
The Semantics of Types in
Programming Languages
Carl A. Gunter

Contents

1 Introduction : 3
2 Types in Programming : 4

2.1 Higher types. : 4
2.2 Recursive types. : 7
2.3 Parametric polymorphism. : : : : : : : : : : : : : : : : : : : 9
2.4 Subtypes. : 12

3 Simple Types as Sets : 16
3.1 Types and equations. : 17
3.2 Sets as a model. : 19
3.3 Type frames. : 23
3.4 Completeness for sets. : 27

4 Simple Types as Domains : 29
4.1 A Programming Language for Computable Functions. : : : 29
4.2 Operational semantics. : 30
4.3 Operational equivalence. : 33
4.4 bc-domains and dI-domains. : : : : : : : : : : : : : : : : : : 34
4.5 Full abstraction. : 36

5 Types as Invariants : 39
5.1 Runtime safety. : 39
5.2 Implicit types. : 43
5.3 Runtime safety for assignments and continuations. : : : : : 51

6 Types as Subsets : 55
6.1 Untyped �-calculus. : 56
6.2 What is a model of the untyped �-calculus? : : : : : : : : : 57
6.3 What models of the untyped �-calculus are there? : : : : : 59
6.4 Inclusive subsets as types. : : : : : : : : : : : : : : : : : : : 61
6.5 Subtyping as subset inclusion. : : : : : : : : : : : : : : : : : 64

7 Types as Partial Equivalence Relations : : : : : : : : : : : : : : : 68
7.1 Sets as a model of ML0 types. : : : : : : : : : : : : : : : : : 69

1

2 Carl A. Gunter

7.2 Another typing system for ML0. : : : : : : : : : : : : : : : 70
7.3 The polymorphic �-calculus. : : : : : : : : : : : : : : : : : : 72
7.4 Sets as a model of polymorphic types? : : : : : : : : : : : : 74
7.5 Simple types as PER's. : 77
7.6 PER's as a model of polymorphic types. : : : : : : : : : : : 79

8 Conclusion : 81

The Semantics of Types in Programming Languages 3

1 Introduction

In the twentieth century, there have been at least two lines of development
of the notion of a type. One of these uses types to conquer problems in
the foundations of mathematics. For example, type distinctions can resolve
troubling paradoxes that lead to inconsistent systems. But a second, more
recent, line of investigation into types pursues their application in pro-
gramming languages. Although computer architectures themselves suggest
few type distinctions, `higher-level' programming languages generally use
a classi�cation of data into types to serve a variety of di�erent purposes.
There are at least four motives for doing this.

One of the earliest reasons for using types in programming languages
such as Fortran was the enhancement of e�ciency. For example, if a vari-
able is declared to be an array of integers having a given number of entries,
then it is possible to provide good space management for the variable in
computer memory. A programmer's indication of the type of a datummight
also save pointless testing in a running program. This use of types has re-
mained a basic motivation for their presence in many modern languages
and will remain an important application.

A second motivation for the use of types was appreciated by the end of
the 1960's. This was their role as a programming discipline. Types could
be used to enforce restrictions on the shape of well-formed programs. One
key bene�t in doing this was the possibility of detecting
aws in programs
in the form of compiletime type errors. If a mistake in a program can be
detected at the point that the program is submitted for compilation into
machine code, then this mistake can be corrected promptly rather than
being discovered later in a run of the program on data. Although the
software engineering gains obtained in this way are widely recognized, a
price is also paid for them. First, by constraining the programmer with
a type system, some apparently reasonable programs will be rejected even
though their runtime behavior would be acceptable. Second, the typing
system maydemand extensive programmer annotations, which can be time-
consuming to write and tedious to read. Reducing the impact of these
two drawbacks is the central objective of much of the work on types in
programming languages.

A third motivation for types in programming languages is the one most
recently understood: their role in supporting data abstraction and modu-
larity. Although these cornerstones of software engineering principle can
be achieved to some extent without types, many programming languages
employ a type system that enforces the hiding of data type representa-
tions and supports the speci�cation of modules. For example, several lan-
guages support a separation between a package speci�cation, which consists
of a collection of type declarations, and the body of the package, which

4 Carl A. Gunter

provides programs implementing the procedures, etc. that appear in the
speci�cation. These units are automatically analyzed to determine their
type-correctness before code is generated by compilation.

A fourth motivation for the use of types, and the primary topic of
this chapter, is their role as a conceptual tool for classifying programs
in a way that permits a more abstract understanding of their meanings.
For virtually any language, a semantics will classify objects according to
their structure and use, thereby elevating them conceptually above the
sequences of bits that they will be compiled into. This abstraction is the
most fundamental use of type systems.

2 Types in Programming

This section discusses a collection of programming examples intended to
illustrate the motivations for various type structures. A handy pair of
languages for making a comparison is Scheme, which can be viewed as
based on the untyped �-calculus, and ML, which can be viewed as based on
the typed �-calculus. Both languages have speci�cations that are at least as
clear as one �nds for most languages, so it is (usually) not di�cult to tell
what the meaning of a program in the language is actually speci�ed to be.
(An IEEE standard for Scheme was introduced in 1990 [IEE, 1991]; for ML
the Standard version [Milner et al., 1990] is used in the examples below.)
While both were designed with semantic clarity as a key objective, the
designs are also sensitive to e�ciency issues, and both have good compilers
that are widely used. Finally, the functional fragments of Scheme and
ML employ a call-by-value evaluation strategy so the chance of confusing
operational di�erences with di�erences in the type system philosophy are
reduced.

2.1 Higher types.

One of the �rst discoveries of researchers investigating the mathematical
semantics of programming languages in the late 1960's was the usefulness
of higher-order functions in describing the denotations of programs. The
use of higher-order functions in programming was understood even earlier
and incorporated in the constructs and programming methodology of Lisp.
Programmers using the languages Scheme and ML employ higher-order
functions as a tool for writing clear, succinct code by capturing good ab-
stractions. On the other hand, the use of higher-order functions does have
its costs, and it is therefore worthwhile to discuss some of the ways in which
such functions can be useful. Their usefulness as a tool in the semantics
of programming languages is adequately argued by books and articles that

The Semantics of Types in Programming Languages 5

employ them extensively in semantic descriptions ([Tennent, 1992] provides
a starting point.) Rather than review the subject from that perspective,
let us instead consider brie
y why they are useful in programming.

Consider a familiar mathematical operation: taking the derivative of
a continuous real-valued function. The derivative of a function f is the
function f 0 where

f 0(x) =
f(x+ dx)� f(x)

dx

for an in�nitesimal dx. For purposes of an estimate, it will simplify our
discussion to bind dx to a small number (say .0001). Of course, it could
passed as a parameter, but this is not necessary for the point below. A
Scheme program for computing the derivative can be coded as follows:

(define (deriv f x)

(/ (- (f (+ x dx)) (f x))

dx))

Here the derivative is higher-order, since it takes a function as a parameter,
but it is coded as returning a numerical value on a given argument, rather
than returning a new function as is the case for the mathematical derivative.
This can lead to problems if the distinction is not properly observed. For
example, the program (deriv (deriv f 1)), which might be mistakenly
intended to compute the second derivative of f at 1, will yield a runtime
type error complaining that deriv has the wrong number of arguments. Of
course, the second derivative at 1 could be successfully calculated using an
explicit abstraction,

(deriv (lambda (x) (deriv f x)) 1).

and the `lambda' could be eliminated by making a local de�nition if this
intrusion of lambda-abstraction is considered undesirable. However, these
approaches generalize poorly to the case where what is wanted is the third
derivative or the fourth derivative, and so on. To accommodate these
cases, it would be possible to include a parameter n for the n'th iteration
of di�erentiation in the de�nition of deriv, but it is more elegant and
understandable to quit �ghting against the mathematical usage in the pro-
gramming, and to start coding it instead. The derivative takes a function
as an argument and produces a function as a value:

(define (deriv f)

(lambda (x)

(/ (- (f (+ x dx)) (f x))

dx)))

The second derivative at 1 is now properly coded as

6 Carl A. Gunter

((deriv (deriv f)) 1)

as in the mathematical notation f 00(1) where the primes denote an oper-
ation on a function. To calculate n'th derivatives, it is possible to write
another function that takes a function g and a number n as arguments and
produces the function gn = g � g � � � � � g (n copies) as its value. This is a
powerful abstraction since there are many other ways this function might
be used; the key idea here, the composition exponential, can be used mod-
ularly with the derivative rather than being mixed up in the code for the
n'th derivative function.

Where do types come into this? Lying at the heart of the distinction just
discussed is the notion of `currying', that is, the passage from a function
of type r � s ! t to one of type r ! (s ! t). In the �rst case above,
the derivative function was coded as a function taking as its arguments a
real-valued function f and a real number x. When coded in ML, it looks
like this:

fun deriv (f:real -> real, x:real):real

= (f(x+dx) - f(x))/dx.

and the ML type-checker indicates its type as

((real -> real) * real) -> real

The way to read this is to think of it as the de�nition of a function deriv

on a product type with the abstraction described using pattern matching.
The second (curried) way to program this function is

fun deriv f = fn x:real => ((f(x+dx) - f(x))/dx):real

where the ML syntax for � is fn. For this term, the type is

(real -> real) -> (real -> real)

Another example of the usefulness of higher-order functions comes from
the powerful programming techniques one can obtain by combining them
with references and assignments. An example drawn from [Abelson and
Sussman, 1985] appears in Table 1. The procedure make-account takes
a starting balance as an argument and produces an `account object' as
a value. The account object is itself a higher-order function, returned
as dispatch, that has its own local state given by the contents of the `in-
stance variable' balance, which contains the current balance of the object.
The arguments taken by the object include the `messages' represented by
atoms 'withdraw and 'deposit and the arguments of the `message sends',
which appear in the formal parameters amount in the `method de�nitions'
of withdraw and deposit. To create an account, the balance of the object

The Semantics of Types in Programming Languages 7

Table 1. Using Local Variables and Higher-Order Functions in Scheme

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(sequence (set! balance

(- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

(else (error "Unknown request"

m))))

dispatch)

must be initialized by applying make-account to the number that will be
the starting value of its instance variable. For example, if Dan is de�ned
as the value of (make-account 50) and George is de�ned as the value
of (make-account 100), then the account objects will correctly maintain
their separate balance levels though a sequence of `messages sends' describ-
ing the �nancial history of the objects. Finding a suitable system of types
to classify programs written in `object-oriented' style is a major area of
research as this chapter is being written.

2.2 Recursive types.

Consider the following pair of programs:

(define (cbvY f)

((lambda (x) (lambda (y) (f (x x) y)))

(lambda (x) (lambda (y) (f (x x) y)))))

(define (badadd x) (+ x "astring")).

Both of them are compiled without comment by Scheme. They illustrate
a trade-o� in the type-checking of programs. The �rst program cbvY is
the call-by-value �xed-point combinator. It is an interesting program that

8 Carl A. Gunter

can be used to make recursive de�nitions without using explicit recursive
equations. The second program badadd contains a `semantic' error in the
form of a bad addition. Many of the actual bugs encountered in programs
are like this one|despite how silly it looks in this simple example. Both of
these programs can be executed in Scheme although the second program
will probably cause a runtime type error. These two examples could be
rendered in ML as follows:

fun cbvY f =

((fn x => (fn y => f (x x) y))

(fn x => (fn y => f (x x) y)))

fun badadd x = x + "astring".

but the ML type-checker will reject both of them as having type errors. In
the second case the rejection will occur because there is an expression that
purports to add something to a string|an operation that is not allowed.
The �rst program is rejected because it has an application x x of a variable
to itself and no type is be inferred for this by the ML type-checker. From
the viewpoint of a programmer, one might see the type-checking as a useful
diagnostic for the second program and a hindrance for the �rst one.

A programming language is said to have static type-checking if the
type-correctness of the program is established before the program is com-
piled. Scheme does not carry out such a check, but ML does. Of course,
type-correctness is relative to the typing discipline, so this is a language
design issue. In a language that allows most or all programs to be accepted
as type-correct at compiletime, it will be necessary to carry out various
runtime type checks, and some errors that might have been caught by a
type-checker may not be detected as quickly as one would desire. At an
alternate extreme, a way to ensure that there are no runtime type errors is
to reject all programs as having type errors at compiletime. Of course, no
programming language has a typing discipline as strict as that, but many
languages are more restrictive than seems reasonable. The right balance
in a language will discipline programming in order to provide useful diag-
nostic testing for errors while not ruling out programs that capture useful
abstractions or e�cient algorithms.

For example, languages that check the types of programs before com-
piling them can compensate for the problem with cbvY just mentioned by
employing a more general type inference system than that of ML or by
allowing the programmer to use explicit recursive types. The ML version
of the call-by-value �xed-point combinator is given in Table 2. To under-
stand this program, think of it as an annotation of the earlier program with
coercions that make the types of subterms explicit. In fact, the type of the
ML program is

The Semantics of Types in Programming Languages 9

Table 2. ML Version of the Call-by-Value Fixed-Point Combinator

local

datatype 'a fix = FUN of 'a fix -> 'a

fun NUF (FUN x) = x

in

fun cbvY f =

(fn x => (fn y => f((NUF x) x)y))

(FUN(fn x => (fn y => f((NUF x) x)y)))

end

((a! b)! (a! b))! (a! b)

rather than (c ! c) ! c (where a; b; c are type variables) as one might
have hoped, but rather than carry out a detailed analysis of the program,
let us just consider a couple of points about it. First of all, the de�nition of
the procedure cbvY itself in the three lines of code between in and end is
not recursive since cbvY appears only on the left-hand side of the de�ning
equation. The recursion lies instead in the datatype declaration in the local
bindings where a unary operator fix (written in post�x notation) is de�ned
by a recursive equation. In that expression, the symbol 'a represents a type
variable. A more mathematical way of writing the datatype declaration
would be to indicate that �x (a) �= �x (a)! a where

FUN : (�x (a)! a)! �x (a)

de�nes the isomorphism. The inverse of the isomorphism is the function

NUF : �x (a)! (�x (a)! a)

de�ned in the third line of the program. If we remove the declaration of the
type and the isomorphisms from this ML program, we obtain the de�nition
of cbvY that was rejected as having type errors.

2.3 Parametric polymorphism.

Although recursive types are a powerful tool for recovering the losses in-
curred by imposing a type discipline, there is another subtle concept to
be found in the way certain abstractions can be formed in the untyped
language. Here is a Scheme program that appends two lists of elements:

10 Carl A. Gunter

(define (append headlist taillist)

(if (null? headlist)

taillist

(cons (car headlist)

(append (cdr headlist) taillist)))

Scheme programmers never need to concern themselves about the types
of the elements in the lists being appended, since this program will work
equally well on any pair of arguments so long as they are lists. In some
languages where programmers must declare their types, it is impossible to
obtain this level of abstraction. Instead, it may be necessary to write a
program that appends lists of integers and another program that appends
lists of string arrays, and so on.

To avoid losing abstractions, languages with static type-checking deal
with this problem by using polymorphism. The word `polymorphism'means
having many forms; in typed programming languages it ordinarily refers to
the idea that a symbol may have many types. In one of its simplest forms,
polymorphism arises from the use of a variable that speci�es an indeter-
minate or parameterized type for an expression. This is called parametric
polymorphism. A basic form of parametric polymorphism views this as a
kind of macro expansion. For example, the Ada programming language
has a construct known as a generic that serves this purpose. A procedure
declared with a generic in Ada is explicitly instantiated with a type before
it is used, but the abstraction can make it unnecessary to rewrite a piece
of code that would work equally well for two di�erent types. For example,
the function that appends lists takes a pair of lists of elements of type t
as an argument and returns a list of elements of type t as a result. Here
the particular type t is unimportant, so it is replaced by a variable a and
the type is indicated as list(a)! list(a). To see another example, consider
the function that takes two reference cells and exchanges their contents.
Obviously, this operation is independent of the types of elements in the
reference cells; it is a `polymorphic swapping' function. In ML it can be
coded as follows:

fun swap (x,y) =

let val temp = ! x

in x := ! y ; y := temp

end

where the exclamation marks are the dereferencing operation: !x denotes
the contents of the reference cell x. A novelty of the ML programming
language is an inference algorithm that can infer a polymorphic type for
programs without the need for programmer annotations. Speci�cally, using
ML syntax, the type is inferred to be

swap : ('a ref * 'a ref) -> unit.

The Semantics of Types in Programming Languages 11

The function swap works with a side e�ect (change of memory); its output
is unimportant so it is taken to be the unique value of type unit. The type
of swap indicates that the references have the same type since the type
variable 'a is used for both arguments. This means that it is type-correct
to swap the contents of two integer references or swap the contents of two
string references, but a program that might swap the contents of an integer
reference with that of a string reference will be rejected with a type error
before being compiled.

Let us anticipate the precise de�nition of ML polymorphism with some
discussion of what its limitations are in programming. Although type in-
ference is an excellent tool for cutting the tedium of providing type an-
notations for programs, there is a great deal of abstraction that is lost in
the compromises of the ML polymorphic types. Consider, for example, the
following Scheme program:

(define applyto

(lambda (f) (cons (f 3) (f "hi"))))

It de�nes a procedure applyto which takes a function as an argument and
forms a cons cell from the results of applying it to the number 3 and the
string "hi". While it should not be di�cult to think up many interesting
things that can be applied to both 3 and "hi", let us keep things simple
and consider

(applyto (lambda (x) x))

which evaluates to the cell (3 . "hi"). All this seems very simple and nat-
ural, but the ML type inference algorithm is unwilling to see this program
as type-correct. In particular, the program

fn f => (f(3), f("hi"))

will be rejected with an indication that the function f cannot take both
3 and "hi" as arguments since they have di�erent types. This seems a
bit dull-witted in light of the Scheme example, which evidently shows that
there are perfectly good programs that can take both of these as arguments.
ML has a construct that allows some level of such polymorphism. The
program

let fun I x = x in (I(3), I("hi")) end

is type-correct but clearly fails to achieve the abstraction of the Scheme
program since it only makes sense for a given value of f (in this case, f
is I). To obtain a program as abstract as the one written in Scheme, it
is necessary to introduce a more expressive type system than the one ML
has. The Girard-Reynolds polymorphic �-calculus, which is presented in a
later section, has the desired expressiveness.

12 Carl A. Gunter

2.4 Subtypes.

Another kind of programming language polymorphism that is being used
in many modern languages is based on the notion of a subtype. This is
a form of type polymorphism that arises from the classi�cation of data
according to collections of attributes. This perspective draws its inspiration
from hierarchical systems of categories such as the taxonomy of the animal
kingdom rather than from the variation of a parameter as in quanti�ers of
predicate logic.

To get some of the spirit of this kind of typing, let us begin with an in-
formal example based on the kind of hierarchy that one might form in order
to classify some of the individuals one �nds at a university; let us call such
individuals academics. Each academic has an associated university and
department within the university. At the university there are professors,
who teach courses, and students, who attend the courses taught by the pro-
fessors. Some of the students are employees of the university in a capacity
as teaching assistants (TA's) while others are research assistants (RA's)
supported by research grants. Each of these various classes of individuals
has associated attributes. For instance, if we consider a typical semester,
we can attribute to professors and teaching assistants the courses they are
teaching|their teaching load. In this capacity as teachers, the professors
and TA's are employees and therefore have a salary associated with them.
RA's have a project attribute for the research project on which they are
working.

To bring some order to this assortment of groups and attributes, it
is helpful to organize a hierarchy of groups classi�ed by their de�ning at-
tributes. Let us begin to list each group and its attributes. First of all,
we could use a type of persons, whose members, which include both aca-
demics and employees, have a name attribute. In addition to a name, each
academic has a university and each employee has a salary, a social security
number (for tax purposes), and an employer. In addition to attributes in-
herited from their roles as academics, each student has an advisor and each
professor has a teaching load and a boolean tenure attribute. Professors
are also employees, so they must possess the attributes of employees as
well as those of academics. We can now classify our assortment by using
common attributes to form the poset based on the relations

Academic;Employee � Person
Student;Professor � Academic
RA;TA;Professor � Employee
RA;TA � Student

together with those relations obtained from an assumption that � is tran-
sitive and re
exive. Each point in the poset represents a type of individual

The Semantics of Types in Programming Languages 13

based on attributes the individual must possess. If a type t is greater than
a type s in the poset, this means that each kind of attribute that an indi-
vidual of type of t possesses must also be had by each individual of type
s. If s � t, we say that s is a subtype of t. The fact that a professor must
have a social security number is something one can conclude by the fact
that the type of professors is a subtype of that of employees and the fact
that each employee has a social security number.

Each of the types in the example given above can be viewed as a kind
of product where the components of a tuple having that type are its at-
tributes. In programming languages these are generally called records, and
the attributes are called the �elds of the record. Records are usually written
with curly brackets `f' and `g' rather than with parentheses as tuples are.
Semantically they are very similar to tuples, but the �eld labels relieve the
need to write the record �elds in any particular order. A common record
syntax is a sequence of pairs of the form l = M where l is a label and M
is the term associated with that label. The term M is generally called the
l-�eld of the record. For example, the records

{Name = "Carl Gunter",

University = "University of Pennsylvania"}

{University = "University of Pennsylvania",

Name = "Carl Gunter"}

are considered equivalent, and the type of these records is given by the
following equivalent pair of record type expressions:

{Name : String, University : String}

{University : String, Name : String}.

Now, we would like to mix records such as these with the dual notion
of a variant. They are written with square (as opposed to curly) brackets
`[' and `]'. For instance, a biological classi�cation system might include a
declaration such as

type ReproductiveSystem = [Male : MaleSystem,

Female : FemaleSystem]

de�ning a familiar partition of the collection of reproductive systems. In
this expression, Male and Female are labels for the �elds of the variant; the
types of these �elds must be MaleSystem and FemaleSystem respectively.
The order in which the �elds are written is insigni�cant. A classi�cation
system for vehicles might have a type

type Vehicle = [Air : AirVehicle,

14 Carl A. Gunter

Table 3. Declarations for a Subtype Hierarchy

type Thing = {Age : Int}

type Machine = Thing + {Fuel : String}

type MovingMachine = Machine + {MaxSpeed : Int}

type AirVehicle =

MovingMachine +

{MaxAltitude : Int, MaxPassengers : Int}

type LandVehicle =

MovingMachine +

{Surface : String, MaxPassengers : Int}

type WaterVehicle =

MovingMachine +

{Tonnage : Int, MaxPassengers : Int}

Land : LandVehicle,

Water : WaterVehicle]

in which vehicles are classi�ed according to their preferred milieu. A term
of this type would come from one of the three possible components. For
example,

[Air = SouthernCross]

is a term of type Vehicle if SouthernCross is a term of type AirVehicle.
And

[Water = QueenMary]

is also a term of type Vehicle if QueenMary is a term of type WaterVehicle.
To see a little more detail for these types, consider the declarations in
Table 3. Here each of the de�ned types is a record type. To make the
notation more succinct, a plus sign is written to indicate, for instance, that
a Machine is a record having a �eld Fuel together with all of the �elds
had by a Thing (namely an Age �eld). Consider what a subtype of type
Vehicle might be. In the case of records, a subtype has more �elds than
a supertype. In a variant, the dual holds. For instance,

type WheeledVehicle = [Air : WheeledAirVehicle,

Land : WheeledLandVehicle]

is a subtype of Vehicle where

type WheeledLandVehicle = LandVehicle +

The Semantics of Types in Programming Languages 15

{WheelsNumber : Int}

type WheeledAirVehicle = AirVehicle +

{WheelsNumber : Int}.

Intuitively, a wheeled vehicle is either an air vehicle with wheels or a land
vehicle with wheels. If we forget about the wheels, then a wheeled vehicle
can be viewed simply as a vehicle. This example also illustrates that it is
not just the fact that there are fewer �elds that matters for variants, but
that the types of the �elds that exist are subtypes of the corresponding
�elds from the supertype. Looking at this from the point of view of a term
of type WheeledVehicle, note that

value MyCar = [Land = {Age = 3,

Fuel = "Gasoline",

MaxSpeed = 100,

Surface = "Roadway",

MaxPassengers = 5,

WheelsNumber = 4}]

has the type Vehicle if the last �eld, which indicates the number of wheels,
is omitted.

This provides some intuition about the subtyping relation between
records and between variants, but there is still one more type constructor
to which we would like to generalize the idea: the function space operator.
Suppose, for instance, that we need a function

Using : String -> Machine

which, given a kind of fuel (described by a string), returns an example of
a Machine that uses that fuel. In any context where such a function is
needed, we could just as easily use a function

WaterVehicleUsing : String -> WaterVehicle,

which, given a kind of fuel (described by a string), returns an example of a
WaterVehicle that uses that fuel. This su�ces because a WaterVehicle

is a kind of machine.
Suppose now that we need a function having the type

HowSoon : {Start : Place, Finish : Place,

Mode : AirVehicle} -> Int

where the type Place is a record consisting of a latitude and a longitude
and the function calculates a lower bound on how soon the given mode of
transport could make it from Start to Finish. Suppose we have on hand
a function

MovingMachineHowSoon : {Start : Place, Finish : Place,

16 Carl A. Gunter

Mode : MovingMachine} -> Int

which calculates a value from its arguments in the naive way using the dis-
tance between the two places and the maximum speed of a MovingMachine
as an argument. This can be used to serve the purpose of HowSoon since an
AirVehicle is a special kind of MovingMachine. The method used to cal-
culate HowSoon on an instance of the latter type also applies to an instance
of the former.

These examples suggest that we should take String -> Machine to be
a subtype of String -> WaterVehicle and take

{Start : Place, Finish : Place, Mode : MovingMachine}

-> Int

to be a subtype of

{Start : Place, Finish : Place, Mode : AirVehicle}

-> Int.

In the general case we will want to generalize this by taking s ! t to be
a subtype of s0 ! t0 just in case t is a subtype of t0 and s0 is a subtype of
s. Note the change in the ordering with respect to the �rst arguments: if
s! t � s0 ! t0, then s0 � s rather than s � s0.

3 Simple Types as Sets

The simply-typed �-calculus is the most basic of the typed calculi with
higher-order functions. It is described as a collection of terms and types
together with independent systems of typing judgements and equational
judgements. The types t and terms M are given by the following grammar

x 2 Variable
t ::= o j t! t
M ::= x j �x : t: M j MM

where Variable is a (possibly in�nite) collection of primitive syntactic ob-
jects called variables. In the discussions below, letters from the end of the
alphabet such as x, y, z and such letters with subscripts and superscripts
as in x0, x1, x2 range over variables, but it is also handy to use letters
such as f , g for variables in some cases. Types are generally written using
letters r, s, and t. Terms are generally written with letters L, M , N . Such
letters annotated with superscripts and subscripts may also be used when
convenient. The type o is called the ground type, and types s ! t are

The Semantics of Types in Programming Languages 17

called higher types. Terms of the form �x : t: M are called abstractions,
and those of the form MN are called applications.

Parentheses are used to indicate how an expression is parsed modulo
some standard parsing conventions. For types, the association of the oper-
ator ! is to the right: for instance, o ! o ! o parses as o ! (o ! o).
Dually, application operations associate to the left: an application LMN
should be parsed as (LM)N . So, the expression xyz unambiguously parses
as (xy)z. If we wish to write the expression that applies x to the result of
applying y to z, it is rendered as x(yz). Moreover application binds more
tightly than abstraction: for instance, an expression �x : t: MN should be
parsed as �x : t: (MN). Hence, the expression �x : s: �y : t: xyz unam-
biguously parses as �x : s: �y : t: ((xy)z). Super
uous parentheses can be
sprinkled into an expression at will to emphasize grouping. There is no dis-
tinction between M and (M), and it is common to surround the operand of
an applicationM (N) with parentheses to mimic the mathematical notation
f(x) for a function applied to an argument.

Terms are treated as equivalent up to the renaming of bound variables
(�-equivalence). To avoid tedious repetitions of assumptions about the
names of bound variables, it is helpful to use the

Convention 3.0.1 (Bound Variable Naming Convention). When a
term representing an �-equivalence class is chosen, the name of the bound
variable of the representative is taken to be distinct from the names of free
variables in other terms being discussed.

Syntactic identity between terms is denoted by the relation �. Given terms
M and N and a variable x, the expression [M=x]N is the term obtained
by substituting M for x in N . This must be done modulo renaming bound
variables in N to avoid capturing free variables of M .

3.1 Types and equations.

To describe the typing system for the simply-typed �-calculus, some nota-
tion for associating types with free variables is required. A type assignment
is a list H � x1 : t1; : : : ; xn : tn of pairs of variables and types such that the
variables xi are distinct. The empty type assignment ; is the degenerate
case in which there are no pairs. Write x : t 2 H if x is xi and t is ti for
some i. In this case it is said that x occurs (or appears) in H, and this may
be abbreviated by writing x 2 H. If x : t 2 H, then de�ne H(x) to be the
type t.

A typing judgement is a triple consisting of a type assignmentH, a term
M , and a type t such that all of the free variables of M appear in H. This
relation between H, M , and t is written in the form H ` M : t and read
`in the assignment H, the term M has type t'. It is de�ned to be the least

18 Carl A. Gunter

Table 4. Typing Rules for the Simply-Typed �-Calculus

[Proj] H;x : t;H 0 ` x : t

[Abs]
H; x : s `M : t

H ` �x : s: M : s! t

[Appl]
H `M : s! t H ` N : s

H `M (N) : t

relation satisfying the axiom and two rules in Table 4. A demonstration
of H ` M : t from these rules is called a typing derivation. We have the
following basic fact about this system:

Lemma 3.1.1. If H ` M : t and x does not appear in H, then x is not
free in M .

In general, we will only be interested in terms M and type assignments
H such that H `M : t for some type t. A term M is said to be untypeable
if there is no type assignment H and type t such that H ` M : t. For
example, �x : o: x(x) fails to have a type in any type assignment. If a
term has a type in a given assignment, that type is unique in the following
sense:

Lemma 3.1.2. If H `M : s and H `M : t, then s � t.

Type tags are placed on bound variables in abstractions just to make
Lemma 3.1.2 true. If we try to simplify our notation by allowing terms of
the form �x: M and a typing rule of the form

[Abs]�
H; x : s `M : t

H ` �x: M : s! t

then Lemma 3.1.2 would fail. For example, we would then have

` �x: x : o! o

as well as
` �x: x : (o! o)! (o! o):

Some further important properties of the type system are the follow-
ing:

Lemma 3.1.3. If H; x : r; y : s; H 0 ` M : t, then H; y : s; x : r; H 0 `
M : t.

The Semantics of Types in Programming Languages 19

Lemma 3.1.4. If H;x : s;H0 ` M : t and H;H 0 ` N : s, then H;H 0 `
[N=x]M : t.

An equation in the simply-typed lambda-calculus is a four-tuple

(H;M;N; t)

where H is a type assignment, M;N are �-terms, and t is a type. To
make a tuple like this more readable, it is helpful to replace the commas
separating the components of the tuple by more suggestive symbols and to
write

(H BM = N : t):

The triangular marker is intended to indicate where the interesting part of
the tuple begins. The heart of the tuple is the pair of terms on either side
of the of equation symbol;H and t provide typing information about these
terms. An equational theory T is a set of equations (H BM = N : t) such
that H ` M : t and H ` N : t. An equation (H B M = N : t) should
be viewed only as a formal symbol. For the judgement that an equation
is provable, we de�ne the relation ` between theories T and equations
(H B M = N : t) to be the least relation satisfying the rules in Table 5.
The assertion T ` (H BM = N : t) is called an equational judgement. Of
course, the turnstile symbol ` is also used for typing judgements, but this
overloading is never a problem because of the di�erent appearance of the
two forms of judgement. The two are related by the following fact:

Lemma 3.1.5. If T is a theory and T ` (H BM = N : t), then H `M : t
and H ` N : t.

Another basic property is the following:

Lemma 3.1.6. Suppose H ` M : t and H ` N : t. Let H 0 be a type
assignment such that H 0(x) = H(x) for each x 2 Fv(M) [Fv(N). If
T ` (H0 BM = N : t), then also T ` (H BM = N : t).

Further discussion of the typed �-calculus, including many of its inter-
esting syntactic properties can be found in [Hindley and Seldin, 1986] or in
[Barendregt, 1992].

3.2 Sets as a model.

The `standard' model of the simply-typed �-calculus interprets types as sets
where higher types are the sets of functions between sets. The semantics
is relative to the choice of a set X, which serves as the interpretation for
the base type. The meaning [[t]] of a type t is a set de�ned inductively as
follows:

20 Carl A. Gunter

Table 5. Equational Rules for the Simply-Typed �-Calculus

fAxiomg
(H BM = N : t) 2 T

T ` (H BM = N : t)

fAddg
T ` (H BM = N : t) x 62 H

T ` (H; x : s BM = N : t)

fDropg
T ` (H; x : s BM = N : t) x 62 Fv(M) [Fv(N)

T ` (H BM = N : t)

fPermuteg
T ` (H; x : r; y : s;H 0

BM = N : t)

T ` (H; y : s; x : r; H 0 BM = N : t)

fRe
g
H `M : t

T ` (H BM =M : t)

fSymg
T ` (H BM = N : t)

T ` (H B N = M : t)

fTransg
T ` (H B L = M : t) T ` (H BM = N : t)

T ` (H B L = N : t)

fCongg
T ` (H BM = M 0 : s! t) T ` (H B N = N 0 : s)

T ` (H BM (N) = M 0(N 0) : t)

f�g
T ` (H; x : s BM = N : t)

T ` (H B �x : s: M = �x : s: N : s! t)

f�g
H;x : s `M : t H ` N : s

T ` (H B (�x : s: M)(N) = [N=x]M : t)

f�g
H `M : s! t x 62 Fv(M)

T ` (H B �x : s: M (x) = M : s! t)

The Semantics of Types in Programming Languages 21

� [[o]] = X

� [[s! t]] = ff j f is a function from [[s]] to [[t]]g.

So, for example, [[o ! (o ! o)]] is the set of functions f such that, for
each x 2 X, f(x) is a function from X into X. On the other hand,
[[(o! o)! o]] is the set of functions F such that, for each function f from
X to X, F (f) is an element of X.

Describing the meanings of terms is more di�cult than describing the
meanings of types, and we require some further vocabulary and notation.
While a type assignment associates types with variables, an environment
associates values to variables. Environments are classi�ed by type assign-
ments: if H is a type assignment, then an H-environment is a function �
on variables that maps each x 2 H to a value �(x) 2 [[H(x)]]. If � is an
H-environment, x : t 2 H, and d 2 [[t]], then we de�ne

�[x 7! d](y) =

�
d if y � x
�(y) otherwise.

This is the `update' operation. One can read �[x 7! d] as `the environment
� with the value of x updated to d'. The notation is similar to that used
for syntactic substitution, but note that this operation on environments is
written as a post�x. So another way to read �[x 7! d] is `the environment
� with d for x.' Note that if x 62 H for an assignment H, then �[x 7! d]
is an H;x : t environment if d 2 [[t]]. Now, the meaning of a term M is
described relative to a type assignment H and a type t such that H `
M : t. We use the notation [[H B M : t]] for the meaning of term M
relative to H; t. Here, as in the case of equations earlier, the triangle is
intended as a kind of marker or separator between the type assignment H
and the term M . We might have written [[H ` M : t]] for the meaning,
but this confuses the use of ` as a relation for typing judgements with
its syntactic use as a punctuation in the expression within the semantic
brackets. Nevertheless, it is important to remember that [[H BM : t]] only
makes sense if H `M : t.

The meaning [[H B M : t]] is a function from H-environments to [[t]].
The semantics is de�ned by induction on the typing derivation ofH `M : t,

� Projection: [[H B x : t]]� = �(x).

� Abstraction: [[H B �x : u: M 0 : u ! v]]� is the function from [[u]] to
[[v]] given by d 7! [[H;x : u B M 0 : v]](�[x 7! d]), that is, the function
f de�ned by

f(d) = [[H;x : u BM 0 : v]](�[x 7! d]):

22 Carl A. Gunter

� Application: [[H B L(N) : t]]� is the value obtained by applying the
function [[H B L : s ! t]]� to argument [[H B N : s]]� where s is the
unique type such that H ` L : s! t and H ` N : s.

It will save us quite a bit of ink to drop the parentheses that appear
as part of expressions such as [[H;x : u B M 0 : v]](�[x 7! d]) and simply
write [[H;x : u B M 0 : v]]�[x 7! d]. Doing so appears to violate the
convention of associating applications to the left, but there is little chance
of confusion in the case of expressions such as these. Hence, we will adopt
the convention that the post�x update operator binds more tightly than
general application.

It can be shown that this assignment of meanings respects our equa-
tional rules. This is the soundness property of the semantic interpreta-
tion:

Theorem 3.2.1 (Soundness). If ` (H B M = N : t), then [[H B M :
t]] = [[H B N : t]].

This is proved by induction on the height of a derivation tree for an
equational judgements by examining each case for the last rule employed.
For example, the soundness of the �-rule depends on the following fact:

Lemma 3.2.2. Suppose M is a term andH `M : t. If x 62 H and d 2 [[s]],
then [[H;x : s BM : t]]�[x 7! d] = [[H BM : t]]�.

The lemma essentially asserts that the meaning of a term M in a type
environment H depends only on the values H assigns to free variables of
M . We may therefore calculate

[[H B �x : s: M (x) : s! t]]�

= (d 7! [[H;x : s BM (x) : t]]�[x 7! d])

= (d 7! ([[H;x : s BM : s! t]]�[x 7! d])(d))

= (d 7! ([[H BM : s! t]]�)(d))

= [[H BM : s! t]]�

where the third equality follows from Lemma 3.2.2.
As an application of the soundness of our interpretation, consider the

following:

Theorem 3.2.3. The simply-typed �-calculus is non-trivial. That is, for
any type t and pair of distinct variables x and y, it is not the case that
` (x : t; y : t B x = y : t).

Proof. Suppose, on the contrary, that ` (x : t; y : t B x = y : t). Let
X be any set with more than one element and consider the model of the

The Semantics of Types in Programming Languages 23

simply-typed �-calculus generated by X. It is not hard to see that [[t]]
has at least two distinct elements p and q. Now, let � be an x : t; y : t
environment such that �(x) = p and �(y) = q. Then [[x : t; y : t B x :
t]]� = �(x) = p 6= q = �(y) = [[x : t; y : t B y : t]]�. But this contradicts the
soundness of our interpretation.

It is instructive, as an exercise on the purpose of providing a semantic
interpretation for a calculus, to try proving Theorem 3.2.3 directly from
�rst principles and the rules for the �-calculus using syntactic means. The
soundness result provides us with a simple way of demonstrating properties
of the rules of our calculus or, dually, a syntax for proving properties of
our model (sets and functions).

3.3 Type frames.

Although we have given a way to associate a `meaning' [[H B M : t]] to a
triple H;M; t such that H ` M : t and demonstrated that our assignment
of meaning preserves the required equations from Table 5, we did not ac-
tually provide a rigorous description of the ground rules for saying when
such an assignment really is a model of the simply-typed �-calculus. In
fact, there is more than one way to do this, depending on what one consid-
ers important about the model. The choice of de�nition may be a matter
of style or convenience, but di�erent choices may also re
ect signi�cant
distinctions. The form of model described in this section is generally ref-
ered to as an `extensional environment model'. The discussion follows the
treatment of [Friedman, 1975] and the primary objective is to discuss the
two completeness theorems that he proves there (given as Theorems 3.3.8
and 3.4.5 below).

For the sake of convenience, the de�nition is broken into two parts.
Models are called frames; these are de�ned in terms of a more general
structure called a pre-frame.

De�nition 3.3.1. A pre-frame is a pair of functions A[[�]] and A on types
and pairs of types respectively such that

� A[[t]] is a non-empty set, which we view as the interpretation of type
t, and

� As;t : A[[s ! t]] � A[[s]] ! A[[t]] is a function that we view as the
interpretation of the application of an element of A[[s ! t]] to an
element of A[[s]],

and such that the extensionality property holds: that is, whenever f; g 2
A[[s! t]] and As;t(f; x) = As;t(g; x) for every x 2 A[[s]], then f = g.

24 Carl A. Gunter

To make the notation less cumbersome, we write (A; A) for a pre-frame
and use A to represent the pair. Pre-frames are very easy to �nd. For
example, we might take A[[s]] to be the set of natural numbers for every
s and de�ne As;t(f; x) to be the product of f and x. Since f � 1 = g � 1
implies f = g, the extensionality property is clearly satis�ed. Nevertheless,
this multiplication pre-frame does not provide any evident interpretation
for �-terms (indeed, the reader may wish to try the exercise of proving that
there is none satisfying the equational rules).

A frame is a pre-frame together with a sensible interpretation for �-
terms.

De�nition 3.3.2. A type frame (or frame) is a pre-frame (Atype; A) to-
gether with a function Aterm de�ned on triples H B M : t such that
H ` M : t. An H-environment is a function � from variables to meanings
such that �(x) 2 Atype[[H(x)]] whenever x 2 H. Aterm[[H B M : t]] is
a function from H-environments into Atype[[t]]. The function Aterm[[�]] is
required to satisfy the following equations:

1. Aterm[[H B x : t]]� = �(x)

2. Aterm[[H B M (N) : t]]� = As;t(Aterm[[H B M : s ! t]]�; Aterm[[H B

N : s]]�)

3. As;t(Aterm[[H B �x : s: M : s ! t]]�; d) = Aterm[[H; x : s B M :
t]]�[x 7! d].

If a pre-frame has an extension to a frame, then the extension is unique.

Lemma 3.3.3. Let (Atype; A) be a pre-frame over which Aterm[[�]] and
�Aterm[[�]] de�ne frames. Then Aterm[[H B M : t]] = �Aterm[[H B M : t]]
whenever H `M : t.

In general, it is therefore convenient to use the same notation A for both
Atype[[�]] and Aterm[[�]]. The lemma says that the former together with an
application operation A determines the latter, so it simpli�es matters to
write a pair (A; A) for a frame.

A frame A should be viewed as a model of the �-calculus; we write

A j= (H BM = N : t)

if, and only if, A[[H B M : t]]� = A[[H B N : t]]� for each H-environment
�. Whenever it will not cause confusion, it helps to drop the typing infor-
mation and write A j=M = N . If T is a set of equations, then

A j= T

if, and only if, A j= (H B M = N : t) for each equation (H B M = N : t)
in T . De�ne T j=M = N if A j=M = N whenever A j= T .

The Semantics of Types in Programming Languages 25

The `standard' frame uses sets and functions: given a set X, the full
frame over X is FX = (FX [[�]]; FX) where

� FX [[o]] = X and FX [[s ! t]] is the set of functions from FX [[s]] to
FX [[t]]

� F s;t
X (f; x) = f(x), that is, F s;t

X is ordinary function application,

� on terms, FX [[�]] is the function [[�]] de�ned in the previous section.

It is easy to see that our de�nition of the semantic function [[�]] corresponds
exactly to the three conditions in the de�nition of a frame. Moreover,
these were essentially the properties that made our proof of the soundness
property for the interpretation possible. To be precise:

Theorem 3.3.4 (Soundness for Frames). For any theory T and frame
A, if A j= T and T ` (H BM = N : t), then A j= (H BM = N : t).

When T is empty, we have the following:

Corollary 3.3.5. For any frame A, if `M = N , then A j=M = N

Another important class of examples of frames can be formed from
equivalence classes of well-typed terms of the simply-typed calculus. To
de�ne these frames we need some more notation for type assignments. An
extended type assignment H = x1 : t1; x2 : t2; : : : is an in�nite list of pairs
such that every �nite pre�x H � H is a type assignment and every type
appears in�nitely often (that is, for each type t, there are in�nitely many
varaibles x such that x : t appears in H). Note that if H ` M : t and
H0 ` M : s where H;H0 � H, then s � t. Now, �x an extended type
assignment H. Let us say that a theory T is an H-theory if H � H for
each (H B M = N : t) 2 T . Let T be an H-theory. If H `M : t for some
H � H, de�ne

[M]T = fM 0 j T ` (H0
BM = M 0 : t) for some H 0 � Hg:

This de�nes an equivalence relation on such terms M (the proof is left as
an exercise). When T is the empty set, we drop the subscript T . For each
type t, de�ne

TT [[t]] = f[M]T j H `M : t for some H � Hg:

For each pair of types s; t, de�ne TermAppls;tT : TT [[s! t]]�TT [[s]]! TT [[t]]
by

TermAppls;tT ([M]T ; [N]T) = [M (N)]T :

This is well-de�ned because of the congruence rule for application. It can
be shown that

26 Carl A. Gunter

Lemma 3.3.6. The pair (TT ;TermApplT) is a pre-frame.

Indeed, this pre-frame is a frame, which is called the term model over
T . To see this we need a notation for simultaneous substitutions. We write
� = [M1; : : : ;Mn=x1; : : : ; xn] for the function that maps the variable xi to
the term Mi for each i and acts as the identity on other variables. It is
assumed that x1; : : : ; xn are distinct. The support of the substitution is
the set of variables on which the substitution is not the identity; of course,
the support of [M1; : : : ;Mn=x1; : : : ; xn] is a subset of fx1; : : : ; xng. The
substitution � = [M1; : : : ;Mn=x1; : : : ; xn] can be extended to substitution
on terms by inductively de�ning

� �(M (N)) � (�(M))(�(N))

� �(�x : t: M) � �x : t: �(M) where x is not in the support of � or in
Fv(�(y)) for any y in the support of �.

This generalizes our earlier notation [M=x] which may now be viewed as
a substitution with support fxg. When x is not in the support of �, we
write �[x 7!M] or �[M=x] for [M1; : : : ;Mn;M=x1; : : : ; xn; x].

Let � be an H-environment for the term pre-frame: that is, �(x) 2
TT [[H(x)]] whenever x 2 H. Let us say that a substitution � represents �
over H if, for each x in H, the term �(x) is a representative of the term
model equivalence class �(x).

Lemma 3.3.7. Let TT [[H BM : t]]� = [�(M)]T where � is a substitution
representing � over H. Then (TT ;TermApplT) is a type frame.

Type frames form a complete class of models for theories of the simply-
typed calculus:

Theorem 3.3.8 (Completeness for Frames). T `M = N if, and only
if, T j= M = N .

This follows immediately from Lemma 3.3.7 and the following:

Theorem 3.3.9. Suppose H � H and T is an H-theory, then T ` (H B

M = N : t) if, and only if, TT j= (H BM = N : t).

Proof. Necessity follows immediately from the Soundness Theorem 3.3.4
for frames and the fact that the term model is a frame. To prove su�ciency,
choose � to be the `identity' environment � : x 7! [x]T . The identity
substitution � : x 7! x represents this over H. Now, [M]T = [�(M)]T =
TT [[H B M : t]]� = TT [[H B N : t]]� = [�(N)] = [N]T so T ` (H 0 B M =
N : t) for some H 0 � H. Hence, by Lemma 3.1.6, T ` (H BM = N : t) as
well.

A particularly important example of a frame in the class of term models is
the one induced by the empty theory: T;. For this particular term model

The Semantics of Types in Programming Languages 27

it is convenient to drop the subscript ;. As an instance of Theorem 3.3.9,
we have the following:

Corollary 3.3.10. `M = M 0 if, and only if, T j=M =M 0.

3.4 Completeness for sets.

Given a collection of mathematical structures, it is usually fruitful to �nd
and study collections of structure-preserving transformations or mappings
between them. Homomorphisms of algebras are one such example, and con-
tinuous maps on the real numbers another example. What kinds of map-
pings between type frames should we take to be `structure-preserving'?
The de�nition we seek for the goal of this section is obtained by follow-
ing the spirit of homomorphisms between algebras but permitting partial
structure-preserving mappings and requiring such maps to be surjective.
This will provide the concept needed to prove that the full type frame is
complete.

De�nition 3.4.1. Let A and B be frames. A partial homomorphism � :
A ! B is a family of surjective partial functions �s from A[[s]] into B[[s]]
such that, for each s; t, and f 2 A[[s! t]] either

1. there is some g 2 B[[s! t]] such that

�t(As;t(f; x)) = Bs;t(g;�s(x)) (3:1)

for all x in the domain of de�nition of �s and �s!t(f) = g, or

2. there is no element g 2 B[[s ! t]] that satis�es Equation 3.1 and
�s!t(f) is unde�ned.

Suppose that g and h are solutions to Equation 3.1. Then Bs;t(g; y) =
Bs;t(h; y) for each y 2 B[[s]] since �s is a surjection. Extensionality there-
fore implies that g and h are equal. So, if there is a solution in B[[s ! t]]
for Equation 3.1, then there is a unique one.

The following is the basic fact about partial homomorphisms; it implies
as a corollary the preservation of equations by partial homomorphisms.

Lemma 3.4.2. Let A and B be frames. If � : A ! B is a partial homo-
morphism and � is an H-environment for A and �0 is an H-environment
for B such that �t(�(x)) = �0(x) for each variable x in H, then

�t(A[[H BM : t]]�) = B[[H BM : t]]�0

whenever H `M : t.

28 Carl A. Gunter

Corollary 3.4.3. If there is a partial homomorphism � : A ! B and
A j= (H BM = N : t), then B j= (H BM = N : t).

Proof. Suppose �0 is an H-environment for B. Choose � so that �0(x) =
�t(�(x)) for each x in H. This is possible because �s is a surjection. Then
B[[H B M : t]]�0 = �t(A[[H B M : t]]�) and �t(A[[H B N : t]]�) = B[[H B

N : t]]�0 by Lemma 3.4.2. But A[[H B M : t]]� and A[[H B N : t]]� are
equal by assumption.

Lemma 3.4.4. Let A be a type frame and suppose there is a surjection
from a set X onto A[[o]]. Then there is a partial homomorphism from FX
(the full type frame over X) to A.

Proof. Let �o : X !A[[o]] be any surjection. Suppose

�s : FX [[s]]!A[[s]]
�t : FX [[t]]!A[[t]]

are partial surjections. We de�ne �s!t(f) to be the unique element of
A[[s ! t]], if it exists, such that As;t(�s!t(f);�s(y)) = �t(f(y)) for all y
in the domain of de�nition of �s. Proof that this de�nes a surjection is
carried out by induction on structure of types. It holds by assumption for
ground types; suppose g 2 A[[s ! t]] and �s;�t are surjections. Choose
g0 2 FX [[s ! t]] = FX [[s]] ! FX [[t]] such that, for all y in the domain of
de�nition of �s, we have g0(y) 2 (�t)�1(As;t(g;�s(y))). This is possible
because �t is a surjection. Since A is a type frame, extensionality im-
plies that �s!t(g0) = g. By the de�nition of �s it is therefore a partial
homomorphism.

Theorem 3.4.5 (Completeness for Full Type Frame). IfX is in�nite,
then ` (H BM = N : t) if, and only if, FX j= (H BM = N : t).

Proof. We proved soundness ()) earlier. To prove su�ciency ((), begin
by noting that Lemma 3.4.4 implies that there is a a partial homomorphism
from the full type frame, FX , onto the term model, T where H is chosen so
that H � H. If FX j= (H B M = N : t), then T j= (H B M = N : t) by
Corollary 3.4.3. By Theorem 3.3.9, this means that ` (H B M = N : t),
the desired conclusion.

Partial homomphisms are a special instance of a more general notion
called a logical relation which serves as the one of the most basic tools for
reasoning about types. Many of the properties of logical relations were
developed by Tait, Statman, and Howard [Howard, 1973; Statman, 1982;
Statman, 1985a; Statman, 1985b; Statman, 1986; Tait, 1967], and they

The Semantics of Types in Programming Languages 29

continue to be a topic of interest for applications. A general survey on
logical relations is included in [Mitchell, 1990], and [Burn et al., 1986]

furnishes an example of how logical relations can be applied to the static
analysis of programs.

4 Simple Types as Domains

The simply-typed �-calculus is too primitive to serve as a programming
language: a programming language typically provides a notion of evalua-
tion rather than simply an equational theory. Even when a directed use of
equations for the simply-typed calculus is taken as an operational seman-
tics, the resulting language is somewhat unexpressive. When evaluation
is considered, the structures needed to model types must account for the
semantics of such computational concepts as divergence and recursive de�-
nitions. This section considers how the theory of domains is related to the
semantics of types for a basic language that extends the simply-typed cal-
culus with a judicious collection of primitives in order to provide something
like the power of a programming language.

4.1 A Programming Language for Computable Func-

tions.

The system known as PCF (Programming language for Computable
Functions) was introduced by Dana Scott [Scott, 1969]. The variant of
Scott's system described here is taken from [Breazu-Tannen et al., 1990].
Its types and terms are de�ned as follows:

t ::= num j bool j t! t
M ::= 0 j true j false j

succ(M) j pred(M) j zero?(M) j if M thenM elseM j
x j �x : t: M j MM j �x : t: M

The syntax of PCF essentially includes the terms of the simply-typed �-
calculus but with two ground types num and bool. Conventions for PCF
syntax are similar to those for the basic simply-typed calculus.

Typing rules for PCF are those of the simply-typed �-calculus (Table 4)
together with those given in Table 6. Two basic facts about the type system
are given by the following:

Lemma 4.1.1.

1. If H `M : s and H `M : t, then s � t.

2. If H;x : s `M : t and H ` N : s, then H ` [N=x]M : t.

30 Carl A. Gunter

Table 6. Typing Rules for PCF

[Zero] H ` 0 : num

[True] H ` true : bool

[False] H ` false : bool

[Pred]
H `M : num

H ` pred(M) : num

[Succ]
H `M : num

H ` succ(M) : num

[IsZero]
H `M : num

H ` zero?(M) : bool

[Cond]
H ` L : bool H `M : t H ` N : t

H ` if L then M else N : t

[Rec]
H; x : t `M : t

H ` �x : t: M : t

Parts (1) and (2) are the analogs of Lemmas 3.1.2 and 3.1.4 respectively.

4.2 Operational semantics.

To see PCF as a programming language we need to describe how its well-
typed programs are evaluated. One approach to describing such a semantics
is to indicate how a term M evaluates to another term M 0 by de�ning a
relationM !M 0 between closed terms using a set of evaluation rules. The
goal of such rewriting is to obtain a value to which no further rules apply.
In order to de�ne precisely how a term is related to a value, we de�ne a
binary transition relation! to be the least relation on pairs of PCF terms
that satis�es the axioms and rules in Table 7. A set of evaluation rules
given in this form is sometimes called a Structural Operational Semantics
(SOS) because the hypotheses of the rules involve only the evaluation of
proper structural components of the expressions in their conclusions. This
approach to semantics was developed by Gordon Plotkin [Plotkin, 1976;
Plotkin, 1981]. We say that a term M evaluates to a value V just in the
case M !� V where !� is the transitive, re
exive closure of the transition
relation and a value is a term generated by the following grammar:

The Semantics of Types in Programming Languages 31

Table 7. Transition Rules for Call-by-Name Evaluation of PCF

M ! N

pred(M)! pred(N)
pred(0)! 0 pred(succ(V))! V

M ! N

zero?(M)! zero?(N)

zero?(0)! true zero?(succ(V))! false

M ! N

succ(M)! succ(N)

M ! N

M (L)! N (L)
(�x : t: M)(N)! [N=x]M

if true then M else N !M if false thenM else N ! N

L! L0

if L then M else N ! if L0 then M else N

�x : t: M ! [�x : t: M=x]M

V ::= 0 j true j false j succ(V) j �x : t: M (4:1)

Letters U;W range over values. The transition relation is determinis-
tic:

Lemma 4.2.1. If M ! N and M ! N 0 then N � N 0.

One way to emphasize the structurality of the rules in Table 7 is to rep-
resent them using a grammar. An evaluation context for PCF is described
by the following grammar

E ::= [] j pred(E) j zero?(E) j succ(E) j E(L) j if E thenM else N

where [] is intended to represent a `hole' in a PCF term. A term of PCF is
obtained from an evaluation context by �lling the `hole' in the context by
a term: this is written in the from E[M]. (A examination of the grammar

32 Carl A. Gunter

reveals that a context E has exactly one `hole' in it.) If we now take analogs
of the axioms (as opposed to the rules) from Table 7:

pred(0)) 0
pred(succ(V))) V
zero?(0)) true
zero?(succ(V))) false
(�x : t: M)(N)) [N=x]M
if true thenM else N)M
if false thenM else N) N

then the desired relation is de�ned by using the following rule:

M) N

E[M]! E[N]
:

This approach to describing a structural operational semantics was intro-
duced in [Felleisen and Friedman, 1986].

There are other approaches to describing the evaluation of a program-
ming language. One idea is to describe the relation M !� V more directly
using a new set of rules. Such a description is sometimes known as a natural
(operational) semantics because a semantics given in this form resembles a
natural deduction system for a logic. An early instance of such a seman-
tics appears in [Martin-L�of, 1971] and more recent examples in [Cl�ement
et al., 1986; Kahn, 1987] and the Standard for ML [Milner et al., 1990;
Milner and Tofte, 1991]; a comparative discussion can be found in [Gunter,
1993].

Let us now look at such a semantics for PCF. It is given by a binary
relation + between closed terms of the calculus. The binary relation is
de�ned as the least relation that satis�es the axioms and rules in Table 8.
In the description of these rules, the terms that appear on the right side
have been written using the letters U; V;W for values rather than L;M;N
for arbitrary terms. To read the rules, assume at �rst that U; V;W range
over all terms. It can then be proved by an induction on the height of
a derivation that if M + V for any terms M and V , then V is a term
generated by the grammar 4.1. In other words, if rules such as

M + succ(V)

pred(M) + V

were instead written in the form

M + succ(N)

pred(M) + N

then it would be possible to prove that N has the form of a value V . It

The Semantics of Types in Programming Languages 33

Table 8. Natural Rules for Call-by-Name Evaluation of PCF

0 + 0 true + true false + false

M + 0

pred(M) + 0

M + succ(V)

pred(M) + V

M + V

succ(M) + succ(V)

M + 0

zero?(M) + true

M + succ(V)

zero?(M) + false

�x : s: M + �x : s: M
M + �x : s: M 0 [N=x]M 0 + V

M (N) + V

M1 + true M2 + V

if M1 thenM2 else M3 + V

M1 + false M3 + V

if M1 then M2 elseM3 + V

[�x : t: M=x]M + V

�x : t: M + V

is not hard to check that if M + U and M + V , then U � V , so + is a
partial function. It is, moreover, possible to show that this gives the same
semantics for PCF as the SOS:

Theorem 4.2.2. M + V if, and only if, M !� V .

4.3 Operational equivalence.

The question, now, is what these various formulations of the operational
semantics of PCF have to do with the types for the system. Let us assume
the perspective of the previous section and consider the question of what
the interpretations of the PCF types should be. Interpreting them as sets
as we did for the simply-typed �-calculus leads to problems, however, when
we wish to interpret recursion. The best-known approach to resolving this
di�culty is to impose additional structure on the interpretations of types by
using certain kinds of ordered sets, ordinarily known as domains. Assuming
that we have found such a semantics|one that interprets a termM of type
t as an element of the interpretation of t (modulo the values of free variables
ofM)|the key issue is the relationship between this form of semantics and

34 Carl A. Gunter

the operational semantics of the language as described above. That is, we
need the analogs to the soundness and completeness theorems given earlier,
but now these results should be relative to an operational semantics rather
than an equational theory. The trick is, in e�ect, to generate an equational
theory from the operational semantics and study these properties relative
to it. More precisely, this is done relative to a pre-order imposed on terms;
this pre-order induces the desired equations.

A PCF context C is essentially a PCF term with a missing subterm
marked by a place-holder []. The PCF term obtained by �lling the `hole'
in the term C by a termM is denoted C[M]. This is similar to substitution,
but the placement of M into context C permits free variables of M to be
bound within variable scopes determined by C. (In particular, contexts,
unlike terms, are not considered equivalent modulo renaming of bound
variables.) Evaluation contexts are a special class of contexts in which
the missing subterm is in a special position. We de�ne the key notion of
operational equivalence as follows. Suppose M and N are terms of type t
(that is, H ` M : t and H ` N : t for some H). Say M is an operational
approximation of N and write M @�o N if, for every context C such that
C[M] and C[N] are closed terms of ground type,

C[M] + V implies C[N] + V:

It is possible to prove that @�o is a pre-order; terms M;N are operationally
equivalent, and we write M � N if M @�o N and N @�o M

A semantics [[�]] is said to be adequate if [[H B M : t]] = [[H B N : t]]
implies N � M . It is said to be fully abstract if it is sound and, N � M
implies [[H B M : t]] = [[H B N : t]]. Two well-known adequate seman-
tics for PCF are the bc-domains interpretation C[[�]] and the dI-domains
interpretation D[[�]]. To describe each of these brie
y some knowledge of
domain theory will be assumed: some de�nitions are given below|further
background can be found in [Abramsky and Jung, 1994].

4.4 bc-domains and dI-domains.

A bc-domain is an algebraic complete partial order that is bounded com-
plete, that is, every subset that has an upper bound has a least upper bound
(lub). If D and E are bc-domains, then the space of continuous functions
[D ! E] under the pointwise order is also a bc-domain. Such domains
can be used to model PCF types by interpreting ground type expressions
num and bool as the
at cpo's N? (numbers together with least element
?) and T (truth values true; false together with ?) respectively and the
higher types by taking C[[s ! t]] to be [C[[s]]! C[[t]]]. As before, meanings
are de�ned on triples H;M; t where H ` M : t. An H-environment � is
a partial function that assigns to each variable x such that x 2 H a value

The Semantics of Types in Programming Languages 35

�(x) in C[[H(x)]]. The meaning C[[H B M : t]] is a function that assigns to
each H-environment � a value

C[[H BM : t]]� 2 C[[t]]:

The de�nition of this function follows the structure of the expression M (or,
equivalently, the proof that H ` M : t). For the simply-typed �-calculus
fragment of PCF, the interpretation looks the same as before. The arith-
metic and conditional expressions have a straight-forward interpretation. It
is the interpretation of recursive functions that takes advantage of the ad-
ditional structure of domains|as compared to sets|in the interpretation
of types:

C[[H B �x : t: M : t]]� = �x(d 7! C[[H; x : t BM : t]]�[x 7! d])

where �x is a function that gives the least �xed point of a continuous
function. To show that the de�nition makes sense, one proves the follow-
ing:

Lemma 4.4.1. If H 0 = H;x : s is a type assignment such that H 0 `M : t,
then the function

d 7! C[[H0
BM : t]]�[x 7! d]

is continuous for any H 0-environment �.

The following property is also easy to establish by induction on the height
of a derivation tree:

Proposition 4.4.2. If M ! N , then C[[M]] = C[[N]].

Proving that adequacy holds for C[[�]] is somewhat harder and beyond the
scope of this chapter.

Another interpretation of PCF can be obtained by using bc-domains
that are distributive and have property I. To de�ne these properties pre-
cisely, let t and u stand for the least upper bound and greatest lower bound
operators respectively.

De�nition 4.4.3. A bc-domain D is said to be distributive if xu (ytz) =
(xu y)t (xu z) whenever fx; yg has an upper bound. An algebraic cpo D
has property I if fx j x v ag is �nite for each compact element a of D. A
distributive bc-domain that satis�es property I is called a dI-domain.

Interpreting the types of PCF as dI-domains requires one more crucial idea.
It is not hard to �nd dI-domains D;E with the property that the continu-
ous function space [D ! E] under the pointwise order is not a dI-domain.
Higher types for a model based on dI-domains cannot be interpreted with
this construct. The key idea is given in the following:

36 Carl A. Gunter

De�nition 4.4.4. A continuous function f : D ! E between dI-domains
D and E is stable if f(x u y) = f(x) u f(y) whenever fx; yg has an upper
bound. If f; g : D ! E are stable, then f is below g in the stable ordering
and we write f vs g if

x v y implies f(x) = f(y) u g(x)

for each x; y 2 D.

It is possible to show that if D;E are dI-domains, then the poset of stable
functions [D !s E] under the stable ordering is also a dI-domain. The
dI-domains can be used to give a semantics D[[�]] for PCF in basically the
same way that bc-domains were used to give a semantics C[[�]] before. One
must prove the analog of Lemma 4.4.1:

Lemma 4.4.5. If H;x : s `M : t, then the function

d 7! D[[H;x : s BM : t]]�[x 7! d]

is stable.

4.5 Full abstraction.

The use of algebraic cpo's and bounded completeness as a model of �-
calculus was developed by Dana Scott [Scott, 1976; Scott, 1981; Scott,
1982a; Scott, 1982b; Gunter and Scott, 1990]. The dI-domains were intro-
duced by Gerard Berry [Berry, 1978; Berry, 1979; Berry et al., 1985] in an
e�ort to �nd a fully abstract model of PCF after Gordon Plotkin [Plotkin,
1976] demonstrated that the bc-domains model of PCF is not fully abstract.
Plotkin proved this failure directly from the operational semantics of PCF,
but the result can also be obtained semantically by using dI-domains as a
`non-standard' model. To do this, we need to demonstrate two terms that
have the same operational behavior in all ground contexts but fail to be
equal in the model. To this end, let

T; F : (bool! (bool! bool))! bool

be the PCF terms given in Table 9. In the table there,
 is a divergent
program of boolean type (for instance �x : bool: x will do). The term F
is the same as T except for the occurrence false in the �fth line.

Now, the programs T and F have the same operational behavior in all
ground contexts. To see this, it su�ces, by adequacy for the dI-domains
model, to show that D[[T]] = D[[F]]. We show, in fact, that D[[T]](;) =
D[[F]](;) : f 7! ?, where ; is the `arid' environment (which makes no

The Semantics of Types in Programming Languages 37

Table 9. Operationally Equivalent Programs with Di�erent Denotations

T � �f : bool! (bool! bool):
if f(true)(
) then

if f(
)(true) then
if f(false)(false) then

else true

else

else

F � �f : bool! (bool! bool):
if f(true)(
) then

if f(
)(true) then
if f(false)(false) then

else false

else

else

assignments). To this end, suppose D[[T]](;)(f) 6= ?. This can only happen
if D[[T]](;)(f) = true. If f 0(x; y) = f(x)(y) is the `uncurrying' of f , then

f(?)(?) = f 0(?;?) = f 0((true;?)u (?; true))
= f 0(true;?)u f 0(?; true) = true

since f 0 is stable. On the other hand, f(false)(false) = f 0(false; false) =
false, and this contradicts the monotonicity of f ! A similar argument ap-
plies to F , so we can conclude that the terms T and F have the same
operational behavior. Indeed, they both have the same operational behav-
ior as �x:
. Switching now to the interpretations of these terms in the
bc-domain semantics, we can show that C[[T]] 6= C[[F]]. To do this, consider
a function por : T! [T! T], called the parallel or, de�ned by the left
truth table in Table 10 where the values in the left column are those of the
�rst argument and the values in the top row are those of the second argu-
ment. This can be contrasted with the truth table for the (left-to-right)
sequential or de�ned by

or = C[[�x : bool: �y : bool: if x then true else y]](;):

Note the di�erence in the value of or(?)(true) in the truth table for or
given in Table 10. Now, the function por is monotone on a �nite domain

38 Carl A. Gunter

Table 10. Truth Tables for Parallel and Sequential Disjunction

por true false ?
true true true true
false true false ?
? true ? ?

or true false ?
true true true true
false true false ?
? ? ? ?

and therefore continuous, so it is an element of the interpretation C[[bool!
(bool! bool)]]. Hence

C[[T]](;)(por) = true 6= false = C[[F]](;)(por)

so C[[T]] 6= C[[F]], and C[[�]] is therefore not fully abstract.
It was shown by Berry that the dI-domains are also not fully abstract.

Here is a brief semantic proof using the bc-domains model as a `non-
standard' interpretation. We show that two terms with di�erent mean-
ings in the dI-domains model have the same operational behavior. To this
end, de�ne monotone functions p; q on the truth value poset by taking
p : x 7! true and taking q to be the function

q(x) =

�
? if x = ?
true otherwise.

The function q is below p in the pointwise order, but these two functions
are unrelated in the stable order. Noting this, it is possible to see that the
following function is an element of D[[(bool! bool)! bool]]:

r(x) =

8<
:

true if x = q
false if x = p
? otherwise.

Now consider the programs

M � �f: if f(q) then (if f(p) then
 else true) else

N � �f: if f(q) then (if f(p) then
 else false) else

where type tags have been dropped to reduce clutter. Clearly D[[M]](r) 6=
D[[N]](r). However, M and N have the same operational behavior because
C[[M]] = C[[N]]. To see why this latter equation holds, just note that if
f(q) = true for any function f that is monotone over the pointwise-ordered
monotone functions of type bool! bool, then f(p) = true as well.

The Semantics of Types in Programming Languages 39

The problem of �nding a fully abstract model of PCF has a long his-
tory. But rather than ask whether PCF has such a model, one can also
ask whether there is any extension of PCF that is fully abstract with re-
spect, say, to the bc-domains semantics. Plotkin [Plotkin, 1976] showed
that this is the case; indeed, the language PCF is fully abstract for the
bc-domains model if one adds a primitive for computing the parallel dis-
junction por [Stoughton, 1991]. Interestingly, no similar way of extending
the language seems to work for the dI-domains model [Jim and Meyer,
1991]. More details on full abstraction and related topics can be found
in [Gunter, 1992]. Some current research directions are indicated in the
concluding section of this chapter.

5 Types as Invariants

In Section 4 the idea of presenting an operational semantics for PCF was
described. The semantics of types was given in terms of domains and then
this interpretation was related to the equivalence induced by the opera-
tional semantics. But there is another basic relationship that one can show
between the operational semantics and the types of the language based on
the simple idea that the types are invariants of the operational semantics.
This is a property known as subject reduction. For PCF and the SOS given
in Table 7 it can be expressed as follows:

Theorem 5.0.1. (Subject Reduction) If H ` M : t and M ! N , then
H ` N : t.

By Theorem 4.2.2 this has the following:

Corollary 5.0.2. If H ` M : t and M + N , then H ` N : t.

This form of theorem is very useful for proving that certain kinds of runtime
errors are avoided by programs that are type correct.

5.1 Runtime safety.

What properties are expected for the evaluation of a type-correct program
beyond those that may hold of an arbitrary one? To appreciate the signif-
icance of the types, look again at the operational rules in Table 8. Take a
typical rule such as the one for application in call-by-name:

M + �x : t: M 0 [N=x]M 0 + V

M (N) + V

This is the only rule whose conclusion describes how to derive a value for
an application, so any attempt to prove that M (N) has value V must use

40 Carl A. Gunter

it. The rule requires that two hypotheses be established. Let us focus on
the �rst. It was remarked before that if M + U for some value U , then U
is the unique value that satis�es this relationship. Hence there are three
possibilities that could result from the attempt to �nd a value for M :

1. there is no value U such that M + U , or

2. there is a term M 0 such that M + �x : t: M 0, or

3. there is a term U such that M + U , but U does not have the form
�x : t: M 0.

The �rst of these might occur because of divergence, or perhaps for some
other reason. The second is the conclusion we must reach to �nd a value for
M (N). The third case arises in an `abnormal' situation in which something
other than an abstraction is being applied to an argument. For example,
this would happen if we attempted to evaluate the application 0(0) of the
number 0 to itself. Here is what the type-correctness of M (N) ensures:
the third possibility above never occurs. In the example 0(0) this is clear
because 0 has type num rather than type num! t as it would be required
to have if it is to be applied to a number.

Although the �rst and third cases above both mean that M (N) does
not have a value, there is an important di�erence in the way this failure
occurs. In particular, if it is found that M + U but U does not have the
desired form, then it is possible to report immediately that the attempt
to �nd a value for M (N) has failed. This will not always be possible
for the �rst case, since the failure to �nd a value for M may be due to
an in�nite regression of attempts to apply operational rules (this is what
would happen for the term �x : num: x for example). Any attempt to
determine whether this is the case through an e�ective procedure will fail,
because this is tantamount to solving the halting problem. Hence, the last
case is special.

For some guidance, let us consider the di�erence between these possibil-
ities in a programming language. Here is an example of a Scheme program
that will diverge when applied to an argument:

(define (f x) (f x))

Evaluating (f 0) in the read-eval-print loop will be a boring and unful-
�lling activity that will probably be ended by an interruption by the pro-
grammer. This program diverges and therefore does not have a value. On
the other hand, what happens if we attempt to evaluate the program (0 0)

in the read-eval-print loop? There is no value for this expression, but we
receive an instant warning of this limitation that may look like this:

Application of inapplicable object 0

The Semantics of Types in Programming Languages 41

Table 11. Operational Rules for Type Errors

tyerr + tyerr
L + V V 62 Boolean

if L thenM else N + tyerr

M + V V 62 Number

pred(M) + tyerr

M + V V 62 Number

succ(M) + tyerr

M + V V 62 Number

zero?(M) + tyerr

M + V V 62 Lambda

M (N) + tyerr

The di�erence between these two outcomes arises from the distinction be-
tween divergence and a runtime type error. While divergence is generally
undetectable, the runtime type error can be reported when it arises.

To study these ideas rigorously, let us focus on a speci�c language. The
following grammar de�nes the syntax of type expressions t and terms M of
a calculus called PCF with type errors. The extended calculus is the same
as PCF except for the inclusion of a new constant called tyerr. Here is the
expanded grammar:

t ::= num j bool j t! t
M ::= tyerr j 0 j succ(M) j pred(M) j true j false j zero?(M) j

x j �x : t: M j MM j �x : t: M j if M thenM else M

The typing rules for extended PCF are the same as those for PCF itself.
Note, in particular, that the relation H ` tyerr : t fails for each H and t
since there is no typing rule for proving such a relation.

The rules for a natural operational semantics are those given earlier in
Table 8 together with the `error' rules given in Table 11. Values in the new
language are those of PCF together with the term tyerr for a type error.
The rules in the table are de�ned using syntactic judgements such as V 62
Boolean where Boolean is the set of values V such that ` V : Boolean. In
the rules, Number is the set of values of numerical type (that is, numerals)
and Lambda those of higher type (that is, abstractions). The expanded set
of rules has properties similar to those of the system without explicit error
elements. For example, the relation + for the full language is still a partial
function, that is, if M + U and M + V , then U � V . What di�erentiates
this system from the previous one is the fact that the hypotheses of the
rules now cover all possible patterns for the outcome of an evaluation. If
the evaluation of a term calls for the evaluation of other terms, then the
error rules indicate what is to be done if the result of evaluating these other
terms is a type error or yields a conclusion having the wrong form.

42 Carl A. Gunter

Now, we would like to prove a theorem that says that the evaluation of
a well-typed term does not produce a type error. Here is a more precise
statement:

Theorem 5.1.1. If H `M : t then it is not the case that M + tyerr.

The result we need to show absence of runtime type errors can be proved
using a form of subject reduction theorem. In this case the result must be
proved relative to the typing system for PCF and the evaluation relation +
de�ned as the least relation satisfying the rules in Table 11 as well as those
in Table 8.

Theorem 5.1.2 (Subject Reduction). Let M be a term in extended
PCF. If M + V and H `M : t, then H ` V : t.

Proof. The proof is by induction on the height of the evaluation M + V .
I will do only the cases for predecessor, application, and recursion.

Case M � pred(M 0). There are three possibilities for the last step
in the derivation of M + V . If M 0 + V 0, then we employ the induction
hypothesis to conclude that H ` V 0 : num. In particular, this means that
V 0 2 Number so V 0 � 0 or the last step of the derivation must be an
application of the rule

M + succ(V) V 2 Number

pred(M) + V

where V 0 � succ(V). If V 0 � 0, then the desired conclusion is immediate,
since H ` 0 : num. On the other hand, the only way to haveH ` succ(V) :
num is if H ` V : num, so this possibility also leads to the desired
conclusion.

Case M � L(N). Say H ` L : r ! s and H ` N : r. There are
two operational rules that may apply to the evaluation of an application.
The error rule in Table 7.3 could not apply to M , however, because of the
inductive hypotheses on L. Hence the last step in the evaluation ofM must
have the following form:

L + �x : r: L0 [N=x]L0 + V

L(N) + V

Now, by the induction hypothesis, H ` �x : r: L0 : r ! s so it must be
that H; x : r ` L0 : s. Hence, by Lemma 4.1.1(2), H ` [N=x]L0 : s, and it
therefore follows from the induction hypothesis that H ` V : t.

Case M � �x : t: M 0. In this case, [�x : t: M 0=x]M 0 + V . By
Lemma 4.1.1, H ` [�x : t: M 0=x]M 0 : t so H ` V : t by the induction
hypothesis.

Theorem 5.1.1 now follows immediately, since tyerr does not have a type.

The Semantics of Types in Programming Languages 43

The interest of Theorem 5.1.1, which is intended to assert that the
evaluation of a well-typed program does not yield a type error, depends
entirely on the nature of the error rules. Hence it is important to examine
them closely to see that they do indeed encode all of the circumstances
under which one would expect a type error to be reported. One problem
with this way of asserting freedom from runtime errors is that mistakenly
omitting a rule from Table 11 would make Theorem 5.1.1 easier to prove!
Another way to express freedom from runtime errors is to use an SOS for
the language and assert the result as a guarantee that computation does
not get `stuck' at a non-value. Here is such an assertion for PCF:

Theorem 5.1.3. If H ` M : t and M is not a value, then M ! N for
some N .

5.2 Implicit types.

If having a type is viewed primarily as a property of a program that ensures
desirable runtime behavior, then it may be a convenience if type-correctness
is inferred automatically and programmers are relieved as far as possible
of the need to to write type annotations. This leads us to the idea of an
implicit type, that is, one not explicitly given as part of the program. Since
a program without explicit types naturally provides less type information
than one that has them, a key technical issue arises for such programs:
while our discussion has been focused entirely on languages for which the
type of a term, if it has one, is uniquely determined because of type tags,
this property must be viewed di�erently when type tags are omitted. Let
us now consider the �-calculus without the type tags. Since the tags gave
the types explicitly before, the new system is called the implicitly-typed
(simply-typed) calculus. The syntax for the language is simply

M ::= x j �x: M j MM

and the various syntactic conventions are exactly the ones used earlier
for the simply-typed �-calculus with type tags. The typing rules for the
implicit system are almost the same as those for the explicit calculus, but
the abstraction rule now has di�erent properties. The rules are given in
Table 12.

Let us consider now how one could �nd a type for a term with respect
to the rules in Table 12, recalling that it was shown earlier that [Abs]�

leads to the failure of Lemma 3.1.2. If M is a term of the form L(N), then
types need to be found for L and N . If M has the form �x: M 0, then a
type needs to be found for M 0 assuming that x has some type s. Now, in
the case that we are looking for the type of a term like �x: x, then, for any
type s, we can �nd a type with the following instances of the projection
and application rule:

44 Carl A. Gunter

Table 12. Implicitly-Typed �-Calculus

[Proj]
x 2 H

H ` x : H(x)

[Abs]�
H; x : s `M : t

H ` �x: M : s! t

[Appl]
H `M : s! t H ` N : s

H `M (N) : t

x : s ` x : s

` �x: x : s! s

The choice of s here is arbitrary, but each of the types for �x: x must have
the form s! s. Indeed this form precisely characterizes what types can be
the type of �x: x. Let us now consider a slightly more interesting example;
let

M � �x: �f: f(x):

In a typing derivation ending with a type for M , the last two steps must
have the following form:

x : t1; f : t2 ` f(x) : t3
x : t1 ` �f: f(x) : t2 ! t3
`M : t1 ! (t2 ! t3)

Letting H be the assignment x : t1; f : t2, the derivation of the hypothesis
at the top must have the form

H ` x : t1 H ` f : t2
x : t1; f : t2 ` f(x) : t3

where, to match the application rule, it must be the case that t2 have the
form t1 ! t3. It is not hard to see that any choice of t1; t2; t3 satisfying
this one condition will be derivable as a type for M . In short, the types
that M can have are exactly characterized as those of the form

r! (r ! s)! s: (5:1)

This suggests that there may be a way to reconstruct a general form for
the type of a term in the implicit calculus. If the types r and s could
be viewed as variables in the type 5.1, then we could say that a type t
satis�es ` M : t just in case t is a substitution instance of 5.1. What
is most important though is the prospect that a type for a term could be

The Semantics of Types in Programming Languages 45

determined even though the type tags are missing. For a calculus like PCF,
this might make it possible to omit type tags and still ensure the kind of
security asserted for the well-typed terms of the language in Theorem 5.1.1.

Of course, there are terms that cannot be given a type because they
`make no sense'. This is easy to see in PCF where there are constants:
a term such as 0(0) is clearly meaningless. In the �-calculus by itself,
however, there is a gray area between what is and what is not a sensible
term. The implicit system of Table 12 judges that ` M : t if, and only if,
there is a term of the explicitly-typed �-calculus of Table 4 from which M
can be obtained by erasing the tags. For example, it is impossible to �nd a
type for �f: f(f) with the implicit typing system. To see this, suppose on
the contrary that this term does have a type. The derivation of the type
must end with an instance of [Abs]�:

f : s ` f(f) : t

` �f: f(f) : s! t

The proof of the hypothesis must be an instance of [Appl]:

f : s ` f : u! t f : s ` f : u

f : s ` f(f) : t
;

which, by the axiom [Proj], means that u ! t � s � u. However, there is
no type that has this property since the type u cannot have itself as a proper
subterm. But there are contexts in which this term seems to make some
sense. For example, it might be argued that the term (�x: x(x))(�y: y) is
harmless, since the x in the �rst abstraction is bound to an argument in
the application that can indeed be applied to itself.

The calculus ML0, which we now introduce, has a type system that
can be viewed as a compromise between the implicit type discipline of
Table 12 (which is essentially the simply-typed �-calculus) and the untyped
�-calculus for which no typing system is used. ML0 is a core representation
of the system of the ML programming language. The goal is to provide
some level of additional
exibility to the implicit typing discipline while
maintaining a close link to the simply-typed �-calculus. The key idea in
the system is the inclusion of a syntax class of parameterized types. The
full grammar for the language is given as follows:

x 2 TermVariable
a 2 TypeVariable
t ::= a j t! t
T ::= t j �a: T
M ::= x j �x: M j MM j let x = M in M

In addition to the primitive syntax class of term variables x, a new syntax
class of type variables a has been added. A type scheme T has the form

46 Carl A. Gunter

�a1: �a2: : : :�an: t where the type variables a1; : : : ; an bind any occur-
rences of these variables in the type t. The usual rules for substitution
and �-equivalence apply to type schemes: expressions are taken modulo �-
equivalence, and a substitution should not result in any free variable of the
substituted type becoming bound after the substitution. In other words,
for any substitution �,

�(�a1: : : :�an: t) � �a1: : : :�an: �(t)

where it is implicitly assumed by the Bound Variable Convention that no
ai is in the support of � and none has a free occurrence in �(b) for any b in
the support of �. We write Ftv(T) for the free type variables of a scheme
T . The language includes one new construct for terms called a let. In an
expression L � let x = M in N , free occurrences of x in M are free in L
while those that occur in N are bound by the let.

The typing rules for ML0 will include a generalization of the projection
rule in the implicit system that allows the type of a variable to be any type
obtained by instantiating the �-bound variables of a scheme associated
with it in a type assignment.

De�nition 5.2.1. A type s is said to be an instance of a type scheme
T � �a1: : : :�an: t if there is a substitution � with its support contained
in fa1; : : : ; ang such that �(t) = s. If s is an instance of T then we write
s � T .

Assignments in ML0 are de�ned similarly to assignments for simple
types, but an ML0 type assignment associates type schemes to term vari-
ables. Speci�cally, an assignment is a list H of pairs x : T where x is a term
variable and T is a type scheme. The set of free type variables Ftv(H) in an
assignment H is the union of the sets Ftv(H(x)) where x 2 H. To give the
typing rules for the system it is necessary to de�ne a notion of the closure
of a type relative to an assignment. This is a function on assignments H
and types t such that

close(H; t) = �a1: : : :�an: t

where fa1; : : : ; ang = Ftv(t) � Ftv(H). It is assumed that the function
close chooses some particular order for the � bindings here; it does not
actually matter what this order is, but we can simply assume that our
typing judgements are de�ned relative to a particular choice of the function
close. A typing judgement is a triple H
M : t where H is an assignment,
M a term, and t a type. The typing rules for the system appear in Table 13.
The symbol
 has been used in place of ` for this system to distinguish
it from the implicit system of Table 12 and from another system to which
it will be compared later (the one in Table 20 to be precise). The rules

The Semantics of Types in Programming Languages 47

Table 13. Typing Rules for ML0

[Proj]
x : T 2 H t � T

H
 x : t

[Abs]�
H; x : s
M : t

H
 �x: M : s! t

[Appl]
H
M : s! t H
 N : s

H
M (N) : t

[Let]
H
M : s H; x : close(H; s)
 N : t

H
 let x = M in N : t

for abstraction and application are the same as for the implicit typing
system. The rule [Proj] for variables is di�erent though because the type
of a variable x can be any instance of the type scheme H(x). The rule [Let]
for the let construct gives the type of the let as that of N in an assignment
where the type associated with x is the closure of the type ofM . Note that
there is a rule for each clause for a term in the grammar of the language,
and the hypotheses of each rule are judgements about subterms of that
term.

A basic property of the type variables and substitution in the system is
given by the following:

Lemma 5.2.2. If H
M : t, then [s=a]H
M : [s=a]t.

In particular, if a 62 Ftv(H), then [s=a]H � H, so H
 M : t implies
H
M : [s=a]t.

As in the implicit simply-typed system, ML0 does not have a type for
the term �f: f(f). However, if f is let-bound to an appropriate value M ,
then the term

N � let f = M in f(f)

can have a type. To see this in a speci�c example, takeM to be the identity
combinator �x: x. Let a be a type variable, let us show that N has type
a! a. First of all,

x : a
 x : a

 �x: x : a! a

follows from [Proj] and [Abs]�. Now, by [Proj], we must also have the
hypotheses of the following instance of [Abs]�:

f : �a: a! a
 f : a! a f : �a: a! a
 f : (a! a)! (a! a)

f : �a: a! a
 f(f) : a! a

48 Carl A. Gunter

Note, in particular, that it is possible to instantiate the �-bound variable
a as the type a! a in one hypothesis and simply as a in the other. From
the derivations above, we now have both hypotheses of this instance of the
[Let] rule:

 �x: x : a! a f : �a: a! a
 f(f) : a! a

 let f = �x: x in f(f) : a! a

One of the most important characteristics of this typing system is the
fact that we can determine whether a term has a type in a given assignment.
Given an assignment H and a substitution �, let �(H) be the assignment
that associates �(H(x)) to each x 2 H. That is, ifH � x1 : T1; : : : ; xn : Tn,
then

�(H) � x1 : �(T1); : : : ; xn : �(Tn):

Given assignment H and term M , de�ne S(H;M) to be the set of all pairs
(�; t) such that � is a substitution, t is a type, and �(H)
 M : t. There
is an algorithm that, given H and M , provides an element of S(H;M) if
the algorithm succeeds. To describe the algorithm, some background on
substitutions is required.

Let � and � be substitutions. Then � is said to be more general than
� if there is a substitution �0 such that �0 � � = � . Given types s and t,
a uni�er for s; t is a substitution � such that �(s) = �(t). A most general
uni�er for s; t is a uni�er � that is more general than any other uni�er for
these types.

Theorem 5.2.3. If there is a uni�er for a pair of types, then there is also
a most general uni�er for them.

This theorem and an algorithm for calculating most general uni�ers was
introduced in [Robinson, 1965]. The reason for introducing uni�ers at this
point is to to describe an algorithm of Robin Milner [Milner, 1978] called
algorithmW. It is given by induction on the structure ofM by the following
cases:

� Case M � x. If x 2 H, then the value is the identity substitution
paired with the instantiation of the scheme H(x) by a collection of
fresh type variables. In other words, if H(x) � �a1: : : :�an: s where
a1; : : : ; an are new type variables, then

W(H; x) = (id; s)

where id is the identity map. If x 62 H, then the value of W(H; M)
is failure.

� Case M � �x: M 0. Suppose a is a new type variable and (�; t) =
W(H;x : a; M 0). Then

The Semantics of Types in Programming Languages 49

W(H; �x: M 0) = (�; �(a)! t):

If, on the other hand, the value ofW(H;x : a; M 0) is failure, then so
is W(H; M).

� Case M � L(N). Suppose (�1; t1) = W(H; L) and (�2; t2) =
W(�1(H); N). Let a be a new type variable. If there is a most
general uni�er � for �2(t1) and t2 ! a, then

W(H; L(N)) = (� � �2 � �1; �a):

In the event that there is no such uni�er or if the value of W(H; L)
or W(�1(H); N) is failure, then this is also the value of W(H; M).

� Case M � let x = L in N . Suppose (�1; s1) = W(H; L) and
H0 � �1(H); x : close(�1(H); s1). If (�2; s2) =W(H 0; N), then

W(H; M) = (�2 � �1; s2):

If, on the other hand, the value ofW(H; L) or W(H 0; N) is failure,
then that is also the value of W(H; M).

To prove that algorithmW is sound, it helps to have the following:

Lemma 5.2.4. If H;x : �a1: : : :�an: s
 M : t, then H; close(H; s)

M : t.

To understand this, note that the Bound Variable Convention insists that
the variables ai that appear in s are not in Ftv(H). The desired soundness
property can be stated precisely as follows:

Theorem 5.2.5. If W(H; M) exists, then it is an element of S(H; M).

Proof. Suppose W(H; M) exists; we must show that �(H)
M : t. The
proof is by induction on the structure of M . If M � x is a variable, then
t is an instantiation of H(x). This means H
 x : t by the typing rule for
variables.

Case M � �x: M 0. If (�; t) = W(H;x : a; M 0), then �(H;x : a)

M 0 : t by the inductive hypothesis. Thus �(H); x : �(a)
 M 0 : t so
�(H)
 �x: M 0 : �(a) ! t by the typing rule for abstraction. This means
W(H; M) = (�(H); �(a)! t) 2 S(H; M).

Case M � L(N). If (�1; t1) =W(H; L) and (�2; t2) = W(�1(H); N),
then, by the inductive hypothesis, �1(H)
 L : t1 and �2(�1(H))
 N : t2.
Since W(H; M) exists, there is a substitution � such that �(�2(t1)) �

50 Carl A. Gunter

�(t2 ! a) � �(t2)! �(a). By Lemma 5.2.2, � ��2��1(H)
 L : � ��2(t1)
so

� � �2 � �1(H)
 L : �(t2)! �(a):

Also by the inductive hypothesis,

� � �2 � �1(H)
 N : �(t2):

Combining these facts with the rule for the typing of applications, we can
conclude that

� � �2 � �1(H)
 L(N) : �(a);

which means that W(H; M) 2 S(H; M).
Case M � let x = L in N . If (�1; s1) = W(H; L) and (�2; s2) =

W(H0; N) where H0 = �1(H); x : close(�1(H); s1), then, by the inductive
hypothesis, �1(H)
 L : s1 and �2(H0)
 N : s2. By Lemma 5.2.2,

�2 � �1(H)
 L : �2(s1):

If �a1: : : :�an: s1 � close(�1(H); s1), then

�2 � �1(H); x : �a1: : : :�an: �2(s1)
 N : s2

so, by Lemma 5.2.4,

�2 � �1(H); x : close(�2 � �1(H); �2(s1)
 N : s2:

By the rule for typing lets, this says that W(H; M) = (�2 � �1; s2) 2
S(H; M).

Of course, this only proves that the answer calculated by W is `sound';
another question, addressed in [Damas and Milner, 1982] led to the for-
mulation of a theorem describing the sense in which the type inferred by
algorithmW is the `best' type possible. To be precise,

De�nition 5.2.6. A principal type forH andM is a pair (�; s) 2 S(H;M)
such that, for any other pair (�; t) 2 S(H;M), there is a substitution �0

such that

� � (H) = �0 � �(H) and

� t is an instance of �0(close(�(H); s)).

In the case that H is the empty assignment, this boils down to saying that
if a closed term M has a type at all, then there is a type s such that M

The Semantics of Types in Programming Languages 51

has type s and, for any other type t, M has type t only if t = �s for some
substitution � . Damas and Milner state the following:

Theorem 5.2.7. If there is a type t such that H
M : t, then W(H; M)
is a principal type scheme for H and M .

Its proof appears in the thesis [Damas, 1985]. In practice there are many
optimizations that can be done to provide a more e�cient implementation
of principal type scheme inference. One discussion of implementation has
appears in [Cardelli, 1987]. Most books on ML include some discussion
of ML type inference; for instance [Sokolowksi, 1991] provides code for
uni�cation and inference using the Standard ML module system.

5.3 Runtime safety for assignments and continuations.

To appreciate the value of Algorithm W, it is necessary to consider it in
connection with the way in which programs will be evaluated. This was
not speci�ed above, but this does not mean that the matter is trivial or
unimportant; on the contrary, this topic requires some careful consideration
if pitfalls are to be avoided. A straight-forward approach to the semantics
of a term let x = N in M is to treat it operationally as an application
(�x: M)N . The typing system of ML0 treats these two terms di�erently,
but it is possible to treat them as the same operationally. This is the
approach taken by the Standard ML de�nition. It leads to complexities,
however, when one considers the interaction between certain computational
extensions and evaluation order. Let us now consider this issue and look
at one possible solution proposed in [Leroy, 1993].

Let us assume that our language is to be given a call-by-value evaluation
order and extended with the primitives and the rule for pairs that appear
in Table 14. If desired, a sequencing operator can be included by taking
M ;N to be syntactic sugar for (�x: N)M where x does not appear in N .

AlgorithmW can easily be adapted to deal with these extra constructs.
The new primitives can be treated as if they were free variables with the ap-
propriate type schemes, and the inference for pairs can be done component-
wise. Unfortunately this approach causes di�culties when taken with the
usual evaluation order for the let construct, if this construct is viewed as
syntactic sugar for an application as described above. A classic example of
the di�culty with the use of AlgorithmW for this language is given by the
following program, which is written in a pseudo-code compromise between
Standard ML and ML0:

let r = ref(fn x => x)

in update(r, fn x => x+1);

(deref r)(true)

end

52 Carl A. Gunter

Table 14. Assignments, continuations, and pairs.

ref : �a: a! ref(a)
deref : �a: ref(a)! a
update : �a: (ref(a) � a)! a
callcc : �a: (cont(a)! a)! a
throw : �a: �b: (a � cont(a))! b
fst : �a: �b: (a� b)! a
snd : �a: �b: (a� b)! b

H `M : s H ` N : t

H ` (M;N) : s � t

This program will pass AlgorithmW because the type of r will be

�a: ref(a! a):

Suppose the three primitives ref, update, and deref are treated as having
the semantics of their Standard ML analogs ref, :=, and !, and the seman-
tics of let is the one of SML. Then there will be a runtime error when r
is dereferenced and an attempt is made to add 1 to true. The problem
here is that the update operation on r instantiates the type of r so that
the type of the dereferenced value is an inappropriate specialization of the
polymorphic type of r at the point it is applied to true.

A similar problem arises with the addition of the control primitives
callcc and throw to the language. Let us suppose that these primitives
are given the semantics that callcc and the application of continuations
have in Scheme. Duba, Harper, and MacQueen [Duba et al., 1991] noted
that Algorithm W may typecheck programs with these constructs that
yield runtime errors. Here is an example from [Leroy, 1993]:

let later = callcc(fn k =>

(fn x => x,

fn f => throw(k, (f, fn g => 1))))

in print(first(later)("Hello World"));

second(later)(fn x => x+1)

end

When invoked, the continuation k essentially carries out a reassignment
of the identi�er later. To see this and why it is a problem, let us trace

The Semantics of Types in Programming Languages 53

the evaluation. After the let binding of later, the first coordinate of
later|the identity function|will be invoked on a string, which is printed.
Then the second coordinate is invoked on a function which is `thrown' as
the �rst coordinate of a pair to the previously captured continuation k. At
this point, the evaluation proceeds in the same manner as the following
program:

let later = (fn x => x+1, fn g => 1)

in print(first(later)("Hello World"));

second(later)(fn x => x+1)

end

which leads to a type error when first(later) is applied because this
leads to the addition of 1 and a string.

There have been a variety of proposals about how to deal with these
problems by restricting the ML type system [Damas, 1985; Tofte, 1990].
An alternative is to change the evaluation order of the let expressions
themselves. To illustrate this idea, let us consider an extension of ML0
which we call ML1. It has the following grammar:

x 2 TermVariable
a 2 TypeVariable
t ::= a j t! t j t� t j ref(t) j cont(t)
T ::= t j �a: T
M ::= x j �x: M j MM j let x =M in M j (M;M) j C
C ::= ref j deref j update j callcc j throw j fst j snd

and its typing rules are those of ML0 together with the types for the con-
stants and pairs as given above.

The inclusion of assignments in the language leads us to incorporate
notions of environment and store into our semantics, while the inclusion
of �rst class continuations leads us to consider control as well. In earlier
semantics the idea of a store could be ignored. Environments were avoided
by using syntactic substitution to instantiate formal parameters to actual
parameters, and control was expressed indirectly through the hypotheses
of rules in SOS or natural semantics. Let us now consider an alternative
way of describing a semantics which is essentially an abstract machine.
The machine is described through a collection of transition rules in which
environments, store, and control are all made explicit. The machine here
is essentially a reformulation of the natural semantics appearing in [Leroy,
1993]. It closely resembles the abstract machine in [Felleisen and Friedman,
1986].

To describe it, we require some further concepts. The following gram-
mar de�nes values V , continuations �, and thunks T in terms of environ-
ments � and stores �:

54 Carl A. Gunter

l 2 Location
V ::= Closure(M;�) j (V; V) j l j � j C
� ::= Stop j Apply1(M;�; �) j Apply2(V; �) j

Pair1(M;�; �) j Pair2(V; �)
T ::= Thunk(M;�)

An environment � is partial function with �nite domain called an environ-
ment that maps a variable x to a value V or a thunk T . A store � is a
partial function with �nite domain called a store that maps locations l to
values V .

The machine is given in terms of a set of rewrite rules involving two
operators push and pop. The operator push(M;�; �; �) takes a term M ,
an environment �, a store �, and a continuation � as its arguments. The
operator pop(V; �; �) takes a value V , a store �, and a continuation � as
arguments. If they terminate, the rewrite rules produce a pair (V; �) or
type error, tyerr, at the end. The relation ! is de�ned to be the least
one satisfying the rules in Table 15. We assume we are given a function
new from stores to locations such that new(�) is a location not in the
domain of de�nition of �. This function is used in the semantics of the
ref constant for allocating new locations in memory. Intuitively, the push
machine evaluates a term in stages, delaying parts of the calculation by
pushing chores onto �, which represents the continuation stack. When
this evaluation reaches a value, the pop machine is invoked to consult the
continuation stack to determine what should be done with the value.

The key result is the following:

Theorem 5.3.1. If M is type correct, then it is not the case that

push(M; ;; ;;Stop)!� tyerr:

The proof requires establishing a set of type invariants for environments,
stores, and continuations. A further fact that can be shown is that, given
a suitable formulation of types for values, if push(M; ;; ;;Stop)!� (V; �),
then the type of V in � is the same as that of M .

Another approach to dealing with the semantics of let is to restrict the
declaration so that polymorphism is only permitted in expressions that do
not require any evaluation. This would make it illegal to write programs
such as

let f = g o h in ...

where o is the higher-order composition function, but one could use an
�-expansion and instead write

let f = fn x => g (h x) in ...

Andrew Wright, who introduced this idea [Wright, 1993], has been able to
demonstrate its practicality for a number of substantial SML programs.

The Semantics of Types in Programming Languages 55

Table 15. Abstract Machine for ML1.

push(x; �; �; �)! pop(�(x); �; �) if �(x) is a value

push(x; �; �; �)! push(M;�0; �; �) if �(x) = Thunk(M;�0)

push(�x: M; �; �; �)! pop(Closure(�x: M; �); �; �)

push(MN; �; �; �)! push(M;�; �;Apply1(N; �; �))

push(C; �; �; �)! pop(C; �; �)

push((M;N); �; �; �)! push(M;�; �;Pair1(N; �; �))

push(let x = M in N; �; �; �)! push(N; �[x 7! Thunk(M;�)]; �; �)

push(M;�; �; �)! tyerr in all other cases

pop(V; �;Apply1(N; �; �))! push(N; �; �;Apply2(V; �))

pop(V; �;Apply2(Closure(�x: M; �); �)! push(M;�[x 7! V]; �; �)

pop(V; �;Apply2(ref; �))! pop(new(�); �[new(�) 7! V]; �)

pop(l; �;Apply2(deref ; �))! pop(�(l); �; �)

pop((l; V); �;Apply2(update; �))! pop(V; �[l 7! V]; �)

pop(Closure(�k: M; �); �;Apply2(callcc; �))!
push(M;�[k 7! �]; �; �)

pop((V; �0); �;Apply2(throw; �))! pop(V; �; �0)

pop((U; V); �;Apply2(fst; �))! pop(U; �; �)

pop((U; V); �;Apply2(snd; �))! pop(V; �; �)

pop(U; �;Pair1(N; �; �))! push(N; �; �;Pair2(U; �))

pop(V; �;Pair2(U; �))! pop((U; V); �; �)

pop(V; �;Stop)! (V; �)

pop(V; �; �)! tyerr in all other cases

6 Types as Subsets

So far we have modeled types as objects drawn from a collection of spaces
or as syntactic invariants. Each closed, well-typed term denotes a value in
the space that interprets its type or expresses a property that is unchanged
by the evaluation of a term. Let us now consider another perspective in
which a type is viewed as a subset of a universe of elements modeling
terms. In this approach, the meaning [[M]] of a closed, well-typed term M
is a member of the universe U , and [[M]] lies in the subset [[t]] � U of the
universe that interprets the type t of M . There are several ways to view
these subsets, resulting in di�erent models. Our discussion begins with an

56 Carl A. Gunter

examination of the interpretation of the untyped �-calculus using a model
of the simply-typed calculus that satis�es a special equation. We then
consider how a model of the untyped calculus can be viewed as a model of
the typed one by interpreting types as subsets.

6.1 Untyped �-calculus.

The untyped �-calculus is essentially the calculus obtained by removing the
type system from the simply-typed calculus. The terms of the untyped
calculus are generated by the following grammar:

M ::= x j MM j �x: M

where the abstraction of the variable x over a term M binds the free vari-
able occurrences of x in M . (These are the same terms used for the
implicitly-typed system before.) Expressions such as M 0; N;N1; : : : are
used to range over untyped �-terms as well as typed terms|context must
determine which class of terms is intended. For discussions below relating
typed and untyped calculi, P;Q;R are used for terms with type tags and
L;M;N for those without such tags. Untyped �-terms are subject to the
same conventions about bound variables as we applied earlier to terms with
type tags on bound variables. In particular, terms are considered equiv-
alent if they are the same up to the renaming of bound variables (where
no such renaming leads to capture of a variable by a new binding). The
equational rules for the untyped ��-calculus are given in Table 16. They
are very similar to those of the typed calculus. The untyped ���-calculus
is obtained by including the untyped version of the �-rule,

f�g �x: M (x) =M;

where, as before, the variable x does not appear free in the expression M .
It is not hard to see that every term of the simply-typed �-calculus gives
rise to a term of the untyped calculus obtained by `erasing' the type tags
on its free variables. More precisely, we de�ne the erasure erase(P) of a
term P of the simply-typed calculus by induction as follows:

erase(x) � x
erase(P (Q)) � (erase(P))(erase(Q))
erase(�x : t: P) � �x: erase(P):

Although every term of the untyped calculus can be obtained as the erasure
of a tagged one, it is not the case that every untyped term can be obtained
as the erasure of a well-typed tagged term. For example, if erase(P) �
�x: x(x), then there is no context H and type expression t such that H `

The Semantics of Types in Programming Languages 57

Table 16. Equational Rules for Untyped ��-Calculus

fRe
g x = x

fSymg
M = N

N = M

fTransg
L = M M = N

L = N

fCongg
M = M 0 N = N 0

H `M (N) = M 0(N 0)

f�g
M = M 0

�x: M = �x: M 0

f�g (�x : s: M)(N) = [N=x]M

P : t. Of course, distinct well-typed terms may have the same erasure if
they di�er only in the tags on their bound variables:

erase(�x : o: x) � �x: x � erase(�x : o! o: x):

6.2 What is a model of the untyped �-calculus?

It is possible to describe a semantics for the untyped �-calculus using the
simply-typed calculus. Such an interpretation must deal with the concept
of self application such as we see in the term �x: x(x), so some care must
be applied in explaining how an untyped term can be interpreted in a
typed setting where this operation is not type-correct. The approach we
use, which follows [Meyer, 1982], is to view the application as entailing an
implicit coercion that converts an application instance of a value into a
corresponding function. More precisely, assume we are given constants

� : o! (o! o)
	 : (o! o)! o

and an equational theory with one equation

� �	 = �x : o! o: x: (6:1)

58 Carl A. Gunter

Let us call this theory U�. A model of theory U� is a tuple

(A; A;�;)

where (A; A) is a type frame and � 2 Do!(o!o) and 	 2 D(o!o)!o

satisfy 6.1. (To simplify the notation, let us make no distinction between
� and 	 as constant symbols in the calculus and their interpretations in
the model.) We may use a model of theory U� to interpret the untyped
��-calculus in the following way. First, we de�ne a syntactic translation
that converts an untyped term into a term with type tags by induction as
follows:

x� � x
(�x: M)� � 	(�x : o: M�)
(M (N))� � �(M�)(N�)

For example, Y and Y � are as follows:

Y � �f: (�x: f(xx))(�x: f(xx))
Y � �
	(�f : o: �((�x : o: �(f)(�(x)(x))))((�x : o: �(f)(�(x)(x))))):

It is possible to demonstrate the following basic fact about the transla-
tion:

Proposition 6.2.1. Let M be an untyped term. If H � x1 : o; : : : ; xn : o
is a type context that includes all of the free variables ofM , then H `M� :
o.

With this translation, it is possible to assign a meaning to an untyped
term M by taking Au[[M]] = A[[M�]] 2 Do. To see that this respects the
equational rules given in Table 16, note �rst the following:

Lemma 6.2.2. [N�=x]M� � ([N=x]M)�.

We then prove the �-rule for the untyped calculus by a calculation in the
typed one:

((�x: M)(N))� = �((�x: M)�)(N�)
� �((�x : o: M�))(N�)
� (�x : o: M�)(N�)
= [N�=x]M�

� ([N=x]M)�

so

Au[[(�x: M)(N)]] = A[[((�x: M)(N))�]] = A[[([N=x]M)�]] = Au[[[N=x]M]]:

The other axioms and rules are not di�cult.

The Semantics of Types in Programming Languages 59

Now, let theory U�� be theory U� together with the equation

	 �� = �f : o: f; (6:2)

which asserts, in e�ect, that � is an isomorphism between the ground type
Do and the functions in Do!o. If a model A of theory U� is also a model
of theory U�� , then Au satis�es the �-rule as well as the �-rule. To see
this, suppose the variable x does not appear free in the term M , then

(�x: M (x))� � 	(�x : o: (M (x))�)
� 	(�x : o: �(M�)(x))
= 	(�(M�))
= M�

so Au[[�x: M (x)]] = A[[(�x: M (x))�]] = A[[M�]] = Au[[M]]. In summary, we
have the following result.

Theorem 6.2.3. If A is a model of U�, then Au is a model of the untyped
��-calculus. If, moreover, A is a model of U�� , then it is a model of the
untyped ���-calculus.

6.3 What models of the untyped �-calculus are there?

Having established that models of theories of U� and U�� provide models of
the untyped �� and ��� calculi respectively, it is tempting to conclude that
we have almost completed our quest for models of the untyped calculus.
In fact, we have only done the easy part. We have not yet shown that any
models of theories U� and U�� actually exist. To see why this might be
a problem, consider the full type frame FX over a set X. If we can �nd
functions

� : X ! (X ! X)
	 : (X ! X) ! X

(where X ! X is the set of all functions from X to X) that satisfy Equa-
tion 6.1, then we have produced the desired model. But Equation 6.1
implies that the function � is a surjection from X onto the set of functions
f : X ! X . By Cantor's Theorem, such a surjection exists only if X has
exactly one point! This means that the full type frame can only yield a
trivial model for the untyped calculus through a choice of � and 	. The
problem lies in the fact that the interpretation of o ! o in the full type
frame has too many functions. To �nd a model of the untyped calculus,
we must therefore look for a type frame that has a more parsimonious
interpretation of the higher types.

Techniques for �nding models that can satisfy these properties were
the primary purpose of the theory of domains and it is beyond the scope

60 Carl A. Gunter

of this chapter to discuss how this can be done in any detail. For the sake
of concreteness, however, let us build one such domain explicitly. Given a
set X, let Pf (X) be the set of all �nite subsets of X. De�ne an operation
G by

G(X) = f(u; x) j u 2 Pf (X) and x 2 Xg:

Starting with any set X, let X0 = X and Xn+1 = G(Xn). Take DX to be
the set P(

S
n2!Xn) of all subsets of the union of the Xn's. Ordered by set

inclusion, this is an algebraic lattice whose compact elements are the �nite
sets. To see how it can be viewed as a model of the untyped �-calculus,
consider an element (u; x) 2 G(Xn). This pair can be viewed as a piece
of a function f , which has x in its output whenever u is a subset of its
input. Suppose that d 2 DX . Following this intuition, we de�ne a function
�(d) : DX ! DX by taking

�(d)(e) = fx j u � e for some (u; x) 2 dg (6:3)

for each e 2 DX . In other words, if we are to view d as inducing a function
taking e as its argument, the result of applying d to e is the set of those
elements x such that there is a `piece' (element) (u; x) of d where u is a
subset of the input e. Also, given a continuous function f : DX ! DX ,
de�ne 	(f) 2 DX by

	(f) = f(u; x) j x 2 f(u)g: (6:4)

This says that f is to be represented by recording the pairs (u; x) such
that x will be part of the result of applying f to an element that contains
u. It is not di�cult to check that � and 	 are continuous. Suppose that
f : DX ! DX is continuous. Then

�((f))(d) = fx j (u; x) 2 	(f) for some u � dg
= fx j x 2 f(u) for some u � dg
=
S
ff(u) j u � dg

= f(d)

where the last step follows from the fact that a continuous function on an
algebraic cpo is determined by its action on compact elements.

A model of the simply-typed �-calculus is de�ned by taking DX as
the interpretation of the ground type and interpreting higher types using
the (pointwise ordered) continuous function spaces. It then follows from
the calculation above that the continuous type frame generated by DX ,
together with the continuous functions � and 	, is a model of the un-
typed ��-calculus. It is obviously non-trivial if X has at least two distinct
elements.

The Semantics of Types in Programming Languages 61

Could DX also be a model of the untyped ���-calculus? Suppose d 2
DX , and let us attempt to calculate equation 6.2:

	(�(d)) = f(u; x) j x 2 �(d)(u)g
= f(u; x) j v � u for some (v; x) 2 dg
� d:

But since d could be an arbitrary subset of
S
nXn, it is clear that this su-

perset relation may fail to be an equality. So we have not yet demonstrated
a model for the ���-calculus! To do this using cpo's and continuous func-
tions, what we need is a cpo D such that D �= [D ! D]. Here is where
domain theory would be helpful in �nding spaces with the needed prop-
erties. Let us assum that we know how to �nd non-trivial domains to
satisfy this and other isomorphisms; for details on how such domains can
be constructed, see [Abramsky and Jung, 1994].

6.4 Inclusive subsets as types.

A domain used as a universe for interpreting types is generally called a
universal domain. It is not desirable to use arbitrary subsets of a universal
domain to denote types because certain properties are needed to establish
invariants. Let us now consider one of the most widely used conditions.

De�nition 6.4.1. A subset of a cpo is inclusive if it is downward closed
and closed under least upper bound's of !-chains.

The use of the term `inclusive' for this notion is slightly non-standard
from a historical perspective. The condition above was introduced in [Mil-
ner, 1978], and it is common for the term `ideal' to be used instead [Mac-
Queen et al., 1986]. This clashes with another common usage of `ideal', so
the alternate term `inclusive' is used here.

Based on a given universal domain, it is possible to use inclusive subsets
to model simple types. Let X be any domain and suppose we are given a
solution to the domain equation

D �= X � [D ! D]: (6:5)

In this equation, the operator � is the coalesced sum, which takes the
disjoint union of its arguments and then identi�es their respective least
elements. This is a model of the untyped �-calculus: let 	 : [D! D]! D
be the injection of the cpo of continuous functions from D to D into the
right component of D (note that the function x 7! ?D is being set to ?D)
and let � : D ! [D! D] be given by

�(y) =

�
f if y = 	(f) for a continuous f : D ! D
?[D!D] if y 2 X.

62 Carl A. Gunter

It is easy to see that � �	 = id. To associate inclusive subsets on D with
types of the simply-typed �-calculus, de�ne

[[o]] = X
[[s! t]] = f	(f) j f 2 [D ! D] and f(x) 2 [[t]] whenever x 2 [[s]]g:

Lemma 6.4.2. For each type t, the subset [[t]]� D is an inclusive subset.

Given a type assignment H, an H-environment � is de�ned to be a
function from variables into D such that �(x) 2 [[H(x)]] for each x 2 H.
If H ` M : t, then the interpretation of M is given by induction on the
structure of M relative to an H-environment � as follows:

[[x]]� = �(x)

[[L(N)]]� = �([[L]]�)([[N]]�)

[[�x : s: M 0]]� = 	(d 7! [[M 0]]�[x 7! d])

The key result relating this interpretation to the interpretations of types is
the following:

Theorem 6.4.3. If H ` M : t and � is an H-environment, then [[M]]� 2
[[t]].

There is a problem with interpreting types in this way, however: the
equational rules are not all satis�ed. To see why this is the case, suppose
that the domain X in Equation 6.5 has at least one element other than
?X . De�ne two terms

M � �y : s! t: �x : s: y(x)
N � �y : s! t: y:

The meaning of M can be calculated as

[[M]]; = 	(e 7! [[�x : s: y(x)]][y 7! e])

= 	(e 7! 	(d 7! [[y(x)]][y; x 7! e; d]))

= 	(e 7! 	(d 7! �([[y]][y; x 7! e; d])([[x]][y; x 7! e; d])))

= 	(e 7! 	(d 7! �(e)(d)))

and the value of N by

[[N]]; = 	(d 7! [[y]][y 7! d]) = 	(d 7! d):

Suppose ? 6= a 2 [[o]]. Then [[M]] 6= [[N]] because �[[M]];(a) 6= �[[N]];(a).
To see why, �rst calculate

�([[M]];)(a) = �((e 7! 	(d 7! �(e)(d))))(a)

The Semantics of Types in Programming Languages 63

= 	(d 7! �(a)(d))

= 	(d 7! (e 7! ?)(d))

= 	(d 7! ?)

= ?

whereas
�([[N]];)(a) = �((d 7! d))(a) = a 6= ?:

But these two terms are provably equal in the equational theory. Let
r � s! t, then by projection

` (y : r B y = y : r)

so, by the �-rule,
` (y : r B �x : s: y(x) = y : r)

Hence, by the �-rule,

` (B �y : r: �x : s: y(x) = �y : r: y : r ! r):

This is the equationM = N that is not satis�ed by the model. Where does
the problem lie here? It is not the �-rule as one might originally suspect:
the �-rule is satis�ed by the interpretation. The problem is the soundness
of the �-rule: the terms M and N denote functions, but if they are applied
(in the model) to elements of the `wrong type', then the values may di�er.

A construction that solves this problem will be given below, but let us
consider how this model is useful even without satisfying the full equational
theory for the �-calculus. The idea presented in [Milner, 1978] is to give a
semantic proof of a result such as Theorem 5.1.1. Milner's proof was for
the calculus ML0, but the idea can be illustrated adequately with PCF. Let
us look at the analog of that theorem for PCF with type errors (that is,
PCF with a new expression tyerr that does not have a type and expanding
the operational rules in Table 8 to include rules for type errors as given in
Table 11).

To give a �xed-point model of the calculus, we use a domainU for which
there is an isomorphism

U �= T� N? � [U ! U]? � O: (6:6)

In this equation, the operation D 7! D? is the lift, which adds a new
bottom element to the domain D. There are obvious maps up : D ! D?

and down : D? ! D relating this domain to D. The space O is the two-
point lattice; let us denote its non-bottom element by tyerr to save some
notation, since it will be used as the meaning of the term tyerr. Let us

64 Carl A. Gunter

write d : D for the injection of element d into the D component of the sum.
For example, n : N? is the injection of n 2 N? into the second component
of U .

Now, as usual, the semantics of a term M such that H ` M : t is
relative to an H-environment �.

� I[[x]]� = �(x).

� I[[�x : t: M 0]]� = up(f) : [U ! U]? where

f(d) =

�
tyerr if d = tyerr
I[[M 0]]�[x 7! d] otherwise.

� I[[L(N)]]� =

�
down(f)(I[[N]]�) if I[[L]]� = f : [U ! U]?
tyerr otherwise.

� I[[�x : t: M 0]]� = �x(d 7! I[[M 0]]�[x 7! d]).

� I[[tyerr]]� = tyerr.

The remaining constructs of PCF have a straight-forward interpretation
that makes the following true:

Lemma 6.4.4.

1. For each type t, I[[t]] is an inclusive subset.

2. If H `M : t and � is an H-environment, then I[[M]]� 2 I[[t]]

3. If M + V , then I[[M]] = I[[V]].

The point of the Lemma is the following:

Theorem 6.4.5. If M : t and M + V , then V is not tyerr.

To see this, note that I[[M]] = I[[V]] and I[[M]]; 2 I[[t]]. Since tyerr 62 I[[t]]
it follows that I[[V]]; 6= tyerr so it cannot be the case that V is tyerr.

6.5 Subtyping as subset inclusion.

Let us return now to the topic of a subtype as discussed in Section 2.4.
In that discussion, the idea that a subtype is a subset was used as an
intuition. Using inclusive predicates, it is possible to make this intuition
into a formal model. To illustrate this, let us consider a pair of extensions
of PCF. The type system considered here is based on ideas in [Reynolds,
1980] and [Cardelli, 1988]; the semantics is basically the one in [Cardelli,
1988].

The Semantics of Types in Programming Languages 65

Table 17. Typing Rules for Records and Variants

[RecIntro]
H `M1 : t1 � � � H `Mn : tn

H ` fl1 = M1; : : : ; ln =Mng : fl1 : t1; : : : ; ln : tng

[RecElim]
H `M : fl1 : t1; : : : ; ln : tng

H ` M:li : ti

[VarIntro]
H `M : t

H ` [l = M; l1 : t1; : : : ; ln : tn] : [l : t; l1 : t1; : : : ; ln : tn]

[VarElim]

H `M : [l1 : t1; : : : ; ln : tn]
H `M1 : t1 ! t � � � H `Mn : tn ! t

H ` case M of l1)M1 � � � ln)Mn : t

First we extend PCF to a language that includes records and variants;
this extension is called PCF+ or `PCF plus records and variants'. To de�ne
its terms, we require a primitive syntax class of labels l 2 Label. Here is
its grammar:

x 2 Variable
l 2 Label
t ::= num j bool j t! t j fl : t; : : : ; l : tg j [l : t; : : : ; l : t]
M ::= 0 j true j false j

succ(M) j pred(M) j zero?(M) j if M thenM elseM j
x j �x : t: M j MM j �x : t: M j
fl = M; : : : ; l = Mg j M:l j
[l = M; l : t; : : : ; l : t] j case M of l)M; : : : ; l)M

where ellipsis (the notation with three dots) is used to indicate �nite lists
of pairs in records and variants. The types and terms of PCF+ are of
expressions generated by this grammar for which there are no repeated
labels in the lists of label/type and label/term pairs. The terms of PCF+
are taken modulo�-conversion (renaming of bound variables) and the order
in which the �elds in records and variants are written. A similar equivalence
is assumed for record and variant type expressions.

The typing rules for PCF+ are those for PCF in Tables 4 and 6, together
with rules for records and variants given in Table 17. They are quite similar
to the rules for products and sums. As with the sum, it is essential to label
the variations to ensure that a variant has a unique type. In general we
have the following:

66 Carl A. Gunter

Table 18. Rules for Subtyping

num � num
bool � bool

s0 � s t � t0

s! t � s0 ! t0

s1 � t1 � � � sn � tn
fl1 : s1; : : : ; ln : sn; : : : ; lm : smg � fl1 : t1; : : : ; ln : tng

s1 � t1 � � � sn � tn
[l1 : s1; : : : ; ln : sn] � [l1 : t1; : : : ; ln : tn; : : : ; lm : tm]

Theorem 6.5.1. If H `M : s and H `M : t, then s � t.

This will not be true of the calculus PCF++ we now consider. PCF++
is the extension of PCF+ in which we allow the use of a subtyping relation
between types. The binary relation s � t of subtyping between type ex-
pressions s and t is de�ned by the rules in Table 18. It is possible to show
that � is a poset on type expressions. The calculus PCF++ is the same as
PCF+ but with the typing rules of PCF+ extended by the addition of the
subsumption rule. Since a type can be derived for a term using subsump-
tion that could not be derived without it, it will be essential to distinguish
between typing judgements for PCF++ and those of PCF+. Let us write
`sub for the least relation that contains the relation ` of PCF+ and satis�es

[Subsump]
H `sub M : s s � t

H `sub M : t
:

The operational semantics of PCF+ and PCF++ is similar to that of
PCF but the language is evaluated using call-by-value rather than call-by-
name. The rules in Table 8 are used for PCF+ and PCF++ except for the
rule:

M + �x : s: M 0 [N=x]M 0 + V

M (N) + V

for evaluation of applications, which is replaced by the rule:

M + �x : s: L N + U [U=x]L + V

M (N) + V

The evaluation of records and variants is given by the rules in Table 19.
A model of PCF++ can be given by extending the inclusive subsets

interpretation for PCF. To this end we need a domain similar to the one
in Equation 6.6. Let us de�ne

U �= T�N? � [U ! U]
?
� [Label! U]

?
� (Label� U)? �O: (6:7)

The Semantics of Types in Programming Languages 67

Table 19. Rules for Call-by-Value Evaluation of Records and Variants

M1 + V1 � � � Mn + Vn
fl1 = M1; : : : ; ln = Mng + fl1 = V1; : : : ; ln = Vng

M + fl1 = V1; : : : ; ln = Vng

M:li + Vi

M + V

[l = M; : : :] + [l = V; : : :]

M + [li = U; : : :] fi(U) + V

case M of l1) f1; : : : ; li) fi; : : : ; ln) fn + V

As before, let us write d : D for the injection of element d into the D
component of the sum. For example, up(f) : [U ! U]? is the injection
of a continuous function f : U ! U into the third component of U . The
semantics of types is de�ned as follows:

� I[[fl1 : t1; : : : ; ln : tng]] = fr : [Label! U]? j down(r)(li) 2
I[[ti]] for each i = 1; : : : ; ng

� I[[[l1 : t1; : : : ; ln : tn]]] = fe : (Label � U)? j e = ?; or down(e) =
(li; d) and d 2 I[[ti]]g

� I[[s! t]] = ff : [U ! U]? j down(f)(d) 2 I[[t]] for each d 2 I[[s]]g

The semantics of a term M such that H `sub M : t is relative to an
H-environment �.

� I[[fl1 = M1; : : : ; ln = Mng]]� = up(r) : [Label! U]
?
where

r(l) =

�
I[[Mi]]� if l = li
tyerr otherwise

� I[[M:l]]� =

�
down(f)(l) if I[[M]]� = f : [Label! U]?
tyerr otherwise

� I[[[l = M; l1 : t1; : : : ; ln : tn]]]� = up(l; I[[M]]�) : (Label� U)?

� I[[case M of l1)M1 � � � ln)Mn]]� = d where

� d = down(fi)(e) if I[[M]]� = up(li; e) : (Label � U)? and
I[[Mi]]� = fi : [U ! U]

?

68 Carl A. Gunter

� d = ? if I[[M]]�= ?

� d = tyerr otherwise

It is not di�cult to check the following property of the interpretation:

Lemma 6.5.2. For each type t the subset I[[t]]� inclusive.

Given a suitable choice of the de�nitions for arithmetic expressions, it
is possible to arrange it to be the case that tyerr 62 I[[t]] for each of the
types t of PCF+. The interpretation also allows us the intuitive liberty
of thinking of s � t as meaning that the meaning of s is a subset of the
meaning of t:

Theorem 6.5.3. If s � t, then I[[s]] � I[[t]].

The converse of the theorem also holds, if we assume that the solution to
Equation 6.7 is an algebraic cpo with a countable basis. Finally, we have
the following:

Theorem 6.5.4.

1. If H `M : t and � is an H-environment, then I[[H BM : t]]� 2 I[[t]].

2. If M + V , then I[[M]] = I[[V]].

3. If M : t and M + V , then V is not tyerr.

7 Types as Partial Equivalence Relations

Let us resume the discussion of parametric polymorphism begun earlier by
considering some of the type systems used to express this notion. Our goal
is to study the distinction between predicative and impredicative de�nitions
of types and show how the latter can be modeled by interpreting types as
equivalence relations on subsets of a universal domain. The system ML0
is an example of a predicative system; we begin by demonstrating a set-
theoretic model of this system and considering an alternative presentation
of its typing rules. This system is then generalized to the best-known im-
predicative system, the Girard-Reynolds polymorphic �-calculus. Modeling
the impredicativity of the Girard-Reynolds system demands more subtlety;
it is shown how this can be done by interpreting types as equivalence rela-
tions on subsets of a universal domain.

The Semantics of Types in Programming Languages 69

7.1 Sets as a model of ML0 types.

Let us go back now and consider the semantics of ML0. The goal is to
provide a model for polymorphic types analogous to the full type frame for
simple types. Recall the syntax of types, type schemes, and terms for the
language:

x 2 TermVariable
a 2 TypeVariable
t ::= a j t! t
T ::= t j �a: T
M ::= x j �x: M j MM j let x = M in M

It will be necessary to have two forms of environment to model the lan-
guage. Since types may contain variables, we will need the notion of a
type-value environment, � which is a function that maps types to semantic
domains. An H; �-environment is a mapping � that assigns to each x 2 H
an element �(x) 2 [[H(x)]]�. For ML0 we use sets drawn from a collection
obtained by constructing the full type frame.

Let X0 be any non-empty set; it will serve as the analog of the inter-
pretation of the ground type. For sets S; T , de�ne T S to be the set of
functions from S to T . De�ne D0 = fX0g and

Dn+1 = fY X j X;Y 2 Dng [Dn:

The universe of our interpretation is the set U =
S
n2!Dn. To model

types of ML0, we must interpret type schemes as well as types. Given an
operator F such that F (X) is a set for each X 2 U , de�ne the dependent
product determined by F to be the set �X2UF (X) that consists of functions
� such that �(X) 2 F (X) for each X 2 U . To be more precise about the
nature of such maps �, they can be taken as functions with domain U and
range

S
X2U F (X) satisfying the given constraint that �(X) 2 F (X). The

interpretation of types and type schemes can now be given as follows:

� [[a]]� = �(a)

� [[s! t]]� = ([[t]]�)[[s]]�

� [[�a: T]]� = �X2U [[T]]�[a 7! X]

It is easy to see that [[t]]� is an element of U for each type t since the universe
U is closed under exponentiation. Note, however, that [[�a: T]]� need not
be an element of U despite the fact that type variables a are mapped to
elements of U . Implicitly we are therefore working with two universes. The
�rst of these, U , is used for interpreting types, while the second contains

70 Carl A. Gunter

sets that can be the interpretations of type schemes. To be more precise, let
U = V0 and, for each n 2 !, de�ne Vn+1 = (Vn)

U [Vn. Then the meaning
[[�a: T]]� of a type scheme is an element of a second universe V =

S
n2! Vn.

The interpretation of the terms of ML0 is more subtle than that of
types. Let me write out the equations for the semantics in full and then
consider whether they describe a well-de�ned function.

� Suppose H
 x : t and t � H(x) � �a1: : : :�an: s. Let � be a
substitution such that �(s) � t. Letting Xi = [[�(ai)]]� for each i,
de�ne [[H B x : t]]�� = �(x)(X1) � � � (Xn).

� [[H B �x: M : s ! t]]�� is the function from [[s]]� to [[t]]� de�ned by
d 7! [[H; x : s BM : t]]��[x 7! d].

� [[H BM (N) : t]]�� = ([[H BM : s! t]]��)([[H B N : s]]��).

� Suppose close(H; s) = �a1: : : :�an: s and H
 M : s. De�ne
� 2 [[close(H; s)]]� by

�(X1) � � � (Xn) = [[H BM : s]](�[a1; : : : ; an 7! X1; : : : ; Xn])�:

Then [[H B let x = M in N : t]]�� = [[H;x : close(H; s) B N :
t]]��[x 7! �].

The primary question about the sense of this de�nition concerns whether
the type-value environment �0 = �[a1; : : : ; an 7! X1; : : : ; Xn] in the seman-
tic equation for the let construct is compatible with the environment �;
that is, whether � is an H; �0-environment. This question is resolved by
recalling that none of the type variables ai is in Ftv(H) and by noting the
following:

Lemma 7.1.1. If � is an H; �-environment and a 62 Ftv(H), then it is also
an H; �[a 7! X]-environment.

which follows from the fact that [[t]]�[a 7! X] = [[t]]� if a is not free in t.

7.2 Another typing system for ML0.

In light of the semantics we just gave, the type system we have been using
for ML0 appears to be slightly indirect in some ways. In the rule [Let], for
instance, the meaning of the term M in let x =M in N is calculated, and
then a `parameterized' version of its meaning is bound to x in the environ-
ment. Similarly, the meaning of a variable is drawn from the environment
and then instantiated to the type assigned to x. Permitting judgements of
the form H ` M : T , where T is a type scheme, together with rules for
generalization and instantiation might lead a more elementary system. It

The Semantics of Types in Programming Languages 71

Table 20. Typing Rules for ML0 with � Introduction and Elimination

[Proj]
x : T 2 H

H ` x : T

[Abs]�
H; x : s `M : t

H ` �x: M : s! t

[Appl]
H `M : s! t H ` N : s

H `M (N) : t

[Let]
H `M : T H; x : T ` N : t

H ` let x = M in N : t

[�-Intro]�
H `M : T a 62 Ftv(H)

H `M : �a: T

[�-Elim]�
H `M : �a: T

H `M : [t=a]T

is indeed possible to reformulate the typing system for ML0 in this way.
The rules for deriving such judgements appear in Table 20. The rules for
abstraction and application remain unchanged, but the rules for projec-
tions and let constructs now re
ect the more general form of judgement in
this system. In the new system, the projection rule looks more or less the
way it does in most of the systems we have considered rather than hav-
ing the somewhat di�erent form it has in Table 13. The `close' operator
is no longer used in the rule for let since the term M in the hypothesis
may be given a type scheme rather than a type that must be generalized
on variables not in H. But the real di�erence in the two systems lies in
the presence of rules for introduction and elimination of � bindings. One
particular di�erence made by the addition of these rules is the fact that
the derivation of a judgement H ` M : T is not uniquely determined by
H;M; T . There will, in fact, be many (super�cially) distinct proofs of any
such judgement obtained by alternating the application of rules [�-Intro]

�

and [�-Elim]
�
. Nevertheless, it is possible to show that two systems are

essentially the same on judgements of types.

Proposition 7.2.1. Let H be a type assignment,M a term, and t a type.

1. If H
M : t, then H `M : t.

2. If H `M : T and t � T , then H
M : t.

72 Carl A. Gunter

7.3 The polymorphic �-calculus.

In many of the calculi we have considered, type annotations in terms were
used to force each typeable term to have a unique type. The rules tagged
with a superscript minus sign in the typing system for ML0 described
in Table 20 cause this property to fail. To recover it, we might place
type tags on the �-bound variables, but the rules [�-Intro]�; [�-Elim]�

would still pose a problem. In e�ect, terms must contain some indication
about the generalization and instantiation of type variables if their types
are to be uniquely determined. Let us now consider an important gen-
eralization of ML0 that has explicit abstraction and application for type
variables in terms. The system is sometimes called the Girard-Reynolds
polymorphic �-calculus, since the system was discovered independently by
Girard [Girard, 1972] (who was working on a proof-theoretic problem) and
by Reynolds [Reynolds, 1974] (who was interested in programming lan-
guage design). With the possible exception of `ML polymorphism', it is the
best-known polymorphic type system, so it is most often simply called the
polymorphic �-calculus. The reader is refered to the survey paper [Scedrov,
1990] for a fuller discussion of polymorphic �-calculus, including references
and historical background. The terms of the language are given as follows:

x 2 TermVariable
a 2 TypeVariable
t ::= t! t j a j �a: t
M ::= x j �x : t: M j M (M) j �a: M j Mftg

A term of the form �a: M is called a type abstraction, and one of the form
Mftg is called a type application. Types of the form �a: t are called �-
types, and the type variable a is bound in �a: t by the �-quanti�cation.
The following clauses de�ne the free type variables for types and terms:

� Ftv(a) = a

� Ftv(s! t) = Ftv(s) [Ftv(t)

� Ftv(�a: t) = Ftv(t)� fag

� Ftv(x) = ;

� Ftv(�x : t: M) = Ftv(t) [Ftv(M)

� Ftv(M (N)) = Ftv(M) [Ftv(N)

� Ftv(�a: M) = Ftv(M)� fag

� Ftv(Mftg) = Ftv(M) [Ftv(t)

For an assignment H, the set of free type variables Ftv(H) in H is the
union of the free type variables in H(x) for each x 2 H. Substitution

The Semantics of Types in Programming Languages 73

Table 21. Typing Rules for the Polymorphic �-Calculus

[�-Intro]
H `M : s a 62 Ftv(H)

H ` �a: M : �a: s

[�-Elim]
H `M : �a: s

H `Mftg : [t=a]s

for both types and terms must respect bindings in the sense that no free
variable of the term being substituted can be captured by a binding in the
term into which the substitution is made.

The types for terms of the polymorphic �-calculus may be built using
type variables. For example, �y : a: �x : a ! b: x(y) is a well-typed
term with type a ! (a ! b) ! b. However, unlike the ML0 systems, the
polymorphic �-calculus allows type variables to be explicitly abstracted in
terms. For example, the term

M � �a: �b: �y : a: �x : a! b: x(y)

has the type �a: �b: a ! (a ! b) ! b. It is possible to instantiate the
abstracted type variables through a form of application. Given types s and
t, for example, Mfsgftg is equivalent to the term �y : s: �x : s! t: x(y).
This latter term has the type s! (s ! t)! t.

The precise typing rules for the polymorphic �-calculus are those in
Table 4 together with the two rules that appear in Table 21. Of course,
the rules in Table 4 must be understood as applying to all of the terms of
the polymorphic calculus as given in the grammar for the language (and
not just to the terms of the simply-typed calculus). As with earlier calculi,
the type tags on the bound variables ensure the following:

Lemma 7.3.1. For any type assignmentH, termM , and type expressions
s; t, if H `M : s and H `M : t then s � t.

The virtue of the polymorphic �-calculus is that it can be used to express
general algorithms in a clear way. For example, let us return to the problem
illustrated earlier by the program

(define applyto

(lambda (f) (cons (f 3) (f "hi"))))

The function applyto takes a function as an argument and applies it to
each of the components of a given pair, returning a pair as a result. Here

74 Carl A. Gunter

Table 22. Equational Rules for the Polymorphic �-Calculus

fTypeCongg
` (H BM = N : �a: t)

` (H BMfsg = Nfsg : [s=a]t)

fType �g
` (H BM = N : t)

` (H B �a: M = �a: N : �a: t)

fType �g
H `M : t

` (H B (�a: M)fsg = [s=a]M : [s=a]t)

fType �g
H `M : �a: t

` (H B �a: Mfag = M : �a: t)

Restrictions:

� In fType �g, there is no free occurrence of a in the type of a variable
in H.

� In fType �g, the type variable a does not appear free in H or M .

is a similar program written in the polymorphic �-calculus extended with
pairs:

�a: �f : (�b: b! a): (ffintg(M); ffstringg(N))

The types must be explicitly instantiated as part of the application, but
the program is more general than any that can be written in ML0. More
convincing programming examples can be given, but this shows that the
phenomenon arises quite naturally.

The equational rules for the pure polymorphic �-calculus are those in
Table 5 together with the rules that appear in Table 22 modulo the theory
T that appears on the left-hand sides of the turnstiles.1 The new rules
fTypeCongg and fType �g assert that type application and type abstrac-
tion are congruences. The most fundamental new rules are the type-level
analogs fType �g and fType �g of the � and � rules.

7.4 Sets as a model of polymorphic types?

The interpretation of the polymorphic �-calculus has been one of the most
serious challenges in the semantics of programming languages. Of course,

1We could also de�ne the polymorphic �-calculus more generally relative to a theory

T , but the discussion here is based on using the empty theory.

The Semantics of Types in Programming Languages 75

it is possible to construct a term model for the calculus as we did earlier for
the simply-typed �-calculus. But �nding a model analogous to the full type
frame is much harder. To appreciate the primary reason for this di�culty,
let us attempt to provide such a model by partial analogy to the one we used
for ML0. We will need the notion of a type-value environment � that maps
type variables to semantic interpretations as sets. The interpretation [[t]] of
a type t is a function that takes type assignments indicating the meanings
of free variables of t into sets. As with the full type frame, we de�ne
[[s ! t]]� = [[s]]� ! [[t]]� where the arrow on the right is the full function
space operator. The central question is, how do we interpret �a: t? Let
us naively take this to be a product of sets indexed over sets; an element
of [[�a: t]]� is a function that associates with each set X an element of the
set [[t]]�[a 7! X]. Such a function is called a section of the indexed family
X 7! [[t]]�[a 7! X]. It can improve the readability of expressions involving
sections to write the application of a section to a set with the argument as
a subscript. So, for example, if � is a section of X 7! [[t]]�[a 7! X], then
�X 2 [[t]]�[a 7! X]. To provide the semantic interpretation for terms, we
will also want to know that a form of substitution lemma holds for types:
[[[s=a]t]]�= [[t]]�[a 7! [[s]]�].

Given a type-value environment � and a type assignment H, let us
say that � is an �;H-environment if �(x) 2 [[H(x)]]� for each x 2 H. If
H ` M : t, then the interpretation [[H B M : t]] is a function that takes
a type-value environment � and an �;H-environment as an argument and
returns a value in [[t]]�. It sometimes helps to drop the type information in
the interpreted expression and write [[M]]�� to save clutter when the types
are clear enough from context.

The interpretation of terms is now de�ned by induction on their struc-
ture. The interpretation of an abstraction [[H B �x : s: M : s ! t]]�� over
term variables is the function from [[s]]� to [[t]]� de�ned by

d 7! [[H;x : s BM : t]]�(�[x 7! d]):

On the other hand, the interpretation of the application of a term to a term
is given by the usual application of a function to its argument: [[M (N)]]�� =
([[M]]��)([[N]]��). In considering the interpretation of the application of a
term M : �a: s to a type t, recall that [[H B M : �a: s]]�� is a section of
the indexed family X 7! [[s]]�[a 7! X]. We take [[H B Mftg : [t=a]s]]�� =
([[H B M : �a: s]]��)X where X = [[t]]�. This squares with the claim that
[[[t=a]s]]� = [[s]]�[a 7! [[t]]�]. Now, �nally, the meaning of a type abstraction
[[H B �a: M : �a: t]]�� is a section of the indexed familyX 7! [[t]]�[a 7! X]
given by X 7! [[H B M : t]](�[a 7! X])�. One must show that � is an
�[a 7! X];H-value environment, but this follows from the restriction in
[�-Intro] that says the type variable a does not appear in H.

The semantics just sketched is su�ciently simple and convincing that
something like it was actually used in early discussions of the semantics of

76 Carl A. Gunter

the calculus [Reynolds, 1983]. As it stands, however, there is a problem
with the interpretation of types. A type is presumably a function from
type-value environments to sets. But consider a type like �a: a, which
we have naively interpreted as the family of sections of the indexed family
X 7! X. In other words, [[�a: a]]� is the `product' of all sets. We must
assume that this product is itself a set, because this is needed to make
our interpretation work. Consider, for instance, the term M = (�a: �x :
a: x)(�a: a). The term �a: �x : a: x is interpreted as a section over all
sets and M is interpreted as the application of this section to the meaning
of �a: a.

This leads us to a foundational question concerning what collections are
considered to be sets. One of the crucial discoveries of logicians in the late
nineteenth and early twentieth centuries was the fact that care must be
taken in how collections of entities are formed if troubling paradoxes are to
be avoided. Such paradoxes caused intricate and carefully constructed the-
ories of the foundations of mathematics to collapse into nonsense. Perhaps
the best-known and most important of these paradoxes is Russell's para-
dox, which is named after the philosopher and logician Bertrand Russell. It
can be described quite simply as follows. Let us assume that any property
at all can be used to de�ne a collection of entities. De�ne X to be the
collection of all collections X having the property that X is not an element
of X. This seems clear enough since we (think we) know what it means for
an entity to be part of a collection. Let us therefore ask whether X is in
X or not. Well, if it is, then it has the property common to all elements
of X , that of not being a member of itself. This is a contradiction, since
we had postulated that X was a member of itself. Suppose, on the other
hand, that X is not a member of itself. Then this is a contradiction as well,
since we de�ned X to be those collections having exactly this property.

Returning now to the polymorphic �-calculus and our problem with
its interpretation, we must avoid a transgression into Russell's paradox.
Technically the problem is that the restrictions placed on the formation
of sets makes it impossible to view the product of all sets as itself a set.
However, the underlying phenomenon here was recognized by Russell and
by the mathematician and philosopher of science Henri Poincar�e in a prop-
erty he called `impredicativity'. If a set X and an entity X are de�ned
so that X is a member of X but is de�ned only by reference to X , then
the de�nition of X or X is said to be impredicative. Clearly this is the
case for Russell's paradox, but it also applies to the class X of semantic
domains that we are attempting to use for modeling the types of the poly-
morphic �-calculus and the domainX that is to serve as the interpretation
for �a: a. That this problem has no resolution when one is dealing with
sets was shown by Reynolds [Reynolds, 1984] (a more re�ned treatment
appears in [Reynolds and Plotkin, 1990]; thus we must look for another
class of semantics domains with which to interpret our types.

The Semantics of Types in Programming Languages 77

7.5 Simple types as PER's.

Recall the problem cited earlier with the use of inclusive predicates to model
types: namely that the �-rule is not satis�ed. An approach to solving this
problem is to use an equivalence relation on subsets of the universal domain
to induce the needed equalities. In particular:

De�nition 7.5.1. Let A be a set. A Partial Equivalence Relation (PER)
on A is a relation R � A�A that is transitive and symmetric. The domain
of a partial equivalence relation R is the set dom(R) = fa 2 A j a R ag.

We write a R b to mean that (a; b) 2 R. Note that if R is a PER on a set
A and a R b for any a; b 2 A, then a and b are in the domain of A by the
axioms.

Now, suppose we are given a model of the untyped �-calculus. Say
� : U ! [U ! U] and 	 : [U ! U]! U satisfy � � 	 = id[U ! U]. Let

X be any PER on U . Take P[[o]] = X and de�ne PER interpretations
for types by structural induction as follows. Suppose P[[s]] and P[[t]] are
PER's, then

f (P[[s! t]]) g
i�

for each d and e, d (P[[s]]) e implies �(f)(d) (P[[t]]) �(g)(e).
(7:1)

It is easy to check that each of these relations is a partial equivalence. To
see how they interpret terms, we use a semantic function that gives untyped
meaning to typed terms. Given a term M of the simply-typed �-calculus,
let U [[M]] be the meaning of untyped �-term erase(M) in U based on the
pair �;	. Given a PER R on U and an element d 2 dom(R), let [d]R be
the equivalence class of d relative to R, that is, [d]R = fe j d R eg.

Let M be a term of the typed �-calculus such that H ` M : t. The
meaning of M is given relative to a function � from variables x 2 H into
U such that �(x) is in the domain of the relation P[[H(x)]] for each x 2 H.
Such a function is called an H-environment for the PER interpretation.
Now, the interpretation for the term M is quite simple:

P[[H BM : t]]� = [U [[M]]�]P[[t]]

There are two basic facts to be proved about this interpretation. First,
if M has type t then the interpretation of M is in the domain of the
relation P[[t]]. Second, all of the equational rules of the typed �-calculus
are satis�ed. Establishing these properties involves proving slightly more
general facts. Given H-environments � and �, de�ne � �H � if, for each
x 2 H, �(x) P[[H(x)]] �(x).

78 Carl A. Gunter

Lemma 7.5.2. Suppose H ` M : t. If � and � are H-environments and
� �H �, then (U [[M]]�) P[[t]] (U [[M]]�).

Proof. The proof is by induction on the structure of M . If M � x, then
x 2 H, t � H(x), and � � � implies the desired conclusion.

Case M � �x : u: M 0 where t � u! v. Suppose d P[[u]] e. Then

�(U [[�x : u: M 0]]�)(d) = �((d 7! U [[M 0]]�[x 7! d])(d) = U [[M 0]]�[x 7! d];

and, similarly, �(U [[�x : u: M 0]]�)(e) = U [[M 0]]�[x 7! e]. Now,

(U [[M 0]]�[x 7! d]) P[[v]] (U [[�x : u: M 0]]�[x 7! e])

by the inductive hypothesis. The desired conclusion therefore follows from
the de�nition of P[[t]].

Case M � L(N) where H ` L : s ! t and H ` N : s. By the
inductive hypothesis for N , (U [[N]]�) P[[s]] (U [[N]]�). So, by the inductive
hypothesis for L, d P[[t]] e where d = �(U [[L]]�)(U [[N]]�) = U [[M]]� and
e = �(U [[L]]�)(U [[N]]�) = U [[M]]�.

Corollary 7.5.3. If H ` M : t and � is an H-environment, then P[[H B

M : t]]� is in the domain of the relation P[[t]].

Lemma 7.5.4. If ` (H BM 0 = N 0 : t0) and � �H � are H-environments,
then

P[[H BM 0 : t0]]� = P[[H B N 0 : t0]]�:

Proof. The proof is by induction on the height of the derivation of the
judgement ` (H B M 0 = N 0 : t0). By way of illustration, let us consider
the case in which the last step of the proof is an instance of the �-rule.
Suppose the last step of the derivation is an instance of

f�g
T ` (H; x : s BM = N : t)

T ` (H B �x : s: M = �x : s: N : s! t)

where M 0 � �x : s: M and N 0 � �x : s: N and t0 � s! t. By the inductive
hypothesis, (U [[M]]�[x 7! d]) P[[t]] (U [[N]]�[x 7! e]) whenever e P[[s]] d.
Hence (U [[�x: M]]�) P[[s! t]] (U [[�x: N]]�) by the de�nition of the PER
P[[s! t]]. Thus P[[H B �x : s: M : s ! t]]� = P[[H B �x : s: N : s! t]]�.

Corollary 7.5.5. If ` (H B M = N : t), then P[[H B M : t]] = P[[H B

N : t]].

The Semantics of Types in Programming Languages 79

7.6 PER's as a model of polymorphic types.

We have seen that if we are given a model (U;�;) of the untyped �-
calculus, then PER's over U can be used to interpret the types of the
simply-typed �-calculus; now we consider how PER's can be used to inter-
pret types of the polymorphic �-calculus. To make this extension, we de�ne
the meaning of a type relative to a type-value environment that maps type
variables to PER's. To interpret �a: t as an indexed family over PER's,
let � be a type-value environment that has all of the free type variables of
�a: t in its domain. We want to de�ne its meaning to be the `product'
of the relations P[[t]]�[a 7! R] as R ranges over the PER's over U . Given
x; y 2 U , this says that x and y are related modulo P[[t]]�[a 7! R] for each
R. That is,

P[[�a: t]]� =
\

R2PER

P[[t]]�[a 7! R]: (7:2)

This de�nes a partial equivalence relation because the intersection of PER's
is a PER. Notice the role of impredicativity in Equation 7.2 where the
intersection ranges over the class of all PER's. Of course, the PER that
interprets �a: t itself is in this collection, but there is no problem with
existence in this case, because the intersection of a set of sets is again a
set. The interpretation of function spaces is given same as before in 7.1.

The erasure of a term of the polymorphic �-calculus is de�ned by in-
duction as follows:

� erase(x) � x

� erase(�x : t: M) � �x: erase(M)

� erase(M (N)) � (erase(M))(erase(N))

� erase(�a: M) � erase(M)

� erase(Mftg) � erase(M)

The meaning of a term is de�ned using the meaning, as an untyped term,
of its erasure. We assume that a retraction from U onto [U ! U] is given
and de�ne U [[M]] to be the meaning of untyped �-term erase(M) in U . As
before, given a PER R on U and an element d 2 dom(R), let [d]R be the
equivalence class of d relative to R, that is, [d]R = fe j d R eg. Let M be
a term of the polymorphic �-calculus such that H ` M : t. The meaning
of M is given relative to a type-value environment � and a function � from
variables x 2 H into U such that �(x) is in the domain of the relation
P[[H(x)]]�. The interpretation of the term M is given by

P[[M]]�� = [U [[M]]�]P[[t]]�:

80 Carl A. Gunter

To complete the demonstration that this de�nes a model, it must be shown
that if a termM has type t, then the interpretation ofM relative to anH; �-
environment is in the domain of the relation P[[t]]�, and that the equational
rules of the polymorphic �-calculus are satis�ed. The treatment follows
the general pattern of the argument for interpretation of simple types. We
start with the following basic:

Lemma 7.6.1. P[[[s=a]t]]�= P[[t]]�[a 7! P[[s]]�].

Lemma 7.6.2. Suppose H ` M : t and �; � are H; �-environments such
that

�(x) (P[[H(x)]]�) �(x)

for each x 2 H. Then

(U [[M]]�) (P[[t]]�) (U [[M]]�):

Proof. The proof is by induction on the structure of M . Let us look at
the cases for type abstraction and application. If M � �a: M 0 : �a: t0,
then

(U [[M 0]]�) (P[[t0]]�[a 7! R]) (U [[M 0]]�)

for any PER R by the inductive hypothesis. Since erase(M 0) � erase(M)
and the interpretation of �a: t0 is the intersection of PER's of the form
P[[t0]]�[a 7! R], we must have

(U [[M]]�) (P[[�a: t0]]�) (U [[M]]�):

Suppose now that M � M 0fsg. Then H ` M 0 : �a: t0 and t � [s=a]t0.
Applying the inductive hypothesis to M 0, we have

(U [[M 0]]�) (
\

R2PER

P[[t0]]�[a 7! R]) (U [[M 0]]�)

and therefore, in particular,

(U [[M 0]]�) (P[[t0]]�[a 7! P[[s]]�]) (U [[M 0]]�)

Now erase(M 0) � erase(M) so, by Lemma 7.6.1,

(U [[M]]�) (P[[[s=a]t0]]�) (U [[M]]�):

Corollary 7.6.3. If H `M : t and � is an H; �-environment, then U [[H B

M : t]]�� is in the domain of the relation P[[t]]�.

The Semantics of Types in Programming Languages 81

Lemma 7.6.4. If ` (H B M 0 = N 0 : t0) and �; � are H; �-environments
such that �(x) (P[[H(x)]]�) �(x) for each x 2 H, then

P[[H BM 0 : t0]]�� = P[[H B N 0 : t0]]��:

Corollary 7.6.5. If ` (H B M = N : t), then P[[H B M : t]] = P[[H B

N : t]].

8 Conclusion

A more detailed treatment of the topics in this chapter, including com-
plete proofs of most of the theorems, can be found in [Gunter, 1992]; a
great deal of further material on the semantics of types can be found in
other chapters of this handbook. There is much more that can be said
about each of the models described in the sections here: for example, since
seminal work of Bruce and Longo [Bruce and Longo, 1990], PER's have
been quite successful as a model of subtypes as well as parametric poly-
morphism and, as one can glean from the references in [Scedrov, 1990],
we have only just scratched the surface of what can be said about PER's
as a model of parametric polymorphism. There are other models besides
the ones that have been covered here: a whole subject of the semantics
of types as categorical objects has been omitted (see [Poign�e, 1992]) and
there is a rapidly evolving theory of types as games [Abramsky et al.,
1993]. And, particularly, there are hosts of type systems that have not
been discussed in this chapter. One large category of these only touched
upon here is that of types for object-oriented programming languages. The
reader can pursue this topic further through [Gunter and Mitchell, 1994;
Palsberg and Schwartzback, 1993] and the references there. A second is
the semantics of recursive types, whose importance was hinted at in Sec-
tion 2 but not discussed in any detail in the remainder of the chapter; the
reader can pursue the topic further by consulting [Gunter, 1992]. A third
important class of type systems is those that are used for modules; two
references that can be used as a starting point are [Harper and Mitchell,
1993] and [Moggi, 1991].

I would like to acknowledge Samson Abramsky for encouraging me to
undertake this discussion of the semantics of types. I also thank Sandip
Biswas, Roy Crole, and Narciso Mart�i-Oliet for their help in proof-reading
drafts of the work.

82 References

References

[Abelson and Sussman, 1985] H. Abelson and G. J. Sussman. Structure and In-

terpretation of Computer Programs. The MIT Press, 1985.

[Abramsky and Jung, 1994] S. Abramsky and A. Jung. Domains. In S. Abram-
sky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in

Theoretical Computer Science, pages 1{190. Oxford University Press, 1994.

[Abramsky et al., 1993] S. Abramsky, R. Jagadeesan, and P. Malacaria.
Games and full abstraction for PCF II: Second preliminary announcement.
Manuscript, 1993.

[Barendregt, 1992] H. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Theoretical

Computer Science, Volume 2 Background: Computational Structures, pages
117{310. Oxford University Press, 1992.

[Berry et al., 1985] G. Berry, P.-L. Curien, and J.-J. Levy. Full abstraction for
sequential languages: the state of the art. In M. Nivat and J. C. Reynolds,
editors, Algebraic Methods in Semantics, pages 89{132. Cambridge University
Press, 1985.

[Berry, 1978] G. Berry. Stable models of typed �-calculus. In International Col-

loquium on Automata, Languages and Programs, pages 72{89. Lecture Notes

in Computer Science vol. 62, Springer, 1978.

[Berry, 1979] G. Berry. Mod�eles Compl�etement Ad�equats et Stables des Lambda-

calculs Typ�es. Th�ese d'�Etat, University of Paris VII, 1979.

[Breazu-Tannen et al., 1990] V. Breazu-Tannen, C. Gunter, and A. Scedrov.
Computing with coercions. In M. Wand, editor, Lisp and Functional Pro-

gramming, pages 44{60. ACM, 1990.

[Bruce and Longo, 1990] K. B. Bruce and G. Longo. A modest model of records,
inheritance, and bounded quanti�cation. Information and Computation,
87:196{240, 1990.

[Burn et al., 1986] G. L. Burn, C. Hankin, and S. Abramsky. Strictness analy-
sis for higher-order functions. Science of Computer Programming, 7:249{278,
1986.

[Cardelli, 1987] L. Cardelli. Basic polymorphic typechecking. Science of Com-

puter Programming, 8:147{172, 1987.

[Cardelli, 1988] L. Cardelli. A semantics of multiple inheritance. Information

and Computation, 76:138{164, 1988.

[Cl�ement et al., 1986] D. Cl�ement, J. Despeyroux, T. Despeyroux, and G. Kahn.
A simple applicative language: mini-ML. In Symposium on LISP and Func-

tional Programming, pages 13{27. ACM, 1986.

References 83

[Damas and Milner, 1982] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Principles of Programming Languages, pages 207{212.
ACM, 1982.

[Damas, 1985] L. Damas. Type Assignment in Programming Languages. PhD
thesis, Edinburgh University, 1985.

[Duba et al., 1991] B. Duba, R. Harper, and D. B. MacQueen. Typing �rst-class
contiuations in ML. In Conference Record of the Eighteenth Annual ACM

Symposium on Principles of Programming Languages, pages 245{254. ACM,
1991.

[Felleisen and Friedman, 1986] M. Felleisen and D. P. Friedman. Control op-
erators, the secd-machine, and the �-calculus. In M. Wirsing, editor, Formal
Description of Programming Concepts III, pages 193{217. North Holland, 1986.

[Friedman, 1975] H. Friedman. Equality between functionals. In R. Parikh,
editor, Proceedings of the Logic Colloqium '73, pages 22{37. Lecture Notes in
Mathematics vol. 453, Springer, 1975.

[Girard, 1972] J. Y. Girard. Interpr�etation Fonctionelle et �Elimination des

Coupures de l'Arithm�etique d'Ordre Sup�erieur. Th�ese d'�Etat, University of
Paris VII, 1972.

[Gunter and Mitchell, 1994] C. A. Gunter and J. C. Mitchell, editors. Theoretical
Aspects of Object-Oriented Programming: Types, Semantics, and Language

Design. The MIT Press, 1994.

[Gunter and Scott, 1990] C. A. Gunter and D. S. Scott. Semantic domains. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 633{
674. North-Holland, 1990.

[Gunter, 1992] C. A. Gunter. Semantics of Programming Languages: Structures
and Techniques. Foundations of Computing. The MIT Press, 1992.

[Gunter, 1993] C. A. Gunter. Forms of semantic speci�cation. In B. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Computer Science:

Essays and Tutorials, pages 332{353. World Scienti�c Publishers, 1993.

[Harper and Mitchell, 1993] R. Harper and J. C. Mitchell. On the type structure
of Standard ML. ACM Transactions on Programming Languages and Systems,
1993. To appear.

[Hindley and Seldin, 1986] J. R. Hindley and J. P. Seldin. Introduction to Com-

binators and �-calculus. Cambridge University Press, 1986.

[Howard, 1973] W. Howard. Hereditarily majorizable functionals of �nite type.
In A. S. Troelstra, editor, Metamathematical Investigation of Intuitionistic

84 References

Arithmetic and Analysis, pages 454{461. Lecture Notes in Mathematics vol 344,

Springer, 1973.

[IEE, 1991] IEEE Computer Society, New York. IEEE Standard for the Scheme

Programming Language, IEEE standard 1178-1990 edition, 1991.

[Jim and Meyer, 1991] T. Jim and A. R. Meyer. Full abstraction and the context
lemma. In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer
Software, volume 526 of Lecture Notes in Computer Science, pages 131{151.
Springer-Verlag, September 1991.

[Kahn, 1987] Gilles Kahn. Natural semantics. In Proceedings of the Symposium

on Theoretical Aspects of Computer Science, pages 22{39. Springer-Verlag,
1987.

[Leroy, 1993] X. Leroy. Polymorphism by name for references and continuations.
In S. L. Graham, editor, Conference Record of the Twentieth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 220{231. ACM, 1993.

[MacQueen et al., 1986] D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal
model for recursive polymorphic types. Information and Control, 71:95{130,
1986.

[Martin-L�of, 1971] Per Martin-L�of. An intuitionistic theory of types. unpub-
lished, 1971.

[Meyer, 1982] A. R. Meyer. What is a model of the lambda calculus? Information

and Control, 52:87{122, 1982.

[Milner and Tofte, 1991] R. Milner and M. Tofte. Commentary on Standard ML.
The MIT Press, 1991.

[Milner et al., 1990] R. Milner, M. Tofte, and R. Harper. The De�nition of Stan-
dard ML. The MIT Press, 1990.

[Milner, 1978] R. Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17:348{375, 1978.

[Mitchell, 1990] J. C. Mitchell. Types systems for programming languages. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 365{
458. North-Holland, 1990.

[Moggi, 1991] E. Moggi. A category-theoretic account of program modules.
Mathematical Structures in Computer Science, 1:103{139, 1991.

[Palsberg and Schwartzback, 1993] J. Palsberg and M. Schwartzback. Object-

Oriented Type Systems. Wiley, 1993.

[Plotkin, 1976] G. D. Plotkin. A powerdomain construction. SIAM Journal of

Computing, 5:452{487, 1976.

References 85

[Plotkin, 1981] G. D. Plotkin. A structural approach to operational semantics.
Technical Report FN-19, Computer Science Department, Aarhus University,
Ny Munkegade|DK 8000 Aarhus C|Denmark, 1981.

[Poign�e, 1992] A. Poign�e. Basic category theory. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Theoretical Computer

Science, Volume 1 Background: Mathematical Structures, pages 413{640. Ox-
ford University Press, 1992.

[Reynolds and Plotkin, 1990] J. C. Reynolds and G. D. Plotkin. On functors
expressible in the polymorphic typed lambda calculus. In G�erard Huet, ed-
itor, Logical Foundations of Functional Programming, University of Texas at
Austin Year of Programming, pages 127{152. Addison-Wesley, Reading, Mas-
sachusetts, 1990.

[Reynolds, 1974] J. C. Reynolds. Towards a theory of type structure. In B. Robi-
net, editor, Programming Symposium, pages 408{425. Lecture Notes in Com-

puter Science vol. 19, Springer, 1974.

[Reynolds, 1980] J. C. Reynolds. Using category theory to design implicit conver-
sions and generic operators. In N. D. Jones, editor, Semantics-Directed Com-
piler Generation, pages 211{258. Lecture Notes in Computer Science vol. 94,

Springer, 1980.

[Reynolds, 1983] J. C. Reynolds. Types, abstraction and parametric polymor-
phism. In R. E. A. Mason, editor, Information Processing 83, pages 513{523,
Amsterdam, 1983. Elsevier Science Publishers B. V. (North-Holland).

[Reynolds, 1984] J. C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn,
D. B. MacQueen, and G. D. Plotkin, editors, Semantics of Data Types, pages
145{156. Lecture Notes in Computer Science vol. 173, Springer, 1984.

[Robinson, 1965] J. A. Robinson. A machine oriented logic based on the resolu-
tion principle. Journal of the ACM, 12:23{41, 1965.

[Scedrov, 1990] A. Scedrov. A guide to polymorphic types. In P. Odifreddi,
editor, Logic and Computer Science, pages 387{420. Academic Press, 1990.

[Scott, 1969] D. S. Scott. A type theoretical alternative to CUCH, ISWIM,
OWHY. Unpublished manuscript, 1969, 1969.

[Scott, 1976] D. S. Scott. Data types as lattices. SIAM Journal of Computing,
5:522{587, 1976.

[Scott, 1981] D. S. Scott. Some ordered sets in computer science. In I. Rival,
editor, Ordered Sets, pages 677{718. D. Reidel, 1981.

[Scott, 1982a] D. S. Scott. Domains for denotational semantics. In M. Nielsen
and E. M. Schmidt, editors, International Colloquium on Automata, Languages

86 References

and Programs, pages 577{613. Lecture Notes in Computer Science vol. 140,

Springer, 1982.

[Scott, 1982b] D. S. Scott. Lectures on a mathematical theory of computation.
In M. Broy and G. Schmidt, editors, Theoretical Foundations of Programming
Methodology, pages 145{292. NATO Advanced Study Institutes Series, D. Rei-
del, 1982.

[Sokolowksi, 1991] S. Sokolowksi. Applicative High Order Programming: The

standard ML perspective. Chapman and Hall, 1991.

[Statman, 1982] R. Statman. Completeness, invariance and �-de�nability. Jour-
nal of Symbolic Logic, 47:17{26, 1982.

[Statman, 1985a] R. Statman. Equality between functionals. In Harvey Fried-

man's Research on the Foundations of Mathematics, pages 331{338. North-
Holland, 1985.

[Statman, 1985b] R. Statman. Logical relations and the typed �-calculus. Infor-
mation and Control, 65:85{97, 1985.

[Statman, 1986] R. Statman. On translating lambda terms into combinators: the
basis problem. In A. Meyer, editor, Symposium on Logic in Computer Science,
pages 378{382. ACM, 1986.

[Stoughton, 1991] A. Stoughton. Interde�nability of parallel operations in PCF.
Theoretical Computer Science, 79:357{358, 1991.

[Tait, 1967] W. W. Tait. Intensional interpretation of functionals of �nite type.
Journal of Symbolic Logic, 32:198{212, 1967.

[Tennent, 1992] B. Tennent. Denotational semantics. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Theoretical

Computer Science. Oxford University Press, 1992.

[Tofte, 1990] M. Tofte. Type inference for polymorphic references. Information
and Computation, 89:1{34, 1990.

[Wright, 1993] A. K. Wright. Polymorphism for imperative languages without
imperative types. Technical Report COMP TR93-200, Department of Com-
puter, Rice University, 1993.

