
DoS Protection for Reliably Authenticated Broadcast∗

Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh Venkatesh
University of Pennsylvania

Abstract

Authenticating broadcast packet communications
poses a challenge that cannot be addressed efficiently
with public key signatures on each packet, or securely
with the use of a pre-distributed shared secret key, or
practically with unicast tunnels. Unreliability is an
intrinsic problem: many broadcast protocols assume
that some information will be lost, making it problem-
atic to amortize the cost of a single public key signa-
ture across multiple packets. Forward Error Correction
(FEC) can compensate for loss of packets, but denial
of service risks prevent the naive use of both public
keys and FEC in authentication. In this paper we in-
troduce a protocol, Broadcast Authentication Streams
(BAS), that overcomes these barriers and provides a
simple and efficient scheme for authenticating broad-
cast packet communications based on a new technique
called selective verification. We analyze BAS theoreti-
cally, experimentally, and architecturally.

1 Introduction

Authenticating packet broadcasts is an interesting
technical challenge. If a common symmetric key is used
to authenticate the packets then any party that has the
key can spoof the broadcast. Using a public key signa-
ture would solve this problem, but signing and verify-
ing each packet would be expensive. Signing a group
of packets would reduce this cost, but many types of
broadcast are unreliable: if a signature is for a group of
packets and one or more of them is dropped, then it is
not possible to check the signature. A variety of ideas
have been proposed to address this problem with public
keys by including some kind of redundancy such as in-
cluding multiple copies of hash values or using Forward
Error Correction (FEC). Such approaches are vulner-
able to a Denial of Service (DoS) attack on either the
redundancy scheme itself or the public key signature
packets. In the former case, false parity information
makes it expensive to reconstruct valid packets, and,

∗In Network and Distributed System Security (NDSS), San
Diego, California, February 2004.

in the latter case, a flood of false signatures burdens
the recipient with too many signature checks.

This paper proposes an approach to solving these
and other DoS threats by a technique called selective
verification. The idea is to use public key signature
packets to authenticate hashes, parity information, and
data, while using random checking of signature packets
to defend against signature flooding and sequence num-
bers and time stamps to combat replay attacks. The
sender sends many copies of its signature packets and
the recipient checks the signature packets it receives
with a given probability. The number of copies and
the probability of verification can be varied to match
the load that the recipient is able to check to cope with
an expected level of attack. For example, suppose a
sender sends a 10Mbps stream to a receiver, but this is
mixed with a 10Mbps stream of DoS packets devoted
entirely to bad signatures. To relieve the recipient of
the need to check all of these bad signatures, the re-
ceiver can check signatures with a probability of 25%,
and, if the sender sends about 20 copies of each signa-
ture packet, the receiver will find a valid packet with
a probability of more than 99% even if the network
drops 40% of the sender’s packets. This technique is
inexpensive, effective against severe DoS attacks, and
adaptable to many different network characteristics.

To demonstrate selective verification we have de-
veloped a protocol called Broadcast Authentication
Streams (BAS) that provides authentication for a data
stream by adding a pair of authentication streams. Our
target is to show that BAS can be used effectively on
stock PCs over mid to high bandwidth links ranging
from 10Mbps to almost 1Gbps. To this end we pro-
vide a theoretical analysis of BAS, an implementation,
and experiments. The theory describes how to set
parameters that affect features such as latency, over-
head, recovery confidence, and maximum buffer size
requirements. The experiments confirm our theoreti-
cal calculations and provide practical information such
as throughputs on the target systems. Our implemen-
tation of BAS for a sender takes an array of input RTP
packets and produces an array of authentication data.
For a receiver, it takes an array of packets based on
models of packet loss and a “shared channel” model



of DoS attacks introduced in this paper and processes
these to find authenticated data packets. These experi-
ments confirm estimates like the one above and provide
information about throughput capacities. For instance,
the packets from a 10Mbps sender with 40% loss can
be authenticated with the use of less than 10% of pro-
cessor time even during an attack of 10Mbps. Our the-
ory predicts and our experiments confirm that selective
verification and BAS work well on PCs for applications
that can tolerate 1-2 second latencies under signature
flood attacks that range up to 500Mbps. This can be
compared to latencies for playout buffers for Internet
multi-media streams, which often use latencies of 5-10
seconds.

Another contribution of the paper is a rigorous model
for analysing and quantifying the effectiveness of a DoS
protection scheme. We call the one introduced here the
shared channel model. It is based on the idea that an
adversary can insert packets into a valid stream and
may affect the loss rate of the stream statistically, but
cannot choose exactly which valid packets are actually
received. This contrasts with the Dolev-Yao model in
which the adversary is considered to have control over
exactly which packets are delivered. We argue that the
weaker model is more appropriate for analyzing DoS
threats in many cases.

The paper is divided into nine sections. Section 2
introduces the shared channel model, which serves as
the foundation for our analysis. Section 3 provides an
informal description of the BAS protocol. Section 4 de-
scribes related work. We specify the BAS protocol in
Section 5 and analyze it theoretically in Section 6. We
describe our prototype implementation of BAS with se-
lective verification in Section 7. This was used to carry
out experiments described in Section 8. Section 9 con-
cludes. Appendices contain details of the loss models
and error-correction codes used, theoretical results and
proofs, and additional experimental data.

2 Shared Channel Model

The shared channel model assumes that a legitimate
sender and an attacker share a packet communication
channel to a receiver. A given model is characterized
by a 4-tuple (W0,W1, A, p) consisting of the minimum
bandwidth W0 of the sender, the maximum bandwidth
W1 of the sender (where W0 ≤ W1), the bandwidth A
of the adversary, and the loss rate p of the sender where
0 ≤ p < 1. The ratio R = A/W1 is the attack factor of
the model. When R = 1, this is a proportionate attack
and, when R > 1, it is a disproportionate attack. A
proportionate attack with a loss rate of 20% is depicted
in Figure 1. In an informed shared channel model, the

S1 S2 S4 S5S3A1 A2 A4A3

Sender Packet

Attacker Packet

Dropped Sender Packet

A5

Figure 1: Shared Channel Model

adversary is assumed to know all of the values sent
by the receiver and is able to forge predictable values
like sequence numbers. This makes a considerable dif-
ference for some protocols. For instance, an informed
attack on TCP could use sequence numbers in an on-
going connection to break the connection, providing a
much cheaper attack than an uninformed approach like
SYN flooding. An adversary may ‘modify’ a packet by
replaying a modified version of a previously-seen sender
packet. However, the adversary is unable to cause spe-
cific sender packets to be dropped or modified: sender
packets are dropped probabilistically at rate p. The
model assumes that sender packets arrive in the order
in which they were sent when they do arrive. However,
packets may appear to arrive out-of-order if an adver-
sary replays dropped packets. Many protocols, includ-
ing BAS, will treat reordered packets as dropped if they
are grossly out-of-order (say, by more than a few hun-
dred packets), so the assumption of in-order delivery
for sender packets is not as strong as it may appear.
Reordering can be modeled by taking a higher value
of p and assuming that the adversary replays many
dropped packets.

The shared channel model is more appropriate for
analyzing denial of service than the much-studied
Dolev-Yao model [3], which assumes that an adversary
is able to drop all sender packets. An adversary with
this ability is ensured of a DoS capability. The shared
channel model is weaker than one that assumes that the
adversary has all of the channel bandwidth (W1 = 0).
When a host can handle the load with this assumption
(for instance, by rejecting all of bad packets without
excessive processing), it can handle it with, say, a pro-
portionate attack. But, there are cases (as shown later)
where W0 6= 0 makes a major difference in how large A
must be to achieve an effective attack. That is, if the
legitimate sender can get some packets through, then
these can be used to raise the bar for a successful DoS
attack.

A signature flood attack is one in which an adver-
sary sends false signatures. Checking these signatures
is costly and burdens the victim’s processor. Typical



Table 1: Cryptographic Costs

Crypto Operations Operating Time
Sign(3) 4.92ms

Check(3) 86.8µs
Sign(17) 4.96ms

Check(17) 124µs
Sign(65,537) 5.10ms

Check(65,537) 270µs
Hash(1460) 13.3µs
Hash(10) 1.57µs

costs1 are given in Table 1. The table provides signa-
ture and verification times for RSA on 10 bytes with
exponents of 3, 17, and 65537 as well as SHA hashes
on 10 and 1460 bytes. One can see from the figures for
public key signatures that the processor is only able to
create about 200 signatures each second. The costs of
a Public Key Check (PKC) depends somewhat on the
exponent. We will work with an exponent of 17 in this
paper. A signature flood that results in 8000 PKC/sec
would completely overwhelm a processor. We will typ-
ically work in terms of a PKC budget, for instance, one
that requires that no more than 5% of processor time be
spent on PKCs. So an effective flood could be achieved
by forcing 400 PKC/sec. In a proportionate attack at
high bandwidths, this could be easy. For instance, in
Figure 1, if packet S5 holds a signature on hashes for
packets S1-S4 and packets A1-A5 are false signature
packets that look like S5 but contain a bad signature,
then the receiver may end up checking most or all of
these bad signatures. Since the entire bandwidth of
the adversary could be devoted to the signature flood,
the attack could realize a very high PKC burden at the
receiver.

3 Informal Description

Our protocol, BAS, is based on a combination of FEC
and repetition coding to provide modest bandwidth
overhead and robust DoS protection. BAS uses FEC
to reduce the costs of repeated hashes; it uses repeated
signatures to secure the FEC-encoded hashes and ad-
dress DoS attacks based on fake signature packets.
Overall the architecture consists of three streams of
packets as pictured in Figure 2. The first stream, called
the data stream, consists of the data packets; these are
not required to contain any cryptographic information.

1These are for a 2.4GHz PC with Redhat Linux 7.3 using
operations from OpenSSL 0.9.6.

Data Stream

Hash/Parity Stream

Signature Stream

Hash Hash Hash Parity

Figure 2: Architecture for Broadcast Authentication
Streams (BAS)

The BAS protocol aims to authenticate this stream;
the data packets may be encrypted if it is important
to preserve their confidentiality, but the BAS protocol
does provide this service. The second stream, called
the Hash/Parity (HP) stream, consists of two kinds of
packets. The first kind are called hash packets. These
contain hashes of data packets. The second kind are
called parity packets. These contain FEC coding infor-
mation that allows dropped hash packets to be recon-
structed. The third stream, called the signature stream,
consists of packets that sign hashes of HP packets. The
collection consisting of the data packets together with
their corresponding hash, parity, and signature packets
is called a transmission group (TG). Figure 2 shows the
packets in one transmission group. In general, a trans-
mission group will include more than a thousand data
packets, as determined by the allowable latency for au-
thentication, a number of hash and parity packets that
depends on the number of data packets and loss rate,
and a number of signature packets that depends on the
bandwidth and DoS threat.

Our approach to DoS prevention is based on two
strategies. First, FEC-encoded information is pro-
tected by a digital signature. Thus spurious packets
intended to burden FEC decoding will be discarded
as quickly as their hashes can be checked. Second,
we address DoS based on public key signature flood-
ing with selective verification. We discuss two kinds
of selective verification, sequential and bin. In both
cases the idea is to send copies of signature packets to
the receiver. The receiver checks a subset of the signa-
ture packets it receives. Some of these may be spoofed
by an attacker, but the receiver will find a valid one
quickly enough and with sufficiently modest computa-
tional effort to defeat signature flooding. In sequential
verification, the receiver verifies signature packets ran-
domly until finding a valid signature. After a sufficient
number of such trials the probability of finding a valid
signature will be high and the next signature packet
can be sought. In bin selection we use sequence num-
bers in redundant signature packets. That is, the same
signature is sent, but with a different sequence num-
ber for each copy. Suppose for example that a channel



with a 25% average loss rate between the sender and
receiver supports an attack in which an adversary can
send 500 fake signature packets per second. In bin veri-
fication, we divide the spoofing efforts of the adversary
between a collection of signature packets using distinct
sequence numbers. For example, suppose the sender
creates 10 signature packets numbered 1 through 10
in a given second. The receiver waits long enough to
receive some or all of these, together with up to 500
spoofed signature packets from an attacker. For at
least 2 of the ten sequence numbers there will be no
more than 102 spoofed and legitimate packets using
that number. There is about a 93% probability that a
legitimately signed packet is in this group of 102 pack-
ets. Thus the attacker is typically only able to force an
additional 100 verifications with 500 spoofed packets.
Increasing the number of sequence-numbered packets
improves the burden at the receiver at the cost of a
modest additional bandwidth.

Our approach to loss is also based on two strategies.
The first, as discussed already, is to use FEC where
possible and repetition where necessary. Since repeti-
tion was necessary to thwart denial of service in some
cases anyway, and FEC offers very significant savings
over repetition, this provides a comfortable tradeoff.
The second strategy involves spacing hash, parity, and
signature packets though the data stream to improve
robustness against bursts. The idea is illustrated in
Figure 3. The figure shows packets from three trans-

01 1 1 1 01 1 1 1 01 1 1 1 1

-10 0 0 0 -10 0 0 0 -10 0 0 0 0

Figure 3: Interleaving of Streams

mission groups numbered −1, 0, 1 and having a profile
similar to the TGs in Figure 2. In general, hash packets
are sent as soon as they are ready while signature and
parity packets are spaced throughout the data and hash
packets of the subsequent transmission group. This in-
terleaving adds robustness to burst loss at the potential
cost of some additional latency.

4 Related Work

There are essentially three approaches to authenticat-
ing broadcast packets. The one we consider in this pa-
per is to use ‘ordinary’ public key signatures to secure
data, hash, and parity information. An alternative is
to use public key signatures on the data and assure that

the signature can be checked by using FEC to achieve
reliability. A final alternative is to use symmetric keys
or special kinds of public key signatures. Each of these
approaches offers its own challenges. The first approach
is vulnerable to signature floods, the second is vulner-
able to attacks on FEC encoding as well as signature
flooding, and the third requires additional assumptions
such as synchronized clocks or special cryptography.

The idea of amortizing the cost of public key sign-
ing and checking over multiple packets by using hash
chains was suggested in [5]. To deal with packet loss in
authenticated broadcast, one approach that has been
extensively studied is to add more hashes into the pack-
ets [18, 13, 6, 17]. For instance, a packet might contain
the hash of the packet before it and the packet before
that one. If the middle packet is lost, then the extra
hash enables verification. This chaining has some prob-
lems, however. First, the choice of the chaining has a
significant impact on the reliability that is achieved,
and this impact is subtle to analyze. Second, reliabil-
ity costs bandwidth since multiple hashes are needed
to assure that chains to signature packets remain un-
broken by losses. In any case, adding extra hashes to
packets does not deal with dropped signature packets
so something needs to be done about this too. A hy-
brid approach [24] addresses computation and reliabil-
ity problems by putting a signature into each packet
along with hashes of a collection of other packets. The
signature is applied to a Merkle hash tree [12] created
from this collection and only needs to be checked once
for each collection. This also has the advantage that
each packet can be verified as soon as it arrives. De-
spite the optimization provided by the Merkle tree, this
approach has a significant bandwidth overhead since
space must be allocated for the signature and multiple
hashes in each packet.

The use of coding techniques to limit overhead for
authenticated broadcast appears in the extended hash
chain scheme of [18] based on Rabin’s Independent Dis-
persal Algorithm (IDA). Subsequent work on FEC for
authenticated broadcast has shown that low overheads
can be acheived [14, 15]. These approaches are vulnera-
ble to signature flooding and attacks on FEC encoding.
An FEC-based technique to a address a DoS attack in
which an adversary is able to modify a small number
of sender packets is discussed in [15]. This technique
is not effective when large numbers of invalid packets
can be inserted by an adversary as in the shared chan-
nel model. For instance, suppose we wish to endure a
proportionate attack with a code of n segments that
can be reconstructed if no more than t segments are
lost and no more than α are modified. Decoding is
the first step in the verification phase of [15], so the



receiver will need to look for segments to use in de-
coding from among the segments he receives. Assume
that m ≥ n− t of these came as sent by the sender and
another n segments arrive as modified by an adversary.
To decode, the receiver needs to find a set of n− t seg-
ments from among n + m possibilities that includes at
most α segments from among the n adversary-modified
segments. For reasonable values of n, t, α,m, testing
these combinations until a good one is found will add
many multiples of processing overhead to the decod-
ing. This problem is the basis of the conventional wis-
dom [19, 9] that unauthenticated FEC-encoded data is
vulnerable to DoS attack.

There are several approaches to broadcast authen-
tication based on symmetric keys or special kinds of
public key signatures. One approach [1] involves se-
lecting a collection G of symmetric keys and distribut-
ing a random subset of G to each receiver; a trusted
sender uses MACs based on all of the keys in G, and
each receiver verifies using the keys they have. Another
approach [18] assumes that the sender and receivers
can synchronize their clocks to within an accpetable
threshold. The sender then sends out data packets
with MACs and later discloses the key for computing
the MAC. Packets received after the disclosure are dis-
carded. The use of MACs helps defeat DoS attacks
becuase of their relatively low processing cost. When
distributing sets of secret keys or synchronizing clocks
is feasible these approaches are robust against DoS at-
tacks. Of course, attention must then be paid to DoS
treats against supporting protocols for time synchro-
nization and key distribution. Another strategy to deal
with DoS is to use less expensive forms of cryptographic
verification such as one-time [5, 16] or k-time [21] sig-
nature schemes.

Our contribution in this paper is a technique, se-
lective verification, and its application to DoS attacks
on broadcast authentication schemes that use common
kinds of public key signatures. Selective verification
can be used with most of the existing approaches to
public key authentication of broadcast packets. Our
specific instantiation, the BAS protocol, uses a sim-
ple kind of hash tree divided into two authentica-
tion streams. This approach fits well with our use
of RTP [23] and FEC techniques [20] that add parity
packets as a supplementary stream (see also [4]). Our
system achieves the low overheads of FEC-based tech-
niques without the need for new kinds of cryptography
or other assumptions and provides robust protection
against DoS attacks.

5 Protocol Specification

As discussed broadly earlier, in order for broadcasts to
be reliably authenticated, our protocol will provide two
fundamental types of protection: (1) a mechanism en-
abling reliable recovery of authentication packets (i.e.,
hash and signature packets) lost at a priori unpre-
dictable locations; and (2) a configuration resilient to
informed DoS attacks that provides computationally
efficient authentication. We consider each of these is-
sues in turn before providing a formal specification and
analysis of the broadcast authentication streams (BAS)
protocol.

5.1 FEC in the Authentication Stream

We refer the reader to Appendix A for a discussion of
forward error correction codes. We summarize here the
specific variant that we use in our protocol.

Encoding Hash Packets We will use punctured
Reed-Solomon codes to protect the k hash packets for
each transmission group from erasures. While it is
tempting to philosophically think of a packet as a sym-
bol, the size of each packet, say 1500 bytes, makes for
a daunting field size. It is computationally much easier
to work in fields of modest size. Accordingly, we par-
tition each hash packet of N bits into N/m symbols
(neglecting packet overhead bits and integer round-off
for simplicity), each of m bits. Grouping corresponding
symbols in each of the k hash packets yields a parallel
collection of N/m groups of k source symbols to be fed
in parallel to a punctured Reed-Solomon encoder. If
erasure protection for losses of up to ` authentication
packets in a group is desired, we now create ` par-
ity packets, with each packet consisting of N/m parity
symbols resulting in a parallel collection of N/m groups
of n′ = k+` symbols forming the punctured codewords.
Observe that the loss of any packet results in the loss
of a symbol in the same location for each of the N/m
codewords that have been formed. Thus, as long as no
more than ` of these n′ Hash/Parity (HP) packets are
lost, no codewords will have lost more than ` symbols
and all symbols, hence all hash packets, can then be
recovered. See Rizzo [20] for details on this approach.

Encoding Signature Packets Each transmission
group creates only one signature packet. Latency con-
siderations prohibit pooling signatures from several
groups and as a consequence we end up coding sig-
natures individually from group to group. In such set-
tings repetition codes yield comparable protection to
more sophisticated codes and we may as well opt for



simplicity of implementation. A second, more subtle
computational factor arises when we consider coding
to protect against DoS signature attacks next.

5.2 DoS Protection via FEC

We consider DoS attacks that attempt to confuse the
recipient by sending a flood of packets mimicking true
packets by usurping their sequence numbers. In what
follows, we describe a paradigm that uses FEC to
severely diminish such attacks. For instance, using our
approach, an adversary launching a DoS signature at-
tack at a rate of 100 Mbps, can be reduced effectively
to a 1 Mbps DoS attack with a very small bandwidth
overhead. As mentioned earlier, there are two varia-
tions of the basic approach. The first one, called selec-
tive sequential verification, works with repetition codes,
and is well-suited for handling signature attacks since
they only occupy a tiny fraction of the authentication
stream. The second approach, called selective bin ver-
ification, works with a broad range of FEC schemes,
and is particularly well-suited to handle attacks on the
HP packets.

Signature Attacks The adversary attack in this in-
stance involves flooding the receiver with spurious sig-
nature packets. This is a strong attack since public
key verification is the single most computationally ex-
pensive step performed at the receiver end. To cope
with the attack the sender creates a number of copies,
say M , of the first signature packet in a transmission
group and interleaves and transmits these copies over
the next transmission group. The copies are identical
barring the packet sequence number so that the com-
putational burden on the sender is kept minimal.
Selective sequential verification. For a given compu-
tational budget, say 5% of the processor, the receiver
sequentially samples received packets purporting to be
signatures (i.e., with a valid sequence number). Each
putative signature is examined with a probability π
(determined by the available computational budget and
the maximum number of packets arriving per second)
so as to ensure that the total number of signature veri-
fications per unit time remains within the budget with
high confidence. A sufficient number of replications of
the signature vis à vis the adversary’s spurious copies
will suffice to guarantee a high confidence that a valid
signature will, in fact, be discovered. Each time a sig-
nature is verified the receiver proceeds to verify the
corresponding hashes.

Hash/Parity Attacks An adversary may also at-
tack the HP packets in the authentication stream.

Given the relatively large number of HP packets in
each transmission group, selective verification, which
is based on repetition coding, can no longer be effi-
ciently used because of the large per packet overhead.
Selective bin verification provides an efficient way to
counter DoS attacks on HP packets.
Selective bin verification. In the absence of a DoS at-
tack, FEC allows us to recover the hash packets for a
transmission group as long as any k of the n hash and
parity packets in the code successfully arrive at the re-
ceiver. Typically, the code parameters are chosen such
that the probability of k packets arriving is very high,
say, 99.99%. We can instead choose a more powerful
code that, with high probability, ensures that at least
ck of the HP packets successfully arrive at the receiver
(where c > 1). Suppose we are searching for k valid
HP packets for transmission group i, and suppose we
have identified a set W of received packets such that
all valid HP packets for transmission group i must be
contained within W—this set presumably contains a
large amount of adversary traffic. Since we know the
valid packet sequence numbers for HP stream for trans-
mission group i, we can easily cluster all of the packets
in W by their sequence numbers (i.e., all packets that
share a sequence number are put together in a bin)
thereby forming several bins. The algorithm now pro-
cesses these bins in increasing order of sizes—checking
all packets in each bin until a valid packet is found.
While scanning each bin, we compute the hash of each
packet in the bin and match it against the hash in-
cluded in the signature packet. We stop once we have
collected k valid hash and parity packets. Suppose p
is the loss probability. If at least ck HP packets arrive
and the average size of a bin is W/ck, then searching
[1/(1 − p)]k bins is likely to yield k valid HP packets.
Thus there is a net effect of diminishing the adversary
traffic by a factor of (1−p)c. So, for instance, choosing
c to be 10, can effectively slow down the adversary by
a factor of 10, diminishing the computational load on
the receiver by an order of magnitude.

5.3 The BAS Protocol

We can now put the previous considerations together
to specify the BAS protocol. This protocol uses selec-
tive sequential verification to handle a DoS signature
attack and selctive bin verification to handle a DoS at-
tack on HP stream. Let Nd, Nh, and Ns respectively
denote the number of data packets, HP packets, and
signature packets in each transmission group. Also, let
N = Nd +Nh +Ns, and let R denote the ratio of max-
imum possible adversary traffic rate to the maximum
possible sender traffic rate.



Collect data
packets, compute

hashes, send

Form hash packet,
send

Enough for
hash pkt?

Enough for
TG?

Compute parity
and signature

packets

Interleave

Yes

No

No

Yes

Figure 4: Flow Chart for BAS Sender

Sender Protocol (Figure 4)

1. As data packets are produced, collect their hashes
into hash packets. Forward data packets as soon
as their hashes are taken, and send hash packets
as soon as they are complete.

2. When enough data packets have been processed to
make a transmission group, create parity packets
and a signature for the group.

3. While sending the next transmission group, inter-
leave the parity packets and Ns copies of the sig-
nature packet for this group. In this interleaving,
the signature and parity packets should alternate.

Receiver Protocol: Acquisition Phase To ac-
quire a stream the receiver begins searching for sig-
nature packets as indicated in RTP headers. The ac-
quisition phase is vulnerable to a replay attack, and in
order to protect against such an attack, the receiver
first buffers all candidate signature packets that are
received over a window of time that corresponds to
the time needed to broadcast g transmission groups.
Now it chooses a random subset of packets for verifica-
tion from this set, picking each candidate packet in the
buffer with probability π. Among the signature pack-
ets that are successfully verified, the receiver picks the
one with the most recent time stamp and proceeds to
locate the HP stream corresponding to this packet. At
this point, we say that the stream is acquired. Once a

stream is acquired, the receiver knows the packet num-
bers that correspond to signature packets sent by the
sender since the authentication stream has a repetitive
structure.

Buffer putative
data and hash

pkts

Randomly verify
signature pkts
over latency

window

Pick most recent
valid signature pkt

Find valid hash
and parity pkts

Flush buffer

Find valid data
pkts

Reconstruct hash
stream

Figure 5: Flow Chart for BAS Receiver

Receiver Protocol: Stream Processing Phase
(Figure 5)

1. When a valid signature has been found, it is used
to search for the corresponding hash and parity
packets in its TG. This search is carried out over a
collection of packets received before and after the
receipt of the valid signature packet. This collec-
tion is called the HP (HP) verification window and
is chosen to consist of 2(R+1)(N) packets received
prior to the packet containing a valid signature and
(R + 1)N packets that are received after that. It
is easy to see that all relevant HP packets must be
contained within this window.

2. The receiver now applies the selective bin verifi-
cation technique to cluster these packets into bins
(based on packet sequence numbers) and processes
these bins in increasing order of sizes. While pro-
cessing a bin, it checks the hash of each candidate



packet against the hash recovered from the signa-
ture packet (using the packet sequence number).
Once the valid hash and parity packets in the HP
verification window are found, FEC is used to re-
construct as many missing hash packets as possi-
ble. Those hashes that can be verified are used
to obtain verified data packets, which are passed
along or otherwise indicated as authenticated.

3. After a TG has been processed, the receiver con-
tinues searching for the next valid signature by
verifying each incoming signature with probability
π. This process repeats after each valid signature
is used to process a TG.

6 Protocol Analysis

A formal analysis of the BAS protocol is presented in
Appendix B. We present here a brief overview of how
the BAS protocol defends against various attacks. The
three attacks of primary interest are signature flooding,
replay, and hash flooding.

Signature Flood Signature flood attacks are effec-
tively handled by the selective sequential verification
feature of the protocol. For instance, if the sender
sends 50 copies of each signature packet, the receiver
can sample each candidate signature packet with a 10%
probability and still recover a valid signature packet
with a 99.5% confidence. On the other hand, the 10%
sampling rate cuts down the signature flood by a factor
of 10.

Replay Attack A successful replay attack occurs
when in the acquistion phase, the receiver chooses a
valid old signature packet that is being replayed by
the adversary. BAS protects against this by buffer-
ing all signature packets seen over a window of several
transmission groups. A simple analysis shows that by
sampling from a suitably large buffer, we can ensure
that the receiver obtains at least one current signa-
ture packet with high probability. Since the acquistion
phase selects the most recent valid signature packet,
the probability of a replay attack is negligible. Once
the acquisition phase succeeds in choosing a current
signature packet, a replay attack does not effect the
stream processing phase. We note here that only a
coarse synchronization is needed between the clocks of
the sender and the receiver in order to choose the most
recent signature packet.

Hash Flood If the adversary attack rate is so high
that we cannot perform even hash computations of all

incoming adversary and valid packets, then we essen-
tially drop data packets (the ones that could not be
authenticated). It is not difficult to see that an adver-
sary targeting hash computation load at the receiver
will be more effective by focusing on the hash parity
stream than data stream. Each valid data packet for
which receiver is unable to compute a hash due to the
computational overload, causes a loss of a single data
packet. In contrast, each transmission group for which
we are unable to compute hashes for enough packets
in the hash parity stream, will cause us to lose all Nd

data packets in the corresponding transmission group.

Other Attacks Other attacks of interest include: in-
tegrity attacks on the data or HP stream, attacks on
key distribution, and attacks on time stamps. Let us
first consider each of these in turn. If an adversary
introduces false (non-replay) packets into the data or
HP stream, then their hashes will not coincide with
the ones signed by the signature packets. An adver-
sary who sends a large number of such false packets
will have them discarded as quickly as their hashes can
be computed. The BAS protocol uses public keys so
there is no session key distribution protocol to attack.
Attacks on PKI represent the same risk for other pro-
tocols that they do for BAS. BAS uses a very coarse
time requirement, on the order of hours, so attacks on
time stamps cannot exploit fine errors.

7 Implementation

We have implemented the BAS protocol based on the
Real-time Transport Protocol [23]. RTP provides a 12
byte header that includes a 16 bit sequence number, a
timestamp, and other information such as a synchro-
nization source identifier. The BAS protocol exploits
the sequence numbers to correlate three RTP streams.
The first of these, the data stream, is an RTP stream
of any kind provided by an application-level protocol.
BAS associates two additional RTP streams to this
one, namely the HP and signature streams. A given
collection of data packets will determine corresponding
hash, parity, and signature packets; this associated col-
lection of data, hash, parity and signature packets is a
Transmission Group (TG). The nature of a transmis-
sion group depends on the rate of at which the data
will be sent and the anticipated reliability of its chan-
nel. We developed design parameters for two rates,
10Mbps and 100Mbps, and three levels of reliability
reflecting average losses of 5%, 20% and 40%. The pa-
rameters are predicated on the assumptions that the
receiver should be able to verify the packets it receives
within 2 seconds over a low speed channel (10Mbps)



and 1 second over a high speed channel (100Mbps) with
a confidence of 99%. For a given rate and reliability,
these assumptions yield a choice of the number of data
packets k in a transmission group, the number of hash
packets needed to hold their hashes, and a number of
parity packets ` needed to provide sufficient reliability
to the hash stream. Table 3 provides reliability param-
eters used in our implementation. On a 10Mbps link
we use 11 hash packets: for loss rates of 5%, 20%, and
40% we use 5, 11, and 22 parity packets respectively.
On a 100Mbps link we use 57 hash packets: for loss
rates of 5%, 20%, and 40% we use 10, 30, and 66 par-
ity packets respectively. The size of the transmission
group is the number of data packets assuming 144 for
each hash packet plus the number of hash and par-
ity packets plus the number of signature packets. For
10Mbps we send 20 signature packets and for 100Mbps
we send 200. A TG for 10/5 (10Mbps and 5% loss)
has 1620 packets, including 20 signature packets, while
a TG for 100/5 has 8475 packets, including 200 signa-
ture packets. These choices assume that packets can
contain up to 1500 bytes of data. Nothing about the
BAS algorithm fundamentally relies on packets of 1500
bytes, but we would use different parameters for other
sizes. For a hash we use the first 10 (of 20) bytes in a
SHA hash [8].

The number of signature packets to be sent is de-
termined by the need to ensure that the receiver can
find a valid signature packet within the specified veri-
fication latency assuming that an attacker is given the
same capacity as the sender. Signatures use 1024 bit
RSA with an exponent of 17. Selective sequential veri-
fication uses a verification frequency parameter of 25%
for 10Mbps and 2.5% for 100Mbps.

BAS relies on the use of sequence numbers to de-
termine transmission groups from the three streams
of packets. We assume that all packets are given IP,
UDP, and RTP headers as illustrated in Figure 6(a).
The sizes of headers and available payload are given

144 Hashes(b) HLH

FEC Parity Data(c) HLH

SN Rng

40 1456

40 14402 2

(d) HLH

40

Sig HRng PRng Hashes

128 2 2 Variable

SN

4

Pad

Variable

IP Payload(a) UDP RTP

20 8 12 Up to 1460

Time

4

Figure 6: Packet Formats

in bytes in the figure. Hash packets are illustrated in
Figure 6(b). In this and other cases in the figure, HLH
refers to the IP, UDP, and RTP headers. Following rec-
ommendations in the RTP standard, the HL and sig-
nature streams use distinct UDP ports to distinguish
them from each other and the data stream. In particu-
lar, the three streams have distinct sequence numbers.
The SN field of each hash packet is the first sequence
number from the data stream for which a hash appears
in the hash packet payload, and the range indicates
the total number of data packets whose hashes are in-
cluded. This number is generally 144 (the maximum
that will fit), but could be smaller. The hash of a data
packet applies to its RTP header and payload but not
to its IP and UDP headers. Parity packets are illus-
trated in Figure 6(c). Parity packets are created from
applying a systematic Reed Solomon code to the RTP
and payload portions of the hash packets from their
transmission group. These packets have their own RTP
headers, but the parity information does not recover
these or the IP and UDP headers of hash packets in the
transmission group. It also does not allow the recovery
of any lost data packets. Signature packets are illus-
trated in Figure 6(d). The signature is applied to the
truncated hash of the significant fields in the packet fol-
lowing the signature. These include the sequence num-
ber field, SN, which is the RTP sequence number of the
first hash packet in its group, the HRng field, which is
the value of k, the PRng field, which is the value of
l, a 32 bit time based on the Network Time Protocol
(NTP), and the collection of truncated hashes of the
HL stream packets in the transmission group. These
hashes cover all of the data in these packets except for
the IP and UDP headers. Note that only one signature
is required for each transmission group, no matter how
many signature packets are used.

The time stamp is used to avoid replay attacks based
on old sequence numbers. With 16 bit sequence num-
bers there may be some wrap-around in the signature
stream, but this will very slow, on the order of many
hours. The receiver checks that the time stamp is ac-
curate to within 20 minutes to prevent replays. We
could have used the time stamp in the RTP header,
but this complicates interactions with RTP since the
implementation uses the same signature for all of the
signature packets in a transmission group whereas RTP
will assign them all distinct time stamps.

8 Experiments

We now present an experimental evaluation of the BAS
protocol for various settings of rate, loss and attack.



8.1 Setup

We assume the existence of a DoS attacker with ac-
cess to the various levels of bandwidth. The interest-
ing independent variables are the following: sender rate
and latency; loss rate; average burst length; attacker
rate. Our approach fixes a target latency; the proto-
col is then designed for various bandwidth and relia-
bility characteristics of the channel. The interesting
dependent variables are: sender throughput; receiver
throughput; bandwidth overhead; authentication loss.
The sender rate is the number of megabits of data pack-
ets that can be processed in one second; processing
consists of producing the necessary hash, parity, and
signature packets for the data packets. The receiver
rate is the rate in megabits per second at with which
valid data packets can be recovered from a mixture of
packets originating from the sender and an attacker.
The bandwidth overhead is the percentage of band-
width devoted to hash, parity, and signature packets.
The authentication loss is the percentage of data pack-
ets received by the receiver that cannot be verified by
the receiver due to the loss or reordering of hash, sig-
nature, and parity packets.

To carry out an experiment for a sender we start with
a collection of data and simply generate the necessary
hash, signature, and parity packets. For a receiver, we
start with the stream produced by a valid sender and
apply a loss model to remove a subset of the stream.
We then insert DoS packets randomly into the resulting
stream at a ratio determined by the attack factor. DoS
packets are assumed to take advantage of an informed
attack, so, for instance, they assign sequence numbers
that the receiver is expecting to see from the sender.
Our experiments are for DoS attacks based on signature
flooding only. In particular, no other kinds of packets
are sent by an adversary. The aim is to measure ro-
bustness against signature floods even at levels where
the adversary could be effective by attacking another
limit. For instance, a receiver can perform hashes on
about 77,000 packets each second so a factor 10 attack
on a 100Mbps link would overwhelm this capacity if
it forced the receiver to perform hashes on all of the
packets it receives.

Our throughput numbers are based on the average
of three runs for 32 transmission groups. The authen-
tication loss numbers are based on 15 runs over 32
transmission groups. These were done on a 2.4GHz
PC with enough memory to avoid using the disk and
Redhat Linux 7.3 using cryptographic operations from
OpenSSL 0.9.6.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

1 4 7 10 13 16 19 22 25 28 31 34

TGs x 64

au
th

 lo
ss

 r
at

e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19 22 25 28 31 34

TGs x 64

no
 o

f f
ak

e 
si

gn
at

ur
es

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 7 10 13 16 19 22 25 28 31 34

TGs x 64
se

c/
T

G

Figure 7: Scenario Attack Profile

8.2 Results

We begin with a collection of figures derived from a sce-
nario that illustrates the basic measurements we con-
sidered. Assume we are given a sender that sends pack-
ets at a rate of 10Mbps and a receiver that gets them
over a channel with a 20% average loss that occurs
in bursts that average 100 packets. After a period of
time an attacker sends fake signature packets which
are received at a rate of 8Mbps. For this profile the
BAS implementation uses transmission groups of 1626
packets, including 20 signature packets. Each TG takes
about 2 seconds to transmit. Signature packets are
checked at the receiver with a probability of 25%. Fig-
ure 7 illustrates a few of the associated effects of this
attack. Figure 7(a) shows the number of false signa-



Table 2: Disproportionate DoS Signature Attack Pa-
rameters for 20% Loss

Sender Rate (Mbps) 10 100 100
Attack Factor 10 5 5
PKC Budget Per TG 800 400 1000
Packets Per TG 1666 8333 8333
Signature Copies 131 657 249
Checking Probability(%) 4 1 2
Expected Sender Packets(%) 7 14 14
Signature Overhead(%) 8 8 3

tures checked per collection of 64 transmission groups.
Figure 7(b) shows the time required to process each
collection of 64 transmission groups. Note that this
cost rises slightly during the attack. Figure 7(c) shows
the authentication loss rate, that is, the percentage of
data packets that reached the sender but could not be
authenticated because of the loss of packets in the au-
thentication stream.

We now provide a sample of the figures we derived
from various additional experiments. Figure 8 shows
processing throughputs for independent loss rates with
no DoS attack. These experiments use the parame-
ters in Table 3. By contrast Figure 9 shows through-
puts for independent loss for a collection of different
disproportionate attacks using the signature repetition
codes prescribed by the theory in Section 6. The first
three pairs of experiments are for a factor 10 attack
on a 10Mbps sender at various loss rates assuming a
budget of 800 Public Key Checks (PKC) per TG. The
next three pairs are for a factor 5 attack on a 100Mbps
sender with a 400 PKC/sec budget. The last three
pairs are for a factor 5 attack on a 100Mbps sender
with a 1000 PKC/sec budget. Table 2 shows the corre-
sponding parameters for the case of 20% loss as derived
from our analysis. These figures are based on a 99%
confidence for authentication.

Figure 10 shows processing throughputs for corre-
lated losses ranging from an average of 10 packets per
burst loss to 200 packets per burst loss using a two-
state Markov chain. As in Figure 8 we are assuming a
proportionate attack. Sender rates are not affected by
burst rates so they remain the same as for the indepen-
dent case. Figure 11 shows authentication loss rates
plotted over burst rates. For example, if a 10Mbps
channel is used at 5% loss, then authentication losses
begin to occur at bursts of about 80.

8.3 Analysis

The scenario analyzed in Figure 7 shows that an attack
causes the receiver to check an increased number of bad
signature packets, but this number is far less than the
number actually sent since packets are checked with a
probability of 25% and signature packets for a given
TG can be ignored after a valid one is found. The time
required to prcess a TG rises during an attack, but
the added processing time is only about .02 second per
TG. This is about 1% of the processor time, which is
close to what would be predicted by Figure 7(a) and
Table 1. Figure 7(c) shows that the authentication loss
is between 2% and 3% and is not much affected by the
attack.

When there is no DoS attack, receiver rates are
slightly better than sender rates. A receiver does not
need to process parity packets unless some hash packets
are lost, so the performance of a receiver is better when
there is a low loss rate. A sender needs to create more
parity packets when the channel is lossy, so higher reli-
ability leads to better performance for both the sender
and receiver. A higher rate allows more amortization
of signature costs and different FEC characteristics, so
processing throughput rates are better for higher band-
widths. These observations address the slight decrease
in thoughputs in Figure 8 for lower bandwidths and
reliability.

When a DoS attack occurs, receiver throughputs are
significantly degraded as a function of the factor of the
attack. Figure 9 illustrates how the choice of param-
eters can take advantage of a tradeoff between band-
width overhead and throughput. For instance, the 1000
PKC/sec limit for the 100/20 profile yields a lower
throughput at the receiver than the corresponding 400
PKC/sec limit but reduces the signature overhead from
8% (657 signatures per TG) to 3% (249 signatures per
TG) as shown in Table 2. The decline in throughput
is so small that it seems reasonable to use larger pro-
cessing budgets to reduce bandwidth overhead.

Our reliability parameters were based on indepen-
dent loss, but their throughput is not much affected
by correlated losses, as is shown by Figure 10. When
there is a DoS attack the throughputs become lower
and more similar for different reliability levels. Under
attack a greater percentage of processor effort will be
devoted to checking false signatures so differences in
FEC costs will matter less.

As shown in Figure 11, athentication losses are
nearly absent for bursts below about 100 for all of the
profiles, but rise significantly between 100 and 180. At
bursts of 200 or more authentication begins to break
down significantly. We did not include a graph to show
this, but adding more parity packets decreases authen-



100-40100-20100-5

10-40

10-2010-5

0

50

100

150

200

250

300

1 2 3 4 5 6

T
hr

up
ut

 (
M

bp
s)

sender

receiver

Figure 8: Throughputs for Independent Loss Under No DoS Attack

100/40100/20100/5
100/40100/20100/5

10/4010/2010/5

0

50

100

150

200

250

300

T
hr

up
ut

 (
M

bp
s)

sender

receiver

Figure 9: Throughputs for Independent Loss Under Disproportionate DoS Signature Attacks



180

185

190

195

200

205

210

215

220

225

230

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Burst Rate

T
hr

up
ut

(M
bp

s)

"10-5"

"10-20"

"10-40"

120
130

140
150

160
170

180
190

200
210

220

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Burst Rate

T
hr

up
ut

 (
M

bp
s)

10-5

10-20

10-40

Factor 10 Attack

Proportionate Attack

Figure 10: Receiver Throughputs for Correlated Loss Under DoS Signature Attacks

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Burst Rate (Pkts x 10)

A
ut

h 
Lo

ss
 R

at
e(

%
) 100-40

100-5

"10-40"

"10-5"

Figure 11: Authentication Loss over Correlated Loss Under Proportionate DoS Signature Attack



tication losses significantly at higher burst levels. In
particular, authentication losses are mainly due to the
loss of parity packets rather than signature packets.

9 Conclusion

Broadcast authentication streams provide simplicity,
efficiency, and robust protection against denial of ser-
vice at the cost of modest additional latency and au-
thentication loss. BAS requires that the rate of the
sender is known within general bounds and upper
bounds can be placed on the loss rate and the band-
width available to an adversary. It requires only famil-
iar and well-understood FEC and cryptographic oper-
ations such as Reed-Solomon codes, SHA hashes, and
RSA signatures. BAS has bandwidth overhead and
performance as good as any previous approach to pub-
lic key authentication of broadcast streams and gives
DoS protection that is significantly better than any pre-
vious approach. The DoS protection in BAS is based on
a new technique called selective verification which uses
redundancy and probabilistic verification to diminish
the adversary attack rate by large factors. We have
developed theoretical foundations for selective verifica-
tion and shown its effectiveness in experiments over a
broad range of communication characteristics.

Acknowledgements

We appreciated assistance from programmers who
helped us with coding the BAS protocol and collect-
ing data for the experiments in Section 8. Sumeet Bedi
led this effort with assistance from Watee Arjsamat,
Sonal Ghandi, Kevin Lux, and Aloka Singh. We also
received useful comments from Karthikeyan Bharga-
van, Ran Canetti, Michael Greenwald, Klara Nahrst-
edt, Adrian Perrig, and Jonathan Smith. We thank
Luigi Rizzo for assistance and the use of his FEC pack-
age. Research of Gunter and Tan was supported in part
by NSF EIA00-88028 and ONR N00014-02-1-0715. Re-
search of Khanna was supported in part by an Alfred
P. Sloan Research Fellowship and by an NSF Career
Award CCR-0093117



References

[1] Ran Canetti, Juan Garay, Gene Itkis, Daniele Mic-
ciancio, Moni Naor, and Benny Pinkas. Multicast
security: A taxonomy and some efficient construc-
tions. In INFOCOMM’99, 1999.

[2] H. Chernoff. A measure of the asymptotic effi-
ciency of tests of a hypothesis based on a sum of
observations. Ann. Math. Stat., 23:493–507, 1952.

[3] Danny Dolev and Andrew C. Yao. On the secu-
rity of public-key protocols. IEEE Transactions
on Information Theory, 2(29):198–208, 1983.

[4] David C. Feldmeier, Anthony J. McAuley,
Jonathan M. Smith, Deborah S. Bakin, William S.
Marcus, and Thomas M. Raleigh. Protocol boost-
ers. IEEE Journal on Selected Areas in Commu-
nications, 16(3):437–443, 1998.

[5] Rosario Gennaro and Pankaj Rohatgi. How to sign
digital streams. In Proceedings of Crypto’97, pages
180–197, 1997.

[6] Philippe Golle and Nagendra Modadugu. Authen-
ticating streamed data in the presence of random
packet loss. In Proceedings of the NDSS Sympo-
sium, 2001.

[7] W. Hoeffding. Probability inequalities for sums of
bounded random variables. J. Amer. Stat. Assoc.,
58:13–30, 1963.

[8] H. Krawczyk, M. Bellare, and R. Canetti. Hmac:
Keyed-hashing for message authentication. RFC
2104, IETF, February 1997.

[9] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo,
M. Handley, and J. Crowcroft. Forward error cor-
rection (fec) building block. RFC 3452, IETF, De-
cember 2002.

[10] F. J. MacWilliams and N. J. A. Sloane. The The-
ory of Error-Correcting Codes. North-Holland,
1977.

[11] R. J. McEliece. The Theory of Information and
Coding. Addison-Wesley, 1977.

[12] Ralph Merkle. A certified digital signature. In
Proceedings of Crypto’89, pages 218–238, 1990.

[13] Sara Miner and Jessica Staddon. Graph-based
authentication of digital streams. In IEEE Sym-
posium on Security and Privacy, pages 277–288,
2001.

[14] A. Pannetrat and R. Molva. Efficient multicast
packet authentication. In Proceedings of the NDSS
Symposium, 2003.

[15] J. M. Park, E. K. P. Chong, and H. J. Siegel. Effi-
cient multicast stream authentication using era-
sure codes. ACM Transactions on Information
and System Security, 6(2):258–285, 2003.

[16] Adrian Perrig. The biba one-time signature and
broadcast authentication protocol. In ACM Con-
ference on Computer and Communications Secu-
rity, pages 28–37, 2001.

[17] Adrian Perrig, Ran Canetti, Dawn Xiaodong
Song, and J. D. Tygar. Efficient and secure source
authentication for multicast. In Proceedings of the
NDSS Symposium, 2001.

[18] Adrian Perrig, Ran Canetti, J. D. Tygar, and
Dawn Xiaodong Song. Efficient authentication
and signing of multicast streams over lossy chan-
nels. In IEEE Symposium on Security and Pri-
vacy, pages 56–73, 2000.

[19] Adrian Perrig and J. D. Tygar. Secure Broadcast
Communication in Wired and Wireless Networks.
Kluwer, 2003.

[20] Luigi Rizzo. Effective erasure codes for reliable
computer communication protocols. ACM Com-
puter Communication Review, 27(2):24–36, 1997.

[21] Pankaj Rohatgi. A compact and fast hybrid sig-
nature scheme for multicast packet authentication.
In ACM Conference on Computer and Communi-
cations Security, pages 93–100, 1999.

[22] S. M. Ross. Stochastic Processes. Wiley, second
edition, 1996.

[23] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson. RTP: a transport protocol for real-time
applications. RFC 1889, IETF, January 1996.

[24] Wong and Lam. Digital signatures for flows and
multicasts. IEEE/ACM Transactions on Network-
ing, 7, 1999.



A Forward Error Correction

Several unicast protocols utilize a combination of a low
complexity error-detection code (typically a cyclic re-
dundancy check (CRC) code) coupled with feedback
in the form of automatic repeat requests (ARQs) to
recover from errors and losses in transmission. Such
ARQ-based protocols, while well understood, unfortu-
nately do not scale well in multicast settings. In such
cases, coding introduced in the transmission to cope
with errors and losses in the authentication stream
must be sufficiently powerful to allow each recipient
to unambiguously reconstruct the entire authentica-
tion stream corresponding to a group of data with very
high confidence (so that each recipient loses only a very
small fraction of transmissions to non-authentication).
As feedback is eschewed, the entire process of coding,
transmission, and decoding is accomplished in a single
forward pass.

In general, error-control coding adds redundancy to
the stream. Repetition codes, for instance, constitute
a näıve application of this idea whereby each packet
to be protected is simply retransmitted a fixed num-
ber of times. From the perspective of erasure recovery,
however, repetition codes have simplicity commending
them but little else. As we see in the next section, it
is easy to get a five- to ten-fold improvement in cod-
ing overhead over repetition codes with a modicum of
effort.

For our present purposes we focus on a very pow-
erful and practical family of codes called the Reed-
Solomon (RS) codes over the finite field GF (2m) (c.f.,
MacWilliams and Sloane [10] or McEliece [11], for in-
stance) for some positive integer m. An RS(n, k) code
will consist of n = 2m − 1 symbols in GF (2m) out of
which the first k are source symbols and the remaining
are parity check symbols that add redundancy.

Several features of the Reed-Solomon codes make
them particularly appealing for our application. The
codes can be implemented very efficiently using public
domain software. No special tweaking or proprietary
material is needed. The codes are very well suited
to situations where errors in bit transmissions occur
in bursts. And the Reed-Solomon codes can be effi-
ciently combined or concatenated with other codes to
form even more powerful codes.

Most importantly, an RS(n, k) code can recover from
any combination of up to n − k erasures. Suppose it
is desired to provide erasure protection for up to ` era-
sures out of k source symbols. Then any Reed-Solomon
code with length n ≥ k + ` and dimension k will pro-
vide the requisite level of erasure protection and more.
Indeed, if ` � n − k, the code protects against much

more than the requisite ` erasures. In this case one can
elect to keep just, say, the first ` parity check symbols
in each codeword together with the k source symbols
and cheerfully drop the remaining n−k−` parity check
symbols. The resulting code is called a punctured Reed-
Solomon code; in the punctured code, each codeword
consists of only k + ` symbols. We can still afford to
lose up to ` more symbols before the code falters. The
benefit of puncturing the code thus is that we have now
boosted the rate of the code to k/(k + `) which may
effect a substantial reduction in coding overhead over
the original k/n rate. Thus, erasure protection may be
continuously traded-off against rate by puncturing the
code.

Other codes with roughly similar characteristics such
as Rabin’s Information Dispersal Algorithm may also
be used. While coding overheads in our application
are typically low and coding and decoding costs are
not significant, in situations where decoding cost is im-
portant one may trade-off space for time using codes
such as Tornado codes. For these and related ideas see
Luby, et al [9], Park, et al [15], and Rizzo [20].

B Formal Analysis of BAS

In this section we describe the theoretical foundations
of the protocol and provide analyses of different loss
and DoS attack models.

B.1 Loss Recovery Analysis

The simplest loss model occurs when packets are as-
sumed to be dropped independently with some fixed
probability p. Suppose the hash/parity stream of a
transmission group consists of n′ packets comprised of
k hash packets and ` = n′ − k parity packets. As be-
fore, we suppose that the ` parity packets are obtained
by puncturing an (n, k) systematic Reed-Solomon code
and selecting ` ≤ n − k parity packets. Consider the
transmission of the n′ = k + ` hash/parity packets over
a packet erasure channel with packet loss probability p.
Assume for the nonce that there are no packet inser-
tions, i.e., no DoS attack on the hash/parity stream.

Let the integer-valued random variable S denote the
number of dropped packets in the hash/parity stream
of the transmission group. We can interpret the prob-
ability that S does not exceed ` as our confidence in
the recoverability of all hash packets corresponding to a
given transmission group. Alternatively, the confidence
represents the long-run fraction of transmission groups
that are authenticatable, DoS attacks in abeyance, in
the sense that the hash packets of these groups are re-
covered. We typically require a confidence of at least



k = 11 k = 57
p ` (`H) `′ ` (`H) `′

0.05 5 (8) 22 10 (17) 114
0.20 11 (12) 44 30 (33) 285
0.40 22 (22) 77 66 (67) 513

Table 3: Coding overhead for Reed-Solomon and repe-
tition codes.

99 percent that all hash packets in a group are recov-
ered so that fewer than one in a hundred groups are
compromised.

As packet drops are independent, S conforms to a
binomial distribution and a selection of exponential tail
bounds may be deployed to provide crisp estimates for
the tail probability,

Pr{S > `} < exp
{
−(k + `)D

(
`

k+`

∥∥ p
)}

(Chernoff bound)

< exp
{−2

(
(1 − p)` − kp

)2

k + `

}
,

(Hoeffding bound)

where, with logarithms to base e,

D
(

`
k+`

∥∥ p
)

= `
k+` log `

p(k+`) + k
k+` log k

(1−p)(k+`)

denotes the Kullback-Leibler divergence between the
probability distributions

(
`

k+` ,
k

k+`

)
and (p, 1−p). The

first bound is that of Chernoff [2], the second, slightly
more analytically amenable, is due to Hoeffding [7].
Given a value of k and a desired confidence 1−δ (where
δ = 0.01, say) one typically wishes to determine a value
of ` for which the desired confidence is attained. In-
verting Hoeffding’s bound, for instance, we obtain that
if the number of parity packets per transmission group
satisfies

` ≥ kp

1 − p
− log δ

4(1 − p)2

[
1 +

√
1 − 8k(1 − p)

log δ

]
(1)

then all k hash packets in a given transmission group
can be recovered with confidence at least 1 − δ. As a
practical matter, the values of ` provided by Hoeffd-
ing’s bound are only slightly larger than those provided
by Chernoff’s bound; see Table 3 where, for a given
value of k, ` denotes the Chernoff estimate of the par-
ity overhead, `H denotes the Hoeffding estimate, and
for comparative purposes, `′ is the parity overhead that
results if a näıve repetition code were to be used in lieu
of a Reed-Solomon code.

More sophisticated Markovian loss models can be
constructed to capture time correlations in packet
losses. Similar results can be derived for these models
though we will not describe them here in the interests
of brevity.

B.2 Denial of Service Attacks

A DoS attack may focus on the data stream,
hash/parity stream, or signature stream. Or an at-
tacker may elect to spread his resources in an attack
on some combination of these streams. In a shared
channel model the attack is in the form of a flood of
spurious packets having the apparent characteristic of
the packets in the stream under attack, for instance,
by bearing sequence numbers of legitimately expected
packets.

We may consider attacks on each of the three streams
in isolation; a combination attack effectively reduces
the attack factor of the adversary in each stream as
his resources have to be spread across the streams. A
successful attack on a data packet will result in the ef-
fective loss of that packet as it cannot be verified; a suc-
cessful attack on a hash packet will result in the invali-
dation of the group of data packets whose hashes have
been compromised; a successful attack on a signature
packet will compromise the entire transmission group.
Of such attacks, a signature flood attack is potentially
the most damaging as an adversary can invalidate an
entire transmission group in one fell swoop if the at-
tack is successful. We hence begin with an analysis of
signature flooding attacks and how the BAS protocol
copes with such attacks.

As a design parameter we require that the proto-
col provide a guaranteed confidence of 1 − δ that any
given transmission group is verifiable. Here δ ∈ (0, 1)
is our confidence parameter. We may think of δ as
some suitably small number (we selected δ = 0.01 in
our simulations) but for purposes of analysis we leave
this as an application-specified parameter. Two ad-
ditional design parameters are the authentication and
loss recovery overhead o which is the fraction of pack-
ets in a transmission group devoted to authentication
and error or loss recovery and the sender-side authen-
tication latency τ which is the delay between the be-
ginning of transmission of data in a transmission group
and the completion of transmission of packets needed
to authenticate the group. Of course, the overhead and
latency are related. In our analysis we assume that the
maximum overhead o is specified as a design parame-
ter; the latency τ is then determined as a function of o
and δ. As will become clear, we could equally well have
specified a maximum latency that the application can



withstand and determine the overhead that is incurred
in consequence. The latter may be more appropriate
in situations where excess capacity is available.

For definiteness we consider the following explicit
specifications of communication and computation pa-
rameters in the analysis. Suppose all packets have a
fixed length and consider a continuous transmission set-
ting where a sender has an available bandwidth of W
packets per second which he fully utilizes. We con-
sider a shared channel model where the attacker has
the capability of transmitting at the rate of RW pack-
ets per second where R is the dimensionless attack fac-
tor. We assume that sender packets arrive in order at
the receiver (though adversarial packets may be timed
and inserted anywhere in the sequence) and that the
receiver has a computational budget of K = Ks sig-
nature checks per second on average. Finally, we sup-
pose that packet transmissions are over an independent
loss channel in which each packet transmitted by the
sender is lost independently with probability p. We do
not assume that the adversary’s packets are also sub-
ject to loss. Typical numbers that we consider in the
examples and simulations are 1500 byte packets; trans-
missions over 1 Mbps, 10 Mbps, and 100 Mbps connec-
tions, which translate into packet transmission rates
of W = 83, 833, and 8333 packets per second, respec-
tively; proportionate and disproportionate attacks with
attack factors R = 1 and R = 10, respectively; compu-
tational budgets K between 40 to 800 public key checks
per second on stock PC’s assuming that we can devote
5% to 10% of the processor toward signature checks;
packet loss probabilities p of 5%, 20%, and 40%; confi-
dence parameter δ = 0.01; and overhead o between 5%
and 10%.

The analysis may be modified to fit other mod-
els such as variable sender rates, attacks on
shared/modification channels, out-of-order packets,
and correlated packet losses without much ado.

In this setting our goal is to determine the size and
composition of a transmission group that meets the
confidence and overhead constraints. Let N (to be de-
termined) denote the number of packets in a transmis-
sion group and let Nd, Nh, and Ns denote the num-
ber of data packets, hash and parity packets, and sig-
nature packets, respectively, comprising the transmis-
sion group. Once determined, the size the transmission
group specifies the sender-side authentication latency,
τ = N/W . (Of course, this is for the independent loss
model; in a correlated loss model, the authentication
packets will need to be interspersed across the follow-
ing transmission group to combat burst errors leading
to a latency of approximately 2N/W .)

Signature Stream

The number of signature copies Ns needed per trans-
mission group will be determined loosely by the loss
rate and the attack factor. The actual estimates de-
pend on whether the sequential verification or bin ver-
ification protocols are adopted and we consider these
in turn.

Selective sequential verification Suppose that
each incoming signature is verified independently with
probability π. The following result is elementary but
useful.

Lemma 1 The receiver will successfully verify a sig-
nature in any given transmission group with confidence
at least 1 − δ provided Ns ≥ log(δ)/log

(
1 − (1 − p)π

)
.

A fortiori it suffices if Ns ≥ − log(δ)/(1 − p)π.

Proof: Consider the start of the transmission of the
current group of signature packets (i.e., Ns copies of
the same signature packet). The probability that a
given signature packet is both successfully received and
verified by the receiver is given by (1 − p)π. It follows
that the probability that none of the bona fide signature
packets in the current group is successfully verified is(
1 − (1 − p)π

)Ns and we require this to be no larger
than δ. The bound on Ns follows. Finish off the proof
with the elementary observation − log(1 − x) > x for
0 < x < 1. �

As the entire transmission group requires N/W sec-
onds for transmission, under an informed DoS attack
on the signature stream with attack factor R, the max-
imum number of packets in the signature stream of the
current group is Ns+RN = R(Nd+Nh)+(R+1)Ns. To
keep within the computational budget of K signature
checks per second on average at the receiver, it suffices
hence to verify signatures randomly with probability

π =
KN/W

Ns + RN
=

K(Nd + Nh + Ns)
WR(Nd + Nh) + W (R + 1)Ns

. (2)

(More accurately, π is chosen as the smaller of the
above quantity and 1; to obviate trivialities suppose
that the right-hand side above is less than 1.) A di-
rect application of the lemma shows that a choice of
Ns ≥ − log(δ)/(1 − p)π will provide adequate protec-
tion against a signature flood DoS attack while staying
within the given computational resources. It follows
that the number of signatures Ns may be chosen to be



any positive integral value for which the quadratic

Q(Ns) = (1 − p)KN2
s +

[
(1 − p)K(Nd + Nh)

− W (R + 1) log 1
δ

]
Ns − WR(Nd + Nh) log 1

δ

def= aN2
s + bNs + c

is nonnegative. It is easy to verify that Q is convex
and has two real roots. Indeed, the discriminant of the
quadratic is nonnegative and given by

∆ = b2−4ac ≤ [
(1−p)K(Nd +Nh)+W (R+1) log 1

δ

]2
.

As we may choose Ns to be any integral value greater
than or equal to the larger of the roots of Q, it suffices
if

Ns ≥ −b +
√

b2 − 4ac

2a
=

−b +
√

∆
2a

and by virtue of the above bound on the discriminant
we hence obtain the following

Theorem 2 Under a signature flood attack with attack
factor R in a shared channel with independent packet
loss probability p, selective sequential verification at a
rate of K signature checks per second on average will
result in the acquisition of a valid signature for any
transmission group with probability at least 1 − δ if

Ns ≥ W (R + 1) log 1
δ

(1 − p)K
.

Observe that, as anticipated, the number of signature
copies in a transmission group is determined by the
attack factor R and the loss rate p and that, moreover,
Ns may be specified independently of Nd and Nh.

Selective bin verification The probability that
none of B selected bins contains a valid signature is pB .
Thus, we can ensure that the probability of encounter-
ing a valid signature in the group of bins correspond-
ing to a transmission group is at least 1 − δ provided
B ≥ log δ/log p. Consider a signature flood attack with
attack factor R over a shared channel. Condition on the
number of consecutive transmission groups for which
verification failed following the last successfully vali-
dated transmission group. The window of signature
packets given j ≥ 0 consecutive group verification fail-
ures is then bounded above by (j+2)RN +Ns packets.
Selective bin verification proceeds by examining the B
smallest bins in order of size. The total number of
signature packets in these B bins is then bounded by
B

[
(j+2)RN +Ns

]
/Ns. As the probability of j consec-

utive verification failures is bounded above by δj , the

expected number of signature checks for the current
group is bounded above by

B
∞∑

j=0

(
(j + 2)RN + Ns

Ns

)
δj

=
B

[
R(Nd + Nh)(2 − δ) +

(
R(2 − δ) + 1 − δ

)
Ns

]
Ns(1 − δ)2

.

It suffices if the right-hand side is bounded above by
KN/W to keep within the computational budget. This
leads to a quadratic inequality for Ns and proceeding
as in the proof of Theorem 2, we obtain

Theorem 3 Under a signature flood attack with attack
factor R in a shared channel with independent packet
loss probability p, selective bin verification over B =
dlog δ/log pe bins will result in the acquisition of a valid
signature for any transmission group with probability at
least 1 − δ if

Ns ≥ W
[
R(2 − δ) + 1 − δ

]
log 1

δ

K(1 − δ)2 log 1
p

.

The mean rate of signature checks will be bounded by
K.

Observe that the signature overhead imposed by the
two strategies is very comparable.

Hash/Parity Stream

The number of hash packets k in a transmission group
is proportional to the number of data packets in the
group, k = αNd for some constant α. If, for instance,
packets have size 1500 bytes and for hashes we use
the first 10 bytes (of 20) in a SHA hash, then each
hash packet of 1500 bytes contains the hashes of 144
data packets (some packet real estate to the tune of
56 bytes being consumed by various headers) and thus,
k = Nd/144. The number of parity packets ` requisite,
however, in the absence of a DoS attack depends on
the channel loss probability as seen in the estimate (1)
though, as seen, ` only grows linearly with k, hence
with Nd. In the absence of a hash/parity flood attack,
the total number of packets Nh = k + ` required in the
hash/parity stream increases linearly with the number
of data packets Nd. The typical overhead is less than
a couple of percent as we see in Table 3.

Hash/parity flood attacks may be handled on one of
two levels. Hash computations are typically an order
of magnitude faster than signature verifications; a re-
ceiver can compute of the order of 77, 000 packet hashes
per second but only about 8000 signature checks per



second on a stock PC. If the attack factor R and avail-
able bandwidth W are both moderate (for instance, a
proportional attack on a 10 Mbps link), the receiver
can simply compute the hash of all packets in the
hash/parity stream discarding spurious packets (as-
suming that a valid signature has been acquired). If
the attack factor R exceeds the capacity of the receiver
Kh to perform all the hashes, a variation on the bin
strategy allows us to force the adversary to diffuse his
advantage at small cost in overhead. The idea is to se-
lect a number of parity packets large enough that the
the lowest population B bins contain at least k valid
packets from the hash/parity stream. As packet losses
are independent, Hoeffding’s bound quickly allows us
to estimate the requisite number of bins,

B ≥
2(1 − p)k + 1

2 log 1
δ +

√
2(1 − p)k log 1

δ + 1
4 log2 1

δ

2(1 − p)2
,

to ensure that at least k of the B selected bins contain
valid hash/parity packets.

The analysis now parallels that for the number of
signatures in selective bin verification and we obtain
the following

Theorem 4 Selective bin verification yields at least k
packets in the hash/parity stream with confidence at
least 1 − δ if the number of packets in the hash/parity
stream satisfies

Nh = k + ` ≥ BW
[
R(2 − δ) + 1 − δ

]
log 1

δ

Kh(1 − δ)2 log 1
p

. (3)

The number of parity packets ` that are requisite can
now be determined as the larger of the values deter-
mined from (1) and (3).

Data Stream

The number of packets in the data stream of a trans-
mission group can now be determined. Recall that a
design parameter is the maximum allowable transmis-
sion group authentication overhead o ≥ (Nh+Ns)/N =
1−Nd/N which is typically specified by the application.
The number of packets Nd in the data stream hence is
required to satisfy Nd ≥ (1− o)N = (1− o)(Nd +Nh +
Ns). In line with the discussion for the hash/parity
stream, we may set Nh = cNd for a constant c so that
we obtain the following

Theorem 5 A choice of

Nd ≥ (1 − o)Ns

1 − (1 − o)(1 + c)

data packets in a transmission group together with
Nh = cNd hash/parity packets guarantees that the over-
head is no larger than the specified o.

We can recast the bound in terms of data rates. Sup-
pose an application has to support a minimum data
rate of D packets per second. Under continuous trans-
mission, this is equivalent to requiring that the maxi-
mum allowable overhead satisfies o ≥ 1−D/W so that
we may cast the expression for Nd in terms of the data
rate D that the application has to support.

Observe that N = Nd/(1 − o) so that, in particu-
lar, the sender-side authentication latency τ to achieve
confidence of at least 1 − δ of verifying received pack-
ets in a transmission group is approximately N/W ≈
Nd/W (1 − o). Consider a low bandwidth, low compu-
tational capability example where the sender has ac-
cess to a 1 Mbps channel, whence W = 83 packets per
second assuming 1500 byte packets, and the receiver
can only compute Ks = 40 public key checks per sec-
ond. The hash/parity overhead is trivial as is easy to
see: only a single hash packet is required. Consider a
proportionate DoS signature attack with R = 1. Sup-
pose the channel has an error rate of p = 1/2. With a
choice of confidence parameter δ = 0.01, and a maxi-
mum specified overhead of 20% the latency is approxi-
mately 2 seconds. If the maximum specified overhead is
5%, the latency is approximately 9 seconds. We provide
some more examples focusing on higher bandwidths in
the following sections. At 10-100Mbps we get latencies
of 1-2 seconds and overheads of 1-3%.

Data flood attacks are easy to handle if the attack
factor is moderate: we simply compute all hashes dis-
carding packets that are spurious. If the attack fac-
tor exceeds the computational capability of the receiver
to compute hashes, a data flood attack effectively in-
creases the packet drop rate: as many arriving data
packets are verified as there is computational capacity
to handle the hashes. A variant of the bin approach
may be used here as well to weed out large attacks on
individual packets.

B.3 Acquisition Phase

We now derive a bound on the parameter g, the number
of transmission groups, over which we buffer signature
packets to protect against a replay attack. It is easy
to see that the probability that we fail to acquire a
valid current signature within g groups is γg where γ =
(1−(1−p)π)Ns . Thus choosing g = log δ/ log γ suffices
to ensure that we will obtain a valid current signature
packet with confidence at least 1 − δ.


