Reasoning About Secrecy
for Active Networks

Pankaj Kakkar
University of Pennsylvania
pankaj@gradient.cis.upenn.edu

Carl A. Gunter Martin Abadi
University of Pennsylvania abadi@soe.ucsc.edu
gunter@cis.upenn.edu

Abstract

In this paper we develop a language of mobile agents called uPLAN
for describing the capabilities of active (programmable) networks. We use
a formal semantics for uPLAN to demonstrate how capabilities provided
for programming the network can affect the potential flows of information
between users. In particular, we formalize a concept of security against
attacks on secrecy by an ‘outsider’ and show how basic protections are
preserved in the presence of programmable network functions.

1 Introduction

The goal of research on programmable or active networks [21, 20] is to make
computer networks more flexible. This flexibility threatens the security of the
network, so good techniques for modeling and analyzing the consequences of
providing new network services are desirable. This paper describes an approach
based on a simple language of mobile programs. The primary contributions
are a definition of secrecy for a simple model of active networks and routing,
an analysis of how this definition relates to one based on bisimulation, and a
collection of case studies.

Properties that Aid Scalability. The Internet has proved the value of
high connectivity in networking. Active networking research has attempted
to achieve scalability too, aiming to accommodate internetworks composed of
thousands of physical networks, multiple administrative domains, and a diver-
sity of users. However, some users may harbor ill-will towards others, or even
towards the network as a whole. Even when no bad intentions are involved,
a programmable network may be vulnerable to mistakes or unexpected inter-
actions between its users. The mechanisms for programming the network may

also be helpful in damaging it. Such problems are not limited to new kinds of
programmable networks; the current Internet has problems of its own. Complex
interactions between features may lead to vulnerabilities in systems thought to
be well-understood. For example, Bellovin [7] showed how to combine remote
log-in, the domain name system (DNS) directory, router table updates, and
other features to compromise Unix hosts on the Internet. Clearly the growth of
mobile agents has created new risks for hosts; programmable networks that aim
to move this form of agent into routers bring additional risks and challenges.

Research on programmable networks has sought to address these concerns
by a variety of mechanisms. One is to imitate features of the Internet that have
caused it to be scalable and survivable. A simple example is the way the Internet
protocol (IP) uses a Time-To-Live (TTL) field to limit the effects of routing
loops. The TTL field also relates the ability of a host to affect the network to
the size of its attachment: a user with a modem is not able to send very many
packets in the first place, and the packets sent cannot circulate infinitely or
create many new packets to waste bandwidth. Programming systems for active
networks, generally known as Execution Environments (EE’s), often provide
some analog of the TTL field to control network resource utilization.

The aim of this paper is to look at another form of protection that aids
the usability and survivability of the Internet. In this paper we call it Security
Against Outsiders or AO-security. The Internet has been able to survive the
threat of password sniffing, that is, the ability to listen to network traffic and
find passwords that can be used to gain illegitimate access to hosts or routers.
Various protocols are available to avoid sending passwords in cleartext over the
network, but the use of cleartext passwords is still very common. A primary
reason is the fact that when a password is sent between one host and another,
it does not visit every network in the Internet on the way. A party seeking
to learn the password may not have an obvious mechanism for listening on a
network if he does not have access through a host attached to it. While the
password is vulnerable to sniffing by ‘insiders’ who are on the networks over
which it will pass, it may be less vulnerable to ‘outsiders’ who must sniff from
afar with little toe-hold from which to grab and redirect the sensitive informa-
tion. Protocols that enable internetwork routing systems to adapt to topological
changes such as router failures also cause packets to appear in unexpected places
in the network, so topological guarantees are generally viewed as a weak form
of protection. However, topological guarantees are a recognized practical part
of current protections against vulnerabilities like password sniffing and also pro-
vide protections against more sophisticated attacks such as traffic analysis. For
example, topological guarantees can make it harder to collect large amounts of
ciphertext or determine whether an encrypted email was sent between two par-
ties at a given time. AO-security is sometimes dumb luck; but it is often crucial,
for example, in corporate networks behind firewalls and with moderate security
requirements. The aim of this paper is to study AO-security in the context of
active networks, where luck may not be enough. Our study provides insight into
the protection afforded by programming interfaces and physical topology.

The Challenge of AO-Security for Active Networks. When we allow a
network to become programmable, some of the apparent AO-security enjoyed by
the Internet protocols may be lost if programmability of routers is available to
outsiders and the right kinds of operations are made available to them. For ex-
ample, researchers in the SwitchWare Project at the University of Pennsylvania
have experimented with downloadable OCaml modules capable of dynamically
altering switching and queuing strategies on routers [13, 6]. The privilege to use
such a function will probably be limited by some form of cryptographic autho-
rization system [5], but the underlying capabilities easily accommodate a man-
in-the-middle attack on all of the packets passing through the affected router.
Password sniffing would clearly be a possibility from any site that was able to
obtain these capabilities. Execution environments like PLAN [14], ANTS [23],
and others strive to control the tradeoff between security and flexibility by limit-
ing the programming interface available to active network agents. This strategy
can be applied quite flexibly. For instance, Hicks and Keromytis [12] describe
an active firewall where outsiders passing through are allowed to use active net-
work capabilities but only on a limited interface available to ‘visitor’ packets. In
particular, the firewall places wrappers on visitor packets that limit the symbol
table of the packet when it evaluates on a router.

To realize the goal of understanding the limits of AO-security in active net-
works we need to develop a theory for explaining the effect on security of offering
new services on routers. Such an explanation is not only important to ‘purely
active’ networks, but also to deployments of active network EE’s within the
Internet, for instance in the ABONE (www.csl.sri.com/activate) active net-
work testbed. Indeed, some of the examples we give below are meaningful to
some degree even for the current Internet, especially as moves are being made
to extend the capabilities of routers to include things like multicast, resource
reservation, and even web caching. The ability to reason about interactions be-
tween routing and computation at endpoints may also be important as mobile
agent technology progresses and connections between hosts and routers become
more complex.

Requirements for a Suitable Theory. There are at least two problems that
must be overcome in developing a suitable theory for relating router interfaces
to AO-security in the network. First, it is necessary to develop a rigorous but
simple concept of secrecy. Second, it is essential to represent the techniques
in a sufficiently general way that the methods are applicable to more than one
protocol or active network architecture.

Our approach to modeling secrecy is inspired by work on the spi calculus [2,
4, 3], which uses ideas from concurrency theory to model secrecy, describing
who has access to pieces of data via scoping rules. Our approach is more basic
because we aim for less generality for channel mobility. Our strategy is to model
the capabilities of the network via a collection of agents that run over a fixed
graph representing the underlying physical networks, routers, and hosts. (The
spi calculus lacks a concept of location, but our model defines one.) Information

flow is modeled via a concept of ‘signature enrichment’ in which agents that
see capabilities pass across networks to which they are attached obtain these
capabilities themselves and can use them in agents they create. This allows us
to model secrecy in terms of where information does not flow, and we are able
to show for certain cases that this is equivalent to conditions for secrecy based
on noninterference.

Our approach to obtaining sufficient generality for protocol modeling is to
select a small but expressive calculus of network agents and use this as the focus
for translating capabilities into invariants. The calculus provides for agents able
to make calls of the form ‘evaluate expression e at location I’. We name it
uPLAN because it is inspired by the Packet Language for Active Networks
(PLAN) [14] but it is not specific to the PLAN approach. One architectural
distinction in active networks is between programs that are carried in packets
that are evaluated when the packet arrives versus programs that are installed
on a router and process the packets passing though it. PLAN is a scripting
language for packets to invoke router-resident programs. Other approaches focus
on router-resident services without using a packet language, or on a packet
language for a fixed set of router-resident services. This distinction is important
from a practical perspective, but from a theoretical perspective the distinction
is small. If f is a router-resident function and x is the data contained in a packet
one can think of f as being applied to a range of values of x, but one can also
think of x as operating on a range of values of f. The properties of information
flow will be the same from either perspective.

Outline. After this introduction we provide some background on networks,
routing, and AO-security. We then introduce our language for describing net-
work programmability and its semantics. We show how the language can be
used to express and prove properties about secrecy and integrity of data. The
next section generalizes the concept of secrecy, and provides an alternative way
of expressing secrecy in networks using bisimulation. We then consider AO-
security for an active networking variant of labeled routing. A final section
concludes.

2 Background

The Internet achieves connectivity by connecting networks through routers.
Each network supports the connectivity of a collection of hosts via network
interfaces. Such an interface can be viewed abstractly as an address pair con-
sisting of a network and a location, where a location is a host or router. Figure 1
shows an example of this model in which ‘clouds’ represent networks, squares
represent routers, and circles represent hosts. To simplify matters we make
no distinction between specific users on hosts and the hosts themselves, so the
model in the figure includes computational agents like Alice and Bob, who have
addresses on networks nl and n3 respectively. For Alice to communicate with
Bob she sends one or more packets to router r1 using network nl. Routers

Claire

Eve

Figure 1: Internetwork Example

specialize in knowing how to get packets to where they belong based on a des-
tination address provided by the sender; in particular, 1 will probably decide
to forward the packets from Alice to Bob to router r3 across network n2. This
router, in turn, will notice that it can get the packets directly to Bob and will
communicate them to him across network n3. This process causes the com-
munication medium consisting of the networks and routers to perform some of
the functions of a single network. We refer to the collection consisting of the
networks, routers, and hosts as an internetwork in this paper.

In general, a location ! maintains a table that associate a ‘next hop’ with
each destination address. The next hop is an address on a network to which [
is attached. The routing table of a host is often simple; for instance, Alice is
probably configured to send packets to (nl,r1) whenever they are for an address
not on nl. Routers generally maintain more interesting routing tables which
they develop in a distributed computation involving other routers; the aim of
this computation is finding paths between each pair of locations on a portion
of the internetwork. Several protocols exist to achieve this goal. Two of the
most widely-used protocols are RIP [18] and OSPF [19]. In both protocols,
each router sends out regular updates of information to aid other routers in
determining how to forward packets. Routers examine the updates that they get
from each router adjacent to them and modify their routing tables accordingly.
In RIP, the updates contain the length and first hop of the shortest known path
to a given destination, while in OSPF the updates contain link information
about routers around the internetwork.

Many network technologies are subject to ‘sniffing’ of information. For in-
stance, an Ethernet LAN broadcasts each message to all of its attached hosts,
any one of which may chose to ‘listen’ to messages not addressed to it. For in-
stance, when r1 communicates packets from Alice to Bob across n2 for r2, hosts
like Claire and routers like r3 that are attached to n2 can collect these packets

and read them. This problem can be addressed by encryption, but many or-
ganizations have not yet implemented encrypted versions of the protocols. For
instance, in the RIP and OSPF protocols, the router updates are protected only
by passwords, which are exchanged in cleartext and hence knowable to anyone
who is on a network that the updates go through. This lack of secrecy threat-
ens integrity since anyone who knows the password can issue updates either by
mistake or with bad intent. Here is how the RIP RFC on applicability of the
protocol describes the security intention of the passwords [17, page 4]:

The need for authentication in a routing protocol is obvious. It is not
usually important to conceal the information in the routing messages, but
it is essential to prevent the insertion of bogus routing information into
the routers. So, while the authentication mechanism specified in RIP-2
is less than ideal, it does prevent anyone who cannot directly access the
network (i.e., someone who cannot sniff the routing packets to determine
the password) from inserting bogus routing information.

This is a description of AO-security for the RIP tables. The OSPF protocol
allows passwords on a per-interface basis, and suggests the possibility of using
a password per network. The protection provided by such passwords is char-
acterized in the OSPF standard as a safeguard against mistakes [19, pages 205
and 206]:

The authentication type is configurable on a per-area basis. Additional
authentication data is configurable on a per-interface basis. For example,
if an area uses a simple password scheme for authentication, a separate
password may be configured for each network contained in the area. ...

This guards against routers inadvertently joining the area. They must
first be configured with their attached networks’ passwords before they
can participate in the routing domain.

Returning to Figure 1, these properties imply that although Claire may sniff
passwords used between r1 and r2 and therefore may corrupt the routing up-
dates with bogus updates, this option will not be available to Eve, who will never
see these passwords on the network to which she is attached. Consider, on the
other hand, the internetwork in Figure 2. There is now another router adjacent
to Eve, making it possible for Eve to sniff the router update password between
the two routers on her network and thus acquire the capability to change rout-
ing tables on those routers. Eve may use the information acquired in this way
to corrupt the routers attached to her network. These routers, in turn, may
mislead routers to which they send updates, and so on throughout a portion of
the internetwork. This may allow Eve to cause some or all packets from Alice to
Bob to go through her network, at least for a while.

Our aim, beginning in the next section, is to develop a language for ex-
pressing capabilities so we can talk about AO-security for this internetwork and
internetworks in general. Note first that even for a fixed internetwork the issue
is non-trivial. We must characterize what can happen under all of the message
sequences that could be sent by Eve, taking into account all of the ways these

Claire

Eve Bob

Figure 2: Internetwork Case Study

messages might interact with the updates passing between the routers or the
messages between the hosts. Our strategy is to view the internetwork as provid-
ing a primitive programming capability. This primitive capability is bolstered
by services offered by the routers and hosts, such as the routing protocol updates
and any other services that may aid communication on the internetwork.

3 A Language-Oriented View of Networking

In this section, we define a language uPLAN inspired by PLAN [14]; very
roughly, it is a small subset of PLAN with the key features needed for our
study.

There are other systems for the study of security in distributed and mobile
systems. Specifically, the pi calculus and related formalisms emphasize the con-
cept of channel mobility (the capability of creating and communicating channels
dynamically). In contrast, uPLAN deals with a fixed set of communication links
and makes the internetwork topology and the location of computations explicit.
In comparison with some other calculi for distributed computation (for exam-
ple, the distributed join calculus), our model of distribution is rather concrete,
in part because we are trying to model actual active networks, in part because
of the limitations on mobility. All these calculi have in common, however, the
view of some pieces of data as unforgeable and unguessable. This view plays an
important role in the spi calculus, for example, and is crucial in our treatment
of security in this paper.

3.1 Grammar

The syntax of uPLAN is given in Table 1. In the programming examples in the
paper, we will use some syntactic sugar, such as allowing functions with multiple

Table 1: Grammar of uPLAN

Hosts

Routers
Locations (Loc)
Networks
Addresses (Addr)

Integers
Booleans
Constants

Base Unary Ops
Base Binary Ops

Services
Data

Variables
Variable Lists
Definitions

Definition Lists

Expressions

Chunks

Remote Evaluation
Unary Applications
Binary Applications
Lists and tuples
Conditionals
Sequence

Local Bindings
Expression Lists

h

r
l

n
a

o o .

> q

QU R R

&y

®

i mg mm

m

Host
Route
h|r
Net

(n,1)

Int
true | false

ilblal()

= |hd|tl|—
+ x| =1/
A| V |cons| =
Services

Data

Var

z|z,@
valz = e |
fun z(x) =e
dldd

zlecld]

lz[(e) | |o](e)

eQe |

z(e) | afe) | ale) |
efe |
[J1[e] (e | #iel
e?e,e |

6_;.6‘

dine

eleé

arguments. A simple example based on the internetwork of Figure 1 is a good
place to begin understanding the concepts in uPLAN. The following program
defines a function for source routing and uses it to route a datum through Alice
to Bob. The program could be evaluated at any location.

fun sourceRoute(1l,d) =
-(1=01) ?
(|sourceRoute| (tl(1),d)) @ (hd(1)),
deliver (d)
in
sourceRoute([(n1,Alice), (n3,Bob)], §)
A program consists of a declaration part and an expression, which is to be
evaluated locally. Let us suppose that this program is evaluated by Eve. The
function sourceRoute is invoked on a list of two addresses, which happen to be
the interfaces of Alice and Bob, in that order. The function first checks if the
list is empty, and, finding that it is not, makes the following call:

(lsourceRoute| (tI1(1),d)) @ (hd(1))

This means the function sourceRoute should be invoked on the list [(n3,Bob)],
and this should be done at Alice, the location associated with the address at the
head of the list. The bars surrounding the sourceRoute function are intended
to indicate that this function may not be invoked locally. An expression of the
form | f|(z) is called a chunk (short for ‘code hunk’) and represents data at the
local node. If we write:

val x = |deliver| (3)
in
x @ (nl,Alice)

The value of x is bound to a pair consisting of a function name deliver and an
argument 3. The function associated with deliver depends on the location
where it is evaluated.

3.2 Semantics

The semantics of uPLAN is given as a set of transition rules representing com-
putational steps applied to a multiset of terms representing network state. This
form of description can be understood intuitively using a metaphor called a
‘chemical abstract machine’ [9] where the state is viewed as a collection of ‘par-
ticles’” and computation as a set of ‘reactions’ between these particles. Each
reaction consumes one or more particles and produces one or more. In our
model a particle may also be introduced into the mix by an agent (like Alice,
Eve, or a router) or removed from it (to represent termination of a computa-
tion for instance). Multiset rewriting is well understood in programming lan-
guage theory and is easily automated for model checking. For instance, Maude

Table 2: Semantic Objects in uPLAN

Chunk values ch = chunk(z,v, E) |
chunk(o, v, E)
Values (Val) v == c¢|d| L]
ch |
(][9]
(0,7) |
close(z, x, e, F)
Value lists @ = v|vT
Environment F Var — Val
Stack S = mnil|v: S
Opcodes o € 7?7|ap]|serv |
unary | binary |
@ | bind |
alBlo|
ch | list; | tup, | proj;
Code C == nil|
Opcodes o0:C |
Expressions e C|
Definition list d:C
Dumps D == nil|
<S7 E’ C’ D>
Topology : Net — P(Loc)
RouteState ¢t : Loc — Addr — (Addr x Int)
DataState s ¢ Loc — P(Data)
Dictionary =z Loc — Data — Val
Controlled locations k € ConC Loc
Available services X C Services
Particles p = t]|s|z|X|

Local(S, E,C, D), |
Transit{a, ch);

10

Table 3: Abstract Machine

Local (S, E, 1

:: C, D),
Local(S, E, c :: C, D);

Local(S, E,e?e’, e’ :: C, D)
Local(true :: S, E, 7 = e/ e’/ .2 C, DYy
Local (false :: S, E, ? :: e’ .. C, D)

Local(S, B, || (e) :: C, D),

Local(v :: S, E,ch :: z :: C, D);
Local(S, E, |o|(e) :: C, D);
Local(v :: S, E,ch :: o :: C, D),

Local(S, E, [] ::
Local(S, E, [e1,...,en]
Local(vp :: - -+ it vy :: S, B, listy ::

Local(S, E, (e1,...,epn)
Local(vp :: -+« :: vy 2 S, E, tup,, =

Local(S, B, #i e ::

C, D),
Local((v1, -+, Vg, .-, vp) : S, E, proj; :: C, D),
Local(S, E, xz(e) :: C, D);

Local(close(x, z’, e, B') :: v :: S, E,ap :: C, D);

Local(v :: S, E, nil, (S, E',C’, D")),;

Local(S, E, a(e) :: C, D),
Local(v :: S, E, a :: unary :: C, D)}
Local(S, E, o(e) :: C, D);

Local(v :: S, E,serv :: 0 :: C, D)y, s,t, 2z
Local(S, E,eBe’ :: C, D),

v:: S, E, B :: binary :: C, D);

Local (v’ ::

Local(S, E,e@e :: C, D);
Local(a :: ch = S, E, @ :: C, DY;
Local(S, E, d in e :: C, D),

Local(S, E, dd :: C, D);

Local(S, E,val @ = e :: C, D),
Local(v :: S, E, bind :: z :: C, D);
Local(S, E, fun x(z') = e :: C, D),

Local(S, E, C, D),

Transit((n, 1), chunk(z, v, E));

Transit(a, ch)ll ,t, s

8,2

Local(E(x) :: S, E, C, D),
Local(c :: S, E, C, D);

Local(S, E, e ::
Local(S, E, e’
Local(S, E, el

Local(S, E, e :: ch
Local (chunk(z, v, E)

Local(S, E, e :: ch
Local {chunk (&, v, E) :

Local([] :: S, E,C, D);

Local(S, E, eq :: - - listy :: C, D)y
Local([vy, ..., vn]

Local(S, E, eq :: . C, D)y
Local ((vq, . . .

Local(S, E, e :: proj; : C, D)}

Local(v; :: S, E, C, D);

where 1 < i < n

Local(S, E, e :: x :: ap :: C, D);

Local(nil, E"' [v/x], e, (S, E, C, D)),
where E' = E'[dose(z, z’, e, E')/x]
Local(v :: S, B/, C’, D’)l

Local(S, E, e :: a :
Local (ConstApply (c, v)
Local(S, E, e :: serv
lol(o, &, 5, t, 2, (S, E, C, D))

Local(e :: ¢/ :: 8 :: binary :: C, D)}
Local (ConstApply(3, v, 'u') 2 S, E,C,D);

unary :: C, D);
S,E,C,D);

Q
Q
S

Local(S, E, e :: e/ :: @ :: ¢, D)y
Local(() :: S, E, C, D)y, Transit(a, ch);

Local(nil, E, d :: e, (S, E, C, D));
Local(S, B, d :: d :: C, D)
Local(S, E, e :: bind ::
Local(S, E[v/z], C, D);
Local(S, Elclose(x, z’, e, E) /], C, D);

i1 C, DYy

Local(nil, E, z(v), nil);

Transit(a, ch), t, s’
where ch = chunk(z, v, E) or chunk(o, v, E)
and((n, l2), 1) = t(l1)(a)
;o s(1) if I & Topology(n)
and s7(1) =\ (1) U {5[6 € v or 5 € E} otherwise

Local(nil, 0, e, nil);, s, S
where e obeys s (1)
and all services o in e are in 3

11

(http://maude.csl.sri.com) provides automated support for multiset rewrit-
ing and was used to analyze a protocol [22] based on the kind of labeled routing
we discuss below in Section 6.

The chemical abstract machine semantics of uPLAN is given in Tables 2
and 3. A state of this machine is a multiset of terms we call particles, and each
transition rule is a rewriting rule on this multiset that replaces some particles
in the multiset with others. A computation T" is a sequence of states of the
abstract machine M;—Mo— ... — M. We write —* for the transitive
closure of —. Most of the rules in the table apply to the language constructs
of uPLAN, but one rule allows for services 0. The semantics of a service is a
function [[o]]() of the machine state. The semantics of uPLAN and the service
functions allows packets to stop making progress in the network and does not
have any built-in liveness assumptions. In particular, packets will stop making
progress if no transition rule applies to the current state. The semantics also
allows for the possibility of packets being dropped from a computation, although
it does so indirectly by allowing Local(- - -); particles to be dropped, rather than
Transit(- - -); particles. In the scenarios that we consider, the possibility that
packets might be dropped does not cause any secrets to be leaked to outsiders,
but that need not always be the case.

‘We use the notion of ‘controlled’ versus ‘uncontrolled’ locations to model the
adversarial behavior of locations. It can be imagined that controlled locations
are those that lie within a single administrative domain, like all machines in
a lab that a system administrator controls or all computers operating behind
a firewall at a business facility. Our results will be based on the assumption
that uncontrolled locations may create any particles they wish based on the
information they have, but controlled locations will create particles according
to restrictions we place on their behavior. The final rule from Table 3 is called
the generation rule and represents particles created by hosts and routers. In
most cases we will state explicitly which particles are produced by the controlled
locations by simply listing them, but in other cases we need to stipulate that
controlled locations produce particles using this rule according to a specific
process they may be running, such as a standard routing protocol. Controlled
locations can be viewed as constituting a system which must react not only to
actions of its own participants, but also to arbitrary actions of an environment
of uncontrolled locations.

The internetwork topology is modeled through a map Topology from net-
works to sets of locations—each location in the set has an attachment to the
network. In a valid topology, hosts are attached to only one network. (There
would be no difficulty in adding multi-homed hosts to the model.) We model
secrecy through the notion of a DataState. A DataState, a map from locations
to sets of Data, defines exactly what Data is ‘known’ to a given location. Rout-
ing tables are modeled through a RouteState, a map from locations to tables,
which are themselves maps from destination addresses to next hop addresses
with integer weights. In a valid RouteState, the next hop for any destination
and any location must be a neighbor, that is, located on a common network
with the location at which the next hop is computed.

12

To model state on locations, a Dictionary associates with each location a
table mapping Data to uPLAN values. We use a special value, L, to represent
undefined entries in the dictionary. Each entry for which a value hasn’t been
explicitly defined maps to L. We also define Domain;(z) to be {6 | 2(1)(5) # L}.

Locations are constrained to emit only uPLAN programs containing data
that they have ‘learned’. For a datum ¢, we say § € e if § occurs syntactically
in the particle e, and we say e obeys s(I) if every J € e is also a member of s(I).
We also extend the relation € to environments and particles and the relation
obeys to environments. We say [knows ¢ in DataState s if 6 € s(I).

We consider a valid state M to be a multiset in which there is exactly one
instance of a DataState, s, one instance of a RouteState, ¢, one instance of a
Dictionary, z, and one instance of a set of services ¥.. There may be multiple
instances of Transit(---); or Local(---); particles. A Transit(a,chunk(z,v, E));
particle contains a chunk value and the address where the chunk is to be eval-
uated. The particle is routed to the specified address and converted into a
Local(- - -); particle that evaluates z(v) in the environment F upon arrival at the
destination a. A Local(S, E, C, D), particle contains a program in uPLAN under
evaluation at a location. As the nomenclature of the elements of a Local particle
implies, this evaluation happens in an extended version of the SECD abstract
machine [15, 16]. This evaluation may give rise to several new Transit(- - -}; par-
ticles before finishing and disappearing. Local(---); particles may also appear
spontaneously.

The function ConstApply applies an operator to one or more values and
returns the result of the application. Services are simulated by associating with
a service its ‘meaning’, which is a function that takes as arguments the argument
to the service and global internetwork state in the form of current location,
DataState, Dictionary, and RouteState, and returns a DataState, Dictionary, and
RouteState along with one or more particles. We could constrain this definition
further since services will be expected to work only with state at the location
where they are invoked. For instance, a service invoked on a router r will not
modify the state on another router r’, but it may cause a message to be sent to
r’ which would cause such a change.

4 Some AO-Security Properties

Let us now show how to prove whether AO-security holds in some basic cases.
We carry out two analyses, the first assuming that the routers use static routing
tables, and the second assuming that they can be dynamically updated. For the
first of these we can describe a set of particles created by controlled locations
explicitly, and then analyze the actions the uncontrolled locations may take in
terms of these. The dynamic update case is more subtle because controlled
locations generate particles based on information they receive from other loca-
tions, including possibly uncontrolled locations. The aim of an adversary at an
uncontrolled location is to corrupt a controlled router and exploit the spread
of this corruption to other controlled locations using standard routing updates

13

produced by the controlled routers. For each of the static and dynamic cases
we first consider results for a fixed topology, then express a generalization to
arbitrary topologies.

4.1 Static Routing Tables

Let us define a basic service deliver to deliver a datum to an intended recipient.
We define the value of

[deliver])(d,1, s, t, z, (S, E,C, D))
to be Local{() :: S, E,C, D), ¢, t, z where

s'() { s(u{o} ifi="

s(l) otherwise

That is, the deliver service simply causes § to be added to the data known at the
location to which it was delivered. For the results in this section let us define
the following particle,

pa = Local(nil, 0, |deliver|(§) @ (n3, Bob), nil)ajice.

This carries a chunk that causes ¢ to be added to Bob’s known data.

We will first examine properties of the internetwork in Figure 1. We assume
that s is a DataState such that 6 ¢ s(I) unless | = Alice. That is, only Alice
knows . We assume that the RouteState ¢ provides shortest routes between all
destinations. That is, a packet moving according to the routing tables reaches
its destination after traversing as few networks as the topology allows. In par-
ticular, this means the routing tables direct a packet from Alice to Bob along
the path Alice, r1, 72, Bob. We assume that z is the empty dictionary, and X
includes only the deliver service.

The following states that if, after Alice initiates the transmission of § to Bob,
there are no particles generated (using the generation rule) by the controlled
locations, then there is no computation in which Eve manages to learn 6. In
this and subsequent results, Con denotes the controlled locations, and all other
locations are assumed to be uncontrolled. In this first example all locations are
included in Con.

Observation 1. Let
Con = {Alice, Bob, Claire, Eve, 1,72, 13}
and suppose controlled nodes do not generate any particles. If
{t,s,2,8, pa}t—>"{t', s, 2,2, p1,...,0i },

then 0 & s'(Eve).

14

Table 4: Example of a Computation

{t,s,2,2,pa}t—>
{t,s,2,%,

Local(nil, 0, |deliver|(d) :: (n3, Bob) :: @, nilyajice} —
{t,s,2,%,

Local(nil, 0, § :: ch :: deliver :: (n3, Bob) :: @, nil)ajice } —*
{t, s, z, &, Transit((n3, Bob), chunk(deliver, 6, #)) 1 } —
{t,s', 2z, 2, Transit((n3, Bob), chunk(deliver, §, 0))2} —
{t,s",z,%, Transit{(n3, Bob), chunk(deliver, &, 0))gob } —
{t,s", 2, %, Local(nil, (), deliver(§), nil)gop } —

{t,s", 2,5, Local(nil, (), § :: serv :: deliver, nil)gop }—
{t,s",2,%, Local(s, 0, serv :: deliver, nil)gop } —
{t,s",z,%, Local((), 0, nil, nil)gos } —

{t,s", 2,5}

The proof of the observation is straightforward, noting that the only com-
putations possible with these assumptions are initial segments of the one shown
in Table 4, where s is the same as s except 6 € s'(Claire), and s is the same
as s’ except § € s'(Bob). A very similar observation can also be stated using an
initial assumption that no packets are present, and controlled nodes generate
only the packet ps. Note that ¢t = ¢’ and z = 2’ since there is no interface for
changing the routing tables or dictionary.

The following states the same thing as Observation 1, except this time Eve
is an uncontrolled location and thus can initiate transmissions. This extra ca-
pability is not enough for Eve to learn the secret being sent from Alice to Bob,
even though Eve is able to send packets onto any of the nodes along the path
and have them come back to her using source routing.

Observation 2. Let
Con = {Alice, Bob, Claire, r1,r2, 73}
and suppose controlled nodes do not generate any particles. If
{t,8,2,5, pa}t—>"{t', s, 2, 2, p1,...,0i},
then 0 & s'(Eve).

However, an outsider located outside of the topological path of a commu-
nication can compromise security with the aid of an insider on the path. The
outsider does not even have to participate in the computation.

Observation 3. Let

Con = {Alice, Bob, Eve, 1,72, 73}

15

and assume and suppose controlled nodes do not generate any particles. Then
there is a state s’ such that

{t,S,Z,E,pA}—fk{t,S/,Z,E}
and 6 € s'(Eve).

These observations can be generalized to an arbitrary topology. Before doing
this, let us be a little more rigorous about the definition of a route.

Definition: A route determined by a RouteState ¢ is a sequence of addresses
a1 = (n1,l),...,ap = (np,) where (a;11,%) = t(l;)(ap) and I; # I, whenever
j < p. pis the length of the route.

It is possible that there is no route between a pair of locations, but it is unique
if it exits. The number of addresses on a route is its length. A topology is
connected if it is connected as a graph. In such a topology, routing tables can
be configured so that there is a route between any pair of locations. It will be
convenient to ignore the difference between a location and an address when the
location is a host, since a host determines a unique address.

The theorem simply says that a datum cannot be learned by a location unless
the routing tables move it across a network to which the location is attached.
Recall that Topology(n) is the set of locations attached to network n.

Theorem 4. Let l; and ls be hosts in an arbitrary internetwork and suppose
that 1y is attached to network ny. Let

pr = Local(nil, (), |deliver|(§) @ (na2, l2),nil);,

and suppose § & s(l) for all l # ;. Suppose there is a route R between l; and ly
and let
Con={l]| (n,l') € R and | € Topology(n)}.

Suppose controlled nodes do not generate any particles and
{ta S, 2, ZapL}*)*{tz Sla Z/a E7p17 s 7p7}
Then 6 € s'(1) only if | € Con.

The proof of this result and a selection of other results from the paper can
be found in an appendix.

A few remarks are in order about the limitations of Theorem 4. We have
assumed here that the router tables do not change. In practice, if a network or
router fails, the routing tables will be altered to find new routes and packets
may consequently pass along new routes. Eve might even be able to make this
happen by sending so much traffic that a router misses enough transmissions
to conclude that an adjacent router or network is down and modify its routes
accordingly. To model this kind of attack would require an extension of our
framework. We can, however, model the case in which router tables change
because of updates, and Eve may be able to use these updates.

16

4.2 Dynamic Routing Tables

Routers attempt to be robust with respect to temporary or permanent link
changes by periodically contacting their neighbors to exchange information
about routes. These updates can be attacked by an adversary seeking to mislead
routers about the internetwork topology to defeat AO-security. To keep things
concrete we focus on using a specific routing protocol for our analysis, although
analogous results probably hold for most protocols in current use. In distance
vector routing, the routers keep a next hop address for each destination and
a distance estimate. The routers periodically provide their current estimates
to their neighbors (locations I, ls are neighbors if there is a network n such
that l1,ls € Topology(n)) and tables are updated to reflect newly-learned path
estimates. Details of these kinds of protocols can be found in [10, 11]; we will
suppress some of the details to simplify our exposition here.

A RouteState t is said to have shortest routes if there is a route between
any pair of locations and, for any such pair Iy, ls, there is no RouteState ¢’ that
provides a shorter path. Distance vector routing finds a shortest path routing
table using the following protocol. Each router r periodically creates particles

Local(nil,), [routeUpdate|(r, a4, i) @ (n,7'), nil),

where aq is an intended destination, t(r)(aq) = (a,¢), and ' is a neighbor
on the common network n. These are called advertisements and they indicate
distance estimates to the destination ay. Upon receiving such an advertisement,
the router 7’ invokes a service routeUpdate which may change the routing table
entry for ag at r’. This service takes as its arguments the router r generating
the advertisement, the destination a4 that the advertisement concerns, and the
distance i where t(r)(aq) = (a,7). Then ' uses this information to improve
its estimate for a route to agy. The salient feature of this protocol is that it
eventually calculates shortest path routes and stabilizes. That is, once shortest
path routes are computed, the advertisements do not change routes.

As in the previous subsection, let us begin by analyzing cases for the inter-
network in Figure 1. Eve is able to alter the routing tables to suit her purposes
in defeating AO-security—she simply sends routing update messages to r1 and
r3 that cause all packets meant for Bob to be routed to Eve. (Eve could discard
those packets or obscure her eavesdropping by source-routing them to Bob.)
The routers exchange routing updates periodically and may therefore change
the tables back. However, it is possible for Eve to get in her updates at the
right time so the packet containing § is routed to her instead of Bob, making it
possible for her to learn §. That is, there is (at least) one possible computation
where Eve can cause routing tables to be corrupted for a long enough period
that she learns the secret.

Observation 5. Let

Con = {Alice, Bob, Claire, r1,r2, 73}

17

and ¥ = {deliver, routeUpdate}. Assume that controlled nodes generate only
router advertisements. Then there exist t', s, 2" such that

{t,8,272,p14}—>*{tl75/’2/72}
and § € s'(Eve).

The addition of the routeUpdate service enables an attacker to defeat AO-
security for 4.

Let us now consider an alternate service, routeUpdateP, which is used to
change routing tables, but only after a password check. It takes four arguments,
with the first three being the same as in routeUpdate, and the fourth being a
password. We assume a mapping from networks to passwords that associates
a password p, to each network n. An invocation of routeUpdateP is valid for
a router that receives it from network n if, and only if, the supplied password
is the password p,, assigned to n. As a simplification, we will assume that this
password is also a member of Data, and is established before computations begin
between routers attached to a given network.

The analog of Observation 5 will fail when passwords are used to protect
routing updates since Eve will be unable to obtain a password. However, there
is a threat for the internetwork in Figure 2. In this topology, Eve is on a
network that has two routers attached to it, so updates contain passwords that
can be sniffed by Eve. Although Eve cannot influence r1 directly, she can do
so indirectly, by introducing a spurious entry on r3’s routing table that claims
that Bob is 0 hops away. The next time r3 sends an update to r1, it will ask
r1 to change the routing table entry for Bob to r3 if the current entry shows a
route length greater than 1 and this will be true in this internetwork. We again
depend on Eve’s ability to make the spurious updates in time.

Observation 6. Let
Con = {Alice, Bob, Claire, r1, 2,73}

and X = {deliver, routeUpdateP}. Assume that controlled nodes generate only
valid router advertisements. Then there exist t',s', 2’ such that

{t,S,Z,Z,pA}—>*{t,,S/,ZI7Z}
and § € s'(Eve).

Thus even though it is harder for Eve to learn ¢ in the presence of passwords,
she manages to do so. Notice however, that she was only able to do so because
she happened to be on a network where advertisements could be seen. If this
had not been true, and if routers followed their protocol, then Eve would not
have been able to learn . The following theorem generalizes this property:

Theorem 7. Let Iy and Iy be hosts in an arbitrary internetwork, and assume
that l1 and ly are attached to networks ni and ny respectively. Let

pr = Local(nil, 0, |deliver|(§) @ (na,l2),nil),, .

18

Suppose § & s(l) for each | # 1y, and k,, € s(l) if and only if | € Topology(n).
Let F be the set of all locations that are only connected to networks containing
a unique router. Let Con = (Loc — F) U Topology(ni) U Topology(ns). Let
Y. = {deliver, routeUpdateP}. If routers generate only valid advertisements and
t provides shortest routes, and

{ta 8, %, ZapL}—}*{t/v 8/7 Zla Evplv s vpi}»
then, for alll € F, 6 & §'(1).

The theorem relies on the assumption that valid advertisements produced
by routers do not change routes because shortest routes have been computed.
Uncontrolled locations will be unable to create valid advertisements because
they cannot obtain passwords.

It is non-trivial to formulate a converse for the implication in this theorem.
In particular, Eve may have access to router control information but still be
unable to learn ¢ if she is ‘too far away’ from the communication between Alice
and Bob. That is, the topology of the network makes a difference.

5 Bisimilarity and Secrecy

The examples in the previous section illustrate that proofs of properties that
express the secrecy (or not) of data in the internetwork are possible. We now
formalize two notions of secrecy for internetworks and prove their equivalence.
These results apply to our system without the generation rule. That is, all
particles derive from those originally present. Future work will generalize these
results so that this restriction is not needed. The formalizations rely on the
concept of AO-security. Here, [is the outsider against whom we want to secure

J.

Definition: A machine state M = {t,s,z,%,p1,...,pr} provides d-secrecy
against | if there is no M’ such that M’ = {t',s', 2/, X, p}, ..., p}, } and M—* M’
and d € s'(I).

We now define an alternative notion of secrecy that is analogous to the def-
inition of secrecy used in the spi calculus [4]. The idea that this definition
expresses is that a datum remains secret to an external observer if that ob-
server’s view of the internetwork is independent of the datum. In particular,
changing the datum being transmitted does not change the observer’s view of
the internetwork. The motivation for such a requirement is that any difference
in the behavior of the internetwork could form a covert channel. These ideas go
back to treatments of secrecy in terms of noninterference and related conditions.

In order to formalize this idea, we first define an observer’s view of the in-
ternetwork in terms of the packets transmitted on any network the observer is
attached to. We do this through a labeled transition system, which is derived
from the chemical abstract machine defined earlier by partitioning the transi-
tion relation defined in Table 3 into two categories. A transition M— M’ is

19

observable at 1 if it involved application of the rule

Transit(a, chunk(z, v, E));/, t, s—
Transit(a, chunk(z, v,), t, s

where t(I')(a) = ((n,1"),%) and I € Topology(n). All other transitions are not
observable at [. In the rest of this section, we use M—»M’ for non-observable

transitions, and M LM’ for observable transitions of the form above, where
p = Transit{a, chunk(z,v, E)) .
We now define the notion of [-bisimulation:

Definition: A relation R between machine states is an [-bisimulation if M7 R
My implies that whenever Mlﬂ»*iﬂ»*M{, then there is some M) such that
Mz—»*—p»—»*Mé and M{ R M}, and vice versa.

We define l-equivalence ~; to be the largest [-bisimulation. Thus, M ~; M’ if

and only if there is an [-bisimulation R such that M R M’. The relation ~; is
an equivalence. We have the following

Theorem 8. Let M = {t,s,2,%,p1,...,p;} and suppose § & s(l) and &' ¢ M.
If M ~; M[¥' /6] then M provides §-secrecy against l.

That is, if I’s view of the internetwork is the same even when the parties
exchanging secret data use different data, then [does not learn the data. The
converse is more involved, and requires the following restriction on the kinds of
services that a program in uPLAN can invoke:

Definition: A service o is secrecy-friendly if, for every v,1, s,t, S, E,C, D such
that ¢’ € s,v,S, E,C, D and controlled location I,

([[U]](le787t7a" (S’E7C7 D)))[(S//(SD =
(', t',a p1,...,pi)[0 /0]
where [o]|(v,l,s,t,2,(S,E,C,D)) =s,t,2',p1,...,pi.

This definition expresses the requirement that services are transparent with
respect to data. With this tool in hand, we obtain a converse of the previous
theorem:

Theorem 9. If M = {t,s,2,%,p1,...,p;} provides -secrecy against | and
0" & M and all services in ¥ are secrecy-friendly, then M ~; M[§' /6]

6 Active Labeled Routing

This section studies AO-security for internetworks in which the routers offer
the ability to set labeled routes. The basic idea of labeled routes is to move
a packet along a route based on a label it carries, rather than according to

20

the routing table entries for a final destination. Instead of carrying the entire
route in the packet itself (as in source routing), the packets carry only a label.
Before sending any packets that use that label, a source could set up a route
by leaving ‘bread crumbs’ associating labels to intermediate destinations. This
gives the source more control over the route taken by the packets it sends. This
control can be exploited to create customized routes that reduce congestion,
improve security or reliability, and contribute to other objectives. In scenarios
where a number of packets are expected to use the same label, this scheme can
be more efficient than source routing and more flexible than default routing
using RIP or OSPF. For example, the PLANet [13] testbed was used to study a
protocol called Flow-Based Adaptive Routing (FBAR) where diagnostic packets
would collect information about congestion, use this to determine custom routes
around congested links, and configure labels to provide alternate routing. In
labeled routing, as in source routing, the next destination supplied by the label
need not be an address on an attached network—as it is in a routing table—
since default routing (using the routing tables) can be used to get the packet
to any destination specified by the label. In the FBAR experiment, routing
provided by RIP was used as a default, with customization provided by labels
when improvement on the default seemed possible.

The FBAR experiment raised some questions about the security of labels
that can be customized by sources. As we have seen, the ability to modify
routing table entries raises concerns about AO-security. Will packets using
labeled routes be equally insecure? In fact, the labels, if they are as unguessable
as passwords, will provide security for labeled routing protocols like FBAR that
is generally comparable to that of password-protected routing updates like those
considered in Section 4. To illustrate this, let us state some simple observations
concerning AO-security for the internetwork in Figure 1 when locations offer
labeled routing as a service. In order to express this routing scheme, consider
the services in Table 5.

Table 5: Services for Labeled Routing

set: [[set]((1ab,a),l,s,t, 2, (S, E,C,D)))
= Local{() :: S, E,C, D), s,t,2’
where 2/(I')(1ab’) =
if I’ =1 and lab’ = lab then a else z(I')(1ab’)

get: [[get](1ab,l,s,t, 2, (S, E,C, D))
= Local(z(I)(1ab) :: S, E,C, D), s,t, 2

getlabels: [[getLabels]|((),l, s, t, z, (S, E,C, D))
= Local{Domain;(2) :: S, E,C, D), s,t, 2

In order to set up a route, Alice can insert entries into a dictionary at lo-

21

cations on the way (starting with Alice herself) associating the label with the
next hop from that location towards the intended final destination, say Bob.
This route could be based on any metric that suits Alice. Let us assume here
that it is the shortest route. Thus, a dictionary entry at Alice associates the
label being used for this route with (nl,rl), an entry at r1 associates the label
with (n2,r2), and one at r2 associates the label with (n3,Bob). Here’s a uPLAN
program that uses the deliver service defined earlier in conjunction with labeled
routing to route a datum from Alice to Bob:

fun labelRoute(d,1l,c,dest) =
(c = dest) 7
(deliver (d)),
(llabelRoutel (d,1,#2(get(1)),dest)) @ (get(1))
in
labelRoute(d,1lab,Alice,Bob)
where ¢ is the datum to be routed to Bob, and lab is the label that was used
to setup the labeled route from Alice to Bob. Call this program ey. It is similar
to source routing, but there is no need for a list of intermediate destinations
in the packet. Once the labeled route has been set up, injecting the particle
p = Local({nil, @, ey, nil) ajice causes § to be routed to Bob according to the labeled
route.

Consider a scenario in which Eve can get a list of all labels in use at r1.
She can then send packets to r1 and try each label in sequence to change the
dictionary entries so that the particle containing § gets routed instead to Eve.
This gives Eve a way to learn . The following formalizes this property. Here, let
s be a DataState such that ¢ ¢ s(I) unless | = Alice, and 1ab ¢ s(Eve). That is,
only Alice knows ¢, and Eve does not know the label used to set up the labeled
route. Also, let z be a Dictionary such that z(Alice)(1ab) = r1, z(r1)(lab) = r2,
z(r2)(1ab) = Bob, and all other dictionary entries are undefined.

Observation 10. Let

Con = {Alice, Bob, Claire, r1, 2,73}
Y = {set, get, getLabels, deliver}
p = Local(nil, 0, ey, nil) ajice

and assume that the controlled nodes do not generate particles. Then {s,t,z, %, p}
does not provide d-secrecy against Eve.

However, if such a facility is not available to Eve, then Eve cannot learn §.
Thus by restricting the service interface appropriately, we can prove guarantees
about secrecy when labeled routing is in use. The following formalizes this

property:
Observation 11. Let

Con = {Alice, Bob, Claire, r1, 72,73}
Y = {set, get, deliver}
p = Local(nil, §, er, nil) ajice

22

and assume that the controlled nodes do not generate particles. Then {s,t,z,%, p}
provides d-secrecy against Eve.

We can generalize this property in two directions. The internetwork under
consideration can be arbitrary, and the labels can point to addresses that are
several hops away, requiring the use of routing tables which might be corrupted.
First, we prove a theorem about an arbitrary network topology and a single hop
labeled route - i.e., a labeled route in which each label points to a location that
is only one hop away.

In the following, er,(d,1ab,l,1’) is the program:

fun labelRoute(d,1l,c,dest) =
(c = dest) 7
(deliver (d)),
(llabelRoutel (d,1,#2(get(1)),dest)) @ (get(1))
in
labelRoute(d,lab,1,1’)
Theorem 12. Let Iy be a host attached to the network ni in an arbitrary
internetwork. Let a1 = (n1,l1),...,ax = (ng,lg) be the sequence such that
l; € Topology(n;+1) and z(l;)(lab) = (niy1,liy1), where lab € Data, and z is a
dictionary in which all other entries are undefined. Let

¥ = {deliver, get, set}
pr, = Local(nil, 0, er, (4, 1ab, ly, l;.), nil),,
Con = |JTopology(n;)

Suppose 0,1ab & s(l) for all I ¢ Con and suppose that controlled nodes do
not generate new particles. Then {s,t,z,%,pr} provides §-secrecy against all

[¢ Con.

We now include labeled routes that span multiple hops. Between two lo-
cations on the labeled route, the packet would then make use of the routing
tables to travel to the next hop. However, now the routeUpdateP service gives
an attacker the capability to corrupt routing tables provided the attacker has
access to a routing password. As in the last section, x,, is the routing password
for network n, and will be known to all locations on the network n.

Theorem 13. Let ly be a host attached to the network ni in an arbitrary
internetwork. Let a1 = (n1,l1),...,ax = (ng,lg) be the sequence such that
z(l;)(lab) = (ni41,liy1), where 1ab € Data, and z is a dictionary in which all
other entries are undefined. Let

Y = {deliver, get, set, routeUpdateP}
pL = |_OC<':1|<Ili17 (Z), eL(d, lab, l(), lk), Hi1>ll

Let F be the set of all locations that are only connected to networks containing a
unique router. Let Con = (Loc — F) U Topology(ni) U Topology(ns) and assume
controlled nodes do not generate any more particles. Suppose §,1ab & s(l) for
each | & Con, and k, € s(1) if and only if | € Topology(n). Let t be a shortest-
path routing table. Then {s,t,z, %, pr} provides §-secrecy against all I ¢ Con.

23

7 Conclusions

In this paper we have defined uPLAN as a primitive programming interface for
active networks and used it to demonstrate how to reason about the secrecy
of passwords and labels and the integrity of routers. We believe the approach
is simple and direct enough to be used routinely for analyzing interfaces while
being powerful enough to work for a variety of interesting protocols. We have
also provided a formal treatment of AO-security, which is an important attribute
of network protocols. AO-Security plays a significant role in current practice,
and it is not always trivial to ensure—as this paper demonstrates in the context
of active networks.

Acknowledgment

We appreciated the help we received on this paper from Roch Guerin, Mike
Hicks, Trevor Jim, and Jon Moore. This work was supported by DARPA under
Contract #N66001-96-C-852 and ONR under Contracts N00014-99-1-0403 and
N00014-00-1-0641.

A Proofs of various statements

A.1 Theorem 4

Let us examine the sequence of evaluation of py, that is sent from I; to Is.
Assuming that no other particles are generated, Table 6 shows the evaluation
of pr,.

Table 6: Evaluation of particle py,

{t787Z727pL}_)
{t, s, z, %, Local(nil, 0, |deliver|(8) :: (n2,l2) :: @,nil);, }—
{t,s,2,%, Local(nil, @, 6 :: ch :: deliver :: (n2,l2) :: @, nil);, }—
t,s,z,%, Local(d, (0, ch :: deliver :: (na,[3) :: @, nil);, }—
1
{t, s, z, ¥, Local(chunk(deliver, §, 0), 0, (n2,l2) :: @, nil);, }—
{t,s,2,%,Local{(), 0, nil, nil);, , Transit{(ns, l2), chunk(deliver, 6,));, } —
{t, s, z, ¥, Transit((n2, l2), chunk(deliver, §, 0));, } —*
{t,s°, 2,2, Transit((n2, l2), chunk(deliver, §, 0))z, } —
t,s°, z,2, Local(nil, 0, deliver(9), nil);, } —
s Local(nil, 0, deliver(d), nil);,
{t,s°, 2, %, Local(nil, 0, § :: serv :: deliver, nil);, }—
{t, s, z, %, Local(4, 0, serv :: deliver, nil);, } —
{t, s, z,%, Local{(), ®, nil, nil);, } —
{t7 86727 E}

In Table 6, s° is the same as s except all locations on a network on the route

24

R between [; and Iy have now learned 4. Let

PL={p|{t,s, 2,5, pL}—"{t, s, 2,5, p}}

and
PL={p|{t,s. 2,5, pL}—"{t. s, 2, Z,p,p'}},

and let P;, = P} UP?. Notice that P, contains all the Local(...) particles from
Table 6 along with Transit(...) particles of the following form:

Transit((na, l2), chunk(deliver, 5, 0)),

where [is a location on the route between [; and l5. This is true because the
particle pr, gets turned into a Transit() particle of the above form with I being
Iy, and is intended to reach the address (ns,l2).

In the following, let K(s) = {l|d € s(I)}. We now prove Theorem 4:

Proof of Theorem 4. Suppose {t,s,z, %, pr}—*"M = {t',s,2/,%,p1,...,pr}
Then, all of the following must be true:

e K(s) C Con.
ot/ =1t
e For all p € M, either p € Pr or d & p.

We prove this by induction on the length of the computation {¢, s, z, ¥, pr, } —*M:

Base Case: If the length of the computation is 0, then M = {t,s,2,%,pr}.
The results follow directly from the assumptions in this case.

Induction Step: Let the hypothesis be true for a computation of j steps.
Now, let us consider a computation involving j + 1 steps, and in particular look
at the last transition.

Let {t,s,2,%,pr}—*"M'— M" where

M — {t/7sl,zl72’p/1’.“7p;n} and
M” = {t//asll7zl/727p/1/?'"’pﬁ}'

Then we know from the induction hypothesis that ¢ = ¢, K(s) € Con and for
all p', either p’ € P or § € p'.

We now need to verify that the induction hypothesis holds for each possible
transition rule used in the last transition. We will not describe every case here,
rather we will pick a representative set of rules. We thus examine five cases on
the last transition, and claim that all rules except four are similar to the first
case while the next four cases are special:

25

Case

Case

Local{v :: S, E,ch :: o :: C, D)p—Local{chunk(c,v, E) :: S, E,C, D),

Thus, there is some p’ € M’ and some p” € M" such that p’ = Local(v ::
S,E,ch:: 0 :: C, D) and p” = Local(chunk(co,v, E) :: S, E,C, D);. Now
there are two subcases:

o p €PpL.
From the definition of P, {t,s,z,%,pr}—"{t,s',2,%,p'}. Since
{t,s', 2,2, p'}—{t, s, 2,2, p"}, we must have p” € Py.

o' ¢PrL.
From the induction hypothesis then § € p’, and by an inspection of
the rule, 6 & p”.

In both subcases, this rule does not change either the DataState or the
RouteState, thus t = ¢’ =t and s” = ' therefore K(s) C Con.

Transit{(a, ch);,t', s —Transit(a, ch);, t', s”
where ch = chunk(z, v, E) or chunk(o, v, E)
and((n, 1), i) = t'(1)(a)
womy _ J ') if I & Topology(n)
and (") = { s (I"YU{é|6 € vor § € E} otherwise

This rule changes the DataState. Now, there must be some p’ € M’ and
some p” € M" such that p’ = Transit(a,ch); and p” = Transit{(a, ch);.
Notice that the rule does not change the RouteState, hence ¢/ =t/ = t.
Again, there are two subcases:

e p €PpL.

Then [is a location on the route from [; to ls. By the definition
of a route, I’ must also be a location on the route, and from the
assumptions in the statement of the Theorem, if I” € Topology(n)
then " € Con.

Now, p’ must be Transit{(ns, l2), chunk(deliver,§,0));, so § € p’. If
1" € K(s"), then § € s”(I"), so either 6 € s'(I") or I € Topology(n)
and in both cases I” € Con, by the induction hypothesis for the former
and from the preceding paragraph for the latter.

Also by definition of Py, p” € Py.

e & PL.
Then § € p/, so 6 € s”(I") only if 6 € s'(I"”) only if I” € Con. Also,
by inspection of the rule, § & p”.

26

Case

Case

Case

s, X —local{nil, 0, e, nil);, s', &
where e obeys s(1)
and all services ¢ in e are in X

This rule involves the generation of a new particle. The new particle is
Local(nil,), e, nil);. Since controlled nodes can’t generate packets, | ¢
Con, so | ¢ K(s'). But then § &€ s'(I), hence § ¢ Local(nil, (), e, nil);.
Moreover ¢/ =t =t and s” = s’ so § € s”(1) only if [€ Con.

Local{a :: ch :: S, E,@ :: C, D),—Local{() :: S, E,C, D)y, Transit(a, ch),

This rule has two particles on the right hand side. There must be a
p’ € M’ such that p’ = Local{a :: ch :: S,E,@ :: C, D)y, and p”,p" € M"
such that p” = Local{() :: S, E, C, D)}, and p"’ = Transit{(a, ch)j. The two
subcases are:

o p €Py.
Then by definition of Pr,, p”’, p’”" € Pr. The DataState and RouteState
do not change, so the other invariants are also satisfied.

P ¢PrL.
Then § ¢ p’. By inspection of the rule, § € p”’,p’”. Again, the other
invariants are also satisfied.

Local(v :: S, E,serv :: 0 :: C, D)y, s,t, z—[[o]|(v,1, s, t, 2, (S, E,C, D))

This rule involves application of a service. o € ¥ = {deliver}, therefore
o = deliver. We know that

deliver]|(v,1,s,t, 2, (S, E,C, D)) = Local{() :: S, E,C,D);, s, t,z
[[]](77,7?(,)))) <()) 0 >7 Y

where _
Sy = s(YyU{v} 1=V
L os() otherwise
Now, there must be p’ € M’ = Local{v :: S, E,serv :: ¢ :: C,D);, and
p"’" € M" = Local{() :: S, E,C, D);. Let us examine the two subcases:

o p €PrL.
Then ! must be Iy and v must be §. By definition of Py, p” € Pr.
Also, K(s') = K(s)Ula. K(s) C Con and lo € Con implies that
K(s") C Con.

27

o p ¢ Pr.
Then § ¢ p’. By inspection of the rule, § € p”. Moreover, v # §, so
K(s') = K(s) C Con.

In both subcases, t/ =t =t.

A.2 Theorem 7

Before we prove the Theorem, let us look at the sequence of evaluation of a
valid routing update originating from router r, containing information about a
destination address agq, and meant for r’, a neighbor on the network n. We will
assume that the RouteState represents shortest path routing tables. Let

pu(r,aq,r") = Local(nil, 0, [routeUpdateP|(r, aq, i, kn) @ (n,r’), nil),

where ag4 is an intended destination, t(r)(aq) = (a,¢), and &, is the routing
password for network n. Assuming that no other particles are generated, Table 7
shows this sequence in a computation.

From Table 7, let

Pllf(r7 adaT/> = {p ‘ {t7572327pU(r7 adar/)}—)*{t75/7za27p}}

and

PIQJ(T’ ad, TI) = {p | {t’ 552, vaU(Ta ad, TI)}_)*{ta s/, 2, Z,p,p/}},

and let Py (r,aq,r’") = Ph(r,aq,7") UPE(r,aq,r’). Also, let Pr, be defined as in
the last section.

We first prove that all routers on the shortest path from /3 to s are controlled
nodes as per the definition of controlled nodes in Theorem 7:

Lemma 14. Let F be the set of all locations that are only connected to networks
containing a unique Touter. Let Con be the set of all locations not in F except
all locations on ny and ny. Let R be any route from ly to ls. If (n,l) € R, then
Topology(n) C Con.

Proof. There are three cases on [:

e [is either [or Is.

Then n is either ny or ng (respectively), so that Topology(n) C Con.

e [is neither /1 nor I3, and the route length is 3.

Then [must be a router that is connected to both n; and ns, and n = nq,
so again, Topology(n) C Con.

28

Table 7: Evaluation of a routing update

{t,s,2,%,pu(r, ad,
{t,s,2,%, Local(nil, 0, [routeUpdateP|(r, a4, i, kn) ::
{t,s,2,%, Local(nil, 0, (r, ad,i,mn) :
{t,s,z,%, Local(nil, §,r : RS
{t,s,2,%, Local(r, 0, aq :
{t, s, z, %, Local{agq :

{t,s, 2,2, Local{k, :: i
{t,s,z,%, Local((r, ad,z,nn) 0, ch :
{t,s,2,%, Local
{t,s, 2, %, Local{(n,r") =:
{t, s, z, 2, Local{(), (Z), nil, nil),, Transit((n, '), chunk(routeUpdateP, (7, aq, %, £n))r }—
{t, s, z, 2, Transit{(n,r'), chunk(routeUpdateP, (7, aq, i, kn))r } —

{t, s, z,%, Transit{(n, '), chunk(routeUpdateP, (7, a4, i, kn))p } —
{t, s, z,%, Local(nil, @, routeUpdateP(r, aq, %, kn), nil),» }—
{t,s,z,%, Local(nil, @, (r, ad,z mn) 5
{t,s,2,%, Local(nil, §,r : g
{t,s,2,%,Local(r, 0, aq :

{t,s, z, 2, Local(i :

{t,s, z, %3, Local{k, :
{t,s,z,%,Local(r, aq, 1, /-cn) (Zi routeUpdateP ::
{t',s, 2,5, Local{(), 0, nil, nil) ., } —

ry—

(

(

(

(aq =7, (/] i
{t,s,2,%, Local(i :: i, (Z) Kn

(

(

(c

(

(
(
(
{t,s,2,%, LocaI(ad
(i
(
(
|

ch :
Kn it tupy
:tupy
Kn i tupy
:tupy =
:r, 0, tup, =
routeUpdateP ::
hunk(routeUpdateP, (7, a4, 3, £,),0),0, (n, ") =:

tupy

T, @ i: i tupy =
T, (7) Kn t tupy &
:r, 0, tup, =

routeUpdateP ::

ch :
ch ::
ch ::
:: routeUpdateP ::

ch

routeUpdateP ::
Kn it tupy

(n,r") = @ ,nil
(n,r')
routeUpdateP :: (n
(n,r") = @
(n,r') = @
@
Q@

ch :
routeUpdateP ::
routeUpdateP ::
routeUpdateP :: (n,r’) ::
(n,r") =
(n,r') =

serv, nil),, }—
routeUpdateP ::

routeUpdateP :: serv, nil), }—
routeUpdateP :: serv, nil),, }—
routeUpdateP :: serv, nil),, }—
routeUpdateP :: serv, nil),, }—

serv, nil),, }—

=
3
-

serv, nil),

@ ,nil), }—
@] 7ni1>7'}—’
chunk(routeUpdateP, (7, a4, i, kn), 0, @ ,nil), }—

}—

29

e [is neither I; nor ls, and the route length is greater than 3.

Then ! must be a router. Since (n,l) € R, 3’ s.t. t(I')(ne,l2) = (n,1). If
I = 11, then [must be connected to n;, otherwise I’ must be a router,
and then [and !’ are both routers on the same network. In both cases,
Topology(n) C Con.

4
In the following, let Ks5(s) = {l|d € s(1)}, and let K, (s) = {l| kn € s(I)}.

Proof of theorem 7. Suppose {t,s,z, X, pp}—*"M ={t',s',2', 3, p1,...,pr}. Then
all of the following must be true:

e Ks(s") C Con.

e K, (s") C Topology(n) N Con for all n.

ot/ =1t.

e For all p € M, one of the following is true:
—pePr.

— p € Py(r,aq,r’) for some r,aq, 7’ such that r and ' are neighbors.

— § € p and, for all networks n, k,, & p.

Base Case: If the length of the computation is 0, then M = {¢,s,z,3,p}.
The results follow directly from the assumptions in this case.

Induction Step: Let the hypothesis be true for a computation of j steps.
Now, let us consider a computation involving j + 1 steps, and in particular look
at the last transition.
Let {t,s,2,%,pr}—*M'—M" where
M = {t,s, 2,5, p),...,p,} and
M” = {t//,S,/,Z//’ E7p€{7""p/l’;}'

We now need to verify that the induction hypothesis holds for each possible
transition rule used in the last transition. We will not describe every case here,
rather we will pick a representative set of rules. We thus examine five cases on
the last transition, and claim that all rules except four are similar to the first
case while the next four cases are special:

Case
Local{v :: S, E,ch :: o :: C, D)p—Local{chunk(c,v, E) :: S, E,C, D)
Thus, there is some p’ € M’ and some p” € M" such that p’ = Local(v ::

S,E,ch :: o :: C,D); and p” = Local{chunk(o,v, E) :: S, E,C, D);. Now
there are three subcases:

30

Case

e p ePr.
From the definition of Py, {t,s,z,%,pr}—*{t,s',2,%,p'}. Since
{t,s',2,5,p'}—{t, s, 2,%,p"}, we must have p" € Pr,.

o o' & Pr,p € Py(r,aq,r’) for some r,aq and 7.
Again, p” € Py(r,aq,r") from the definition of Py (r,aq,r’).

o p' &Pr,p & Py(r,aq,r’) for any r,aq and r'.
From the induction hypothesis then § ¢ p’, and for all networks n,
kn € p'. By an inspection of the rule, 6 & p” and for all networks n,
L

In all subcases, this rule does not change either the DataState or the
RouteState, thus t” = ¢/ = ¢ and s” = s’ therefore K;s(s”) C Con and
K, (s") C Topology(n) N Con for all n.

n

Transit{(a, ch);,t', s —Transit(a, ch);, t', "
where ch = chunk(z, v, E) or chunk(o, v, E)
and((n,l'),i) = t'(I)(a)
AN "
womy | 8'(17) if I ¢ Topology(n)
and (") = { s (I"YU{4|6 € vor § € E} otherwise

This rule changes the DataState. Now, there must be some p’ € M’ and
some p” € M" such that p’ = Transit(a,ch); and p” = Transit{(a, ch);.
Notice that the rule does not change the RouteState, hence ¢/ =t/ = t.
Again, there are three subcases:

o p €PL.
Then [is a location on the route from [y to l;. By the definition of a
route, (n,l’) € R, and from Lemma 14, Topology(n) C Con.
Now, p’ must be Transit{(ns,ls), chunk(deliver,§,0));, so § € p'. If
1" € Ks(s"), then § € s”(I"), so either ¢ € s'(I") or I” € Topology(n)
and in both cases I” € Con, by the induction hypothesis for the former
and from the preceding paragraph for the latter.
Now, kn, € P/, so if I” € K, (s") then x,, € s”(I"), which is only true
if k,n) € s'(I"), so 1" € Topology(n) N Con.
Also by definition of Py, p” € Pr.

o ' &P, p € Py(r,aq,r') for some r,aq and r'.
By inspection of Table 7,1 = r and I’ = /. 7,7’ are neighbors, i.e.,
there is a network n such that r,r" € Topology(n). Since there are
two routers on n, Topology(n) C Con.
Now, k, € p'. I" € K, (s") implies ,, € s’(I"), then either n = n/
and I"” € Topology(n’) (thus I” € Con), or k,, € s’(I"”). The latter
implies (by the induction hypothesis) that [” € Topology(n') and
" € Con also, so either way, K, (s") C Topology(n') N Con.

31

In this case, § € p/, so I” € Ks(s"”) implies that § € s”(I") which is
only true if 6 € §'(I"), so I” € Con.
Also, by definition of Py (r,aq,r’), p” € Py(r,aq,r").
o o' &P, p & Py(r,aq,r’) for any r,aq and r’.
Then § & p’, s0 6 € s”(I") only if § € '(I") only if I € Con. Also, by
inspection of the rule, § € p”. The same argument holds for all k.
Case
s, Y. —Local{nil, 0, e, nil);, s,
where e obeys s'(1)
and all services ¢ in e are in X

This rule involves the generation of a new particle. The new particle
p = Local(nil, §, e, nil);. There are two subcases:

e [€ Con. Then the new particle can only be a valid routing up-
date, and then p € Py(r,aq,r’) for some r,aq,r" such that r,r’ are
neighbors.

e[& Con. Then !l ¢ Ks(s') and | ¢ K, (') for all n. But then
5 & s'(1), and Ky, & s'(1), hence 6, k,, € Local(nil, @, e, nil),.

In both cases, t/ =t/ = t and s = s’ so the other conditions also hold
true.

Case

Local{a :: ch :: S, E,@ :: C, D)—Local{() :: S, E,C, D)y, Transit(a, ch),

This rule has two particles on the right hand side. There must be a p’ € M’
such that p’ = Local(a :: ch :: S, E,@ :: C, D), and p”,p"” € M" such
that p” = Local{() :: S, E,C, D), and p”" = Transit(a,ch)r. The three
subcases are:

o p €Py.
Then by definition of Pr,, p”’, p”" € Pr. The DataState and RouteState
do not change, so the other invariants are also satisfied.

o ' &Pr,p € Pylr,aq,r') for some r,aq and r’.
Again, by definition, p” € Py(r,aq,r’). Again, other invariants are
also satisfied.

o o' &P, v & Py(r,aq,r') for any r,aq and r'.
Then 6 ¢ p’ and for all n, k, € p’. By inspection of the rule,

0 &p",p" and for all n, k,, & p”,p’"’. Again, the other invariants are
also satisfied.

32

Case

Local(v :: S, E,serv :: 0 :: C, D), s',t', 2/ — o] (v,1, 8,2, (S, E,C, D))

This rule involves application of a service. o € ¥ = {deliver, routeUpdateP}.
Let us examine the three subcases:

e p ePr.
Now, o = deliver. We know that

[deliver]|(v,1,s",t', %', (S, E,C, D)) = Local{() :: S, E,C, D), s",t', 2’

where
Sy = { syu{v} ifl=T7

s(l) otherwise
Now, there must be p’ € M’ = Local(v :: S, E,serv :: ¢ :: C, D)y,
and p” € M" = Local{() :: S, E,C, D),.
Then ! must be Iy and v must be §. By definition of Py, p” € Pr.
Also, K(s') = K(s)Ula. K(s) C Con and ls € Con implies that
K(s") C Con.
Moreover, t” =t = t, and since &, € p’, K, € s” (") implies that
kn € 8'(I"). Hence the other invariants also hold.

o p' &P, p € Py(r,aq,r') for some r,aq and r'.
Now, o = routeUpdateP. Again, there must be p’ € M’ = Local{(v ::
S E,serv :: o :: C,D);, and p” € M" = Local{() :: S, E,C, D),.
Then [= 7/, Since t' contains shortest path routing tables , the ap-
plication of routeUpdateP does not change the RouteState. Moreover,
this service does not change the DataState so the other invariants are
also satisfied.

o ' &P, v & Pylr,aq,r') for any r,aq and »'.
Then 6 ¢ p’ and for all n, x, € p’. By inspection of the rule,
0 ¢ p” and, for all n, k, & p”. So K;(s') = Ks(s) C Con and
K, (s') = K, (s) C Con N Topology(n).

O

A.3 Theorems 8 and 9
Proof of Theorem 8. Assume the converse of the conclusion. That is, there is an
M ={t' s, 2 %,pl,...,p}} such that M—*M' and ¢ € s'(l). Since ¢ & s(l),

there must have been states M; and M in such that M —*M; i)»M{—»”‘M' where
p = Transit{(a, chunk(z,v, E))y and § € v or § € E, that caused [to learn 4.
Obviously, My 7 M1[8' /6], and by implication, M ; M[d§'/4]. O

33

Proof of Theorem 9. From the following two lemmas and by noting that R =
{(M,M[&'/d]) | M is a valid machine state and §' ¢ M} is an [-bisimulation.
O

Lemma 15. If M = {t,s,2,%,p1,...,px} and all services o € ¥ are secrecy-
friendly, then for all secrets 6, such that 6’ & M, M— M’ iff M [’ /0]— M'[6"/4].

Proof. Let us first prove the statement in the forward direction. We will examine
two cases, the first being representative of all transition rules except one, which
we consider separately:

Case
Local(v :: S, E,ch :: 0 :: C, D),—Local{chunk(o,v, E) :: S, E,C, D)
The truth of the statement is obvious, given that ¢’ & M implies that
60'¢v,S, E,C,D.
Case

Local(v :: S, E,serv :: o :: C, D)y, s,t, z2—|[o]|(v,1, s, t, 2, (S, E,C, D))

In this case, suppose that [o]|(v,1, s,t, 2, (S, E,C,D)) = s',t', 2/, p1, ..., p.
Now, given the secrecy-friendly property we know that
[o]((v, 1,5, t,a,(S, E,C, D)))[5"/d]) =
(5/7 tlv a’lvplv cee 7]%)[5//(5]

and the result follows directly from that.

For the converse result, note simply that if &’ ¢ M, then M[§'/6][6/6'] = M,
and 6 ¢ M[d'/6]. O

Lemma 16. If M = {t,s,2,%,p1,...,Dx} is such that all services o € X

are secrecy-friendly, and M provides §-secrecy against |, and &' & M, then

M—*Z M iff M5 /8]—*—s—s*M[5" /]

Proof. Proof in the forward direction is from the previous lemma, and by noting

that if p = Transit{a, chunk(z, v, E)); then the secrecy of § requires that § & v, E.
For the converse, let M[é’/(?]—»*f»—»*M’[cS’/é].

5/6'
Now, M5 /8][5/6") "5 " M"[67 /815 5]
_ R L
ie., M—* —» —*M
Since M provides d—secrecy against I, § & p[6/d'], i.e., &' & p.
Then, p = p[§/d’], and M-S M. d

34

A.4 Observation 11

In order to prove this observation, we first define the set P to be the set of
all particles that appear in the computation of a labeled routing particle, p =
Local(nil, §, ey, nil) pjice, in the following way: let

Pl = {p/ ‘ {t,S,Z,E,p}—>*{t78/,272,p/}}

and
P2 ={p' | {t, s,z 3, p}—"{t,s,2, 5,0, p"}},

and let P = P U P2

We can provide a detailed description of an exact computation starting from
the machine state {t,s, z, %, p}, following the example of the proofs of Theo-
rems 4 and 7. It turns out however that the computation here would span
several pages. We therefore provide in Table 8 only the first few steps in the
evaluation of particle p. Notice that the last machine state in the table looks al-
most exactly like the fourth one, with three differences: Alice has been replaced
with r1, the environment in the only Local{(...) particle has some extra entries
which will not get used, and the DataState has been augmented so that all lo-
cations on nl now know the secrets § and lab. The rest of this computation
will repeat the pattern shown in the table, once at r1 and then at 72, and then
will end at Bob.

We now prove the Observation.

Proof of Observation 11. Suppose {t,s,z, X, p}—*M = {t',s', 2/, %, p1,..., Dk}
Then all of the following must be true:

e 4, lab & s'(Eve).
o 2/(I)(lab) = z(I)(lab) for all | € {Alice,r1,72,Bob}, and 2'(1)(¢") # lab,d
for all [€ Loc and all ¢’ € Data.
e For all p € M, one of the following must hold:
- pepP.
— d,lab & p.

We prove this by induction on the length of the computation {t, s, z, ¥, p} —*M.

Base Case: If the length of the computation is 0, then M = {t,s,z, %, p}.
The results follow directly from the assumptions in this case.

Induction Step: Let the hypothesis be true for a computation of j steps.
Now, let us consider a computation involving j + 1 steps, and in particular look
at the last transition.

Let {t,s,2,%,p}—*M'— M" where

M _ {t/7s/,zl72’p/1’_“7p;n} and
M,/ _ {t”,SN,Z”,E,p/{,..-,p;:}-

35

Table 8: Initial evaluation of particle p

In this table:

Ei = 0close(labelRoute,(d,1,c,dest),(c = dest)?...,0)/labelRoute]
E, = FEi[6/d][lab/1][Alice/c]|[Bob/dest]

Dy = (nil 0, nil nil)

Dy = <1’lil, El, l'lil, D1>

{t,s,2,%,p}—

{t, s, z,%, Local(nil,), funlabelRoute... in labelRoute(d, lab, Alice, Bob), nil)ajice } —
{t,s,2,%, Local(nil, §, fun labelRoute :: labelRoute(d, lab, Alice, Bob), D1)alice } —
{t, s, z,%, Local(nil, F1, labelRoute(d, lab Alice, Bob), D1>A|.ce}—>

{t,s,z,%, Local(nil, E1, (4, 1ab, Alice, Bob) :: labelRoute :: ap, D1)Alice} —

{t, s, z, 2, Local(nil, F1,¢ :: 1ab :: Alice :: Bob :: tup, :: labelRoute :: ap, D1)Alice }—
{t,s,z,%, Local(d, E1,1ab :: Alice :: Bob :: tup, :: labelRoute :: ap, D1)alice }—
{t,s,z,%,Local(1lab :: §, E1, Alice :: Bob :: tup, :: labelRoute :: ap, D1)alice }—

{t, s, z, 2, Local(Alice :: 1ab :: §, E1, Bob :: tup, :: labelRoute :: ap, D1)Alice }—
{t,s,z,%, Local(Bob :: Alice :: 1ab :: §, E1, tup, :: labelRoute :: ap, D1)alice }—
{t,s,z,%, Local((d, 1ab, Alice, Bob), E1, labelRoute :: ap, D1)alice} —

{t, s, z, %, Local cIose(labelRoute) :: (0, lab, Alice, Bob), E1, ap, D1)alice } —

(

(

(

(

(

(

(

(

(

(

(
{t,s,2,%, Local(nil, F2, (c = dest) ?. D2>A|;ce}—>
{t,s,z,%, Local(nil, Es, (c = dest) D2>A|,ce}—>
{t, s, z,2, Local(nil, Fs, c :: dest :=:: blnary .oy D2) Alice }—
{t, s, z,%, Local(Alice, E», dest """ blnary .. 7D2)A|;ce}—>
{t,s,z,%, Local(Bob :: Alice, EQ, =:: binary :: 7 :: ...,Dg)Auce}—>
{t, s, z, 2, Local(false, F2, 7 :: D2>Al|ce}*)
{t,s,z,%, Local(nil, s, (\1abe1Route|(d 1, #2(get(1)),dest)) @ (get(1)), D2)aiice }—
{t,s,z,%,Local(nil, E>, |[labelRoute|(...) :: #2(get(1)) :: @ , D2)Atice }—
{t, s, z, 2, Local(nil, s, (d, 1, #2(get(1)), dest) :: ch :: labelRoute :: ..., D2)alice }—
{t,s,z,%, Local(nil, F>,d :: 1 :: #2(get(1)) :: dest :: tup, :: ch :: 1labelRoute :: ..., D2)alice}—
{t,s,z,%, Local(d, Eg,l #2(get(1)) :: dest :: tup, :: ch :: labelRoute :: ..., D2)ajice }—
{t, s, z, 2, Local(lab :: 0, B, #2(get(1)) :: dest :: tup, :: ch :: labelRoute :: ...,D2>A|ice}*>
{t,s,z,%,Local(lab :: §, F2, get(1) :: proj, :: dest :: tup, :: ch :: labelRoute : D2>A|ice}—>
{t,s,z,%,Local(1ab :: §, E2,1 :: serv : get :: proj, :: dest :: tup, :: ch :: labelRoute ooy Do) alice }—
{t, s, z,%, Local(lab :: lab :: §, Ea,serv :: get :: proj, :: dest :: tup, :: ch :: labelRoute ...,Dg)Auce}—»
{t,s,2,%, Local((nl rl) :: lab :: §, B, proj, :: dest :: tup, :: ch :: labelRoute : Dg)A|;ce}—>
{t,s,z,%, Local(rl lab : 0, F2,dest :: tup, :: ch :: labelRoute :: . .,DQ)A|,Ce}—>
{t,s,2,%, Local(Bob : lab :: 6, B2, tup, :: ch :: labelRoute :: ..., D2)Alice }—
{t, s, z,%, Local{(4, 1ab, rl Bob) E>,ch :: labelRoute :: “.7D2)A|ice}—>
{t,s,2,%, Local(chunk(labelRoute (6,1lab,r1,Bob), E2), F2,get(1) :: @ , D2)alice}—
{t,s,2,%, Local(chunk(labelRoute (6,1ab,r1,Bob), E2), E2,1 :: serv :: get :: Q , D2)Aiice }—
{t,s,z,%, Local(1lab :: chunk(labelRoute, (4, lab, 71, Bob), E3), E2,serv :: get :: @ , D2)Atice }—
{t,s,z,E,LocaI((nl r1) chunk(1labelRoute, (§,1ab, 71, Bob), E2), F2, @ , D2)Alice }—
{t, s, z, 2, Local((), E2, nil, D2)ajice, Transit((n1,rl), chunk(labelRoute (6,1ab, 71, Bob), E2))alice } —
{t,s,2,%,Local((), F1,nil, D1)aiice, Transit{(n1,rl), chunk(labelRoute, (4, 1ab, r1, Bob), E2))alice } —

{t,s,2,%,Local{(), 0, nil, nil) ajice, Transit((n1,r1), chunk(labelRoute, (4, lab, r1, Bob) E5))Atice }—
{t, s, z, 2, Transit{(n1,r1), chunk(labelRoute, (J, 1lab, 71, Bob), E2))aiice } —>

{t,s, 2,3, Transit((n1,rl), chunk(labelRoute, (4, lab, 71, Bob), F2)),1 } —

{t,s', 2,5, Local(nil, F>, 1abelRoute(d, lab, r1, Bob), nil), }

36

We now need to verify that the induction hypothesis holds for each possible
transition rule used in the last transition. We will not describe every case here,
rather we will pick a representative set of rules. We thus examine five cases on
the last transition, and claim that all rules except four are similar to the first
case while the next four cases are special:

Case

Local{v :: S, E,ch :: 0 :: C, D),—Local{chunk(c,v, E) :: S, E,C, D),

Thus, there is some p’ € M’ and some p” € M" such that p’ = Local(v ::
S,E,ch :: o :: C,D) and p” = Local{chunk(o,v,E) :: S, E,C, D). Now
there are two subcases:

e p eP.
From the definition of P, {t,s,2, %, pa}—*{t,s',2,2,p'}. Since
{t,s', 2,5, p'}—*{t, s, 2,%,p"}, we must have p” € P.

o p &P.
From the induction hypothesis then ¢, lab € p’, and by an inspection
of the rule, ¢, lab & p".

In both subcases, this rule does not change either the DataState or the
Dictionary, thus 2” = 2’ and s” = s’ therefore the other invariants also
hold.

Case
Transit{a, ch);,t', s —Transit{a, ch);,t', s’
where ch = chunk(z,v, E) or chunk(o,v, E)
and((n,1'),7) =t'(1)(a)
171\ 3 "
nomy _) s'(17) if 1" & Topology(n)
and 5" (I") = { s'(I"YU{4|6 € v or § € E} otherwise

This rule changes the DataState. Now, there must be some p’ € M’ and
some p” € M" such that p’ = Transit{a, ch);, and p” = Transit{a, ch),.
Notice that the rule does not change the Dictionary, hence 2" = 2/, satis-
fying the second invariant. Again, there are two subcases:

o p eP.
By definition of P, p” € P. Also I € {Alice,r1,72,Bob} and n €
{n1,n2,n3}. Since Eve ¢ Topology(n), and 4, lab & s'(Eve), we must
have ¢, lab & s”(Eve).

o &P
Then 4§, lab &€ p', so §,lab € s”(I") only if § € s'(I"), but then 1" #
Eve. Also, by inspection of the rule, 6, lab € p”.

37

Case
s, X —local{nil, 0, e, nil);, s', &
where e obeys s(1)
and all services ¢ in e are in X

This rule involves the generation of a new particle. The new particle is
Local(nil,), e, nil);. Since controlled nodes can’t generate packets, | =
Eve, so §,lab & s'(1). But 4, lab & Local(nil, (), e, nil);. Moreover z" = 2’
and s” = s’ so the other invariants also hold.

Case

Local{a :: ch :: S, E,@ :: C, D)—Local{() :: S, E,C, D)y, Transit(a, ch),

This rule has two particles on the right hand side. There must be a
p’ € M’ such that p’ = Local{a :: ch :: S,E,@ :: C, D)y, and p”,p" € M"
such that p” = Local{() :: S, E, C, D)}, and p"’ = Transit{(a, ch)j. The two
subcases are:

o p eP.
Then by definition of P, p”,p"” € P. The DataState and Dictionary
do not change, so the other invariants are also satisfied.

o' ¢P.
Then 6, lab ¢ p’. By inspection of the rule, §,lab & p”,p"’. Again,
the other invariants are also satisfied.

Case
Local(v :: S, E,serv :: 0 :: C, D), s',t', 2/ — (o] (v, 1,8, ', 2, (S, E,C, D))

This rule involves application of a service. o € ¥ = {set, get, deliver}.
le](v,1, 8t 2, (S, E,C,D)) =p",s" t", 2". Let us examine the two sub-
cases:

o p eP.
Then o is either get or deliver.

—Ifo=get, 2/ =2 and 8" =¢'.

— If o = deliver, we must have [= Bob. Now, 2" = 2/, and 4, lab €
s"(1") only if 8, lab € s'(I") or I” = Bob, thus ¢, lab & s” (Eve).

Also, by definition of P, p” € P.
o' ¢P.

Then 6,lab € p’. Let us examine three subcases on o:

—If o =get, 2/ =2 and s = ¢'. Since 2/(1)(d’") # 6, lab for all
l € Loc and all ¢’ € Data, so 6, lab & p".

38

— If 0 = set, s” = s'. Since d,lab & p', 2"(1)(lab) = 2'(1)(lad) for
all [, and 2”(1)(8") # 9, lab for all | € Loc and all §’ € Data. By
inspection of the definition of set, d, lab & p”.

— If o = deliver, 2" = 2. Moreover, 4, lab & p’ and 0, lab & s'(Eve)
imply that §, lab & s” (Eve). Again, by inspection of the definition
of deliver, ¢, lab & p”.

O

A.5 Theorem 12

Again, we define the set of particles Pr, to be the set of particles arising during
the computation of the particle py, in the following way: let

P%/ = {pl ‘ {t757ZaZ7PL}—>*{f, S/,Z,E,p/}}

and
,P% = {pl | {t,s,2,%, pr}—"{t, s, 2, Eaplap”}}7
and let P, = P} U P3.

The evaluation of py will be similar to the evaluation in the last proof,
hence we don’t provide a detailed table here. The computation will involve
a series of Local(...) and Transit(...) particles, with the former evaluating on
each successive location [; in the labeled route, and the latter being one-hop
movements from one location in the route to the next.

We now prove the theorem. In the following, let Ks(s) = {l| ¢ € s(I)}, and
let Kup(s) = {1 | lab € s(I)}.

Proof of Theorem 12. Suppose {t,s,z, %, pr}—*M = {t',s', 2/, %, p1,...,pr}
Then all of the following must be true:

o Ks(s') C Con.
o Kiqp(s") C Con.

o 2/(1;)(lab) = z(I;)(lab) and 2'(1)(8") # lab,d for all [€ Loc and all ¢’ €
Data.

e For all p € M, one of the following must hold:

- pePr.
~ 6,.lab ¢ p.

We prove this by induction on the length of the computation {t, s, z, ¥, pp, } —*M.

Base Case: If the length of the computation is 0, then M = {t,s,2, %, pr}.
The results follow directly from the assumptions in this case.

39

Induction Step: Let the hypothesis be true for a computation of j steps.
Now, let us consider a computation involving j + 1 steps, and in particular look
at the last transition.

Let {t,s,2,%,pr}—*M'— M" where

M’ = {t/78/,zl>zyp117"°7p;n} and
M,, _ {t”, S”, Z”, Z,p/{, . 7p;:}_

We now need to verify that the induction hypothesis holds for each possible
transition rule used in the last transition. We will not describe every case here,
rather we will pick a representative set of rules. We thus examine five cases on
the last transition, and claim that all rules except four are similar to the first
case while the next four cases are special:

Case

Local(v :: S, E,ch :: 0 :: C, D)—Local{chunk(o,v, E) :: S, E,C, D)

Thus, there is some p’ € M’ and some p” € M" such that p’ = Local(v ::
S,E,ch :: ¢ :: C, D)y and p” = Local(chunk(c,v, E) :: S, E,C, D). Now
there are two subcases:

e p ePpL.
From the definition of Py, {t,s,z,%,pr}—"{t,s',2,%,p'}. Since
{t, s, 2,5, p'}—*{t, s, 2,5, p"}, we must have p” € Pp.

e ' ¢Pr.
From the induction hypothesis then ¢, lab € p’, and by an inspection
of the rule, ¢, lab & p".

In both subcases, this rule does not change either the DataState or the
Dictionary, thus 2" = 2’ and s” = s’ therefore the other invariants also
hold.

Case
Transit(a, ch);,t', s'—Transit(a, ch)y,t’, s”
where ch = chunk(z,v, E) or chunk(o,v, E)
and((n,l),i) = t'(1)(a)
e L/ASH "
womy) 8'(U7) if 1" ¢ Topology(n)
and (") = { sS(I"YU{d|d €vorde E} otherwise

This rule changes the DataState. Now, there must be some p’ € M’ and
some p”’ € M" such that p’ = Transit(a,ch); and p” = Transit(a, ch);-.
Notice that the rule does not change the Dictionary, hence 2" = 2/, satis-
fying the third invariant. Again, there are two subcases:

e pePr.
By definition of Pr,, I = I; for some 4, and a = (n;41,li+1,0). Since
l; € Topology(n;+1) and ¢’ is a shortest path routing table, ¢'(I)(a) =

40

a. Thus n = n;1 and I’ = [, 14, thus p” € Pr. Also Topology(n) C
Con. Consider some I"” ¢ Con. Since I” ¢ Topology(n), and 4, lab &
s ("), we must have §, lab & s” (1), so that K;s(s"), K;4p(s”) C Con.
o p &Pp.
Then 6, lab & p’, so §,lab € s”(I") only if 6 € s'(I"), but then " €
Con, so that Ks(s"), Kjap(s”) C Con. Also, by inspection of the rule,
d,lab & p”.
Case

s', X —local(nil, 0, e, nil);, s, &

where e obeys s'(1)

and all services o in e are in 3

This rule involves the generation of a new particle. The new particle is
Local(nil, §, e,nil);. Since controlled nodes can’t generate packets, | &
Con, so d,lab & s'(I). But then §,lab ¢ Local(nil,), e, nil);. Moreover
2" = 2" and s” = s’ so the other invariants also hold.

Case

Local{a :: ch :: S, E,@ :: C, D)p—Local{() :: S, E, C, D), Transit{a, ch),

This rule has two particles on the right hand side. There must be a
p’ € M’ such that p’ = Local{a :: ch :: S,E,@ :: C, D)y, and p",p"" € M"
such that p” = Local{() :: S, E, C, D)\, and p"’ = Transit{(a, ch)j. The two
subcases are:

e p €PpL.
Then by definition of Py, p”’,p"” € Pr. The DataState and Dictionary
do not change, so the other invariants are also satisfied.

e p ¢PrL.
Then 6, lab ¢ p’. By inspection of the rule, §,lab & p”,p". Again,
the other invariants are also satisfied.

Case

Local(v :: S, E,serv :: o :: C, D), s',t', 2/ — o] (v,1, 8,2, (S, E,C, D))

This rule involves application of a service. o € ¥ = {set, get, deliver}.
o] (v, 1, 8" ¢, 2", (S, E,C,D)) =p”,s",t", 2". Let us examine the two sub-
cases:

o p €Pp.
Then o is either get or deliver.

—Ifo=get, 2/ =2 and s = 5.

41

— If 0 = deliver, we must have [= I, so [€ Con. Now, 2" = 2/,
and 9§, lab € §”(I") only if §,lab € s'(I") or I” = lj, and thus
K(;(S//),Klab(S//) g Con.

Also, by definition of Pr, p”’ € Py.
e p' ¢ Pr.
Then 6, lab € p’. Let us examine three subcases on o:
— If o = get, 2’ = 2 and s = §'. Since 2/(1)(¢") # 6, lab for all
l € Loc and all ¢’ € Data, so 6, lab & p".
— If o = set, s = s'. Since §,lab ¢ p', 2" (1)(lab) = 2'(I)(lab) for

all [, and 2"”(1)(8") # 4, lab for all | € Loc and all §' € Data. By
inspection of the definition of set, ¢, lab & p”.

— If o = deliver, 2’/ = 2. Moreover, 4, lab & p’ and K;(s'), Kjap(s') C
Con imply that Ks(s"), Kjqp(s”) C Con. Again, by inspection of
the definition of deliver, ¢, lab € p”.

O

42

References

1]

Martin Abadi. Secrecy by typing in security protocols. In Theoreti-
cal Aspects of Computer Software, volume 1281 of LNCS, pages 611-638.
Springer, September 1997.

Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749-786, September 1999.

Martin Abadi. Security protocols and specifications. In Foundations of
Software Science and Computation Structures: Second International Con-
ference, FOSSACS 99, pages 1-13. Springer-Verlag, March 1999.

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols: The spi calculus. Information and Computation, 148(1):1-70, January
1999.

D. Scott Alexander, William A. Arbaugh, Angelos D. Keromyts, and
Jonathan M. Smith. A secure active network environment architecture:
Realization in SwitchWare. IEEE Network Magazine, 1998. To appear in
the special issue on Active and Controllable Networks.

D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M.
Smith. Active Bridging. In Proceedings, 1997 SIGCOMM Conference.
ACM, 1997.

Steven M. Bellovin. Using the domain name system for system break-ins.
In Proceedings of the Fifth USENIX UNIX Security Symposium, June 1995.

G. Berry and G. Boudol. The chemical abstract machine. In Proceedings
of the 17th Annual Symposium of Programming Languages, pages 81-94,
1990.

Gérard Berry and Gérard Boudol. The chemical abstract machine. Theo-
retical Computer Science, 96:217-248, 1992.

Dimitri P. Bertsekas and Robert Gallager. Data Networks. Prentice Hall,
1991.

Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal
verification of standards for distance vector routing protocols, February
2000.

Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Stefan
Covaci, editor, Proceedings of the First International Working Conference
on Active Networks, volume 1653 of Lecture Notes in Computer Science,
pages 307-314. Springer-Verlag, June 1999.

43

[13]

[15]

[16]

[17]

Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter,
and Scott Nettles. PLANet: An active internetwork. In Proceedings of the
FEighteenth IEEE Computer and Communication Society Infocom Confer-
ence, pages 1124-1133. IEEE Communication Society Press, March 1999.

Mike Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott
Nettles. PLAN: A packet language for active networks. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Pro-
gramming Languages, pages 86-93. ACM, 1998.

P. Landin. The mechanical evaluation of expressions. Comput. J., 6:308—
320, 1964.

P. Landin. An abstract machine for designers of computing languages. In
IFIP Congress, pages 438-439. North-Holland, 1965.

G. Malkin. RIP Version 2 Applicability Statement. IETF RFC 1722,
November 1994.

G. Malkin. RIP Version 2 Carrying Additional Information. IETF RFC
1723, November 1994.

J. Moy. OSPF version 2. RFC 1583, IETF, March 1994.

Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy, Hilarie K.
Orman, and Larry L. Peterson. Activating networks: A progress report.
IEEE Computer, 32(4):32-41, April 1999.

David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80-86, January 1997.

Bow-Yaw Wang, José Meseguer, and Carl A. Gunter. Specification and
formal verification of a PLAN algorithm in Maude. In Tenh Lai, editor,
Proceedings of the 2000 ICDCS Workshop on Distributed System Validation
and Verification, pages E:49-E:56. IEEE Computer Society, April 2000.

David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS: A
Toolkit for Building and Dynamically Deploying Network Protocols. In
IEEE OPENARCH, April 1998.

44

