper

bound has the form

(e0 _ e1; F (e0; e0 _ e1)(f0) _ F (e1; e0 _ e1)(f1))

, and this is an element of V using the fact that least upper bounds of �nite elements are �nite.

Thus V is directed. From the fact that F is continuous we now show V has least upper bound

(x; t). Certainly, the set fe � x j e 2 BCg is directed with least upper bound x. We are assuming

that Ff is continuous, i.e. that it preserves directed colimits, so the colimiting cone f(e; x) j e �
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x and e 2 BCg in C is sent to the colimiting cone fF (e; x) : F (e) ! F (x) j e � x and e 2 BCg in

DEP. By Theorem 2, this ensures

t =
_
fF (e; x)L � F (e; x)R(t) j e � x and e 2 BCg:

But now we see

t =
_
fF (e; x)L(f) j e � x and e 2 BC and f � F (e; x)R(t) and f 2 BF (e)g:

This makes (x; t) =
W
V .

Now we can see directly that any �nite element (x; t) must be such that x 2 BC and t 2 BF (x);

because (x; t) is �nite and the lub of a directed set of elements of this form it must be equal to one

such element. And, of course, any element of �F is a least upper bound of �nite elements. Clearly

the set of �nite elements is countable. This completes the proof that �F is a domain.

It is easy to see it comes equipped with a continuous projection function p : �F ! C.

Now we turn our attention to �F when F is a continuous functor C ! DEP from a domain

C. Its elements are continuous sections. A section is a functor s : C ! �F such that p � s = idC .

Bearing in mind the nature of �F we take the image of x 2 C under s to be s(x) = (x; tx). As

both categories C and �F are partial orders, s being a functor amounts to monotonicity, i.e.

x � y implies s(x) � s(y);

i.e. x � y implies (x; tx) � (y; ty);

i.e. x � y implies F (x; y)(tx) � ty (1)

for all x; y 2 C. Sections thus correspond to families htxix2C which satify (1). Continuous sections

correspond to families which satisfy the monotonicity condition (1) and

tWV =
_
v2V

F (v;
_

V )(tv) (2)

for any directed set V of C. We call such families continuous. Two continuous sections s; s0

correspond to continuous families t = htxix2C and t0 = ht0xix2C respectively. A morphism between

them corresponds to a family of morphisms h�x : tx ! t0xix2C but each such component �x simply

amounts to an ordering tx � t0x. Hence, a morphism s ! s0 between sections corresponds to a

pointwise ordering

t � t0 i� 8x 2 C: tx � t0x

between the corresponding families.

Not surprisingly, to show �F is a domain it is convenient to work with the isomorphic category

of continuous families with morphisms given by the pointwise order. Clearly this category is a

partial order, and, as we now show, it is a domain.
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Proposition 8 Let C be a domain. Let F : C ! DEP be a continuous functor. Then �F is a

domain.

Proof: There is a least family with each component consisting of ?F (x) for x 2 C. Let ft(i) j i 2 Ig

be a directed set in �F . De�ne the family t = h
W
i2I t

(i)
x ix2C. Clearly it satis�es (1). Let V be a

directed subset of C. Then
tWV =

_
i2I

t
(i)W
V

=
_
i2I

_
v2V

F (v;
_

V )L(t(i)v )

=
_
v2V

_
i2I

F (v;
_

V )L(t(i)v )

=
_
v2V

F (v;
_

V )L(
_
i2I

t(i)v )

=
_
v2V

F (v;
_

V )L(tv)

;

so t satis�es (2) and is therefore a continuous family. Thus �F is a cpo.

To show �F is bounded complete, assume ft(i) j i 2 Ig, a set of continuous families, has upper

bound u. As F (x) is a domain and so bounded complete for all x 2 C we can de�ne a family

t = h
W
i2I t

(i)
x ix 2 C. It satis�es (1) above. Let V be a directed subset of C. Then, to show (2), we

notice
tWV =

_
i2I

t
(i)W
V

=
_
i2I

_
v2V

F (v;
_

V )L(t(i)v )

=
_
v2V

_
i2I

F (v;
_

V )L(t(i)v )

=
_
v2V

F (v;
_

V )L(
_
i2I

t(i)v )

=
_
v2V

F (v;
_

V )L(tv)

;

where we have used the fact that embeddings preserve least upper bounds.

Let e 2 BC and f 2 BF (e). De�ne the family [e; f ] to have component

[e; f ]x =

(
F (e; x)L(f) if e � x,

?F (x) otherwise,

for x 2 C. It is easy to check [e; f ] satis�es (1) and (2) and so is a continuous family. Consider a

family t, obtained in the following way as the least upper bound of a �nite number of such families,

t = [e1; f1] _ � � � _ [en; fn]:
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We show t �nite. Suppose t �
W
V where V is a directed subset of C. Then for any i, with

1 � i � n, we get

fi � tei � (
_

V )ei =
_
v2V

vei ;

the least upper bound of a directed set. As fi is �nite, fi � v
(i)
ei for some v(i) 2 V . But then

[ei; fi] � v(i). As V is directed there is some v 2 V which dominates each v(i) for 0 � i � n which

ensures t � v. This shows t is �nite.

A continuous family t is easily seen to be the least upper bound of the directed set

f[e1; f1] _ � � � _ [en; fn] j f1 � te1& � � �&fn � teng;

where we are assured that the least upper bounds mentioned exist because they are bounded above

in a bounded-complete partial order. It follows that any family which is a �nite element of �F

must have the form [e1; f1] _ � � � _ [en; fn]. Clearly such elements form a countable set. Hence �F

is a domain.

3.3 Families indexed by a category of domains.

Our other important example arises when F : DEP ! DEP is a continuous functor. In this case, as

we shall see, while �F can only be considered as a category, �F is isomorphic to a domain when

both are viewed as categories.

Assume F : DEP ! DEP is a continuous functor. In this case, �F is a category with objects

pairs (X; tX), where X 2 DEP and tX 2 F (X), and morphisms (X; tX) ! (Y; tY ) correspond to

morphisms f : X ! Y for which (Ff)LtX � tY . Note, �F is not a partial order|it simply has

too many morphisms. We need to consider the form of colimits in �F . A directed family in �F

corresponds to a directed set hI;�i indexing a family of objects (Xi; ti) in �F and morphisms

fij 2 DEP(Xi; Xj) so that (Ffij)Lti � tj , for i � j. A colimit for such a family corresponds to a

pair (X; t) with a collection of morphisms hgi : Xi ! Xii2I making a colimiting cone in DEP and

so that t =
W
i(Fgi)

Lti.

As in the earlier case, when F : DEP ! DEP the category �F of continuous sections can be

seen as consisting of certain kinds of continuous families ordered pointwise. As before, sections

correspond to families htXiX2DEP, where tX 2 F (X), which are monotonic in that they satisfy

f 2 DEP(X; Y ) implies (Ff)LtX � tY (1)

for any f . Continuous sections preserve directed colimits. Thus if h�i : Xi ! Xii2I is a directed

colimit in DEP, then hs�i : sXi ! sXii2I is a directed colimit in �F . Considering the form of

directed colimits in �F , it follows that continuous sections correspond to families which satisfy

(1) and also the requirement that for such directed colimits h�i : Xi ! Xii2I in DEP we have
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tX =
W
i(F�i)

LtXi
. Recalling Theorem 2 we can write this condition as follows. For any cone

h�i : Xi ! Xii2I we have

f�Li � �
R
i j i 2 Ig is directed and

_
i2I

�Li � �
R
i = idX implies tX =

_
i

(F�i)
LtXi

: (2)

We call families satisfying (1) and (2) continuous. As before, morphisms between continuous

sections correspond to their associated families being ordered pointwise, i.e.

t � t0 i� 8X 2 DEP: tX � t0X

where t and t0 are two continuous families.

At this point it is tempting to conclude that �F is a partially ordered set and press on with

the demonstration that it is a domain. Unfortunately, it is not quite, as its objects, the continuous

sections, are not sets. Even though the elements of �F are classes they can be put in 1-1 correspon-

dence with the elements of a suitable set. To see this, take S to be some countable subcategory of

domains equivalent to the full subcategory of all �nite domains with embedding-projection pairs as

morphisms. Then any continuous section is determined by its restriction to the standard domains

S. Ordered pointwise these restrictions are in 1-1 order preserving correspondence with �F . In

this sense �F is isomorphic to a partially ordered set, in fact a domain. This more generous sense

of isomorphism is quite standard in category theory; according to the usual notion of isomorphism

there, �F is isomorphic to a domain when both are viewed as categories. This has described the

sense in which we mean �F is isomorphic to a domain. Details are given in the proof of the

following theorem.

Theorem 9 Let F : DEP ! DEP be a continuous functor. The category �F is isomorphic to a

domain.

Proof: Take �SF to be the partial order consisting of families htXiX2S which are monotonic in

the sense that

f 2DEP(X; Y ) implies (Ff)LtX � tY ;

for all X; Y 2 S, ordered pointwise. It is clear that �SF is a set because S is. Now we show that

�F and �SF are isomorphic as categories, and, later, that �SF is a domain.

Clearly, any continuous section t 2 �F determines, by restriction, an element res t 2 �SF .

Conversely, any element of t 2 �SF can be extended to a continuous section ext t by taking

(ext t)D =
_
f(Ff)LtX j X 2 S & f 2 DEP(X;D)g;

for any domain D. This must be checked to be well-de�ned however.

We note the set f(Ff)LtX j X 2 S & f 2 DEP(X;D)g is directed so that the least upper bound

really does exist. To show this, take two elements of the set y0 = (Ff0)
LtX0

and y1 = (Ff1)
LtX1
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arising from morphisms f0 2 DEP(X0; D) and f1 2 DEP(X1; D) where X0; X1 are �nite domains.

By Lemma 4 there is a �nite domainX and g 2 DEP(X;D), g0 2 DEP(X0; X) and g1 2 DEP(X1; X)

with f0 = g � g0 and f1 = g � g1. Because t is monotonic it follows that y0; y1 � (Fg)LtX , an

element of the set. Hence the set is directed, and the de�nition above does at least yield a family.

It remains to show that the family is continuous. Firstly, to show the family is monotonic, assume

g 2 DEP(D;E) and notice

(Fg)L(ext t)D =(Fg)L
_
f(Ff)LtX j X 2 S and f 2 DEP(X;D)g

=
_
f(Fg)L � (Ff)LtX j X 2 S and f 2 DEP(X;D)g

=
_
f(F (g � f))LtX j X 2 S and f 2 DEP(X;D)g

�
_
f(Fh)LtX j X 2 S and h 2DEP(X;E)g

=(ext t)E :

This shows monotonicity. Suppose now that h�i 2 DEP(Di; D)ii2I is a directed colimit. To complete

the demonstration of continuity we require that

(ext t)D =
_
f(F�i)

L(ext tDi
) j i 2 Ig:

Note �rst that the set is directed because ext t is monotonic. Again by monotonicity we obtain

(ext t)D �
_
f(F�i)

L(ext tDi
) j i 2 Ig:

According to its de�nition (ext t)D is the least upper bound of elements (Ff)LtX for X 2 S and

f 2 DEP(X;D). Consider such an element. By Lemma 5, there is some i 2 I and h 2 DEP(X;Di)

such that f = �i � h. Now we see

(Ff)LtX = (F (�i � h))
LtX = (F�i)

L((Fh)LtX) � (F�i)
L(ext tDi

):

It follows that (ext t)D �
W
i(F�i)

L(ext tDi
), and now the equality required for continuity is obvious.

Now, it is easy to see that the two operations restriction res : �F ! �SF and extension

ext : �SF ! �F preserve the order relation. For t 2 �SF , we certainly have tY � (ext t)Y for

Y 2 S|consider the identity morphism on Y|and by the monotonicity of t we see

(res ext t)Y =
_
f(Ff)LtX j X 2 S and f 2 DEP(X; Y )g � tY :

Hence res ext t = t for t 2 �SF . For X 2 S we have (res t)X = tX , so from the de�nition of ext

and res we see

(ext res t)D =
_
f(Ff)LtX j X 2 S and f 2 DEP(X;D)g;

for a domain D. However, because t is continuous and D is the colimit of �nite embeddings in the

sense of Theorem 3, we also have

tD =
_
f(Ff)LtX j X 2 S and f 2 DEP(X;D)g:
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Hence ext res t = t, for all t 2 �F . We conclude that res : �F ! �SF and ext : �SF ! �F

form an order isomorphism.

We now show �SF is a domain. It has a least element, the family h?XiX2S. Suppose ft
(i) j

i 2 Ig is a directed set in �SF . De�ne the family t by taking

tX =
_
i

t
(i)
X ;

for all X 2 S|the least upper bound exists because the set ft
(i)
X j i 2 Ig is directed because

ft(i) j i 2 Ig is. It is monotonic because, supposing f 2 DEP(X; Y ), we see

(Ff)L(tX) = (Ff)L(
_
i

t
(i)
X ) =

_
i

(Ff)L(t
(i)
X ) �

_
i

t
(i)
Y ;

using the fact that (Ff)L is continuous. A very similar argument shows that �SF is bounded

complete though in this case the argument uses the fact that embeddings preserve all existing least

upper bounds.

Suppose there is a monotone family t such that tX = e 2 FX is �nite for some X 2 S. De�ne

[X; e]Y =
_
f(Ff)L(e) j f : X ! Y g

This is well-de�ned since tY is a bound for the set whose join is being taken on the right. It is

possible to show that it is a monotone family which does not depend on the choice of t. Now, any

least upper bound which exists of the form

[X1; e1] _ � � � _ [Xn; en];

where e1 2 FX1; � � � ; en 2 FXn, is a �nite element of �SF . The remaining argument, showing that

any element of �SF is the lub of such elements and that all �nite elements have this form, echoes

that in the proof of Proposition 8, and we omit it. Having chosen S to be countable it follows that

the �nite elements form a countable set, and hence that �SF is a domain isomorphic to �F .

Thus although strictly speaking the category �F is not a partial order because its objects are

classes, not sets, it is nevertheless isomorphic to a domain. Because of this, in the future, we

shall treat �F as a domain, in fact as the domain with continuous families as elements, and not

fuss about this problem with foundations. The more fastidious reader can after all replace our

construction of �F with the isomorphic small category �SF provided in the proof above.

3.4 � with parameters.

In the discussion later we will often need to use the � operator with parameters. If

F : C�DEP ! DEP is continuous, then we write �CF : C! DEP for the continuous functor



Domain theoretic models of polymorphism 17

de�ned as follows. The action of �CF on objects is given by (�CF )(C) = �(F (C; )). Given

f 2 C(C;D), we de�ne

(�CF )(f) 2 DEP((�CF )(C); (�CF )(D))

by taking

(�CF )L(f)(s)Z = FL(f; idZ)(sZ)

(�CF )R(f)(t)Z = FR(f; idZ)(tZ)

for each section s 2 (�CF )(C) and t 2 (�CF )(D).

Of course, we must show that this de�nition makes sense. First of all, let us check

that (�CF )L(f)(s) 2 (�CF )(D). Suppose s 2 (�CF )(C) = �(F (C; )) and let tX =

(�CF )L(f)(s)X = FL(f; idX)(sX), we wish to show that tX 2 �(F (D; )). Suppose g 2

DEP(X; Y ). Then

FL(idD; g)(tX) = FL(idD; g)(F
L(f; idX)(sX))

= FL(f; idX)(F
L(idD; g)(sX))

� FL(f; idX)((sY ))

= tY :

This proves monotonicity. To prove continuity, suppose gi 2 DEP(Xi; X) and the functions gLi � g
R
i

form a directed collection such that
W
i g

L
i � g

R
i = idX , then_

i

FL(idD; gi)(tXi
) =

_
i

FL(idD; gi)(F
L(f; idXi

)(sXi
))

=
_
i

FL(f; idX)(F
L(idD; gi)(sXi

))

= FL(f; idX)(
_
i

FL(idD; gi)(sXi
))

= FL(f; idX)(sX)

= tX

so (�CF )L(f)(s) 2 (�CF )(D).

Now suppose t 2 (�CF )(D) = �(F (D; )) and let sX = (�CF )R(f)(t)X = FR(f; idX)(tX).

We wish to show that s 2 (�CF )(C) = �(F (D; )). Suppose g 2 DEP(X; Y ). Then

sX = FR(f; id)(tX)

� FR(f; id)(FR(id; g)(tY ))

= FR(id; g)(FR(f; id)(ty))

= FR(id; g)(sY )

This proves monotonicity. To prove continuity, suppose gi 2 DEP(Xi; X) and the functions gLi � g
R
i
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form a directed collection such that
W
i g

L
i � g

R
i = idX . To keep the notation simple, let

�i = F (f; idXi
) 2 DEP(F (C; Xi); F (D; Xi))

�i = F (idD; gi) 2 DEP(F (D; Xi); F (D; X))

�i = F (idC ; gi) 2 DEP(F (C; Xi); F (C; X))

� = F (f; idX) 2 DEP(F (C; X); F (D; X))

Note that
�Ri � �R � �Li = FR(idC ; gi) � F

R(f; idX) � F
L(idD; gi)

= FR(f; idXi
) � FR(idD; gi) � F

L(idD; gi)

= FR(f; idXi
)

= �Ri :

Since
W
i �

L
i � �

R
i = idF (D;X) and

W
i �

L
i � �

R
i = idF (C;X), we have

�R = (
_
i

�Li � �
R
i ) � �

R � (
_
i

�Li � �
R
i )

=
_
i

�Li � (�
R
i � �

R � �Li ) � �
R
i

=
_
i

�Li � (�
R
i ) � �

R
i

Now, let sX = (�CF )R(f)(t)X = �R(tX) and sXi
= (�CF )R(f)(t)Xi

= �R(tXi
). Then

sX = �R(tX)

= (
_
i

�Li � (�
R
i ) � �

R
i )(
_
i

�Li (tXi
))

=
_
i

(�Li � (�
R
i ))(tXi

)

=
_
i

�Li (sXi
):

That is, sX =
W
i F

L(idC ; gi)(sXi
) and therefore s 2 (�CF )(C) = �(F (D; )).

We have now shown that the de�nitions of (�CF )L(f) and (�CF )R(f) make sense. The proof

that (�CF )(f) 2 DEP((�CF )(C); (�CF )(D)) and the proof that �CF is a continuous functor are

both routine.

Notation: Later we shall be concerned with functors F : C�DEP ! DEP and the associated �C

in the case where C = (DEP)m. In this case we shall write �m for �C .

3.5 Information systems.

The inspiration for our work came originally from Girard's paper [Gir86]. There he uses a repre-

sentation of qualitative domains with morphisms stable functions and rigid embeddings to give a
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model for the second-order �-calculus. For domains, we can use the representation of information

systems in a similar way to give an interesting, elementary contruction of �F for a functor F on

domains. We give a sketch of the approach based on the presentation of information systems in

[WL84] following [Sco82]. Because the proofs are straightforward and not essential for what follows

we omit them.

Recall the de�nition of an information system:

De�nition: An information system is de�ned to be a structure (A;Con;`), where A is a countable

set (the tokens), Con is a non-null subset of �nite subsets of A (the consistent sets) and ` is a subset

of Con�A (the entailment relation) which satisfy:

� X � Y 2 Con implies X 2 Con

� a 2 A implies fag 2 Con

� X ` a implies X [ fag 2 Con

� X 2 Con and a 2 X implies X ` a

� (X; Y 2 Con and 8b 2 Y: X ` b and Y ` c) implies X ` c.

An information system determines a domain:

Proposition 10 The elements of an information system (A;Con;`) are de�ned to be those subsets

x of A which satisfy:

� X � x implies X 2 Con for any �nite set X,

� X � x and X ` a implies a 2 x.

Ordering the elements by inclusion we obtain a domain jAj with �nite elements precisely the sets

fa 2 A j 9X � Y: X ` ag, obtained from X 2 Con.

A domain determines an information system:

De�nition: Let D be a domain. De�ne ID = (BD; Con;`) where BD is the set of �nite elements

of D and Con and ` are de�ned as follows:

X 2 Con i� X � BD and X is �nite and X is bounded;

X ` e i� X 2 Con and e �
_

X:

Proposition 11 Let D be a domain. Then ID is an information system with domain of elements

jIDj isomorphic to D. The isomorphism pair is

� : D! jIDj given by � : d 7! fe 2 BD j e � dg;

� : jIDj ! D given by � : x 7!
_

x:
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As is well-known a continuous function f between domains is determined by its action on �nite

elements and so by the relation f0 between �nite elements that it induces, a relation de�ned as

follows.

De�nition: Let f : D ! E be a continuous function between domains. De�ne f0 = f(d; e) 2

BD � BE j e � f(d)g.

Embeddings between domains correspond to the following kinds of mappings between the �nite

elements of the associated information systems.

Proposition 12 Let f : D ! E be a continuous function between domains D and E. The function

f is an embedding i�

� f0 is a 1-1 function BD ! BE,

� X 2 ConD i� fX 2 ConE, for all �nite subsets X of BD, and

� X `D d i� fX `E f(d), for all elements d and �nite subsets X of BD.

To de�ne the information system of �F of a continuous functor on domains, as earlier, we use S,

a countable category equivalent to the full subcategory of �nite domains with embedding-projection

pairs.

De�nition: Let F :DEP ! DEP be a continuous functor on domains. Take T+ to consist of those

pairs (X; b) where X 2 S and b 2 BF (X). For W , a �nite subset of T+, de�ne

W 2 Con i� 8Y 2 S: f(Ff)Lb j 9X: (X; b) 2 W and f 2 DEP(X; Y )g 2 ConFY :

De�ne the tokens T to be those elements (X; b) of T+ for which f(X; b)g 2 Con. For W 2 Con

and (Y; c) 2 T , de�ne

W ` (Y; c) i� f(Ff)Lb j 9X: (X; b) 2 W and f 2 DEP(X; Y )g `FY b:

Finally, de�ne �IF to be (C;Con;`).

Theorem 13 Let F :DEP ! DEP be a continuous functor on domains. Then

(i) �IF is an information system.

(ii) �F �= j�IF j with isomorphism pair � : �F ! j�IF j and � : j�IF j ! �F given by

�(t) = f(X; b) j b � tX and b 2 BF (X)g;

�(x) = htY iY 2DEP where

tY = f(Ff)Lb j 9X: f : X ! Y and (X; b) 2 xg:
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4 Basic combinators.

Here we introduce the notation and results we shall use to provide a semantics for the polymorphic �-

calculus. We are concerned with functors on the category DEP. Suppose F1; : : : ; Fn are continuous

functors from (DEP)m into DEP. We claim that pi, the projection map de�ned earlier, is a section

of #(F1; : : : ; Fn)) Fi: To check this, suppose f 2 (DEP)m(X; Y ). Then

(#(F1; : : : ; Fn)) Fi)
R(f)(piY )(x1; : : : ; xn)

= (FR
i (f) � p

i
Y �#(F1; : : : ; Fn)

L(f))(x1; : : : ; xn)

= FR
i (f)(F

L
i (f)(xi))

= piX(x1; : : : ; xn):

It is clear that pi will be a continuous section.

Let P; F;G : (DEP)m ! DEP be continuous functors. Suppose s is a continuous section

of the functor P ) (F ) G) : (DEP)m ! DEP and t is a continuous section of the functor

P ) F : (DEP)m ! DEP. We de�ne a continuous section apply(s; t) of P ) G by the equation

apply(s; t)X(x) = (sX(x))(tX(x))

where x 2 P (X). To show that apply(s; t) really is a section, suppose f 2 (DEP)m(X; Y ). Then

(P ) G)L(f)(apply(s; t)X)(x)

= (GL(f) � (apply(s; t)X) � P
R(f))(x)

= GL(f)((apply(s; t)X)(P
R(f)(x)))

= GL(f)((sX(P
R(f)(x)))(tX(P

R(f)(x))))

� GL(f)(((F ) G)R(f)(sY (x)))(F
R(f)(tY (x))))

= GL(f)((GR(f) � (sY (x)) � F
L(f))(FR(f)(tY (x))))

� (sY (x))(tY (x))

= apply(s; t)Y (x):

To see that apply(s; t) is continuous, suppose fi 2 DEP(Xi; X) and the functions fLi � fRi form a

directed collection such that
W
i f

L
i � f

R
i = idX , then_

i

(P ) G)L(fi)(apply(s; t)Xi
)(x)

=
_
i

GL(fi)((sXi
(PR(fi)(x)))(tXi

(PR(fi)(x))))

=
_
i

GL(fi)(((F ) G)R(fi)((P ) (F ) G))L(fi)(sXi
)(x)))(FR(fi)((P ) F )L(fi)(tXi

)(x))))

=
_
i

GL(fi)(((F ) G)R(fi)(sX(x)))(F
R(fi)(tX(x))))
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=
_
i

((GL(fi) �G
R(fi))(sX(x))((F

L(fi) � F
R(fi))(tX(x))

= apply(s; t)X(x):

Let
P : (DEP)m ! DEP;

F : (DEP)m �DEP ! DEP; and

G : (DEP)m ! DEP

be continuous functors. Suppose t is a continuous section of the functor

P ) �mF : (DEP)m ! DEP:

We de�ne a continuous section Apply(t; G) of the functor

P ) (F � hid(DEP)m ; Gi) : (D
EP)m ! DEP

by the equation

Apply(t; G)X(x) = tX(x)G(X)

where x 2 P (X). We check that Apply(t; G) is indeed a section; suppose f 2 (DEP)m(X; Y ), then

(P ) (F � hId(DEP)m ; Gi))
L(f)(Apply(t; G)X)

= (FL(f;G(f)) �Apply(t; G)X � PR(f))(x)

= FL(f;G(f))((tX � PR(f))(x)G(X))

= FL(f;G(f))(((�mF )R(f) � (�mF )L(f) � tX � PR(f))(x)G(X))

= FL(f;G(f))(((�mF )R(f) � (P ) �mF )L(f)(tX))(x)G(X))

� FL(f;G(f))(((�mF )R(f) � tY )(x)G(X))

= FL(f;G(f))((�mF )R(f)(tY (x))G(X)))

= FL(f;G(f))(FR(f; idG(X))(tY (x)G(X)))

= (FL(idY ; G(f)) � F
L(f; idG(X)) � F

R(f; idG(X)))(tY (x)G(X))

� FL(idY ; G(f))(tY (x)G(X))

� (tY (x))G(Y )

= Apply(t; G)Y :

where the penultimate step follows from the fact that tY (x) is a section of F (Y; ) and

G(f) 2 DEP(G(X); G(Y )). To see that Apply(t; G) is continuous, suppose fi 2 DEP(Xi; X) and

the functions fLi � fRi form a directed collection such that
W
i f

L
i � f

R
i = idX , then

_
i

(P ) (F � hId(DEP)m ; Gi))
L(fi)(Apply(t; G)Xi

)
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=
_
i

FL(fi; G(fi))(((�
mF )R(fi) � (P ) �mF )L(fi)(tXi

))(x)G(Xi))

=
_
i

FL(fi; G(fi))(((�
mF )R(fi) � tX)(x)G(Xi))

=
_
i

(FL(idX ; G(fi)) � F
L(fi; idG(Xi)) � F

R(fi; idG(Xi)))(tX(x)G(Xi))

=
_
i

FL(idX ; G(fi))(tX(x)G(Xi))

= (tX(x))G(X)

= Apply(t; G)Y :

Let P; F;G : (DEP)m ! DEP be continuous functors and suppose t is a continuous section of the

functor P #F ) G : (DEP)m ! DEP. Then we de�ne a continuous section curry(t) of the functor

P ) (F ) G) by setting

curry(t)X(x)(y) = tX (x; y)

for x 2 P (X) and y 2 F (X). To see that this does de�ne a section, suppose f 2 (DEP)m(X; Y ).

Then

(P ) (F ) G))L(f)(curry(t)X)(x)(y)

= ((F ) G)L(f) � (curry(t)X) � P
R(f))(x)(y)

= (GL(f) � ((curry(t)X)(P
R(f)(x))) � FR(f))(y)

= GL(f)(tX(P
R(f)(x); FR(f)(y)))

= ((P #F ) G)L(f)(tX))(x; y)

� tY (x; y)

= curry(t)Y (x)(y):

To see that curry(t) is continuous, suppose fi 2 DEP(Xi; X) and the functions fLi � fRi form a

directed collection such that
W
i f

L
i � f

R
i = idX , then_

i

(P ) (F ) G))L(fi)(curry(t)Xi
)(x)(y)

=
_
i

((P #F ) G)L(fi)(tXi
))(x; y)

= tX(x; y)

= curry(t)X(x)(y):

Let P : (DEP)m ! DEP, F : (DEP)m �DEP ! DEP and suppose t is a continuous section of

(P � Fst) ) F . Let X 2 (DEP)m and x 2 P (X). We de�ne Curry(t)X(x) to be the continuous

section of F (X; ) given by the equation

Curry(t)X(x)Z = t(X;Z)(x):
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This makes sense because t(X;Z) is a continuous functor in Z. We wish to show that Curry(t) is a

section of P ) �mF . In other words, we want to show that

(P ) �mF )L(f)(Curry(t)X) � Curry(t)Y

where f 2 (DEP)m(X; Y ). Let x 2 P (X) and suppoose Z 2 DEP. Then

(P ) �mF )L(f)(Curry(t)X)(x)Z

= ((�mF )L(f) � Curry(t)X � PR(f))(x)Z

= (�mF )L(f)(Curry(t)X(P
R(f)(x)))Z

= FL(f; idZ)(Curry(t)X(P
R(f)(x))Z)

= FL(f; idZ)(t(X;Z)(P
R(f)(x)))

= FL(f; idZ)(t(X;Z)((P � Fst)R(f; idZ)(x)))

= ((P � Fst)) F )L(f; idZ)(t(X;Z))(x)

� t(Y;Z)(x)

= (Curry(t)Y (x))Z:

To see that Curry(t) is continuous, suppose fi 2 DEP(Xi; X) and the functions fLi � fRi form a

directed collection such that
W
i f

L
i � f

R
i = idX , then_

i

(P ) �mF )L(fi)(Curry(t)Xi
)(x)Z

=
_
i

((P � Fst)) F )L(fi; idZ)(t(Xi;Z))(x)

= t(X;Z)(x)

= (Curry(t)X(x))Z:

Notation: Suppose

P : (DEP)m ! DEP;

F : (DEP)m ! DEP; and

G : (DEP)m ! DEP

are functors. Given continuous sections

s 2 �(P #F ) G)

t 2 �(P ) F );

we de�ne a continuous section

[t]s 2 �(P ) G)

by setting

([t]s)X(x) = apply(curry(s); t) = sX(x; tX(x)):
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We will need the following Lemma later:

Lemma 14 1. If t0X(p; b) = tX(p) and s0X(p; b; a) = sX(p; a; b) for every X, p, a and b, then

curry([t0]s0) = [t](curry(s)).

2. If t0(X;Y ) = tX , then Curry([t0]s) = [t](Curry(s)).

3. apply([t]r; [t]s) = [t](apply(r; s)).

4. Apply([t]s; G) = [t](Apply(s; G)):

Proof: 1.

curry([t0]s0)X(p)(b) = ([t0]s0)X(p; b)

= s0X(p; b; t
0
X(p; b))

= sX(p; tX(p); b)

= curry(x)X(p; tX(p))(b)

= ([t](curry(s)))X(p)(b):

2.

Curry([t0]s)X(x)Y = s(X;Y )(x; t
0
(X;Y )(x))

= s(X;Y )(x; tX(x))Y

= [t](Curry(s))X(x)Y :

3.

apply([t]r; [t]s)X(x) = ([t]rX(x))([t]sX(x))

= (rX(x; tX(x)))(sX(x; tX(x)))

= apply(r; s)X(x; tX(x))

= [t](apply(r; s))X(x):

4.

Apply([t]s; G)X(x) = ([t]s)X(x)G(X)

= sX(x; tX(x))G(X)

= Apply(s; G)X(x; tX(x))

= [t](Apply(s; G))X(x):



26 Thierry Coquand, Carl A. Gunter, and Glynn Winskel

Notation: Suppose

P;K : (DEP)m ! DEP and

F : (DEP)m �DEP ! DEP

are continuous functors and

t 2 �((P � Fst)) F );

then we de�ne a continuous section

[K]t 2 �(P ) (F � hId(DEP)m ; Gi))

by setting

([K]t)X(x) = Apply(Curry(t); K)X(x) = t(X;G(X))(x):

We will need the following Lemma later:

Lemma 15 1. curry([K]t) = [K](curry(t)).

2. If t0(X;Z;Y ) = t(X;Y;Z) for each X, Y and Z, then Curry([K � Fst]t0) = [K](Curry(t)).

3. apply([K]s; [K]t) = [K](apply(s; t)).

4. Apply([K]t; H � hId; Ki) = [K](Apply(t; H)).

Proof: 1.

curry([K]t)X(x)(y) = ([K]t)X(s; y)

= t(X;K(X))(x; y)

= curry(t)(X;K(X))(x)(y)

= [K](curry(t))X(x)(y):

2.

Curry([K � Fst]t)X(x)Z = Curry([K � Fst]t0)(X;Z)

= t0(X;Z;G(X))(x)

= t(X;G(X);Z)(x)

= Curry(t)(X;G(X))(x)Z

= [K](Curry(t))X(x)Z:

3.

apply([K]s; [K]t)X(x) = (([K]s)X(x))(([K]t)X(x))

= (s(X;K(x))(x))(t(X;K(X))(x))

= (apply(s; t))(X;K(X))(x)

= [K](apply(s; t))X(x):
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4.

Apply([K]t; H � hId; Ki) = ([K]t)X(x)H(X;K(X))

= t(X;K(X))(x)H(X;K(X))

= Apply(t; H)(X;K(X))(x)

= [K](Apply(t; H))X(x):

5 Syntax of the polymorphic �-calculus.

The types of the polymorphic �-calculus are given by the following abstract syntax:

� ::= �1 ) �2 j � j ��: �

and the terms of the calculus are described as follows:

M ::= x j �x : �: M j M1(M2) j ��: M j Mf�g:

We distinguish a subcollection of well-typed terms of the calculus to be those termsM for which

` M : � is derivable from the typing rules listed below. The sequents in the typing rules are of

the form H `� M : � where H = x1 : �1; : : :�n is a (possibly empty) list of typings for variables

which must include all of the free term variables ofM , and � = �1; : : : ; �n is a list of type variables

which must include all of the free type variables that appear in �1; : : : ; �n and M . We use `� M

as an abbreviation for H `� M where H is the empty list and H `M as abbreviation for H `� M

where � is the empty list.

Typing rules for the polymorphic �-calculus.

projection: H1; x : �; H2 `� x : �

) introduction:
H; x : �1 `� M : �2

H `� �x : �1: M : �1 ) �2

� introduction:
H `�; � M : �

H `� ��: M : ��: �

) elimination:
H `� M1 : �1 ) �2 H `� M2 : �1

H `� M1(M2) : �2

� elimination:
H `� M : ��: �1

H `� Mf�2g : [�2=�]�1

Restrictions:
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� In the projection rule, the variable x does not appear in H1 or H2.

� In the � introduction rule, there is no free occurrence of � in the type of any variable in H .

� In the � elimination rule, all free variiables of �2 are in �.

The terms of the calculus (in particular, the well-typed terms) are taken to satisfy a collection

of equational rules of the form H `� M1 = M2 where H and � are lists of variable typings and

type variables as descibed above. Again, we assume that H lists all of the free term variables that

appear in M and � includes all of the free type variables that appear in H and M . The rules are

given as follows:

Equational rules for the polymorphic �-calculus.

re
exivity: H1; x : �; H2 `� x = x : �

�:
H; x : �1 `� M1 =M2 : �2

H `� �x : �1: M1 = �x : �: M2 : �1 ) �2

type �:
H `�; � M1 =M2 : �

H `� ��: M1 = ��: M2 : ��: �

congruence:
H `� M1 =M2 : �1 H `� M3 =M4 : �1 ) �2

H `� M3(M1) =M4(M2) : �2

type congruence:
H `� M1 =M2 : ��: �1

H `� M1f�2g =M2f�2g : [�2=�]�1

It is not di�cult to see that from these rules, a lambda expression M satis�es H `� M : � if

and only if it satis�es H `� M = M : �. Thus, for the remaining axioms, we use H `� M : � as

an abbreviation for H `� M =M : �.

symmetry:
H `� M1 =M2 : �

H `� M2 =M1 : �

transitivity:
H `� M1 =M2 : � H `� M2 =M3 : �

H `� M1 =M3 : �
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�:
H; x : �1 `� M2 : �2 H `� M1 : �1

H `� (�x : �1: M2)(M1) = [M1=x]M2 : �2

type �:
H `�; � M : �1

H `� (��: M)f�2g = [�2=�]M : [�2=�]�1

�:
H `� M : �1 ) �2

H `� �x : �1: M(x) =M : �1 ) �2

type �:
H `� M : ��: �

H `� ��: Mf�g =M : ��: �

Restrictions:

� In the re
exivity axiom, the variable x does not appear in H1 or H2.

� In the type � rule, there is no free occurrence of � in the type of a variable in H .

� In the type � rule, there is no free occurrence of � in the type of a variable in H .

� In the � rule, the variable x does not occur free in M .

� In the type � rule, the variable � does not occur free in M .

6 Semantics of the polymorphic �-calculus.

In this section we provide a detailed description of a semantics for the polymorphic �-calculus,

whose syntax was described in the previous section. We end by showing that our model interprets

types di�erently from the models based on �nitary projections described earlier and we show that

the equational theory of our model is di�erent from that of any such model.

If m � i � 1, then de�ne Pi;m : (DEP)m ! DEP to be the i'th projection, i.e. the continuous

functor whose action on objects is given by Pi;m(D1; : : : ; Dm) = Di and whose action on arrows is

Pi;m(f1; : : : ; fm) = fi.

If � = �1; : : : ; �m is a list of type variables then =[[`� �]] will be a continuous functor from

(DEP)m into DEP. The semantic function =[[ ]] is de�ned inductively as follows:

� =[[`�1;:::;�m �i]] = Pi;m

� =[[`� �1 ) �2]] = =[[`� �1]]) =[[`� �2]]
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� =[[`� ��: �]] = �m(=[[`�;� �]])

We also assign a meaning to a sequent H `� � by the equation:

[[�1; : : : ; �2 `� �]] = #(=[[`� �1]]; : : : ;=[[`� �n]])) =[[`� �]]

Example: The type of the polymorphic identity is given as follows:

=[[` ��: �) �]] = �1(=[[`� �) �]])

= �1(=[[`� �]]) =[[`� �]])

= �1(P1;1 ) P1;1)

We now de�ne the semantics of the sequents of the calculus. In general, the value

[[x1 : �1; : : : ; xn : �n `� M : �]]

will be a continuous section of the functor

[[�1; : : : ; �n `� �]] : (DEP)m ! DEP:

The semantic equations are given as follows:

� [[x1 : �1; : : : ; xi : �i; : : : ; xn : �n `� xi : �i]] = pi;n

� [[H `� �x : �1: M : �1 ) �2]] = curry([[H; x : �1 `� M : �2]])

� [[H `� ��: M : ��: �]] = Curry([[H `�; � M : �]])

� [[H `� M2(M1) : �2]] = apply([[H `� M2 : �1 ) �2]]; [[H `� M1 : �1]])

� [[H `� Mf�2g : [�2=�]�1]] = Apply([[H `� M : ��: �1]]; [[`� �2]])

For the second equations, one must suppose that the variable x doesn't appear free in H . To see

that the third line makes sense, we note the following:

Lemma 16 If � does not appear free in the type �, then =[[`�; � �]] = =[[`� �]] � Fst:

Proof: Straightforward structural induction on �.

Example: The polymorphic identity function is the following continuous section of �1(P1;1 )

P1;1):

[[` ��: �x : �: x : ��: �) �]] = Curry([[`� �x : �: x : �) �]])

= Curry(curry([[x : � `� x : �]]))

= Curry(curry(p1;1)):
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Lemma 17 (Permutation) If we have

f1; : : : ; ng = fi1; : : : ; ing and

f1; : : : ; mg = fj1; : : : ; jmg

then
[[x1 : �1; : : : ; xn : �n `�1;:::;�n M : �]](X1;:::;Xm)(p1; : : : ; pn)

= [[xi1 : �i1 ; : : : ; xin : �in `�j1 ;:::;�jm M : �]](Xj1
;:::;Xjm)(pi1 ; : : : ; pin)

Proof: Easy structural induction on M .

Lemma 18 (Substitution) Suppose H `� M1 : �1 and H; x : �1 `� M2 : �2, then

apply(curry([[H; x : �1 `� M2 : �2]]); [[H `� M1 : �1]]) = [[H `� [M1=x]M2]]:

Proof: To help reduce the amount of notation needed for the arguments below, let

r = [[H `� [M1=x]M2]]

s = [[H; x : �1 `� M2 : �2]]

t = [[H `� M1 : �1]]

We must show that r = [t]s. Let n and m be the lengths of H and � respectively. The proof is by

structural induction on the term M2. There are six cases.

Case 1: M2 � y 6� x. Suppose y is the i'th variable in H . Then r = [[H `� y : �2]] = pi;n =

[t](pi;n+1) = t:

Case 2: M2 � x. We have r = t and [t]s = [t](pn+1;n+1) = t, so r = [t]s.

Case 3: M2 � �y : �: M . Suppose that �2 � � ) � so that H; y : � `� M : � .

r = [[H `� �y : �: [M1=x]M : �2]]

= curry([[H; y : � `� [M1=x]M : �]])

= curry([[[H; y : � `� M1 : �1]]][[H; y : �; x : �1 `� M : �]]) (hyp)

= [t](curry([[H; x : �1; y : � `� M : �]])) (Lemmas 14.1 and 17)

= [t]s:

Case 4: M2 � ��: M . Suppose that �2 � ��: � so that H `�; � M : �.

r = [[H `� ��: [M1=x]M : �2]]

= Curry([[H `�; � [M1=x]M : �]])

= Curry([[[H `�; � M1 : �1]]][[H; x : �1 `�; � M : �]]) (hyp)

= [t](Curry([[H; x : �1 `�; � M : �]])) (Lemmas 14.2 and 17)

= [t]s:
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Case 5: M2 �M(N). Suppose that H `� M : � ) �2 and H `� N : �.

r = [[H `� ([M1=x]M)([M1=x]N) : �2]]

= apply([[H `� [M1=x]M : � ) �2]]; [[H `� [M1=x]N : �]])

= apply([t][[H; x : �1 `� M : � ) �2]]; [t][[H; x : �1 `� N : �]]) (hyp)

= [t](apply([[H; x : �1 `� M : � ) �2]]; [[H; x : �1 `� N : �]]))

= [t]s:

Case 6: M2 �Mf�g. Suppose H `� M : � .

r = [[H `� ([M1=x]M)f�g : �2]]

= Apply([[H `� [M1=x]M : � ]]; [[`� �]])

= Apply([t][[H; x; �1 `� M : � ]]; [[`� �]]) (hyp)

= [t](Apply([[H; x; �1 `� M : � ]]; [[`� �]])) (Lemma 14.4)

= [t]s:

Lemma 19 [[`� [�2=�]�1]] = [[`� �1]] � hId; [[`� �2]]i.

Proof: Structural induction on �1.

Lemma 20 (Type Substitution) Suppose H `�; � M : �1, and � does not appear free in H, then

Apply(Curry([[H `�; � M : �1]]; [[`� �2]]) = [[H `� [�2=�]M : [�2=�]�1]]:

Proof: To help reduce the amount of notation needed, let

s = [[H `� [�2=�]M : [�2=�]�1]]

t = [[H `�; � M : �1]]

K = [[`� �2]]:

We must show that s = [K]t. The proof is by structural induction on M . There are �ve cases.

Case 1: M � x. This is trivial.

Case 2: M � �y : �: N . Suppose �1 � � ) � so that N : � .

s = [[H `� �y : [�2=�]�: [�2=�]N : [�2=�]�1]]

= curry([[H; y : [�2=�]� `� [�2=�]N : [�2=�]� ]])

= curry([K][[H; y : � `�; � N : � ]]) (hyp)

= [K](curry([[H; y : � `�; � N : � ]])) (Lemma 14.1)

= [K]t:
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Case 3: M � ��: N . Suppose that �1 � ��: � so that N : �.

s = [[H `� ��: [�2=�]N : [�2=�]�1]]

= Curry([[H `�; � [�2=�]N : [�2=�]�1]])

= Curry([K � Fst][[H `�; �; � N : �1]]) (hyp)

= [K](Curry([[H `�; � N : �1]])) (Lemmas 15.2 and 17 )

= [K]t:

Case 4: M � N1(N2). Suppose that N1 : � ) �1 and N2 : �.

s = [[H `� ([�2=�]N1)([�2=�]N2) : [�2=�]�1]]

= apply([[H `� [�2=�]N1 : [�2=�](�) �1)]]; [[H `� [�2=�]N2 : [�2=�]�]])

= apply([K][[H `�; � N1 : (� ) �1)]]; [K][[H `�; � N2 : �]]) (hyp)

= [K](apply([[H `�; � N1 : (� ) �1)]]; [[H `�; � N2 : �]])) (Lemma 15.3)

= [K]t:

Case 5: Nf�g. Suppose H `� N : � .

s = [[H `� ([�2=�]N)f[�2=�]�g : [�2=�]�1]]

= Apply([[H `� [�2=�]N : [�2=�]� ]]; [[`� [�2=�]�]])

= Apply([K][[H `�; � N : � ]]; [[`� [�2=�]�]]) (hyp)

= Apply([K][[H `�; � N : � ]]; [[`� �]] � hId; Ki) (Lemma 19)

= [K](Apply([K][[H `�; � N : � ]]; [[`� �]])) (Lemma 15.4)

= [K]t:

Lemma 21 Suppose H `� M : �1 ) �2. If x does not appear in H, then

[[H; x : �1 `� M : �1 ) �2]] = [[H `� M : �1 ) �2]] � fst:

Proof: By structural induction on M .

The following is a more dramatic version of Lemma 16:

Lemma 22 Suppose H `� M : �. If � 62 �, then [[H `�; � M : �]] = [[H `� M : ��: �]] � Fst:

Proof: By structural induction on M .

We will say that an equation H `� M1 = M2 : � is satis�ed by our semantics just in case

[[H `� M1 : �]] = [[H `� M1 : �]]. We are now prepared to state our central result:
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Theorem 23 The semantic function [[ ]] satis�es the rules for the polymorphic �-calculus.

Proof: There are eleven rules altogether. Those whose proofs are non-trivial are the rules �, type

�, � and type �. The � rule and type � rule are immediate from the Substitution Lemma (18) and

Type Substitution Lemma (20) respectively.

First we consider the � rule:

H `� M : �1 ) �2
H `� �x : �1: M(x) =M : �1 ) �2

This is subject to the restriction that the variable x does not occur free in M (and hence does not

appear in H). We have

[[H `� �x : �1: M(x) : �1 ) �2]]

= curry([[H; x : �1 `� M(x) : �2]])

= curry(apply([[H; x : �1 `� M : �1 ) �2]]; snd))

= curry(apply([[H `� M : �1 ) �2]] � fst; snd)) (Lemma 21)

= [[H `� M : �1 ) �2]]

We now prove the type � rule:

H `� M : ��: �

H `� ��: Mf�g =M : ��: �

This is subject to the restriction that the variable � does not occur free in M (and hence does not

appear in �).

[[H `� ��: Mf�g : ��: �]]

= Curry([[H `�; � Mf�g : �]])

= Curry(Apply([[H `�; � M : ��: �]]; [[`�; � �]]))

= Curry(Apply([[H `� M : ��: �]] � Fst; Snd)) (Lemma 22)

= [[H `� M : ��: �]]:

Example: We wish to compute the interpretation =[[��: �]] of the trivial type. This will show

that our model is distinct from the �nitary projection model (and also that the equational theories

are distinct, since the equation �(x : ��: �): �(y : ��: �): x = �(x : ��: �): �(y : ���): y is valid

in our model and not in the �nitary projection model).

Let htXi be a continuous section of the identity functor. For all f 2 DEP(X; Y ), we get

fL(tX) � tY . Given an arbitrary domain X , let us consider Y = X +X (the coalesced sum), with

the two morphisms (that are left adjoints) inl : X ! Y and inr : X ! Y . Let fl (resp.fr) be the

morphism in DEP corresponding to inl (resp. inr). Then, we must have F (fl)L(tX) � tY and

F (fr)L(tX) � tY which entails tY =?, and then tX =?.
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7 A model of Type:Type.

There are two purposes of this section. Firstly, we want to illustrate the notion of a family of

domains indexed over a domain with the example of domains over a universal domain. Secondly,

we want to explain how the �nitary projection model of [ABL86] relates to our model. In order to

illustrate the �rst point, we shall actually show that the �nitary projection model is a model for a

more powerful type system than second-order type system, namely a type system with a type of

all types. A more categorical description of this model may be found in [Tay87].

7.1 A reformulation of Type:Type

The system we use is an extension of intuitionistic type theory [Mar84]1, where we add one universe,

but with a slight change in the axioms for type equalities as compared with the version in [Mar84].

We suppose that we have a special type U , which should be thought of as a type of indices for

types, and an operation T over the element of U , to be regarded as a dependent type over U . We

suppose that there exists an element u of type U such that T (u) = U , that is, a name for the type

of all types.

We suppose furthermore that there is an \internalisation" of the product operation of dependent

types. Namely, there exists

� � : �a:U :(T (a)! U)! U ,

� App : �a:U :�b:T (a)!U :T (�(a; b))! (�x:T (a):T (b(x))),

� Lambda : �a:U :�b:T (a)!U :(�x:T (a):T (b(x)))! T (�(a; b)):

We ask that these operations are inverses, that is Lambda�App = id, and App�Lambda = id:2 The

ordinary formulation [Mar84] is with a type equality rule T (�(a; b)) = �x:T (a):T (b(x)), but this rule

does not seem to square with a \standard" semantics. For our purpose, the \weaker" system with

only isomorphisms is su�cient. It is signi�cant that the Type : Type system, even with this weaker

form of equality, can be translated syntactically into our formalism (in particular, it is possible to

interpret Girard's paradox [Gir72] in it, and so all types are \syntactically" inhabited).

Rather than describe this syntactic translation in full formal details, let us give some examples.

The universal type of second-order �-calculus ��:�! � is �rst translated by �� : Type: �x : �: �

in the Type : Type system. Then, it becomes T (�(u; �x: �(x; �y: x))). And so, if M is of this

1Notice that it should be possible, from the interpretation of the dependent product and sums over a domain

outlined in the previous section, to give an interpretation of intuitionistic type theory in terms of Scott domains (see

[Mar83]). We shall not develop this here, since the precise veri�cation that it is indeed a model is similar to checking

that we get a model for second-order type theory, and we have given this veri�cation in full detail.
2It is interesting to note that this system is that obtained by representing the Type : Type calculus in the LF-

framework [HHP87], and also that it may be seen as providing a syntactic condition for what it means to be a model

of Type : Type following the ideas of [BM84].
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type, and N is of type T (u) (that is N is a type), we can form the application of M to N by

App(u; �x: �(x; �y: x);M;N). In the same way, the type ��: � will be interpreted by T (�(u; id)).

Since App and Lambda are inverses, the �-�-conversion rules will be satis�ed.

7.2 Semantics in domain theory

We can point at once to one important di�erence between the �nitary projection model and our

categorical model. In it, types are not interpreted directly as arbitrary domains, but as �nitary

projections of a single \universal domain". So, for the construction of this model, we must �rst

pick a domain D so that [D ! D] is embedded in D by the pair (�;	) (as is well-known following

Scott, such domains can, for instance, be built using an inverse limit construction). It is important

to note that there are many such domains, that there is nothing canonical in this choice, and that

the in
uence of this choice over the model is not clear. This is, however, the only part that is \non

canonical" in the construction.

Let D be a domain so that there exists an embedding-projection pair (�;	) of [D! D] into D.

An element p 2 D ! D is called a �nitary projection if, and only if, p � id, p�p = p, and the image

of p is a domain with respect to the restriction of the order on D. It is known that the partial order

of �nitary projections (with respect to the extensional ordering) is a domain, that we shall write Fp,

and that this domain is embedded in [D ! D] [Sco81]. We obtain an embedding-projection pair

(�0;	0) from Fp into D, from the composition of this embedding-projection from Fp into [D! D]

with (�;	). We now take for the interpretation of the set U the image of �0, which we again call

U . This should cause no real confusion. Notice that we do not interpret the type of types U by the

\universal" domain D.

In the sequel, it will be convenient to use the \uncurried" notation \f(x; y)" for \f(x)(y)". If

a 2 U , then a de�nes a �nitary projection 	0(a) and hence a subdomain of D, namely the image

of this �nitary projection T (a) = fx 2 D j 	0(a)(x) = xg. Notice that T (a) is a subdomain of the

\universal domain" D. Furthermore, a 2 U , and that if a � b in U then T (a) is a subdomain of

T (b). The family T (x), x 2 U , is a good example of a continuous family of domains over a domain.

Each T (a), for a 2 U , is embedded in the \universal domain" D, where the embedding is the

inclusion map, and the projection is de�ned by x 7�! 	0(a; x). If b 2 T (a) ! U , since D ! D

is embedded into D, there is a \canonical" embedding of �x:T (a):T (b(x)) into D. Explicitly, the

embedding is de�ned in the following way: let f 2 �x:T (a):T (b(x)), then the image of f under this

embedding is de�ned by x 7�! f(	0(x; a)). The de�nition of the projection is: for f 2 D ! D,

the image of f under the projection is de�ned by x 7�! 	0(b; f(x)). This embedding will de�ne

an element of Fp, hence an element of U by �0, that we shall write as �(a; b). Explicitly, we have

�(a; b) = �(�x: �(�z: 	(b(	(a; z));	(x;	(a; z))))): By construction, we have that T (�(a; b)) is

isomorphic to �x:T (a): T (b(x)) and App, Lambda are notation for the two halves of this isomorphism.

We �nd that, if c 2 T (�(a; b)), and d 2 T (a), then App(c; d) = 	(c; d), and if c 2 �x:T (a): T (b(x)),
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then Lambda(c) = �(�x: c(	0(a; x))).

We can then check the desired equalities. For c 2 T (�(a; b)) we have c = �(	(c) � (	0(a))).

Indeed, we have

c = 	(�(a; b); c)

= �(�z: 	(b(	(a; z));	(c;	(a; z)))):

Hence 	(c) = �z: 	(b(	(a; z));	(c;	(a; z))) and 	(c) �	0(a) = 	(c) since 	(a) �	0(a) = 	(a),

because a 2 U , so that

Lambda(App(c)) = �(	(c) �	0(a))

= �(	(c))

= c:

For the other equality, we suppose that c 2 �x:T (a): T (b(x)), and then

App(Lambda(c)) = 	(�(c � (	0(a))))

= c �	0(a)

= c:

Finally, we build an element u 2 U so that T (u) = U . We take u = �0(�0 � 	0). Since

�0 �	0 2 Fp, we have u 2 U . And x 2 T (u) if, and only if, x 2 D and �0(	0(x)) = x, hence if,

and only if, x 2 U . By de�nition of equality of domain, we get T (u) = U .

Since one can interpret second-order �-calculus in this calculus, we get a model for second-order

�-calculus (and the reader can check that what we get in this way is indeed the model described

in [ABL86]).

7.3 An example

As an example, we shall show that, in general, the interpretation of ��:�, which here is T (�(u; id)),

is a non-trivial domain. This is signi�cant because it shows that we get an essentially di�erent model

with the categorical approach, since there the interpretation of ��:� is the trivial domain. Since

T (�(u; id)) is isomorphic to �x:U :T (x), it is enough to show that �x:U :T (x) is not trivial if U is not

trivial (that is if D is not trivial). Let a 2 U be an element di�erent from ?. Then, if x 2 U , we

have 	(x; a) 2 T (x), by de�nition of T (x). It results that �x: 	(x; a) 2 �x:U : T (x), and we have

�x: 	(x; a) 6= ? since a 6= ?.

The intuitive explanation of the di�erence between the models is that in the �nitary projection

model we restrict ourselves to domains that are �nitary projections of a given \big" domain, and

the only morphisms we allow are inclusions (and not arbitrary embeddings). We thus get a small

category that is isomorphic to the domain Fp(D) of �nitary projections over D. This category is a

subcategory (but not a full one) of the category DEP via the inclusion functor. A dependent type

becomes a continuous function f from Fp(D) = U into itself which de�nes, by composition with
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this inclusion functor, a dependent domain over the domain U . We can then see that the general

de�nition of the product of a dependent domain given previously will specialise itself to T (�(u; f)).

This explains why the interpretation of ��:� is bigger in the �nitary projection model: when we

consider Fp(D) as \the" category of domains, we forget the morphisms that are not inclusions

(for instance, non-trivial automorphisms). In a sense, the categorical model is a re�nement of this

model where we take into account embeddings that are not inclusions.

8 Questions and comparisons with related work.

We want �rst to describe why Girard's model [Gir86], [CGW87] follows the same pattern as our

present model. The idea is to translate all our de�nitions to the stable framework of [Ber78]. That

is, instead of requiring the continuity of functors and functions, we require further that pull-backs

are preserved, a property called stability. In place of the extensional ordering on functions, we

take the stable ordering. In place of natural transformations between functors we take cartesian

natural transformations. We can then work in the category DIEP [Ber78, Gir86], or in the full

subcategories of qualitative domains or coherent spaces [Gir86]. The relationship with the work of

J.Y. Girard is then explained by a general result due to E. Moggi, which we state in the following

special case:

Proposition 24 Let F be a stable functor from DIEP to DIEP, then a family htXiX2DIEP
is a

continuous and stable section of F if, and only if, it is uniform, that is F (f)R(tY ) = tX whenever

f 2 DIEP(X; Y ).

We need �rst to express what a stable section is. A simple calculation of pull-backs in the

Grothendieck �bration of F shows that (f; g; u; v) is a pull-back diagram, with f 2 (T; t)! (X; x),

g 2 (T; t)! (Y; y), u 2 (X; x)! (Z; z) and v 2 (Y; y)! (Z; z) (that is, f 2 DIEP(T;X), g 2

DIEP(T; Y ), u 2 DIEP(X;Z), v 2 DIEP(Y; Z), and F (f)L(tT ) � tX , F (g)
L(tT ) � tY , F (u)

L(tX) �

tZ and F (v)L(tY ) � tZ), if, and only if, tT = F (f)R(tX) ^ F (g)R(tY ). The key fact is that if

f 2 DIEP(X; Y ) then we can always �nd a domain Z and two morphisms u; v 2 DIEP(Y; Z) such

that they form a pull-back diagram. This is clear if we think in terms of the representation using

event structures of dI-domains (see section 3 of [CGW87]). By expressing the stability condition

for this diagram, we get the uniformity of htXi.

The stable model leads to a \smaller" interpretation. For instance, in all the known stable

models, the interpretation of ��:� ! � is the two-point domain. In the model presented in this

paper, this turns out to be in�nite since it contains the following \continuous" operations indexed

by an integer n: fX(x) = x if x bounds more than n �nite elements, and fX(x) =? if x does not

bound more than n �nite elements (these are examples of \parametric" operations that are not

uniform). It is not clear whether or not these \non uniform" operations are interesting. It seems
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that all the terms we get form the syntax of the second-order �-calculus are uniform, and so the

stable model may be helpful in producing fully abstract models.

A question raised by the last example is whether or not the interpretation of a given syntactic

type is an e�ectively given domain [Smy77]. We do not even know actually what is the precise

form of the interpretation of ��:� ! � (are there other elements than the ones given?). This

question may be asked of the stable models too [Gir86, CGW87]. It was one of the motivations

in introducing the notion of coherent domain [Gir86], since, in this case it is possible to give an

\explicit" description of the interpretation of the syntactic types.

An important general question is the connection between these \models" and the general de�-

nition of a model for second-order �-calculus given in [BM84]. A surprising point is that, strictly

speaking, the present model, and Girard's models as well, are not models in the sense of Bruce and

Meyer (this was pointed out to us by E. Moggi). Indeed, it seems essential that the collection of

types is interpreted as a category, and not as a set. This cannot be done if we follow verbatim the

Bruce and Meyer de�nition. This is to be contrasted with the �nitary projection model of [ABL86],

which is a model for Bruce and Meyer de�nition. This adds weight to the proposal of Seely of a

more general de�nition of model [See87, TT87], and, indeed, our construction is a model [TT87] in

his sense. It would be also possible to generalise slightly the de�nition of Bruce and Meyer following

the ideas developed in [Ber78], so that this de�nition becomes equivalent to Seely's de�nition.

We may ask also what are the relationship with other known models for polymorphisms. For

instance, the ideal model of [MPS84], or models in the e�ective topos (see for instance [Hyl82]). In

contrast with the e�ective topos model [Hyl82], our model is a direct extension of that commonly

used in denotational semantics of programming languages and it allows us to handle recursion at

all types.

In our construction, we made the choice to use the category of embedding-projection pairs

rather than arbitrary left adjoints. The constructions go through in the same way for with this

category in place of embeddings. For instance, we get a simple model by taking complete algebraic

lattices and left adjoints, model where the interpretation of the polymorphic identity type has only

three points, as expected (see [TT87] for a brief description of this model). We do not understand

the relationship between this model and the one presented in detail here. Notice that this choice

does not appear in the stable case (as noticed by A. Pitts), due to the following remark: if a stable

function f : D! D is greater than idD for the stable ordering, then, this function is equal to the

identity. Indeed, we have, for x 2 D, x � f(x) hence, by stability, x = f(x) ^ idD(f(x)), that is,

x = f(x). From this, we deduce that a left adjoint is, in the stable case, an embedding.

We have explained the central role Grothendieck �brations and continuous sections play in the

interpretation of polymorphism. Our presentation has been deliberately based on examples, and

on one model in particular; a new model for polymorphism has been worked out in considerable

detail. From another point of view, we have probably not been abstract enough. It is not yet

clear what the right framework is in which to encompass and relate the full range of models, and
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what techniques to use to home-in on the model appropriate to meet certain requirements like

full-abstraction.
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