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Abstract

Almost all of the categories normally used as a mathematical foundation for denotational

semantics satisfy a condition known as consistent completeness. The goal of this paper is to

explore the possibility of using a di�erent condition|that of coherence|which has its origins

in topology and logic. In particular, we concentrate on those posets whose principal ideals

are algebraic lattices and whose topologies are coherent. These form a cartesian closed category

which has �xed points for domain equations. It is shown that a \universal domain" exists. Since

the construction of this domain seems to be of general signi�cance, a categorical treatment is

provided and applied to other classes of domains. Universal domains constructed in this fashion

enjoy an additional property: they are saturated. We show that there is exactly one such domain

in each of the classes under consideration.

1 Introduction.

The �rst structures used as a mathematical foundation for the denotational semantics of program-

ming languages were lattices. With lattices it was possible to solve the necessary recursive equations

and an elegant mathematical theory could be developed using the familiar category of (countably

based) algebraic lattices [Sco76] (although it was necessary to take some care to choose the right

notion of morphism). As experience with denotational semantics grew, deeper computational in-

tuitions were developed and new categories were introduced in attempts to match these intuitions

to the mathematical constructs. For example, it was desirable to have a class of domains which

included such structures as the partial functions from natural numbers to natural numbers which|

under their usual ordering|do not form a lattice. Such theories were proposed by Plotkin [Plo78],

Berry [Ber78] and also Scott [Sco81, Sco82a, Sco82b].
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The category which Scott proposed was very similar to the algebraic lattices: a dcpo D is said

to be a Scott domain (or bounded complete domain) if the dcpo D> obtained by adding a top

to D is an algebraic lattice (with a countable basis). The arrows of the category are continuous

functions, i.e. monotone functions which preserve joins of directed collections of elements. The

category of Scott domains is easy to work with and has an intuitive logical character which has

been the subject of several investigations (see, in particular, [Sco82a, Abr87]). One central feature

of these treatments is the concept of consistency of data. One may think of a Scott domain as a

collection of propositions or data elements under an ordering of partial information. An element

x is ordered below an element y in a domain D if x is \more partial" than y. The element x is

a kind of partial description of y. Now, given two data elements x1 and x2, there may or may

not be a third element y which they describe. If there is such a y, then x1 and x2 are said to be

consistent, otherwise they are inconsistent. A crucial feature of a Scott domain is the following

fact: if two elements of a Scott domain D are consistent, then they have a join in D. This property

is commonly referred to as consistent completeness.

The use of consistent complete domains for modeling the semantics of types in programming

languages has become the general practice. However, we would like to note in this paper that

it is not the only reasonable direction the theory could have taken at the point that consistency

was recognized as a central concept. Up until the time we are writing this paper, almost all of

the categories of domains that have been proposed as a possible foundation for the semantics of

programming languages have been (essentially equivalent to) dcpo's which satisfy the consistent

completeness condition. This includes those categories which use stable continuous functions [Ber78,

Gir86] as well as categories related to the Scott domains (such as the continuous lattices).1 The

one noteworthy exception is the category of !-bi�nite domains which was introduced by Plotkin

[Plo76] (where it is called SFP). These will be discussed below.

One might apply the following line of reasoning in an attempt to deal with the concept of

consistency of data. A domain is a collection of propositions providing partial descriptions of

elements (which may also be propositions describing further elements); a given element dominates

a collection of data elements which provide partial descriptions of it. We propose the following

condition on the structure of the partial descriptions of an element: the partial descriptions of an

element must form an algebraic lattice. Let us refer to this condition as local algebraicity. But a

locally algebraic dcpo (with a countable basis) is just a Scott domain right? No, not at all! Aside

from the fact that such a domain need not have a least element (an in�nite discrete domain is

locally algebraic for example) it is even possible that a consistent pair of elements have no join!

(See Figure 1.) One can show, however, that almost all of the essential features needed to provide

semantics for programming languages are satis�ed by locally algebraic domains.

The concept of a locally algebraic domain was formulated by the second author who came across

1We omit from discussion categories of dcpo's with no assumptions about the existence of a basis.
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Figure 1: A locally algebraic domain which is not consistent complete.

the concept in the course of his investigations into extensions of Smyth's Theorem [Jun88b, Jun88a].

We refer to locally algebraic domains as L-domains to keep the terminology short. They were

independently discovered by Thierry Coquand as a special instance of his categories of embed-

dings [Coq88]. We will discuss some basic properties of L-domains in the next section|for a more

detailed discussion, the reader can examine [Coq88, Jun88b, Jun88a]. The bulk of the paper will fo-

cus on the properties of a subcategory of the L-domains which were introduced in the �rst author's

doctoral dissertation [Gun85]. The category which was investigated there (the objects were called

short domains) consisted of those L-domains which were !-bi�nite. It was observed at that time

that such domains formed a cartesian closed category in which one could solve recursive domain

equations. However, we would like to demonstrate a further fact about them below. Namely, that

there is a \universal" domain in this category.

Our construction is similar to that which appears in [Gun87] for the !-bi�nite domains, but

a more subtle ordering is needed to make things work properly. We prove a lemma expressed in

categorical terms which aids one in demonstrating the existence of a universal domain by demon-

strating the existence of what we call a �nite relative saturation. This lemma is su�ciently general

that it applies not only to our construction of a universal !-bi�nite L-domain and the construction

of a universal !-bi�nite domain as in [Gun87], but also to consistent complete domains and even

countably based algebraic lattices! The universal domains so constructed are characterized by a

property very similar to what model theories call countable saturation [CK73]. We prove that a

model with this property is unique up to isomorphism. We can apply this result to show that

Scott's universal domain for the consistent completes [Sco81, Sco82a, Sco82b] is not saturated.

The paper is divided into six sections which we overview brie
y. Section two provides some

de�nitions and establishes notation. A few basic propositions are also remarked. The third section

discusses the coherence condition on the topology of a domain. We show how this condition trans-

lates into an order-theoretic one and discuss some important properties of domains with coherent
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topologies. The fourth section discusses the universal domain construction. Since this construction

seems to have a general signi�cance, we have attempted to provide a categorical treatment of it.

This categorical treatment makes it possible to see the construction in this paper and the one that

was presented in [Gun87] as instances of a more general theory which may have applications in

other cases. In the �fth section we instantiate the general theory for the classes !Lat of algebraic

lattices, !S of Scott domains, !BL of !-bi�nite L-domains and !B of !-bi�nite domains. The

universal domains which we thus construct are saturated. We prove in Section 6 that any satu-

rated object in a subclasss of !Bep is universal and that there is at most one such object (up to

isomorphism).

2 Basic de�nitions and facts.

For the purposes of this paper a dcpo (complete poset) is a poset (D;v) with least element and with

joins
F
M for all directed subsets M . A function f :D! E between dcpo's D and E is continuous

if it is monotone and preserves joins of directed subsets of D. An element x of a dcpo D is said

to be compact if, whenever M is a directed subset of D and x v
F
M , then there is a y 2M such

that x v y. Let K(D) be the collection of compact elements of a dcpo D. A dcpo D is said to be

algebraic if every element of D is the join of a directed collection of compact elements. D is said

to be !-algebraic if it is algebraic and K(D) is countable. An algebraic lattice is an algebraic dcpo

which is a lattice.

De�nition: A dcpo D is locally algebraic if, for every x 2 D, the principal ideal

#x = fy 2 D j y v xg

generated by x is an algebraic lattice.

Proposition 1 If D is locally algebraic, then it is algebraic.

Proof: Suppose c is a compact element in #x and (ei)i2I is a directed collection of elements with

supremum e above c. The principal ideal #e is by assumption an algebraic dcpo, so in particular

the element c is the supremum of a directed collection (cj)j2J of compact elements in the #e-sense.

All these elements belong to #x as well and since c is compact there, one of the elements cj must be

equal to c. Going back to #e we learn that c is equal to a compact element in this ideal, so some ei

must be above c. This proves that any locally compact element is also globally compact and hence

D is algebraic.

To keep the terminology short, we will refer to locally algebraic dcpo's as L-domains. The category

of L-domains properly contains the class of Scott-domains: Figure 1 shows an example. The

di�erence between the two concepts is illustrated by the following characterizations:
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Proposition 2 Let D be an algebraic dcpo.

� D is a Scott-domain, if and only if every nonempty subset has a meet in D.

� D is an L-domain, if and only if every bounded nonempty subset has a meet in D.

(For a proof see [Jun88b].)

The di�erence may seem a slight one but it has some important consequences. The basis of the

function space of a Scott-domain D has always the same cardinality as K(D), whereas the cardi-

nality may increase if D is an L-domain. However, the following (which was found independently

by Thierry Coquand) remains true:

Theorem 3 The category of L-domains and continuous functions is cartesian closed.

In [Jun88b] it is proved that, in the category of algebraic dcpo's with least element, there are

exactly two maximal cartesian closed subcategories: the category of L-domains and the category

of bi�nite domains, which we now proceed to de�ne.

A continuous function fL:D! E between dcpo's D and E is said to be an embedding if there

is a continuous function fR:E ! D such that fR �fL = idD and fL �fR v idE where idD and idE

are the identity functions on D and E respectively. If there is such a function fR, then it is uniquely

determined by fL and is said to be the projection corresponding to fL. Pairs f = hfL; fRi:D! E,

where fL is an embedding and fR the corresponding projection, form the arrows of a category

DCPOep which has dcpo's as its objects. Composition is given by

hfL; fRi � hgL; gRi = hfL � gL; gR � fRi:

It is a basic fact in the theory of domains thatDCPOep has directed colimits, which we call bilimits

since they can be gotten either from the directed system of embeddings or from the codirected

system of projections.

Theorem 4 The category of L-domains and embedding-projection pairs has bilimits.

If a dcpo is a bilimit in DCPOep of a family of �nite posets with least element, then it is said

to be a bi�nite domain. It is possible to show that bi�nite domains must be algebraic. Let B and

Bep be the categories of bi�nite domains with continuous functions and embedding-projection pairs

respectively. It is possible to show that B is a cartesian closed category and Bep has bilimits of

directed families [Gun85, Gun87]. Bi�nite domains with a countable basis and least element are

the \SFP-objects" of Plotkin [Plo76]. We will follow Smyth's terminology [Smy83] and refer to

them as !-bi�nite domains. We write !B for the category with continuous functions and !Bep for

the category with embedding-projection pairs. It is not hard to see that !B is a cartesian closed

category and !Bep has bilimits for countable directed families.
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Figure 2: K has a countable basis, but K ! K does not.

3 Coherence.

In order to get a satisfactory class of spaces as domains for denotational semantics it is desirable to

impose a more restrictive condition than local algebraicity. Suppose one wished to de�ne a notion

of computability on L-domains. It might be possible to do this for the L-domains with a countable

basis. So why not restrict oneself to these? The problem is that the L-domains with countable

basis are not closed under the exponential! Consider the poset K pictured in Figure 2. This is an

L-domain with a countable basis but K ! K has a basis with continuum many members.

Since M. Smyth [Smy83] has proved that any domain which has an !-algebraic function space

is in fact bi�nite, it is reasonable to investigate the category !BL of bi�nite L-domains which have

countable bases and least elements, i.e. the !-bi�nite L-domains. The poset in Figure 2 is a typical

example of an L-domain that fails to be bi�nite.

An unfortunate drawback to the bi�niteness condition is the fact that it is not very easy to

understand. Although intrinsic descriptions are possible and these do help in reasoning about

bi�nite domains, it would still be nice to work with a simpler class of structures. However, it turns

out that the !-bi�nite domains which are L-domains may be somewhat more easily characterized

than !-bi�nite domains in general. In particular, they may be identi�ed as those L-domains which

have a \nice" Scott topology.

We will follow the de�nitions and notation in Johnstone [Joh82]. A dcpo D can be given a

topology as follows. The open subsets of the topology are those which satisfy:

1. whenever x 2 U and x v y, then y 2 U , and

2. whenever M � D is directed and
F
M 2 U , then M \ U 6= ;.

This is usually called the Scott topology on D and it will be denoted �D. It is possible to show that

a function f :D! E between dcpo's D and E is continuous in the sense that f(
F
M) =

F
f(M),
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for any directed M � D, if and only if it is continuous in the usual topological sense|with respect

to the Scott topology.

De�nition: Let D be an algebraic dcpo. The topology �D is said to be coherent if the quasicom-

pact open subsets of D are closed under �nite intersections.

We would like to make two brief remarks about this terminology. First, to keep things simple,

we have restricted the de�nition to algebraic dcpo's; the de�nition above would not correspond

to the usual notion of a coherent topology if D were allowed to be an arbitrary dcpo. Second,

we would like to comment that the meaning for the term \coherent" which we have given should

not be confused with other meanings from the domain theory literature. In particular, a poset is

sometimes said to be coherent if any pairwise consistent set has a least upper bound. This condition

is stronger than consistent completeness and certainly does not correspond to the condition we are

using here!

Coherence is an elegant condition on the topology of a domain D which has an important

signi�cance for the order structure of D. Let us say that a poset P has the strong minimal upper

bounds property (or property M for short) if, for every �nite subset A � P , the set mub(A) of

minimal upper bounds of A satis�es the following properties:

1. mub(A) has only �nitely many elements and

2. mub(A) is complete in the sense that for every p 2 P , if x v p for every x 2 A, then y v p

for some y 2 mub(A).

We have the following:

Proposition 5 Let D be an algebraic dcpo. Then �D is coherent if and only if the basis K(D) of

D has property M.

Proof: Since the sets of the form "c, with c a compact element of D, form a basis of the Scott

topology, a set A is quasicompact open if and only if it is a �nite union of such principal �lters.

So let A and A0 be upper sets generated by �nite sets M;M 0 � K(D), respectively. Each

element of A \ A0 is above some element of M and above some element of M 0. So A \ A0 is

generated by the �nite set
T
m2M;m02M 0 mub(m;m0) and hence itself quasicompact.

For the converse let m � K(D) be a �nite set. Each set "m, m 2 M is quasicompact open

and, by coherence, so is
T
m2M "m. The latter set is therefore covered by �nitely many principal

open �lters and hence generated by �nitely many compact elements. This proves that K(D) has

property M.

The central theorem of this section states that a bi�nite L-domain may be characterized using

the coherence condition:



8 Carl A. Gunter and Achim Jung

Theorem 6 Let D be an L-domain. Then �D is coherent if and only if D is bi�nite.

Proof: It is well known (see [Plo76], for example) that the basis of a bi�nite domain has property M,

so by the previous proposition the `only if'-part is taken care of.

For the converse we know that D is an L-domain and that K(D) has property M. Given any

�nite set A of compact elements and any element x of D there is a supremum of the set #x \ A

in the principal ideal generated by x. Mapping each element onto this supremum is a continuous

function, since A consists of compact elements only and suprema of compact elements are again

compact in a lattice. The image of this function is �nite by property M. This shows that D is

isomorphic to a bilimit of �nite posets. (A more detailed account of this well known fact can be

found in any of the following sources [Plo76, Gun85, Jun88a].

Since the bi�nite L-domains lie at the intersection of two \nice" categories, they inherit some

of that niceness themselves:

Proposition 7 The category of bi�nite L-domains and continuous functions is a cartesian closed

category.

Proposition 8 The category of bi�nite L-domains and embedding-projection pairs has bilimits for

directed collections.

4 Building universal domains.

The concept of a \universal domain" dates back at least to Scott's paper [Sco76] on P! and is

widely used in the current literature. The term \universal domain" is somewhat vaguely de�ned,

however. We see basically two uses as being the most common. The easiest of these to understand

is what one might call a \poor man's universal domain". Typically it is a domain which satis�es

an isomorphism

V �= (V ! V ) + F1(V ) + � � �+ Fn(V ) (1)

where F1; : : : ; Fn are operators over which domain equations must be solved. One often sees such

universal domains being used in the type theory literature [MPS84, Car84]. The theory of domains

provides us with all of the mathematical tools generally needed for solving equations like (1) so

that we may employ such de�nitions quite freely and con�dently. On the other hand, the poor

man's universal domain depends on the choice of the functors Fi and it would be nice to know

more facts about the order structure of the solution than the existence result for the solution tells

us. It is therefore appealing to have a single universal domain U which has all domains of interest

as retracts. Of course, this is subject to one's interpretation of \domains of interest", but it is not

dependent on a commitment to some �nite list of functors. We refer the reader to Taylor [Tay87]

for a full discussion of universal domains (which he calls \saturated domains"). For the purpose of
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clarity, let us propose a de�nition of \universal domain" which will give the reader some idea what

we are after.

De�nition: Let C be a category. An object U is universal in C if it is weakly terminal, i.e. for

every object A of C, there is a (not necessarily unique) arrow f :A! U .

The term \universal domain" probably comes from the model theoretic notion of a \universal

model" which has a similar de�nition [CK73]. Universal models can be built using the concept of

saturation �rst presented in [Vau61] and it will be our goal below to convert this model-theoretic

technique to domain-theoretic ends. Of course, any category that has a terminal object has a

universal domain. However, one typically has it in mind that the arrows of the category C are

monics. In particular, we show that the category !BLep of !-bi�nite L-domains with embedding-

projection pairs has a universal domain.

The proof uses techniques from Gunter [Gun87]. However, naively mimicing the construction

which appears there will not work. We therefore begin by devising a general theory which can be

applied to obtain a universal domain for both !Bep (as described in [Gun87]) and !BLep. We also

derive universal domains for !Sep (the category of Scott domains) and !Latep (the category of

algebraic lattices), which di�er from the ones given by Scott in [Sco76, Sco81].

In particular, we provide a categorical treatment of the essential ingredients that make the

universal domain construction work. The construction is reminiscent of one from general model

theory. For example, �x a �rst order theory T in a countable language and suppose that T has a

countable homogeneous model A. One can show that A is elementarily embedded in a countable

model of T as follows. It is easy to see that A is elementarily embedded in a countable model

A1 which is homogeneous with respect to �nite sequences taken from A. One can use a similar

construction to build a sequence of models Ai such that, for each j < i, the model Ai is homogeneous

with respect to �nite sequences of elements from Aj and Aj is elementarily embedded in Ai. The

colimit of this chain will be the desired homogeneous extension of A. The reader can �nd many

constructions that use this basic idea in a standard book on model theory such as [CK73].

We begin with the following concept:

De�nition: An arrow f :A! B is an increment if, whenever f = h � g, then either h or g is an

isomorphism.

Perhaps the simplest example of an increment is the inclusion map f :S ! T between �nite sets

S and T , such that S = T [ fxg for some x. If C is a poset (considered as a category), then an

arrow x v y is an increment if and only if there is no element of C between x and y. If we consider

the category of L-domains with embedding-projection pairs, then an arrow s:A! A0 from a �nite

L-domain A into an L-domain A0 is an increment if and only if A0 has at most one more point than

A. Figure 3 indicates a typical increment in this category. The increment embeds a four element

poset into a poset with �ve elements; the closed circle indicates the \new" element.
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Figure 3: A typical increment in !BLep. The poset on the left is embedded in the poset on the

right. The open circles show the image of the embedding.

An !-chain in a category C is a functor F :! ! C from the ordinal ! (considered as a category)

into C. In essence, an !-chain is a sequence of objects Ai where i < ! and a collection of arrows

aji:Ai ! Aj where i � j < !. For each i, the arrow aii is the identity on Ai and, for any i � j � k,

one has akj � aji = aki.

De�nition: A concrete category C is incremental if

1. C has an initial object,

2. C has colimits of !-chains,

3. every object A of C is a colimit of an !-chain (Ai; aij) where A0 is initial, each Ai is �nite

(in the category C) and each arrow ai+1;i:Ai ! Ai+1 is an increment.

For example, the category of countable sets and injections is incremental. When we are taking

about incremental categories of domains with embedding-projection pairs we may refer to bilimits

rather than colimits. We are especially interested in the following example:

Theorem 9 The category !Bep of !-bi�nite domains and embedding-projection pairs is incremen-

tal.

Proof: This is Theorem 22 (the Enumeration Theorem) of [Gun87].

Corollary 10 The categories !BLep, !Sep, and !Latep are incremental.

Proof: Let D be a !-bi�nite L-domain (Scott domain, Lattice) and let (Di; dij) be an !-chain of

increments with bilimit D in !Bep. By de�nition, each Di is embedded in D and must therefore

itself be a !-bi�nite L-domain (Scott domain, Lattice).
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Let C be an incremental category and let A be an object of C. An object A+ and arrow

s:A! A+ is a relative saturation of A (or just a saturation for short) if, for every increment

f :B ! B0 and arrow g:B! A, there is an arrow h which makes the following diagram commute:

A

B

A+

B0

g h

s

f

? ?
-

-

Let us say that an incremental category C has �nite saturations if, for every �nite object A of C,

there is a saturation s:A! A+ where A+ is �nite.

Theorem 11 If an incremental category has �nite saturations, then it has a universal object.

Proof: Suppose C is an incremental category with �nite saturations. Let S0 be any initial object

of C. Build the chain S0; S1 = S+
0
; :::; Si+1 = S+i ; ::: where si+1;i is a saturation for each i. Let U

be a bilimit for this chain. We claim that U is universal. To see this, suppose A is any object of

C and we will demonstrate an arrow f :A! U . Since C is incremental, A is the bilimit of a chain

(Ai; aij) of �nite objects where A0 is initial and each arrow ai+1;i:Ai ! Ai+1 is an increment. Now,

there is an arrow f0:A0 ! S0 since A0 is initial. Suppose an arrow fi:Ai ! Si is given. Since ai+1;i

is an increment and si+1;i is a saturation, there is an arrow fi+1 such that the following diagram

commutes:

Si

Ai

Si+1

Ai+1

fi fi+1

si+1;i

ai+1;i

? ?
-

-

This collection of arrows fi gives rise to a cocone with vertex U over the chain (Ai; aij) whose vertex

is U . Since A is a bilimit of this chain, there must consequently be a mediating arrow f :A! U as

desired.

Thus, to prove that there is a universal object in the category of !-bi�nite domains (as was

done in [Gun87]) or that of !-bi�nite L-domains, it su�ces to demonstrate that the category in

question has �nite saturations. The fact that !Bep has �nite saturations is proved in [Gun87].

We show how to derive this result for !Bep, !BLep, !Sep, and !Latep in the next section. By

Theorem 11 this will prove:

Theorem 12 The following categories have universal domains:

1. !Bep
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2. !BLep

3. !Sep

4. !Latep

5 Constructing saturations.

In this section we will construct �nite saturations for !Bep, !BLep, !Sep, and !Latep. We saw

earlier that if D is a �nite poset then an increment f :D! D0 adds at most one point xf to D. The

idea for constructing a saturation D+ is to take all points which may be added by an increment.

Since each increment f :D! D0 corresponds to a unique projection g:D0 ! D, there is some

element uf 2 D onto which xf is mapped by g. In fact, f(uf) is the largest element of f(D) below

xf . Similarly, the set "xf \ f(D) corresponds to an upper set Uf in D. This suggests the following

de�nition for a �nite poset D 2 !Bep:

D+ = f(u; U) j u 2 D; u v U = "U � Dg;

with the intended meaning that (u; U) stands for a new element xf just above u = uf and below

all elements of U = Uf . Obviously there cannot be any new element between u and "u, so the pairs

(d; "d); d 2 D represent D inside D+.

We have to be a little bit more careful in de�ning D+ for L-domains, however. Recall that D is

an L-domain if and only if each bounded nonempty subset of D has a global meet. A new element

added by an increment must not destroy this property. This implies that if xf is a new element

added to D by an increment in !BLep and if d; d0 v b are contained in Uf then xf is a lower bound

for fd; d0g and must consequently be below or directly above d u d0. This says that d u d0 must

belong to Uf or it must be equal to uf . We add this property to the de�nition of D+ for �nite

L-domains D:

D 2 !BLep : D+ = f(u; U) j D 3 u v U = "U � D

and fug [ U is closed under bounded

nonempty meets.g:

Similarly for the two remaining categories:

D 2 !Sep : D+ = f(u; U) j D 3 u v U = "U � D

and fug [ U is closed under nonempty meets.g;

D 2 !Latep : D+ = f(u; U) j D 3 u v U = "U � D

and fug [ U is closed under meets.g:
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The order on D+ is de�ned uniformly by

(u; U) � (v; V ), v 2 U or (v = u and V � U):

Note that (u; U) � (v; V ) implies u v v and V � U , so � is indeed a partial order on D+. It is

also helpful to recognize that for a given u 2 D the set of all U � D such that (u; U) 2 D+, is a

lattice. This follows from the observation that (u; "u) 2 D+ and that if (u; U1); (u; U2) 2 D+ then

(u; U1 \U2) 2 D+. We denote the smallest set U which contains a set X � D and for which (u; U)

belongs to D+ by hXiu.

Lemma 13 If D is a �nite L-domain (bounded-complete domain, lattice) then so is D+.

Proof: We have to show that D+ has in�ma for bounded sets. So let (u; U); (u0; U 0) � (v; V )

be three elements in D+. Since fu; u0g is bounded by v, the in�mum u u u0 exists in D. The

corresponding upper set U 00 must at least contain U and U 0 but depending on whether u u u0 is

contained in fu; u0g or not it may be necessary to include also u and/or u0. We can express this as

follows: U 00 = hU [ U 0 [ (fu; u0g n fu u u0g)iuuu0 . If (w;W ) is any other lower bound then either

w = u u u0 or w < u u u0. In the �rst case W must contain U 00 as we took U 00 as small as possible.

In the second case, W must contain u and u0 and hence also u u u0.

The proof for Scott-domains is the same with the single di�erence that f(u; U); (u0; U 0)g is not

necessarily bounded. In order to show that D+ is a lattice if D belongs to !Latep it su�ces to

note that (>; �) is the largest element of D+.

Lemma 14 If D is a �nite poset (L-domain, Scott-domain, lattice) then D+ is a saturation for D

in the respective category.

Proof: We indicated above that D is embedded in D+ via the mapping d 7! (d; "d). The corre-

sponding projection is given by (u; U) 7! u.

Let f :D! D0 be an increment and let uf 2 D and Uf � D be de�ned as above. In the de�nition

of D+ we already argued that (uf ; Uf) belongs to D+ in all four cases. It therefore remains to

show that D0 is embedded in D+. We identify D0 with the subset f(d; "d) j d 2 Dg [ f(uf ; Uf)g

of D+. For each (u; U) 2 D+ there is a largest element of D0 below it: if (uf ; Uf) � (u; U) then

either u = uf , in which case (uf ; Uf) is the largest element of #(u; U)\D0, or u is contained in Uf .

In the latter case we have that (uf ; Uf) � (u; "u) � (u; U) and (u; "u) is the largest element of D0

below (u; U). Hence there is a projection from D+ onto D0.

An illustration of the four di�erent constructions can be found in Figure 4 at the end of the

paper. The reader is challenged to check that the �gure labelled A+ in !Bep is, in fact, not an

L-domain whereas the �gure labelled A+ in !BLep is one. Similarly, the �gure labelled B+ in

!BLep is not a Scott domain although the �gure to its right is a Scott domain. The third trio of

examples is a similar illustration for algebraic lattices.
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6 Saturated domains.

We hope that the reader can now appreciate how Theorem 11 can be used to demonstrate the

existence of a universal object. In the proof of that theorem, there is a construction of a universal

domain using the saturations that exist in the category. Since a given �nite object may have

many non-isomorphic saturations, it is possible that the construction used there may give di�erent

universal domains if one uses di�erent saturations. In this section we demonstrate that this is not

the case in a category of !-bi�nite domains: regardless of the choice of saturations, the construction

in Theorem 11 is unique up to isomorphisms. In particular, we will de�ne the notion of a saturated

domain by analogy with the concept of a saturated model of a �rst order theory [CK73]. We

then show, as one shows the corresponding model-theoretic result, that there is a unique saturated

domain up to isomorphism. It is then shown that the universal domain constructed in Theorem 11

is, in fact, saturated. This shows that there is a \canonical" choice of universal domain for many of

the categories of domains used in denotational semantics [GS88]. It is remarked that the bounded

complete universal domain of Scott [Sco81, Sco82a, Sco82b] is not saturated and is therefore not

isomorphic to the universal bounded complete domain constructed in the previous section.

As an abbreviation, let us refer to an incremental full sub-category C � !Bep as a category

of domains if it is closed under embeddings: i.e. if E 2 C, D 2 !B and there is an embedding-

projection pair f :D! E, then D is in C. The key concept of this section is given in the following:

De�nition: Let C be a category of domains. An object U 2 C is fully saturated in C (or saturated,

for short) if, for every pair of �nite domains M;N and embedding-projection pairs, f :M ! U and

g:M ! N , there is a (not necessarily unique) embedding-projection pair h which completes the

following diagram:

M

N U

g

h

f

?

@
@
@
@
@
@R
-

Theorem 15 Let U be a fully saturated object in a category C of domains. Then U is universal

for C.

Proof: Each !-bi�nite domain D is the bilimit of an !-chain (Ai; aij) of �nite posets. We may

assume that A0 = f?g. Clearly, A0 is embedded in U 2 C and so by de�nition A1; A2; : : : are

embedded in U . This cocone over U gives rise to an embedding g:D! U .
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To prove the desired results about saturated domains, it is useful to introduce a few notations

and facts which are useful in dealing with categories of domains. If f :D! E is an embedding-

projection pair and fL is an inclusion map then we write D / E. The following lemma is easy to

prove and will be used implicitly in the proof of the theorem below:

Lemma 16 1. If M is a �nite poset such that M / U , then M � K(U).

2. If D is !-bi�nite and S � K(D) is �nite, then there is a �nite N /D such that S � N .

3. If M /D, N /D and M � N , then M /N .

Lemma 17 Let U be an object in a category of domains. If U is saturated, then for every �nite

M /U and embedding-projection pair f :M ! N into a �nite poset N , there is a poset N 0 /U such

that N �= N 0.

Proof: Let N 0 be the image under the embedding h whose existence is guaranteed by de�nition.

Theorem 18 If a category of domains has a saturated object, then it is unique up to isomorphism.

Proof: Let C be a category of domains and suppose that U and V are saturated objects of C. Let

u0; u1; : : : and v0; v1; : : : be enumerations of the bases of U and V respectively. Assume that u0 = ?U

and v0 = ?V . We construct an isomorphism between K(U) and K(V ) by a \back and forth"

construction. The �rst partial isormorphism is the unique arrow f0: fu0g �= fv0g. Suppose now

that we have �nite posets L/U and L0 /V such that there is an isomorphism fn�1:L �= L0. Suppose

further that fu0; : : : ; un�1g � L and fv0; : : : ; vn�1g � L0. We wish to extend the isormorphism

fn�1 to an isomorphism fn:M �=M 0 where M /U and M 0 / V are �nite and un 2M and vn 2M 0.

Now, we know that there is a �nite poset N / U with L [ fung � N . From the inverse of the

isomorphism fn�1 we can build an embedding-projection pair f :L0 ! N . Since V is saturated,

there is a poset N 0 / V and an isomorphism g:N 0 �= N . To complete the argument, we add fvng to

N 0 and �nd a subsetM 0 � V such that fvng[N 0 �M 0. Since U is saturated we �nd an isomorphic

copy M of M 0 inside U , containing L, such that the isomorphism g�1:N �= N 0 is extended to an

isomorphism fn:M �=M 0. In this way we obtain a sequence f0; f1; : : : of isomorphisms whose union

is an isomorphism between K(U) and K(V ). This isomorphism extends to an isomorphism between

U and V .

Theorem 19 If an incremental category of domains has �nite saturations, then it has a saturated

object.

Proof: Recall the construction in the proof of Theorem 11. Suppose C is an incremental category

with �nite saturations. Let S0 be any initial object of C. Build the chain S0; S1 = S+0 ; :::; Si+1 =

S+i ; ::: where si+1;i is a saturation for each i. Let U be a bilimit for this chain. It will simplify
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matters to assume that each of these saturations is an inclusion by replacing each Si by its embedded

image in U . Suppose M / U and there is an embedding-projection pair f :M ! N for some �nite

N 2 C. We must show that there is is an h such that

M

N U

f

h

/

?

@
@
@
@
@
@R
-

The proof is by induction on the number n of elements of N not in the image of f . If n = 0, then f

is an isomorphism so we may take the coextension of f�1 to U as h. If n � 1, then it is possible to

�nd an increment f 0:M ! N 0 such that f 0 extends f and N 0 /N and there is exactly one element

in N 0 which is not in the image of f 0. Since M is �nite, there is an i such that M � Si. Since f
0 is

an increment, there is an h0 such that

M

N 0 Si+1 = S+i

f 0

h0

/

?

@
@
@
@
@
@R
-

We can now apply our inductive hypothesis to �nd an h such that

N 0

N U

/

h

h0

?

@
@
@
@
@
@R
-

By putting these last two diagrams together we see that h has the desired properties.

Corollary 20 There are saturated objects in each of the following categories:

1. !Bep

2. !BLep

3. !Sep
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4. !Latep

It is interesting to note that Scott's universal domain for the consistently complete do-

mains [Sco81, Sco82a, Sco82b] is not saturated. To see this, it su�ces to note that the meet

of compact elements in the saturated consistently complete domain is not compact whereas the

intersection of compact elements in Scott's universal domain is compact.
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Figure 4: Saturations in di�erent categories.


