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Introduction

The inspiration for this paper is a result proved by Michael Smyth which states that Gordon

Plotkin's category SFP is the largest cartesian closed category of domains. Although this category

is easily enough motivated from concepts in domain theory and category theory, it is clearly harder

to describe and less \elementary" than the most popular categories of domains for denotational

semantics. In particular, the category most often used by people who need domain theory is that

of bounded complete algebraic cpo's. The use of this latter category has been championed by Dana

Scott for years ([4], [5], [6]) and its use has become widespread. It is simple to describe, easy to

work with, and su�ces for most applications.2

The purpose of this paper is to state and prove an analog to Smyth's theorem which says

that the bounded complete domains form the largest \easy to de�ne" cartesian closed category of

domains. Formally, a class K of domains will be \easy to de�ne" if the posets which form the bases

of members of K are the countable models of a �rst order theory. This concentration on the bases

is reasonable because many domains are best described by explaining what their compact elements

are. The domain can then be constructed as the set of ideals of these compact elements ordered by

set inclusion. (Indeed, this is a central idea urged in each of Scott's aforementioned papers.) Also,

when working with domains, the compact elements are very handy for proving the kinds of facts

that one needs to know. So it is important for the compact elements in the domains being used to

lie in a familiar, easily-understood class.

The second section of the paper discusses some of the de�nitions and facts from domain theory

and model theory which will be needed. In the third section we de�ne precisely what is meant by a

�rst-order-axiomatizable class of domains and outline the proof of the main result. The proof uses

Smyth's Theorem and the Compactness Theorem for �rst order logic. An alternate proof using

ultraproducts is also o�ered. The �nal section contains some discussion and a few remarks about

possible extensions of the main result.

1Logic in Computer Science, edited by A. Meyer, IEEE Computer Society Press, June 1986, pp. 42{48.
2The well-known exceptions are those applications which use the convex powerdomain. In such cases SFP is the

only satisfactory category known.
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Background

Basic Domain Theory. A poset is a set D together with a binary relation v which is re
exive,

transitive and anti-symmetric. A set M � D is directed if, for every �nite u � M , there is an

x 2M such that y v x for each y 2 u. A poset D is complete (and hence, for short, a cpo) if every

directed subset M of D has a least upper bound
F
M . We will also assume that a cpo D has a

least element. A element x 2 D is compact if, whenever x v
F
M for a directed set M , there is

a y 2 M such that x v y. Let D0 denote the set of compact elements of a cpo D. We say that

D is algebraic if, for every x 2 D, the set M = fy 2 D0 j y v xg is directed and
F
M = x. In

other words, in an algebraic cpo every element is the limit of its compact approximations. In this

paper we will only be concerned with algebraic cpo's D such that D0 is countable. So,\algebraic

cpo" will always mean the same as \algebraic cpo with a countable basis". To reduce the number

of letters needed to write about algebraic cpo's, I will generally just refer to them as \domains".

There a quite a few important operators on cpo's. We will only concern ourselves with two of

them|the product and function space. The product D � E is the set of pairs (x; y) with x 2 D

and y 2 E with the coordinatewise ordering. If D and E are cpo's then D � E will be one also.

Moreover, if D and E are domains, then D � E will also be a domain whose basis is D0 � E0.

A monotone function f : D ! E between cpo's D and E is continuous if, for every directed set

M � D,
F
f(M) = f(

F
M). Let [D ! E] be the set of continuous functions from D to E. We

order [D ! E] by setting f v g if, for every x 2 D, f(x) v g(x). It is easy to check that the

function space, [D ! E], of D and E is itself a cpo.

Let us say that a class K of domains is cartesian closed (and say that K is a ccc) if it contains

the one point domain and is closed under products and function spaces.3 Although the class of all

domains is closed under products, it is not closed under function spaces and is therefore not itself

a ccc! It turns out, however, that there is a largest ccc of domains. It is de�ned as follows. Let D

be a cpo and let M be the set of continuous functions p : D ! D such that

1. the image of p is �nite, and

2. p(x) = p � p(x) v x for each x.

Then D is said to be strongly algebraic ifM is countable, directed, and
F
M is the identity function

on D. Strongly algebraic domains were introduced in [3] (where they are called \SFP-objects").

A proof that the de�nition given above is equivalent to the original one may be found in [2] where

many other properties of strongly algebraic domains are discussed. Of particular interest is the

following result of Smyth [7]:

Theorem 1 If D and [D ! D] are domains, then D is strongly algebraic.

3This is, of course, a special instance of the categorical notion of cartesian closure.
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Figure 1: MUB(fa; bg) is not �nite
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Figure 2: MUB(fa; bg) is not complete

In the next section we will need a technical fact about strongly algebraic domains. Let A be

a poset and suppose u � A. An upper bound x for u is said to be minimal if, whenever y is an

upper bound of u such that y v x, then x = y. Let MUB(u) denote the set of minimal upper

bounds of u. We say that MUB(u) is complete if, whenever x is an upper bound of u, then there

is a y 2 MUB(u) such that y v x. A proof of the following appears in [3]:

Lemma 2 If D is strongly algebraic and u � D0 is �nite, then MUB(u) is �nite and complete.

It is easy to show that, in a domain, a minimal upper bound of a �nite set of compact elements is

itself compact. So it is not necessary to say whether the minimal upper bounds in the conclusion

of the lemma are being taken in the domain D or in its basis D0. The lemma basically rules out

con�gurations such as the ones pictured in �gures 1 and 2.
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A non-empty domain D is said to be bounded complete if every bounded subset of D has a least

upper bound. One can show that a non-empty domain D is bounded complete i� every bounded

pair of elements of D0 has a least upper bound. The bounded complete domains form a ccc. By

Smyth's theorem, it follows that bounded complete domains are strongly algebraic, but this is a

fact one could prove easily directly from the de�nitions. On the other hand, not every strongly

algebraic domain is bounded complete. For example, any �nite poset (with a least element) is

strongly algebraic but there are many such posets that are not bounded complete. In particular,

we will need the following fact about the relationship between strongly algebraic domains and

bounded complete domains:

Lemma 3 If D is a strongly algebraic domain that is not bounded complete, then there is a pair

of elements a; b 2 D0 such that MUB(fa; bg) has at least two members.

Proof. Suppose that MUB(fx; yg) is empty or a singleton for every x; y 2 D0. Suppose a; b v c for

some a; b; c. By Lemma 2, MUB(fa; bg) is complete so there is a d 2 MUB(fa; bg) such that d v c.

Since d is the only element of MUB(fa; bg) it is the least upper bound of MUB(fa; bg). Thus D is

bounded complete.

Basic Model Theory. I will assume that the reader has some familiarity with the kind of �rst

order logic discussed in chapters one and two of [1] such as the notions of language, formula,

sentence, model, satisfaction (j=), and so on. I will summarize below a few of the results that will

be needed in the next section. It will be assumed throughout that the theories T are in a countable

�rst order language.

Theorem 4 (Compactness) A set T of sentences has a countable model i� every �nite subset of

T has a model.

For the de�nitions of ultra�lter and ultraproduct, see Chapter 4 of [1]. Below we will need the

Fr�echet ultra�lter on !. This is de�ned to be the set of subsets S � ! such that the complement

of S in ! is �nite. The primary fact about ultraproducts is the following:

Theorem 5 (Fundamental Theorem of Ultraproducts) Let U be an ultra�lter over an index set I

and suppose fAi j i 2 Ig is an indexed collection of models of a �rst order theory T . Then the

ultraproduct
Q
U Ai is a model of T .

The following is a special case of the \downward" L�owenheim-Skolem-Tarski Theorem.

Theorem 6 Suppose A j= T and X � A is countable. Then there is a countable submodel A0 � A

with X � A0 such that A0 j= T .
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Basis-Elementary Classes of Domains

It is now time to say more precisely what I mean by a �rst-order-axiomatizable class of domains.

We will always be working with the �rst order language of posets expanded, possibly, by countably

many constant symbols. The language of posets has one binary relation symbol and the models

are posets hD;vi which interpret that symbol as v. A class K of countable posets is said to be

elementary if there is a �rst order theory T in the language of posets such that a countable poset

A is in K i� A j= T . If K is a class of domains, let K0 be the class of bases D0 of domains D in K.

Let us say that a class of domains K is basis-elementary if K0 is elementary.

I propose that we consider a class of domains to be �rst-order-axiomatizable just in case it is

basis-elementary. Another way that one might de�ne what it means for a class of domains to be

�rst-order-axiomatizable is discussed in the next section. The central theorem of the paper may

now be stated as follows:

Theorem 7 The largest basis-elementary ccc of domains is the class of bounded complete domains.

Proof using the Compactness Theorem: The reader may check for himself that the bounded complete

domains form a basis-elementary class. To show that it is the largest basis-elementary class which

is a ccc it su�ces to show that a ccc not contained in the bounded complete domains cannot be

basis-elementary. Let K be a ccc of domains which contains a domain that is not bounded complete.

Let T be the �rst order theory of K0 (i.e. T is the set of those sentences � such that A j= � for

every poset A in K0). We show that K0 is not elementary by showing that there is a countable

model of T that does not lie in K0.

Now, K contains a domain D that is not bounded complete. But D must be strongly algebraic,

so by Lemma 3 the basis A = D0 of D contains a pair of elements a; b 2 A such that MUB(fa; bg)

contains more than one member. For each integer m � 2, we show that there is a model of T in

the language of posets expanded by adding two new constant symbols c and d, that satis�es the

�rst order axiom

�m � 9v1 � � � 9vm:
^

i6=j

vi 6= vj ^ vi 2MUB(fc;dg):

Note that A is a model of �2 if c and d are interpreted by a and b. Suppose m � 2 and T [ f�mg

has a model B in which c and d are interpreted by c and d. Since K is a ccc, the product B �B

is in K and is therefore a model of T . We claim that B �B is a model of T [ f�m+1g when c and

d are interpreted by (c; c) and (d; d). To see this, note that

MUB(f(c; c); (d; d)g) = MUB(fc; dg) �MUB(fc; dg):

There are m2 elements in the latter set and m � 2, and hence m2 � m + 1 so the claim holds.

Now, for each m, �m+1 ! �m so we may deduce that any �nite subset of T [ f�m j m � 2g has a

model. Hence, by the Compactness Theorem, there is a countable model C of T [ f�m j m � 2g.
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If C interprets c and d by c and d, then MUB(fc; dg) is in�nite. It follows from Lemma 2 that if

E is a domain and C = E0, then E is not strongly algebraic. Since K is cartesian closed, it follows

from Theorem 1 that C does not lie in K0. Hence K cannot be basis-elementary.

Very often, when the Compactness Theorem can be used to show that a class of models is not

elementary, it is also possible to prove this fact using the Fundamental Theorem of Ultraproducts.

What follows is the sketch of a proof using this technique.

Proof using Ultraproducts. Let K, T , A, a, b be as they were in the proof above and let U be the

Fr�echet ultra�lter on !. For each i 2 !, de�ne

Ai = A� � � � �A| {z }
i+1 copies

:

Elements of the ultraproduct C =
Q
U A

i are equivalence classes of sequences s : ! !
S
iA

i such

that s(i) 2 Ai for each i. In particular, there are sequences

a� = a; (a; a); (a; a; a); : : :

b� = b; (b; b); (b; b; b); : : :

(representing equivalence classes) in C. Now, fa; bg has at least two distinct minimal upper bounds

p; q in A. Consider the following sequences:

s1 = q; (q; p); (q; p; p); (q; p; p; p); : : :

s2 = p; (p; q); (p; q; p); (p; q; p; p); : : :

s3 = p; (p; p); (p; p; q); (p; p; q; p); : : :

s4 = p; (p; p); (p; p; p); (p; p; p; q); : : :

...

which represent distinct elements of C. Each si is a minimal upper bound for fa�; b�g in the ordering

on C. By the Fundamental Theorem of Ultraproducts, C j= T . Although C may not be countable,

by the L�owenheim-Skolem-Tarski Theorem, there is a model C 0 � C with a�; b�; s1; s2; : : : 2 C 0.

such that C 0 j= T . But by Lemma 2, if C 0 = E0 then E cannot be strongly algebraic. Hence C 0

does not lie in K0 and K cannot be basis-elementary.

Discussion

There is at least one other reasonable interpretation of \�rst-order-axiomatizable" class of do-

mains that can be made. Say that a class K of domains is intersection-elementary if there is a theory

T of posets such that K is exactly the class of domains D j= T . This notion seems somewhat less
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natural to me than basis-elementary but I conjecture that the largest intersection-elementary ccc

of domains is, in fact, the bounded completes. It should be noted, however, that no interesting

class of cpo's is actually elementary. For example, any elementary class K of posets that contains

the ordinal ! + 1 also contains the ordinal ! + Z + 1, since these two posets have the same �rst

order theory. But ! + Z + 1 is not a cpo. Thus no elementary class of cpo's can contain ! + 1.

Certainly one consequence of Theorem 7 is that the strongly algebraic domains are not basis-

elementary. This does not seem like much of a surprise really since the axioms in the de�nition

of strongly algebraic are clearly higher-order. In [3] there is a condition on the basis of a domain

D which is necessary and su�cient for D to be strongly algebraic. Let me explain this condition

brie
y. If A is a poset we say that a subposet B � A is normal in A if, for every x 2 A, the set

fy 2 B j y v xg is directed. The following paraphrases the result proved by Plotkin:

Theorem 8 A domain D is strongly algebraic i�, for every �nite subset u � D0, there is a �nite

subset v � D0 such that v is normal in D0 and u � v.

I think that part of what makes this result appealing is the fact that condition on the right seems

less logically complex than the condition given in the earlier de�nition of a strongly algebraic

domain. Instead of quantifying over all functions of a certain kind the condition has its quanti�ers

ranging over �nite subsets of D0. The theorem shows that although the strongly algebraics are not

basis-elementary, their bases can be axiomatized using sentences from weak second order logic.
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