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1 Introduction.

The theory of domains was established in order to have appropriate spaces on which to de�ne

semantic functions for the denotational approach to programming-language semantics. There were

two needs: �rst, there had to be spaces of several di�erent types available to mirror both the

type distinctions in the languages and also to allow for di�erent kinds of semantical constructs|

especially in dealing with languages with side e�ects; and second, the theory had to account for

computability properties of functions|if the theory was going to be realistic. The �rst need is

complicated by the fact that types can be both compound (or made up from other types) and

recursive (or self-referential), and that a high-level language of types and a suitable semantics of

types is required to explain what is going on. The second need is complicated by these complications

of the semantical de�nitions and the fact that it has to be checked that the level of abstraction

reached still allows a precise de�nition of computability.

This degree of abstraction had only partly been served by the state of recursion theory in 1969

when the senior author of this report started working on denotational semantics in collaboration

with Christopher Strachey. In order to �x some mathematical precision, he took over some de�ni-

tions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a

simple type theory of higher-type functionals. It was only after giving an abstract characterization

of the spaces obtained (through the construction of bases) that he realized that recursive de�ni-

tions of types could be accommodated as well|and that the recursive de�nitions could incorporate

function spaces as well. Though it was not the original intention to �nd semantics of the so-called

untyped �-calculus, such a semantics emerged along with many ways of interpreting a very large

variety of languages.

A large number of people have made essential contributions to the subsequent developments,

and they have shown in particular that domain theory is not one monolithic theory, but that

there are several di�erent kinds of constructions giving classes of domains appropriate for di�erent

mixtures of constructs. The story is, in fact, far from �nished even today. In this report we will

only be able to touch on a few of the possibilities, but we give pointers to the literature. Also,

we have attempted to explain the foundations in an elementary way|avoiding heavy prerequisites

(such as category theory) but still maintaining some level of abstraction|with the hope that such

an introduction will aid the reader in going further into the theory.

The chapter is divided into seven sections. In the second section we introduce a simple class

of ordered structures and discuss the idea of �xed points of continuous functions as meanings for

recursive programs. In the third section we discuss computable functions and e�ective presentations.

The fourth section de�nes some of the operators and functions which are used in semantic de�nitions

and describes their distinguishing characteristics. A special collection of such operators called

powerdomains are discussed in the �fth section. Closure problems with respect to the convex

powerdomain motivate the introduction of the class of bi�nite domains which we describe in the
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sixth section. The seventh section deals with the important issue of obtaining �xed points for

(certain) operators on domains. We illustrate the method by showing how to �nd domains D

satisfying isomorphisms such as D �= D�D �= D ! D and D �= N+ (D! D). (Such domains are

models of the above-mentioned untyped �-calculus.)

Many of the proofs for results presented below are sketched or omitted. With a few exceptions,

the enthusiastic reader should be able to �ll in proofs without great di�culty. For the exceptions

we provide a warning and a pointer to the literature.

2 Recursive de�nitions of functions.

It is the essential purpose of the theory of domains to study classes of spaces which may be used

to give semantics for recursive de�nitions. In this section we discuss spaces having certain kinds

of limits in which a useful �xed point existence theorem holds. We will briey indicate how this

theorem can be used in semantic speci�cation.

2.1 Cpo's and the Fixed Point Theorem.

A partially ordered set is a set D together with a binary relation v which is reexive, anti-symmetric

and transitive. We will usually write D for the pair hD;vi and abbreviate the phrase \partially

ordered set" with the term \poset". A subset M � D is directed if, for every �nite set u � M ,

there is an upper bound x 2 M for u. A poset D is complete (and hence a cpo) if every directed

subset M � D has a least upper bound
F
M and there is a least element ?D in D. When D is

understood from context, the subscript on ?D will usually be dropped.

It is not hard to see that any �nite poset that has a least element is a cpo. The easiest such

example is the one point poset I. Another easy example which will come up later is the poset O

which has two distinct elements > and ? with ? v >. The truth value cpo T is the poset which has

three distinct points, ?; true; false, where ? v true and ? v false (see Figure 1). To get an example

of an in�nite cpo, consider the set N of natural numbers with the discrete ordering (i.e. n v m if

and only if n = m). To get a cpo, we need to add a \bottom" element to N. The result is a cpo

N? which is pictured in Figure 1. This is a rather simple example because it does not have any

interesting directed subsets. Consider the ordinal !; it is not a cpo because it has a directed subset

(namely ! itself) which has no least upper bound. To get a cpo, one needs to add a top element

to get the cpo !> pictured in Figure 1. For a more subtle class of examples of cpo's, let PS be the

set of (all) subsets of a set S. Ordered by ordinary set inclusion, PS forms a cpo whose least upper

bound operation is just set inclusion. As a last example, consider the set Q of rational numbers

with their usual ordering. Of course, Q lacks the bottom and top elements, but there is another

problem which causes Q to fail to be a cpo: Q lacks, for example, the square root of 2! However,

the unit interval [0; 1] of real numbers does form a cpo.
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Figure 1: Examples of cpo's.

Given cpo's D and E, a function f : D! E is monotone if f(x) v f(y) whenever x v y. If

f is monotone and f(
F
M) =

F
f(M) for every directed M , then f is said to be continuous. A

function f : D ! E is said to be strict if f(?) = ?. We will usually write f : D �!E to indicate

that f is strict. If f; g : D! E, then we say that f v g if and only if f(x) v g(x) for every x 2 D.

With this ordering, the poset of continuous functions D! E is itself a cpo. Similarly, the poset

of strict continuous functions D �!E is also a cpo. (Warning: we use the notation f : D! E to

indicate that f is a function with domain D and codomain E in the usual set-theoretic sense. On

the other hand, f 2 D! E means that f : D ! E is continuous. A similar convention applies to

D �!E.)

To get a few examples of continuous functions, note that when f : D! E is monotone and D

is �nite, then f is continuous. In fact, this is true whenever D has no in�nite ascending chains.

For example, any monotone function f : N? ! E is continuous. On the other hand, the function

f : !> ! O which sends the elements of ! to ? and sends > to > is monotone, but it is not

continuous. Given sets S, T and function f : S ! T we de�ne the extension of f to be the function

f� : PS ! PT given by taking

f�(X) = ff(x) j x 2 Xg

for each subset X � S. The function f� is monotone and, for any collection Xi of subsets of S, we

have

f�(
[
i

Xi) =
[
i

f�(Xi):



Semantic Domains 5

In particular, f� is continuous. For readers who know a bit about functions on the real numbers,

it is worth noting that a function f : [0; 1]! [0; 1] on the unit interval may be continuous in the

cpo sense without being continuous in the usual sense.

Now, the central theorem may be stated as follows:

Theorem 1 (Fixed Point) If D is a cpo and f : D ! D is continuous, then there is a point

�x(f) 2 D such that �x(f) = f(�x(f)) and �x(f) v x for any x 2 D such that x = f(x). In other

words, �x(f) is the least �xed point of f .

Proof: Note that ? v f(?). By an induction on n using the monotonicity of f , it is easy to see

that fn(?) v fn+1(?) for every n. Set �x(f) =
F
n f

n(?). By the continuity of f , it is easy to see

that �x(f) is a �xed point of f . To see that it is the least such, note that if x is a �xed point of f ,

then, for each n, fn(?) v fn(x) = x.

2.2 Some applications of the Fixed Point Theorem.

The factorial function. As a �rst illustration of the use of the Fixed Point Theorem, let us consider

how one might de�ne the factorial function fact : N? ! N?. The usual approach is to say that

the factorial function is a strict function which satis�es the following recursive equation for each

number n:

fact(n) =

(
1 if n = 0

n � fact(n� 1) if n > 0.

where �;� : N� N! N are multiplication and subtraction respectively. But how do we know that

there is a function fact which satis�es this equation? De�ne a function

F : (N? �!N?)! (N? �!N?)

by setting:

F (f)(n) =

8>><
>>:

1 if n = 0

n � f(n � 1) if n > 0

? if n = ?

for each f : N? �!N?. The de�nition of F is not recursive (F appears only on the left side of the

equation) so F certainly exists. Moreover, it is easy to check that F is continuous (but not strict).

Hence, by the Fixed Point Theorem, F has a least �xed point �x(F ) and this solution will satisfy

the equation for fact.

Context Free Grammars. One familiar kind of recursion equation is a context free grammar. Let

� be an alphabet. One uses context free grammars to specify subsets of the collection �� of �nite

sequences of letters from �.1 Here are some easy examples:

1The superscripted asterisk will be used in three entirely di�erent ways in this chapter. Unfortunately, all of these

usages are standard. Fortunately, however, it is usually easy to tell which meaning is correct from context.
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1.

E ::= � j Ea

de�nes the strings of a's (including the empty string �).

2.

E ::= a j bEb

de�nes strings consisting either of the letter a alone or a string of n b's followed by an a

followed by n more b's.

3.

E ::= � j aa j EE

de�nes strings of a's of even length.

We may use the Fixed Point Theorem to provide a precise explanation of the semantics of these

grammars. Since the operationsX 7! f�g[Xfag,X 7! fag[fbgXfbg, andX 7! f�g[fagfag[XX

are all continuous in the variable X , it follows from the Fixed Point Theorem that equations such

as

1. X = f�g [Xfag

2. X = fag [ fbgXfbg

3. X = f�g [ fagfag [XX

corresponding to the three grammars mentioned above all have least solutions. These solutions are

the languages de�ned by the grammars.

The Schroder-Bernstein Theorem. As a set-theoretic application of the Fixed Point Theorem we

o�er the proof of the following:

Theorem 2 (Schroder-Bernstein) Let S and T be sets. If f : S ! T and g : T ! S are injec-

tions, then there is a bijection h : S ! T .

Proof: The function Y 7! (T � f�(S))[ f�(g�(Y )) from PT to PT is easily seen to be continuous

with respect to the inclusion ordering. Hence, by the Fixed Point Theorem, there is a subset

Y = (T � f�(S))[ f�(g�(Y )):

In particular, T � Y = f�(S � g�(Y )) since

T � Y = T � ((T � f�(S))[ f�(g�(Y )))

= (T � (T � f�(S)))\ (T � (f�(g�(Y ))))

= f�(S)\ (T � (f�(g�(Y ))))

= f�(S � g�(Y ))
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Now de�ne h : S ! T by

h(x) =

(
y if x = g(y) for some y 2 Y

f(x) otherwise

This makes sense because g is an injection. Moreover, h itself is an injection since f and g are

injections. To see that it is a surjection, suppose y 2 T . If y 2 Y , then h(g(y)) = y. If y 62 Y , then

y 2 f�(S � g�(Y )), so y = f(x) = h(x) for some x. Thus h is a bijection.

2.3 Uniformity.

The question naturally arises as to why we take the least �xed point in order to get the meaning. In

most instances there will be other choices. There are several answers to this question. First of all, it

seems intuitively reasonable to take the least de�ned function satisfying a given recursive equation.

But more importantly, taking the least �xed point yields a canonical solution. Indeed, it is possible

to show that, given a cpo D, the function �xD : (D! D)! D given by �xD(f) =
F
n f

n(?) is

actually continuous. But are there other operators like �x that could be used? A de�nition is

helpful:

De�nition: A �xed point operator F is a class of continuous functions

FD : (D! D)! D

such that, for each cpo D and continuous function f : D ! D, we have FD(f) = f(FD(f)).

Let us say that a �xed point operator F is uniform if, for any pair of continuous functions

f : D ! D and g : E ! E and strict continuous function h : D �!E which makes the following

diagram commute

E

D

E

D

h h

g

f

? ?
-

-

we have h(FD(f)) = FE(g). We leave it to the reader to show that �x is a uniform �xed point

operator. What is less obvious, and somewhat more surprising, is the following:

Theorem 3 �x is the unique uniform �xed point operator.

Proof: To see why this must be the case, let D be a cpo and suppose f : D ! D is continuous.

Then the set

D0 = fx 2 D j x v �x(f)g
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is a cpo under the order that it inherits from the order on D. In particular, the restriction f 0 of

f to D0 has �xD(f) as its unique �xed point. Now, if i : D0 ! D is the inclusion map then the

following diagram commutes

D

D0

D

D0

i i

f

f 0

? ?
-

-

Thus, if F is a uniform �xed point operator, we must have FD(f) = FD0(f 0). But FD0(f 0) is a �xed

point of f 0 and must therefore be equal to �xD(f).

We hope that these results go some distance toward convincing the reader that �x is a reasonable

operator to use for the semantics of recursively de�ned functions.

3 E�ectively presented domains.

There is a signi�cant problem with the full class of cpo's as far as the theory of computation goes.

There does not seem to be any reasonable way to de�ne a general notion of computable function

between cpo's. It is easy to see that these ideas make perfectly good sense for a noteworthy

collection of examples. Consider a strict function f : N? �!N?. If we take f(n) = ? to mean that

f is unde�ned at n, then f can be viewed as a partial function on N. We wish to have a concept

of computability for functions on (some class of) cpo's so that f is computable just in case it

corresponds to the usual notion of a partial recursive function. But we must also have a de�nition

that applies to functionals, that is, functions which may take functions as arguments or return

functions as values. We already encountered a functional earlier when we de�ned the factorial. To

illustrate the point that there is a concept of computability that applies to such operators, consider,

for example, a functional F : (N? �!N?) �!N? which takes a function f : N? �!N? and computes

the value of f on the number 3. The functional F is continuous and it is intuitively computable.

This intuition comes from the fact that, to compute F (f) on an argument one needs only know

how to compute f on an argument.

Our goal is to de�ne a class of cpo's for which a notion of \�nite approximation" makes sense.

Let D be a cpo. An element x 2 D is compact if, whenever M is a directed subset of D and

x v
F
M , there is a point y 2M such that x v y. We let K(D) denote the set of compact elements

of D. The cpo D is said to be algebraic if, for every x 2 D, the set M = fx0 2 K(D) j x0 v xg is

directed and
F
M = x. In other words, in an algebraic cpo, each element is a directed limit of its

\�nite" (compact) approximations. If D is algebraic and K(D) is countable, then we will say that

D is a domain.
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With the exception of the unit interval of real numbers, all of the cpo's we have mentioned so far

are domains. The compact elements of the domain N? �!N? are the functions with �nite domain

of de�nition, i.e. those continuous functions f : N? �!N? such that fn j f(n) 6= ?g is �nite. As

another example, the collection PN of subsets of N, ordered by subset inclusion is a domain whose

compact elements are just the �nite subsets of N.

One thing which makes domains particularly nice to work with is the way one may describe a

continuous function f : D ! E between domains D and E using the compact elements. Let Gf be

the set of pairs (x0; y0) such that x0 2 K(D) and y0 2 K(E) and y0 v f(x0). If x 2 D, then one

may recover from Gf the value of f on x as

f(x) =
F
fy0 j (x0; y0) 2 Gf and x0 v xg:

This allows us to characterize, for example, a continuous function f : PN! PN between uncount-

able cpo's with a countable set Gf . The signi�cance of this fact for the theory of computability is

not hard to see; we will say that the function f is computable just in case Gf is computable (in a

sense to be made precise below).

3.1 Normal subposets and projections.

Before we give the formal de�nition of computability for domains and continuous functions, we

digress briey to introduce a useful relation on subposets. Given a poset hA;vi and x 2 A, let

#x = fy 2 A j y v xg.

De�nition: Let A be a poset and suppose N � A. Then N is said to be normal in A (and we

write N / A) if, for every x 2 A, the set N \ #x is directed.

The following lemma lists some useful properties of the relation /.

Lemma 4 Let C be a poset with a least element and suppose A and B are subsets of C.

1. If A /B / C then A / C.

2. If A � B � C and A / C then A / B.

3. If A /C, then ? 2 A.

4. hP(C); /i is a cpo with f?g as its least element.

Intuitively, a normal subposet N/A is an \approximation" to A. The notion of normal subposet

is closely related to one of the central concepts in the theory of domains. A pair of continuous
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functions g : D! E and f : E ! D is said to be an embedding-projection pair (g is the embedding

and f is the projection) if they satisfy the following

f � g = idD

g � f v idE

where idD and idE are the identity functions on D and E respectively (in future, we drop the

subscripts when D and E are clear from context) and composition of functions is de�ned by

(f � g)(x) = f(g(x)). One can show that each of f and g uniquely determines the other. Hence

it makes sense to refer to f as the projection determined by g and refer to g as the embedding

determined by f . There is quite a lot to be said about properties of projections and embeddings

and we cannot begin to provide, in the space of this chapter, the full discussion that these concepts

deserve (the reader may consult Chapter 0 of [GHK+80] for this). However, a few observations will

be essential to what follows. We �rst provide a simple example:

Example: If f : D! E is a continuous function then there is a strict continuous function

strict : (D! E)! (D �!E) given by:

strict(f)(x) =

(
f(x) if x 6= ?

? if x = ?

The function strict is a projection whose corresponding embedding is the inclusion map incl :

(D �!E) ,! (D! E).

In our discussion below we will not try to make much of the distinction between f : D �!E

and incl(f) : D! E (for example, we may write id : D �!D as well as id : D! D or even

incl(id) : D ! D). From the two equations that de�ne the relationship between a projection and

embedding, it is easy to see that a projection is a surjection (i.e. onto) and an embedding is an

injection (i.e. one-to-one). Thus one may well think of the image of an embedding g : D ! E as a

special kind of sub-cpo of E. We shall be especially interested in the case where an embedding is an

inclusion as in the case of D �!E and D! E. Let D be a cpo. We say that a continuous function

p : D! D is a �nitary projection if p�p = p v id and im(p) = fp(x) j x 2 Dg is a domain. Note, in

particular, that the inclusion map from im(p) into D is an embedding (which has the corestriction

of p to its image as the corresponding projection). It is possible to characterize the basis of im(p)

as follows:

Lemma 5 IfD is a domain and p : D ! D is a �nitary projection, then the set of compact elements

of im(p) is just im(p)\K(D). Moreover, im(p) \K(D) / K(D).

Suppose, on the other hand, that N/K(D). Then it is easy to check that the function pN : D! D

given by

pN (x) =
F
fy 2 N j y v xg
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is a �nitary projection. Indeed, the correspondence N 7! pN is inverse to the correspondence

p 7! im(p)\K(D) and we have the following:

Theorem 6 For any domain D there is an isomorphism between the cpo of normal substructures

of K(D) and the poset Fp(D) of �nitary projections on D.

In particular, if M � Fp(D) is directed then im(
F
M) is a domain. This is a fact which will be

signi�cant later. Indeed, the notions of projection and normal subposet will come up again and

again throughout the rest of our discussion.

3.2 E�ectively presented domains.

Returning now to the topic of computability, we will say that a domain is e�ectively presented if

the ordering on its basis is decidable and it is possible to e�ectively recognize the �nite normal

subposets of the basis:

De�nition: Let D be a domain and suppose d : N! K(D) is a surjection. Then d is an e�ective

presentation of D if

1. the set f(m;n) j dm v dng is e�ectively decidable, and

2. for any �nite set u � N, it is decidable whether fdn j n 2 ug / K(D).

If hD; di and hE; ei are e�ectively presented domains, then a continuous function f : D! E is said

to be computable (with respect to d and e) if and only if, for every n 2 N, the set fm j em v f(dn)g

is recursively enumerable.

Unfortunately, the full class of domains has a serious problem. It is this: there are domains

D;E such that the cpo D! E is not a domain (we will return to this topic in Section 6). Since we

wish to use D ! E in de�ning computability at higher types, we need some restriction on domains

D and E which will insure that D ! E is a domain. There are several restrictions which will work.

We begin by presenting one which is relatively simple. Another will be discussed later.

De�nition: A poset A is said to be bounded complete if A has a least element and every bounded

subset of A has a least upper bound.

The bounded complete domains are closely related to a more familiar class of cpo's which arise

in many places in classical mathematics. A domain D is a (countably based) algebraic lattice if every

subset of D has a least upper bound. It is not hard to see that a domain D is bounded complete if

and only if the cpo D> which results from adding a new top element to D is an algebraic lattice.

The poset PN is an example of an algebraic lattice. On the other hand, the bounded complete

domain N? �!N? lacks a top element and therefore fails to be an algebraic lattice. All of the

domains we have discussed so far are bounded complete. In particular, we have the following:
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Theorem 7 If D and E are bounded complete domains, then D! E is also a bounded complete

domain. Moreover, if D and E have e�ective presentations, then D! E has an e�ective presen-

tation as well. Similar facts hold for D �!E.

Proof: (Sketch) It is not hard to see that D! E is a bounded complete cpo whenever E is.

To prove that D! E is a domain we must demonstrate its basis. Suppose N / K(D) is �nite

and s : N ! K(E) is monotone. Then the function step(s) : D! E given by taking step(s)(x) =F
ff(y) j y 2 N \ # xg is continuous and compact in the ordering on D! E. These are called step

functions and it is possible to show that they form a basis for D ! E. The proof that the poset

of step functions has decidable ordering and �nite normal subposets is tedious, but not di�cult,

using the e�ective presentations of D and E. The proof of these facts for D �!E is essentially the

same since the strict step functions form a basis.

In the remaining sections of the chapter we will discuss a great many operators like � ! � and

� �! �. We will leave it to the reader to convince himself that all of these operators preserve the

property of having an e�ective presentation. Further discussion of computability on domains may

be found in [Smy77] and [KT84]. It is hoped that future research in the theory of domains will

provide a general technique which will incorporate computability into the logic whereby we reason

about the existence of our operators. This will eliminate the need to provide demonstrations of

e�ective presentations. This is a central idea in current investigations but it is beyond our scope

to discuss it further.

4 Operators and functions.

There are a host of operators on domains which are needed for the purposes of semantic de�nitions.

In this section we mention a few of them. An essential technique for building new operators

from those which we present here will be introduced below when we discuss solutions of recursive

equations.

4.1 Products.

Given posets D and E, the product D � E is the set of pairs (x; y), where x 2 D and y 2 E.

The ordering is coordinatewise, i.e. (x; y) v (x0; y0) if and only if x v x0 and y v y0. We de�ne

functions fst : D � E ! D and snd : D �E ! E given by fst(x; y) = x and snd(x; y) = y. If a

subset L � D �E is directed, then

M = fst�(L) = fx j 9y 2 E: (x; y) 2 Lg

N = snd�(L) = fy j 9x 2 D: (x; y) 2 Lg
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are directed. In particular, if D and E are cpo's, then
F
L = (

F
M;
F
N) and, of course, ?D�E =

(?D;?E), so D �E is a cpo. Indeed, if D and E are domains, then D � E is also a domain with

K(D �E) = K(D)�K(E). The property of bounded completeness is also preserved by �.

Given cpos D;E; F , one can show that a function f : D �E ! F is continuous if and only if it

is continuous in each of its arguments individually. In other words, f is continuous i� each of the

following conditions holds:

1. The function f1 : D! F given by x 7! f(x; e) is continuous.

2. The function f2 : E ! F given by y 7! f(d; y) is continuous.

We leave the proof of this equivalence as an exercise for the reader.

It is easy to see that each of the functions fst and snd is continuous. Moreover, given

any cpo F and continuous functions f : F ! D and g : F ! E, there is a continuous function

hf; gi : F ! D �E such that

fst � hf; gi = f

snd � hf; gi = g

and, for any continuous function h : F ! D � E,

hfst � h; snd � hi = h:

The function hf; gi is given by hf; gi(x) = (f(x); g(x)).

There is another, more pictorial, way of stating these equational properties of the operator

h�; �i using a commutative diagram. The desired property can be stated in the following manner:

given any cpo F and continuous functions f : F ! D and g : F ! E, there is a unique continuous

function hf; gi which completes the following diagram:

E

D �E

D

F

snd

fst

hf; gi

g

f

?

6

����������

HH
HH

HH
HH

HY

�

This is referred to as the universal property of the operator �. As operators are given below we

will describe the universal properties that they satisfy and these will form the basis of a system of

equational reasoning about continuous functions. Virtually all of the functions needed to describe

the semantics of (a wide variety of) programming languages may be built from those which are

used in expressing these universal properties!



14 Carl A. Gunter and Dana S. Scott

Given continuous functions f : D! D0 and g : E ! E 0, we may de�ne a continuous function

f � g which takes (x; y) to (f(x); g(y)) by setting

f � g = hf � fst; g � sndi : D � E ! D0 � E 0:

It is easy to show that idD � idE = idD�E and

(f � g) � (f 0 � g0) = (f � f 0)� (g � g0):

Note that we have \overloaded" the symbol � so that it works both on pairs of domains and pairs of

functions. This sort of overloading is quite common in mathematics and we will use it often below.

In this case (and others to follow) we have an example of what mathematicians call a functor.

There is a very important relationship between the operators ! and �. Let D, E and F be

cpo's. Then there is a function

apply : ((E ! F )�E)! F

given by taking apply(f; x) to be f(x) for any function f : E ! F and element x 2 E. Indeed, the

function apply is continuous. Also, given a function f : D �E ! F , there is a continuous function

curry(f) : D! (E ! F )

given by taking curry(f)(x)(y) to be f(x; y). Moreover, curry(f) is the unique continuous function

which makes the following diagram commute:

D �E F
f

curry(f)� id
apply

(E ! F )� E

?

-

�
�
�
�
���

This uniqueness condition is equivalent to the following equation:

curry(apply � (h� idE)) = h (1)

To see this, suppose equation (1) holds and h satis�es

f = apply � (h� id)

then

curry(f) = curry(apply � (h� id)) = h

so the uniqueness condition is satis�ed. On the other hand, if curry(f) is uniquely determined by

the diagram above, then equation (1) follows immediately from the commutativity of the following

diagram:
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D �E F
f

h� id
apply

(E ! F )� E

?

-

�
�
�
�
���

for f = apply � (h� idE).

It is often useful to have a multiary notation for products. We write

�() = I

�(D1; : : : ; Dn) = �(D1; : : : ; Dn�1)�Dn

and de�ne projections

oni : �(D1; : : : ; Dn)! Di

by

oni = snd � fstn�i

Similarly, one de�nes a multiary version of the pairing operation by taking h i to be the identity on

the one point domain and de�ning

hf1; : : : ; fni = hhf1; : : : ; fn�1i; fni:

These multiary versions of projection and pairing satisfy a universal property similar to the one for

the binary product.

4.2 Church's �-notation.

If we wish to de�ne a function from, say, natural numbers to natural numbers, we typically do

so by describing the action of that function on a generic number x (a variable) using previously

de�ned functions. For example, the squaring function f has the action x 7! x � x where � is the

multiplication function. We may now use f to de�ne other functions: for example, a function g

which takes a function h : N! N to f � h. Continuing in this way we may construct increasingly

complex function de�nitions. However, it is sometimes useful to have a notation for functions which

alleviates the necessity of introducing intermediate names. This purpose is served by a terminology

known as �-notation which is originally due to Church.

The idea is this. Instead of introducing a term such as f and describing its action as a function,

one simply gives the function a name which is basically a description of what it does with its

argument. In the above case one writes �x: x � x for f and �h: f � h for g. One can use this

notation to de�ne g without introducing f by de�ning g to be the function �h: (�x: x �x) �h. The
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�h at the beginning of this expression says that g is a function which is computed by taking its

argument and substituting it for the variable h in the expression (�x: x � x) � h.

The use of the Greek letter � for the operator which binds variables is primarily an historical ac-

cident. Various programming languages incorporate something essentially equivalent to �-notation

using other names. In mathematics textbooks it is common to avoid the use of such notation by

assuming conventions about variable names. For example, one may write

x2 � 2 � x

for the function which takes a real number as an argument and produces as result the square of

that number less its double. An expression such as

x2 + x � y + y2

would denote a function which takes two numbers as arguments|that is, the values of x and y|

and produces the square of the one number plus the square of the other plus the product of the

two. One might therefore provide a name for this function by writing something like:

f(x; y) = x2 + x � y + y2:

So f is a function which takes a pair of numbers and produces a number. But what notation

should we use for the function g that takes a number n as argument and produces the function

n 7! x2+ x �n+n2? For example, g(2) is the function x2+2 � x+4. It is not hard to see that this

is closely related to the function curry which we discussed above. Modulo the fact that we de�ned

curry for domains above, we might have written g = curry(f). Or, to de�ne g directly, we would

write

g = �y: �x: x2 + x � y + y2:

The de�nition of f would need to be given di�erently since f takes a pair as an argument. We

therefore write:

f = �(x; y): x2 + x � y + y2:

There is no impediment to using this notation to describe higher-order functions as well. For

example,

�f: f(3)

takes a function f and evaluates it on the number 3 and

�f: f � f

takes a function and composes it with itself. But these de�nitions highlight a very critical issue.

Note that both de�nitions are ambiguous as they stand. Does the function �f: f(3) take, for

example, functions from numbers to reals as argument or does it take a function from numbers to
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sets of numbers as argument? Either of these would, by itself, make sense. What we need to do

is indicate somewhere in the expression the types of the variables (and constants if their types are

not already understood). So we might write

�f : N! R: f(3)

for the operator taking a real valued function as argument and

�f : N! PN: f(3)

for the operator taking a PN valued function.

So far, what we have said applies to almost any class of spaces and functions where products

and an operator like curry are de�ned. But for the purposes of programming semantics, we need a

semantic theory that includes the concept of a �xed point. Such �xed points are guaranteed if we

stay within the realm of cpo's and continuous functions. But the crucial fact is this: the process of

�-abstraction preserves continuity. This is because curry(f) is continuous whenever f is. We may

therefore use the notational tools we have described above with complete freedom and still be sure

that recursive de�nitions using this notation make sense.

Demonstrating that the typed �-calculus (i.e. the system of notations that we have been de-

scribing informally here) is really useful in explaining the semantics of programming languages is

not the objective of this chapter. However, one can already see that it provides a considerable

latitude for writing function de�nitions in a simple and mathematically perspicuous manner.

4.3 Smash products.

In the product D�E of cpo's D and E, there are elements of the form (x;?) and (?; y). If x 6= ?

or y 6= ?, then these will be distinct members of D � E. In programming semantics, there are

occasions when it is desirable to identify the pairs (x;?) and (?; y). For this purpose, there is a

collapsed version of the product called the smash product. For cpo's D and E, the smash product

D 
E is the set

f(x; y) 2 D � E j x 6= ? and y 6= ?g [ f?D
Eg

where ?D
E is some new element which is not a pair. The ordering on pairs is coordinatewise and

we stipulate that ?D
E v z for every z 2 D 
 E. There is a continuous surjection

smash : D � E ! D 
 E

given by taking

smash(x; y) =

(
(x; y) x 6= ? and x 6= ?

?D
E otherwise



18 Carl A. Gunter and Dana S. Scott

This function establishes a useful relationship between D�E and D
E. In fact, it is a projection

whose corresponding embedding is the function unsmash : D 
 E ! D �E given by

unsmash(z) =

(
z if z = (x; y) is a pair

(?;?) if z = ?D
E

Let us say that a function f : D �E ! F is bistrict if f(x; y) = ? whenever x = ? or y = ?. If

f : D �E ! F is bistrict and continuous, then g = f � unsmash is the unique strict, continuous

function which completes the following diagram:

D �E

D 
E F

smash

g

f

?

@
@
@
@
@
@R
-

If f : D! D0 and g : E ! E 0 are strict continuous functions, then f 
g = smash�(f�g)�unsmash

is the unique strict, continuous function which completes the following diagram:

D 
E

D �E

D 
E

D �E

smash smash

f 
 g

f � g

? ?

-

-

As with the product � and function space!, there is a relationship between the smash product


 and the strict function space �!. In particular, there is a strict continuous function strict apply

such that for any strict function f , there is a unique strict function strict curry such that the

following diagram commutes:

D 
 E F
f

strict curry(f)
 id strict apply

(E �!F )
 E

?

-

�
�
�
�
���

4.4 Sums and lifts.

Given cpo's D and E, we de�ne the coalesced sum D � E to be the set�
(D � f?Dg)� f0g

�
[

�
(E � f?Eg)� f1g

�
[ f?D�Eg
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where D�f?Dg and E�f?Eg are the setsD and E with their respective bottom elements removed

and ?D�E is a new element which is not a pair. It is ordered by taking ?D�E v z for all z 2 D�E

and taking (x;m) v (y; n) if and only if m = n and x v y. There are strict continuous functions

inl : D �!(D �E) and inr : E �!(D � E) given by taking

inl(x) =

(
(x; 0) if x 6= ?

?D�E if x = ?

and

inr(x) =

(
(x; 1) if x 6= ?

?D�E if x = ?

Moreover, if f : D �!F and g : E �!F are strict continuous functions, then there is a unique strict

continuous function [f; g] which completes the following diagram:

D

E

D �E F

inr

inl

[f; g]

g

f

6

?

��
��

��
��
�*

HHHHHHHHHj
-

The function [f; g] is given by

[f; g](z) =

8>><
>>:
f(x) if z = (x; 0)

g(y) if z = (y; 1)

? if z = ?.

Given continuous functions f : D �!D0 and g : E �!E0, we de�ne

f � g = [inl � f; inr � g] : D � E �!D0 � E 0:

As with the product, it is useful to have a multiary notation for the coalesced sum. We de�ne

�() = I

�(D1; : : : ; Dn) = �(D1; : : : ; Dn�1)�Dn

and

ini = inr � inln�i:

One may also de�ne [f1; : : : ; fn] and prove a universal property.
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D

�

A
A
A
A
A

�
�
�
�
�

up

down

-

�

D?

�

�

A
A
A
A
A

�
�
�
�
�

Figure 2: The lift of a cpo.

Given a cpo D, we de�ne the lift of D to be the set D? = (D � f0g) [ f?g, where ? is a new

element which is not a pair, together with an partial ordering v which is given by stipulating that

(x; 0) v (y; 0) when x v y and ? v z for every z 2 D?. In short, D? is the poset obtained by

adding a new bottom to D|see Figure 2. It is easy to show that D? is a cpo if D is. We de�ne a

strict continuous function down : D? �!D by

down(z) =

(
x if z = (x; 0)

?D otherwise

and a (non-strict) continuous function up : D ! D? given by up : x 7! (x; 0). These functions are

related by

down � up = idD

up � down w idD?

These inequations are reminiscent of those which we gave for embedding-projection pairs, but the

second inequation has w rather than v. We will discuss such pairs of functions later. Given cpo's

D and E and continuous function f : D ! E, there is a unique strict continuous function fy which

completes the following diagram:

D

D? E

up

fy

f

?

@
@
@
@
@
@R
-

Given a continuous function f : D ! E, we de�ne a strict continuous function

f? = (up � f)y : D? �!E?:
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Given cpo's D and E, we de�ne the separated sum D + E to be the cpo D? � E?. By the

universal properties for � and (�)?, we know that h = [fy; gy] is the unique strict continuous

function which completes the following diagram:

D

E

D +E F

inr � up

inl � up

h

g

f

6

?

��
��

��
��
�*

HHHHHHHHHj
-

However, h may not be the only continuous function which completes the diagram. Given contin-

uous functions f : D ! D0 and g : E ! E 0, we de�ne

f + g = f? � g? : D +E ! D0 +E0:

4.5 Isomorphisms and closure properties.

There are quite a few interesting relationships between the operators above which are implied by

the de�nitions and commutative diagrams. We list a few of these in the following lemmas.

Lemma 8 Let D, E and F be cpo's, then

1. D �E �= E �D,

2. (D� E)� F �= D � (E � F ),

3. D! (E � F ) �= (D ! E)� (D! F ),

4. D! (E ! F ) �= (D� E)! F .

Lemma 9 Let D, E and F be cpo's, then

1. D 
E �= E 
D,

2. (D
 E)
 F �= D 
 (E 
 F ),

3. (E � F ) �!D �= (E �!D)� (E �!F ),

4. D �!(E �!F ) �= (D 
E) �!F ,

5. D 
 (E � F ) �= (D 
E)� (D 
E)
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6. D? �!E �= D ! E.

We remarked already thatD ! E and D �!E are bounded complete domains whenever D and

E are. It is not di�cult to see that similar closure properties will hold for the other operators we

have de�ned in this section:

Lemma 10 If D and E are bounded complete domains then so are the cpo's D! E, D �!E,

D �E, D 
E, D +E, D � E, D?.

Further discussion of the operators de�ned in this section and others may be found in [Sco82a]

and [Sco82b].

5 Powerdomains.

We now turn our attention to another collection of operators on domains. Just as we have de�ned

a computable analog to the function space, we will now de�ne a computable analog to the powerset

operation. Actually, we will produce three such operators. In the domain theory literature these

are called powerdomains. If D is a domain we write

� D] for the upper powerdomain of D,

� D\ for the convex powerdomain of D, and

� D[ for the lower powerdomain of D.

The names we use for these operators come from the concepts of upper and lower semi-continuity

and the interested reader can consult [Smy83b] for a detailed explanation. They commonly appear

under other names as well. The convex powerdomain D\ was introduced by Gordon Plotkin [Plo76]

and is therefore sometimes referred to as the Plotkin powerdomain. The upper powerdomain D] was

introduced by Mike Smyth [Smy78] and is sometimes called the Smyth powerdomain. For reasons

that we will discuss briey below, this latter powerdomain corresponds to the total correctness

interpretation of programs. Since Tony Hoare has done much to popularize the study of partial

correctness properties of programs, the remaining powerdomain D[|which corresponds to the

partial correctness interpretation|sometimes bears his name.

5.1 Intuition.

There is a basic intuition underlying the powerdomain concept which can be explained through

the concept of partial information. To keep things simple, let us assume that we are given a �nite

poset A and asked to form the poset of �nite non-empty subsets of A. As a �rst guess, one might

take the non-empty subsets and order them by subset inclusion. However, this operation ignores
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the order structure on A! Think of A as a collection of partial descriptions of data elements: x v y

just in case x is a partial description of y. What should it mean for one non-empty subset of A

to be a \partial description" of another? The are at least three reasonable philosophies that one

might adopt in attempting to answer this question.

Suppose, for example, that I hold a bag of fruit and I wish to give you information about what

is in the bag. One such description might be

A fruit in the bag is a yellow fruit or a red fruit.

This description is based on two basic pieces of data: \is a yellow fruit" and \is a red fruit". These

are used to restrict the kinds of fruit which are in the bag. A more informative description of this

kind would provide further restrictions. Consider the following example:

A fruit in the bag is a yellow fruit or a cherry or a strawberry.

It is based on three pieces of data: \is a yellow fruit", \is a cherry" and \is a strawberry". Since

these three data provide further restrictions on the contents of the bag (by ruling out the possibility

of an apple, for example) it is a more informative statement about the bag's contents. On the other

hand,

A fruit in the bag is a yellow fruit or a red fruit or a purple fruit.

is a less informative description because it is more permissive; for instance, it does not rule out

the possibility that the bag holds a grape. Now suppose that u; v are subsets of the poset A from

the previous paragraph. With this way of seeing things, we should say that u is below v if the

restrictions imposed by v are re�nements of the restrictions imposed by u: that is, for each y 2 v,

there is an x 2 u such that x v y. This is the basic idea behind the upper powerdomain of A.

Returning to the bag of fruit analogy, we might view the following as a piece of information

about the contents of the bag

There is some yellow fruit and some red fruit in the bag.

This information is based on two pieces of data: \is a yellow fruit" and \is a red fruit". However,

these data are not being used as before. They do not restrict possibilities; instead they o�er a

positive assertion about the contents of the bag. A more informative description of this kind would

provide a further enumeration and re�nement of the contents:

There is a banana, a cherry and some purple fruit in the bag.

This re�ned description does not rule out the possibility that the bag holds a apple, but it does

insure that there is an cherry. A statment such as

There is some yellow fruit in the bag.
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is less informative since it does not mention the presence of red fruit. Now suppose that u; v are

subsets of the poset A. With this way of seeing things, we should say that u is below v if the

positive assertions provided by u are extended and re�ned by v: that is, for each x 2 u, there is a

y 2 v such that x v y. This is the basic idea behind the lower powerdomain of A.

Now, the convex powerdomain combines these two forms of information. For example, the

assertion

If you pull a fruit from the bag, then it must be yellow or a cherry, and you can pull a

yellow fruit from the bag and you can pull a cherry from the bag.

is this combined kind of information. The pair of assertions means that the bag holds some yellow

fruit and at least one cherry, but nothing else. A more re�ned description might be

If you pull a fruit from the bag, then it must be a banana or a cherry, and you can pull

a banana from the bag and you can pull a cherry from the bag.

A less re�ned description might be

If you pull a fruit from the bag, then it must be yellow or red, and you can pull a yellow

fruit from the bag and you can pull a red fruit from the bag.

The reader may be curious about what bags of fruit have to do with programming semantics. The

powerdomains are used to model non-deterministic computations where one wishes to speak about

the set of outcomes of a computation. How one wishes to describe such outcomes will determine

which of the three powerdomains is used. We will attempt to illustrate this idea later in this

section|when we have given some formal de�nitions.

5.2 Formal de�nitions.

In order to give the de�nitions of the powerdomains, it is helpful to have a little information about

the representation of domains using the concept of a pre-order:

De�nition: A pre-order is a setA together with a binary relation ` which is reexive and transitive.

It is conventional to think of the relation a ` b as indicating that a is \larger" than b (as in

mathematical logic, where � `  means that the formula  follows from the hypothesis �). Of

course, any poset is also a pre-order. On the other hand, a pre-order may fail to be a poset by not

satisfying the anti-symmetry axiom. In other words, we may have x ` y and y ` x but x 6= y. By

identifying elements x; y which satisfy x ` y and y ` x, we obtain an induced partially ordered set

from a pre-order (and this why they are called pre-orders). We shall be particularly interested in

a special kind of subset of a pre-order:

De�nition: An ideal over a pre-order hA;`i is a subset s � A such that
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1. if u � s is �nite, then there is an x 2 s such that x ` y for each y 2 u, and

2. if x 2 s and x ` y, then y 2 s.

In short, an ideal is a subset which is directed and downward closed. If x 2 A for a pre-order A,

then the set

#x = fy 2 A j x ` yg

is an ideal called the principal ideal generated by x. To induce a poset from a pre-order, one can

take the poset of principal ideals under set inclusion. The poset of all ideals on a pre-order is

somewhat more interesting:

Theorem 11 Given a countable pre-order hA;`i, let D be the poset consisting of the ideals over

A, ordered by set inclusion. If there is an element ? 2 A such that x ` ? for each x 2 A, then D

is a domain and K(D) is the set of principal ideals over A.

Proof: Clearly, the ideals of A form a poset under set inclusion and the principal ideal #? is the

least element. To see that this poset is complete, suppose thatM � D and let x =
S
M . If we can

show that x is an ideal, then it is certainly the least upper bound of M in D. To this end, suppose

u � x is �nite. Since each element of u must be contained in some element of M , there is a �nite

collection of ideals s �M such that u �
S
s. Since M is directed, there is an element y 2M such

that z � y for each z 2 s. Thus u � y and since y is ideal, there is an element a 2 y such that

b v a for each b 2 u. But a 2 y � x, so it follows that x is an ideal.

To see that D is a domain, we show that the set of principal ideals is a basis. Suppose M � D

is directed and #a �
S
M for some a 2 A. Then a 2 x for some x 2 M , so # a � x. Hence #a

is compact in D. Now suppose x 2 D and u � A is a �nite collection of elements of A such that

#a � x for each a 2 u. Then u � x and since x is an ideal, there is an element b 2 x with b ` a

for each a 2 u. Thus #a � # b for each a 2 u and it follows that the principal ideals below x form

a directed collection. It is obvious that the least upper bound (i.e. union) of that collection is x.

Since x was arbitrary, it follows that D is an algebraic cpo with principal ideals of A as its basis.

Since A is countable, there are only countably many principal ideals, so D is a domain.

For any set S, we let P�f (S) be the set of �nite non-empty subsets of S. We write Pf(S) for

the set of all �nite subsets (including the empty set). Given a poset hA;vi, de�ne a pre-ordering

`] on P�f (A) as follows,

u `] v if and only if (8x 2 u)(9y 2 v): x w y:

Dually, de�ne a pre-ordering `[ on P�f (A) by

u `[ v if and only if (8y 2 v)(9x 2 u): x w y:
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And de�ne `\ on P�f (A) by

u `\ v if and only if u `] v and u `[ v:

If D is a domain, then let D\ be the domain of ideals over hP�f (K(D));`\i. We call D\ the convex

powerdomain ofD. Similarly, de�ne D] and D[ to be the domains of ideals over hP�f (K(D));`]i and

hP�f (K(D));`[i respectively. We callD] the upper powerdomain ofD andD[ the lower powerdomain

of D.

As an example, we compute the lower powerdomain of N?. Since K(N?) = N?, the lower

powerdomain of N? is the set of ideals over the pre-order hP�f (N?);`
[i. To see what such an ideal

must look like, note �rst that u `[ u[ f?g and u[ f?g `[ u for any u 2 P�f (N?). From this fact it

is already possible to see why `[ is usually only a pre-order and not a poset. Now, if u and v both

contain ?, then u `[ v i� u � v. Hence we may identify an ideal x 2 (N?)
[ with the union

S
x of

all the elements in x. Thus (N?)
[ is isomorphic to the domain PN of all subsets of N under subset

inclusion.

Now let us compute the upper powerdomain of N?. Note that if u and v are �nite non-empty

subsets of N? and ? 2 v, then u `] v. In particular, any ideal x in (N?)] contains all of the �nite

subsets v of N? with ? 2 v. So, let us say that a set u 2 P�f (N?) is non-trivial if it does not

contain ? and an ideal x 2 (N?)
] is non-trivial if there is a non-trivial u 2 x. Now, if u and v are

non-trivial, then u `] v i� u � v. Therefore, if an ideal x is non-trivial, then it is the principal ideal

generated by the intersection of its non-trivial elements! The smaller this set is, the larger is the

ideal x. Hence, the non-trivial ideals in the powerdomain (ordered by subset inclusion) correspond

to �nite subsets of N (ordered by superset inclusion). If we now throw in the unique trivial ideal, we

can see that (N?)] is isomorphic to the domain of sets fNg [ P�f (N) ordered by superset inclusion.

Finally, let us look at the convex powerdomain of N?. If u; v 2 P�f (N?), then u `
\ v i�

1. ? 2 v and u � v or

2. u = v

Hence, if x is an ideal and there is a set u 2 x with ? 62 u, then x is the principal ideal generated

by u. No two distinct principal ideals like this will be comparable. On the other hand, if x is an

ideal with ? 2 u for each u 2 x, then x � y for an arbitrary ideal y i�
S
x �

S
y. Thus the convex

powerdomain of N? corresponds to the set of �nite, non-empty subsets of N unioned with the set

of arbitrary subsets of N? that contain ?. The ordering on these sets is like the pre-ordering `\

but extended to include in�nite sets.

5.3 Universal and closure properties.

If s; t 2 D\ then we de�ne a binary operation

s[ t = fw j u [ v `\ w for some u 2 s and v 2 tg:
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This set is an ideal and the function [ : D\ �D\ ! D\ is continuous. Similar facts apply when [

is de�ned in this way for D] and D[. Now, if x 2 D, de�ne

fxg = fu 2 P�f (K(D)) j fx0g `
\ u for some compact x0 v xg:

This forms an ideal and f�g : D ! D\ is a continuous function. When one replaces `\ in this

de�nition by `] or `[, then similar facts apply. Strictly speaking, we should decorate the symbols

[ and f�g with indices to indicate their types, but this clutters the notation somewhat. Context

will determine what is intended.

These three operators (�)], (�)[ and (�)\ may not seem to be the most obvious choices for the

computable analog of the powerset operator. We will attempt to provide some motivation for

choosing them in the remainder of this section. Given the operators [ and f�g, we may say that a

point x 2 D for a domain D is an \element" of a set s in a powerdomain of D if fxg[ s = s. If s

and t lie in a powerdomain of D, then s is a \subset" of t if s[ t = t. Care must be taken, however,

not to confuse \sets" in a powerdomain with sets in the usual sense. The relations of \element"

and \subset" described above will have di�erent properties in the three di�erent powerdomains.

Moreover, it may be the case that s is a \subset" of t without it being the case that s � t!

To get some idea how the powerdomains are related to the semantics of non-deterministic

programs, let us discuss non-deterministic partial functions from N to N. As we have noted before,

there is a correspondence between partial functions from N to N and strict functions f : N? �!N?.

These may be thought of as the meanings of \deterministic" programs, because the output of

a program is uniquely determined by its input (i.e. the meaning is a partial function). Suppose,

however, that we are dealing with programs which permit some �nite non-determinism as discussed

in the section on non-determinism in the chapter of Peter Mosses. Then we may wish to think of a

program as having as its meaning a function f : N? ! P (N?) where P is one of the powerdomains.

For example, if a program may give a 1 or a 2 as an output when given a 0 as input, then we

will want the meaning f of this program to satisfy f(0) = f1g[ f2g = f1; 2g. The three di�erent

powerdomains reect three di�erent views of how to relate the various possible program behaviors

in the case of divergence. The upper powerdomain identi�es program behaviors which may diverge.

For example, if program P1 can give output 1 or diverge on any of its inputs, then it will be

identi�ed with the program Q which diverges everywhere, since f1;?g = ? = f?g in (N?)
].

However, program a P2 which always gives 1 as its output (on inputs other than ?) will not have

the same meaning as P1 and �x: ?. On the other hand, if the lower powerdomain is used in the

interpretation of these programs, then P1 and P2 will be given the same meaning since f1;?g = f1g

in (N?)
[. However, P1 and P2 will not have the same meaning as the always divergent program

Q since f1;?g 6= ? in the lower powerdomain. Finally, in the convex powerdomain, none of the

programs P1, P2, Q have the same meaning since f1;?g, f1g and f?g are all distinct in (N?)\.

To derive properties of the powerdomains like those that we discussed in the previous section

for the other operators, we need to introduce the concept of a domain with binary operator.
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De�nition: A continuous algebra (of signature (2)) is a cpo E together with a continuous binary

function � : E �E ! E. We refer to the following collection of axioms on � as theory T \:

1. associativity: (r � s) � t = r � (s � t)

2. commutativity: r � s = s � r

3. idempotence: s � s = s.

(These are the well-known semi-lattice axioms.) A homomorphism between continuous algebras D

and E is a continuous function f : D! E such that f(s � t) = f(s) � f(t) for all s; t 2 D.

It is easy to check that, for any domain D, each of the algebras D\, D] and D[ satis�es T \.

However, D\ is the \free" continuous algebra over D which satis�es T \:

Theorem 12 Let D be a domain. Suppose hE; �i is a continuous algebra which satis�es T \. For

any continuous f : D! E, there is a unique homomorphism ext(f) : D\ ! E which completes the

following diagram:

D

D\ E

f�g

ext(f)

f

?

@
@
@
@
@
@R
-

Proof: (Hint) If u = fx1; : : : ; xng 2 s 2 D\, and û is the principal ideal generated by u, then

de�ne ext(f)(û) = f(x1) � � � � � f(xn). This function has a unique continuous extension to all of D\

given by ext(f)(s) =
F
fext(f)(û) j u 2 sg.

Now, consider the following axiom:

4]. s[ t v s.

Let T ] be the set of axioms obtained by adding axiom 4] to the axioms in T \. Similarly, let T [ be

obtained by adding the axiom

4[. s v s[ t

to the axioms in T \. The point is this: Theorem 12 still holds when D\ and T \ are replaced by D]

and T ] respectively, or by D[ and T [ respectively.

As was the case with the smash product and lift operators, a diagram like the one in Theorem 12

gives rise to another important operation on functions. If f : D! E is a continuous function, then

there is a unique homomorphism f \ which completes the following diagram:
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D\

D

E\

E

f�g f�g

f \

f

? ?

-

-

Namely, one de�nes f \ = ext(f�g � f). Of course, there are functions f ] and f [ with similar

de�nitions.

Two of the powerdomains preserve the property of bounded completeness:

Lemma 13 If D is a bounded complete domain then so are D] and D[.

Proof: We leave for the reader the exercise of showing that a domain D is bounded complete if

and only if every �nite bounded subset of its basis has a least upper bound. To see that D[ is

bounded complete, just note that, for any pair of sets u; v 2 P�f (K(D)), the ideal generated by

their union u [ v is the least upper bound in D[ for the ideals generated by u and v. To see that

D] is bounded complete, suppose u; v; w 2 P�f (K(D)) with w `] u and w `] v. Let w0 be the set of

elements z 2 K(D) such that there are elements x 2 u and y 2 v and z is the least upper bound

of fx; yg. The set w0 is non-empty because fu; vg is bounded. Moreover, it is not hard to see that

w `] w0 and w0 `] u and w0 `] v. Hence the ideal generated by w0 is the least upper bound of the

ideals generated by u and v.

6 Bi�nite domains.

Of the operators that we have discussed so far, only the convex powerdomain (�)\ does not take

bounded complete domains to bounded complete domains. To see this in a simple example, consider

the �nite poset T� T and the following elements of P�f (T� T):

u = fh?; truei; h?; falseig

v = fhtrue;?i; hfalse;?ig

u0 = fhtrue; truei; hfalse; falseig

v0 = fhtrue; falsei; hfalse; trueig

It is not hard to see that u0 and v0 are minimal upper bounds for fu; vg with respect to the ordering

`\. Hence no least upper bound for fu; u0g exists and (T�T)\ is therefore not bounded complete. In

this section we introduce a natural class of domains on which all of the operators we have discussed

above (including the convex powerdomain) are closed. This class is de�ned as follows:

De�nition: Let D be a cpo. Let M be the set of �nitary projections with �nite image. Then D

is said to be bi�nite if M is countable, directed and
F
M = id.
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The bi�nite cpo's are motivated, in part, by considerations from category theory and the de�nition

above is a restatement of their categorical de�nition. They were �rst de�ned by Plotkin [Plo76]

(where they are called \SFP-objects") and the term \bi�nite" is due to Paul Taylor. Bi�nite

domains (and various closely related classes of cpo's) have also been discussed under other names

such as \strongly algebraic" [Smy83a, Gun86] and \pro�nite" [Gun87] domains.

6.1 Plotkin orders.

As we suggested earlier, the image of a �nitary projection p : D ! D on a domain D can be

viewed as an approximation to D. A bi�nite domain is one which is a directed limit of its �nite

approximations. But what is this really saying about the structure ofD? First of all, it follows from

properties of �nitary projections that we mentioned earlier that whenever p : D ! D is a �nitary

projection and im(p) is �nite, then im(p) � K(D). From this, together with the fact that the set

M is directed and
F
M = id, it is possible to show D is a domain with

S
fim(p) j p 2 Mg as its

basis. We may now use the correspondence which we noted in Theorem 6 to provide a condition

on the basis of a domain which characterizes the domain as being bi�nite. Recall that N / A for

posets N and A if N \ #x is directed for every x 2 A.

De�nition: A poset A is a Plotkin order if, for every �nite subset u � A, there is a �nite set N /A

with u � N .

Theorem 14 The following are equivalent for any cpo D.

1. D is bi�nite.

2. D is a domain and K(D) is a Plotkin order.

To get some idea what a Plotkin order looks like, it helps to have a de�nition. Given a poset A

and a �nite set u � A, an upper bound x for u is minimal if, for any upper bound y for u, y v x

implies y = x. A set v of minimal upper bounds for u is said to be complete if, for every upper

bound x for u, there is a y 2 v with y v x. Now, let A be a Plotkin order and suppose u � A is

�nite. Then there is a �nite N /A with u � N . The set N must contain a complete set of minimal

upper bounds for u (why?). This shows the �rst fact about Plotkin orders: every �nite subset

has a complete set of minimal upper bounds. This rules out con�gurations like the one pictured

in Figure 3a where the pair of points indicated by closed circles do not have such a complete set

of minimal upper bounds. But the set N is �nite so we have our second fact: every �nite subset

must have a �nite complete set of minimal upper bounds. This rules out con�gurations like the

one pictured in Figure 3b where the pair of points indicated by closed circles has a complete set of

minimal upper bounds but not a �nite one. However, having �nite complete sets of minimal upper

bounds for �nite subsets is not a su�cient condition for characterizing the Plotkin orders. To see
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Figure 3: Posets that are not Plotkin orders.

why, let A be a poset which has �nite complete sets of minimal upper bounds for �nite subsets. If

u � A is �nite, let

U(u) = fx j x is the minimal upper bound for some v � ug:

Now, if u � N /A, then U(u) � N . Hence, Un(u) � N for each n. If N is �nite, then there must be

an n for which Un(u) = Un+1(u). This is a third fact about Plotkin orders: for each �nite u � A,

U1(u) =
S
n U

n(u) is �nite. To see what can go wrong, note that U1(u) is in�nite when u is the

pair of points indicated by closed circles in Figure 3c.

6.2 Closure properties.

Proposition 15 A bounded complete domain is bi�nite.

Proof: Suppose D is bounded complete and u � K(D) is a �nite subset of the basis of D. Let

N = fx j x is the least upper bound of a �nite subset of u g:

Note that N is �nite; we claim that N /K(D). Suppose x is the least upper bound of a �nite set

v � K(D). Since D is algebraic, there is a directed subset M � K(D) such that x =
F
M . But

the elements of v are compact. Hence, for every y 2 v, there is a y0 2 M with y v y0. Since M

is directed, there is some z 2 M which is an upper bound for v. Now, z v x so x = z and x is

therefore compact. This shows that N � K(D). Suppose v � N is bounded, then the least upper

bound of v is the same as the least upper bound of the set fx 2 u j x v y for some y 2 vg so the

least upper bound of v is in N . Now, if x 2 K(D), then S = (#x) \N is bounded. Since S has a

least upper bound which, apparently, lies in S, we conclude that S is directed.



32 Carl A. Gunter and Dana S. Scott

Theorem 16 If D is bi�nite, then the poset Fp(D) of �nitary projections on D is an algebraic

lattice and the inclusion map i : Fp(D) ,! (D ! D) is an embedding.

Proof: (Sketch) One uses Theorem 6 to show that Fp(D) is an algebraic lattice. Suppose

f : D ! D is continuous. Let

Sf = fx 2 K(D) j x v f(x)g:

One can show that there is a least set Nf such that Sf � Nf /K(D). This set determines a �nitary

projection pNf
as in the discussion before Theorem 6. On the other hand, if f : D ! D is a �nitary

projection then Nf = im(f) \ K(D) and f = pNf
. The remaining steps required to verify that

f 7! Nf is a projection are straight-forward.

Lemma 17 If D and E are bi�nite domains, then so are the cpo's D! E, D �!E, D�E, D
E,

D +E, D �E, D?, D
\, D] and D[.

Proof: We will outline proofs for two sample cases. We begin with the function space operator.

Suppose p : D! D and q : E ! E are �nitary projections. Given a continuous function f : D! E,

de�ne �(q; p)(f) = q�f �p. The function �(q; p) de�nes a �nitary projection on D ! E. Moreover,

if p and q have �nite images, then so does �(q; p). If we let M be the set of functions �(q; p) such

that p and q are �nitary projections with �nite image, then it is easy to see that
F
M = id. Hence

D ! E is bi�nite. We will encounter the function � again in the next section.

To see that D\ is bi�nite, one shows that the set

M = fp\ j p 2 Fp(D) and im(p) is �niteg

is directed and has the identity as its least upper bound. The functions inM are themselves �nitary

projections with �nite images so D\ is bi�nite.

One may conclude from this lemma that the bi�nite domains have rather robust closure prop-

erties. But there is something else about bi�nite domains which makes them special. They are the

largest class of domains which are closed under the operators listed in the Lemma. In fact, there is

the following:

Theorem 18 If D and D ! D are domains, then D is bi�nite.

The theorem is due to Smyth and its proof may be found in [Smy83a]. It is carried out by

analyzing each of the cases pictured in Figure 3 and showing that if D! D is not a domain, then

D cannot be bi�nite. A similar result for the bounded complete domains can be found in [Gun86].
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7 Recursive de�nitions of domains.

Many of the data types that arise in the semantics of computer programming languages may be

seen as solutions of recursive domain equations. Consider, for example, the equation T �= T +T (of

course, this is an isomorphism rather than an equality, but let us not make much of this distinction

for the moment). How would we go about �nding a domain which solves this equation? Suppose we

start with the one point domain T0 = I as the �rst approximation to the desired solution. Taking

the proof of the Fixed Point Theorem as our guide, we build the domain T1 = T0+T0 = I+ I as the

second approximation. Now, there is a unique embedding e0 : T0 ! T1 so this gives a precise sense

in which T0 approximates T1. The next approximation to our solution is the domain T2 = T1 + T1

and again there is an embedding e1 = e0 + e0 : T1 ! T2. If we continue along this path we build a

sequence

T0
e0�! T1

e1�! T2
e2�! � � �

of approximations to the full simple binary tree. To get a domain, we must add limits for each of

the branches. The resulting domain (i.e. the full simple binary tree with the limit points added)

is, indeed, a \solution" of T �= T + T . This is all very informal, however; how are we to make this

idea mathematically precise and, at the same time, su�ciently general?

7.1 Solving domain equations with closures.

In this section we discuss a technique for solving recursive domain equations by relating domains

to functions by the \image" map (im) and then using the ideas of the previous section to solve

equations. There are two (closely related) ways of doing this which we will illustrate. The �rst of

these is based on the following concept:

De�nition: Let D and E be cpo's. A continuous function r : D! E is a closure if there is a

continuous function s : E ! D such that r � s = id and s � r w id.

By analogy with the notion of a �nitary projection, we will say that a function r : D! D is a

�nitary closure if r � r = r w id and im(r) is a domain. In the event that D is a domain, the

requirement that im(r) be a domain is unnecessary because we have the following:

Lemma 19 If D is a domain and r : D ! D satis�es the equation r � r = r w id, then im(r) is a

domain.

The Lemma is proved by showing that fr(x) j x 2 K(D)g forms a basis for im(r). We will say that

a domain E is a closure of D if it is isomorphic to im(r) for some �nitary closure r on D. We let

Fc(D) be the poset of �nitary closures r : D! D.

Lemma 20 If D is a domain, then Fc(D) is a cpo.
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De�nition: Let us say that an operator F on cpo's is representable over a cpo U if and only if

there is a continuous function RF which completes the following diagram (up to isomorphism):

Fc(U)

Cpo's

Fc(U)

Cpo's

im im

RF

F

6 6

-

-

i.e. im(RF (r)) �= F (im(r)) for every closure r.

This idea extends to multiary operators as well. For example, the function space operator � ! � is

representable over a cpo U if there is a continuous function

R : Fc(U)� Fc(U)! Fc(U)

such that, for any r; s 2 Fc(U),

im(R(r; s))�= im(r)! im(s)

A operator hF1; : : : ; Fni is de�ned to be representable if each of the operators Fi is. Note that a

composition of representable operators is representable.

Theorem 21 If an operator F is representable over a cpo U , then there is a domain D such that

D �= F (D).

Proof: Suppose RF represents F . By the Fixed Point Theorem, there is an r 2 Fc(U) such that

r = RF (r). Thus im(r) = im(RF (r)) �= F (im(r)) so im(r) is the desired domain.

Now we know how to solve domain equations. For example, to solve T �= T +T we need to �nd

a domain U and continuous function f : U ! U which represents the operator F (X) = X + X .

But we are still left with the problem of �nding a domain over which such operations may be

represented! The next step is to look at a simple structure which can be used to represent several

of the operations in which we are interested.

Given sets S and T , let TS be the set of (all) functions from S into T . If T is a cpo, then TS

is also a cpo under the pointwise ordering. Now, it is not hard to see that the domain equation

X �= X � I> (where I> is the two point lattice) has, as one of its solutions, the cpo (I>)N. In

fact, this cpo is isomorphic to the algebraic cpo PN of subsets of N which we discussed in the �rst

section. It is particularly interesting because of the following:

Theorem 22 For any (countably based) algebraic lattice L, there is a closure r : PN! L.
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Proof: Let l0; l1; l2; : : : be an enumeration of the basis of L. Given S � N, let r(S) =
F
fln j n 2 Sg.

If l 2 L, let s(l) = fn j ln v lg. We leave for the reader the (easy) demonstration that r; s are

continuous with r � s = id and s � r w id.

Structures such as PN are often referred to as universal domains because they have a rich

collection of domains as retracts. In the remainder of this section we will discuss two more similar

constructions and show how they may be used to provide representations for operators.

Unfortunately, there is no representation for the operator F (X) = X +X over PN. However,

there are some much more interesting operators which are representable over PN. In particular,

Lemma 23 The function space operator is representable over PN.

Proof: Consider the algebraic lattice of functions PN! PN. By Theorem 22, we know that there

are continuous functions
�! : PN! (PN! PN)

	! : (PN! PN)! PN

such that �! � 	! = id and 	! � �! w id. Now, suppose r; s 2 Fc(PN) (that is, r � r = r w id

and s � s = s w id). Given a continuous function f : PN! PN, let �(s; r)(f) = s � f � r and de�ne

R!(r; s) = 	! ��(s; r) � �!:

To see that this function is a �nitary closure, we take x 2 PN and compute

(R!(r; s) �R!(r; s))(x)

= (	! ��(s; r) � �!)(	!(s � (�!(x)) � r)

= (	! ��(s; r) � �! �	!)(s � (�!(x)) � r)

= (�! ��(s; r))(s � (�!(x)) � r)

= 	!((s � s) � (�!(x)) � (r � r))

= 	!(s � (�!(x)) � r)

= R!(r; s)(x)

and

R!(r; s)(x) = 	!(s � (�!(x)) � r) w 	!(�!(x)) w x:

Thus we have de�ned a function,

R! : Fc(PN)� Fc(PN)! Fc(PN)

which we now demonstrate to be a representation of the function space operator.

Given r; s 2 Fc(PN), we must show that there is an isomorphism

im(R(r; s))�= im(r)! im(s)
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for each r; s 2 Fc(PN). Now, there is an evident isomorphism between continuous functions

f : im(r)! im(s) and continuous functions g : PN! PN such that g = s � g � r. We claim that

	! cuts down to an isomorphism between such functions and the sets in the image of R!(r; s).

Since �! �	! = id, we need only show that (	! ��!)(x) = x for each x = R!(r; s)(x). But if

x = 	!(s � (�!(x)) � r)

then

(	! � �!)(x) = (	! � �! �	!)(s � (�!(x)) � r)

= 	!(s � (�!(x)) � r)

= x

Hence im(R!(r; s))�= im(r)! im(s) and we may conclude that R! represents ! over PN.

A similar construction can be carried out for the product operator. Suppose

�� : PN! (PN� PN)

	� : (PN�PN)! PN

such that �� �	� = id and 	� ��� w id. For r; s 2 Fp(PN) de�ne

R�(r; s) = 	� � (r� s) � ��

We leave for the reader the demonstration that this makes sense and R� represents the product

operator.

Suppose that L is an algebraic lattice. Then there are continuous functions

�L : PN! PN

	L : PN! PN

such that �L �	L = id and 	L � �L w id. Then the function

RL(r; s) = 	L ��L

represents the constant operator X 7! L because im(	L � �L) �= L. A similar argument can be

used to show that a constant operator X 7! D is representable over a domain U if and only if D is

a closure of U .

7.2 Modelling the untyped �-calculus.

It is tempting to try to solve the domain equation D �= D! D by the methods just discussed.

Unfortunately, the equation I �= I! I (corresponding to the fact that on a one-point set there is
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only one possible self-map) shows that there is no guarantee that the result will be at all interesting.

There has to be a way to build in some nontrival structure that is not wiped out by the �xed-point

process. Methods are described in [Sco76a, Sco80a], but the following, from [Sco76b, Sco80b], is

more direct and more general.

Lemma 24 Let U be a non-trivial cpo. If the product and function space operators can be repre-

sented over U , then there are non-trivial domains D and E such that E �= E�E and D �= D ! E.

Proof: We can represent F (X) = U � X � X over U , so there is a closure A of U such that

A �= U �A�A. Thus U �A �= U � (U �A�A) �= (U �A)� (U �A). So E = U �A is non-trivial

and E �= E�E. Now, E is a closure of U so G(X) = X ! E is representable over U . Hence there

is a cpo D �= D! E. This cpo is non-trivial because E is.

Theorem 25 If U is a non-trivial domain which represents products and function spaces, then

there is a non-trivial domain D such that D �= D �D �= D ! D and D is the image of a closure

on U .

Proof: Let D and E be the domains given by Lemma 24. Then

D �D �= (D ! E)� (D! E) �= D! (E � E) �= D ! E �= D

and

D! D �= D! (D ! E) �= (D �D)! E �= D ! E �= D:

We note, in fact, that D will have PN itself represented by a closure on U . Hence, to get a

non-trivial solution for D �= D ! D �= D � D, take U in the theorem to be PN. What good is

such a domain? The answer is that a D satisfying these isomorphisms is a model for a very strong

�-calculus. If we expand the syntax of �-calculus given in Section 5.3 of the chapter by Mosses to

allow pairings, we would have:

E ::= (�x: E) j E1(E2) j x j pair j fst j snd

Now, Mosses points out that under the semantic function he de�nes, many di�erent expressions

are mapped into the same values. We can say that the model satis�es certain equations. In

particular, under the isomorphisms obtained in our theorems above, the following equations will

be satis�ed:

1. (�x: E) = (�y: [y=x]E) (provided y is not free in E)

2. (�x: E)(E0) = [E0=x]E

3. (�x: E(x)) = E (provided x is not free in E)
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4. fst(pair(E)(E 0)) = E

5. snd(pair(E)(E 0)) = E0

6. pair(fst(E))(snd(E)) = E

In these equations, the third and sixth especially emphasize the isomorphisms D = D ! D and

D = D � D. There are models where D! D is represented by a closure on D (as is D � D)

but where this is not an isomorphism. It follows that the special equations are independent of the

others.

In [R�87] the question is brought up whether we can add to the above equations one relating

functional abstraction with pairing. In particular, the following would be interesting:

pair(x)(y) = (�z: pair(x(z))(y(z))):

This equation identi�es the primitive pairing with what could be called pointwise pairing. This

equation is independent from the others, but a model for it can be obtained from the �rst model by

introducing a new pairing and application operation that does things pointwise in a suitable sense.

There must be many other kinds of models that relate the functional structure to other constructs

as well.

Suppose we have domains that satisfy just the six equations. Then from the primitive operations

given, many others can be de�ned. The operation of �-abstraction is, to be sure, a variable-binding

operator (somewhat like a quanti�er), but the others are algebraic in nature. As stated, application

is a binary operation, and pair, fst and snd are constants. But we can de�ne binary, ternary, and

unary operations such as: pair(x)(y), pair(x)(pair(y)(z)), fst(x), snd(y), pair(snd(z))(fst(z)), and

many, many more. In other words, the domain D will become a model of many kinds of algebras.

In general, an algebra is a set together with several operations de�ned on it, taking values in the

same set. The simplest situation is to consider �nitary operations (i.e., operations taking a �xed

�nite number of arguments). When giving an algebra, the sequence of arities of the fundamental

operations is called the signature of the algebra. Thus, a ring is often given with just two binary

operations (addition and multiplication) making a signature (2,2). Now, subtraction is de�nable in

�rst-order logic from addition, but the de�nition is not equational. Therefore, it may be better to

consider a ring as an algebra of signature (2,2,2) with subtraction being taken as primitive. Of,

course it is enough to have the minus operation, which is unary. So, a signature (2,1,2) is also

popular. Strictly speaking, however, di�erent signatures correspond to algebras of di�erent types.

Not every algebra of signature (2,2,2) is \equivalent" to one of signature (2,1,2); rings as algebras

have very special properties.

By a continuous algebra we mean a domain with various continuous operations singled out. In

particular, our �-calculus model can be considered as a continuous algebra of signature (2,0,0,0,0,0).

The binary operation is the operation of functional application. Here, 0 indicates a 0-ary operation,
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which is just a constant. We already know the constants pair, fst, snd. The other two popular

constants from the literature on �-calculus are called S and K. In terms of �-abstraction they can

be de�ned as follows:
S = (�x: (�y: (�z: x(z)(y(z)))))

K = (�x: (�y: x))

They enjoy many, many equations in the algebra (see, for example, [Bar84]) and, in fact, any

equation involving the �-operator can be rewritten purely algebraically in terms of S and K and

application.

We will call an expression in the notation of applicative algebra which has no variables a

combination. Any combination F de�nes an n-ary operation:

F (x1)(x2) � � �(xn):

What we have been remarking is that the algebras so obtained from combinations can be very

rich. In a series of papers [Eng81, Eng] Engeler discussed just how rich these algebras can be. A

representative result, following Engeler, will be exhibited here.

Theorem 26 Given a signature (s1; s2; : : : ; sn), there are combinations F1; F2; : : : ; Fn de�ning op-

erations on D of these arities such that whenever a continuous algebra of this signature is given

on a domain A that is a retract of D, then A can be made isomorphic to a subalgebra of this �xed

algebra structure on D.

Proof: If A is a retract of D, then A can be regarded as a subset of D, and all the continuous

operations on A can be naturally extended to continuous operations on D of the same arities. (This

does not solve the problem, since the operations on D depend on the choice of A. That is to say, at

the start A is a subalgebra of the wrong algebra on D.) We can call these operations o1; o2; : : : ; on.

We are going to de�ne the representation of A as a subalgebra of D by means of a continuous

function � : A! D de�ned by means of a �xed-point equation:

�(a) = pair(a)

(pair(�x2 : : :�xs1 : �(o1(a; fst(x2); : : : ; fst(xs1))))

(pair(�x2 : : :�xs2 : �(o2(a; fst(x2); : : : ; fst(xs2))))
...

(pair(�x2 : : :�xsn : �(on(a; fst(x2); : : : ; fst(xsn))))

(K) ) � � �)

In this way, we build into � the elements from A and the operations as well. The question is how

to read o� the coded information.
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Consider the following combinations:

F1 = �x: fst(snd(x))

F2 = �x: fst(snd(snd(x)))
...

Fn = �x: fst(snd(snd(� � �snd(x))));

which have to be rewritten in terms of S, K, fst, and snd. We then calculate that

Fi(�(a1))(�(a2)) � � �(�(asi)) = �(oi(a1; a2; : : :asi)):

This means if we consider the algebra hD;F1; F2; : : : ; Fni, then we can �nd by means of the

de�nition of � any algebra hA; o1; o2; : : : ; oni, isomorphic to a subalgebra of the �rst algebra.

7.3 Solving domain equations with projections.

As we mentioned earlier, one slightly bothersome drawback to PN as a domain for solving recursive

domain equations is the fact that it cannot represent the sum operator +. One might try to

overcome this problem by using the operator ( � + � )> as a substitute since this is representable

over PN. However, the added top element seems unmotivated and gets in the way. It is probably

possible to �nd a cpo which will represent the operators �;!;+. However, for the sake of variety,

we will discuss a slightly di�erent method for solving domain equations. Let us say that an operator

F on cpo's is p-representable over a cpo U if and only if there is a continuous function RF which

completes the following diagram (up to isomorphism):

Fp(U)

Cpo's

Fp(U)

Cpo's

im im

RF

F

6 6

-

-

Since there will be no chance of confusion, let us just use the term \representable" for \p-

representable" for the remainder of this section. Since Fp(U) is a cpo we can solve domain equations

in the same way we did before provided we can �nd domains over which the necessary operators

can be represented.

The construction of a suitable domain is somewhat more involved than was the case for PN.

We begin by describing the basis of a domain U. Let S be the set of rational numbers of the form

n=2m where 0 � n < 2m and 0 < m. As the basis U0 of our domain we take �nite (non-empty)

unions of half open intervals [r; t) = fs 2 S j r � s < tg. A typical element would look like

h �h �h �h �h �h �h �
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We order these sets by superset so that the interval [0; 1) is the least element. There is no top

element under this ordering. If we adjoin the emptyset, say B = U0 [ f;g, then we get a Boolean

algebra. (Note that the complement of a �nite union of intervals is again one such|unless it is

empty.) In particular, any interval contains a proper sub-interval so, as a Boolean algebra, B

is atomless. But B is countable, and|up to isomorphism|the only countable atomless Boolean

algebra is the free one on countably many generators. But this Boolean algebra has the property

that every countable Boolean algebra is isomorphic to a subalgebra. Now, suppose A is a countable

bounded complete poset. Let B0 be the boolean algebra of subsets of A generated by those subsets

of the form "x = fy 2 A j x v yg and order this collection by superset so that ; will be its largest

element. The map i : x 7! " x is a monotone injection which preserves existing least upper bounds.

Moreover, a subset u � A is bounded just in case
T
x2u " x is non-empty. Now, if j : B0 ! B maps

B0 isomorphically onto a subalgebra of B, then the composition j � i cuts down to an isomorphism

between A and a normal subposet A0 /U0. Letting U be the domain of ideals over U0 we may now

conclude the following:

Theorem 27 For any bounded complete domain D, there is a projection

p : U! D:

We can now use this to see that an equation like X �= N?+(X ! X) has a solution. The proof

that! is representable over U is almost identical to the proof we gave above that it is representable

over PN. To get a representation for +, take a pair of continuous functions

�+ : U! (U+ U)

	+ : (U+ U)! U

such that �+ �	+ = id and 	+ ��+ v id. Then take

R+(r; s) = 	+ � (r + s) � �+:

Also, there is a representation RN?
for constant operator X 7! N?. Hence the operator X 7!

N? + (X ! X) is represented over U by the function

p 7! R+(RN?
(p); R!(p; p)):

We have, in fact, the following:

Lemma 28 The following operators are representable over U: !, �!, �, 
;+, �; (�)?, (�)], (�)[.

This means that we have solutions over the bounded complete domains for a quite substantial

class of recursive equations. More discussion of U may be found in [Sco81], [Sco82a] and [Sco82b].
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7.4 Representing operators on bi�nite domains.

The convex powerdomain (�)\ cannot be representable over U because it does not preserve bounded

completeness. We construct a domain over which this operator can be represented as follows. Given

a poset A, de�ne M(A) to be the of pairs (x; u) 2 A � Pf(A) such that x v z for every z 2 u.

De�ne a pre-ordering on M(A) by setting (x; u) ` (y; v) if and only if there is a z 2 u such that

z v y. Now, given a domain D, we de�ne D+ to be the domain of ideals over hM(A);`i.

Theorem 29 If D is bi�nite, then so is D+. Moreover, if D �= D+ and E is any bi�nite domain,

then there is a projection p : D ! E.

A full proof of the theorem may be found in [Gun87]. We will attempt to o�er some hint about

how the desired �xed point is obtained. At the �rst step we take the domain I = f?g containing

only the single point ?. At the second step, I+, there are elements a = (?; f?g) and b = (?; ;)

with b ` a. At the third step there are �ve elements

(a; fag); (a; fbg); (b; fbg); (b; ;); (a; ;)

which form the partially ordered set I++ pictured in Figure 4. Note that there is another element

(a; fa; bg) 2 M(I+) but this satis�es (a; fag) ` (a; fa; bg) and (a; fa; bg) ` (a; fag) so we have

identi�ed these elements in the picture. The next step I+++ has 20 elements (up to equivalence

in the sense just mentioned) and it is also pictured in Figure 4. We leave the task of drawing a

picture of I++++ as an exercise for the (zealous) reader. It should be noted that each stage of the

construction is embedded in the next one by the map x 7! (x; fxg). The closed circles in the �gure

are intended to give a hint of how this embedding looks.

The technique which we have used to build this domain can be generalized and used for other

classes as well [GJ90].

We have the following:

Lemma 30 The following operators are p-representable over V: !, �!, �, 
;+, �; (�)?, (�)],

(�)[, (�)\.

As with most of the other operators, to get a representation for (�)\, take a pair of continuous

functions
�\ : V! V\

	\ : V\ ! V

such that �\ �	\ = id and 	\ � �\ v id. Then

R\(p) = 	\ � (p
\) � �\

is a representation for the convex powerdomain operator.
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Figure 4: A domain for representing operators on bi�nites.
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We hope that the reader has begun to note a pattern in the way operators are represented. Most

of the operators (�;
;+;�; (�)?; (�)
]; (�)[; (�)\) may be handled rather straight-forwardly using the

corresponding action of these operators on functions. Slightly more care must be taken in dealing

with the function space and strict function space operators where one must use a function like �.

The stock of operators that we have de�ned in this chapter is quite powerful and it can be used for

a wide range of denotational speci�cations. However, the methods that we have used to show facts

such as representability (using �nitary closures or �nitary projections) will apply to a very large

class of operators which satisfy certain su�cient conditions.

To understand this phenomenon, one must pass to a more general theory in which such operators

are a basic topic of study. This is the theory of categories. Many people �nd it di�cult to gain

access to the theory of domains when it is described with categorical terminology. On the other

hand, it is di�cult to explain basic concepts of domain theory without the extremely useful general

language of category theory. A good exposition of the relevance of category theory to the theory

of semantic domains may be found in [SP82].

Only a small number of categories of spaces having the properties which we have described

above are known to exist. What are the special traits that these categories possess? First of all,

they have product and function space functors which satisfy the relationship we described at the

beginning of section 4. This property, known as cartesian closure is a well-known characteristic

of categories such as that of sets and functions. But our cartesian closed categories have not only

�xed points for (all) morphisms but �xed points for many functors as well. It is this latter feature

which makes them well adapted to the task of acting as classes of semantic domains. One additional

property which makes these categories special is the existence of domains for representing functors.

This is not to say that there are not other categories which will have the desired properties.

One particularly interesting example are the stable structures of Berry [Ber78] which we have not

had the space to discuss here. Interesting new examples of such categories are being uncovered

by researchers at the time of the writing of this chapter. The reader will �nd a few leads to

such examples in the published literature listed below, and we expect that many quite di�erent

approaches will be put forward in future years.
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