
Computing ML Equality Kinds

Using Abstract Interpretation�

Carl A. Gunter

University of Pennsylvania

Elsa L. Gunter

AT&T Bell Laboratories

David B. MacQueen

AT&T Bell Laboratories

September 1992

Abstract

The de�nition of Standard ML provides a form of generic equality which is inferred for certain

types, called equality types, on which it is possible to de�ne an equality relation in ML. However,

the standard de�nition is incomplete in the sense that there are interesting and useful types

which are not inferred to be equality types but for which an equality relation can be de�ned in

ML in a uniform manner. In this paper, a re�nement of the Standard ML system of equality

types is introduced and is proven sound and complete with respect to the existence of a de�nable

equality. The technique used here is based on an abstract interpretation of ML operators as

monotone functions over a three point lattice. It is shown how the equality relation can be

de�ned (as an ML program) from the de�nition of a type with our equality property. Finally,

a sound, e�cient algorithm for inferring the equality property which corrects the limitations of

the standard de�nition in all cases of practical interest is demonstrated.

1 Equality Types in Standard ML

The ML language provides an extensible algebra of type constructions. The Standard ML dialect

divides types into two classes, those which admit equality (also called equality types) and those

which do not. This distinction is based on the structure of types. Primitive types like int and

string have a prede�ned equality operation, while equality can be de�ned over compound types

built up from primitive types using \concrete" constructions like product and disjoint union in the

usual componentwise manner. Function types on the other hand do not posses a de�nable equality

relation (the existence of such a relation would solve the halting problem), nor do user-de�ned

abstract types (the compiler cannot determine when two concrete representations correspond to

the same abstract value). As a �rst approximation, therefore, the types admitting equality can

be identi�ed with the \hereditarily concrete" types built from primitive types using concrete type

�Information and Computation, vol. 2 (1993), pp. 303{323.

1

2 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

constructions. Some recursively de�ned datatype constructors such as list also qualify as concrete,

producing equality types when applied to equality types.

Having identi�ed a class of types possessing canonical equality operations, the next step is to

introduce a restricted form of polymorphism by abstracting over polymorphic type variables which

are constrained to range only over such types. Using this restricted form of polymorphism one can

de�ne functions like the generic list membership function:

fun member x nil = false

| member x (y::r) = if x = y then true else member x r

which searches a list for an appearance of a value. The type inferred for member is

member : ''a * ''a list -> bool

where ''a is a polymorphic type variable ranging over equality types. (In Standard ML, an ordinary

polymorphic type variable ranging over arbitrary types begins with a single quote, e.g. 'a.)

This paper addresses some problems that arise from oversimpli�cations in the treatment of

equality types in the De�nition of Standard ML [MTH90, MT91]. We propose a re�ned treatment of

equality types using equality kinds de�ned in terms of an abstract interpretation of type expressions

that we prove to be sound and complete with respect to the denotational semantics of Standard

ML types.

In the De�nition of Standard ML, a unary type constructor 'a F is said to admit equality if t

F is an equality type whenever the parameter type t is. A constructed type t F admits equality

only if both t and F admit equality. This extends to n-ary type constructors in the obvious way.

Unfortunately, this de�nition is incomplete for the inference of equality properties because of the

presence of certain special type constructors that have stronger equality properties. For example,

the type t ref admits equality regardless of whether t does. Therefore a type constructor de�ned

as

datatype ('a,'b) F = mkF of 'a * 'b ref

has a more complex equality preservation behavior than the standard de�nition is capable of

expressing.1 For example, (int, unit->int) F should admit equality even though one of its

arguments, (unit->int), does not. However this will not be inferred based on the de�nition.

To correct this problem requires a more precise notion of equality properties of type constructors.

A simple binary property distinguishing between type constructors which admit equality and those

which do not must be replaced by an equality kind that speci�es how the equality property of the

result depends on the equality properties of the arguments of the constructor.

1Indeed, an example very similar to this one was sent as a `bug report' to the implementors of the Standard ML

of New Jersey compiler.

Computing ML Equality Kinds Using Abstract Interpretation 3

We start in Section 2 by developing a standard denotational interpretation of types and an

abstract interpretation mapping types into a three point lattice E = fvoid; eq; typeg, where the top

element type represents arbitrary types, the middle element eq represents types admitting equality

and the bottom element void represents empty types (i.e. types containing no de�ned elements).

This abstract interpretation of types is also extended to type constructors, whose interpretations

will be mappings from appropriate products of E to E . To interpret recursively de�ned constructors

we simply calculate a least �xed point of the abstract interpretations. For example, if we de�ne

datatype ('a,'b) F = A of 'a | B of (unit -> 'b, 'b) G

and ('c,'d) G = C of ('c ref, 'd) F | D of 'd

then neither F nor G are considered to admit equality according to the Standard ML de�nition.

However, both F and G admit equality under the abstract interpretation, and their interpretations

f; g satisfy f(eq; eq) = eq and g(type; eq) = eq respectively.

In Section 3 we relate the denotational and abstract interpretations by showing that the deno-

tation of a type is a
at domain if and only if the abstract interpretation of that type is eq.

In Section 4 we show that if a type has eq as its abstract interpretation we can de�ne an

equality relation for that type in ML. This involves de�ning equality functionals corresponding to

the type constructors used to build the type. It is also shown that only the
at domains may have

a de�nable equality relation, so that the equality types are exactly the types having a de�nable

equality. Hereafter when we speak of a \de�nable" relation, we mean de�nability of the relation as

an ML program.

The structure of the recursive de�nition of a type constructor is used as a format for creating

a recursive de�nition of the corresponding equality function. In the case of F and G, this recursive

function is parameterized by equality tests for 'a, 'b, 'd and a \dummy parameter" for 'c. In

fact, the equality test for 'c will be never be invoked in an equality test for a type built with F or

G because it is not used to compute equality on 'c ref.

In Section 5 we show that by avoiding void the abstract interpretation can be simpli�ed, and

equality kinds are introduced as succinct characterizations of the interpretation of type constructors.

In practice, normal type constructor de�nitions are indeed \void-avoiding".

We conclude by discussing future research directions, particularly the interaction of equality

types and ML modules, and the impact of equality types on implementations of ML.

2 Interpretations of Types

For the purposes of this paper, we shall assume that the expressions of the type algebra in ML are

given by the following grammar:

t ::= void j unit j t � t j t+ t j t! t j ref t j Fi(t1; : : : ; tni) (i = 1; : : :m)

4 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

where the type constructors F1; : : :Fm are all the user-de�ned datatypes. Associated with the

user-de�ned type constructors there is a system of equations

F1(�1; : : : ; �n1) = F1(F1; : : : ; Fm)(�1; : : : ; �n1)

...

Fm(�1; : : : ; �nm) = Fm(F1; : : : ; Fm)(�1; : : : ; �nm):

which any interpretation should treat as one large mutual recursion. For example, the recursive

de�nition from the previous section would use the following operators:

F = �(F;G)�(�; �):�+ G(unit! �; �)

G = �(F;G)�(
; �):F (ref
; �) + �

We shall refer to the non-recursive type constructors, namely void, unit, �, +, !, and ref, as

basic constructors. In the above recursive equations, the functions Fi are second-order �-expressions

over our type algebra, containing no free occurrences of the symbols F1, : : : , Fm. That is, the bodies

of the functions Fi are composed only of �rst-order and second-order bound variables and basic

constructors.

In this section we wish to de�ne two interpretations of these type expressions, one domain-

theoretic and the other an abstract interpretation. In order to do so, it will be bene�cial in both

cases to have associated with each of our recursive constructors, F1, : : : , Fm, a sequence of functions

which are �rst-order �-expressions over our basic type algebra whose bodies are composed only of

�rst-order variables and basic constructors. Under each of the interpretations these functions will

provide �nite approximates to the recursive constructors. These functions are given by the following

recursive de�nition:

F 0
i (�1; : : : ; �ni) = void

F
j+1
i (�1; : : : ; �ni) = Fi(F

j
1
; : : : ; F j

m)(�1; : : : ; �n1):

With these we are now in a position to describe our two interpretations.

2.1 A Domain-theoretic Interpretation

We now sketch the standard �xed-point semantics of ML's types. To do this we must brie
y

introduce some domain-theoretic terminology. A somewhat fuller discussion of domain theory can

be found in several sources (see [GS90] and the references there). A subset M � D of a poset D

is directed if, for every �nite set u � M , there is an upper bound x 2 M for u. D is a complete

partial order (cpo) if every directed subset M � D has a least upper bound
W
M and there is a

least element ?D in D. To interpret ML's types, we need a collection of operators on cpo's.

Computing ML Equality Kinds Using Abstract Interpretation 5

Given cpo's D and E, we de�ne the coalesced sum D � E to be the set�
(D � f?Dg)� f0g

�
[

�
(E � f?Eg)� f1g

�
[f?D�Eg

where D�f?Dg and E�f?Eg are the setsD and E with their respective bottom elements removed

and ?D�E is a new element which is not a pair. It is ordered by taking ?D�E � z for all z 2 D�E

and taking (x;m) � (y; n) if and only if m = n and x � y.

Given a cpo D, we de�ne the lift of D to be the poset obtained by adding a new bottom to

D. More precisely, the set D? = (D � f0g)[f?g, where ? is a new element which is not a pair,

together with a partial ordering � which is given by stipulating that (x; 0) � (y; 0) whenever x � y

and ? � z for every z 2 D?.

For cpo's D and E, the smash product D
E is the set

f(x; y) 2 D � E j x 6= ? and y 6= ?g [f?D
Eg

where ?D
E is some new element which is not a pair. The ordering on pairs is coordinatewise and

we stipulate that ?D
E � z for every z 2 D
 E.

The two point lattice 1 is a unit for the smash product: D
 1 �= 1
D �= D. The one point

lattice 0 is a unit for the coalesced sum, D � 0 �= 0 � D �= D, and an eliminator for the smash

product, D
 0 �= 0
D �= 0. A cpo is said to be void if it is isomorphic to 0. A cpo D is said to

be
at if it is not void and any two distinct elements of D are comparable only when one of them

is ?. Up to isomorphism, there is a unique countably in�nite
at cpo which we denote N?. The

domain B of booleans is the
at domain with three distinct elements true; false;?. The equality

function =D on a
at domain D is a mapping from D
D into B such that

� =D (x; y) is true when x = y 6= ?

� =D (x; y) is false when x; y 6= ? and x 6= y

� =D (x; y) is ? when x or y is ?.

A monotone function between two cpo's is continuous if it preserves least upper bounds of

directed collections. A function between cpo's is strict if it takes ? to ?. Given two cpo's D and

E, the space of all strict continuous functions between D and E, denoted by D �!E, is again a

cpo under the point-wise ordering.

For an ML type expression t, let �t be the standard domain-theoretic interpretation of t. This

de�nition can be given inductively as follows. First of all, we de�ne �void = 0 and �unit = 1. The

interpretations of the basic constructors are de�ned on domains D and E as follows:

� D �� E = D
 E

� D �+ E = D �E

6 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

� D �! E = (D �!E)?

� �ref 0 = 0

� �ref D = N? if D 6= 0

The interpretation of recursive types can be given as described in [SP82] using colimits. These

methods also apply to provide a semantics for the recursively de�ned type constructors provided

by ML. For example, an ML de�nition of lists such as

datatype 'a list = Cons of 'a * 'a list | Nil

is a recursive de�nition of a constructor list. At the domain-theoretic level, this is a recursive

de�nition of a functor. The solution is obtained as a colimit of a sequence of functors, where the

colimit is obtained in a category of functors and natural transformations. To prove that the equality

functions we de�ne later as ML programs are indeed the ones we expect, it is essential for us to

know something about the exact mathematical operator which we obtain as the solution of this

equation.

Fortunately, it is not necessary to work in a functor category in order to do this. Instead, we

can employ a technique of Scott which uses a universal domain. The �rst use of the idea appears

in [Sco76] using what one might call a \closure-universal" domain, but we will employ a related

technique introduced in [Sco82b, Sco82a] using a \projection-universal" domain. Both techniques

are described and illustrated in [GS90]. For the purposes of the remainder of this paper, a domain

is a bounded complete algebraic cpo (these are sometimes called \Scott domains"). It will not

be necessary for us to de�ne these structures here since we will simply rely on properties of their

universal domain. The universal domain technique can be summarized as follows. Given a domain

D, let us say that a subset E is a subdomain of D and write E / D if E forms a domain under

the ordering inherited from D and there is a projection from D onto E, i.e. there is is a mapping

p : D ! E such that p � p = p and p(x) � x for each x 2 D. Roughly speaking, a universal

domain is a domain U which has a copy of every other domain D as a subdomain, i.e. D/U up to

isomorphism. Moreover, the set of all subdomains of U again forms a domain, and hence there is a

special subdomain T /U , called the type of types, which is isomorphic to the domain of subdomains

of U . More speci�cally, there is a bijection � between T and the domain of subdomains of U such

that D/E i� �(D) � �(E) for any pair of subdomains D;E /U . In the remainder of the paper we

will make no distinction between a domain D (which is to be viewed as a subdomain of U) and its

image in T under � .

The existence of a universal domain allows us to interpret operators on types as continuous

functions on the domain T . For example, the function space operator ! can be viewed as a

continuous function from T �T into T . Hence, a �xed point speci�cation such as the one given for

list above can be solved as a �xed point equation over a cpo without the need to introduce functor

Computing ML Equality Kinds Using Abstract Interpretation 7

void

eq

type

Figure 1: The Equality Properties Lattice E .

categories, etc. explicitly (see Theorem 7.10 of [GS90]). Therefore, if D1, : : : , Dni are domains,

then we can de�ne
�Fi(D1; : : : ; Dni) =

_
(
�
F
j
i (D1; : : : ; Dni))

where the least upper bound is being taken in T and the isomorphism between domains and elements

of T is being taken for granted.

Another useful perspective that we are able to obtain by working in a universal domains is a

simple way to compare functions between domains. If we are given a continuous function f : D ! E

between subdomains D and E, then we may view this as a continuous function f 0 : U ! U where

f 0(x) = f(p(x)) where p is the projection onto D. In particular, if D/D0 are
at subdomains, then

their equality functions are related =D�=D0 (where we are suppressing the distinction between the

equality functions on the domains and their extensions to all of U). One further note which will be

important to our discussion later is that when we have a chain of
at domains D0 / D1 / � � �, then

their limit in T corresponds to their union
S
iDi as subdomains of U . In particular, the limit of

their equality functions is the equality function on their limit (the union of the Di's).

2.2 An Abstract Interpretation

Next we wish to describe an abstract interpretation function mapping closed ML type expressions

into the three point lattice E pictured in Figure 1. To do so, we will de�ne the interpretation on

the constructors and extend by structural induction to closed type expressions. For any v1; v2 2 E ,

we have:

� ^void = void

� ^unit = eq

� v1 +̂ v2 = maxfv1; v2g

� If either v1 = void or v2 = void then v1 �̂ v2 = void, if v1 = v2 = eq then v1 �̂ v2 = eq and

otherwise v1 �̂ v2 = type

8 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

� If v1 = void or v2 = void, then v1 !̂ v2 = eq, and otherwise v1 !̂ v2 = type

� ^ref void = void and if v 6= void then ^ref v = eq.

Notice that each of the the basic constructors is interpreted as a monotone function over the n-ary

product (n = 0; 1; 2) of E with itself.

Having de�ned our interpretation for the basic constructors, by structural induction we have

the interpretations F̂
j
i for the functions F

j
i , since they are composed only of basic constructors.

Using these, we de�ne the interpretations of the recursive constructors by

F̂i(v1; : : : ; vni) = max
j
fF̂ j

i (v1; : : : ; vni)g:

By structural induction, we can in fact extend our interpretation function to the second-order

functions Fi. Since these are also composed only of basic constructors (and �rst- and second-order

bound variables), and since all the basic constructors are interpreted as monotone functions, the

interpretation of Fi will itself be a function which is monotone in both its �rst-order and second-

order arguments.

Lemma 1 For all i; j, we have F̂ j
i � F̂

j+1
i . Moreover, there exists a k such that for all i, F̂ k

i =

F̂ k+1
i , and hence for all i, F̂i = F̂ k

i .

Proof. For the �rst part, the proof is by induction on j. Suppose v1; : : : ; vni 2 E . For the base

step, F̂ 0
i (v1; : : : ; vni) = void � F̂ 1

i (v1; : : : ; vni). For the inductive step suppose that for all i

F̂
j�1
i (v1; : : : ; vni) � F̂

j
i (v1; : : : ; vni)

Then, by applying F̂i, for each i, since F̂i is monotonic, we have

F̂i(F̂
j
1
; : : : ; F̂ j

m)(v1; : : : ; vni) � F̂i(F̂
j+1
1

; : : : ; F̂ j+1
m)(v1; : : : ; vni)

and hence

F̂
j
i (v1; : : : ; vni) � F̂

j+1
i (v1; : : : ; vni):

For the second part, since the set of functions mapping Eni into E is �nite and the F̂ j
i 's form

an increasing sequence, it is immediate that there exists a k such that for all i we have F̂ k
i = F̂ k+1

i .

By the de�nition of the F j
i 's, for all j > k we therefore have F̂ j

i = F̂ k
i . Again since the F̂ j

i 's form

an increasing sequence, we have that F̂i = maxjfF̂
j
i g = F̂ k

i .

Notice that the previous lemma tells us that the computation of the F̂i's is a �nite process.

Computing ML Equality Kinds Using Abstract Interpretation 9

3 Relating Interpretations

The purpose of this section is to demonstrate that, for any type expression t, the standard inter-

pretation �t is
at if and only if t̂ = eq. This describes the soundness and completeness property

of our interpretation. Because of the presence of recursive de�nitions and the constant type void

itself, it is necessary to deal with the possibility that there are type expressions t such that every

program of type t is divergent. Evidently, it is possible to de�ne a type directly in terms of itself:

datatype money = Invest of money

No programs of this type converge. But this could happen more subtly in a mutually recursive

de�nition:

datatype chicken = Hatch of egg

and egg = Lay of chicken

(After all, which comes �rst?) The following de�nition and lemma show how such types are

abstractly interpreted as void.

De�nition 2 A closed type expression t has property V provided that t̂ = void i� �t = 0.

Lemma 3 1. The types void and unit both have property V.

2. If the types t1 and t2 both have property V, then so do t1 + t2 and t1 � t2.

3. For all types t1 and t2, the type t1 ! t2 has property V.

4. If a type t has property V then so does ref t.

5. If types t1, : : : , tni have property V, then so does Fi(t1; : : : ; tni).

Proof. 1) The type void has property V since ^void = void and �void = 0. The type unit has

property V since ^unit = eq 6= void and �unit = 1 6= 0.

2) Suppose t1 and t2 both have property V . Then

t̂1 +̂ t̂2 = void , both t̂1 = void and t̂2 = void

, both �t1 = 0 and �t2 = 0

, �t1 �+ �t2 = 0:

Therefore, t1 + t2 has property V . Also,

t̂1 �̂ t̂2 = void , either t̂1 = void or t̂2 = void

, either �t1 = 0 or �t2 = 0

, �t1 �� �t2 = 0:

10 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

Therefore, t1 � t2 has property V .

3) For all types t1 and t2, the domain �t1 �! �t2 = (�t1 �! �t2)? always has at least two elements,

namely ? and �x:?, and hence is not 0. Moreover, by the de�nition of !̂ , t̂1 !̂ t̂2 is never equal

to void. Therefore, t1 ! t2 always has property V .

4) Suppose that the type t has property V . Then

^ref t̂ = void , t̂ = void

, �t = 0

, �ref �t = 0

Therefore, ref t has property V .

As a result of parts 1 through 4 of the lemma, we have by structural induction that any type

operator that is composed solely of basic constructors preserves property V .

5) Let t1, : : : , tni be a collection of types having property V . By the previous remark, for each

j, the type F j
i (t1; : : : ; tni) has property V . Therefore

F̂i(t̂1; : : : ; ^tni) = void ,
^
F
j
i (t̂1; : : : ; ^tni) = void, for all j

,
�
F
j
i (�t1; : : : ; �tni) = 0, for all j

, �Fi(�t1; : : : ; �tni) =
_
j

�
F
j
i (�t1; : : : ; �tni) = 0:

where the least upper bound is taken in T , the type of types. Therefore, Fi(t1; : : : ; tni) has property

V .

Corollary 4 For all closed ML type expressions t, we have that t̂ = void i� �t = 0.

Proof. By structural induction and the previous lemma, all closed type expressions in ML have

property V .

Our primary interest is not in types which are void, but in those which are equality types. We

may now characterize the types having eq as their abstract interpretation as exactly those with a

at standard interpretation.

De�nition 5 A closed type expression t has property SC (for \sound and complete") provided

that t̂ = eq i� �t is
at.

Lemma 6 1. The types void and unit both have property SC.

2. If the types t1 and t2 both have property SC, then so do t1 + t2 and t1 � t2.

Computing ML Equality Kinds Using Abstract Interpretation 11

3. For all types t1 and t2, the type t1 ! t2 has property SC.

4. For all types t, the type ref t has property SC.

5. If types t1, : : : , tni have property SC, then so does Fi(t1; : : : ; tni).

Proof. 1) Since ^void 6= eq and �void is not
at, void has property SC. Since ^unit = eq and �unit

is
at, unit also has property SC.

2) Suppose that both types t1 and t2 have property SC. Then

t̂1 +̂ t̂2 = eq

, each of t̂1 and t̂2 is either void or eq, and at least one of them is eq

, each of �t1 and �t2 is either void or
at (by Corollary 3 and property SC), and at least one

is not void

, �t1 �+ �t2 is
at.

Therefore, t1 + t2 has property SC. Also,

t̂1 �̂ t̂2 = eq

, both t̂1 and t̂2 are eq

, both �t1 and �t2 are
at

, �t1 �� �t2 is
at,

and hence, t1 � t2 has property SC.

3) For any types t1 and t2, we have that

t̂1 !̂ t̂2 = eq , t̂1 = void or t̂1 = void

, �t1 = 0 or �t1 = 0 (by Corollary 3)

, �t1 �! �t2 = 1, which is
at.

Therefore, t1 ! t2 has property SC.

4) Given any type t, we have

^ref t̂ 6= eq , t̂ = void

, �t = 0 (by Corollary 3)

, �ref �t = 0

, �ref �t is not
at.

Therefore, ref t has property SC.

As before, by 1 through 4 of this lemma, we know by structural induction that any type operator

that is composed solely of basic constructors preserves property SC.

5)Let t1, : : : , tni be a collection of types having property SC. By the previous remark we have

that F j
i (t1; : : : ; tni) has property SC, for each j. Thus

12 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

F̂i(t̂1; : : : ; ^tni) = eq

, there exists a k such that
^
F
j
i (t̂1; : : : ; ^tni) = void for all j < k, and

^
F
j
i (t̂1; : : : ; ^tni) = eq for all

j � k (by Lemma 1).

, there exists a k such that
�
F
j
i (�t1; : : : ; �tni) = 0 for all j < k, and

�
F
j
i (�t1; : : : ; �tni) is (non-void)

at for all j � k

, �Fi(�t1; : : : ; �tni) is
at, being the least upper bound of a chain of
at domains.

Therefore, Fi(t1; : : : ; tni) has property SC.

Corollary 7 (Soundness and Completeness) For all closed ML type expressions t, we have that �t

is
at i� t̂ = eq.

Proof. By structural induction and the previous lemma, all closed type expressions in ML have

property SC.

4 Equality Functions

Having derived an abstract interpretation for equality types, we now have a theory that tells us

when we should expect to �nd an equality function on a type. However, there is no a priori reason

to believe that this function is de�nable in ML or that we can provide a way to uniformly produce a

program for computing the function from the structure of the type. However, it is not at all di�cult

to see that we can do this for the basic operators. For example, to get the equality function on a

product s * t, given equality functions f and g on s and t respectively, one just uses the given

equality functions to compute the equality on the respective coordinates of the product:

fun eqtimes (f,g) ((x,y), (x',y'))

= f(x,x') andalso g(y,y')

The sum is similar; the given equality functions should be used in their respective components:

fun eqsum (f,g) (inl x, inl y) = f(x,y)

| eqsum (f,g) (inr x, inr y) = g(x,y)

| eqsum (f,g) _ = false

where the sum type is represented by the following concrete type operator:

datatype ('a,'b) sum = inl of 'a | inr of 'b;

What should be done for the arrow types? These are never equality types except when the

domain or codomain of the type is void. In this case, the interpretation of the type has two

Computing ML Equality Kinds Using Abstract Interpretation 13

elements; one of these represents the unde�ned program at the type and the other represents

\delayed divergence". Hence, if two arguments to an equality test for such a type both converge,

then they are equal. Noting the call-by-value evaluation of ML programs, we may therefore take

the following de�nition:

fun eqarrow (f,g) = fn (x,y) => true

Note that the equality function parameters f and g are not used. That this is the \correct" equality

function on arrow types presupposes that it will only be used in the case where the arrow type is

at.

Equality on reference types must be computed by a primitive function which determines identity

of memory locations.

How is the equality function on recursive types computed? Recursively, of course! For example,

consider the de�nition of the operator list:

datatype 'a list = Cons of 'a * 'a list | Nil

given earlier. To calculate equality on ''a list, given an equality function aeq for ''a, the

constructors which build the list must be recursively unwound:

fun eqlist aeq (Cons (x,l), Cons (y, m))

= (aeq (x,y)) andalso (eqlist aeq (l, m))

| eqlist aeq (Nil, Nil) = true

| eqlist _ _ = false

Now we give the formal de�nitions of the equality interpretation of types. Given a type t, we

de�ne the equality function t by induction on the structure of t. First, the equality function on

products is given by

(f � g)(x; y) =

8>>>>>>><>>>>>>>:

true if x = (x1; x2) and y = (y1; y2)

and f(x1; y1) = g(x2; y2) = true

false if x = (x1; x2) and y = (y1; y2)

and f(x1; y1) = false or g = (x2; y2)false

? otherwise

and on sums by

(f + g)(x; y) =

8>>>>><>>>>>:
f(x0; y0) if x = (x0; 0) and y = (y0; 0)

g(x0; y0) if x = (x0; 1) and y = (y0; 1)

false if x = (x0; i) and y = (y0; j) and i 6= j

? if x = ? or y = ?

14 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

A we saw with the de�nition of eqarrow the interpretation for the function spaces is essentially

trivial

(f ! g)(x; y) =

(
true if x 6= ? and y 6= ?

? otherwise.

The interpretation for unit is similar:

(unit)(x; y) =

(
true if x 6= ? and y 6= ?

? otherwise.

void is the constant function to ?. ref (f) is the equality function on N?.

The equality function for the recursive type operators is the limit of the equality functions

associated with their �nite approximates:

Fi =
_
i

F
j
i :

Theorem 8 For any type expression t, if t̂ = eq, then t is the equality function on �t.

Proof. The proof is by an induction on the structure of t. The cases involving the primitive

operators are straightforward. For the recursive type constructors Fi, note �rst that �F j
i (�t1; : : : ; �tni)

is
at if F̂ j
i (t̂1; : : : ; t̂ni) = eq by Corollary 7. If F j

i is the equality function on

Dj = �F j
i (�t1; : : : ; �tni)

for each j then Fi is a limit of equality functions on domains Dj . Since these domains are all
at

their limit is simply their union
S
j Dj and the limit of the equality functions on the parts is the

equality function on the whole. Hence Fi is the equality function on �Fi(�t1; : : : ; �tni).

The reader may now be curious why we have restricted ourselves to types with
at interpreta-

tions for those having an equality property. Could there be other types on which equality could be

de�ned? Our domain-theoretic semantics o�ers some guidance on this point. Let us generalize our

earlier de�nition of an equality function =D by relaxing the requirement that D is
at. It is clear

that there is a program denoting the equality function for the domain 0 that interprets void. But

let us consider the simplest non-
at, non-trivial domain. This domain has three elements; indeed it

is isomorphic to E , but to avoid confusing matters, let us name its elements by ? < x < y. This is

the interpretation of the type unit ! unit. Following the standard denotational interpretation of

ML terms, the equality function on this type cannot be de�ned in ML because the equality func-

tion on this three point domain is not monotone. Indeed, no domain with a three element chain

could have an ML-de�nable equality function for this reason. Viewed from another standpoint, a

computable equality on this three element type would provide a solution to the halting problem.

To see this, note that the domain E is the interpretation of the delayed values of unit type (that

Computing ML Equality Kinds Using Abstract Interpretation 15

eq

type

Figure 2: The Equality Kinds Lattice O.

is, the type unit -> unit). A computable equality function for this type would make it possible

to distinguish e�ectively between fn () => diverge or fn () => (). We may conclude that our

abstract interpretation describes all and exactly the ML types on which a de�nable equality exists.

5 Calculating Equality Kinds

There is a problem with the abstract interpretation of types given in the previous sections. We

cannot say of a type constructor that the type it yields will admit equality if and only if certain

of its arguments admit equality. The di�culty is with the combination of the function space type

constructor and void types. The type unit ! void admits equality and the type void ! unit

admits equality, but unit ! unit does not admit equality. There is a lack of independence

between the two arguments to ! when determining whether their resultant type admits equality.

This example also shows why it was necessary for us to introduce void as a separate element of the

equality properties lattice, E . If we were to interpret ^void as eq, then what would be the correct

value of eq !̂ eq? If we choose it to be eq, then we lose soundness, and if we choose it to be type,

then we lose completeness. It is too naive to try to solve these problems by saying that \there are

no elements of type void, so there is no reason to have it." Firstly, void may be a subexpression

of a nonvoid type, such as void! unit. More importantly, we can only understand the recursive

types by successive approximations, starting with the void type. Still, there is a useful, sensible

theory that we can cull out based on the idea of banning void.

To begin with let us focus attention on the sublattice O of E consisting of the points feq; typeg

as picture in Figure 2. In this section, we will develop another abstract interpretation of ML

types, using O instead of E . This new interpretation has a succinct representation, which is readily

computed from the types and type constructors. Moreover, if our recursive type constructors satisfy

a reasonable void-avoiding property, when we restrict to the subalgebra of types not involving void,

the two abstract interpretations turn out to be the same. Therefore, on this subalgebra, this new

abstract interpretation will also turn out to be sound and complete.

As before, the de�nition of the abstract interpretation over O is given by �rst de�ning it on

the constructors, and then extending it to closed type expressions by structural induction. The

de�nition for the constructors is as follows:

16 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

� ~void = eq;

� ~unit = eq;

� v1 ~+ v2 = maxfv1; v2g;

� v1 ~� v2 = maxfv1; v2g;

� for all v1; v2 2 O we have v1 ~! v2 = type;

� for all v 2 O we have ~ref v = eq; and

� ~Fi(v1; : : : ; vni) = max
j
f ~F j

i (v1; : : : ; vn)g:

Lemma 9 For all i; j, we have ~F j
i �

~F j+1
i . Moreover, there exists a k such that for all i, ~F k

i =
~F k+1
i , and hence, ~Fi = ~F k

i .

Proof. The proof is the same as for Lemma 1.

Lemma 10 Given any n-ary type operator G over our type algebra, either for all (v1; : : : ; vn) 2 On

we have ~G(v1; : : : ; vn) = type, or there exists a point (z1; : : : ; zn) such that ~G(v1; : : : ; vn) = eq i�

vi � zi, i = 1; : : : ; n.

Proof. The proof is by structural induction on the body of G. The result follows immediately for

the basic constructors. Therefore, by structural induction, we have the result for type operators

composed solely of the basic operators. In particular, we have the result for the operators F j
i . But

then, the result for the recursive constructors follows immediately from the previous lemma, since

for some k, ~Fi = ~F k
i .

De�nition 11 Given any n-ary type operator G over our type algebra, if for all (v1; : : : ; vn) 2 On

we have ~G(v1; : : : ; vn) = type, then the equality kind of G is
6=, and we say that G does not admit

equality. Otherwise, the equality kind of G is the point (z1; : : : ; zn) such that ~G(v1; : : : ; vn) = eq i�

vi � zi for all i = 1; : : : ; n.

In particular, if t is a closed (nullary) type expression, then either it does not admit equality,

and therefore has equality kind
6=, or it does admit equality and has equality kind ().

The equality kinds for the basic constructors is as follows:

� The equality kind of void is ().

� The equality kind of unit is ().

Computing ML Equality Kinds Using Abstract Interpretation 17

� The equality kind of both + and � is (eq; eq).

� The equality kind of ! is
6=.

� The equality kind of ref is type.

Notice that for n-ary type operators F and G that admit equality, we have that ~F � ~G i�

(w1; : : : ; wn) � (z1; : : : ; zn) where (w1; : : : ; wn) is the equality kind of F and (z1; : : : ; zn) is the

equality kind of G.

With these de�nitions it is possible to describe how to calculate the equality kind of a recursive

type constructor. One simply carries out the iterations of the �xed point. By Lemma 9, this

will terminate. The number of iterations required is bounded by the number of parameters in the

type recursion, so the algorithm is quite e�cient. This calculation will miss some types for which

equality is de�nable, but only in cases that are uninteresting in practice. To state a crisp theorem,

we must formulate a notion of \void avoidance". To do this, we now restrict our attention to that

subalgebra of type expressions over basic constructors unit, +, �, !, and ref, and the recursive

operators, provided that the associated recursive equations are over just these basic constructors.

De�nition 12 A set of recursive type constructors F1, : : : , Fm is void avoiding provided that the

second-order recursive operators Fi giving the recursive equations associated with them involve

only the basic constructors unit, +, �, !, and ref, and whenever the constructor Fi is applied

to argument types t1 : : : , tni , each of which has a non-void domain-theoretic interpretation, the

resulting type has a domain-theoretic interpretation which is non-void, i.e. �Fi(�t1; : : : ; �tni) 6= 0.

Lemma 13 Suppose that the set of recursive type operators F1, : : : , Fm are void-avoiding. Then,

for every closed type expression t not containing void as a subexpression, we have that t̂ = ~t.

Proof. First notice that any closed type expression in this subalgebra will have an interpretation

under c of either eq or type. Therefore, we may view the abstract interpretation under c of any

n-ary type operator as a function from On into O. To prove the lemma, it su�ces to show that

given any n-ary type operator G, the function Ĝ, when restricted to On is the same as the function
~G. By structural induction, in fact it su�ces to show this for the basic constructors (excluding

void) and for the recursive constructors. The result follows immediately from the de�nitions of c
and � for the basic constructors unit, +, �, !, and ref.

Since the second-order operators Fi are composed solely of basic constructors, by structural

induction we have that F̂i = ~Fi. Also, since Ĝ � ~G for every basic constructor G, we have that for

each of the �nite approximates F̂ j
i �

~F j
i . By Lemma 1, there exists a k such that

F̂ k
i = F̂i(F̂

k
1 ; : : : ; F̂

k
m) = ~Fi(F̂

k
1 ; : : : ; F̂

k
m)

18 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

and F̂i = F̂ k
i . Therefore, the operators F̂

k
i form a �xed point of the system ~F1; : : : ; ~Fm. However,

by their construction the functions ~Fi, i = 1; : : : ; m form the least �x point of the operators ~Fi.

Since F̂i = F̂ k
i �

~F k
i �

~Fi, we must have that F̂i = ~Fi.

Corollary 14 (Soundness and Completeness) Suppose that the set of recursive type operators F1,

: : : , Fm are void-avoiding. Let G be a type operator de�ned in terms of the basic constructors unit,

+, �, ! and ref and the recursive constructors. Then G admits equality i� the equality kind of G

is not
6=. Moreover, if G admits equality with equality kind (z1; : : : ; zn), then for any types t1, : : : tn

which do not contain void as a subexpression, �G(�t1; : : : ; �tn) is
at i� ~ti � zi for all i = 1; : : : ; n.

6 Conclusions and Future Work

We have provided a sound and complete semantic analysis of the equality property for ML types

and demonstrated an e�cient algorithm for carrying out the inference of equality properties for

void-avoiding systems of user-de�ned types. Our results are based on theorems that relate the

standard denotational semantics of type constructors to an abstract interpretation that describes

the equality kind of the operator.

Our algorithm expands the number of types that will be judged to admit equality. In existing

compilers, the new types admitted under our scheme can be handled in exactly the same way as the

ones currently accepted, so no new approach to the implementation is implied. The speci�cation of

equality in Section 4 can be viewed as a speci�cation of equality functions on ML types rather than

a prescription for how the equality functions must be implemented. (Although our speci�cation is,

arguably, the most natural approach to the implementation.)

The motivation for this work was to provide a more accurate version of the notion of equality

types in Standard ML. Introducing the re�ned notion of equality kinds into Standard ML itself

raises the question of how they would be integrated with the module system.

The easiest problem is specifying the equality kinds of type constructors in signatures. The

current language de�nition provides a simple type speci�cation

type ('a,'b) F

that does not constrain the equality kind of F at all, and the equality type speci�cation

eqtype ('a,'b) F

that speci�es that F has equality kind with succinct representation (eq; eq). To specify that F has

the equality kind (eq; type) we might use the following notation:

type F: (eq,ty) => eq

Computing ML Equality Kinds Using Abstract Interpretation 19

A more complex interaction with modules involves the e�ect of sharing constraints in signa-

tures. If two type constructor speci�cations are identi�ed as a consequence of sharing constraints,

it seems clear that they should have the same equality kind. This brings up the issue of compati-

bility of equality kind speci�cations and the problem of determining the resultant kind when two

speci�cations share.

A third problem is how equality kinds are a�ected by functor applications. The de�nition of a

type constructor in the body of a functor may depend on type constructors in the functor parameter

with unspeci�ed equality kinds, making it impossible to completely infer the equality kind of

the de�ned constructor. When the functor is applied, the actual parameter supplies additional

information that should be taken into account to recalculate the equality kind of the de�ned type

constructor. This suggests partial and incremental calculation of equality kind information may be

required.

These problems of integrating equality kinds with the module system are the subject of con-

tinuing research, with the experience with the current Standard ML treatment of equality kinds

providing a starting point.

It is our belief that there are broader issues relating to equality types that involve other proper-

ties and operators which are de�ned uniformly from the structure of types. One might refer to this

as structural polymorphism. It has come up in other contexts such as the study of subtyping and

coercions between recursive types. For instance, [BGS89] describes how coercions between such

types are generated from the type de�nitions in a manner very similar to the one used in Section

4 of this paper for the equality relations. Whether there is any general theory that connects these

apparently similar phenomena remains to be seen.

20 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

References

[BGS89] V. Breazu-Tannen, C. Gunter, and A. Scedrov. Denotational Semantics for Subtyping

between Recursive Types. Research Report MS-CIS-89-63/Logic & Computation 12, De-

partment of Computer and Information Science, University of Pennsylvania, 1989.

[GS90] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 633{674, North Holland, 1990.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.

[Sco76] D. S. Scott. Data types as lattices. SIAM Journal of Computing, 5:522{587, 1976.

[Sco82a] D. S. Scott. Domains for denotational semantics. In M. Nielsen and E. M. Schmidt,

editors, International Colloquium on Automata, Languages and Programs, pages 577{

613, Lecture Notes in Computer Science vol. 140, Springer, 1982.

[Sco82b] D. S. Scott. Lectures on a mathematical theory of computation. In M. Broy and G.

Schmidt, editors, Theoretical Foundations of Programming Methodology, pages 145{292,

NATO Advanced Study Institutes Series, D. Reidel, 1982.

[SP82] M. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equa-

tions. SIAM Journal of Computing, 11:761{783, 1982.

