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Abstract

The purpose of the dissertation is to introduce and study the category of profinite domains.
The study emphasizes those properties which are relevant to the use of these domains in a se-
mantic theory, particularly the denotational semantics of computer programming languages.
An attempt is made to show that the profinites are an especially natural and, in a sense,
inevitable class of spaces. It is shown, for example, that there is a rigorous sense in which the
countably based profinites are the largest category of countably based spaces closed under
the function space operation. They are closely related to other categories which appear in
the domain theory literature, particularly strongly algebraic domains (SFP) which form a
significant subcategory of the profinites. The profinites are bicartesian closed—a noteworthy
property not possessed by SFP (because it has no coproduct). This gives rise to a rich type
structure on the profinites which makes them a pleasing category of semantic domains.

However, there are problems that arise with respect to the solution of recursive domain
equations over the profinites which do not apply to the strongly algebraic domains. For the
purposes of semantics, the solution of such equations is essential because it is the primary
technique of data type specification. There are continuous functors over the profinites which
have no profinite solution. The usual universal domain techinique for solutions to such
equations will not work for the profinites because there is no universal profinite domain.
Instead a kind of “multi-universal domain” technique is devised which uses an infinite class
of “almost universal” spaces. These make it possible to show that an equation of the form
D = F(D) where F' is a locally continuous endofunctor on profinites has a solution if and
only if a related equation has a finite solution. For a continuous computable functor the
decision problem for the existence of a fixed point is ¥;. The existence result is also used to
prove properties of solutions. For example, it is shown that a countably based fixed point of
the diagonal of the function space operation must have a least element.



Introduction

The purpose of the dissertation is to introduce and study the category of profinite domains
and some related categories of partial orders. We discuss some of the methods for obtaining
solutions to domain equations, especially solutions which must satisfy particular conditions
such as profiniteness. A secondary theme is the elegant and natural description of relevant
categories and functors. There are seven chapters; the first four are about categories of
domains and their properties. The next two discuss how these properties are used to solve
equations and the last chapter is about partial functions and pre-domains.

More specifically, Chapter 1 discusses motivation, history and some basic category theory.
Chapter 2 presents the primary intrinsically characterized classes of partial orders which will
be our objects of study. The realtionship between pre-orders and algebraic cpo’s is examined
in some detail. The category of Plotkin orders is introduced; we display exponential and
product functors for this category and show that it is cartesian closed. Chapter 3 discusses
the notion of an adjunction (or galois connection) between cpo’s and looks at the cpo of
algebraic deflations. We show the existence of inverse limits in the category of cpo’s with
upper adjoints as morhpisms and provide useful conditions under which a class of cpo’s will
have such limits. Chapter 4 looks first at properties which distinguish classes of algebraic
cpo’s in terms of properties such as cartesian closure and first order definability. We also
discuss some intrinsically characterized cartesian closed sub-categories of profinite domains.
The last two sections of Chapter 4 discuss the Scott and Lawson topologies on profinite
domains and some related classes. Chapter 5 presents universal domains for various profinite
categories in a way which emphasizes the model theoretic significance of their constructions.
It is shown how these universal domains can be used to obtain solutions for domain equations.
Chapter 6 introduces some noteworthy functors and their closure properties with respect to
the category of profinite domains. A necessary and sufficient condition for the solvability
of equations involving continuous functors is given and some of the consequences of this
characterization for particular functors is explored. In Chapter 7 we attempt to motivate
the need for a theory of partial functions at higher types and discuss how cpo’s arise naturally
in this way. We define the category of pre-domains and give a treatment of this class which
is similar to that given to profinite domains in the earlier chapters.

1. Methodology and basic definitions. The categories which we introduce are ex-
amined from the point of view of their potential applications as semantic domains in, for
example, the denotational semantics of computer programming languages. However, a vari-
ety of mathematical properties having no apparent immediate application are also investi-
gated. The study is carried out in the spirit of mathematical investigations in the theory of
domains such as those studies given to continuous lattices, information systems and many
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other related classes. The results we prove are meant to demonstrate that the profinite
domains form an elegant, simple, natural and, in a sense, inevitable category of spaces. On
the profinites are defined a host of interesting functors whose fixed point properties are non-
trivial. However, a variety of techniques for finding and reasoning about such fixed points
are demonstrated.

The profinites arise quite naturally from category-theoretic considerations when one ac-
cepts as interesting certain categories of partial orders which consitute the mathematical
foundation of the Scott-Strachey theory of programming semantics. They are an especially
“large” collection of semantic domains which contain many of the categories of domains pre-
viously studied for the purposes of programming semantics. Indeed, there is a rigorous sense
in which the profinites are the largest category having certain relevant properties. Although
the dissertation does not discuss the topic in any detail, the profinites can also be given a
satisfactory computability theory in keeping with the well-known treatments of effectively
given domains.

Define a complete poset (cpo) to be a poset in which every directed subset M has a
least upper bound || M. A function between cpo’s is (Scott) continuous if it is monotone
and preserves such lub’s. If D and E are cpo’s then, with the pointwise ordering, the poset
[D — K] of continuous functions from D into £ forms a cpo. Let D be a cpo and let Mp be
the set of continuous functions p: D — D such that p = pop C idp and the image of p is
finite. Then D is said to be profinite it Mp is directed and | | Mp = idp. If Mp is countable
then D is said to be w-profinite. This is one of several equivalent conditions which can be
used to define profinite domains.

Historically a number of categories closely related to the profinites have been studied.
The best known is the category SFP which is a significant sub-category of the profinites.
The names “SFP” and “profinite” arise from category-theoretic considerations which the
dissertation discusses in some detail. A cpo is said to be algebriac if it has a basis of
finite (compact) elements and w-algebraic if that basis is countable. We show that profinite
domains are algebraic and give a quite easy to use characterization of the kinds of posets
which can arise as the bases of profinite domains. These are called Plotkin posets and we
use them to develop a kind of “information systems” approach to the profinite domains.

2. Functors. It is shown in the dissertation that the profinite domains have finite products
and coproducts as well as terminal and initial objects. Moreover, they are closed under the
(continuous) function space operation and form a bicartesian closed category. This gives rise
to a very rich type structure which is a primary topic of study. In particular, one would
like to know exactly when a domain equation (such as D = [D — D] or F = E X F) has a
profinite solution. The profinite solution of such equations can be problematic. For example,
the equation D =2 1+ [D — D] (where 1 is the singleton cpo and + is the coproduct) has no
profinite solution. A fairly satistying necessary and sufficient condition for when a continuous
endofunctor £ on the profinites has such a solution is derived in the dissertation. It is shown
that if D is profinite then the set Mp has a least element p whose image is a finite poset
called the root of D. The functor F' has a fixed point if and only if there is a poset A such
that A is isomorphic to the root of F(A). This says that the original equation invloving F
can be solved exactly when a related equation has a finite solution. For computable functors
this shows that the decision problem for existence of a fixed point is ;.
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The existence of fixed points of functors is generally proved by the use of category theory
or by the use of a universal domain. Since no universal domain for the profinites exists,
it is necessary to derive a “multi-universal domain” technique involving an infinite class of
domains which have some of the properties of the well-known examples of universal domains.
Formally, the following result is proved:

Theorem: Let A be a finite poset which is equal to its own root. Then there is a
poset A* such that for every w-profinite poset D with root isomorphic to A, there
is a function p: A* — A* such that p = po p Cidg« and D is isomorphic to the
image of p.

The construction of these domains is carried out in some detail and we stress the theme that
the universality of the structures arises from the fact that they are saturated in the model
theoretic sense. They are used to give necessary and sufficient conditions for the existence
of fixed points for locally continuous functors over the category of retracts of profinites.

There are a great many functors defined on the profinite domains. We show that a contin-
uous functor on cpo’s which sends finite posets to finite posets cuts down to an endofunctor
on the profinites. On the profinites we define, for example, three powerdomains which are
analogous to the well-known examples of such functors. A number of other noteworthy funec-
tors are also studied. For an algebraic cpo D, let G(D) be the poset of continuous functions
p: D — D such that p = pop C idp and im(p) is an algebraic cpo. We show that if D
is profinite then G/(D) is an algebraic cpo which has a locally finite basis, i.e. between any
two elements of the basis there are only finitely many basis elements. Another interesting
functor is the join completion J (D). Say a cpo D is bounded complete if it is non-empty and
each of its bounded finite subsets has a least upper bound. The join completion is defined
on algebraic cpo’s and J (D) is bounded complete for every D. Moreover, an algebraic cpo
is a fixed point of J if and only if it is bounded complete. This functor can be used to get
a universal bounded complete poset which is not isomorphic to Scott’s well-known universal
domain for this class.

3. Limits and duality. Let D and £ be cpo’s and suppose p: F — D and q: D — I are
monotone. If po¢ Jdidp and g o p C idg then let us call p an upper adjoint and ¢ a lower
adjoint. Let CPO! be the category of cpo’s and continuous upper adjoints. We prove the
following

Theorem: A cpo is profinite if and only if it is the limit in CPO' of an inverse
system of finite posets. Moreover, if A is an inverse system in the category P!
of profinite domains and continuous upper adjoints then its limit in that category
exists and coincides with its limit in the category of cpo’s and (Scott) continuous
functions.

A set of simple conditions for proving results like this for categories of algebraic cpo’s
is provided and applied to several examples. To mention one of these, define a category
C as follows. The objects of C are continuous cpo’s D such that the Scott compact open
subsets of D form a basis (for the Scott topology) and this basis is closed under finite
intersections. We show that when the arrows of C are continuous upper adjoints, C has
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limits for inverse systems. The limit existence results give rise to a rather general form of
limit /colimit duality for P! and the dual category of profinites with lower adjoints. We also
demonstrate the continuity of the function space functor on PT.

4. Closure properties. Although many functors on cpo’s send profinites to profinites,
there are natural ones which do not. For example, if D is a cpo, let ], D be the product
of countably many copies of D. By analyzing roots of products one can see that [], D is
profinite if and only if D is empty or has a least element. Since any finite poset is profinite
and there are finite posets without least elements, it follows that there are profinite domains
D for which [, D is not profinite. However, the most interesting functor—the function
space—does send profinites to profinites. But something more is true:

Theorem: [f D and [D — D] are w-algebraic c¢po’s then D is profinite.

The proof is similar to that of Smyth’s theorem (which is the case where the posets have
least elements). The theorem can be used to obtain the following surprising corollary: if D
is a non-empty w-algebraic cpo and D = [D — D] then D has a least element! Hence the
study of cpo’s D such that D = [D — D] naturally leads to consideration of the profiniteness
condition (and, it appears, the least element). Other results like the above theorem are also
demonstrated, including a slight generalization of Smyth’s theorem: if D is a ¢po with a
least element and [D — D] is w-algebraic then D is profinite.

Let K be a class of w-algebriac cpo’s and let Ko be the class of posets A such that A is
isomorphic to the poset of finite elements of a member of K. Say K is elementary if Ky is
the class of countable models of a first order theory. We show that the largest class K of
w-algebraic cpo’s which is elementary and cartesian closed is the class of bounded complete
w-algebraic cpo’s. We also provide intrinsic characterizations of several sub-categories of
the profinites which show that the profinites have many interesting cartesian closed sub-
categories.

When one carries out the definiton of a category of limits of finite posets in the way
described above for profinite domains but using partial rather than total functions then
one arrives at a new category of algebraic cpo’s which are called pre-domains. This name
derives from the fact that a pre-domain is a cpo D such that D) (= the result of adding
a new least element L to D) is profinite. We present an “information systems” method
for characterizing pre-domains and Scott continuous partial functions defined on them. We
show that the pre-domains form the largest partial cartesian closed full sub-category of the
w-algebraic cpo’s and continuous partial maps.

5. Topological properties. The Scott continuous functions between a pair of cpo’s are
exactly the continuous functions in the general topological sense when the cpo’s are endowed
with the Scott topology. Let us say that a cpo is continuous if it is the retract of an algebraic
cpo and say that a poset is finitely continuous if it is the retract of a profinite domain. It
is shown that an algebraic cpo is a continuous cpo with a basis of compact open sets and
an w-profinite cpo is a finitely continuous cpo with a countable compact open basis. We
provide a set of conditions on the Scott topology of a continuous cpo which is equivalent
to profiniteness of the cpo and various simple topological conditions are shown to lead to
natural classes of algebraic cpo’s. We also investigate a refinement of the Scott topology on
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cpo’s called the Lawson topology and show that on a profinite domain, the Lawson topology
is compact Hausdorff and 0-dimensional as would be expected by analogy with the theory
for algebraic lattices and SFP-objects.



Chapter 1

Background

The purpose of this chapter is to set the stage for subsequent chapters by reviewing certain
motivations, historical background, and a few important categorical notions.

1.1 Some questions about the theory of domains

We begin by discussing answers to four questions that anyone would be inclined to ask when
being introduced to the theory of domains for the first time.

Why is a mathematical semantics for programming needed? Reasoning about the proper-
ties of a program written in a modern high-level programming language typically involves a
complex mixture of ordinary mathematical reasoning and a kind of low-level reasoning about
the machine or compiler which implements the language. For the most part, mathematical
forms of reasoning have a firm logical foundation and a well developed methodology of signif-
icant generality and precision. Programming languages, on the other hand, and the systems
which implement them are often fraught with inconsistencies (or at least idiosyncrasies).
Their design can also be misleading, since many of them possess hidden features which make
it impossible to reason correctly about the program in the apparently intended ways. We
cannot make a detailed case for these accusations here, but the case has been made forcefully
and specifically elsewhere ([Brookes 1985] and [Meyer 1984] are good examples). Of course,
such characteristics make it difficult to tell what a program is likely to do on its input. This
difficulty is reflected in the time required to debug programs and the questionable extent to
which most programs can be “proven correct”.

It a computer program can be given a really clear mathematical meaning, it may then
be possible to prove rigorously the necessary properties of the program. And if a computer
language is given such a meaning, then it will be possible to prove properties of programs
written in that language in a systematic way. On the one hand, a good mathematical meta-
language will improve our ability to specify properties of programs and, on the other hand,
it will make it possible to establish that a given program meets its specifications. Moreover,
a clear semantical approach will help with the specification of the languages themselves
and will therefore allow for proofs that a compiler correctly implements a whole language.
This may even allow us someday to devise ways of generating good compilers for languages
directly from semantic descriptions. The development, therefore, of a semantic theory of
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programming is an essential step in the progress toward the controlled design of more reliable
software. Hence, the case for the need for mathematical semantics rests on many practical
considerations.

What should such a semantic theory look like? Certainly one feature that a good semantic
theory should have is “machine independence”. Brookes [1985] puts it the following way,
where he also explains how this independence is to be obtained:

Certainly we will ignore details which are dependent on implementation on par-
ticular compilers or machines. Instead of specifying that a program, if run on
such-and-such a machine under the so-and-so operating system with version n of
the Pascal compiler, will do something specific to the contents of that machine’s
memory, we will give an abstract formal semantics independent of machines but
which could (at least in principle) be related to what actually will go on when
programs run in the real world. We ignore space, time and coding tricks when we
describe the semantics of the language. Our semantics will be founded upon a uni-
versal set of abstract mathematical structures and objects, such as (input-output)
functions, in terms of which we will be able to explain the meanings of syntac-
tic constructs without relying on implementation details. We will, nevertheless,
be able to give sufficiently precise descriptions for would-be implementors of a
language to be able to produce a correct implementation (compiler, interpreter,
or whatever) with respect to our formal standard. Programmers will be able (if
they so wish) to express and prove properties of their programs, by appealing to
the semantic definitions to explain precisely the effects of their programs.

It has become conventional wisdom in discussing programming-language semantics to
divide the possible approaches into three main classes: the denotational, the operational,
and the aziomatic. Briefly, the axiomatic method codifies the meaning of programs into a
set of rules for deriving properties of programs. The construction of complete sets of rules is
not always straightforward. The operational method achieves some machine independence
by putting foward abstract machines on which the programs of the language are implemented
in the usual way. This is an important method, because the abstract machines can be defined
cleanly and precisely without the many compromises of actual machines. Once the language
has an operational definition, then implementations can be given for many real machines by
implementing the abstract machine, which is often much easier to do than implementing a
whole language. The drawback in the approach is that an operational semantics may still
be difficult to reason about. The reader is referred to [Stoy 1977] or [Brookes 1985] for more
details.

As for the denotational method, the idea is not really in conflict with either of the other
two methods. From one point of view, we can use denotational models to justify rules of
inference, and thus prove consistency of a set of rules (which may not always be obvious).
From another point of view, the denotational definition can be considered as a higher-level
abstract implementation of the language. Operational definitions usually are concerned
with manipulations of finite, discrete objects representing certain features of the state of the
abstract machine. Denotational definitions try to give meanings to large parts of programs
as wholes, making it necessary to regard expressions of the language as denoting functions
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or state transformations—which in themselves have to be taken as being infinite objects. In
order to manipulate infinite objects mathematically, they have to be collected together into
spaces or domains of different types (e.g. function spaces), and various basic operators have
to be defined on these spaces. In order to relate these infinite objects to actual computations,
operational considerations are needed to explain how finite approximations to the infinite
objects behave under various transformations. The difference here is that the considerations
are all abstract and not involved in particular features of the programming language, but
again the denotational and operational understandings are given explicit connections that
can help to explain both.

In the present work we will examine in some detail the kinds of models which arise in a
particular denotational semantic theory as exemplified in, say, [Stoy 1977]—but the models
we discuss are more general than those used in the Stoy book. These models are generally
called domains and the study of such models is called the theory of domains. But, of course,
that word “domain” is rather bland and does not convey much in itself. We are thus brought
to the next question.

What is a domain? Answers to the question abound in the literature. Frequently a
domain is taken to be merely a cpo (this notion is defined in the Introduction). In many
places more restrictive conditions are imposed. For example, [Scott 1982a] defines a domain
to be a consistently complete algebraic cpo (or, more accurately, a poset of elements of
information systems), whereas Smyth [1983a] takes a domain to be only an algebraic cpo. In
other places a domain is taken to be a strongly algebraic cpo or even a retract of a strongly
algebraic cpo. Some writers define domains even less restrictively as posets having various
completeness properties. Many people find this proliferation of domains a bit confusing.

Perhaps the source of the problem is the assumption that there is one Category of Do-
mains and a goal of domain theory is to find out what it is. It we viewed the use of the term
“domain” as we view the use of the term “universe”, then we would not be inclined to ask
the question, “What is a domain?”, without an assumption about the context in which the
question is asked. The following definition seems natural: a domain is an element of the class
of structures (or types) which are being used to give a semantics for a formal language. The
choice of the category of domains is therefore determined by the purposes of the semantics.
The category will probably need to satisfy certain conditions but it is best to keep it as sim-
ple as possible. It is therefore desirable to have a selection of possible categories of domains
and a theory which describes their properties. With such a selection a proper choice can be
made based on a balance between conflicting needs.

What is a domain equation? In giving a semantics for a pragramming language the needed
domain of denotations is usually specified via an equation involving the basic operations on
semantic domains. These equations can be quite complex and usually involve some form of
recursion. For example, the S-expressions of LISP satisfy the equation S = At +4 (5 x S) and
solutions to the equation D = At + [D — D] (where [D — D] denotes the “function space”
of D) provide interesting models for the untyped A-calculus. Generally speaking, a domain
equation is defined to be a set of equations of the form:

Dy = Fy(Dy,...,D,)

D, = F,(Dy,...,D,)
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Here the FY,..., F, are operators on domains such as
F(S)=At+ (S x S)or F(D)=At+[D — DJ.

This list of equations can, in most cases, be reduced to one equation by using the product
category, so, for such cases, it is sufficient to restrict attention to the solution of a single
equation involving a multi-functor. Getting a solution to such an equation can be problem-
atic, but there is a very good theory which offers general conditions which, when satisfied,
assert existence of a canonical solution and wusually provide a nice, non-trivial solution in an
effective way.

1.2 A brief history of the theory of domains

Research in the theory of domains began in Oxford and was continued at Oxford and Prince-
ton in the late 1960’s and early 1970’s with the work of Christopher Strachey and Dana Scott.
Strachey had, for some time before, been attempting to work out a theory of programming-
language semantics, but there arose various difficulties with the mathematical foundations of
the theory he was deriving. Scott first suggested a replacement for some of the tools which
Strachey was using (such as the untyped A-calculus) by a theory of operators on partial
orderings using well-known ideas from recursive function theory. As he explained in [Scott
1977] and in his introduction to Stoy’s book [1977], however, the structures (or domains of
definition of the operators) were soon found to have great flexibility in definition. Indeed,
it proved possible not only to solve recursive domain equations, but also to incorporate the
function-space functor into the definitions. In this way the model theory for the untyped
A-calculus was put on solid mathematical ground, and much of Strachey’s original approach
was surprisingly justified. This was how they succeeded in finding an adequate foundation for
a form of programming-language semantics which is now called the “Scott-Strachey” theory.
The foundational “Scott part” of the theory is usually refered to as “domain theory” and
the “Strachey part” as “denotational semantics.” The method as a whole, however, must be
considered as joint work.

The groundwork for the theory was done in the winter of 1969, and two early papers on
the approach are [Scott 1970] and [Scott and Strachey 1971]. The first published example of
a model of the untyped A-calculus occurs in [Scott 1972]. The latter accomplishment used
complete lattices and an inverse limit construction to solve the domain equation

Dy = CPO(D.y, Do)

where CPO(D, F) is the complete lattice of continuous functions between complete lattices
D and E. We will say much more about inverse limits and the solution of such equations
below.

Another important model was introduced by Gordon Plotkin [1972]. Scott then modified
the form of Plotkin’s construction slightly to get what he called the “graph model” which he
used to derive a very detailed analysis [1976] of the use of w-continuous lattices (which are the
retracts of the graph model) for domain theory. (Actually, the ideas were already known in
recursive function theory under the name of enumeration operators, but the exact connection
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with A-calculus had not been realized before.) Later Plotkin [1978b] introduced a related
and somewhat more natural model called T“ and carried out a similar study for the coherent
w-continuous cpo’s. Stoy [1977], however, used Scott’s graph model foundation to provide
a nice exposition in his book of the use of domain theory in denotational semantics as it
now exists. More recently McCracken [1982] used a similar construction to provide a finitary
retract model for the polymorphic A-calculus, which also has importance for programming-
language semantics. This quick review hardly touches on the extent of the literature, and
the reader must consult the sources mentioned as well as such books as [Barendregt 1984]
for a more complete exposition.

Plotkin [1976] introduced a quite different category of domains which he called SFP.
This is a “large” category and was needed because the more established categories did not
have the desired closure properties. Thereafter, it was soon discovered that the property
of having least upper bounds is not preserved by the conver powerdomain which Plotkin
introduced in order to give a denotational semantics for a kind of parallel construction. In
[Smyth 1978] a nicer exposition of the convex powerdomain construction is offered and a
second functor—the upper powerdomain—is introduced.

Much important progress in the development of the applications of categorical notions to
domain theory also has taken place. In particular there was a recognition of the importance
of the notion of cartesian closure for a category of domains. Since there is a correspondence
between cartesian closed categories (ccc) and models of the typed A-calculus (see e.g. [Lambek
1980] and [Scott 1980b]), this condition on a category was ideal for the purposes of domain
theory. ' (Scott [1972] already had shown that the continuous lattices formed a ccc.)
Moreover, it has been shown that if an object in a ccc has its own function space as a retract
then it is a model of the untyped A-calculus! (See [Koymans 1982] for a recent exposition.)

Other unifying categorical themes have been discussed in various places. For example
Plotkin and Smyth [1983b] studied the solution of recursive domain equations at a very
satisfying level of generality through the use of Wand’s concept of an O-category (see also
[Wand 1979]). The naturality of the choices of categories and functors has been reenforced
by results such as Smyth’s Theorem [1983] which states that SFP is the largest cartesian
closed category of w-algebraic cpo’s. Hennessy and Plotkin [1979] have shown that the three
powerdomains (upper, lower, and convex) can be characterized as free algebras in certain
naturally motivated categories (see [Plotkin 1978a] for details).

A large body of research has also been concentrated on the important task of developing
a satisfactory theory of computability for domains. Most of Scott’s papers discuss this topic
in one degree or another, and several papers make this their central objective. Recently,
Weihrauch and Deil [1980] proved a generalization of the Myhill-Shepherdson Theorem which
applies to a substantive class of continuous cpo’s. Winskel and Larsen [1984] discussed the
problem of deriving effective solutions to recursive domain equations. Kanda [1980] and Tang
[1984] have studied computability for SFP and the category of retracts of SFP respectively.
McCarty [1984] used the Kleene realizability model as an intuitionistic set theory in which

LOf course, not just any ccc will do for domain theory. For example, the category of sets forms a very
nice ccc. It is unsatisfactory, however, because it is usually impossible to solve recursive domain equations
involving the function space functor (owing to obvious cardinality considerations). For instance, no non-
trivial set can have its own function space as a retract.
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all of the functions are continuous and computable. This approach allows one to show the
existence of a functor or function intuitionistically and then (if one desires) to transfer this
result to the usual classical set theory. This method produces automatically a computable
functor or function, thus eliminating the need to carry out detailed computations with indices
for computable functions in order to prove computability. Since the theorem McCarty proved
is essentially the same as the Myhill-Shepherdson Theorem, it is likely that these results can
be extended to SFP and beyond.

1.3 Cartesian closed categories
As Scott warns in his paper Domains for Denotational Semantics,

Another word about Category Theory: 1 actually feel that it is particularly
significant for the theory and for the whole area of semantics. But it must be
approached with great caution, for the sheer number of definitions and axioms
can try the most patient reader. It seems to me to be especially necessary in
discussing applications of abstract mathematical ideas to keep the motivation
strongly in mind. This is hard to do if the categories get too thick but of course
it all depends on the writer.

Scott has recently written a spate of papers and monographs [1981a, 1981b, 1982a, and
1982b] which try to bridge the gap between theory and practice, making domain theory
more usable by the practicing computer scientist. There is still a lot that needs to be done
in this direction, however. We hope that an elegant and well developed theory which has
a sensitivity to possible applications will succeed in making domain theory a less abstruce
and elite subject. In the present paper we try to restrict the use of category theory to those
instances in which it is truely helpful in explaining the basic concepts of domain theory
and try to avoid using categorical concepts “because they are there.” We assume a low-level
familiarity with the notions of category, functor and equivalence of categories and make an
effort to define everything else as we go along. If these definitions seem too barren, then the
standard references on the subject are [Arbib and Manes 1975], [Herrlich and Strecker 1973]
and [Maclane 1971].

We use upper case roman letters like A, B, ... to denote objects in a category and lower
case roman letters like f, g, ... to denote arrows. The notation f: A — B indicates that f
is an arrow with domain A and codomain B. If C is a category then C(A, B) is the set
of arrows f: A — B. In what follows, C(A, B) will usually possess additional structure;
indeed, almost all of the categories we discuss below are O-categories in the sense of [Wand
1979] or [Smyth and Plotkin 1982]. For reasons that we only briefly touched upon above,
the following definition is crucial.

A binary operation X on a category C is said to be a product on C if for every pair
A, B of objects there are arrows fst and snd such that for every pair f, ¢ of arrows there is



CHAPTER 1. BACKGROUND 13

a unique arrow {f,g) which makes the following diagram commute.

A
/ st
(f,9)
C------ ~AxB
g snd
B

If f:A— Bandg: A" — B’ are arrows in the given hom sets, we define
fxg:AxA - BxDB

by f x g = (f ofst,g osnd). An object 1 in a category C is terminal if for each object
A there is a unique arrow 14 : A — 1. A category C together with a terminal object and
product operation is said to be cartesian. A cartesian category with a binary operation B4,
called exponentiation is said to be closed if for any triple A, B, C of objects there is an arrow
apply : OB x B — ( such that for every f: A x B — C there is a unique arrow

curry(f) : A — CP

such that the following diagram commutes.

Ax B

curry(f) x idg apply

CBx B
If a category C is cartesian and C’ C C is a full subcategory such that
1. A x B is an object in C’ whenever A and B are objects in C and

2. 1 is an object in C’

then C' is itself a cartesian category. Moreover, if C is a cartesian closed category, C’ satisfies
1,2, and B4 is an object in C’ whenever A, B are objects in C’, then C’ is cartesian closed.
Both of these “inheritance properties” follow from the fact that equations that hold in a
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category will also hold in any full subcategory so the equations that hold for fst, snd, curry
and apply in C must also hold in C’. We will frequently use this observation below without
mentioning it explicitly.

Strictly speaking, a cartesian closed category is more structured than a category because
the product, exponential, etc. must be specified. But generally, we will have in mind a
particular product and a particular exponential. Usually these will be determined via the
inheritence property mentioned above. That is, if C is a ccc and C’ is a full sub-category
then we say that C’ is a ccc if it is a ccc with the inherited functors from C. So statements
like “C 1is cartesian closed” should be taken to mean “With the evident choices of product
and exponential, C is cartesian closed”.

In a cartesian closed category C, the operator curry defines a bijection between C(A x
B,C) and C(A,CP) for any objects A, B,C. Hence, in particular, there is a bijection
between C(1 x A, B) and C(1,B4). This supports the intuition that F'(A, B) = B* is
the function space operation for the category C. In the case that C(A, B) has additional
structure, however, care must be taken not to confuse C(A, B) with the object B4,



Chapter 2

Representations of Algebraic Cpo’s

There are times when it is easier, conceptually, to deal with a representation of a class of
spaces rather than with the abstract class itself. For example, thinking about fields of sets
is frequently easier than thinking about models of the axioms for boolean algebras. Yet
essentially anything one shows about fields of sets also applies to boolean algebras since
every field of sets is a boolean algebra and every boolean algebra is isomorphic to a field
of sets. Another class which can be studied representationaly is that of algebraic cpo’s
which we define in this chapter. By using the much more primitive notion of a pre-order
we can represent the algebraic cpo’s via the ideal completion functor. This allows one to
derive properties of the latter class from the representation rather than relying solely on the
axioms. Representation has its faults, however. It can make the class of spaces less abstract
but it can also make them more difficult to work with by being overly resrictive. It may be
difficult, for example, to represent important operations or constructions in a natural way.
So a good representation should make the right compromise with abstraction to achieve the
most conceptually apealing and flexible result.

Another helpful aspect of a well-described, easy to use class of spaces is that of intrinsic
characterization. For example, it would be a bit unsatisfying to be told that a group is
an algebra which is isomorphic to a certain kind of subalgebra of a permutation group. In
a way this is the dual notion to representation; while we are pleased to have the Caley
Theorem, thinking of groups as subgroups of permutation groups is not always convenient.
It is therefore desirable to describe the class in question in a way that uses as little reference
to other classes as possible. We will return to the issue of intrinsic characterization later in
the context of categorical descriptions.

2.1 Pre-orders and algebraic cpo’s

The fact that algebraic lattices correspond to ideal completions of pre-orders has been known
for some time (see, for example, [Birkhoff 1940]); we will extend that correspondence to cases
in which least upper bounds may not exist. To get a useful equivalent category one must
see what the arrows on the pre-orders should be and find the right functor to carry these
arrows over to the continuous functions. The notion of an approximable relation, suggested
by Dana Scott, is simple, elegant and meets these conditions quite nicely. The definition

15
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of an approximable relation given here generalizes the definitions in the literature to deal
with arbitrary pre-orders. ' No more general construction than the one given below seems
possible since the full category of algebraic cpo’s is characterized in this way.

A pre-orderis a pair (A,F4) where -4 is a binary relation satisfying the following axioms

for each X,Y, Z € A:
1. X"A X;
2. XF4Yand Y By Z then X By 7.

It is intended that the “larger” element is the one on the left side of the turnstile. Note that
A = 0 is allowed. To conserve notation we write A = (A,F4) and when A is clear from
context the subscript is dropped. A set S C A is bounded if there is an X € A such that
X FY for every Y € 5. Such an X is called a bound for S and we write X = 5. Trivially,
any X € A is a bound for the empty set. A subset M C A of a pre-order A is directed if
every finite subset of M has a bound in M. Note, in particular, that every directed set is
non-empty. A subset M C A is filtered if for every finite u C M, there is a X € M such that
Y F X for each Y € w.

Definition: An approximable relation [ : A — B is a subset of A x B which satisfies the
following axioms for any X, X’ € A and Y)Y’ € B:

1. for every X € A thereis a Y € A such that X f Y
2.t X fY and X f Y’ then thereisa Z € B such that X f Z and Z Fp Y, Y";
3. XA X fY' FgpYthen X fY. O

Let ¢: A— B and f: B — (C be approximable relations. We define a binary relation
fogon AxC as follows. For each X € Aand Z € C, X (f og) Z if and only if there is a
Y € B such that X ¢ Y and Y f Z. Also, for each pre-order A define idgy = k4. It is easy
to verify that f o g and i1d4 are approximable relations. With this composition and identity
relation the class of pre-orders and approximable relations form a category which we denote
by PO. We let PO(A, B) be the set of approximable relations on A x B. The approximable
relations are partially ordered by set theoretic inclusion.

For pre-orders A and B we define the product pre-order

<AXB,|_A><B>
as follows:
e AXB={(X,Y)| XeAand Y € B};

e for any (X,Y), (X", Y") € Ax B, (X,Y) Faxs (X',Y’) if and only if X F4 X’ and
YFgY'.

Suppose A and B are pre-orders. Define relations,

! Although exactly this definition and many of the related results do appear in Gordon Plotkin’s unpub-
lished Pisa lecture notes [1978a]
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o fst: Ax B— Aby (X,Y)fst X' if and only if X F4 X', and
e snd: Ax B— Bby (X,Y)sndY'if and only if Y 5 V.

It is easy to check that fst and snd are approximable. Suppose f: C — Aandg: C — B
are approximable relations and define (f,¢) : C — Ax B by: Z (f,¢) (X,Y) if and only
it 7 f X and Z g Y. It is straight-forward to check that (f,¢) is approximable and X is
a product in the category of pre-orders and approximable relations. If we take 1 to be the
single element pre-order, then for each pre-order A there is a unique approximable relation
l4: A— 1. Thus the pre-orders and approximable relations form a cartesian category.
Moreover, the empty poset 0, is initial in this category, i.e. for any object A there is a
unique arrow 04 : 0 — A. This 04 is the “empty relation” and it is trivially approximable.

A poset (D, C) (or partially ordered set) is a pre-order that is anti-symmetric, i.e. if 2 Ty
and y C z then x = y. Using the established convention we write the “larger” element on
the right side of the = symbol. If « C y then it is sometimes convenient to write y J z. If
x C y and x # y then we write  C y; we define J by a similar convention. A poset (D,C) is
said to be a complete partial order (cpo) if every directed subset M C D has a least upper
bound UM € D. Let D be a cpo. An element @ € D is finite (or compact) if whenever
x C UM for a directed set M, there is a y € M such that « C y. Let B[D] denote the
set of finite elements of a cpo D. We say that D is algebraic if for every x € D, the set
M = {zg € B[D] | 29 C 2} is directed and | | M = z. In other words, in an algebraic cpo
every element is the limit of its finite approximations. In a cpo D a set O is said to be Scott
open if

1. for each x € O, if y J = then y € O, and

2. if M is a directed set and [ |M € O then M N O # 0.

The Scott open sets form a topology on D called the Secott topology which we denote by
Y D. Unless we mention otherwise this will always be the assumed topology for a cpo. We
define CPO to be the category that has cpo’s as objects and (Scott) continuous maps as
arrows. The full sub-category of algebraic cpo’s is denoted ALG and the countably based
algebraic cpo’s by wALG. In general, when C is a subcategory of ALG we write wC to
mean C NwALG.

We will frequently wish to transfer a property of pre-orders to a property of posets and
conversely. This is usually possible because pre-orders and posets are closely connected.
First of all, every pre-order is isomorphic (in the category with approximable relations as
arrows) to a poset. To see this, let (A, ) be a pre-order. Define an equivalence relation ~ on
A by letting X ~ Ylfandonlylel—Yanle—X For each X, letX—{Y6A|X Y}
and set A = {X | X € A}. If we define a binary relation 2 on A by letting X J Y if and
only if X FY, then it is easy to check that <A, C) is a poset and the approximable relation
f:A—> A given by X fYifand only if X F Y is an isomorphism. In addition, posets
are isomorphic in the category with approximable relations as arrows if and only if they are
isomorphic in the more familiar category with monotone maps as arrows. We can therefore
write A =2 B for pre-orders A and B without fear of ambiguity.

The name “cpo” is inadequate in not saying with respect to what the poset is complete.
A more flexible notation used in some places in the literature is to refer to the I'-completeness
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of poset where I' is some set of subsets of the poset in question. So the cpo’s defined above are
directed complete posets or dcpo’s. This avoids such confusing names as “bounded complete
complete posets” but this is the term which is most common in the literature. Since we will
not concern ourselves with many of the different sorts of completeness properties we adopt
the less flexible, more common notation. The above definition of a cpo does, however, differ
from the definitions in the literature in some regards. It does not require that a cpo have a
least element; indeed, we do not require a cpo to be non-empty. Much of the usual theory
of cpo’s goes through for these “bottomless” cases. For example, we may characterize the
continous functions on algebraic cpo’s in the following way:

Lemma 1 Let D and E be cpo’s. A function f: D — E is continuous if and only if for
every directed set M C D, f(M) is directed and f(UM)=1f(M). O

The proof of the proposition is well-known and we omit it. See [Barendregt 1981] for
further facts about cpo’s (with bottoms). Let CPO(D, F) be the set of continuous functions
from D to E. We order CPO(D, F) by setting f C g if for every € D, f(x) C g(x). It
is easy to check that CPO(D, F) is itself a cpo. By defining an appropriate action on
arrows, CPO(-,-) can be made into a functor on CPO. To see this, suppose f: D — F and
g : ' — G are continuous. Then the function

CPO(f,g): CPO(E, F) — CPO(D, )

by CPO(f,g)(h) = goho f is continuous. One can show that if f': ¥ — F' and ¢’ : G — G’
then
CPO(f" 0 f,g'0g) = CPO([,g') o CPO(f', g).

Note, in particular, that CPO(-,-) is contravariant in its first argument. The product of
algebraic cpo’s is defined exactly as for pre-orders (i.e. with the coordinate-wise ordering).

Let (A,F) be a pre-order. An ideal over A is a directed subset @ C A such that if X -V
and X € x then Y € . The ideal completion of A is the partial ordering, (|A|, C), of the
ideals of A by set-theoretic inclusion. If X € A then the principal ideal generated by X is
the set | X ={Y € A| X F Y}. Dually, define the principal filter generated by X to be the
set TX ={Y €eA|YF X} If SC A then,

LS=U{lX[Xes)}
1S =U{1X[X €5}

Note that for any pre-order A, the set {| X | X € A} of principal ideals over A forms a
poset under set inclusion which is isomorphic to A. Moreover, if A’ = {TX | X € A} then
(A, C) = (A,F). Note, however, that X Y if and only if TX C 7Y so the ordering on A’

is “upside down”.

Theorem 2 [f A is a pre-order, then |A| is an algebraic cpo with B[|A|] = A. Moreover,
every algebraic cpo D is representable in this way because D = |B[D]|.
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Proof. Note that if M C |A]| is directed then |J M is the least upper bound of M. Hence |A]
isacpo. f X € Aand | X C UM then X € y for some y € M so |[ X Cy. Hence | X is

finite (as an element of |A]). But for any ideal x, the set
M={lX|Xe€euz}

is directed (because x is directed) and @ = [J M. Hence |A|is an algebraic cpo and B[|A|] =
{lX | X € A} is isomorphic to A. On the other hand, if (D,C) is an algebraic cpo then it
is easy to verify that f: D — |B[D]| by f(x) = {xo | 0 C x} is an isomorphism. O

Intuitively, the passage A — |A| expands A by adding limits for ascending chains. To see
this in a specific example, let <“2 be the set of functions f : n — 2 wheren <w. If f :n — 2
and g : m — 2 then say f C ¢ if and only if n < m and f(k) = ¢g(k) for each k& < n. the
ideal completion |[<“2]| of this poset is isomorphic to the union <2 U “2 where “2 is the set
of functions from w into 2,

e <“2 retains the ordering just mentioned and

o if f:n—2and g:w — 2then fC gif and only if f(k) = g(k) for each k < n.

The infinite elements of |<“2| correspond to those in “2 while the finite elements of |<“2]
correspond to those in <“2. If a poset A has no infinite chains then surely no new elements
are added by the ideal completion. We make this intuition precise as follows.

Definition: A poset (A,C) is said to have the ascending chain condition (acc) if for every
chain Xo C X7 C X, C --- of elements of A there is an n € w such that for every m > n,
X,, = X,,. A pre-order (A,F) is said to have the acc if A does. O

Proposition 3 If (A,F) has the acc then A = |A|.

Proof. We show below that |A| = |B|if A = B. Since A = A we can therefore assume
that A is a poset. We show that each x € |A| is principal. Assume & € |A| is not principal.
Then for each X € x there is an X’ € x such that X © X’. But this means there is a chain
XoC X7 of elements of x. This contradicts the assumption that A has the acc. Hence
Al = {IX | X € A} = B[A] = 4. 0

A rather obvious corollary of the Proposition is that all finite posets are algebraic cpo’s.
Now, if D is a poset with the acc and M C D is directed then | | M = x for some x € M.
Hence, if f: D — E is monotone then f(LUM) = f(x) = f(M). We conclude that when
D has the acc then CPO(D, F) is just the set of monotone functions from D into E.

There is a sense in which |A] is freely generated by A. Formally, we have the following;:

Theorem 4 Let A be a pre-order and suppose ¢ : A — |A] by ¢ : X — |X. Then for
every cpo D and monotone function f there is a unique continuous function f such that the
following diagram commutes.
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Moreover, the correspondence f — f is monotone.
Proof. Let f and D be given as in the theorem. Define f by

fla) =U{f(X) | X € «}.

This makes sense because f is monotone,  is directed and D is complete. To see that f is
continuous, suppose M is a directed subset of |A|. Then

FUM) = {A(X) | X e UM}
= H{f(X) ]| X €z for some z € M}
= HH{f(X)| X e} |xe M}
=L/ (M).
To see that f is unique, suppose g : |A| — D is continuous and for every X € A, g(|X) =
f(X). Then
g9(z) = Wg(LX) | X € =}
= H{f(X) [ X € a}
= f(2).

Now, if fo C f; for monotone functions fy, fi : A — D then for each x € |A],

folz) =U{fo(X) | X € 2} TL{AX) | X € 2} = fu(x).

Hence f, C f; and the correspondence f — f is monotone. O

Definition: If A and B are pre-orders and [ : A — B is an approximable relation then
define a function |f]: |A| — |B| by

|fl(z)={Y | X fY for some X € z}.

U
Note that the conditions set down in the definition of an approximable relation insure
that the set on the right is an ideal.

Proposition 5 Let A and B be pre-orders. If f:A— B is approvimable then
If|: |A] — |B| is continuous. Moreover, the correspondence [ w— |f| is an isomorphism

between the posets PO(A, B) and CPO(|A|, |B]).

Proof. To see that |f| is continuous, suppose M C |A| is directed. Then

UII(M) = U{|f](x) | = € M}
=U{{Y | X fY forsome X € a} |z € M}
={Y | X fY for some X € UM}

= [fI(UM)
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so | f] is continuous by Lemma 1. Now, suppose [ : |[A| — |B]is continuous. Define a relation

" C Ax Bbyletting X f'Y if and only if Y € f(|X). For any « € |A| we have

|f'(z)={Y | X f'Y for some X € z}
={Y | Y € f(lX) for some X € z}
=U{flX) | X €}
= f(z)
since f is continuous. On the other hand, if f C A x B is approximable then X |f|" Y if and

only if Y € |f|(1X) if and only if X f Y. Hence |f|' = f. Now, if f C ¢ for approximable
relations f and ¢ then

|fl(z)={Y | X fY for some X € x}
C{Y | X g Y for some X € z} .

= lgl(x)

On the other hand, suppose f,¢g:|B| — |A| are continuous. If f £ g and X f'Y then Y €
FLX) Cg(lX)so X ¢ Y. Hence f' C ¢'. We conclude that PO(A, B) =2 CPO(|A|, |B|). O

Suppose that ¢: A — B and f: B — ( are approximable relations. Then for any
x € |A],

(IfTelgh(x) =42 | Y f Z for some Y € |g|(x)}
={Z | XgZand VY f Z for some X € x and Y € B}
={Z | X (fog) Z for some X € x}

= |fog|(x).

Since |ida|(x) = x for any pre-order A and x € |A| we may conclude that the passage
A — |A|, f — |f| is a functor. In category theoretic terminology, Proposition 2 says that
this functor is dense and Proposition 5 says that it is full and faithful. We have therefore
proved the following:

Proposition 6 The category of pre-orders and approximable relations is equivalent (in the
category theoretic sense) to the category of algebraic cpo’s. O

This equivalence extends to subcategories as well. We make the following:
Definition: If K is a class of pre-orders then the category Idx of ideal completions induced
by K has as objects algebraic cpo’s D such that B[D] is isomorphic to a pre-order in K and
has as arrows continuous functions. For a category of pre-orders C, Id¢ is just Idx where
K is the class of objects of C. O

Before concluding this section we comment on one other noteworty equivalence of cate-
gories. We begin with the following

Theorem 7 Let A and B be posets. There is an order isomorphism between monotone
maps from A to B and continuous maps [ :|A| — |B| that send finite elements of |A| to
finite elements of | B|.
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Proof. Let ¢: A — |A| and ¢ : B — |B| be the principal ideal maps. If m: A — B is
monotone then ¢ om : A — |B| is monotone so by Theorem 4 there is a unique continuous
function o(m): |A| — |B] such that o(m)o ¢ = ¢ o m. Apparently o(m) sends principal
ideals to principal ideals. On the other hand, if ¢ : |[A| — | B|is continuous and sends principal
ideals to principal ideals, then we can define a function 7(¢) : A — B by setting 7(¢)(X) =Y
if and only if ¢(]X) = |Y. Now, 7(¢) is monotone and by definition ¢ o ¢ = 1 o 7(c).
Hence, by the uniqueness condition on o, ¢ = oo 7(¢). If m: A — B is monotone then
for every X € A, o(m)([X) = [m(X). So by definition, [(7 0 o)(m)](X) = m(X) and
therefore (7 0 o)(m) = m. That o is monotone follows from Theorem 4. Monotonicity of 7
is immediate from its definition. O

Suppose A, B are pre-orders and f : A — B is monotone (i.e. f(X) Fp f(Y) whenever
X oY) fo(f):|A| — |B|is defined as it was in the proof of Theorem 7 then o(f) = | fT|
where fTis an approximable relation defined by setting X fT Y if and only if f(X) F Y.
By a slight abuse of notation we define |f| to mean |fT|. In particular, for a monotone
f:A—= B,

|fl(z) ={Y | f(X)FY for some X € x}

where x € |A|. We claim that f — fTis a functor (where AT = |A| is the action on objects).
If id4 is the identity function on A then X idx' YV if and only if X = ida(X) Fa Y. Hence
idL is the (approximable) identity relation. Suppose f: A — B and g : B — C are monotone
functions. If X (fTog") Z then X ¢' Y and Y fT Z for some Y so g(X) F Y and f(Y)F Z.
By the monotoniity of f, (fog)(X)F f(Y)F Z so X (fog)! Z. On the other hand, if
X (fog)t Z then (fog)(X)F Zso X ¢ (¢(X)) and (g(X)) fT Z. Thus X (fTog") Z.
This shows that fTog" = (f og)! and ()T is therefore a functor. Since |- | is a functor on
approximable relations we know therefore that our definition of |- | on montone functions is
also a functor. The proof of the following is therefore quite straight-forward:

Theorem 8 The category of pre-orders and monotone functions is equivalent to the category
of algebraic cpo’s and continuous functions which map finite elemtents to finite elements. O

2.2 Plotkin orders

We now introduce a cartesian closed category of pre-orders called the Plotkin orders. A
closely related category called SFP was introduced by Gordon Plotkin [1976]. However,
Plotkin’s orginal presentation is somewhat non-elementary in the sense that it requires an
understanding of the inverse limit construction. By working with the Plotkin orders we
hope to avoid this level of abstraction while retaining all essential properties. This is done
by working with an easy-to-understand “upper bounds” condition on a pre-order and getting
the SFP objects as ideal completions of pre-orders that satisfy this condition. This idea has
been used for other classes as well. In particular, it is exploited extensively by Scott [1981a,
1981b, 1982a] for the consistently complete algebraic cpo’s. For these spaces the upper
bounds condition is simply consistant completeness. For SFP, the use of the appropriate
condition allows Smyth [1983] to prove many significant results without ever mentioning the
inverse limit construction.
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Definition: Suppose A is a pre-order and S C A. We say that S is normal in A and
write S < A if for every X € A the set SN | X is directed. A is a Plotkin order if for every
finite u C A, there is a finite B O u such that B <« A. The category of Plotkin orders with
approximable relations will be denoted by PLT.

There is a similar condition on pre-orders that is is frequently useful. A set u’ of upper
bounds of u is said to be complete if whenever X F u, there is an X’ € u’ such that X - X".
An upper bound X F u of w is minimal if for each Y, X F Y F w implies X ~ Y. If every
finite subset of A has a complete set of minimal upper bounds then we say that A has the
(weak) minimal upper bounds property (or “property m”). If every finite subset of A has
a finite complete set of minimal upper bounds then we say that A has the strong minimal
upper bounds property (or “property M”). O

Intuitively, it S < A then S offers a directed approximation to every element of A. Thus
one might think of S as itself an approximation to A. A pre-order A is a Plotkin order just
in case it can be built up as a union of finite approximations. Note, incidently, that if S< A
and X € A then X F 0 and § C S, so there is an X’ € S such that X F X’. Obviously
finite pre-order is a Plotkin order. Indeed, any pre-order having property M and the acc is
a Plotkin order. A proof of this latter fact uses Konig’s lemma and can be found in [Smyth
1983]. Many more examples of Plotkin orders will be given in later remarks. As an example
of how property m arises, we show that if D is a cpo then D°? has property m. For suppose
S CDand xCS. Let L be a maximal chain in N{]y | y € S} N Ta and suppose 2’ = || L.
Then 2’ is a maximal lower bound for 5. Hence every element of N{|ly | y € S} lies below a
maximal lower bound of S. But this just says that in D°?, S has a complete set of minimal
upper bounds. Hence D" has property m. Actually, since we did not assume that S is
finite, D°? satisfies a condition slightly stronger than m, namely: every subset of D°” has a
complete set of minimal upper bounds.

We summarize some of the properties of the « relation in the following

Lemma 9 Let A, B, C be pre-orders.

1. Suppose A C B. Then A< B if and only if for every u C A there is a set u' C A of
upper bounds for u which is complete for u in B.

2. If A« B<aC then A< C.
3. IfACBCC and A< C then A< B.

Proof. These follow immediately from the definitions. O

Let A be a poset and suppose u C A is finite. If a complete set u’ of upper bounds of u is
finite then it contains a complete set of minimal upper bounds. If A is a Plotkin order then
there is a finite B <4 A with w C B. Hence, by 9, u has a finite set of minimal upper bounds
in A. It follows, therefore, that a Plotkin order has property M. It is not true, however, that
every pre-order having property M is a Plotkin order. A counter-example is illustrated in
Figure 2.1a. Figures 2.1b and 2.1c illustrate two other ways in which a poset can fail to be
a Plotkin order (by failing to have property M).

It is often easier to work with Plotkin orders which are posets because in a poset with
property M, the set of minimal upper bounds of a finite bounded set is finite and complete.
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3 [}
a. b. C.

Figure 2.1: Posets that are not Plotkin orders.

Little is lost by this restriction, since every pre-order is isomorphic (in the category with
approximable relations as arrows) to a poset A and it is possible to show that A is a Potkin
order if and only if A is a Plotkin poset. We might have taken the Plotkin posets as our
fundamental notion but this would complicate the definitions of some of the functors, and in
any event would narrow the scope of discussion unnecessarily. We will, however, frequently
restrict our attention to posets in order to simplify the discussion.

Suppose A is a pre-order. For each u C A, let

MUB4(u) = {X € A| X is a minimal upper bound of u}.
For each S C A, we define subsets U3 (5) C A, n € w, as follows:

U () = S,

UTHL(S) = {X | X € MUB4(u) for some finite u C U7 ()},

ui(S) = U Ui(s).

new

As usual, when A is understood from context we drop the subscripts.

Lemma 10 If A is a poset with property m and S C A, then
U(S)=M{B|SC BaA}<A.

Thus, A is a Plotkin poset if and only if A has property m and for every finite u C A, U*(u)
is finite.

Proof. Suppose S C B < A. Then clearly S = U°(S) C B. So suppose U"(S) C B and
X € MUB(u) for some finite u C U™(S). Since B < A, there is a Y € B such that X J Y
and Y J u. But this means Y = X so X € B. Hence U"™'(S) C B and we conclude that
U*(S) € B. To see that U*(5) < A, let u C U*(S) be finite. Then u C U"™(S) for some n.
So, if X Jw then X JY for some Y € MUB(u) C U™ (X) CU*(S). O
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Corollary 11 Let A and B be pre-orders with B< A. If A has property m (M) then B has
property m (M). Moreover, if A is a Plotkin order then so is B.

Proof. Suppose A has property m and B < A. If u C B is finite then the minimal upper
bounds of v C A must lie in B by Lemma 10. Since those upper bounds form a complete
set for u in A, they form a complete set for u in B. Since u was arbitrary, it follows that B
has property m. The proof for property M is essentially the same. Suppose A is a Plotkin
order, B< A and v C B is finite. Since A has property m (by the lemma), B must also have
property m. But then U} (u) C B so Uj(u) = U (u) is finite. Hence B is a Plotkin order. O
Definition: If a pre-order A has property m then we define the root, of A to be U5(0). O

2.3 The exponential on PLT

Definition: Let A and B be pre-orders. We define the exponential pre-order
(B4 5a)
as follows:

o p € B4 if and only if p is a finite non-empty subset of A x B such that for every Z € A,
the set
{(X,Y)ep|ZFaX}

has a maximum with respect to the ordering on A x B.

e p Fpa ¢ if and only if for every (X,Y) € ¢ there is a pair (X',Y’) € p such that
X k4 X" and Y’ FgY. O

The intuition behind the exponential is that each p € B4 is a finite piece of an approx-
imable relation. The complexity of the first part of the definition is due to the fact that p
must be “complete” enough to fully specify what is happening at the minimal upper bounds
of finite subsets of its domain. As a consequence of this “completeness”, we can show that
there is a correspondence between equivalence classes of elements p € B4 and approximable
relations that are finite in the subset ordering on PO(A, B). Note that if p € B* then

{X](X,Y) ep}aA.

Perhaps it is more intuitive to understand the elements of B4 in terms of the familiar concept
of a step function. If p € B4, define step, : A — B by

stepp(Z) —max{Y | ZF X and (X,Y) € p}.

Then step, is a monotone function and for each p,q € BA, step, 2 step, if and only if
pFpag.

Lemma 12 If f : A — B is approzimable and M <« A, N <« B are finite then f N (M x N) is
an element of B4,
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Proof. Let X € A. Since M < A there is an Xg € M such that X b4 Xo b4 M N [ X. If
v=A{Y € N| Xo f Y} then because f is approximable, there is a Y € B such that Y Fg v
and Xy f Y. Since N <« B there is a Yy € N such that Y Fg Yo Fp NN ]Y Since f is
approximable we know also that Xy f Y5. The conditions of 1. in the definition are therefore
satisfied. O

Proposition 13 Let A and B be pre-orders. Then
1. If M « A and N <« B are finite then NM a B4,

2. If A and B are Plotkin orders, then B* is a Plotkin order.
Proof. 1. Let p€ BA and set ¢ = {(X,Y) € M x N | X f, Y} where
L ={(X"Y)YeAXxB| X F4s X and Y kg Y’ for some (X,Y) € p}.

We check the three conditions for approximablility of f,. First, if X € A then there is an
(X",Y") € p such that X 4 X’. Hence X f, Y’ For the second condition, suppose X f, Y,
and X f, V1. Let (X{,Yy),(X{,Y]) € p be such that X F4 X{,X] and Y Fp Yy and
Y/ Fg Yi. Since p € B# there is a pair (X', Y’) € p such that X 4 X’ and X' b, X/, X!
and Y' Fp Y], Y/. Hence X f, Y and Y' Fp Y0, Y). To get the third condition, note that if
XbFasX and X' f, Y and Y' Fp Y then X f, Y follows immediately from the definition of
f,. Since f, is approximable, ¢ € B4 by Lemma 12. It follows directly from the definition
of g that pFgaq. If pFgar and r € NM then r C ¢ so ¢ Fga r. Hence NM « B4,

2. Suppose u is a finite subset of B4. Since A and B are Plotkin orders, there are finite
subsets M < A and N < B such that

{X | (X,Y) € uforsomeY € B} C M, and

{Y | (X,Y) € u for some X € A} C N.
By 1., NM qa BA. Since v € NM and NM is finite the result follows. O

Proposition 14 Let A and B be pre-orders. Then
1. If M <A and N<4B then M x NaA X B.

2. If A and B are Plotkin orders then A x B is a Plotkin order.

Proof. 1. Suppose u € M x N is finite and (X,Y) F u. Say

fst(u) ={X" € A| (X",Y') € u for some Y’ € B}, and
snd(u) ={Y" € B| (X, Y') € u for some X' € A}.

Then X F fst(u) and Y F snd(u) so there are X’ € M and Y € N such that X F X' fst(u)
and Y F Y’ F snd(u). Hence (X,Y)F (X, Y')Fwand (X, Y')e M x N.
2. Similar to the proof of part 2 of 13. O
Since the single element pre-order 1 is a Plotkin order, by Lemma 13 and Lemma 14,
PLT is a cartesian category. For pre-orders B and C, define a relation apply C (CP x B)x C
by
(p, X) apply Y iff (X, Y')€p. X F4 X and V' Fp Y.

We now check the conditions for approximability of apply.
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1. Since p is non-empty for any p € C'® and (p, X) apply Y for any (X,Y) € p, we know
that for any (p, X) € C'P there is a Y € C such that (p, X) apply Y.

2. Suppose (p, X) apply Yo and (p, X) apply Yi. Say (X}, Yy), (X{,Y]) € p such that
Yo be Yo, Y/ be Yy, and X Fp X[, X|. Since p € CB there is an (X', Y’) € p such
that X Fp X', X' Fp X[, X] and Y’ F¢ Y, Y/. By the definition of apply we can
conclude that (p, X') apply Y. Hence, (p, X') apply Y.

3. Now, suppose (p, X) Fosxn (po, Xo0), (po, Xo) apply Yo, and Yy ¢ Y. To show that
(p, X) apply Y, we must find (X', Y”) € p such that X Fp X" and Y’ F¢ Y. By the
definition of apply, there is a pair (X{,Yy) € po such that Xy Fp X} and Y F¢ Yo
Since p Fgs po, there is a pair (X', Y’) € p such that X] Fp X" and Y’ ¢ Y. By the
transitivity of Fg and k¢, this is the pair we are looking for. We may conclude that
apply is approximable.

Theorem 15 If f: Ax B — C s approzimable and A, B and C be Plotkin orders then

there is a unique approzimable relation curry(f): A — CP such that
apply o (curry(f) xidg) = f.
Hence PLT s cartesian closed.
Proof. Suppose X € A and p € CB. Define curry(f) by
X curry(f) pift V(Y. Z) e p. (X,Y) f Z.

We must show that curry(f) is approximable. Note that the relation ¢ C B x C, given by
Y g 7Ziff (X,Y) f Z,is approximable.

1. Let X € A and suppose B'<«B, C'<aC are finite. Then by Lemma 12, p = gN(B' x ') €
BY so by the definition of g, X curry(f) p.

2. Let po,p; € CP and suppose X curry(f) po and X curry(f) p; for some X € A. Since
B and C are Plotkin orders, it is possible to find pre-orders B’ <« B and C’ < C such
that poUp; C B’ x C'. By Lemma 12, p = ¢ N (B' x C") € BY. Of course, p F¢5 po, p1
and X curry(f) p.

3. Now suppose X' curry(f) p', X Fa X', and p' Fer p. If (Y, Z) € p then there is a
pair (Y',Z") € p’ such that Y Fp Y' and 7' k¢ Z. Since X' curry(f) p’ we have
(XY f 7. But (X,Y) Faxs (X, Y") and Z' ¢ Z so (X,Y) f Z. This shows that
X curry(f) p. So we may conclude that curry(f) is approximable.

To see that apply o (curry(f) x idg) = f, take (X,Y) € A x B and Z € C such that
(X,Y) f Z. Since C and B are Plotkin orders, by Lemma 12 there is a p € C'® with
(Y, Z) € pC f. Thus X curry(f) p and (p,Y) apply Z, so

(X,Y) apply o (curry(f) x idg) Z. (%)
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On the other hand, suppose equation (*) holds. Then thereis a p € CP such that X curry(f)
p and (p,Y) apply Z. By the definition of apply, there is a pair (Y',Z") € p such that
YEgY and (X,Y’) f 7. Now, X curry(f) p implies (X,Y") f Z'. Hence (X,Y) f Z.
To show that curry(f) is unique, let g : A — C® and h : A — CP be approximable rela-
tions such that
apply o (¢ x idg) = apply o (h X idp).

If X gpand (Y,Z) € pthen (X,Y) applyo (g xidg) Z so (X,Y) applyo (h x idg) Z.
Thus X & q for some ¢ € C'® with a pair (Y, Z') € ¢ such that Y g Y and Z' k¢ Z. If we
generate such a ¢ for each (Y, Z) € p then we can use them, together with the fact that & is
approximable, to show that there is an r € C'” such that X A r and r b5 p. Hence g C h.
A similar argument will show that 2 C ¢g. D

Corollary 16 If A and B are Plotkin orders, then |B*| =2 CPO(|A|,|B|).

Proof. By Proposition 5 we know that PO(A, B) = CPO(|A|,|B|). It is also clear that

PO(1 x A, B) 2 PO(A, B), and
PO(1, B4) = |B4|.

By Theorem 15 we know that curry defines a bijection
curry : PO(1 x A, B) — PO(1, B4)

(with inverse g — apply o (¢ x id)). The fact that curry and its inverse are monotone follows
immediately from their definitions. O

If £ is a functor on a category C of pre-orders then F' induces a functor |F'| on Id¢c
as follows. For an object |A| in Idg, |F|(J]A|) = |F(A)] and if f: A — B is approximable
then we define |F|(f) = |F(f)]. A similar set of definitions applies to multiary functors
such as the exponential and product. In particular, Corollary 16 shows that if F'(-,-) is the
exponential functor then |F| is the functor CPO(-,-). A simple argument will also show
that |A x B| = |A| x | B| so the product functions on C and Id¢ are the usual ones. It is one
of our primary themes to demonstrate that this equivalence between the functor categories
can be helpful in studying the properties of functors defined on various classes of algebraic
cpo’s. The equivalence evidently shows that Idpyr is a cartesian closed category. We will
use the equivalence frequently below to study other functors and classes.



Chapter 3

The Category of Profinite Domains

There are many instances in which it is helpful to look at functions between cpo’s which
satisfy conditions stronger than continuity. In particular, the class of continuous projections
and the corresponding class of embeddings play a crucial role in the solution of recursive
domain equations. These important classes of continuous functions suggest in a natural
way the choice of a particular category of cpo’s which we call profinite domains. The first
section of the chapter discusses projections and embeddings and how they are generalized
by the notion of an adjunction. We also present an interesting and important functor which
associates with an algebraic cpo its cpo of algebraic deflations.

For a category to serve as an appropriate universe of semantic domains there are two
primary conditions it must satisfy. First, it must be closed under the basic operations
which are being used to build types, and second it must have (canonical) solutions for
equations being used to specify denotations. Both of these considerations will be discussed
in later chapters. In the second section of the current chapterq we lay the goundwork for
such a discussion. To this end we present a simple set of conditions whereby the closure
under certain limits of a class of cpo’s can be determined. By using the ideal completion
correspondence discussed in Chapter 2, the condition can be made especially simple it the
cpo’s in the class are algebraic.

3.1 Adjunctions between posets

Let A and B be posets and suppose p: B — A and ¢: A — B are monotone maps. If
poq Jdidy and go p Cidp then p is said to be an upper adjoint and ¢ a lower adjoint. The
pair (p,q) is said to be an adjunction (or Galois connection) from B to A. If (p,¢) is an
adjunction and p o ¢ = idg then p is said to be a projection, ¢ an embedding, and (p,q) a
pe-pair. If, on the other hand, (p,¢) is an adjunction such that gop = id4 then (p, ¢) is said

to be a closure. We write (p,q) : B 2di, A, (p,q): B2 A or (p,q): B 2 A to indicate
that (p,¢) is an adjunction, pe-pair or closure respectively.

For example, if D and F are cpo’s with least elements and fst : D x £ — D is given by
fst(z,y) = x then fst is a continuous projection with fst': D — D x E given by fst(z) =
(v, Lg) as corresponding embedding. Similarly, snd is also a continuous projection. (It
is not true, however, that if f:F — D and ¢g: F — E are continuous projections then

29
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(f,g9): ' = D x E is a projection.)
In an arbitrary category, an arrow r : B — A is said to be a retraction if there is an arrow
r' 1 A — B (called a section) such that ror’ =idy4. If there is a retraction r : B — A then A

is said to be a retract of B. Note that for an adjunction (p,q) : B 2di, A, (p,q) is a pe-pair
if and only if p is a retraction with ¢ as a section and (p, ¢) is a closure if and only if ¢ is a
retraction with p as a section.

If {p,q) : F 24 D s an adjunction between cpo’s D and FE such that p is continuous
then ¢ sends finite elements of D to finite elements of E. To see this, suppose x is finite in D
and M is a directed subset of E. If ¢(x) T UM then « C p(¢(z)) C p(UM) = Lp(M). Since
x is finite, there is a y € M with @ C p(y) so ¢(x) C ¢(p(y)) C y. We say that the adjunction
(p,q) is continuous if p and ¢ are. In proving that the adjunction is continuous, it is not
necessary to check that ¢ is continuous, however, because a lower adjoint is always continuous.

To see this, suppose (p,q) : F 25D and M C D is directed. Since ¢ is monotone, we know

that ¢(L1M) 2 g(M). Now,

Lg(M) 2 g0 p(Uq(M))
Jg(lUpoq(M)) by the monotonicity of p

2 q(UM).

Hence ¢(LUM) = [lg(M) and ¢ is therefore continuous. We refer to a continuous upper
adjoint as a homomorphism of cpo’s.

In some places an adjunction is defined to be a pair of monotone functions p : B — A and
q: A — Bsuchthat p(Y) 3 X if and only if Y 1 ¢(X). Note, in particular, that p uniquely
determines ¢ and, conversely, ¢ uniquely determines p. It is easy to show that this definition
is equivalent to the one given above. Some more properties of adjunctions which will be
needed are summarized in the following lemma. The book [Gierz et. al. 1980] contains
proofs of these facts as well as many other details about adjunctions between posets.

Lemma 17 If (p,q) : B 2 A and ',q):C 24 B then
1. {pop',qgoq):C 244 (and similar results hold for pe-pairs and closures);

2. pogop=pandqgopoq=gq;

~

3. im(poq) = im(p) = im(q) = im(qop). O

We let CPO! be the category of cpo’s with continuous upper adjoints (homomorphisms)
as arrows. The sub-category of cpo’s with continuous projections is denoted CPOY. The
dual categories are CPO! and CPOY respectively. Other variants such as ALGY and
wALG! have the obvious meanings. If D and F are cpo’s and (p,q): E 25D then we set
pl =g and ¢! = p. If p is a projection we may write p¥ rather than p! and ¢ rather than

q.
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An especially important feature of adjunctions is that of duality. A diagram

C

in CPO! commutes if and only if the dual diagram

in CPO! commutes. As far as the solution of recursive domian equations goes, this gives
rise to a noteworthy equivalence between solutions constructed in CPO! and solutions con-
structed in CPO.
Definition: If D is an cpo then a continuous function [ : D — D is said to be a deflation
if fof=fLCidp. An algebraic deflation is a deflation whose image is an algebraic cpo. A
finite deflation is a deflation whose image is finite. An inflation is a continuous f : D — D
such that fo f=f Jidp. O

Images of inflations and deflations are always cpo’s. For if D is a cpo and r: D — D is
idempotent and continuous then for any directed M C im(r), UM = Ur(M) =r(UM) €

im(r). Deflations and inflations are closely related to adjoint pairs. If (p,q) : E 24, D then
gopis a deflation on £ and po ¢ is an inflation on D. On the other hand, if p: F — EFis a
deflation and D = im(p) then the corestriction p° : £ — D of p to its image is a projection
with the inclusion map from D into E as its corresponding embedding. This shows that
B[D] C B[FE] since an embedding sends finite elements to finite elements. But D N B[] C
B[D] so we must have B[D] = D N B[E]. Now, if ¢: D — D is an inflation and D is an
algebraic cpo then im(q) = F is also algebraic. Forif x € K and M = {y € B[D] | y C «}
then @ = [ | M since D is algebraic. But |[¢(M) = ¢(UM) = ¢(x) = « and ¢(M) C B[F]
since ¢° is a lower adjoint (with the inclusion map from F into D and the corresponding
upper adjoint).

Definition: If A is a pre-order then we denote by N(A) the set of normal substructures
of A, where if B,C' € N(A) then C Fya)y B if an only if for every X € C thereis a Y € B
such that X F4 Y. O
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Proposition 18 Let A be a poset. Then N(A) is a cpo. If A has property m then it is an
algebraic lattice. If A is a Plotkin poset then N(A) is a locally finite algebraic lattice (i.e.
{0 € B[N(A)] | # C 29 C y} is finite for each x,y € B[N(A)]).

Proof. Since A is a poset the order on N(A) is just subset inclusion. Suppose M C N(A) is
directed and X € A. If u C | X NJM is finite then u C B for some B € M. Since B<1 A
there is an X’ € B such that X F X’ F u. Hence UM € N(A). Obviously, UM is a least
upper bound for M. Let P(A) be the set of subsets of A, ordered by C. If A has property m
then U* : P(A) — P(A) is an inflation with image N(A). Since P(A) is an algebraic lattice
whose finite elements are the finite subsets of A, it follows that N(A) is an algebraic lattice
and has a basis of finite elements of the form U*(u) where u C A is finite. If A is a Plotkin
order then U*(u) is finite for each finite u, so there can be only finitely many elements below
it. Hence N(A) is locally finite. O

Lemma 19 Let D be a cpo. If p: D — D is a deflation then im(p) < D. Moreover, for any
pair p,q: D — D of deflations, ¢ C p if and only if im(q) C im(p).

Proof. Suppose y,z € M = im(p)N [x. Then « J p(x) Jy,z, so M is directed. Suppose
p,p' D — D are deflations. If p’ C p then for each z, p'(x) C p(p'(x)) C p'(p'(x)) = p'(x).
So p'(x) = p(p'(x)) and therefore im(p’) C iém(p). On the other hand, if im(p’) C im(p) and
v € D then p'(x) = p(p'(x)) E p(x) so p' Ep. O

Proposition 20 Let D be an algebraic cpo and suppose p : D — D is an algebraic deflation.
Then Blim(p)] = im(p)NB[D]<«B[D]. On the other hand, if A«B[D] then E = {UM | M C
A is directed} is the image of an algebraic deflation on D. Hence there is an isomorphism

between N(B[D]) and the poset of algebraic deflations on D.

Proof. If p: D — D is an algebraic deflation then im(p) < D by Lemma 19. Since im(p) is
algebriac, Blim(p)] < im(p) so Blim(p)] <« D. But Blim(p)] C B[D] so Blim(p)] = im(p) U
B[D] <« B[D].

Now, suppose A<«B[D] and F = {{[{M | M C A is directed}. For each € D, define
plx) =y € A| « Jy}. By the assumption on A, this is a well-defined surjection onto F.
To see that p is continuous, suppose M C D is directed. Then

Up(M) = Li{p(z) | » € M}
={{y € Alzdy} |z e M}
={yecAlyc AU M}
=H{yeAlUM Jy}
= p(LUM).

That p C id is immediate from the definition of p. Moreover,

pop(z) =1y € Alp(x) Iy}
={yeAll{reA|lxTz}dy}
= {yeAlzTdy}
= p(x).
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That FE is algebraic follows from its definition so p is an algebraic deflation. By Lemma 19
the correspondence p — B[im(p)] is therefore an isomorphism between the poset of algebraic

deflations on D and N(B[D]). O

Corollary 21 Let D be an algebraic cpo and suppose D' is the posetl of algebraic deflations
on D. Then D" is a cpo. If B[D] has property m then D' is algebraic and if B[D] is a Plotkin
order then D' is locally finite.

Proof. This follows immediately from 18 and 20. O

We next look at the relationship between normal substructures of pre-orders and pe-
pairs from the point of view of approximable relations. We thereby generalize the theory
exposited in [Scott 1981b] to the category of algebraic cpo’s. These results will be used
shortly to derive a universal domain technique for the Plotkin orders. The most immediate
application, however, is to study the existence of limits in various categories of algebraic

cpo’s. Let A and B be pre-orders. Write A ¢ B if there is an A’ <« B such that A = A’ (in

the category with approximable relations as arrows). We have the following:

Theorem 22 Let A and B be pre-orders.

1. Suppose A <« B and & is the order relation on B x B. If p = (B x A)NF and
qg=(AX B)NtE then p,q are approximable relations, po g =1idy and gop Cidg. In
other words (|p|, |q|) : |B| 2= |Al.

2. Conversely, if (|p|, lq]) : |B| == |A| for approximable relations p and q then A < B. In

particular,

A2 A ={YeB|Y (qop)Y}aB.

Proof. The proof of 1 is a straight-forward verification. To prove 2, we begin by showing
that A" <« B. Suppose u C A’ is finite and Z F u. For each X € w, there is an X’ € A such
that X p X' ¢ X. Let v = {X' | X € u}. Then Z p X’ for each X’ € v so thereisa V € A
such that Z pY F v. Now, Y pog Y so thereis a Z' € B such that Y ¢ Z’ p Y. But then
Z'pYqZ' soZ'e AT X €uthenY X' soY ¢ X. Since 7' p Y we get 7' qop X and
therefore Z' = X. Moreover, Z pY ¢ Z' so Z - Z'.

Let p = pN (A" x A) and ¢’ = gN (A x A’). That p’ is approximable follows immediately
from the approximability of p. If X € A and X ¢ YY" for Y, Y’ € A’ then X ¢ Z for some
Z € B such that ZF Y,Y’. Since A’<« B, thereisa Z' € A’ such that ZF Z’'+ Y, Y’. Hence
X ¢ Z'. The other conditions are easy to check. Now, suppose X € A. Then X pog X so
X qgY pXiforsomeY € B. But then Y € A’ so X p' o ¢’ X. Since p'o¢’ C idy, we conclude
that p’ o ¢’ =id4. Suppose on the other hand, that Y € A’. Then, by definition, ¥ ¢op Y.
Since ¢’ o p’ C idy we must have ¢’ o p’ = idys. This proves the desired isomorphism. O

Theorem 23 Suppose A is a pre-order and f: A — A is an approximable relation. Then
the following are equivalent:

1. |f] is an algebraic deflation.
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2. fof=fCidy and whenever X f Z, then XY fY F Z for someY € A.

Proof. (1) = (2). Suppose X f Z. Then Z € |f|(]X) and since im(|f|) is algebraic there is
a finite © € im(|f]) such that Z € « C|f|(]X). But « is finite in |A] so « = |V for some Y.
This Y has the property in the conclusion of (2).

(2) = (1). Certainly, if (2) holds then |f| is a deflation. To see that it has an algebraic
image, note that if X f X then | X = |f|(]1X) so | X is a finite element of im(|f]). If x € |A|
then

|fl(x)={Z| X f Z some X € «}
={Z|XFY fYF Zsome X €z and some Y}
=H{lY|Yerand Y fY}.

To see that this set is directed, suppose X f X and Y fY. If Z f XY then Z f Z'F XY
for some Z'. Hence Z - W fW F Z'F X,Y for some W. We conclude that im(|f]) is
algebraic. O

Definition: A class K of cpo’s is closed under homomorphic images if for every pair D, E
of members of K and homomorphism p : £ — D, the image of p is a member of K. A class
K of posets is closed under normal substructures if whenever B ¢ A and A is in K then B is

in K. 0O

Theorem 24 [f K is a class of posets which is closed under normal substructures then Idy
is closed under homomorphic images.

Proof. Suppose (p,q): E 24D is continuous and D, FE are in Idx. Let D' = im(p) and
FE'" = im(q). Note, in particular, that D’ is the image of an inflation and is therefore
algebraic. Furthermore, £’ = D’ by 173. and B[F’] « B[FE] by 20. Since K is closed under
normal substructures, B[E’] is in K so D’ = |B[E’]| is an object in Idg. O

3.2 Inverse limits

In this section we investigate further the categorical importance of the Plotkin orders. To
this end we introduce the inverse limit construction and show that ideal completions of
Plotkin orders are closely related to certain inverse limits of finite posets. The results below
generalize those in the orginal treatment by Plotkin [1976] and the results on adjunctions in
[Nifo 1981].

Let (I,>) be a directed, transitive and reflexive ordering. An inverse system (D;, d;;) (in
order type (I,>)) over a category C is a collection {D; | ¢ € I} of C-objects together with
a set of arrows d;; : D; — D; where 1,5 € I and 2 > j If ¢,5,k € [ and ¢ > j > k then the
maps dji, di;, d;j, are required to satisfy the equation

d]‘k O dij = diIm (>I<)

and for each ¢, d;; = idp,. Let A = (D;,d;;) be an inverse system in a category C. A
cone 12 D — A is an object D called the vertex of the cone together with a set of arrows
i = D — D; such that for each ¢ > j, d;; o pr; = pj. p is said to be a limiting (or initial) cone
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if for any cone v : D' — A there is a unique mediating arrow f : D" — D such that for each
1, pio [ = v,

Let A = (D;,d;;) be an inverse system in CPO. The inverse limit of A is the partial
order (D.,C) where the elements of D, are functions

z: 1 — U D;
el
such that for each ¢,5 € I with ¢ > j, (i) = x; € D;, and d;;(x;) = ;. The ordering is
determined termwise, i.e. if x,y € D, then x C y if and only if x; Cp, y; for each z € I.

Theorem 25 Suppose A = (D;,d;;) is an inverse system of order type I in CPO. For each
i, let d; 2 Do — D; by dy(x) = x;. Then

d={(dy):D.— D,
is a limiting cone in CPO.

Proof. The fact that the maps d,; are continuous and d is a cone is immediate from the
definitions. To see that it is a limiting cone, suppose (D, f;) is a CPO cone over A. Let
f:D— D.by f(x) = (fi(x))ier. Now (fi(x))ier is in D, because d;j o f; = f; for each
i >g. It M C D is directed, then f(LUM) = (f;(UM))ier = (Ufi(M))ier = LUf(M) so fis
continuous. By definition, d,; o f = f; for each ¢ and this uniquely determines f. O

The vertex of a limiting cone is unique (up to isomorphism) so we are justified in de-
noting the inverse limit of a CPO system A by limA. (Although it is easier to write D.
for hﬁ(Di,dm when there is no chance for confusion.) The theorem also reinforces the
legitimacy of the term “inverse limit”. We will be especially interested in inverse systems of
cpo’s where the functions d;;, « > j, are continuous upper adjoints. When ¢ > j it is useful
to define d;; : D; — D; to be the lower adjoint corresponding to d;;. It follows from Lemma
17 that dj; is uniquely determined by d;; and equation (%) holds even if k > j > 1.

Lemma 26 Let (D;, d;;) be a CPO! inverse system. If | >k > 1, then
1. dyjody T dyjody, and
2. dyj o dip(x;) E 2 for each x € D,.
Proof. For part (1),
dijody = (dgjody) o (dy odi)

= dk]‘ O (dlk O dkl) O dzk
C dy; o dig.

For part (2),
dk]‘ O dzk(l'z) = dk]‘ O dzk O d]m(l'k)
C dij ()

= l’]‘.
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Fix a CPO! inverse system (D;,d;;). We wish to define d;. : D; — D, by setting
(din(2)); = |] dij o dir(x)
k>ij

for each x € D; and j € I. By Lemma 261., the set on the right is directed so the supremum
in question exists in ;. Suppose that j > [. Then

di((dis(2));) = || dji o dyj o di(x)

k>

= |_| dklodzk(x)

~ (du(2))

s0 di(x) € Dy. It is easy to see that d;. is monotone. If © € D; then

di(di(z)) = || driodin(z) 3w
k>,
so dy; 0di Jidp,. If x € D, then
(dic 0 dui(w)); = || dij o din(w:) E x;

k>

by Lemma 262. Hence d;. o d.; T idp,. So (d.;,d;) is a continuous adjunction. Thus
d: D.— A where d is the set of arrows d,; is a cone over (D;, d;;) in CPO!. Next we show
that this cone is also limiting in CPO!.

Theorem 27 Let A = (D;, d;;) be an inverse system in CPO'. Then then the cone
d=(dy):D.— D,
which is a limiting cone in CPO is also limiting in CPO!

Proof. Suppose (p;)icr : D — A is a cone in CPO! where for each i,

adj
<p2',q2'> : D —J> DZ

If : > j then ¢;0d;; = ¢qj so giody 2 g odjiod;jody = gqjod.. We may therefore define

a monotone map ¢ : D, — D by ¢ = ||;¢; 0 dy;. As in the proof of Theorem 25 we define

p: D — D, by setting d,; o p = p; for each 2. Now,

d*zopoq:pzo(uq]od*])gpzo%od*zgd*z

J

so poq didp,. On the other hand, ¢ o p = |].q; o p; C idp. Hence ¢ is a lower adjoint for p
and d is a limiting cone. O

Recall that a transitive and reflexive ordering (I, >) is filtered if I°? is directed, i.e. for
each ¢,7 € I there is a k € [ such that & < 4,j. An direct system (D;,d;;) (in order type
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(I,>)) over a category C is a collection {D; | ¢ € I} of C-objects together with a set of
arrows d;; : D; — D; where ¢, € [ and j > . If 2,5,k € [ and k > j > 1 then the maps
d;, d;ij, d;y are required to satisfy the equation

djx o ds; = di, (%)

and for each ¢, d;; = idp,. Let A = (D;,d;;) be an direct system in a category C. A
cocone (1 A — D is an object D called the verter of the cone together with a set of arrows
ti © Di — D such that for each j > ¢, p; 0d;; = pj. p is said to be a colimiting cocone if for
any cocone v : A — D’ there is a unique mediating arrow f : D — D’ such that for each 1,

fo,uz':l/i-

Theorem 28 (Limit/colimit duality.) Let A = (D, d;;)i>; be an inverse system in CPO'.
Then the direct system
Al = (D, dji)ix;

has a colimit im Al in CPO' and
-

Proof. Let D, = hﬁA. We claim that D, is a colimit for Al. For each i € I there is a lower
adjoint d;. : D; — D,. By the duality between CPO' and CPOl, (disYier : Dy — Dy is a
cocone over Al. Suppose y; : D; — F is another cocone. Then ,ug : I/ — D; is a CPO! cone
over A so there is a unique adjoint (p,¢) : F 24, D, such that d,;op = ,ug for each ¢. Hence,
for each ¢, o di = pi. I (p',¢') 1 E 24D, and ¢ o din = p; for each i then dy; o p/ = !
for each 7 so p’ = p. Since ¢ is uniquely determined by p’ we have ¢’ = ¢. Hence ¢ is the

unique lower adjoint such that ¢ o d;. = p; for each i. We conclude that the cocone (d;.) is
colimiting and D, is therefore a colimit. O

Lemma 29 ||, d;. o d; is the identity function on D,.

Proof. Suppose j > 1, then d;. 0 d.; = (djx0d;;) o (dj; 0dy;) C dj ody;. Since [ is directed it
follows that {d;. o d.; | ¢ € [} is directed. Let @ € D, and let j € I. Then

dyj o (U dixody) = dujodjodyy = d,;.

O
When the arrows in the inverse system A are projections then so are the maps d.;. In fact,
in this case p is a CPOY limit. This follows from Lemma 29 together with the following:

Lemma 30 Let pn: D — A be a cone in CPO” where A is a CPO” inverse system in
order type I. Then M = {uF o u; | i € I} is directed and || M = idp if and only if u is a
limiting cone. O
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Proof of the Lemma for [ = w can be found in [Smyth and Plotkin 1982] or [Brookes
1984]. Niro[1981] observes that the lemma holds even if A is only a CPO! inverse system.
Definition: Let M = {A; | ¢ € I} be a set of posets indexed by a directed poset I such that
J < implies A; 9« A;. We refer to such a collection M as normal directed system (in order
type I). A class K of posets is closed under (countable) normal directed unions if whenever
M is a (countable) normal directed system of posets isomorphic to posets from K then | M
is isomorphic to a poset in K. O

Lemma 31 Let A be a pre-order and {A; | i € I} a set of normal substructures of A indexed
by a directed poset I. Suppose, moreover, that U;er A; = A and A; C A; whenever j < ¢.
For each i > j, let a;; = (A; x Aj) N k. Then A = (|Ail], |a;j]) is a CPO” inverse system
with [A| = JimA.

Proof. For each i, let a; = (A x A;)NF and af = (A; x A)NF. By the various results
about ideal completions together with Theorem 22, we know that the relations a;;, a;, a¥ are
approximable, A = (|4;], |a;;|) is an inverse system in CPO” and p : |A] — A is a CPO”
cone if  is the set of functions |a;]. Since J;e; A; = A we also have U;c;a¥ o a; =id4 so p
is a limiting cone by Theorem 30. Hence |A[ = limA. O

Theorem 32 Let A = (D;,dy;) be a ALG” inverse system. Then D, = HmA is alge-
braic and B[D.] = U;er dix(B[D;]). Hence, if K is a class of posets which is closed under

(countable) directed unions then Idy has (countable) inverse limits.

Proof. By Lemma 20 the posets d;.(B[D;]) form a normal directed system. If A =
User dix(B[D;]) then by Lemma 31, |A| = D. so D, is algebraic and A must be its ba-
sis. Now, if A is an Idz inverse system then B[D.] is isomorphic to a poset in K since K is
closed under normal directed unions. Hence D, 2 |B[D,]| must be an object in Idc so IdE
has inverse limits. O

Let M = {p; | ¢ € I} be the set of deflations on a cpo D where [ is a directed poset such
that ¢ > j implies p; J p;. For each ¢, let D; = im(p;). If ¢ > j, let p;; : D; — D; be the
restriction of p? to D;. Now, p;; is a projection with the inclusion map inclj; : D; — D; as
the corresponding embedding. Also, p? is a projection and the inclusion incl; : D; — D is
the corresponding embedding. If : > j > k then incl; 0 incl;; = incl; and incl;oincl;; = incl;
so by Lemma 17, we have p;i. o p;; = pg. and p; o p; = p;. Hence Ay = (Dy, pi;) is a CPO”
inverse system and pa = (p9)icr : D — Apr is a cone. Let us refer to ups as the cone of
projections determined by M. By Lemma 30 we have the following:

Lemma 33 Suppose y: D — A is a CPO! cone over an inverse system A in order type I
and let M = {p}op; | i€ I}, Let g : D — App be the cone of projections determined by
M. Then ppy is initial if and only if UM =idp. O

The following consequence of Lemma 33 describes sufficient conditions for a class K to
have CPO! inverse limits.

Theorem 34 Let C be a full sub-category of CPO. If C s closed under homomorphic
images and CY has inverse limits then CU has limits for inverse systems.
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Proof. Suppose (D, d;;) is an inverse limit in C!. Let D = lim (D;, d;;) and define deflations
dieody=pi:D—D. Let M = {p; | ¢ € I} and suppose pp; : D — Ay is the cone of
projections generated by M. Since C is closed under homomorphic images, this cone lies in
CP. To see that it is initial, by Lemma 33 it suffices to show that | |M = idp. But this
is exactly what is asserted by Lemma 29. Since C* is closed under inverse limits it follows
that D is in C so C! has limits for inverse systems. O

Corollary 35 Let K be a class of posets. If K is closed under (countable) normal directed
unions and normal substructures then Idx has (countable) CPO! inverse limils.

Proof. This follows from Theorem 24 together with Theorems 32 and 34. O

Proposition 36 If K is any one of the following classes of posets then Id,TC has limits for
inverse systems:

1. posets with property m,
2. posets with property M,
3. Plotkin posets.

Moreover, for each of the corresponding classes of countable posets Id,TC has countable inverse
limats.

Proof. In light of Lemma 11 and Corollary 35 it suffices to show that each of the three given
classes is closed under normal directed unions. Suppose that A = |J M where M is a normal
directed system of posets having property M. If u C A is finite then v C B for some B € M.
Since B has property M, u has a complete set of minimal upper bounds in B. but this
complete set is also complete in A since B < A. Hence A has property M. The argument for
property m is essentially the same. If each of the posets in M is a Plotkin poset and u C A
then v C B for some B € M and Uj;(u) < A. Thus A is a Plotkin order. O
Definition: A profinite domain is a cpo which is isomorphic to the limit of a CPO” inverse
system of finite posets. Define P to be the category of profinite domains and continuous
functions. O

This differs from the category of profinite posets as defined in [Nino 1981] in that the
profinite posets considered here need not have least elements.

Theorem 37 The following are equivalent for any cpo D.
1. D is profinite.
2. D is algebraic and B[D] is a Plotkin order.
3. D is isomorphic to a CPO! inverse limit of finite posets.
4. There is a directed set M of finite deflations on D such that || M =idp.
5

. D is algebraic and there is a directed set M of continuous functions f: D — D such

that im(f) is finite and UM =idp.



CHAPTER 3. THE CATEGORY OF PROFINITE DOMAINS 40

Proof. By Proposition 36, the category Id}’LT has limits for inverse systems. Since all of the
finite posets are objects in Id},LT, it follows that (1) = (2). That (2) = (3) is immediate.
If 1 : D — A is initial in CPO! and the posets in A are finite then M = {u} o p; | i € I}
satisfies the conditions of (4) so (3) = (4). The cone of projections determined by a set M
satisfying (4) gives D as a CPO” inverse limit of finite posets so (4) = (1).

To complete the proof we show that (4) < (5). That (4) = (5) is immediate. Suppose
f: D — D is a continuous function with a finite image such that f(x) C x for each x. Then
for any n and any x, f"*'(z) C f"(z). Since f has a finite image it follows that for some m,
[t (x) = f™(x). So define f., : D — D by setting f..(z) = f™(x) where "t (z) = f™(z).
This function is monotone, for if # C y, f™(z) = foo(x) and f"(y) = fwo(y) then for any
[ >m,n we have f..(z) = f'(x) C f(y) = fo(y). Since the image of f., is finite, it follows
that f. is continuous. Moreover, if € D and f"*!'(z) = f"(z) then f2 = f*"(z) = f*(z) =
foolx) so fu is a finite deflation. The set M., = {fs | f € M} is directed so there is a
continuous function ¢ = || M,,. We claim that ¢ is the identity map on D. To see this,
suppose e € B[D]. Now e = (UM )(e) so e C f(e) for some f € M. Hence e = f(e) = fu(e).
Thus g(e) = e and since D is algebraic we conclude that ¢ is the identity function. The
conditions of (4) are therefore satisfied. O

Theorem 37 has many noteworthy consequences. The remainder of this chapter is devoted
to listing some of them. The theorem is used in so many places in the remaining chapters
that it it will not always be mentioned explicitly. The equivalence between (1) and (2) is
used especially often. In light of Proposition 36, the following is immediate:

Corollary 38 P! has limits for inverse systems. [

We now quote an observation of Bracho [1983] that the poset of algebraic deflations on
a profinite poset form an algebraic lattice. Indeed, the results we have proved above allow
us to see that this lattice has an even stronger property:

Corollary 39 For any profinite poset D, the poset of algebraic deflations on D is an alge-
braic lattice with a locally finite basis.

Proof. This is am immediate consequence of Propositions 21 and Theorem 37. O

Now, if A is a countable Plotkin poset then there is a chain Ag< Ay <--- of finite normal
substructures of A with A = U,e, An. Hence, if D is an w-algebraic cpo (i.e. B[D] is
countable) then it is the ideal completion of a Plotkin order with a trivial root if and only if
it is the limit of a countable sequence of finite posets having least elements. Hence Plotkin’s
orginal name for the category of limits of countable CPO” inverse systems of finite posets
(having least elements) was SFP (for Sequence of Finite Posets). Objects of this category
are called strongly algebraic domains. This is the equivalence which is demonstrated in
[Plotkin 1976]. In [Nino 1981] it is shown that conditions (1), (2) and (3) in Theorem 37
are equivalent when the posets involved are assumed to have least elements. Equivalence
of conditions (4) and (5) with the other conditions came out of conversations between the
author, Gordon Plotkin and Dana Scott.

Corollary 40 Let BotP be the category of profinite domains having bottom elements and
continuous functions. Then BotPT has limits for inverse systems. O
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Figure 3.1: A Plotkin poset A such that |A| does not have property M.

Lemma 41 Profinite domains have greatest lower bounds for filtered systems. In other
words, if D is profinite then D" is a cpo.

Proof. Suppose & C D is filtered and let M be a directed collection of finite deflations
such that [|M = idp. For each p € M, p(S) is finite so there is a finite v C D such
that p(u) = p(3). If © € I is a lower bound for u then p(x) is a least element of p(<).
Hence min p(S) exists for each p € M. Now, if p T ¢ then min p(¥) C min ¢(3) so
the set N = {min p(¥) | p € M} is directed. Let © = [ [N and suppose y € I. Then
min p(3) C p(y) so

T = |_|Mmin p(3) E |_A|4p(y) =y.

Hence + C© . But if « C 2/ C S and p € M then minp(I) C p(a’) T p(I) so p(a’) =

min p(3). Thus
=] p@)= ] mnpS) ==
peEM peEM

and x is therefore a greatest lower bound for . O

Corollary 42 Any profinite domain has property m. O
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It is not the case, however, that a profinite domain always has property M. A Plotkin
poset A such that |A| does not have property M can be obtained by adding two chains (X,,)
and (Y,) to the binary braching tree as pictured in Figure 3.1. The ideals [{X,, | n € w}
and [{Y, | n € w} have 2 minimal upper bounds in |A|. Since Plotkin orders have property
M, this example also shows that a profinite domain need not be a Plotkin order. Moreover,
although |A| is profinite, its ideal completion cannot be profinite because it is not a Plotkin
order. Hence the class of profinite domains is not closed under ideal completion.



Chapter 4

Some Distinguished Categories of
Cpo’s

This chapter is devoted to studying a variety of miscellaneous categories which are related
to the profinites. Some of these are distinguished by various relevant properties, like that of
being cartesian closed or having certain interesting “definability properties”. We also discuss
the Scott topology on profinite domains and some other classes of posets. The last section
defines a compact Hausdorff topology on profinite domains.

4.1 Extensions of Smyth’s theorem

There is an interesting characterization of SFP which has important implications for the
search for new cartesian closed categories of domains. The following theorem was proved by
Smyth [1983] and answers a conjecture of Gordon Plotkin.

Theorem 43 If D and CPO(D, D) are w-algebraic c¢po’s with bottoms then D is profinite.
O

Smyth also shows that for any full cartesian closed sub-category of SFP the product and
exponentation functors must be exactly the ones we have defined. This yields the following:

Theorem 44 SFP is the largest cartesian closed full sub-category of w-algebraic epo’s with
bottoms. O

Proposition 45 If D is a cpo with a least element L and CPO(D, D) is w-algebraic, then
D is w-algebraic.

Proof. Suppose f: D — D is finite (as an element of CPO(D, D)). We claim that f(L)
is finite. Suppose ag C a3 C --- is a chain in D with f(L) = [, a,. For each n, define

fn:D — D by .
=l

43
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These functions are all continuous and |, f, = f so f = f, for some n. Hence f(Ll) =
fa(L) = a, and f(L) must therefore be finite. Now, suppose d € D and let f(x) = d be
the constant function determined by d. Since CPO(D, D) is w-algebraic, there are finite
functions fo C f; T --- such that f = [, f,. Hence [, fo(L) = f(L) = d. But f,(L)is

finite for each n so D must be algebraic. D

Corollary 46 If D is a cpo with a least element and CPO(D, D) is an w-algebraic c¢po then
D is profinite. O

Theorem 47 If D is an w-algebraic cpo and CPO(D, D) is w-algebraic then D is profinite.

Proof. The proot is quite lengthy and is divided into three claims corresponding roughly to
the three cases pictured in Figure 2.1. The first claim is the most difficult and corresponds
to Figure 2.1a. The proof of that claim is offered below in some detail. Proofs of the other
two claims do not differ much from those given in [Smyth 84| for similar cases (see Theorems
3 and 4 there). Let F be the poset of continuous functions from D into D.

1. If B[D] does not have property m then E is not w-algebraic.
Proof. Suppose B[D] fails to have property m. Then there is a finite set « C B[D] and
a sequence {z, | n € w} in B[D] such that
e 2z, Jz, for each n < m;
e 2, Ju for each n;

o if z, 1 x for each n then = A w.

Now, suppose f:w — w is monotone and n > f(n) for each n. Define a function

f :B[D] — D as follows.

T if © C z, for each n;
flz) = {Zf(n) where z,, is the least z; above x if there is one;
20 otherwise.

We show that f is monotone. Suppose x C y for z,y € B[D]. Suppose first that « C z,
for each n. If y also has this property then f(:z;) =xCy= f(y) In either of the other
two cases, f(y) = z,, for some m so f(:z;) =aC f(y) Suppose n is the largest &k such
tNhat zp Jx. If thefe is a largest m such that z,, Jy then we must lgave m Jn so

f(z) = 2, E 2, = f(y). If there is no such m then f(z) = z, C 20 = f(y). Finally, if
there is no n such that # C z, then this is also true of y so f(x) = z0 = f(y).

Suppose ¢ = id,, where id,, is the identity function on w. Suppose
g:B[D]—D

is a monotone function below 7 and g(x) = « for each # € u. If @ J u then g(«) J u so
either g(x) 2 zo or there is a largest n such that g(x) C z, (by our assumptions on the
zn's). Since g C ¢, it follows that for each n there is a largest k such that g(z,,) C z;. Let
[ :w — w be the function thus determined by g¢. It is clearly monotone and n > f(n)
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for each n. We claim that ¢ 2 f. If 2 C z, for each n then glx) Ci(a) =2 = f(:z;) If
x Ju then f(x) is the least z, J g(x) (and there always is such a z, because ¢ J g).

Now, consider the functions f, : w — w by

[ f(k) if £ <n;
falz) = {f(k) +1 otherwise.

Note that || f. = f so || f. = f. But for no n is it possible that ¢ C f,. For if this
were the case then for k J n we would have ¢(z;) C fn(zk) = Z(k)41 Which contradicts
the definition of f. This shows that no ¢ C ¢ which fixes u can be finite in the poset
of monotone functions from B[D] into D.

Suppose go = g1 £ --- is a sequence of monotone functions from B[D] into D such
that [ |g, = ¢. Then there is an n such that g,(x) = x for each « € u. But we have just
shown that no such ¢ can be finite. It follows that the poset of monotone functions
form B[D] into D cannot be w-algebraic. But by Lemma 4 this poset is isomorphic to
K. This proves the claim. 0O

2. If B[D] has property m but does not have property M then B[FE] has continuum many
finite elements and therefore cannot be w-algebraic. (This case corresponds to Figure

2.1b.) O

3. If B[D] has property M but is not a Plotkin order then F is not w-algebraic. (This
case corresponds to Figure 2.1¢.) O

Since the three claims exhaust all of the cases in which the basis of D is not a Plotkin
order, it follows that D must be profinte. O

4.2 Bounded complete cpo’s

Definition: A pre-order (A,F) is said to be bounded complete if A is non-empty and for
every bounded finite v C A there is an X € A such that X - v and if Y - w then YV F X.

Such an element X is called a least upper bound for u. O

Lemma 48 Let BCALG be the category of bounded complete algebraic epo’s and continuous
functions.

1. BCALG = Idx where K is the class of bounded complete pre-orders.
BCALG is cartesian closed.
BCALG CP.

BCALG is closed under homomorphisms.

BCALG' has inverse limits.
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Proof. We omit the well-known proofs of (1) and (2). If A is bounded complete then it surely
has property m. If u C A is finite then #*(u) is finite but one can show that U'(u) = U*(u).
Hence A is a Plotkin order and |A| is therefore profinite. Hence (3) follows from (1). To
prove (4) and (5) one shows that K is closed under normal substructures and normal directed
unions. 0O

As an immediate corollary of the lemma, note that all upper semi-lattices are Plotkin
posets. The bounded complete posets form a particulary nice class in a number of regards.
One of these concerns the notion of first order aziomatizability. All of the necessary facts
and definitions from first order model theory can be found in [Barwise 1977]. We will need
the following:

Lemma 49 Let A and B be posets and suppose u C Ax B. If X € A and Y € B then
MUB(u) = MUB(fst(u)) x MUB(snd(«)) where

fst(u) ={X' € A | (X")Y') € u for some Y' € B}, and
snd(u) = {Y' € B| (X", Y') € u for some X' € A}.

O

Proof. First suppose (X,Y) € MUB(u). Then clearly X I fst(u). If X I X' 3 fst(u)
then (X,Y) 2 (X",Y) J uso X = X'. Hence X € MUB(fst(u)). A similar argument
shows that Y € MUB(snd(u)). To prove the converse, suppose X € MUB(fst(u)) and
Y € MUB(snd(u)). Clearly, (X,Y) Jw. If (X,Y) 23 (X",Y’) 2 u then X 3 X’ 3 fst(u)
and Y J Y’ Jsnd(u) so (X,Y) = (X", Y’). Thus (X,Y) € MUB(u). O

Definition: Let us say that a class of models K for a first order language £ is a countably
A-elementary class if there is a set T' of first order sentences in an expansion of £ such that
the class of reducts to £ of countable models of T 1s K. O

Proposition 50 The class of bounded complete posels is the largest countably A-elementary
class of posets having property M which is closed under the product operation.

Proof. Let T be a first order theory for a language £ having a binary relation symbol < and
suppose T' contains the poset axioms for <. Suppose, moreover, that if A is a model of T
then A x A is a model of T" and that every model of T" has property M. Let A be a model of
T in which the interpretation of < is not bounded complete. Then there is a finite (possibly
empty) set u C A such that MUB(u) has at least two elements. Suppose u has n elements.
For each integer m > 2 we show that there is a model of T" satisfying the axiom

G = vy Ve [(\ vi £ V) A (vi € MUB({cy,...,¢cn}))]

£
for constants ¢q,..., ¢, not contained in L. It is easy to check that ¢, really is a first order
statement. Note that A is a model of ¢; if ¢q,..., ¢, are interpreted by the elements of w.

So suppose we know that T'U {¢,,} has a model B in which ¢q,...,c, are interpreted by
Xi,..., X,. We claim that Bx B is a model of TU{¢,,11} when ¢1,..., ¢, are interpreted by
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(X1, X1),..., (X0, Xy). Tosee this, let v = {Xy,..., X, } and w = {(X1, X1),...,(Xn, X))}
Then

MUB(w) = MUB(fst(w)) x MUB(snd(w)) by 49
— MUB(v) x MUB(v).

Since m > 1 there are m? elements in MUB(v) x MUB(v). Since m?2 >m+4+1form > 1
we are done. Now, for each m, ¢,,411 — ¢, so we may deduce that any finite subset of
TU{d,, | m > 2} has a model. Hence, by the Compactness Theorem, there is a model C' of
T U{¢, | m > 2}. Butif C interprets ¢1,...,¢, by {¥1,...,¥,} then MUB({Y1,...,Y,})
must be infinite. Hence C' cannot have property M, contradicting the assumption on models
of T'. We conclude that all of the models of T" must be bounded complete. O

Corollary 51 If K is a countably A-elementary class of posets and Idx s cartesian closed
then Idx € BCALG.

Proof. Immediate from Theorem 47 and Proposition 50. O

The category of bounded complete algebraic cpo’s and continuous functions has two
interesting sub-categories which we mention later. A poset A is coherent when for every
finite u C A, if u is pairwise bounded then u has a least upper bound. It is not hard to check
that the algebraic cpo’s having coherent bases form a cartesian closed full sub-category of
the conisistently complete algebraic cpo’s. However, the best known sub-category is that of
algebraic lattices. One can show that these form a ccc and are exactly the algebraic cpo’s
with a basis that is an upper semi-lattice. The methods used in the proof of Lemma 48 can
be used to show that these two categories also have the properties (2)—(5) listed there.

An information system is a 4-tuple

<D, AD, COHD7 |_D>

where Ap € D, Conp is a set of finite subsets of D and Fp is a binary relation between
Conp and D. They must satisfy the following axioms:

1. u € Conp, whenever u C v € Conp,

2. {X} € Conp, whenever X € D,

3. uU{X} € Conp, whenever u Fp X,

4. utp Ap for every u € Conp,

5. ukp X, whenever X € u,

6. ifvbFp Y forall Y € uwand u Fp X, then v Fp X.

An arrow f : D — & between information systems D and £ is a relation between Conp and
Cong such that:

1.0 f0,
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2. ifu fvand u fw then u f (vUw),
3. if u' Fp X for each X € w, v fvand v Fp Y then o' f {Y}.

If ¢g:D— & and f:& — F are arrows between information systems D, and F then
fog:D— F is given by letting u (f og) v if and only if there is a v such that v g v
and v f w. The arrow idp : D — D given by letting u idp v if and only if u Fp Y for each
Y € v is a two-sided identity for the o operation. It is straight-forward to verify that the
information systems with these arrows form a category which we shall call ISYS.

There is a close relationship between the category of bounded complete pre-orders with
approximable relations and ISYS. We show that in a very direct way, these categories are
equivalent. Let an information system D be given and let - be the binary relation on Conp
given by u = v if and only if u Fp X for each X € v. That I is transitive and reflexive follows
from axioms (5) and (6). Axiom (4) asserts that Conp has a least element with respect to
. Suppose u,v,w € Conp and w F u,v. Repeated application of (3) shows that « UvUw is
consistent so u U v is consistent by (6). Hence Conp is a bounded complete pre-order. The
unused axiom (2) is a non-triviality assumption which prevents D from having superfluous
members.

If f:D — & is an arrow between information systems then f: Conp — Cong is an ap-
proximable relation and the composition for approximable relations is identical to that for
information systems. To complete the proof of equivalence we must show how to obtain
an information system from a bounded complete pre-order and show that this operation is
inverse to the one given above for getting a pre-order from an information system. So let A
be a bounded complete pre-order and suppose Con is the set of finite bounded subsets of A.
If w,v € Con then say u F v if and only if X F4 u implies Y 4 v. If A is any least upper
bound of @) it is easy to check that (A, A, Con,t) is an information system. Suppose Fq is
the ordering induced by F on Con. Say

f:(A,Fa) — (Con, k)
is given by X f wif an only if X F4 u. Let
g : {(Con,tqg) — (A, F4)

be given by u ¢ X if an only it X F4 wimplies Y F4 X. That f is approximable is immediate
from its definition. To see that ¢ is approximable, suppose v g X and v g Y. Since A is
bounded complete, there is a least upper bound 7 for {X,Y}. If Z' 4 u then Z' F XY
so Z' 4 Z. Hence u g Z'. The other conditions for approximability of ¢ are easy to check.
That f and ¢ are inverses of each other is also easy to see. Thus (A, F4) = (Con, ko) and
we may conclude that ISYS and the pre-orders with approximable relations are equivalent

categories.

4.3 Other cartesian closed sub-categories

To obtain a cartesian closed category of algebraic cpo’s which is closed under CPO? inverse
limits one can begin with any class K of finite posets that includes 1 and proceed as follows.
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First, close the class under product and exponential operations to obtain a class Ky. Now,
let K be the class of cpo’s isomorphic to limits of CPOY inverse systems from K;. The
resulting class K will have the desired closure properties. The reason this works involves
facts about algebroidal categories (see [Smyth 1978]) and the continuity of functors (which
will be discussed later).

There may be something unsatisfactory about the result one obtains in this way, however.
Unless a profinite domain D is given as an inverse limit of posets from Ky it may be quite
difficult to tell whether D is in K. Indeed, it may be difficult to tell whether D is in Ky!
What we are facing is the intrinsic characterization problem. Apparently the question, “is
D in K77 must be answered by locating an appropriate inverse system in Ky. Unless the
order structure of D provides some hint as to the proper choice of inverse system we have
little hope of answering the question. The trick to understanding K, therefore, is to provide
some simple order property of posets which, if satisfied by D, qualifies it for membership in
K. In other words, it is desirable to characterize K intrinsically.

We have seen two good examples of this. If Ky is the class of all finite posets then a
poset D is in K if and only if it is an algebraic cpo and B[D] is a Plotkin order. As a second
example, if Kg is the class of finite bounded complete posets then K is the class of bounded
complete algebraic cpo’s. These two examples have several things in common. In particular,
both classes Ky are closed under normal substructures and in both cases Ko = K;. What
we illustrate below is that when a class of finite posets satisfies these two conditions then
it will generate a very pleasant category of profinite domains. This, in essence, transforms
an infinitary closure problem into a finitary one. The illustration is by way of example; we
present a new cartesian closed category of what are here called short posets.

Definition: Suppose A is a pre-order with property M. Then A is short if for every finite
non-empty v C A and pair X,Y € MUB(u), either {X,Y} is unbounded or X ~ Y (i.e.
XFYand YFX). O

Proposition 52 A pre-order A with property M is short if and only if for every finite subsel
u C A, U (u) = U (u).

Proof. We prove necessity (=) by contradiction. Suppose v C A is finite and U* (u) # U*(u).
Say Z € U*(u)—U"(u) and suppose Z J Z' € MUB(uU] Z). We cannot have Z € MUB(|Z")
so there is some Y € U'(u) — |7’ such that Z J Y. Note that ¥ € MUB(u U |Y). Say
Z' 33X e MUB(uUY) FXCVYorY JX then Y = X C 7' which is contrary to
our assumption on Y. Hence X,Y are distinct elements of MUB(uv U |Y') bounded by Z.
Thus A cannot be short. To see the other direction (<) suppose A is not short. Then there
is a finite v C A and a distinct pair X, Y € MUB(u) such that {X,Y} is bounded. Say
Z € MUB({X,Y}). Then Z ¢ MUB(u) so Z ¢ U'(u). But Z € U*(u) so U'(u) # U*(u). O

The following Lemma is analogous to Lemma 49.

Lemma 53 Suppose A and B are posets and p is a finite set of functions mapping A into
B. Consider the following conditions for a function f: A — B.

1. f is monotone minimal upper bound for p.
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2. for each X € A, f(X) is a minimal upper bound for
{9(X) lgepy U{S(Y) | Y CX}

Then (1) = (2). If A is well-founded (i.e. every subset of A has a minimal element) then
(2) = (1).

Proof. (1) = (2). Suppose f € MUB(p) is monotone and there is an X such that f(X) ¢
MUB(#) where

t={g(X) g ep U{f(Y)|YEX} (*)
Say 7 € B such that t C Z C f(X). Define f': A — B by

f(v) = {f(Y) %f Y #£X;
A ifY = X.
Since Z € f(X) we know that f'c f. Suppose g € p. If Y # X then g(YV) C f(YV) = f/(YV).
But ¢(X) € t so ¢(X) C Z = f'(X). Hence p C f'. To see that f’ is monotone, suppose
VY€ Aand Y C Y'. We treat three separate cases. Case 1. If Y)Y’ # X then f/(V) =
FMEfY)=f(Y'). Case 2. If XCVY then f(X)=7ZLC f(X)C f(Y)= f(Y'). Case 3.
HYecX then f/(Y)=f(Y)etand tC Z = f'(X) so f(Y)C f(X). This shows that f’
is monotone so f ¢ MUB(p) a contradiction.
(2) = (1). Suppose A is well-founded. Let f': A — B be a monotone function such
that f O f" Jp. WE={Z| f(Z) # ['(Z)} # 0 then there is a minimal element X of E.
Let ¢ be defined as in (*). Then

t={g9(X) lgepU{f(Y)|YCX}

because of the minimality of X. Hence f(X) 3 f/(X) J ¢. But f(X) € MUB(?) so
f(X) = f'(X) which contradicts the choice of X. Hence ¥ = () and f = f’. Moreover, f is
monotone because f(X) J{f(YV)|Y c X} for each X. O

Lemma 54 If A and B are finite, short posets then 1, A x B and CPO(A, B) are short.

Proof. 1t is obvious that 1 is short. Let p C A x B and suppose (X,Y) and (X', Y”) are
distinct minimal upper bounds of p. Then either X # X" or Y # Y'. If X # X' then
{X, X’} is unbounded since X and X’ are minimal upper bounds of fst(p) (by Lemma 49)
and A is short. Thus {(X,Y), (X', Y")} is unbounded. The other case (Y # Y”) is essentially
the same. We conclude that A x B is short.

Let p € CPO(A, B) and suppose f,g € CPO(A, B) are minimal upper bounds for p.
Since A is finite, there is a minimal X € A such that f(X) # ¢(X). By Lemma 53, f(X)

and ¢g(X) are minimal upper bounds of

={nX) [hepiU{f(Y)[Y X}, and
{h(X) [ hepyU{g(Y) | Y EX]

respectively. But s = ¢ since f(Y) = ¢g(Y) for each Y € X. Since B is short, it follows that
{f(X),9(X)} is unbounded. Hence {f, ¢} is unbounded and CPO(A, B) is short. O
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Corollary 55 The category of short pre-orders and approximable relations is cartesian
closed. Hence the equivalent category of algebraic cpo’s with short bases and continuous maps
is cartesian closed. Moreover, this latter category is closed under CPO! inverse limits.

Proof. Suppose A and B are short and consider the pre-order B4. If u C B4 is finite then
there are finite normal substructures M < A and N < B such that « € NM 4 B4, Since A and
B are short, M and N are also short. But N is isomorphic to CPO(M, N) which is short
by Lemma 54. From this it follows that B4 is short. A similar proof shows that A x B is
short if A and B are short. Hence the short pre-orders form a ccc. It is easy to show that
the short pre-orders are closed under normal substructures and normal directed unions so
the algebraic cpo’s with short bases have CPO! inverse limits by Corollary 35. 0

4.4 The Scott topology

Definition: Let D be a cpo. If x,y € D then we say that y is way below x and write
y < x if for every directed subset M C D, | [M 3 x implies z J y for some z € M. D is
continuous if there is a set B C D called a basis for D such that for each x € D, the set
t={y € B|ax> y} is directed and = = | |2. O

Continuous lattices were introduced by Dana Scott [1972] as a generalization of algebraic
lattices. The theory of continuous lattices is given a detailed treatment in [Gierz et. al.
1980]. A leisurely discussion of continuous cpo’s with least elements appears in [Weihrauch
and Deil 1980]. Note that we have not assumed that a continuous cpo has a least element.
One can show that the continuous lattices are exactly the continuous retracts of algebraic
lattices. Much of the more general theory of continuous cpo’s can be developed by analogy
with that of continuous lattices. For example, the continuous cpo’s are exactly the continuous
retracts of algebraic cpo’s. In fact we have the following

Proposition 56 If D is a continuous cpo with basis B then D is a conlinuous projection of

|BI.

Proof. Let D be a continuous cpo with basis B. Let p:|B|— D by p(M) = [JM for any
ideal M C B and let ¢: D — |B| by g(z) = {y € B | @ > y}. It is obvious that p is
continuous and ¢ is monotone. Now, for x € D,

poq(z) =p({y € B| x> y})
=WH{yeBlz>y} .

=

To complete the proof we need the following fact from the theory of continuous cpo’s: if
LM > y for a directed set M then x > y for some v € M (see Lemma 3.3 in [op. cit.]).
Thus, for M C B an ideal,

qop(M) = q(LUM)
={y | UM >y}
CM
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so (p,q) : |B] 2= D is continuous. O
We will use assume the following basic fact from the topological theory of continuous
cpo’s. The proof is straight-forward:

Lemma 57 If D is continuous with a basis B, then sets of the form {y | y > x} where
y € B form a basis for ¥.D. O

We also note that a continuous cpo D is algebraic if and only if it has B[D] (= finite
elements of D) as a basis. Hence there is a close link between (topological) bases for XD
and (order-theoretic) bases for D.

Lemma 58 Let D be a continuous cpo. Then an open set K C D is compact if and only if
K = Tu for a finite set v C B[D].

Proof. To prove necessity (=), let © € K and suppose L is a maximal descending chain in
K N Jz. We claim that L has a minimal element. Suppose it does not and let C' = N{]y |
y € L}. Suppose z € KNC. If z € L then it is a minimal element of L. But if z £y for
each y € L then the maximality of L is contradicted. Hence K N C' = () and

KCD-C=U{D-ly|yeL}).

Since K is compact, there is a finite set v C L such tht K CU{D — |y | y € u}. So K C
D — |y where y is the least element in u. But this is impossible because y € K. We conclude,
therefore, that L has a least element 2’. Since D’ is continuous, ' = | {y € D | 2’ > y}.
Since K is open, this means there is a y € K such that 2’ > y. But 2’ is minimal in K so
' = y. Hence 2’ > 2’ and 2’ is therefore finite. We have shown that for each € K there
is a finite ' C x such that 2’ is minimal in K. Hence K = 15 where S is the set of minimal
elements of K. Moreover, each minimal element of K is finite. Since K is compact and Tz
is open for a finite x, there is a finite subset u C S such that K = Tu. (Indeed, S itself is
finite.) The proof of the converse (<) is trivial. O

Remark: A similar proof can be used to show that an arbitrary cpo D is compact if an
only if the empty set has a finite complete set of minimal upper bounds in D.
Definition: Suppose S is a set and 7 is a topology on S. A subset K C S is I-Lindelof if
whenever O C 7 covers K, there is an open set O € O such that K C O. 0O

Corollary 59 If D is an arbitrary cpo then K C D is a 1-Lindelof open set if and only if
K =Tz for some x € B[D].

Proof. 1f K is 1-Lindel6f then by Lemma 58, K = Tu for a finite v C B[D]. But K is
1-Lindelof and {Ty | y € u} is an open cover so K = Tz for some z € u. On the other hand,
if 2 € B[D] then any open cover of Tx is covered by any member of the cover that contains
z. O

Lemma 60 Let A be a pre-order and suppose S, T C A. Then T is a complete set of
minimal upper bounds for S if and only if

[1x=y1w

XeSs YeT
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Proof. To shorten the notation, let L = Nxecs TX M = Uyer TY. To prove (=), suppose
T is a complete set of minimal upper bounds for S and Z € L. Then X - S so X Y for
some Y € T. Hence Z € M. On the other hand, if 7 € M then Z F S so Z € L. To prove
the converse (<), suppose L = M and Y € T. Then Y € M = L so Y - S. Hence T is a
set of upper bounds of S. If Z S then Z € L =M so ZF Y for some Y € T. Thus T is a
complete set of upper bounds. O

Definition: Let S be an set and suppose S is a collection of subsets of S. Let us say that &
is quasi-conjunctive if for every finite set u of elements of & there is a finite set v of elements
of & such that Nv =Uwv. O

Theorem 61 Let D be a continuous cpo. Let B be the set of compact open subsets of D
and let By be the 1-Lindelof open subsets of D. Then

1. The following conditions are equivalent:

(a) B is a basis for XD;
(b) By is a basis for ¥.D;
(¢) D is algebraic.

2. The following conditions are equivalent:

(a) B is a basis which is closed under finite intersections;
(b) By is a quasi-conjunctive basis;

(¢) D is algebraic and B[D] has property M.
3. The following conditions are equivalent:

(a) By is a basis and every finite S C By is contained in a finite quasi-conjunctive
collection 3" C B;.

(b) D is profinite.
4. The following conditions are equivalent:

(a) By is a basis which is closed under finite intersections;

(b) D is an algebraic lattice.

Proof. (1) 1t is clear from Lemma 58 and Corollary 59 that (1a) and (1b) are equivalent. To
see that (1b) = (lc), suppose By is a basis for ¥D. Suppose @ € D and let M = B[D]|N |x.
We claim that M is directed. Suppose y,z € M. Then Ty and Tz are in By and =z € Ty N Tz.
Since By is a basis for XD, there is a U € By such that x € U C Ty N Tz. Now U = T2/
for some 2’ € B[D] so « J 2’ J y,z and the claim is established. Since D is continuous,
=N where N ={y | 2> y}. lfy € Nthenaz € O—{z]z> y} and O is open.
Since By is a basis for XD, there is a U in By such that x € U C O and U = Ty’ for some
y" € B[D]. Hence y C ¢’ C = and since y was arbitrary we must have z = | M C || N. But
LN C xsince N C M. Hence x = [N and D is therefore algebraic. That (1c) = (2b) is

immediate from Lemma 57.
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(2) Suppose (2a) holds. A finite subset of By has the form U = {Tx | © € u} where u is
a finite subset of B[D]. However, each of the sets Ta is in B so (U is in B. Hence there is a
finite set v C B[D] such that VU = U{Tx | « € v}. This shows that By is quasi-conjunctive.
Thus (2a) = (2b). Now, suppose Bj is quasi-conjunctive. By part (1) above, D is algebraic.
Suppose u C B[D] is finite. Then N{Tz |z € u} = U{Ty | y € v} for some finite v C B[D)]
since By is quasi-conjunctive. Thus, by Lemma 60, v is a complete set of upper bounds for
u. We conclude that (2b) = (2¢). Suppose D is algebraic and B[D] has property M. Then
B is a basis for XD by (1). If v and v are finite subsets of B[D] then Tu U Tv = Tw where

But w is finite, so Tw € B. Hence B is closed under finite intersections. Thus (2¢) = (2a).

(3) First we show that (3a) = (3b). By part (1), D is algebraic. Suppose u C B[D]
is finite. Then & = {Tz | @ € u} is a finite subset of By. Suppose 3’ C By is finite,
quasi-conjunctive and § C ', There is a finite set v’ C B[D] such that v C u' and
3" = {Tz | « € v'}. Since §' is quasi-conjunctive, we have u’ <« B[D] because of Lemma 60.
This shows that B[D] is a Plotkin order, so D is profinite. To see that (3b) = (3a), suppose
D is profinite and & C By is finite. Then & = {Ta | € u} for a finte w C B[D]. Since D is
profinite, B[D] is a Plotkin order so u C «’ <« B[D] for a finite «'. Thus &' = {Tz |z € v/} is
a finite quasi-conjunctive subset of By with & C &',
(4) Left to the reader. O

Lemma 62 If D is algebraic and O C D is open then O is an algebraic cpo and B[O] =
B[D]NO.

Proof. That O is a cpo is immediate from the fact that it is upward closed and D s a cpo.
Let x € O and set M = B[D] N |z. Since D is algebraic, ||M = z. But O is open so
ONM#0. fye ONM then N = M N Ty is directed and | | N = z. Since the elements
of N are finite in D they are also finite in O. Hence B[D] N O forms a basis for O. If
x € B[O] then « = [| M for some directed M C B[D] N O. But « is finite so # € M. Hence
B[O] € B[D] N O. The reverse inclusion is obvious so we must have B[O] = B[D] N O. O

Corollary 63 A compact open subset of a profinite domain is profinite.

Proof. Suppose D is profinite and K C D is compact open. Then K = Tu for some finite
u C B[D] by Lemma 58. Also, by Lemma 62, K is an algebraic cpo with B[K] = B[D]N K.
Now, suppose v C B[K] is finite. Since B[D] is a Plotkin order, there is a finite set A such
that uUv C A<«B[D]. We claim that B = AN K <«B[K]. Suppose € B[K]. Since A<B[D],
there is a largest element 2’ in AN |x. Since € Tu, u C A and K is upward closed, we
must have 2’ € B[K]. Thus 2’ is in B and we conclude that B C B[K]. This shows that
B[K] is a Plotkin order so K is profinite. O
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X4

Figure 4.1: A Scott compact poset which is not Lawson compact.

4.5 The Lawson topology

Definition: Let D be a cpo. The Lawson topology AD on D has a sub-basis Scott open sets
and sets of the form D — Tz where x is an arbitrary element of D. O

Let D be an algebraic cpo and suppose B[D] has property M. We show that the collection
B of sets of the form Ta — Tu where € B[D] and u C B[D] is finite form a basis for the
Lawson topology on D. Since Tz is Scott open for each x € B[D], such sets are certainly
Lawson open. To see that any of the sets in the sub-basis of the Lawson topology given
above can be written as a union of sets in B, suppose U is Scott open and x € U. Then
r=|UB[D]N |z so UNB[D]N [z # §. Hence there is a finite y € U such that € Ty.
Thus any Scott open set is a union of elements of B. Now suppose U = D — Tz and y € U is
arbitrary. Since D is algebraic, there must be a z € B[D] which lies below « but not below
y. Let 2/ be any finite element below y and consider the set V = 7z’ — TMUB{z, 2’}. Since
B[D] has property M, the set MUB{z, 2’} is a finite subset of B[D] and + € TMUB{z, 2'}.
Hence y € V C U. This shows that B is a sub-basis for the Lawson topology. To see that
these sets actually form a basis, suppose U = Tz — Tu and V = Ty — Tv are in B. We show
that U NV can be written as a union of sets in B. Let

w=U{MUB{z,y,z} | z € uUv}

and set W ={Tz—Tw |z € MUB{x,y}}. If a € UNV then a € Tz for some z € MUB{z,y}
by property M and a ¢ Tz for any z € w. Thus UNV C W. If a € W and a € Tu then
a 1 z for some z € u so a J 2’ for some 2z € MUB{z,y,z}. But then a ¢ W. Soa € W
implies ¢ € Tx — Tu. Hence W C U. A similar argument show that W C V. We conclude
that W = U NV and B is therefore a basis for D.
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Lemma 64 Suppose A = (A;,a;j)ics is an inverse system of finite posets in CPO”. Let
each A; be given the discrete topology and give [[; A; the product topology. Then the induced
topology on imA considered as a subset of I[; Ai coincides with the Lawson topology on
ImA considered as a cpo.

Proof. 1t simplifies matters to assume that A; < A; for each ¢ < j and define a,;(x) = | {y €
A; |« Jy}. We show first that if n € I and

U:HOZXHAZ

1<n 1>n

then U'N im A is open in the Lawson topology on JimA. Since sets having the form of U/
provide a basis for the product topology on []; A; this will show that the induced topology
is finer than the Lawson topology. Let

S ={x €0, | amm(x) € O for each m < n}
and for each x € 9, let
Us=12—U{1y |y €A, and y Tz but y ¢ 5}

where & abbreviates a;.(x). Since A, is finite, each U, is Lawson open. Note that for
v € imA, z € U if and only if z, € S. Now, if € S and y € U, then y, € Ssoy € U.
Hence U, C U for each x € 5. Suppose x € U N hﬁA. Then x, € S so z, € U,,. Hence
Un JimA is equal to the union of the sets U, such that € S and is therefore open in
the Lawson topology. To prove that a Lawson open subset of JimA is open in the induced

topology, suppose z,y',....y* € A, for some n and consider the set

U=1tz— (15" U---Uy") C limA.
Let O ={2€ A, |2 3Jxbut z 2y for: < k} and set V = [[; O; where O; = A, for i #n
and O, = O. Then z € V if and only if z; € O if and only if x € U. Since V is open in
the product topology and sets like U form a basis for the Lawson topology on lim A, we are
done. 0O

Corollary 65 The Lawson topology on a profinite domain is a Stone space, i.e. if D is
profinite then AD is compact, Hausdorff and zero dimensional.

Proof. Let A be a CPOY inverse system of finite posets and suppose z € [[; A; — limA.
Then, for some k and j, ag;(xx) # ;. Solet Op = {ax} and O; = {z;}. Then x € U =TI, O;
where O; = A; for each ¢ # k, j. Moreover, U N imA = (0. Since U is open, this shows that
[[; Ai is a closed subspace of JimA. But [[; A; is a Stone space and a closed subspace of a
Stone space is itself a Stone space. Hence, by Lemma 58 the Lawson topology on a profinite
domain is a Stone space. O

Of course, if a set is not Scott compact, then it is not Lawson compact. However, it is
not true that any Scott compact cpo is also Lawson compact. A counter-example appears
in Figure 4.1. Let D be the poset pictured there. Since D has the acc, all of its members
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are finite, so for each ¢ € w the set TX; is Scott open. Moreover, the sets D — Y an D — 17
are Lawson open. Although these sets cover D, no finite subset of them will do so. It is
not true that an algebraic cpo which is Lawson compact is profinite. For example the ideal
completion of the poset pictured in Figure 2.1¢ is a Lawson compact algebraic cpo but it is

not profinite.



Chapter 5

Universal Domains

All of the existing approaches to the solution of recursive domain equations use one of three
techniques. Perhaps the most general is the inverse limit construction used by Scott [1972]
to solve the domain equation D = [D — D] (where [D — D] is the function space of D). A
second technique uses the Tarski Fixed Point Theorem, which says: if D is a cpo with a least
element then any continuous function f : D — D has a least fixed point. The third—which
is introduced in [MacQueen et. al. 1984]—uses the Banach Fixed Point Theorem, which
says: a uniformly contractive function f: X — X on a non-empty complete metric space
X has a unique fixed point. These last two approaches employ what are generally called
“universal domains” to associate with the operator F'a lub preserving or contractive map. In
this chapter we introduce a variant on the second technique which can be applied to certain
endofunctors on the w-profinite domains.

5.1 Universal models in logic and domain theory

We now investigate the mathematical problem of the existence of a universal domain in the
category of countably based profinite posets with embeddings as arrows. The term “universal
domain” will be used here in the sense that it is used by researchers in domain theory. One
might describe the idea categorically as follows. A universal object for a category C is a C-
object A such that for every C-object B there is a (not necessarily unique) arrow form B to
A. Of course, the interest of a C-universal object depends on the objects and morphisms of
C. For example, in the category of groups and homomorphisms every object is universal. But
if C is the category of countable groups and injective homomorphisms then the existence
or non-existence of a universal object for C is less obvious. On cannot, say, produce a
universal group by taking a product of cannonical representatives of all the isomorphism
classes of countable groups since there are continuum many such classes. But the existence
of continuum many isomorphism classes does not in itself rule out the possibility of there
being a countable universal group. In fact, there is no such group and we leave it to the
reader (especially if he or she is a group theorist) to find a reason.

Perhaps the best examples of universal objects and best general techniques for finding
them (or proving that they do not exist) can be found in the literature on first order model
theory. One of the most well known examples of a universal object in model theory is the

38
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Figure 5.1: Fhe truth value cpo.

order type of rational numbers () which is universal for the category of countable linear orders
and injective monomorphisms. The most elegant proof of this universality uses a technique
known to logicians as a “forth” construction. ! In short the proof proceeds as follows. Let
L be a countable linear order and suppose X7, X,,...is an enumeration of L such that the
X;’s are distinct. Let Y] be any element of () and suppose we have defined Yi,...,Y, € @)
so that for each 1,7 < n, X; <y Xj if and only if ¥; < Y. Then because () is dense we can
find a Y,,4; € @) such that Y; <Y, 41 <Y, for ¢, <nif and only if X; <z X,11 <z X;. We
iterate this operation ad infinitum and the correspondence X,, — Y, then defines the desired
injective monomorphism.

One might say that this construction works because () is dense. In the language of
model theory, it works because @) is saturated. In fact, whenever T' is a first order theory
in a countable language, if A is an w-saturated countable model of T then A is universal
for countable models of T" and elementary embeddings. Such a model is called “countably
universal” in [Chang and Keisler 1973] and is a special instance of the idea of universality
we mentioned above. In what follows the notion of universality which interests us is less
restrictive in that it will not require so much of the embeddings. However, the class of
models considered is too complex to be the class of countable models of a first order theory.
Hence the first order methods of constructing suitably saturated models via, for example,
elementary chains cannot be employed directly. But the analogy with the methods that we
do use will be evident.

In the literature there are three primary examples of universal domains. The simplest is
the so-called graph model Pw which is the algebraic lattice of subsets of w ordered by set
inclusion. It recieves a detailed study in [Scott 1976] where it is proved that any countably
based algebraic lattice is a continuous retract of Pw. Some domain theorists felt, however,
that for applications in denotational semantics it would be easier to use a class which did
not require the existence of a largest (top) element. Plotkin [1978b] showed that the poset
T¢ of functions from w into the truth value cpo T (see figure 5.1 is universal in the sense
that every coherent w-algebraic cpo is a continuous retract of 7. Since T is itself algebraic
and coherent this provided a universal domain for a class of algebraic cpo’s that included
the algebraic lattices but contained also certain desired cpo’s without tops.

In [Scott 1981a, 1981b, and 1982a] yet a third universal domain ¢/ is discussed. Although
U is harder to understand than Pw or T it has the advantage of having every consistently

IBecause it is “half”of the “back and forth” construction which is so frequently used to demonstrate the
uniqueness of a model up to isomorphism.
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complete w-algebraic cpo as a continuous projection (not just as a retract). Elementary
proofs of this fact appear in [Scott 1981a] and in [Bracho 1983]. A less elementary proof can
be carried out as follows. Let B be the countable atomless boolean algebra and suppose A is
a countable consistently complete poset. Now, A can be embedded into a countable boolean
algebra in a way that preserves existing joins in A and such that the join of the image of an
unbounded subset of A is the top element. But any countable boolean algebra is isomorphic
to a subalgebra of B. Thus A ¢ B~ where B~ is B minus its top element. We conclude that if

A is countable and consistently complete then there is a continuous projection p : |[B~| — | A].
Thus U = |B~| is universal for the consistently complete algebraic cpo’s.

In what follows we use a technique similar to the one for U to get universal domains for
certain classes of w-profinite domains. To explain the result, recall that if A is a Plotkin
order, poset then the root of A is the smallest normal substructure of A. Now, if A and B
are Plotkin posets and A ¢ B then rt(A) = rt(B) so no profinite domain can be a continuous

projection of a profinite domain that has a different root. Hence there cannot be a projection
universal w-profinite domain. We prove the next best thing: for each poset A = rt(A) there
is a countable Plotkin poset V4 such that if B is a countable Plotkin poset with rt(B) = A
then B 2 Vjy.

These models are less elegant than Pw, T or U because they are built to be universal.
In other words, what we have is not so much a model as a technique for generating a model.
Full details of one technique of construction are offered here and we mention another (closely
related) technique at the end. Kamimura and Tang [1984] use a different approach to get
a retraction universal model for the w-profinite domains having bottoms. Their model, like
Pw and T*, is locally finite but is somewhat less natural than either of those models. In the
opinion of the author, however, the construction described below does the most to reveal the
fundamental idea that gives the existence result and yields the most detailed description of
the model being built. (We are even able to draw a partial picture of it!)

5.2 Universal profinite domains
We begin by proving an interesting structure theorem for Plotkin posets.

Proposition 66 If A and B are finite posets such that A< B but A # B then there are
posets Ag, ..., A, such that

A=Ag<aA«---aA,_1<A, =B
and for each k < n, Ayy1 — Ag is a singleton.

Proof. f B — A is a singleton then we are done. Assume that the result holds for any pair
A’<a B" such that B" — A’ has fewer that n elements. Suppose there are n elementsin B — A
and let X be a maximal element of B — A, i.e. if Y € B such that X C Y then YV € A. Set
A= AU {X}. We show that A’« B. Let Z € B and suppose

u={Y eA|YLCZ}
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We must demonstrate that v has a largest element. If u C A then this follows from the fact
that A« B. it X € uthen X C Z so X = Z or Z € A. In either case, Z is the largest
element of u. Hence A’< B. Since A< B we have A< A’«B. But B— A’ has n — 1 elements,
so by the induction hypothesis, there are posets Aq,..., A, such that

A<«A =A«---<aA,=8B.
O

Theorem 67 (Enumeration) If A is a countable Plotkin poset and B = rt(A), then there
is an enumeration Xo, X1,... of A such that for each n,

BU{X;|i<n}aA.

Proof. Suppose 1t(A) = Ag< Ay < -+ is a chain of finite normal substructures of A such
that A = U,e, An. Let By < By «--- be a new chain that results from deleting A, 4, for
each n if it equals A,,. Using Lemma 66 we may refine this chain to a chain Cy <« Cy «a---
such that Cy = rt(A) and for each n, Cyp1 — C,, is a singleton Z,,. Now, let Xo,..., X1
be an enumeration of Cy and for each n, let X, y; = Z,. This enumeration has the desired
properties. O

Definition: Let (A,C) be a poset. For each X € A, let X be a constant symbol naming
X. Let < be a binary relation symbol which is interpreted by C. A diagram type over A is a
set I' of inequalities and negations of inequalities between constant symbols and a variable
v, i.e. formulas of the form

v < X, v £ X, X <v, XAv

where X € A. If A C B and Z € B then the diagram type of Z over A is the set of all such
equations (using constant symbols for elements of A) that hold when v is given the value
7/ and = is interpreted as the order relation on B. A diagram type I' over A is said to be
realized in B by Z if I is a subset of the diagram type of Z over A. A diagram type I" over a
poset A is said to be normal if there is a poset B with A <« B such that I' is realized in B. O

Lemma 68 [fI' is a normal type over a finite poset B and B< A then there is a finite poset
Ay such that A< Ay and U is realized by some Z € Ay such that BU {Z} < A;.

Proof. Let C be the partial ordering on A. Since B < A, B inherits this ordering. Suppose
B <Ay and Z € Ap such that Z realizes I'. Let £y be the partial ordering on Ag. Note that
the restriction of Ty to B is the same as the restriction of C to B. Let Ay = AU {Z} and

define a binary relation C; on A; as follows:

L Zglzv
o if X.YeEAthen X, YiIf XCVY,
o if X € Athen X C; Z iff there is an X’ € B such that X C X', Z,

o if X € A then Z C; X iff there is an X’ € B such that Z Cy X' C X.
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To see that (A;,C1) is a poset, note that Ty is just the transitive closure of (CULC) N (A X
Aq). That Ty is reflexive is immediate from its definition. To see that it is anti-symmetric,
suppose X 1 Z L1 X for some X € A. Then there are Xy, X7 € B such that X C Xy 5o Z
and Z Cy Xy C X. But then X C Xy C X; C X so Xg = X; =X and therefore X ¢ B.
Hence X Ty Z Ty X implies X = Z by the anti-symmetry of Cy. Of course, if X,Y € A
and X T, Y Ty X then X =Y since X C Y C X.

Now, the fact that A is a sub-poset of A; is built into the definition of £; by 2. To see
that A < Ay, suppose u C A is finite and v =1 Z. By the definition of Cq, for each X € u
there is an X’ € B such that X T X' Ty Z. So let v/ = {X'| X € u}. Then ' C Z. Since
B <Ay, thereis a Z' € B such that ' Ty Z' Ty Z. But this implies that u & Z' £ Z so we
may infer that A< A;. We must show that BU{Z} < A;. Suppose u C BU{Z} is finite and
u Cy X for some X € A;. Wemust find aY € BU{Z} such that « T, Y 1 X. f X = Z
then the result is immediate. So suppose X € A. If Z & u then we can get the desired Y by
using the fact that B< A. If Z € u then there is an X’ € B such that 7 Ty X’ C X. Thus

v=(u—{Z)U{X'}C X.

Since B < A and v C B, there is some Y € B such that v E Y C X. Since Z Ly X' T Y we
may conclude that Z C; Y. Thus u &1 Y and we are done.

Finally, suppose v < X is in I' for some X € B. Then Z Cy X since Z realizes I' in Ay.
Hence, by definition, Z C; X. Suppose v A X isin I' but Z C; X. Then Z £y X. But this
contradicts the assumption that Z realizes I' in Ag. So apparently Z [Z; X. Similarly, the
other formulas in I' must be realized by Z in A;. O

Lemma 69 Let A be a finite poset. Then there is a finite poset AT such that A< AT and
for every subspace B < A and normal type I' over B, there is a Z € AT such that Z realizes
I and BU{Z} < At.

Proof. Let I'y,...,I';, be all of the normal types over normal subspaces of A. Set A = Ay
and suppose A < Ap. Suppose ['yy1 is normal over B <« A. Then B < Ay so by Lemma 68
there is a finite poset Ajiy such that Ay <« Agyq and BU{Z} < Agyq for some Z that realizes

I'ei1. Set AT = A4y, If 7 realizes I'yy in A,y then it realizes it also in AT. Moreover,
BU{Z} <1 A1 < AT O

Theorem 70 Let V' be a countable Plotkin poset. Suppose that for every finite A<V and
normal type I' over A, there is a realization Z for T such that AU{Z}<V. If B is a countable
Plotkin order such that tt(B) = rt(V) then B2 V.

Proof. Suppose B is a countable Plotkin order such that rt(B) = rt(V). We may assume
that B is a poset. By Proposition 67, there is an enumeration Xy, X1,... of B such that for
each n € w,

B,=1t(B)U{X;|i<n}<B.

Since By = rt(B), there is an isomorphism fo : By = V5 where Vo = rt(V). We construct a
sequence of isomorphisms f, such that for eachn € w, f, : A, 2V, where V,, <V, f, C f.11
and V,, C V,14.
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Suppose that f, and V, are given. Now, B, < B, 41 so the diagram type I' of X, over
B, must be normal. Let ¥ be the corresponding type over V,,, i.e. X is obtained from I’
by replacing any occurrence of a constant symbol for an X € A, by a constant symbol for
fa(X). Then ¥ is a normal type over V,, so by the hypothesis on V, there is a realization
Y, € V of ¥ such that

Vorr = Vo, U{Y, <« V.

It we define f,411 @ Auy1 — Va1 by

oz if X eA,;
fn-l—l(X) = {én( ) if X = Xn

then f, € f.41 and f,41 is an isomorphism. If f = U,e, fn and V' = U,e, Vo then
f:B=V' Moreover, since V,, <V for each n, V'« V. Hence B<V. O

Corollary 71 Let A be a finite poset such that A = 1t(A). There is a Plotkin poset A* such
that whenever B is a countable Plotkin poset with rt(B) = A, then B < A*.

Proof. Let A = Ag and for each n, define A, = Af. Let A* = U,e, An. Suppose C' <« A*
is finite. Then ' < A, for some n. If I' is a normal type over ' then I' is realized by a
Z € At = A,y such that CU{Z} < A,,y. Since A, ;| < A*, the hypotheses of Theorem 70
are satisfied and the desired conclusion therefore follows. O

It is possible to get the AT in Lemma 69 by explicit construction. One way to do this is
to pre-order the set

T ={T'"| T is normal over some finite B < A}

by letting I' = X just in case there are XY € A such that v < Xisin ', Y < visin ¥, and
XCVY. Ifwelet AT = T then there is a normal substructure A’ < AT with A = A’ such that
for every normal type I' over a substructure B<a A’, there is a Z € A% such that BU{Z}<A*
and Z realizes I'. To get a universal domain one merely solves the domain equation A = A™.
Although it is somewhat tedious to check all of the details of the construction, this more
order-theoretic way of doing things helps in picturing the universal domain as the limit of
the posets A < AT < AT+ «.... Figure 5.2 illustrates the first three stages in the construction

of the universal domain with a trivial root.

5.3 Using universal domains to obtain fixed points

Let wRP be the category of continuous retracts of w-profinite domains with continuous
functions as arrows. In this section we show that a significant class of endofunctors on wWRP
possess fixed points. The argument we give uses the universal domains defined above and
specializes to a proof that if such a functor is also an endofunctor on wP then it has an
w-profinite fixed point.

Theorem 72 Let D be a cpo. The following are equivalent:
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Figure 5.2: Construction of 1*.

1. D is a continuous retract of a countably based profinite domain.
2. D is a continuous projection of a countably based profinite domain.

3. There is an w-sequence of continuous functions f; : D — D such that for each 1,5 € w,

(a) @ <y implies f; T f;,
(b) im(f;) is finite,
(¢) Uiew fi = idp.

Proof. Since a projection is a retraction we certainly have (2) = (1). We show that (3) = (2)
and (1) = (3).

(1) = (3). Suppose F is w-profinite and there are continuous functions r: £ — D and
r': D — E such that ror’ = idp. Since E is w-profinite, there is a sequence (p; )i, of finite
deflations on £ such that p; © p; whenever 2 < j and || p; = idg. For each 2 € w, define a
continuous function f; =rop;or': D — D. If 2 < jthen fy=ropor' =ropjor = fj.
Moreover,

|_|f2': |_|ropior':ro(Upi)or’:ror’:idD.

1EW 1EW 1EW
Finally, im(f;) is finite for each ¢ because im(p;) is. Thus the sequence (f;};c., satisfies (a),
(b) and (c).

(3) = (2). Suppose D is a cpo and (f;).e. is a sequence of functions satisfying conditions
(a), (b) and (¢). Let E be the set of monotone sequences  : w — D such that for each i € w,
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x; € I = U<, im(f;) and
xi 3 fi|] ) (*)
JEw
Order E coordinatewise, i.e. x J y if and only if =; J y; for each :. We claim that F is
profinite. To see that F is a cpo suppose M C FE is directed. We show that the least upper
bound x of M in [, £ 1s in £. Now, x is certainly monotone; to prove that x satisfies
condition (*), we calculate

fi(%%) = fi(la!}l—l{yj |y e M})
] Zf(lil{l_lyjlyEM})
ZU{fi(Ji yi) |y € M}

= | {w: Ijzwe M} by () for y € M.

Let A C E be the set of sequences € E such that for some n,
Vi>n z; = x,. (k)

We claim that A is a basis of finite elements for F. Suppose @ and n have property (*#) and
M C FE is directed with | | M = x. Since F}, is finite there is some y € M such that y, = z,.
Since y; > y, for each ¢ > n we must have x; = y; for each ¢ > n. The set of z € M such
that z Jy is therefore finite. Hence @ € M so « € B[E]. Now, let

A, ={z e |Vi>n. o, =a,}.

Suppose u C A, and = € E such that * J u. Define a sequence z by

, {:JcZ if 1 < mn;
X = :
! Ty otherwise.

Now, for each ¢ < n, o} = 2; I filll;e, ;) 2 filljew :1;;) If © > n then @} =z, 3 fi(x,) =
Jilljew ;). Hence 2’ isin K. If y € u then a} = z; 3 y; for each ¢« < n and if ¢ > n
then 2! = z, J y, = y;. Thus * J 2’ J u and we conclude that A, < £. Now, A, is
finite for each n and A, « A,, whenever n < m. Since A = J,e, A, we conclude that A
is a Plotkin order. Moreover, it is obvious that for any =z € F, « = [[{y € A | « T y}.
Hence A = B[F] is countable and F is profinite. To complete the proof, define p: £ — D
by p:a— e, z; and ¢: D — E by ¢ :  — (fi(2))icw. It is easy to check that p and
q are continuous. If @ € D then (po¢)(x) = e, filz) = 2. If @ € F then (gop)(z) =
¢(Ujew ;) = (filljew *j))iew E (:)icw- Hence D is the continuous projection of a countably
based profinite domain. O

Corollary 73 For a cpo D, let Defl(D) be the poset of deflations on D. Then Defl(D) is a
cpo, and if D is in WRP then Defl(D) has a least element.
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Proof. Suppose M C Defl(D) is directed and let p = [ | M. Then

pop=(UM)o (UM)
= {foyg|f,ge M}

=|{fof|fe M} since M is directed
=M since M C Defl(D)
=p

and p C idp since f C idp for each f € M. Hence p € Defl(D). If D is in wRP then by
Theorem 72, D is isomorphic to a normal substructure D’ of a profinite domain £. This
corresponds—via the isomorphism between D and D'—to a least deflation on D. O

Corollary 74 wRP N ALG = wP.

Proof. Suppose D is in wuRP N ALG. Then it satisfies condition (3) of Theorem 72. Since
D is algebraic it satisfies condition (5) of Theorem 37 and is therefore profinite. Since D is
a continuous retract of an w-algebraic cpo it has a countable basis so it is w-profinite. Hence
wRPNALG C wP. If D is w-profinite then it is algebraic and a continuous retract of itself.
The corollary therefore follows. O

Corollary 75 A cpo D is w-profinite if and only if it is in WORP and XD has a compact
basts.

Proof. This follows from the corollary above and Theorem 61. O

Definition: A functor F': CPO — CPO is locally continuous if it is continuous on hom
sets, i.e. if M C CPO(D, F) is directed for cpo’s D and F then || F(M) = F(UM). O

Lemma 76 Let D be a cpo and F': CPO — CPO a functor. Ifr: D — D is a continuous
idempotent function then im(F(r)) = F(im(r)).

Proof. lLet E = im(r) and suppose ¢ : F — FE and r°: D — FE are the inclusion map
and corestriction of r respectively. Note that r = 7 07° and idg = r° o ¢7. Similarly, let

J: F — F(D)and F(r)°: F(D) — E" where E' = im(F(r)). Then F(r) = j o F(r)° and
idg = F(r)° o0 j. Consider the maps

F(r)°o F(e): F(F)— FE and

F(ryoy: B — F(FE).

We claim that these functions are inverse to one another. We have

@WﬂOﬁOUWWoF@D—F(ﬂ (70 F(r)*) o F(2)
r)o F(r)o (i)
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and

This demonstrates the desired isomorphism. O

Theorem 77 Let F: woRP — wRP be a locally continuous functor and suppose A
tt(F(A)) for some finite poset A. Then there is a cpo D in wRP such that F(D) =
If F'is an endofunctor on wP then I has an w-profinite fixed point.

Proof. By Theorems 71 and 72, there is a pair {(p,q) : A* 2= F(A*). Define a map
d : Defl(A*) — Defl(A*)

by d: f+ qo F(f)op. To see that this makes sense we must show that go F(f)opis a
deflation. First of all, we have

d(f)od(f)=1(qo F(f)op)ol(qo F(f)op)
=qoF(f)oF(f)op
=qol(fof)op
=d(f)

and by the local continuity of F', FI(f) E F(idax) = idpx) so d(f) = qo F(f)opE qopC
idp(a+y. Now, suppose M C Defl(A”) is directed, then

d(UM)=qo F(LUM)op
=qolJF(M)op
=H{go F(f)op|fe M}
— Jd(M).

Hence d is continuous. Since Defl(A*) is a cpo with a least element and d is continuous,

there is an f € Defl(A*) such that d(f) = f. Hence

(
= im(go F'(f)op)
= im(qo F(f)) since p is an epimorphism
= im(F(f)) since ¢ is a monomorphism
= F(im(f)). by Lemma 76

and since im(f) is in wRP, we have obtained the desired fixed point. If F'is an endofunctor
on the w-profinite domains then the map d can be defined on the cpo of algebraic deflations
so its fixed point will be algebraic and hence profinite. O



Chapter 6

Functor Continuity and Fixed Points

In this chapter we take a short look at several functors and we discuss the categorical tech-
nique for solving domain equations.

6.1 Fixed point existence and coproducts

Definition: Let C and C’ be categories and F': C — C a functor. If A = (A;, p;;)ijer is
an inverse system over C in order type [ and p: A — A is a limiting cone we set

F(A) = (F(Ai), F(pij))i jer and

Fui) = (F(pa))ier-
The functor F' is said to be continuous if for every inverse system A and limiting cone
p: A— A, the cone F(u): F(A) — F(A) is limiting. O

Theorem 78 Suppose I : (CPO”)" — CPO” is continuous. If F(Ay, ..., A,) is finite
whenever Ay, ..., A, are finite then F(Dy,...,D,) is profinite whenever Dq,..., D, are
profinite.

Proof. To simplify the notation, assume that F' is binary. The proof for an n-ary functor
is essentially the same. Suppose D, E are profinite. Let (A;, ;)i jer and (B;, bi;)ies be
inverse systems in CPOY such that

o A; is finite for each ¢ € I, and D & @(Ai,aij>i7j€1;
e B, is finite for each ¢ € J, and I = hﬁ(Bi, bijYijed-

Let K = I xJ. With the cordinatewise ordering, K is directed. For each k = (7,j) € K, set
A, =A;and B, = B;. It k = (¢,5) and [ = (m,n) are in K and k > [ then set a}; = a;,, and
by = bjn. Now, set Cy = (A}, By) and ¢ = (a},, b)) for each k € K. Then (Cy, cpi)kick is
an inverse system in CPO” x CPO”. We have

F(DvE) = F(hm<Ai7aij>ij€b hm<Blva>Z ]GJ)

=F (hﬁ<Aka ag)kier s Bm (B, br)kiex )
= F(m(Cy, er)rier)
= lim (F'(Cy, ) F(ew))rier-

63
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But F(C%) is finite for each k € K since Ay and By are finite. Thus F\(D, F) is profinite. O

Theorem 79 If F': PY — P is a continuous functor then F has a profinile fixed point
with root A if and only if there is a poset A = rt(F(A)).

Proof. Suppose D is profinite and D = F(D). If A is the root of D then A = rt(F(D)).
Now, F(A) is a projection of F(D) by continuity so rt(F(A)) = rt(F(D)). Suppose, on the
other hand that A = rt(F(A)). Then there is a projection p: F(A) — A and this induces

an inverse system,

A p(a) E9) gy T

which has a profinite limit D. But

by continuity. O
Let A and B be posets having property m and suppose u,v are subsets of A and B
respectively. Then Lemma 49 and an easy induction may be used to show that

Uixp(u x v) = U x Up(v)

for each n € w. Hence, in particular, 1t(A x B) = U4, g(0) = U5(0) x U(0) = 1t (A) x rt(B).

Moreover, we have the following:
Theorem 80 The product functor is continuous on CPO.
Proof. Let (D;,d;;) and (FE;,e;;) be CPO inverse systems of the same order type. Then
(D; x E;,d;ij X e;5)
is an inverse system. To show that
(Hm(Di, di;)) x (Am(E;, ei;)) = Jm(D; x Ei, dij X ;).

one verifies that the functions

f:D.x E.— F. given by f(x,y) = (x;,y:), and
g: F.— D, x B, given by g({(zi,:))) = ((2:), (i)

make sense and are inverse to one another. Since f and ¢ are monotone we therefore have
the desired isomorphism. O

In light of Theorem 79 this is noteworty in the following regard. Since the product is
continuous, the functor F(D) = D x D is continuous and we know that it sends profinite
domains to profinite domains. Suppose D = F(D) is profinite and let A = rt(D). Now,
A is finite so suppose it has m elements. Then rt(F (D)) = rt(D x D) = A x A has m?
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elements. Since rt(D) = rt(F (D)) we must have m = m? so apparently m =1 or m = 0. In
other words, a non-empty profinite fixed point of the equation D = F(D) must have a least
element.

A similar fact holds for the functor F(D) = CPO(D, D). Suppose A is a non-empty
finite poset and A = rt(A4). We claim that A is the trivial one element poset. To see this,
suppose A is non-trivial. Then A has a set of n minimal elements where n > 1. Now, a
constant function mapping all of A to a minimal element of A is minimal in CPO(A, A) so
rt(CPO(A, A)) has a least n minimal elements and none of these constant functions is equal
to the identity function. Let f: A — A be monotone and suppose f is below the identity
function on A. Suppose X € A and f(Y) =Y for every Y € X. Since A is simple there is
a set u C A such that X € MUB(u). For if this were not the case then X could not lie in
U™ (D) for any n. But then v = f(u) C f(X) C X so f(X) = X. Hence f is the identity
function and consequently the identity function is minimal in CPO(A, A). But this means
rt(CPO(A, A)) has at least n + 1 minimal elements so we cannot have A = rt(CPO(A, A)).
This shows that a non-empty profinite fixed point of the functor F' must have a least element.
These observations, together with Theorem 47 can be used to prove the following

Theorem 81 If D is a non-empty w-algebraic cpo and D = CPO(D, D) then D has a least
element. O

It is, incidently, not true in general that for a poset A, CPO(rt(A),rt(B)) =
rt(CPO(A, B)). Consider, for example, the opposite T°? of the truth value cpo. The mono-
tone functions from T'°? into 1’7 form a poset whose root is not isomorphic to the poset
CPO(rt(T°7),rt(T°7)) = CPO(T°?, T°"). Hasse diagrams for T°* and CPO(T°?,T°?) ap-
pear in Figure 6.1 (see page 72). The root of CPO(T°?,T°?) is drawn in black there.

These two examples illustrate a number of problems involved in obtaining profinite so-
lutions to recursive domain equations. While Theorem 79 completely specifies which con-
tinuous endofunctors on P have fixed points it does not say that the fixed point will
be non-trivial. Indeed, if the construction in the theorem is carried out for the functor
F(D) =D x D, the derived solution will be the one element domain 1.

Also, there are interesting and natural endo-functors on P for which there is no non-
empty finite poset satisfying A = rt(F'(A)). One especially noteworthy example of this is
the diagonal of the coproduct functor +. For arbitrary pre-orders A and B the coproduct is
defined as follows. We let A+ B = (Ax{0})U(B x {1}) and say (X,n) Fatp (Y,m) if and
only if either

en=m=0and X F4 Y, or
en=m=1and X Fg VY.

In essence, A + B is the pre-order obtained by forming the disjoint union of A and B. This
differs from the + which appears in most of the literature on domain theory. The sum
which appears in references such as [Stoy 1977], [Scott 1982a] or [Brookes 1984] is either the
separated or coalesced sum and is not a categorical coproduct. A binary operation + in a
category is said to be a coproduct it for every pair of objects A, B, there are arrows inl and
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inr such that for every object C' and pair f, ¢ of arrows, there is a unique arrow [f, ¢] which
completes the following diagram

A
/ inl
[/, 9]
-————— — _|_ B
g inr
B

For pre-orders A and B, we define inl and inr by

VX € A. X inl (Y,0) if and only if X F4 Y,
VX € B. Xinr (Y,1) if and only if X Fg YV

and given C, f and ¢ as above we set

(X,0) [f,¢] Y if and only if X f Y,
(X,1)[f,¢] Y if and only if X ¢ Y.

It follows easily from these definitions that [f,¢] oinl = f and [f,¢] o inr = ¢. To see that
[f,¢] is uniquely determined by these equations, suppose h oinl = f for an approximable
h. If (X,0) Y for some X € A, then X inl (X,0) and hoinl = f implies X f Y. Hence
(X,0) Y implies (X,0) [f,¢] Y. On the other hand, if X € A and X f Z then X hoinl Z
so there is some Y € A such that X inl (Y,0) and (Y,0) h Z. But then (X,0) F445 (Y,0) so
(X,0) h Z by the approximability of k. Hence (X,0) [f,¢] Y implies (X,0) h Z. If hoinr = ¢
then a similar pair of arguments shows that for any (X, 1) € B we have (X,1) A Y if and
only if (X, 1) [f,¢] Y. Hence, we must have h = [f, g].

The coproduct + on pre-orders induces a coproduct on algebraic cpo’s. Indeed |A|+|B]| &
|A+4 B| for any pair A, B of pre-orders. It is an endofunctor on the Plotkin orders and hence
also on the profinite domains. But the diagonal functor F/(A) = A + A has only the empty
poset as a fixed point. For if A is a Plotkin order then rt(A+4A) = rt(A)+rt(A)so A =2 A4+ A
implies rt(A) = rt(A) + rt(A). But the only finite poset which can satisfy this is the empty
one and the only Plotkin order with an empty root is the empty poset. This does not mean
that this diagonal functor has no ¢po as a fixed point. It is not difficult to check that +
is a continuous functor on CPO and the diagonal functor has many complete posets as
fixed points. For example, any infinite discrete set will do. The moral is this: even a nice
continuous endofunctor on P may not have non-trivial profinite fixed points.
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0 ZO
/N RN
Tor CPO(T*",T)

Figure 6.1: Root of a function space

6.2 Continuity of the exponential functor

Fortunately, almost all of the functors which one is inclined to use in denotational semantics
are continuous. There do exist discontinuous, interesting functors such as ideal completion
|-| but for the most part there is little cause to look for their fixed points except as a mathe-
matical exercise. However, finding fixed points for equations involving the functor CPO(-, -)
is important. But CPO(-,-) is not continuous! Recall that this functor is contravariant
in its first argument. The problem is typically remedied by replacing CPO(-,-) by a new
functor which is defined on CPO* and is covariant in both of its arguments (see [Smyth and
Plotkin 1982]). We show that this approach may be extended to yield a continuous functor
on CPO'! x CPO' — CPO! as follows. On objects D, I we let [D — E] = CPO(D, E).

If D" and E' are cpo’s and (p,q) : F 24, D, (p.¢): E 24, P are continuous then define
[p—=p]: [ — E]—[D— D]

by p — p': f— p'ofogq. To see that this does indeed define a functor we begin by showing
that the function t : [D — D' = [ — E'| by t : f — ¢’ o f o p is lower adjoint to [p — p'].
Forif f: K — E’, then
(tolp— p(f)=1t(p' o foq)
=(q'op)ofolgop)
E ldE/ o] f o] ldE
_
On the other hand, if f: D — D’ then
([p = pTot)(f) =[p— pl(g 0 fop)

=(p'oq)ofo(pogq)
gidD/ofoidD

= f.
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Now, if <r,5>:Fa—dj>E, <r’,3’>:F’a—dj>E’ and f: F — F' then
p—=plolr=71(f)=[p—plr'ofos)
= (p'or’)ofo(soq)
=[(por) = (p or)I(f)

since s o ¢ is the lower adjoint corresponding to por.
Theorem 82 The functor [ — -] is continuous in CPO!.

Proof. Let (D, d;;) and (E;, e;;) be inverse systems of order type I in CPO!. For each i > j
define f;; : [D; — F;] — [D; — E;] by fij: f — ej 0 fod;. Then we must show that
(A (D, dij)) — (im(E;, e;5))] = lim ([D; — Ei, fi;).
Ifi > j, define f;; : [D; — E;] = [D; — Ei] by fji 1 6 eji0¢o0dj;,. We have already shown
that (fi;, fi:) : [Di — FEi] adi, [D; — E;] and fjro fij = fir if ¢ > § > k. To simplify the
notation, let F, = lim ({[D; — E;], fi;)). Now, suppose ¢ € F.. We wish to define a function
o : D, — B, by the equations
exiodt =] |ejiopjody i€l
iz

To see that the set on the right is directed, suppose & > j > ¢. Then

€;i0 ¢;0d.; = €j;0(€ex; 0 ¢ ody;)od,;
= (eji 0 ex;) 0 ¢y 0 (djk 0 duj)
= eg; 0 ¢k 0 (djg 0 dij 0 duy)
C eri 0 ¢p 0 duy,

so the set is directed since I is. To see that this sup really does yield an element of K.,
suppose j > 1. then

€j; O (6*]‘ 0 ¢ﬁ) = €50 (I_l €k; O ¢k 0 d*k)

k>j

= |_| (6]‘2' o] ek]‘) o] ¢k o] d*k

k>

:Uekio¢k0d*k

k>
= €4 O ¢ﬁ
The continuity of ¢ is obvious.

Now suppose on the other hand that ¢ : D, — FE, is continuous. Then ¢ defines a unique
sequence ¢’ = {e,; 0 ¢ o di.). We claim that ¢ € C,. For if i > j then

fii(@") = eij o (ewio dodi)ody
== (62']‘ (0] e*i) (0] gb O (dz* (0] dﬂ)

:e*]‘0¢od]‘*
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We now demonstrate that the maps ¢ — ¢ and ¢ — ¢” are inverse to one another. Taking
the easy case first, suppose ¢ : D, — F, is continuous.

€x; O gbbﬁ |_| € O gb o d,;

j>

= Jejio(egododi)od,
j>

= [ J(eji0exj) 060 (dje 0 dsj)
i>i

:e*io¢

by Lemma 29. Before starting the other direction the reader is advised to sit down. Suppose

¢ € F,and 2 € I. Then
e*iogbﬁodi* = (I_l ejioqﬁjod*j)odi*

izi

= | Jejiog;o(dyody)
izi

= |_| €;io@jo( |_| dyj o dyr,) by definition of d;,
Jj>i k>1,5

= || ejiod;odyody
k> >

= I_I ¢ji 0 (er; 0 ¢ 0djp) o dij o diy frj(or) = ¢;
k>j>1

= I_I (€ji 0 er;) 0 dp o (djp o dij o diy)
ki

= || eriodro(djodody)od; E>jg >
ki

= |_| ki O ¢ 0 (dji, 0 dyj) Lemma 17
ki

= |_| ki O Op © dig
ki

= ¢i Jri( k) = &i.

Since the maps ¢ — ¢F and ¢ — ¢" are monotone, we have the desired isomorphism. O

6.3 Powerdomains and other functors

In this section we define powerdomains and show how the methods that have been introduced
can be used to solve a domain equation up to equality rather than just isomorphism. We also
discuss a couple of other noteworthy functors: the lifting functor and the join completion
functor.

Definition: Let A be a pre-order and suppose M is the set of finite subsets of A. The
upper powerdomain Q(A) of A is the set M together with a pre-ordering g4 given by

uFouy vif (VX € w)(3Y €v). X F4 Y.
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Dually, the lower powerdomain R(A) of Ais M with the pre-ordering Fr(4) given by
ubgrayvif (Y €v)(VX €u). X 4 Y.

The convex powerdomain S(A) of A is the intersection of the upper and lower powerdomain
pre-orderings on M, i.e.

u sy vif u ko) vand ubruy v
It f: A— B is approximable then the action of @, R,S on f is given by

uwQ(flvif (VX euw)(dY ev). X fY
uR(A)vif (FY ev)(VX €eu). X fY
uS(A)vifu Q(f)vand uR(f) v.

O

The lifting operation F(A) = AL on pre-orders A is defined as follows. For simplicity,
assume that L is a new element that is not in A. Then

o Ay = AU{L},

o Xy L foreach X € A,

o Xy Yior X.)YeAit XF,Y.
Lemma 83 A poset D is algebraic if and only if D, is algebraic.
Proof. We claim that for any pre-order A, |A|; = |A,|. To see this, define f: |A|L — |A,|
by

{1} if o= 1;
He) = {:1; u{L} otherwise.

and define g : |[A | — |A|L by
(L ife={Ll};
9(w) = {:1; —{Ll} otherwise.

The functions f, g are obviously monotone and the proof that fog =idj4, | and go f =id}4,
is a routine verification of cases. Now, if D is algebraic then D = |B[D]| so

Dy = [B[D]|. = |B[D],| = [B[DL]|.
Hence Dj is algebraic. If on the other hand, D, is algebraic then
Dy = B[D_]| = [B[D] | = |B[D]|.

so D = |B[D]| and D is therefore algebraic. O

On CPO, (-), can be made a functor by letting f1 : D, — FE, by fi(x) = f(z)ifx € D
and L otherwise. It is easy to show that (), is continuous on CPO”. Hence, by Theorem
78, Dy is profinite if D is. The converse is false, however. For example, the infinite discrete
set NV is not profinite (because it has an infinite root), but A is profinite.

Assume P is a pre-order none of whose members are pairs. We may define a pre-order

(A,F) which satisfies the equation A 2 (P 4+ S(A))L as follows:
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o | €A,

if X € P then (X,0) € A,
o if uC A is finite then (u,1) € A,
o if XF L for every X € A,
o (X,0)F (Y,0)if X FpY,
o (u,1)F (v,1) if uFguayv.

Proposition 84 Let D be a cpo with property m. Then D is bounded complete if and only
if D has greatest lower bounds for non-empty subsets.

Proof. Suppose D is bounded complete and S € D. Then M = {|z | 2 € S} is directed
so | | M exists and is the greatest lower bound of S. Suppose on the other hand that D has
greatest lower bounds for non-empty subsets and v C D is finite bounded set. Let = be
the greatest lower bound for MUB(u). Then x is a bound for u. Since D has property m
we must have  J y for some y € MUB(u). But this means # € MUB(u) and this is only
possible if u = {x}. Hence  is a least upper bound for u. O

Definition: For a pre-order (A,F) define the join completion

(T(A),Faa))
as follows
o J(A)={uC A|uis finite and bounded}
o ub yvifandonly if VX € A X Fu= X Fo. 0O

Theorem 85 Let A and B be pre-orders. Then
1. (J(A),F7eay) is bounded complete;
2. if A is bounded complete then J(A) = A;
3. if Aa B then J(A) < J(B);
4. J(Ax B)= J(A) x J(B).

Proof. (1) Suppose u,v € J(A) and w 74y u,v. Then v Uwv is bounded in A by anything
that bounds w. Hence uUv is in J(A) and w F 74y u U v. But any bound for u Uwv in A is
a bound for v and a bound for v, so u U v I 74y u,v. Thus J(A) has bounded joins.

(2) Suppose A is bounded complete and define f C A x J(A) by X f w if and only if
X F4 u. To see that f is approximable, just note that X f u if and only if X F4 Y where
Y is a least upper bound for u. Hence, if X f u,v then X F4 Y where Y is the least upper
bound of u Uwv so X fuUwv F 74y u,v. The other conditions for approximability of [ are
obviously satisfied. Define ¢ € J(A) x A by v ¢ X if and only if u by {X} fu g X
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and u g Y then u g Z where Z is a least upper bound for u. The remaining condition for
approximability of ¢ is obviously satisfied. Now suppose X f u and u ¢ Z for some X, 7 € A
and u € J(A). If Y is a least upper bound for u then X F4 YV F4 Z so X F4 Z. Therefore
go f Cidy. If, on the other hand, X (g o f) Z then there is a u such that X fu and u g Z.
If Y is a least upper bound for u then X F4 Y F4 Z. Hence g o f = idy. Now, suppose
u g X and X w for some u,w € J(A) and X € A. Then u 74 {X} anXm—AYWhere
Y is a least upper bound of w. Hence {X} Fra) {Y} Fru) w so u Fgzu) w. Therefore
Jog Cidgy. If, on the other hand, u k74 w then u b 74y {Y} for a least upper bound
Yoftwsougy and Y f w. Hencefog:idj( A)-

(3) Suppose A<« B. If u is bounded in A then it is bounded in B so any element of J(A)
is also an element of J(B). Suppose u,v € J(A) and u I 74y v. We claim that u b 7 v
Suppose X € B and X F4 u. Since A< B, thereis an X’ € A such that X 4, X' 4 u. But
u 74y v means X' k4 v. Hence X 4 v and the claim is established. Obviously, u -7y v
implies u = 74y v. Thus (T (A),F 7)) S (T (B),F7m)). To see that J(A) < J(B), suppose
u,v € J(A) and w g7y u,v for some w € J(B). If X F4 w for some X € B then
X F4 vUwvso uUwv is bounded and there is an X’ € A such that X' b4 v U v. Hence
uUwv € J(A) and we conclude that J(A) is closed under existing joins in J(B). Thus
J(A)aT(B).

(4) Define a relation f: J(A) x J(B) = J(Ax B) by (u,v) f w iff u b 704 fst(w)
and v I 7(py snd(w). Define another relation g : J(A x B) = J(A) x J(B) by w g (u,v) iff
fst(w) 74y v and snd(w) F 7y u. We claim that f and g are approximable. Starting with
f, suppose (u,v) € J(A)x T(B). Then uxv € J(Ax B) and (u,v) f (uxwv). If (u,v) fw
and (u,v) f w' then fst(w) U fst(w’) = fst(w U w’) and snd(w) U snd(w’) = snd(w U w’)
are less than u and v respectively. Thus (u,v) f (w U w'). The remaining condition for
approximability of f is obviously satisfied. To see that ¢ is approximable, suppose w ¢ (u,v)
and w g (u',v"). Then fst(w) F7u) v U and snd(w) FzEy v UV so w g (uUu',0U
V') Frayxa(B) (u,v). The other conditions are also straight-forward. Now, if w (fog) w’
then w ¢ (u, v) J w' for some (u,v) so fst(w) =74y fst(w') and snd(w) 7y snd(w’). Hence
w Fraxp) w' and we therefore have f o g Cids(4xp). On the other hand, if w - 74xp) w
then w g (fst(w),snd(w)) f w'. We conclude that fog =idsuxp). If (u,v) (go f) (u',0)

v)

then (u,v) fwg (u v') for some w 5o u 74y fst(w) b 74y v and v l_j(B) snd(w) F 7y v
Hence (u v) Frayxgm) (W,v) and we have g o f C idsax7(). On the other hand, if
u 7o) u and v l_j( B) v then (u,v) f (uxwv) g (u',v"). Thus go f =idsyxsm). Hence f

defines the desired isomorphism. O
By Corollary 71, there is a Plotkin order 1* such that whenever A is a Plotkin order with
a least element, we have A < 1*. We may extract from Theorem 85 the following

Corollary 86 If A is a bounded complete pre-order then A < J(17).

Proof. Since A has a least element we know that A = A’ for some A’ <« J(1*). But A’ is
bounded complete so A’ = J(A"). Hence A= A< J(1*). O

Now, suppose u and v are finite bounded subsets of 1* such that u,v # {L}. Consider
the diagram type
I'v)={L#v}U{vEX|X €uUv}.
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This type is normal over U{w(u U v) so it has a realization Z in 1*. But u 7 {7},
v Frax {7} and {Z} 4 {L}. This shows that no pair u,v # {1} of bounded subsets
of J(17) can be complementary to one another. Hence J(1*) cannot be isomorphic to the
countable atomless boolean algebra with its top element removed. We conclude that although
|7 (17)] is projection universal for bounded complete algebraic cpo’s, it is not isomorphic to

Scott’s universal domain /.



Chapter 7

Partial Functions

Sometimes it is more natural to think of functions as partial rather than total. This may be
simply because we do not wish to burden ourselves with the need to provide some arbitrary
definition of the function on places outside its natural domain. For example, in the elemen-
tary calculus, we frequently think of functions such as f(x) = 1/a as partially defined on
the real numbers. In many instances the undefined points (singularities) are a primary topic
of interest. In the theory of complex variables isolated undefined points of a meromorphism
are classified as removable singularities or as poles of finite order. Other complex functions
have what are called essential singularities. Of, course, we may think of a meromorphism
as a total function on a certain kind of subset of the complexes. The fact is, however, that
we think of such functions as living on a piece of the complex plane and consider the places
where the function is not defined to be a significant object of attention.

Another area in which the use of partial functions is pervasive is recursive function theory.
A recognition of the importance of partial recursive functions goes back to the inception of
the subject and the reasons for considering partiality in recursive function theory are quite
compelling. One cannot, in a uniformly effective way, tell whether an algorithm will converge
on a given value and one cannot enumerate the Godel numbers of the total functions. Rogers
[1967] makes the following comments about this problem:

Of course, situations may then arise where there is no evident way to determine
whether a set of instructions yields a total function or not. Assume, for example,
that we have an expression ... which embodies the instructions: “To compute
f(x), carry out the decimal expansion of 7 until a run of at least @ consecutive 5’s
appears; if and when this occurs, give the position of the first digit of this run as
output.” Or, for a simpler example, take: “To compute ¢g(z), examine successive
even numbers greater than 2 until one appears which is not the sum of two primes;
if and when this occurs, give the output g(x) = 0.” In each example ... we have
a specific computing procedure but do not know whether this procedure gives
a function, i.e. whether it always terminates and yields an output. What we
can conclude is that each procedure gives a partial function. If it should happen
to be true that there are runs of eight 5’s but none of greater length in =, then
the first example would give a set of instructions for a partial function whose
domain consisted of the first nine integers. If Goldbach’s conjecture is true, then

79
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the second example would give the empty partial function; if the conjecture is
false, then the second example would give the constant function Az[0]. In any
case, each example provides specific calculating instructions which determine a
specific partial function.

It is quite natural therefore that we allow our functions to be undefined on some values
and this is the course followed by Rogers and most other writers on the subject of recursive
functions.

7.1 Partial functions on cpo’s

Although partial recursive functions are defined on the natural numbers A", we have perfectly
good notions of computability for higher types as well. It will not be our purpose to discuss
computability theory at higher types in this chapter, but the possiblity of getting such a
theory does suggest that the notion of partiality higher types may be worthy of investigation.
Starting with the category of sets we can get a perfectly good notion of partiality by taking
functions which are defined on subsets. That is, a partial function ¢ : A — B is a function
f: A — B where A' C A. There is a subtlety about types here since f is a perfectly good
partial function in its own right. We refer the reader to sources such as Heller [1985] and
Rosolini [1984] for more precise formulations. Given a set like NV, there is an associated set
[N — N of partial functions on /. There is, however, a natural order structure on this set:
given partial functions, ¢ : N'— A and ¢ : N' — N we can say ¢ C + if whenever x € NV
and ¢ is defined on @ then ¢ is defined on « and ¢(x) = ¢(x). This suggests that we move to
a more structured category of spaces. Since this order on N is complete and CPO has the
sets as a subcategory, defining a notion of partial function on cpo’s seems like a reasonable
level at which to begin discussing higher type partial functions. In this section we establish
some basic definitions and properties of cpo’s with continuous partial functions defined on a
Scott open sets.

Let D and E be cpo’s and suppose ¢ : D — E is a partial function. Let dom(¢) be the
subset of D on which ¢ is defined. Write ¢(x)] to indicate that @ € dom(¢) and in this case
let ¢(x) denote the value of ¢ on x. If & & dom(¢) then we write ¢(x)7 (and in this case the
expression “¢(x)” is non-denoting). An equation like ¢(x) = y means that ¢(x)] and y is
the value of ¢ at . We write s ~ ¢ for terms s and ¢ to mean that if s or ¢ is defined then
both are defined and s = t. A partial function ¢ is continuous if and only if dom(¢) is open
and the restriction of ¢ to dom(¢) is continuous (as a total function). The following lemma
is immediate from Lemma 1.

Lemma 87 Suppose ¢: D — E s a partial function between cpo’s D and E. Then ¢ s
continuous if and only if for every directed M C dom(¢), ¢(UM) =[1¢(M). O

If ¢,¢: D — E are partial functions then we write ¢ T ¢ if dom(¢) C dom(z)) and
é(x) T () for each # € dom(¢). For partial functions ¢ : D — E and ¢ : £ — F we
define Yo ¢ : D — F by

Yodo {¢<¢<x>> if ¢(e)] and W (g(x))l;

undefined otherwise.
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With the identity function for CPO and this composition the complete posets and partial
continuous functions form a category which we call CPOj (read as “cpo partial”). If C is
a full subcategory of CPO then we write Cy for the category with the same objects as C
and with partial continuous functions as arrows. Let [D — K] be the partially ordered set
of continuous partial functions from D into F. There is a close relationship between partial
functions and strict continuous functions. A (total) continuous function f: D, — F, is
strict if f(Lp) = Lg. Specifically, we have the following

Lemma 88 For any pair D, E of cpo’s, [D — E] 2 [D — E\]. In fact there is an isomor-
phism between CPOy and the category CPO | of cpo’s with bottoms and strict functions.

Proof. First, suppose ¢ : D — I is partial continuous. Define total, : D — FE, by
ot = {912) T
€L

otherwise.

to see that this function is continuous, suppose M C D is directed. If M N dom(¢) =
then UM ¢ dom(¢) since dom(¢) is open so totaly(LIM) = L = [totalys(M). If N
M N dom(¢) # 0 then N is directed and | |M = || N so

0

total s (UM ) = total s(LIN)
= ¢(LUN)
= [Jo(N)
= |total,(M).

It is clear also that if ¢ T « then total, T totaly. Now, it f: D — FE, is continuous then
let f5: D — E be given by

fo(z) ~ {f(l') if f(z) # L

undefined otherwise.

Since f is continuous and E —{L} is open, dom(fs) = f~*(E —{L}) is also open. Hence the
continuity of f5 is immediate. It is also clear that if f C ¢ then f5 C ¢g5. The maps partial
and total are inverse to one another so they yield the desired isomorphism. The isomorphism
between CPO; and CPO, comes from the fact that [D — F|] is isomorphic to the poset
of strict continuous functions from D, into E,. More explicitly, if ¢ : D — E then define
Pty b by total s(x) if @ £ L

_ Jtotaly(x if x ;

¢ulx) = {J_ otherwise.

Then the correspondences functors (-), and (+)s define an isomorphism between CPO; and
CPO,.. O

Certainly, there are a great many strict continuous functions between a pair of cpo’s
D, E having bottoms. For example, any surjection p : ' — D is strict. Hence, in particular,
projections are strict. Lower adjoints, since they preserve roots will also be strict. However,
in general, an upper adjoint may not be strict.
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There is a theory of categories with partial maps which captures in a rather general
framework properties of partial functions over categories like sets and enumerated sets. No-
tions such as that of a dominical category ([Heller 1985], [Rosolini 1984]) or partial cartesian
closed category [Longo and Moggi 1984] give a nice framework within which we can under-
stand the most essential properties of partial functions. It is our contention that this applies
to the categories of partial maps which we discuss in this chapter. Rather than develop this
general theory here we simply cite some evidently categorical properties of our spaces and
make some comments on how they support the claim that our choices of objects and mor-
phisms are natural. The following lemma says (among other things) that the total functions
on CPOj can be distinguished categorically in terms of the totally undefined functions.

Lemma 89 For cach pair D, E of cpo’s, let Vpr : D — FE be the totally undefined map.
1. If¢: D — FE and F is a cpo then ¢ odpp = Vg and Ygpo ¢ = dpp.

2. Moreover, ¢ is total if and only if for every cpo F and ) : F — D, ¢pop = Jpp implies
¢ =4Jpp.

3. In CPOgy, the empty set is both the initial and terminal object. O

The category CPO | represents a different “philosophy” of partiality from CPO;. With
sets, for example, instead of taking functions which are truely partial we can take as objects
sets with a distinguished point * and take as arrows total functions which send * to *. A
total function f: A — B is then “undefined” on an argument « if f(x) = *. This category
is equivalent to sets with partial functions. Note, however, that our earlier story about
the passage from sets with partial functions to cpo’s with partial functions does mean much
with respect to these pointed sets and CP O since the sets are not a subcategory of CPO .
Although CPO, and CPOy are equivalent, it does seem that bottomless complete posets
with continuous partial functions are a more naturally motivated class than cpo’s with strict
(total) functions. In the next section we also put forth the view that the functors of interest
are also more elegantly represented when we leave off the bottoms and consider partial
continuous functions.

7.2 Partial Plotkin orders and pre-domains

The category CPOyj is really very large for the purposes of domain theory. Although the
objects of the category are easy to present through a simple axiomatization, their structure
can be more complex than we would like to allow in general. In particular there seems to be
no way to get a theory of computability on cpo’s. What is needed is some sort of countable
basis for the poset. Then one can view the computable elements in terms of approximations.
The idea of continuity of a poset is perfectly suited to this purpose and work on this kind
of computability at higher types abounds (as mentioned earlier [Weihrauch and Deil 1980]

1

provides a pleasing intuitive introduction).! A more tractable class than the continuous

!Unfortunately the encyclopedic Compendium of Continuous Lattices [Gierz, et. al. 1981] has no
discussion of the subject other than history.
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posets is the algebraic posets. This latter class is expecially nice because an algebraic poset
has a canonical (in fact minimal) basis consisting of its finite elements. We can also bring
to bear the representation theory discussed in Chapter 2 and get a pleasingly simple class of
spaces.

Regretably, however, this class is a bit too simple because there is one big problem: the
poset of functions between algebraic cpo’s may not be algebraic! In light of Theorem 47 we
must restrict ourselves down to some subcategory of the profinite domains in order to get
algebraic function spaces. But wait, do we always want the total function space? If we want
closure under the partial function space then we demonstrate in this section that a different
category of algebraic cpo’s is suggested. These are the pre-domains. They are very similar
to the profinite domains in having pleasing categorical and representational properties. We
study them in a manner analogous to our study of the profinites through the equivalent
category of Plotkin orders. First we show how to represent continuous partial functions over
algebraic cpo’s through the use of the following generalization of approximable relations.
Definition: A partial approximable relation ¢ : A — B is a subset of A x B which satisfies
the following axioms for any X, X' € A and Y)Y’ € B:

1. if X ¢ Y and X ¢ Y’ then there is a Z € B such that X ¢ Z and Z g Y, Y’;
2. X FA X' 9Y' FgY then X 90 Y. O

Composition of partial approximable relations is defined in exactly the same way as for
(total) approximable relations. With the identity relation defined as before, the pre-orders
and partial approximable relations define a category POjs which has PO as a sub-category.
Definition: If A and B are pre-orders and ¢ : A — B is a partial approximable relation
then define |¢| : |A| — |B]| by

16](2) ~ {{Y | X fY for some X € z} if this set is non-empty;

~ lundefined otherwise. O

Lemma 90 For every pair A, B of pre-orders, the poset POas(A, B) of partial approximable
relations between A and B is isomorphic to [|A| — |B|]. Moreover, for a partial approzimable
relation ¢, |@| is total if and only if ¢ is approzimable.

Proof. The proof that the correspondence ¢ — |¢| defines an isomorphism is routine. If ¢ is
approximable, then by definition {Y | X f Y for some X € x} is non-empty for every ideal
x. Thus |¢| is total. On the other hand, if |¢| is total and X € A then |¢|(|.X) is defined so
there is a Y € |¢|(]X). Hence X ¢ Y and ¢ is therefore approximable. O

Definition: For a pre-order A, A<, B if and only if A} « B,. A partial Plotkin orderis a
pre-order A such that for every finite u C A, there is a finite B <4 A with v C B. O

Proposition 91 A pre-order A is a partial Plotkin order if and only if Ay is Plotkin order.

Proof. To prove necessity (=), suppose A is a partial Plotkin order and v C A, is finite.
Then there is a finite B <y A with v — {1} C B. Hence u C B 1« A;. To get sufficiency
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(<), suppose A, is a Plotkin order and u C A is finite. Then u C B < A} for some finite B
souC (B —{L})a A. Hence A is a partial Plotkin order. O

Remark: For pre-orders A and B, A <, B if and only if for every X € B, the set AN | X
is either empty or directed.
Definition: Let A and B be pre-orders. We define the partial exponential pre-order

<B[A]7 l_B[A]>
as follows:

e p € BM if and only if p is a finite non-empty subset of A x B such that for every
7 € A, the set
{(X,Y)ep|ZFaX}

is empty or has a maximum with respect to the ordering on A x B.

e p Fpa ¢ if and only if for every (X,Y) € ¢ there is a pair (X',Y’) € p such that
X"A X" and Y’ l_B Y. O

The intuition behind the partial exponential is that each p € BM is a finite piece of a
partial approximable relation. Note that if p € Bl then we have {X | (X,Y) € pl <, A

Lemma 92 If¢: A — B is approximable and M <, A, N < B are finite then ¢N (M x N)

is an element of B

Proof. Let X € A and suppose the set {(X',Y") € p| X F X'} is non-empty. Since M «; A
there is an Xg € M such that X F4 XoFqa M N | X. fv={Y € N | Xy ¢ Y} then because
¢ 1s partial approximable, there is a Y € B such that Y g v and Xy ¢ Y. Since N <, B
there is a Yo € N such that Y Fg Yo Fg NN |Y Since ¢ is partial approximable we know
also that Xy ¢ Yp. The conditions of 1 in the definition are therefore satisfied. O

Proposition 93 Let A and B be pre-orders. Then
1. If M «; A and N <, B are finite then NIM o, BlAl
2. If A and B are partial Plotkin orders, then BY is a partial Plotkin order.
Proof. 1. Let p € B and set ¢ = {(X,Y) € M x N | X ¢, Y} where
¢, ={( X", Y)eAXx B| X'y X and Y Fg Y’ for some (X,Y) € p}.

The relation ¢, is partial approximable so ¢ € Bl by Lemma 92. It follows directly from
the definition of ¢ that p gy ¢. If p Fgrg r and r € NIM then » C ¢ so ¢ Fpgra . Hence
NWM] 4, Bl
2. Suppose u is a finite subset of B, Since A and B are partial Plotkin orders, there
are finite subsets M «; A and N «; B such that
{X | (X,Y) € uforsomeY € B} C M, and
{Y | (X,Y) € u for some X € A} C N.

By 1, NIMl . Since u € NMI and NIMI g finite the result follows. 0O
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Proposition 94 Let A and B be pre-orders. Then
1. If M ay Aand N <y B then M x N4, AxB.

2. If A and B are partial Plotkin orders then A x B is a partial Plotkin order.

For partial Plotkin orders, define the relations apply and curry as they were defined for
Plotkin orders. Proofs of the following theorem and its corollary are essentially the same
as the proofs of Theorem 15 and Corollary 16 respectively. Note, however, that even for a
partial approximable ¢, curry(¢) is total.

Theorem 95 For any three objects A, B,C in PLTj the relation
apply : CPPlx B — C

is partial approximable and for every ¢: A x B — C, curry(¢) : A — CP is the unique
approximable relation such that the following diagram commutes

Ax B

curry(¢) X idg

OBl x B
O
Corollary 96 If A and B are Plotkin orders, then |BM| = [|A] — |B|]. 0

This almost proves that PLT5 is a cartesian closed category. It fails to prove this, how-
ever, because in PLT5, X is not a cartesian product! The arrows fst, snd and the operation
(-,-) defined in Chapter 2 do not satisfy the necessary commutative diagram condition. To
see that no new choices of these arrows will help, we note that in any category, the cartesian
product is unique up to isomorphism and show that POj has a categorical product which
is not isomorphic to x. To this end, let A xx B = A+ (A x B) + B. Define the arrow
pfst : A xx B — A by

o if X € Aand Y € A then X pfst YV if and only if X 4 YV
o if (X,Y)e Ax Band Z € Athen (X,Y) pfst Z if and only if X F4 Z.
Define psnd : A xx B — B by

o if (X,Y)eAx Band Z € B then (X,Y)psnd 7 if and only if X kg Z;
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o if X € Band Y € B then X psnd Y if and only if X Fg Y.

If ¢:C — Aand ¢ : C — B are partial approximable relations, define a relation ((¢,v)) C
C x (A xx B) by

X (¢, ) Y for Y € Aif and only if X F4 YV and there is no Z such that X ¢ Z;
X (¢, ) (Y, Z) for (X, 7)€ Ax Bifand only if X ¢ Y and X ¢ Z;
X (¢, ) Y for Y € B if and only if X k5 YV and there is no Z such that X ¢ Z.

One can show that for any such ¢ and ¢, the relation {(¢,)) is partial approximable and is
the unique partial approximable relation which completes the following diagram

A
¢ pst
C——<§qi7—¢—>>>A xx B
) psnd
B

Hence A xx B is the categorical product of A and B in POj.

Definition: If p: £ — D and o : D — E are continuous partial functions such that poo =
idp and oo p C idg then we say that p is a partial projection, o is a partial projection, o is
a partial embedding and we write {(p, o) : £ 22 D. If C is a category of cpo’s then we denote
by CL the category having the same objects as C but with partial projections as arrows. A
dual definition applies to C¥. O

Definition: A pre-domain D is a poset such that D is profinite. Let PreDom be the
category whose objects are pre-domains and whose arrows are continuous functions. O

Theorem 97 PreDomg has limits for inverse systems.

Proof. The functors (-); and (-)5 define an isomorphism between PreDomY and BotP’.
The theorem therefore follows from Corollary 40. O

Theorem 98 For a poset D, the following are equivalent
1. D is a pre-domain.
2. D is tsomorphic to the limit in CPog of an inverse system of finite posets.

3. D s isomorphic to the ideal completion of a partial Plotkin order.
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PLT; PreDom BotP
Function space Bl PreDom(D,E) BotP, (D, FE)
Adjoint to function space A x B DxFE Do FE
Categorical product Axx B DxxFE DxFE
Categorical sum A+ B D+ FE Do Lk

Table 7.1: Functors on some equivalent categories.

Proof. If D is a pre-domain then D, is profinite so D) = hﬁ(Ai,a¢j> where (A;, a;;) is
an inverse system of finite posets in CPOY. But each of these A; has a bottom since D,
does, and the maps a;; are strict. Hence (A;, a;;) is an inverse system in CPO]j and we have
DD, ;= hﬁ((Ai)a, (aij)s). On the other hand, if (A;, a;;) is an inverse system of finite
posets in CPog then (@(Ai,a¢j>h & hﬁ((Ai)L,(ozij)L> which is profinite since each
(A;)L is finite and each (ay;)1 is a (total) projection. Hence @(Ai,aij> is a pre-domain.
Thus we have shown that (1) < (2).

If D is a pre-domain then D is profinite so by Theorem 37, B[D,] is a Plotkin order.
But B[D,]=B[D], so by definition B[D] is a partial Plotkin order. Now D, is algebraic so
by Lemma 83, D is algebraic and D = |B[D]|. Suppose on the other hand that A is a partial
Plotkin order. Then A is a Plotkin order so by Theorem 37, |AL| = |A|L is profinite. Hence
|A] is a pre-domain. We have shown that (1) < (3). O

Corollary 99 The categories PLT 3 and PreDom are equivalent. O

Now, the category of predomains and the category BotP, of profinite domains with
bottoms and strict functions are isomorphic via the correspondence defined by (-), and (+)s.
However, when working with the bottom element in BotP, , functors such as the product
cause the bottom to get hopelessly intermingled with the bona fide elements. This fact
motivates the introduction of the smash product D @ F which is defined to be the product
of D and E with all pairs having bottom in their first or second coordinate identified.
Similarly the coalesced sum D & E is defined by taking the sum of D and F and identifying
their respective bottoms. Table 7.1 relates some of the functors on the categories PLTj,
PreDom and BotP . It seems to the author that the functors ® and @ on BotP | are less
elegant and harder to work with than the corresponding functors x and + on the other two
categories. This is because @ and & involve the use of equivalence classes made necessary by
the presence of the bothersome bottom element. Whether this is made up for by whatever
advantages one preceives strict total functions to have over partial ones is perhaps a matter
of application or personal inclination.

Proposition 100 Open subsets of pre-domains are pre-domains.
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Proof. If D, is profinite and O C D is open then O} is algebraic. Hence B[O, ] = ONB[D]«
B[D,] so B[O.] is a Plotkin order. Hence O} is profinite and O is therefore a pre-domain.
U

This property sets the pre-domains apart from other categories of algebraic cpo’s such
as P or BCALG because these categories are not closed under open subsets (although
compact open subsets of profinite domains are profinite and 1-Lindelof open subsets of objects
in BCALG are objects of BCALG). One can show that when inclusion of open sets on
PreDom is taken as a notion of partialin the sense of Rosolini [1984] the resulting category of
partial maps is a category equivalent to PreDomy. This shows that PreDomy is dominical.
Moreover, Theorem 95 shows that PreDomy is a partial cartesian closed category in the
sense of Longo and Moggi [1984].

The proof of the following theorem is essentially identical to the proof of 47:

Theorem 101 If D is an w-algebraic cpo and CPOy(D, D) is w-algebraic then D is a
pre-domain.

Hence the pre-domains arise by analogy with the profinites: as the profinites are to the
total functions space, so are the pre-domains to the partial function space. We close the
chapter with a proposition which establishes a more direct relationship between pre-domains
and profinite domains.

Proposition 102 The compact pre-domains are exactly the profinite domains.

Proof. Suppose D is a compact pre-domain. Then D, is profinite and D is a compact
open subset of D). But by Corollary 63, compact open subsets of profinite domains are
profinite. Thus D is profinite. Since every profinite domain is compact and a pre-domain,
the proposition follows. O
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