
Predictable Programs in Barcodes

Alwyn Goodloe, Michael McDougall, Carl A. Gunter, and Rajeev Alur
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104-6389

agoodloe@saul.cis.upenn.edu, mmcdouga@saul.cis.upenn.edu,
gunter@cis.upenn.edu, alur@cis.upenn.edu

ABSTRACT
We explore the challenges for making the programming in-
terfaces for embedded devices open and safe, and present a
prototype architecture for delivering verified programs us-
ing barcodes. In particular, we consider programs for mi-
crowave ovens, which provide a basic open API for control-
ling cooking times. In our architecture, recipes are written
in Java, and their safety properties are formally verified us-
ing the model checker Spin. We use off-the-shelf utilities for
compressing the byte code, and use two-dimensional bar-
codes for program delivery. We report on experiments that
demonstrate the feasibility of the proposed architecture for
predictability and delivery.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Pur-
pose and Application-Based Systems—real-time and em-
bedded systems; D.2.1 [Software Engineering]: Re-
quirements/Specifications; D.2.4 [Software Engineering]:
Software/Program Verification—formal methods; model
checking ; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement; D.2.11 [Software Engi-
neering]: Software Architectures—domain-specific archi-
tectures; languages (e.g., description, interconnection, defi-
nition)

General Terms
Languages, Reliability, Verification

Keywords
Programmability of embedded devices, Code delivery, Ac-
tive barcodes, Formal verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...$5.00.

1. INTRODUCTION
The aim of this paper is to look at some issues related to

the programming of embedded systems through open Ap-
plication Programming Interface (API) platforms. Our spe-
cific case study is programming microwave ovens using two-
dimensional (2D) barcodes, but the general topic is how em-
bedded systems can be made to have open programming
interfaces that enable users and third party vendors to cus-
tomize their functionality. The open platform idea is really
a spectrum that ranges from open source code to modest
customization hooks, but it is an important driver in smart
devices. For example, Personal Digital Assistants (PDAs)
are generally based on open platforms whereas other de-
vices, like cell phones, are sometimes open (the Java phone)
but usually not. Other devices, like embedded systems in
automobiles, are mainly programmable only by their man-
ufacturer. Microwave ovens occupy an interesting place in
this spectrum since they are safety-critical devices that must
provide at least a rudimentary open API. Consumers prob-
ably would not buy a microwave from Samsung if it could
cook food from Samsung, but not from Stouffer’s or Pills-
bury. The microwave hardware vendors and the third-party
software vendors (viz. frozen food manufacturers in this
case) have a common interest in improving the interface of
the device to accept better programs.
Our objective is to explore two issues of particular inter-

est for open APIs on embedded devices: deliverability and
predictability. Deliverability concerns the means used to get
a program onto an embedded device. Such devices are of-
ten mobile and may have very limited interfaces so practical
program delivery is often quite device-specific, as the mi-
crowave example shows. Predictability concerns the means
of knowing how an open API will be used, or mis-used, by
a third party vendor. For example, an operator entering a
microwave recipe is likely to see an error in a recipe that
recommends heating for 30 hours rather than 30 minutes,
but a program in a barcode may not receive a similar sanity
check by the operator.
This paper describes a prototype implementation of our

architecture, together with some experiments and alterna-
tives for various steps. We created a simple microwave oven
interface for Java and coded several programs using this in-
terface. Our programs were based on typical recipes we
found, but we augmented them with various enhancements
that would not be feasible if the operator had to key in the
recipe. We studied the problem of predicting resource usage
of these programs by expressing desired properties in linear

298

temporal logic and checking them with the model checking
tool Spin. We used off-the-shelf compression and barcode
encoding techniques to represent the programs, and set up
a system to read the code and execute it on a laptop simu-
lating a microwave oven.
Using barcodes printed on food packages to deliver pro-

grams seems natural for microwaves. In fact, there have
been many similar proposals in recent years to enhance pro-
grammability of microwaves. One proposal envisions using
a 10 digit number as a program, and a recently-marketed
product uses a triple of numbers for programs. However,
such programs must be very simple and cannot easily be
adapted to the evolution of the devices they program, such
as the addition of new sensors and actuators not envisioned
when the original code was written. Our architecture uses
barcodes to carry programs written in general purpose lan-
guages—Java byte-code in our experiments, and thus, pro-
vides flexibility. Two-dimensional barcodes have a capacity
of 1-2 KB, and our experiments indicate that reasonably in-
teresting recipes can be compressed using off-the-shelf util-
ities like gzip to meet this resource constraint.
Concerning predictability, our experiments show feasibil-

ity of applying existing formal verification technology to
formulate and verify safety properties such as establishing
the the total cooking time for a given recipe does not ex-
ceed a specified limit. Unlike typical applications of model
checking, our programs are sequential and non-determinism
arises almost exclusively from operator actions, not from
concurrent interleaving. Applying a model checker like Spin
requires significant effort in manually translating the Java
recipes into the modeling language of Spin, as well as in
formulating the assumptions about the environment. How-
ever, blow-up in computational requirements seems to be
less critical in our context, and there is potential for devel-
oping domain-specific verification tools that are applicable
directly to the source code.
The remaining paper is organized as follows. The sec-

ond section discusses some of the relevant language issues.
The third and fourth sections discuss methods related to
predictability and delivery respectively. We provide more
details about our prototype and experiments in the fifth
section. The sixth section summarizes conclusions and dis-
cusses future work.

2. PROGRAMMING LANGUAGES
Naturally, our recipe programs need to be written in some

programming language. General purpose programming lan-
guages have evolved to have high degrees of modularity that
help manage software complexity. At the same time, do-
main-specific languages have been created that adapt mod-
ularity to their own particular needs. We therefore have a
rich field of language features to choose from in selecting an
appropriate language for our programs.
Languages with high degrees of modularity like Java [3](see

also http://java.sun.com/) have evolved to support re-
source-rich platforms where the constraints on timing and
computational power are fairly generous. This modular-
ity, along with their popularity, makes general purpose lan-
guages an attractive choice for taking advantage of open
APIs. This explains the excitement that is driving the devel-
opment of the Micro Edition(http://java.sun.com/j2me/)
of Java, known as J2ME. J2ME attempts to constrain Java
in order to allow it to run on devices with limited resources,

1. Make 1 inch slit in plastic

2. 50% power for 5 minutes

3. Remove plastic overwrap

4. Rotate tray 1/2 turn

5. 100% for 1:45

Figure 1: A microwave recipe for enchiladas.

public static void run(Microwave inMicro) {

inMicro.display("Make 1 inch slit in plastic");

inMicro.resetCookTime();

while (inMicro.getCookTime() < 300) {

try {

inMicro.cook(50, 300 - inMicro.getCookTime(), true);

} catch (PauseException pe) {

try {

inMicro.decrementCookTime(1);

} catch (StartException se) {

//loop again

}

}

}

inMicro.display("Remove Overwrap");

if (!inMicro.canRotate()) {

inMicro.display("Rotate tray 1/2 turn");

}

inMicro.resetCookTime();

while (inMicro.getCookTime() < 105) {

try {

inMicro.cook(100, 105 - inMicro.getCookTime(), true);

} catch (PauseException pe) {

try {

inMicro.decrementCookTime(1);

} catch (StartException se) {

//loop again

}

}

}

}

Figure 2: The enchilada recipe in Java.

while leaving the core features of Java intact.
Another strategy is to choose a language that has been

designed with embedded systems in mind. Programs for em-
bedded systems typically focus on reacting to the environ-
ment instead of transforming data. Consequently, languages
that can express interrupt handling and real-time operations
elegantly will be a good match. We discuss Esterel, a lan-
guage for reactive systems, below. The Functional Reactive
Programming (FRP) family of languages uses a declarative
syntax to program reactive systems. Variants of FRP has
been used for animation [11] and real-time embedded sys-
tems [18].
Our language should have two additional features. It

should allow, or even enhance, the predictability and de-
liverability of its programs. These issues are discussed in
general terms in Sections 3 and 4, respectively. It is worth
noting mentioning here, however, that the choice of the lan-
guage must take account of the language’s implications for
predictability and deliverability.
What would be an appropriate programming language for

high level programming of embedded processors? The ques-
tion is hard to answer in absolute generality, but some range
of requirements can be explored in our ongoing case study
of programmable microwave ovens. Consider the enchilada
recipe from Figure 1 and suppose it was to be delivered as
high-level code. One possibility is to create a recipe script-
ing language. This has many advantages for usability, but
domain-specific languages have the disadvantage of being,
well, domain specific. We therefore explore a greater level
of generality first.
Java is a possible choice. Java is increasingly popular and

the J2ME variant of Java is explicitly targeted to run on
devices with few resources. Figure 2 shows the same enchi-

299

input Pause, Start, CanRotate;

ouput Power:integer, Rotate;

signal CookTime : integer in

display("Make 1 inch slit in plastic wrap");

await Start;

abort

loop

abort

sustain Rotate || sustain Power(50)

|| every Second do

emit CookTime(1 + pre(?CookTime)

end every

when Pause

await Start;

end loop

when CookTime = 300

display("Remove plastic overwrap");

present CanRotate else

display("Turn tray 1/2 turn");

end

emit CookTime(0);

await Start;

abort

loop

abort

sustain Rotate || sustain Power(100)

|| every Second do

emit CookTime(1 + pre(?CookTime)

end every

when Pause

await Start;

end loop

when CookTime = 105

Figure 3: The enchilada recipe in Esterel.

lada recipe as a program in Java based on a small (conjec-
tural) microwave object capable of performing operations
like cooking and displaying. The program additionally il-
lustrates the potential for enhancements when the program
does not need to be keyed in by the user. In particular, it
has two features not present in the English recipe: if the
microwave has a rotating turntable then step 4 is skipped,
and if the user pauses the cooking (by opening the oven door
or pressing a ‘pause’ button) the program will increase the
total cooking to account for the food cooling while the oven
is paused. This extra functionality could certainly be added
to the English recipe, but such a complex recipe would be
burdensome for the user.
Another possibility is to choose a language that was de-

signed for programming reactive systems. For example,
Esterel [6, 12] (see also http://www-sop.inria.fr/meije/

esterel/esterel-eng.html) is a language for synchronous
programming of reactive systems. The enchilada recipe is
given in Esterel in Figure 3. This recipe also skips step 4 if
the oven is capable of rotating the food on its own. In order
to make the program concise we do not account for food
cooling while the oven is paused—adding this functionality
is simple.
If we compare the two programs we can see some advan-

tages and disadvantages of each language. In Java, pro-
grams are divided into objects which are manipulated using
methods. The recipe controls the microwave by invoking the
cook() method, for example, and therefore passing control
to the microwave object. The recipe must then trust the mi-
crowave object to rotate the turntable, set the power level,
and intercept signals from the user interface. The recipe has
no control while the cook method is executing, so all the
parameters relevant to the cook operation must be grouped
as arguments to the method. The Esterel program allows
finer grain control that suits the real-time operation of the
microwave. The microwave is controlled by setting signals
such as Rotate and Power. Signals can be manipulated in
parallel. For example, a recipe that called for cooking at
80% power for 20 seconds while only rotating for the first
10 seconds could be written as Figure 4a. The equivalent

abort
sustain Power(80)
|| every Second do

emit CookTime(1
+ pre(?CookTime)

end every
|| abort

sustain Rotate
when Cooktime = 10

when CookTime = 20

inMicro.cook(80, 10, true);
inMicro.cook(80, 10, false);

(a) (b)

Figure 4: (a) Esterel code fragment. (b) Java code
fragment

Java code fragment, shown in Figure 4b, would require two
calls to the cook method (the third argument of cook deter-
mines whether the turntable should rotate), requiring the
developer to repeat the power setting even though it has
not changed. On the other hand, the Java code fragment
is more concise (though this is partly because some of the
functionality has been moved inside the cook method) and
more natural for most programmers.
In our current prototype we have chosen to use Java. We

feel that its popularity and the availability of tools outweighs
the awkwardness of representing real-time programs.

3. PREDICTABILITY
A computer program should do things it is supposed to

do, and only those things. In general, it is notoriously diffi-
cult to ascertain that a given program meets a specification.
Many embedded devices have actuators that can manipulate
the physical environment so it is especially frustrating, even
dangerous, when a program deviates from its intended be-
havior. Unlike general purpose computers, many embedded
devices offer a very limited interface to their users, mak-
ing it difficult to diagnose and work around program errors.
Programs that control embedded systems are therefore good
candidates for analysis techniques that make programs pre-
dictable.
In the case of our recipe program, we would like to know

that it will behave as intended for all environments and
users. Specifically, we would like to know the following: 1.
Will the program terminate? 2. Will the food be cooked for
at least 405 seconds? 3. What is the maximum power that
will be applied to the food?

Formal methods [9] techniques model programs as mathe-
matical structures which can then be reasoned about mathe-
matically. Model checking [8] is a formal methods technique
that explores all possible configurations of a finite-state sys-
tem. With the three questions listed above in mind, we
examined Spin [13],an off-the-shelf model checking tool.
Spin is a formal verification tool that analyzes a system

by exploring all its possible states. Spin is a mature tool
so it is relatively fast and easy to use. Spin’s input must
be in the form of Promela programs so we had to manually
translate our Java program into Promela.
The Java program of Figure 2 is sequential so we do not

need to worry about race conditions that arise when two or
more threads are interleaved. The nondeterminism comes
from the user’s actions—when and how often the user pauses

300

and restarts the microwave. Our Promela model includes a
simple process that simulates a user.
In a simple sense the answer to our first question is no: a

pathological user can always pause the microwave until the
food has cooled so much that it needs to be re-cooked for
the full 405 seconds. A more precise statement of the ques-
tion would be “will the recipe terminate if the user eventu-
ally stops pausing the microwave?” We augmented our user
simulation process so that it would randomly switch into a
dormant state where it would stop pausing the microwave.
We then constructed a linear temporal logic (LTL) expres-
sion, ‘✷(user_stop → ✸recipe_finished)’, which encodes
our more precise question. Spin verified that the Promela
program satisfied the LTL expression. The verification re-
quired 35 megabytes of memory and 1.03 million states were
visited.
Answering our second question required further changes

to the Promela model. We added a new variable that counts
the number of seconds of cooking that have taken place.
If this counter is added naively then state space becomes
infinite—a user can always keep the food cooking for ever,
driving the counter arbitrarily high. To overcome this we
had to explicitly limit this counter to an arbitrary maxi-
mum level. This made the state space finite but it was still
too large to search efficiently so we were forced to use an ab-
straction of our recipe in which each clock tick corresponds
to three seconds instead of one. Spin was able to verify
that in this abstract model the recipe would always cook
the food for at least 405 seconds. The verification required
192 megabytes and visited 5.92 million states. We used a
Promela assertion to ensure the cooking time was at least
405 seconds.
Our final question dealt with the maximum power used

to cook the food. As was the case for the first question, we
need to rephrase this more precisely as “What is the max-
imum power that will be applied to the food once the user
stops pausing the microwave?” In fact, we answered a re-
lated question: “will the food be cooked for no more than
405 seconds once the user stops pressing pause?” It would
be convenient if Spin could find the maximum amount of
time exerted, but we know of no way of finding this maxi-
mum short of guessing a maximum and trying it. We modi-
fied the counter used above so that it would only increment
once the user stopped interfering. We then verified that the
counter was no greater than 405 for all states. The verifica-
tion required 36 megabytes and visited 0.94 million states.
Spin was able to answer all three questions we posed

about our program, although some of the analysis required
us to use a coarser model of time than we had used ini-
tially. The advantages of Spin are its speed and flexibility—
constructing and analyzing the model involved some careful
thought but the task was mostly straightforward. However,
it would be more convenient to use a tool which could take
the original program as input; the translation to Promela
is error prone, and problems found in the Promela model
may not correspond to problems in the original program.
An additional problem with Spin was the need to tune the
model in order to reduce the state space—it is not always
clear whether this tuning changes the fundamental behavior
of the model, rendering the analysis irrelevant.

4. DELIVERABILITY
There is a class of embedded devices for which network

connectivity is currently either optional, sporadic or imprac-
tical. The obvious solution may seem to be traditional media
such as flash cards, floppy disks and CDs. Floppy disks, for
example, have the advantage of being both familiar and of
moderate cost. Yet for some devices, these may not be be
feasible. In the case of prepackaged food for programmable
microwave ovens, price constraints limit the media cost to
a few cents, and the fact that it must be included with the
package means that it has to withstand sub-freezing tem-
perature. It must also be convenient enough to use by peo-
ple uncomfortable with technology such as the elderly. We
believe that barcodes provide a viable solution in such sit-
uations as the media is extremely cheap, reliable and easy
to use. In the rest of this section we shall explore barcodes
as means for the delivery of Java bytecode as well as how
compression technology can aid in this task.

4.1 Barcodes
Barcodes are interesting because of their low price and

convenience. The most common barcode formats are linear
codes. The information is represented linearly and vertical
redundancy is used to compensate for printing defects and
damage while in use. Linear barcodes based on the Univer-
sal Product Code (UPC-A) [10] standard are widely used
in grocery checkout lines. These use nine to eleven decimal
digits and essentially provide an index into a database con-
nected to the reader and cash register. Other linear codes
such as Code 39 [2] or Code 128 [1] hold about thirty bytes.
The data capacity for linear barcodes is clearly insufficient
for delivering programs which has led us to investigate a
more recent development in barcode technology—2D bar-
codes.
As linear barcodes have become almost ubiquitous, there

has been a growing desire to store more information in bar-
code format. This is particularly true in situations where
database lookups are impractical and has led to the de-
velopment of 2D codes. As the name indicates, 2D bar-
codes store information in both the vertical and horizon-
tal dimensions much the way the letters in the alphabet
or pictures use both dimensions to communicate informa-
tion. Since one dimension can no longer be used for redun-
dancy, error correction coding techniques are usually em-
ployed. Though there are many proposed 2D standards,
the following are representative of those that have gained
industrial acceptance: Aztec code holds 1.9KB [5]; Xerox’s
DataGlyph (http://www.dataglyphs.com/) holds 1KB per
sq inch; Data Matrix holds a maximum of approximately
2KB per symbol [4]; Datastrip (patent number 4,782,221)
holds a maximum of 1KB per square inch. While the stor-
age capacity for these formats may seem modest, with the
aid of compression, a large class of useful programs may be
delivered via this medium. There are also several commer-
cial tools on the market that can convert both binary and
text files into two dimensional barcode formats. Figure 5
shows the Java class file for the enchilada recipe program
given in Aztec and DataGlyph formats. The former was
generated by B-Coder from TAL Technologies Inc. and the
latter by Xerox’s GlyphServer at www.dataglyphs.com.
A drawback to the use of 2D barcodes is that they require

a somewhat more sophisticated reading device than the one
dimensional case; they are usually Charged Coupled Devices

301

(a) (b)

Figure 5: Enchilada Program as (a) Aztec Barcode and (b) Xerox DataGlyph.

Tool Enchilada (894 Bytes) Collection (2498 Bytes)
None 100% 100 %
gzip 72% 51 %
jar 180 % 96 %
Pack 60 % 27 %
Sequitur 75 % 54 %

Table 1: Comparison of Compression Programs.

(CCD). The prices for industrial-strength hand-held CCD
2D bar-code scanners is currently around $250.00. Less
sturdy devices are available at lower prices. In general prices
will probably decline somewhat with greater adoption and
advances in CCD technology.

4.2 Compression
In order to decrease the burden imposed by the size con-

straints associated with using barcodes, we have been in-
vestigating compression of small Java programs. The de-
sire to compress Java programs has been around almost as
long as the language and was usually driven by limited net-
work bandwidth. Unfortunately, many of the ideas that have
emerged for compressing Java programs are not applicable
to the embedded environment. Since embedded devices have
limited resources, delivery of source code entailing Just-in-
Time (JIT) compilation on the device is probably imprac-
tical in most causes because of the large memory footprint
required. Hence we do not consider compressing source code
or proposals such as delivering source code as compact ab-
stract syntax trees [17]. We also ruled out schemes (such
as [15], which is targeted for compressing code for embed-
ded systems, or [14]) that alter the KVM or JVM or involve
new representations, since these are not likely to gain wide
acceptance in the near term. Most such proposals do not
have available implementations anyway.
We can report results for the following compression tools:

(1) GNU gzip, (2) jar, which uses zip, (3) Pack [16], which
is customized for Java bytecode, and (3) SEQUITUR [7],
which uses hierarchical grammars. These were applied to the
Java program given in Figure 2. We calculated the effect of
each program on a collection of small class files. The results
are reported in Table 1. Based on this small experiment,
Pack seems to be the most effective, probably because it is
optimized for Java bytecode.
One aspect of our architecture that we suspect will occur

in many other application domains is that programs for a

particular embedded device will have similar structure. For
example, all the programs for Microwave ovens are recipes.
We believe that this fact can be exploited to gain an im-
provement over most dictionary schemes. The idea is to
build a dictionary from a corpus of sample programs. This
dictionary is stored at both the compression and decom-
pression locations and used by both algorithms. As part of
a simple experiment we created such a dictionary using a
basic implementation of the LZ78 algorithm [19]. This algo-
rithm was then modified to use the new dictionary. A 15%
improvement was achieved over the original algorithm. We
believe that this indicates that the idea has promise.

5. PROTOTYPE ARCHITECTURE
We have implemented a prototype of our proposed archi-

tecture. The prototype includes a set of Java classes that
form an API to the microwave oven. A recipe developer’s
program uses these classes to access and respond to the
microwave. Different microwave ovens manufacturers will
support this API, though manufacturers can customize the
implementation details according to the capabilities of the
oven.
Once the recipe program is written in Java it is manu-

ally translated into Promela, Spin’s input language. The
recipe developer verifies that the recipe behaves as intended
by constructing appropriate linear temporal logic proper-
ties and assertions for the Promela recipe, annotating the
recipe with extra variables as necessary. Spin’s exhaustive
search will find any anomalies in the recipe and display an
execution sequence that demonstrates the anomaly. If the
anomaly is due to a bug in the original Java recipe that
recipe and its Promela model must be updated to fix the
bug. If the anomaly is due to a discrepancy between the Java
recipe and the Promela model the model must be updated
to bring the model in line with the original Java recipe.
When Spin shows that a recipe satisfies the necessary

properties the Java version of the recipe is compiled to a
class file. The class file is compressed using gzip (our sys-
tem also supports Pack) and converted to an Encapsulated
PostScript (EPS) containing Aztec barcode. The EPS file
is then printed using a normal laser printer.
We used a Linux workstation with an attached barcode

scanner to simulate a microwave oven. The workstation runs
a Perl script that takes input from the barcode scanner,
decompresses it, and links it to a Java program that displays
a mock-up microwave. A user can interfere with the mock-

302

up by opening and closing doors, and pausing and restarting
the cooking.
We exercised our prototype system with three microwave

recipes, chosen from actual frozen food packages. All three
recipes were encoded as barcodes and run on our microwave
simulator, though only one recipe was analyzed using Spin.
We used the compiler and virtual machine from Sun’s

JDK1.3.1 for all the steps where we used Java. The recipe
analysis was performed using Spin 3.4.13 and Xspin 3.4.7
on a workstation running RedHat Linux 7.2. The worksta-
tion had 512 megabytes of RAM and a 1.5 GHz Pentium
4 processor. A discussion of the analysis can be found in
Section 3. The class file of the recipe was compressed using
gzip 1.3 and then converted to an Aztec barcode using B-
Coder from TAL Technologies version 4.0. The microwave
simulator ran on a workstation with 80 megabytes of RAM,
a 166MHz Pentium MMX processor and an Imageteam 4410
barcode scanner, running RedHat 6.2.
The recipes, Java classes and Promela models are avail-

able at http://www.cis.upenn.edu/sdrl/mirl.

6. CONCLUSION
The main contribution of this paper is our experimental

prototype which demonstrates feasibility of delivering veri-
fied programs in barcodes. Such a set up can be used for
open API for controlling myriad of devices from home ap-
pliances to medical devices.
We have shown that existing off-the-shelf model checkers

like Spin are capable of analyzing the kind of small pro-
grams we envision running on top of embedded systems.
Unfortunately, Spin requires translating a program into an
input language like Promela—an error-prone process that
may lead to a model that does not correspond to the origi-
nal program, and we would like to develop domain-specific
tools that can analyze source code.
Finally, while we have not assumed any network connec-

tivity for our prototype, there are interesting architectural
possibilities combining barcodes with network access. We
plan to explore such alternative architectures in the future.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF award CCR

0208990, NSF award ITR/SY 0121431, and ARO URI award
DAAD19-01-1-0473.

8. REFERENCES
[1] I. 15417:2000. Automatic identification and data

capture techniques - bar code symbology specification
- code 128. Technical report, International Standards
Organizatiopn, 2000.

[2] I. 16388:1999. Automatic identification and data
capture techniques -bar code symbology specifications
– code 39. Technical report, International Standards
Organization, 1999.

[3] K. Arnold, J. Gosling, and D. Holmes. The Java
Programming Language. Addison-Wesley, Reading,
MA, USA, third edition, 2000.

[4] A. BC11-ISS. Data matrix. Technical report, AIM,
1996.

[5] A. BC13-ISS. Aztec code. Technical report, AIM,
1997.

[6] G. Berry and G. Gonthier. The synchronous
programming language esterel: design, semantics,
implementation. Technical Report 842, INRIA, 1988.

[7] D. M. C. Nevill-Manning, I.H. Witten. Compression
by induction of hierarchial grammars. In J. A. Storer
and M. Cohen, editors, Proceeding Data Compression
Conference, pages 244–253. IEEE Press, 1994.

[8] E. Clarke and R. Kurshan. Computer-aided
verification. IEEE Spectrum, 33(6):61–67, 1996.

[9] E. Clarke and J. Wing. Formal methods: State of the
art and future directions. ACM Computing Surveys,
28(4):626–643, 1996.

[10] U. C. Council. Ansi/ucc1-2000:u.p.c. symbol
specification manual. Technical report, American
National Standards Institute, 2000.

[11] C. Elliott and P. Hudak. Functional reactive
animation. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’97), volume 32(8), pages 263–273, 1997.

[12] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[13] G. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, Englewood Cliffs, New
Jersey, 1991.

[14] T. Kistler and M. Franz. A tree-based alternative to
java byte-codes. International Journal of Parallel
Programming, 27(1):21–34, January 1999.

[15] C. C. L. Clausen, U. Oagh-Schultz and G. Muller.
Java bytecode compression for low-end embedded
systems. ACM Transactions on Programming
Languages, 22(3):1–19, May 2000.

[16] W. Pugh. Compressing java clas files. In ACM Sigplan
Conference on Programming Language Design and
Implementation, pages 247–258. ACM Press, 1999.

[17] C. Stork and V. Haldar. Compressed abstact syntax
trees for mobile code. In Proceeding of Workshop on
Intermediate Representation Engineering, 2001.

[18] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
International Conference on Functional Programming
(ICFP ’01), Florence, Italy, September 2001.

[19] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEEE Transactions
Information Theory, 24(5):530–536, 1978.

303

