
c© 2006 by Fariba Mahboobe Khan. All rights reserved.

USING ATTRIBUTE-BASED ACCESS CONTROL
TO ENABLE ATTRIBUTE-BASED MESSAGING

BY

FARIBA MAHBOOBE KHAN

B.S., Bangladesh University of Engineering and Technology, 2004

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

Abstract

Attribute Based Messaging (ABM) enables message senders to dynamically cre-

ate a list of recipients based on their attributes as inferred from an enterprise

database. Such targeted messaging can reduce unnecessary communications

and enhance privacy, but faces challenges in access control. In this work we

explore an approach to ABM based on deriving access control information from

the same attribute database exploited by the addressing scheme. We show how

to address three key challenges. First, we demonstrate a manageable access

control system based on attributes. Second we show how this can be used with

existing messaging systems to provide a practical deployment strategy. Third,

we show that such a system can be efficient enough to support ABM for mid-

size enterprise. Our implementation can dispatch ABM messages approved by

XACML review for an enterprise of at least 60,000 users with only seconds of

latency.

iii

To Father and Mother.

iv

Acknowledgments

This project would not have been possible without the support of many people.

Many thanks to my advisors, Carl Gunter and Himanshu Khurana who read my

numerous revisions and helped make some sense of the confusion. I would like to

thank Rakesh Bobba and Omid Fatemieh, whom I worked with on this project,

for all the help and support. This material is based upon work supported by the

Office of Naval Research under Award No. ONR N00014-04-1-0562. Thanks to

the University of Illinois for providing me with the financial means through Sara

and Shohaib Abbassi Fellowship to complete this project. And finally, thanks

to my husband, sister, parents, and numerous friends who endured this long

process with me, always offering support and love.

v

Table of Contents

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Related Work . 5
2.1 Access Control . 5

2.1.1 Models . 5
2.1.2 Languages . 7
2.1.3 Tools . 8

2.2 Secure Messaging . 9
2.2.1 PKI-Based Email Security 9
2.2.2 Role-Based Messaging . 9
2.2.3 Adaptive Messaging Policy 10

2.3 Enterprise Messaging . 10

3 ABM Design . 12
3.1 Approach for Practical Access Control 12
3.2 ABAC for ABM . 14
3.3 Architecture . 17

3.3.1 Policy Specialization (PS) Path 17
3.3.2 Messaging (MS) Path . 18
3.3.3 Address Resolution (AR) Path 18
3.3.4 Security Analysis . 19
3.3.5 Usecase Scenario . 19

4 Implementation and Evaluation 22
4.1 Implementation . 22

4.1.1 PDP . 22
4.1.2 Database . 22
4.1.3 ABM Server . 23

4.2 Test Bed . 23
4.3 Experimental Setup and Results 23

4.3.1 Policy Generation . 24
4.3.2 Database Population . 24
4.3.3 ABM Address Generation 25
4.3.4 Performance Measurements on the Address Resolution Path 26
4.3.5 Performance Measurements on the Policy Specialization

Path . 28
4.4 Analysis of Results . 28

4.4.1 Feasibility Without Access Control 28
4.4.2 Feasibility With Access Control. 29

vi

5 Discussion . 31
5.1 Policy Administration . 31
5.2 User Interface . 32

6 Conclusion . 33

A Sample Policy . 35

References . 37

Author’s Biography . 41

vii

List of Tables

4.1 Address Resolution Time. Number of attributes = 100; number
of policies = 568. 26

4.2 Address Resolution Time(Secure Channel). Number of attributes
= 100; number of policies = 568. 27

viii

List of Figures

3.1 ABM Architecture . 17

4.1 Policy Specialization Time . 28

A.1 Sample Policy . 36

ix

1 Introduction

In access control and policy management, the inherent flexibility and intuitive-

ness of attributes seem to be of much value and at the same time also offer

some challenges. In the project, Attribute Based Messaging (ABM) [BFK+06],

we explored attributes in two ways. First, we explore their flexibility for a more

targeted messaging system. Second, we use attribute based access control to

have fine-grained policies on user attributes and corresponding values.

Attribute-based systems are useful in practice because they are flexible, in-

tuitive, and highly deployable. A common example is attribute-based directory

searching where the attributes of an employee (e.g., department, location) are

used to find the employee. In this example the flexibility comes from the ability

to combine 〈attribute, value〉 pairs arbitrarily and intuitiveness comes from a

common understanding of employee attributes. In general, attribute-based sys-

tems are deployable because most attributes associated with an enterprise are

already present in various enterprise databases and assigned to enterprise users;

e.g., in LDAP directories for the example above. Other examples of attribute-

based systems include attribute-based authentication, access control, and trust

negotiation [LMW02, BS02, YWS03, WWJ04, DVS05].

An application that can benefit greatly from integration with an attribute-

based system is multi-party email messaging in an enterprise. Today, mailing

lists are used to provide such messaging and while they enable a single sender to

communicate with a large number of recipients, they also lead to email inboxes

filled with many messages that do not interest the recipient. This is often

caused by the fact that the recipient lists are overly broad. For example, if the

University of Illinois wishes to send an email to all of its faculty on sabbatical,

it is likely to do this by sending it to all faculty and including a body that

indicates that the message only applies to the ones on sabbatical. In principle,

1

it would be possible to use a database to find out who is on sabbatical and

use this to create a mailing list, but this may seem like a hassle given the

system staff time required to accomplish it. So it is much easier to spam a

large number of recipients just to reach the subset that actually need to see the

message. Technically spam is unsolicited commercial messages and spam filters

accomplish a very good job of detecting most of it. But enterprise emails sent

to large number of people, where they trust the sender and need to open and

read the email to realize that it is not related to their interest, can be argued

to be more distracting than spam.

ABM is the concept of allowing lists of messaging recipients to be formed dy-

namically by using an attribute-based recipient address. This approach brings

the flexibility of attributes in enabling the sender to send targeted messages,

which saves the recipient from receiving unwanted messages thereby enhances

message relevance and also enables the sender to send sensitive messages know-

ing that the messages would be delivered only to the intended recipients thereby

enhancing privacy. For example, faculty and students on a disciplinary com-

mittee can communicate with each with ensured privacy as the email can sent

only to members of that committee. Also faculty and staff on a collaborative

project with multiple sub-groups can discuss matters over email by being able

to target the actual group members who might be spread across campus. In

both of these examples users would not prefer to send the email to a broader

group of audience as the content of the email might be sensitive to broadcast.

The approach also brings the intuitiveness of attributes as enterprise users

typically understand the attributes associated with the users of their enterprise.

So the user is in his natural domain when composing a massage with an ad-

dress consisting of a query that returns the email addresses of the faculty on

sabbatical. This also would save about 6 out of every 7 professors the hassle

of deleting a message that does not apply to them. Furthermore, this concept

can be applied to any collection of attributes that are available in an enterprise

database to which the mailing mechanism can be linked. For instance, it might

be possible to send a message to all of the female CS graduate students who

have passed their qualifying exams to tell them about a fellowship opportunity

2

that has these requirements. ABM holds the opportunity to be make more effi-

cient use of recipient time than broadcast messages or even specialized bulletin

boards or web pages.

Practical ABM raises some interesting challenges, however. To identify these

challenges we first consider a possible ABM development and deployment path.

An initial step would be the collection of enterprise attributes and their assign-

ment to users in a database, or perhaps, a single view of such user-attribute

assignments from a collection of databases as offered by a data services layer.

The next step would be to set up an ABM server and associate it with a do-

main Mail Transfer Agent (MTA) for compatibility with current SMTP systems

much like the mailing list servers of today. This ABM server would be respon-

sible for resolving attribute-based messages to a list of email addresses from

the database(s). The next step would be to provide an interface to clients to

compose and send messages to attribute-based addresses (ABM addresses). It

is at this step that we find the interesting challenges of ABM, which primarily

have to do with the security and privacy of deployed ABM systems.

First, there is the challenge of finding a manageable way to deal with access

control. If anybody can send a message based on any set of attributes, this

may increase rather than decrease the number of unwanted communications.

It also entails some privacy issues. For instance: who, if anyone, is allowed to

send an email message to faculty that make a salary of more than $150,000? If

these concerns make it too difficult for an organization to decide on a policy for

access to ABM, then ABM will not be useful. Second, there is the challenge

of finding a plausible deployment avenue for ABM that allows the clients to

send and receive attribute-based messages with restricted access policies via the

enterprise messaging system. If each Mail User Agent (MUA) client or enterprise

MTA must be modified to incorporate ABM, then this will be too expensive for

deployment in the foreseeable future. Third, there is the challenge of making

the system usable. The regular user should not feel intimidated by the system.

The integration of ABM to current email should be in such a way that user

observes minimum increase in effort. Forth, there is the problem of making

ABM sufficiently efficient. Since each message address entails an access control

3

decision and dynamically forming a set of recipients, there is a serious question

about whether users will loose patience or MTAs will be overwhelmed.

In this work we address these four security and privacy challenges by em-

ploying an Attribute-Based Access Control (ABAC) approach integrated into

an architecture focused on deployability and usability. We then implement a

prototype and conduct experiments that demonstrate the efficiency of our solu-

tion. This work is described in the following six chapters. In the second chapter

we outline related work on access control and targeted messaging. In the third

chapter we outline our approach for a practical access control system, discuss

how the ABAC approach is suitable for ABM and finally describe our architec-

ture for ABM using ABAC and eXtensible Access Control Markup Language

(XACML) with off-the-shelf email MUAs and MTAs. In the forth chapter we

describe our implementation and look at measures of its performance for various

types of policies. In the final two chapters we discuss about different aspects

of ABM and make conclusions, including limitations of our current work and

possible future work.

4

2 Related Work

ABM covers different sub areas within security. We discuss three of areas of

related work: access control, secure messaging and Enterprise messaging.

2.1 Access Control

We discuss access control models, languages and tools in this section.

2.1.1 Models

Access Control List

Access Control Lists (ACL) associated with an objects are lists of users and

groups of users and their access permissions for that object that define how

they can access that object. ACLs would not be a good policy model for ABM

since the creation and management of such lists for a potentially large number

of attributes (resources and users) would be unwieldy. ABM would require a

policy set that defines the access control for each user attribute with n users

and m attributes per user. This leads to an O(mn) sized matrix. Clearly, this

makes ABM with ACLs very hard to manage and less adaptable.

Role-Based Access Control

Role-Based Access Control (RBAC) [FK92, San98, SCFY96] was introduced as

an alternative to Mandatory Access Control (MAC) and Discretionary Access

Control (DAC). RBAC was motivated by the hierarchical job or role structure

within organizations where permissions are essentially part of the role rather

than the person assigned to that role. When a person is assigned to a dif-

ferent role his access permissions change accordingly. RBAC manages access

by maintaining user-to-role and role-to-permission mappings. This way RBAC

5

has fewer relationships to maintain compared to user-object-permission tables

in ACL. RBAC can model much more complex access policies than traditional

ACLs.

Basic RBAC defines sessions where users are assigned roles and the roles

are assigned specific permissions for that session. This mapping could vary in

a different session. For example, in an organization after office hour roles and

permissions would be much more restricted than those during office hour.

RBAC is very expressive and at the same time a very costly and admin-

istratively demanding system. RBAC can have constraints that make it very

flexible. For example, a user cannot have any other role assigned when he has

the role president. Also time related constraints such as a user can be assigned

role office staff from 8 a.m. to 5 p.m. only. Support for these constraints add

up to cost of realizing a RBAC system. Thus if used for ABM RBAC could be

a potential bottleneck for performance.

Attribute-Based Access Control

In Attribute-Based Access Control (ABAC) access to service or resource is

granted based on rules applied on attributes of the requester. ABAC has recently

proven to be successful in access control for distributed systems [BS00, BS02,

DVS05, LMW02, WWJ04, YMW00, YWS01, YWS03]. ABAC has the strength

of modeling RBAC-like access with less management complexity [YT05]. As

discussed earlier, RBAC has to maintain user-to-role and role-to-permission

mappings. ABAC manages attribute-to-permission mappings only. Attributes

are application specific in ABAC. The system doesn’t need to depend on prede-

fined set of roles or try to define role in an environment where it is not feasible,

(idsynch.com/docs/beyond-roles.html).

Defining ABAC for our ABM system, a message sender is granted the per-

mission to send messages to a set of recipients with a collection of attributes

based on his own collection of attributes. This approach has two advantages in

terms of manageability. First, since the ABM systems extracts attributes from

enterprise databases for addressing purposes, using ABAC allows us to derive

access control information from the same databases. Second, like Role Based

6

Access Control (RBAC) [FKR03], ABAC simplifies assignment and revocation

of permissions. However, since ABAC uses attributes directly it avoids the need

to set up and manage a role administration system that is needed for RBAC.

2.1.2 Languages

KeyNote

KeyNote [BFK99, BIK00] is a framework as well as a language to build trust-

management systems. Trust management unifies the notions of security policy,

credentials, access control, and authorization. KeyNote Toolkit (cis.upenn.

edu/~keynote/Code/keynote.tar) is C language open source reference imple-

mentation of KeyNote. KeyNote has been used to develop a secure distributed

file system [MPI+03] and the OpenBSD’s IPsec stack [BIK02]. Apache-SSL can

also be configured to use KeyNote.

RT

RT [LMW02, LM03b] is a role-based trust-management framework. It provides

a policy language, semantics, deduction engine and strongly typed credentials

through vocabulary agreement. RT uses Constraint Datalog [LM03a], which

is expressive and also preserves the properties of Datalog. RT started as

collaboration with and ABAC project at Network Associates Laboratories about

credential-based trust negotiation and was used as the policy language for the

project [WL02b, WL02a]. There is a basic implementation of RT written in

Java used in this project.

XACML

XACML [LPL+03, God03] is an industry-standard XML access control markup

language. It provides the language for administrators to define access control

requirements specifically for their applications and resources in terms of policies

in XML. XACML is not access control model-specific, but it is flexible enough

to support most models and extensible enough to accommodate new models.

OASIS Open E-business Standards (www.oasis-open.org) supports and main-

tains XACML. The current standard XACML 2.0 has specific language support

7

for RBAC, SAML and XML digital signaturea. XACML has both a Java and

a C# implementation for their policy engine.

There are several advantages of XACML over KeyNote and RT for our prac-

tical demonstration in ABM. First, XACML lends itself very well for ABAC

policy specification as the framework supports attributes. Second, the XACML

standard has widespread support from industry and standards bodies and this

may support adoption. Third, its successful integration in several commercial

products [And05] as well as research projects [LPL+03] indicates the confidence

in its deployability and effectiveness. And finally XACML is platform indepen-

dent and easily integrated in heterogeneous systems.

2.1.3 Tools

XACML.NET

XACML.NET (mvpos.sourceforge.net) is an XACML implementation in C#

for .NET community licensed under Mozilla Public License (MPL) 1.1. It pro-

vides almost full support for XACML v1.0 and has started providing support

for some features in XACML v1.1. Implementation on XACML.NET v2.0 is

also going on. The implementation, however, lacks extensive documentation

and support.

Sun’s XACML Implementation

Sun’s XACML implementation (sunxacml.sourceforge.net) is an open source

implementation of XACML standard writhen in Java. It provides complete sup-

port for XACML 1.2 and work on XACML 2.0 is on progress. The development

team closely reviews and updates any changes required to the implementation.

It has several policy decision engine modules of varying complexity. It has

tools for creating XACML policy-sets and requests pertaining to the standard.

Tools for authoring, debugging and visualization are under development.It has

an active online blog for support and bug tracking.

8

Margrave

Margrave is (cs.brown.edu/research/plt/software/margrave) a PLT Scheme

API for use in analyzing access-control policies written in a subset of XACML.

Margrave parses an XACML policy and answers questions regarding the permis-

sions allowed by that policy. It can also compare two policies and mark down

the dissimilarity between them [GMMT05, FKMT05]. As a tool Margrave has

been proved to be sound and complete [GMMT05] but it does not verify cor-

rectness of XACML syntax. It answers questions such as,

Can full-time faculty send email to department chairs?

Do all changes between policy1 and policy2 include

email permissions to committee chairs?

Margrave can be used by ABM administrators for XACML verification and

policy analysis.

2.2 Secure Messaging

2.2.1 PKI-Based Email Security

Public-key based email security solutions such as PGP (Pretty Good Privacy)

[Zim95] and S/MIME (Secure/Multipurpose Internet Mail Extensions) (ietf.

org/html.charters/smime-charter.html) provide end-to-end messaging se-

curity in terms of confidentiality, integrity and authentication. Secure Email

List Services (SELS) [KSB05] provides the same for emails through listservs.

ABM, on the other hand, focuses towards a different direction. It concentrates

on policy-based dynamic lists and access control over such lists.

2.2.2 Role-Based Messaging

Secure role-based messaging uses RBAC for authorizing access to sensitive email

content [CLZ04, MBH03]. In this area [CLZ04] allow users to send messages to

a given role identified by a special email address. Users that are assigned to that

role can then provide their role membership credentials and access the email.

9

Using a slightly different approach [MBH03] employs Identity Based Encryption

(IBE) for encrypting messages to recipients; i.e., recipient must authenticate

themselves to a role administration system and obtain the email decryption

keys. These two approaches differ from ABM access control by focusing on the

access control rules for recipients, whereas we focused on access control rules for

senders. Of course, they also differ in the use of roles rather than attributes as

a foundation for policies.

2.2.3 Adaptive Messaging Policy

The Adaptive Messaging Policy (AMPol) project, of which this paper is a part,

has considered some technologies related to ABM. WSEmail is the idea of build-

ing messaging systems over a web services foundation. A prototype [LMBG05] of

such a system demonstrated messages that could be routed with addresses that

are determined dynamically as the message passes through WSEmail MTAs.

However, this system does not decide on recipients based on their attributes.

A WSEmail-based design [AZHG06] shows how to adapt to recipient policies

as part of messaging, but this design does not deal with multiple recipients.

Other details on AMPol, including a demonstration of our ABM system, can be

found on the AMPol web site (seclab.cs.uiuc.edu/ampol). Though ABM and

WSEmail both concentrate on adaptive messaging, WSEmail redefines email

architecture for more flexibility and ABM focuses on building on existing archi-

tecture for further usability.

2.3 Enterprise Messaging

Perhaps the most similar technology to ABM arises in Customer Relationship

Management (CRM) systems. CRMs help enterprise to target customers by

isolating specific buying patterns and using this to customize the communication

with them. The key difference between CRMs and ABM is that in CRMs

the communication is from the enterprise to the customer group and so there

is no need for access control. Where as in ABM messages are sent by users

to other users after access is determined by the attributes of the sender. In

10

other words, CRM generally uses a monolithic permission given to the owner of

the system, whereas ABM provides diverse permissions to a broad user group.

Traditional list servers also provide a way to send email messages to a certain

group of people. One can imagine driving membership in lists from a database of

attributes to provide a form of ABM. For example, SendMail (a popular MTA)

can be integrated with LDAP but it lacks a mechanism to control the use of such

mailing lists. A key difference between ABM and list servers is the fact that

ABM has the potential to route on involuntary attributes of recipients rather

than relying solely or mainly on voluntary subscriptions. A good potential use

of ABM is to provide a way for users to subscribe to lists automatically and

voluntarily by collecting a user profile of interests.

11

3 ABM Design

3.1 Approach for Practical Access Control

An attribute-based messaging system comprises an enterprise attribute database

that provides user to attribute mapping functionality, a query language and com-

position mechanism that enables senders to compose ABM addresses, a bridging

mechanism that connects the ABM system with the enterprise messaging sys-

tem, an ABM server that provides service to all enterprise users and related

components, and the access control component. The access control component

is needed to ensure that the sender is authorized to send the message to the set

of recipients represented by their collective attributes in the composed address.

The absence of access control would allow senders free and easy access to all

enterprise users’ email inboxes and would also violate the privacy of user at-

tributes. Note that this privacy is currently enforced in enterprise databases by

allowing only authorized administrators access to them. When attributes are

made available to users in the ABM system, it is essential that the privacy of

the attributes be enforced via appropriate access control. To do so, the access

control system would comprise a policy language that enables administrators to

specify policies, a policy engine that acts as the Policy Decision Point (PDP)

by evaluating specified policies against a given access request, and a Policy En-

forcement Point (PEP) that enforces the decision. In the ABM system the ABM

server acts as the PEP. As identified in the Introduction, practical access control

for ABM involves addressing the challenges of manageability, deployability, and

efficiency.

In order for the access control system to be manageable it must use access

control techniques that specify an efficient mapping of permissions to services

(i.e., the ability to send messages to a set of recipient with a given collection of

12

attributes). As discussed, to address this we turn to ABAC, which has recently

proven to be successful in access control for distributed systems [BS02, DVS05,

LMW02, WWJ04, YWS03].

For server-side deployability on a variety of messaging environments the ac-

cess control system must employ a usable, standardized policy language and

a standards-based implementation of a policy engine. To address this our ar-

chitecture and prototype are based on XACML [God03] and Sun’s standards-

compliant implementation of its policy engine (sunxacml.sourceforge.net) as

discussed in Chapter 2.

For client-side deployability the access control system must enable the sender

to compose an attribute-based message that complies with the access policy

using almost any existing MUA. To address this we use policy specialization

techniques where the sender logs into a web server to compose an ABM address

using only those attributes that he is allowed to route on; i.e., the composition

of an ABM address is limited to attributes based on the access policy for the

sender. This ABM address is returned to the sender in a file that he can then

attach to his message, which is addressed to a pre-specified email address of the

ABM server. Furthermore, the ABM address is integrity-protected and securely

bound to the sender’s email account so that it cannot be spoofed or replayed.

This approach also provides email semantics that users are familiar with in that

once they compose and send a message they expect the message to be delivered.

Other approaches for addressing this challenge can also be envisioned; e.g., the

development of MUA plug-ins that can access enterprise attributes and under-

stand and enforce access policies. However, a major advantage of our approach

of setting up a web server is that we avoid the need for developing multiple plug-

ins for different MUAs as well as requiring installation of additional software on

the client side. Also web-based email client can incorporate all these features

in easy-to-use web-based tools. It is more challenging to make to incorporate

ABM in day-to-day email clients.

The efficiency of the access control system can only be gauged via prototype

implementation and experimentation. With an eye towards rapid prototyp-

ing and performance we have employed several commercial of-the-shelf compo-

13

nents that are well-implemented and standards-compliant including, for exam-

ple, Sun’s XACML policy engine. In our implemented solution a a user accesses

a web page to create an ABM address that further makes a request; our policy

engine specializes the organizational policy to this user, indicating the attributes

that the user can use for routing. The user then forms the desired attributes

into an address, which is represented using a query language. This query is

added to a message as an attachment and sent to a distinguished ABM address

at an MTA using the user’s standard MUA. The ABM system collects the email

from this distinguished inbox and dynamically creates a distribution-list using

the attached query and the enterprise attribute database. With an enterprise

of 60,000 principles using its existing enterprise database or an XML database

view of it, we are able to show that both the XACML decision procedure and

the dynamic list creation can be one within seconds in typical cases, and will

still have satisfactory performance for emerging XML database representations

that integrate heterogeneous enterprise databases.

3.2 ABAC for ABM

In this section we describe how ABAC is employed to provide manageable access

control for ABM. All enterprises have attribute data about their users in their

databases. For example, a university might have the following attribute data

on a user represented as 〈attribute, value〉 pairs:

UserID: user089

Position: Faculty

Designation: Professor

Department: Computer Science

Courses Teaching: CS219, CS 486

Date of Join: 06/24/1988

Annual Salary: $80,000

. . .

14

This information may not all be available in one centralized database but,

instead, might be distributed over multiple databases that are managed by dif-

ferent units of the University. Our ABM system makes use of this information,

present in an enterprise’s collective databases, abstracted as user attributes to

dynamically create recipient lists. To have this attribute information available

to the ABM system we envision the use of a data services layer (dubbed in-

formation fabric by Forrester Research [YGHS06]) that exemplifies the Service

Oriented Architecture (SOA) approach [BSJ+05] and presents a view of the

attribute data after extracting it from the disparate databases.

To send an attribute based message to a group of recipients a user needs to

specify the attributes in a logical expression. For example the expression ((po-

sition=faculty) and (salary>$150000)) defines a group that constitute faculty

who make a salary of more than $150, 000. This expression is referred to as

an ABM address and, in practice, can be specified using the language of the

database (e.g. SQL) or via a commonly used query language that can be ex-

ecuted on a variety of database technologies (e.g. XQuery (www.w3.org/XML/

Query/)).

A user is permitted to send a message to a given ABM address based on

his/her attributes. For example, only a user who has the 〈attribute, value〉

pair 〈position = faculty〉 or the pairs 〈position = staff〉 and 〈designation =

coordinator〉 (i.e., only faculty or coordinators), might be allowed to send mes-

sages to the ABM address (position = faculty) (i.e., all faculty). We specify

access policies as well as ABM addresses in disjunctive normal form to make

them flexible and intuitive. Specifically, access policies take the following form:

cond ⇒ 〈attribute,(value)〉;

i.e., if the condition cond is satisfied then

“access” is granted to 〈(attribute, value), 〉

where:

(value) is a set of discrete or enumerated values (valuei, valuej , . . . , valuen),

cond = (Term1) or (Term2) or . . . (Termn),

Termi = (literal1) and (literal2) and . . . (literalm),

15

literalj = (attribute <arg> value), and

arg is one of =, <, >,≤ or ≥.

Therefore, we argue that the access rules can express a variety of policies

and, similarly, an ABM address can specify almost any arbitrary group based

on attributes. ABAC policies in ABM have similarities and differences with

those of more traditional enterprise services; e.g., file access or web services

[YT05]. They are similar in that just like attributes may be mapped to file access

permissions in file systems, they would be mapped to the routable attribute. So,

the ABAC policy for the above example would grant “access” to the 〈attribute,

value 〉 pair 〈position = faculty〉 if the following expression of 〈attribute, value〉

pairs is satisfied: 〈position = faculty〉 or 〈position = staff〉 and 〈designation =

coordinator〉.

They are different because unlike files one can envision granting access to

an ABM addresses that combine various attributes in a logical expression. The

equivalent notion in file systems would be to have a policy that grants access

specifically to text that is common to two given files, which is a level of gran-

ularity not seen in practice. Clearly, even in ABM specifying a unique access

policy for every possible ABM address is not practical. To address this issue, we

take a simplifying, pragmatic approach: a user is allowed to send messages to

any combination (using logical and and logical or operands) of 〈attribute,value〉

pairs if she can send messages to those pairs individually. This turns out to be a

reasonable approach because instead of choosing the or operand the sender can

easily send out multiple emails to achieve the same effect and when the sender

chooses the and operand she only ends up targeting his email to a narrower

set of recipients than she is allowed to. Therefore, at most one access policy is

required for each 〈attribute,value〉 pair. In practice, there are various ways to

reduce the number of policies, some of which are explored in Chapter 5.

16

Figure 3.1: ABM Architecture

M
S

2

PDP

Client

Attribute
DB

Policy
xml

ABM ServerWeb Server

MTA

P
S

1

P
S

8

PS2

AR2

AR1

A
R

3

P
S

6
P

S
5 P
S

4
P

S
3

PS7

A
R

4

MS1

Legend

Policy Specialization
(PS) Path:
1. Authenticate User
2. User Info.(ID)
3. User Info.(ID)
4. User Attributes
5. User ID and

Attributes
6. Routable Attributes
7. Routable Attributes
8. ABM address

Messaging (MS) Path:

1. Send and receive
(ABM) messages
(SMTP)

2. Notify ABM Host
and Send resolved
messages

Address Resolution
(AR) Path:
1. User ID, Attributes

and ABM Address
2. Authorization

decision
3. ABM Address
4. Resolved list of

Addresses

3.3 Architecture

Figure 3.1 illustrates the architecture of our ABM system and its associated

access control system, which strongly influences the overall structure. The ABM

system comprises a web server to help users compose policy compliant ABM

addresses, a PDP along with the access policy, an attribute database, and an

ABM server associated with an enterprise MTA that resolves ABM addresses to

recipient lists and mediates other components. The message flows in our system

can be classified into three functional classes, viz., Policy Specialization Path,

Messaging Path and Address Resolution Path. We now describe these flows in

detail.

3.3.1 Policy Specialization (PS) Path

This path refers to the message flow in the system when a user logs into the

web server to compose policy compliant ABM addresses. These messages are

represented by dashed lines in Figure 3.1. In step one the user authenticates

herself to the web server. In step two the web server sends the user’s information

17

to the ABM server and requests for a specialized policy for the user. In steps

three and four the ABM server retrieves user’s attributes from the attribute

database. In step five the ABM server sends the user’s attributes to the PDP and

requests a specialized policy. The PDP then evaluates all the policies in a policy

file against the user’s attributes and returns the specialized policy, viz., a list of

〈attribute, value〉 pairs that the user can route on. The ABM server then returns

the specialized policy to the web server in step seven. The user then composes

an ABM address and downloads it in step eight. ABM addresses created using

the web interface include user’s e-mail id, are time-stamped, and are integrity

protected using a SHA-1 Hash MAC. Messages using freshly composed ABM

addresses aren’t subject to an access policy check at the ABM Server, in order

to reduce the burden on the PDP (e.g., within 24 hours; note that extent of

freshness is a system parameter and should be based on the dynamic nature of

policy and user attributes).

3.3.2 Messaging (MS) Path

This path is represented by solid lines in Figure 3.1. Users send ABM mes-

sages using any standard MUA 1 to a pre-specified e-mail address such as

abm@localdomain.com, with the ABM address included in the message as an

attachment. The enterprise MTA is configured to notify the ABM Server when

it receives a message for the pre-specified address. The ABM server after pro-

cessing the message invokes the enterprise MTA to deliver the message to a list

of recipients as specified by the ABM address.

3.3.3 Address Resolution (AR) Path

This path refers to the message processing by the ABM server and is repre-

sented by dotted lines in Figure 3.1. The ABM Server, on receiving the (e-mail)

message, verifes the Hash MAC on the ABM address, verfies that the from ad-

dress in the message is same as the email id included in the ABM address, and

queries the attribute database for the sender’s attributes. In step one, the ABM

server checks with the PDP that the sender is authorized to send the message
1ABM system can easily be integrated with web-based e-mail but for generality we assume

the presence of an email client like Outlook.

18

to the ABM address included in the message. In step two, the PDP evaluates

the policies for accessing the attributes contained in the ABM address against

the sender’s attributes and responds in the affirmative only if the user is allowed

access to all attributes in the ABM address. The ABM Server then resolves the

ABM address to a list of e-mail addresses by querying the attribute database in

steps three and four. It then forwards the message to each member in the list

via the enterprise MTA.

3.3.4 Security Analysis

Analyzing the proposed architecture, one can see that the ABM system as de-

scribed above is open to replay attacks. A malicious user can steal an ABM

address, composed by a legitimate user in step PS8, either on the network or

from the user’s machine and use it to route messages. This attack would be suc-

cessful, even though ABM addresses are integrity protected with a Hash MAC,

because the adversary can spoof the legitimate user’s email id. So when the

ABM server receives the adversary’s e-mail message it believes that the sender

of the message is the legitimate user (who composed the ABM address used

by the adversary). Hence, there is a need for the underlying messaging system

to provide the ABM server with an authenticated email id of the sender. To-

ward that end we need to do the following: (1) have the enterprise MTA invoke

the ABM server only for messages originating inside the enterprise, (2) require

SMTP authentication at the enterprise MTA, and (3) ensure that the user id

used in SMTP authentication and from address of the message being sent are

the same. Step one ensures that only enterprise users can use the ABM system

and can be achieved using mail filters. Steps two and three ensure that the

from address in the received e-mail message is authentic. Popular MTAs like

SendMail support SMTP authentication and step three can be achieved using

mail filters.

3.3.5 Usecase Scenario

We now provide a usecase scenario for ABM. Lets assume a Professor Carlson in

University of Illinois gets to know about a fellowship opportunity by Megasoft

19

for graduate students in computer science. The fellowship has some require-

ments for the students to be eligible to apply for it. The fellowship is for female

graduate students who have passed their PhD qualifiers but are yet to take their

preliminary exam. The department maintains a list of graduate students. But

there is no such list that could target the audience of the Megasoft fellowship.

University of Illinois has 40,000 students, 10,000 of them are graduate student

and 500 of them are in computer science. The number of emails each day a

graduate student gets related to course-work, academic deadlines, thesis dead-

lines, seminars, fellowship and job opportunities can range from 10 to 20. Not

all of these are of interest for all the students. In this scenario Prof Carlson can

use ABM to target this message better so that only concerned students receive

it.

First, he logs on into ABM web-client using his userid and password. If

this is his first log-in in days, the policy specialization path is completed. Prof.

Carlson’s user information is sent to the ABM server and the ABM server gets

his attributes from the database. His attributes will have information such as,

full-time faculty who is in position Professor, courses he is teaching (CS431,

CS591), and committees he is on (graduate admission, fellowship). PDP will

then check his access based on his attributes and a specialized policy for him

will be returned eventually to the client application. The specialized policy will

have information on attributes and values he can route on, e.g., he can route

on attribute course on values CS431 and CS591 only, he can route on attribute

gender of students on any value. If Prof Carlson used ABM recently and cached

his specialized policy (which has not yet expired) he can use that. Prof. Carlson

now composes an ABM address that specifies female, post-qualifier, pre-prelim,

computer science, graduate students as receivers. It has his email id (carlson@

uiuc.edu) and is time-stamped. He archives this ABM address in his computer.

Prof Carlson now opens his email client (e.g., Eudora), composes the body

of the email, attaches the saved ABM address and sends it to (abm@uiuc.edu).

University of Illinois MTA sends the email to ABM server.

ABM server, on receipt of the email, downloads the ABM address and upon

verifying its freshness and Prof. Carlson’s permissions through PDP to send

20

such message, queries the database for email address of such users and gets

15 email addresses. The email is sent to these students through the enterprise

MTA.

21

4 Implementation and
Evaluation

To test that the architectural framework presented in Section 3.3 satisfies the

manageability, deployability, and efficiency requirements for ABM, we imple-

mented a prototype ABM system. We used this prototype implementation as a

test bed for experimental evaluation. This section provides details on the pro-

totype implementation, experimental setup, and performance results with the

aim to show that ABM can satisfy the above-mentioned requirements.

4.1 Implementation

We had to make a number of decisions on the technologies and programming

languages to use for the major components of our proposed architecture. These

decisions, and the reasoning behind them are briefly discussed in this section.

4.1.1 PDP

As it was described in Section 3.1, we chose to use XACML and Sun’s standards-

compliant implementation of its policy engine for our implementation. An

XACML policy file is stored in conjunction with the PDP. This policy file con-

tains the policies for sending messages based on each 〈attribute, value〉 pair.

Our current implementation supports numeric and enumerated attributes.

4.1.2 Database

Our system has been implemented using two different database representations,

relational and native XML. We included an XML database representation in

our evaluation as we envision data abstracted from heterogeneous enterprise

databases to be in XML format. The queries submitted to the XML database

are XQueries, and the queries for the relational database are expressed in SQL.

22

We had to chose a database management system with support for XML and

XQuery as well as SQL. We used the recently released community technology

preview release of Microsoft SQL Server 2005 (Standard Edition), which pro-

vides support for all the above mentioned data models and query languages.

4.1.3 ABM Server

The ABM server is associated with an enterprise MTA. The ABM Server gets

automatically invoked when the MTA receives an ABM message targeted for

the inbox associated with the ABM Server. This enabled us to use our domain

MTA without any modification. We used C# to implement the ABM Server,

and used the University of Illinois MTA as the enterprise MTA.

4.2 Test Bed

Studying the components in our system in Figure 3.1, we anticipated that the

two major resource consuming components of our system would be the database

and the PDP. Based on this assumption, we decided to place them on different

machines on the network. Our prototype runs on windows client and server

machines. The database was running on a Windows 2003 Server with dual Intel

Xeon 3.2GHz processors and 1 GB of memory. PDP, Web server and ABM

Server were cloned on two client machine. One is a 2.4 GHz Pentium 4 with

1GB of memory with Windows XP Pro operating system. The other one is a 2.8

GHz Pentium 4 with 1GB of memory with Windows XP Pro operating system

connecting to the server through secure channel.

4.3 Experimental Setup and Results

The goals of our experiments were to evaluate the performance of our ABM

system both with and without access control. These goals enabled us to demon-

strate the feasibility of the system as well as determine the additional costs

imposed by the access control component. To evaluate the performance with

access control we needed to study the performance on the three paths described

in Figure 3.1, namely, policy specialization, messaging, and address resolution.

23

To evaluate the performance without access control we needed to study the per-

formance on messaging path and address resolution path but without the au-

thorization check. However, since we are using the University of Illinois MTA,

the performance on the messaging path is not part of the evaluation of our sys-

tem, because the University of Illinois MTA will add the same latency to our

messages as it would add to any regular email.

To carry out the evaluation we needed to vary three experimental compo-

nents: (1) the complexity and number of access policies, (2) the number of users

and their assignment to a varying number of attributes in the database, and (3)

and the complexity of ABM addresses.

4.3.1 Policy Generation

The complexity and number of the access policies affects the time frame of the

policy specialization path and the authorization check on the address resolution

path. We wrote a probabilistic XACML policy generator using Java, which cre-

ated uniformly random policies of varying complexity by varying the number

of terms and literals in the conditional clause of each policy (please refer to

Section 3.2 for definitions). Specifically, the number of terms and number of

literals in each term were uniformly drawn between one and five, creating rel-

atively simple to reasonably complex policies. The number of policies depend

on the number of 〈attribute,value〉 pairs and we varied the number of attributes

between 25 and 125 with an average of 5 values (or value ranges) per attribute

for resulting policies ranging from 143 to 674.

4.3.2 Database Population

The distribution of attributes in the user population affects the number of recip-

ients a given ABM address resolves to, which, in turn, affects the time frame of

the address resolution path. Users were assigned an attribute based on the inci-

dence probability of that attribute. For example, if an attribute has an incidence

probability of 0.1 then 10% of the user population is assigned that attribute.

For our test database, most of the attributes (80%), had a probability of inci-

dence that ranged from 0.01 to 0.0001, 10% had a probability of incidence that

24

was between 0.5 and 0.9 and the remaining 10% had the probability close to 1.

This distribution allowed a big range in the number of recipients per message,

and, intuitively, this distribution also reflects organizations where all the users

have some common attributes and rest of the attributes are sparsely distributed

in the population. The schema below illustrates the way user’s attributes data

was stored in the relational database.

Relational Database Schema (assuming X variables in the system):

[userid] Primary Key, nvarchar (20)

[passwd] nvarchar (40)

[attr0] int

[attr1] nvarchar(128)

. . .

[attrX] int

For storing data in the native XML format we created a relational table, which

consists of three columns. The third column contains the attribute information

stored in XML format. The following schema illustrates this better.

[userid] Primary Key, nvarchar (20)

[passwd] nvarchar (40)

[attributes] XML(AttributeSchema)

AtributeSchema associates an XML Schema (www.w3.org/XML/Schema) with

the XML values in that column.

4.3.3 ABM Address Generation

The complexity of an ABM address affects the performance on the address

resolution path by affecting both the number of recipients it resolves to and the

database query resolution time. Similar to our approach for policy generation

we varied the number of terms for a given address query between one and five

25

Relational Database
DB Size Avg. Address Resolution Time
(No. of List Mean 95% Conf. Interval (ms)
Users) Size With Without

Access Control Access Control
60K 422 (167, 322) (83, 244)
45K 302 (134, 294) (65, 206)
30K 220 (117, 179) (61, 116)
15K 145 (115, 147) (50, 72)

XML Database
DB Size Avg. Address Resolution Time
(No. of List Mean 95% Conf. Interval (ms)
Users) Size With Without

Access Control Access Control
60K 745 (4682, 6062) (4628, 5970)
45K 472 (3969, 4711) (3599, 4436)
30K 317 (2640, 3217) (2581, 3151)
15K 171 (2341, 2857) (2067, 2624)

Table 4.1: Address Resolution Time. Number of attributes = 100; number of
policies = 568.

(chosen randomly) and the number of literals in each term between one and

three (also chosen randomly). Each literal was randomly assigned an attribute

from the routable list of attributes of the message sender. The same set of

ABM addresses were used to evaluate the system both with and without access

control.

4.3.4 Performance Measurements on the Address

Resolution Path

The performance on this path is translated to the latency between the time an

ABM message is received by the ABM Server until the time the message is sent

out to the MTA for distribution.

For the case with access control this latency includes the time for: (1) check-

ing the integrity of the ABM address via HMAC verification (2) consulting the

PDP for authorization (in our experiments we do an authorization check on all

messages irrespective of the freshness of the composed ABM address) (3) retriev-

ing the list of the recipients specified by the ABM address from the database,

and (4) re-composing the message with the list of recipients. For the case with-

out access control only the third and fourth latency components were included.

26

Relational Database
DB Size Avg. Address Resolution Time
(No. of List Mean 95% Conf. Interval (ms)
Users) Size With Without

Access Control Access Control
60K 351 (180, 359) (97, 237)
45K 296 (153, 395) (82, 263)
30K 168 (137, 277) (64, 136)
15K 77 (90, 126) (32, 46)

XML Database
DB Size Avg. Address Resolution Time
(No. of List Mean 95% Conf. Interval (ms)
Users) Size With Without

Access Control Access Control
60K 798 (6144, 7964) (5726, 7306)
45K 469 (3970, 4750) (3589, 4455)
30K 291 (2783, 3260) (2593, 3157)
15K 174 (2307, 2849) (2038, 2628)

Table 4.2: Address Resolution Time(Secure Channel). Number of attributes =
100; number of policies = 568.

We performed our tests using databases of user size ranging from 15,000 to

60,000. Each of the experiments was performed on a sample of 100 users chosen

uniformly at random from the corresponding databases. Table 4.1 summarize

our results. The Average List Size field in the tables refer to the average number

of recipients that the ABM addresses resolved to. The ABM addresses used had

2.5 terms on average and each term had 2.5 literals on average. There were 100

attributes in the system and 568 policies. There were 2.5 terms on average per

policy and 2.5 literals on average per term. It is worth mentioning that since

the databases were probabilistically filled, users were randomly selected, and the

queries were also probabilistically generated, we had no direct control on the

average list sizes. For enterprise that have geographically dispersed locations,the

ABM server and the database will not have a complete trustworthy route for

communication. For this case, address resolution experiments were repeated

(Table 4.2) with the ABM server communicating with the database over secure

channel for the third step (retrieving the list of the recipients specified by the

ABM address from the database).

27

Figure 4.1: Policy Specialization Time

4.3.5 Performance Measurements on the Policy

Specialization Path

The performance in this path is translated to the latency a user would see from

the time she attempts to log in to the system until the time her specialized policy

is revealed to her. This time includes: (1) a database lookup for retrieving a

user’s attributes and (2) a policy decision time for determining the routable

attributes.

We studied the policy specialization time with regard to complexity of the

policies and the results capturing the latencies are summarized in Figure 4.1.

Each policy had 2.5 terms on average and each term 2.5 literals on average. Each

of the experiments was averaged over 100 runs. The database used for these

experiments was a relational database with 60,000 users, which was filled using

the distribution described above. In each of the runs the policy specialization is

performed with respect to a user chosen uniformly at random from the database.

4.4 Analysis of Results

4.4.1 Feasibility Without Access Control

As shown in Table 4.1, within domain the average latency added to an e-mail

message by the ABM system (address resolution latency) without access control

28

is under 250ms using a relational database. It is under six seconds using an XML

database. The implemented system thus can process 240 requests per minute

using a relational database and 10 requests per minute using an XML database.

Though the address resolution takes longer when using an XML database, we

can expect that to decrease in the future as XML technology matures. Over a

secure channel (Table 4.2) the system can process 230 requests per minute using

a relational database and 8.2 requests per minute using an XML database.

4.4.2 Feasibility With Access Control.

As shown in Table 4.1 and Table 4.2, the average latency added to an e-mail

message by the ABM system (address resolution latency) with access control is

under 325ms when using a relational database and under seven seconds when

using an XML database. Adding security to the system added on atmost 100ms

additional latency when using a relational database and 400ms latency when

using an XML database. Thus, the ABM system with security can process 185

requests per minute using a relational database and 8.5 requests per minute

using an XML database. While over a secure connection it can process 150

requests per minute using a relational database and 7.5 requests per minute

using an XML database. The discrepancy in latency added by security when

using a relational database vs. an XML database is due to the fact that the

authorization check involves one database look up and one access validation

and on average an XML database look up took 350ms more than relational

database lookup. Access validation through PDP takes around 60ms and gives

us a throughput of 1000 validations per minute.

As expected, Figure 4.1 shows that the policy specialization time increases

with the number of policies in the system. The number of policies in the system

is directly proportional to the number of attributes in the system. In particular,

it is equal to number of attributes × average number of values/sub-ranges per

attribute. The number of values/sub-ranges per attribute was randomly drawn

between 1 and 10. So we can conclude that the policy specialization time is di-

rectly proportional to the number of attributes in the system. Our experiments

showed that for policy specialization, database access time remains virtually

29

constant regardless of the number of attributes in the system. This value is

about 40ms for relational and 400ms for XML databases. This is due to the

fact that each policy specialization includes a single lookup on the primary key

of the database. So the observed increase in the policy specialization is due to

the increase in the policy evaluation time, not the database lookup time.

Arguably, the latencies of 12 seconds might be beyond the level of patience

of most of the users and also impact the scalability of the system. However, we

have to keep in mind that specialized policy need not be computed every time

a user wants to send a message. The ABM system could periodically, say once

a week or once a month, compute the the specialized policy for all users and

cache it. Re-computation between the periods will only be necessary if there is

a change in the policy or users’ attributes. Therefore, we conclude that even

with security included the performance of the ABM system remains reasonable.

30

5 Discussion

In this section we discuss some of the issues that are important for usability of

ABM.

5.1 Policy Administration

Specifying and managing polices can potentially be a significant burden in the

deployment of our ABAC based ABM system. Even having only one access

policy, for each 〈attribute, value〉 pair can lead to a large set of access policies to

be managed by an enterprise policy administrator. In practice, however, most

attributes do not need a separate access policy for every possible value. For ex-

ample, some attributes like address may not need a policy for every single value

as it may not be possible to even enumerate all values. For some attributes it

might be possible to encode policies for all possible values of the attribute into

a generic form. For example, a policy to send a message to students in a given

course might be that the sender must be teaching the course. So there is no

need to write a separate policy for each 〈course, value〉 pair as policies for all

values of attribute course follow the same pattern and hence can be written as

one policy. The logical form of such a policy is shown below.

〈request.teaching = variablex〉

⇒ 〈course, variablex〉,

where

request.teaching is requester’s teaching

attribute value and

variablex is a variable that refers to

the course attribute value in the access request.

31

Some attributes in an enterprise might need only one access policy for each

disjoint subset of possible values. For example an attribute like Age whose

possible values are from (17,120) might need a policy only for disjoint sub-ranges

like (17,30], (30,65] and (65,120). In general, we observe that any attribute that

has infinite or uncountable set as the range of values and whose values cannot

be grouped together in any meaningful way will have only one policy. While any

attribute that divides the population into disjoint sets might need a policy for

every 〈attribute, value〉 pair. We analyzed attributes in three units of University

of Illinois with the above observations in mind found that only 20% of them need

a unique policy for each value while for 50% of them a single policy per attribute

is sufficient.

Furthermore, a single enterprise policy administrator does not necessarily

need to specify and manage policies for all attributes in an enterprise. Policy

administrators in each unit can be responsible for specifying and managing

policies for attributes originating from their unit, thereby enabling distributed

administration of access policies.

5.2 User Interface

End users cannot be expected to write database queries or logical expressions.

An effective user interface for composing ABM addresses is crucial for the ABM

system to be adopted. Similarly, policy administrators will benefit from a user

interface for specifying policies. Though we do not address these needs in this

work, user interfaces that closely satisfy the requirements are those found in

web directories and catalog searches. Moreover, recent advances in natural

language query interfaces such as NaLix [LYJ05, LYJ06], that enable translation

of queries in English into queries in XQuery can further improve the usability

of ABM system.

32

6 Conclusion

We have demonstrated a simple and manageable access control model for ABM

based on ABAC that accommodates a useful collection of ABM applications. We

have shown that this access control system can be embedded in an architecture

that can be deployed in virtually any enterprise messaging system. Finally

we have shown that this architecture can be implemented efficiently for mid-

size enterprises and we have given a profile of policy parameters that affect its

efficiency.

There are a number of interesting questions and open opportunities for ABM

with ABAC. Two of these will particularly interest us for future research: inter-

domain operation of ABM and more expressive ABAC policy languages. While

we have shown how to architect and deploy ABM for enterprises, it is much

trickier to do this when multiple enterprises are involved. For example, sup-

pose we wish to send a message to all of the doctors in a given county. This

cannot be done with a single database or even the collection of databases of a

single enterprise. There is some need to map the attribute ‘doctor’ across multi-

ple domains. This problem arises with virtually any interdomain authorization

challenge so the problem is only illustrative, but it is perhaps more tractable for

ABM than for interdomain authorization in general. Clearly some techniques

are required to map attributes. We have a design for such a system assuming

such a mapping is possible, but it needs to be developed and studied in the way

we have approached the enterprise systems in this paper. Our ABAC policy

language (implemented as a subset of XACML) is rudimentary. We choose it

because it was clearly useful and yielded non-trivial questions about process-

ing and performance. However, one can certainly imagine ABAC based ABM

systems benefiting from a more theoretical analysis of policy language express-

ibility such as that undertaken by [LMW02, WWJ04] for distributed systems.

33

At the same time, it is not clear how complex a policy language should be;

perhaps expressiveness is less important than the ease of maintaining policies.

After all, existing systems do not offer ABM at all, so even basic functions are

a step forward. Complex policies that lead to unintentional user errors would

dampen enthusiasm for deployment. Nevertheless, there are a variety of inter-

esting theoretical questions that can be considered in this area.

34

A Sample Policy

Figure A.1 shows the structure of our policy file specified using XACML. A pol-

icy denoted as a Rule in the figure consists of Target information and Condition

information. Target information includes subject attributes in the Condition

(not shown in figure for clarity), resource information, and the action on the

resource for for which this policy applies, in our case route. Condition specifies

the access condition in disjunctive normal form where the outermost Condition

Function is or and inner FunctionIds are and.

In order to overcome inconsistencies (e.g., different policies in a policy set

evaluating to conflicting results for a given access request) in policy specifica-

tion due to human error we use the combining algorithm feature provided in the

XACML framework. A combining algorithm tells the policy engine how results

from different applicable policies for a given access request might be combined

into a single result. An example of a simple combining algorithm provided by

XACML policy engine is deny-overrides, which simply tells the engine that if

deny is the result of one of the conflicting rules then return deny. Sun’s XACML

implementation can be extended to include more complex combining algorithms.

The combining algorithm, which in our case is ordered-permit-overrides, is spec-

ified at the top and the default policy, which evaluates to deny, is at specified

at the end.

35

<Rule RuleId="RouteOnSalary" Effect="Permit">
- <Target>...

<Resource>
- <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Salary</AttributeValue> ...
</ResourceMatch>

</Resource> ...
- - <Action>
- <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Route</AttributeValue> ...
</ActionMatch>

</Action> ...
</Target>
<Condition FunctionId=="urn:oasis:names:tc:xacml:1.0:function:or">…

- <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
- <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">…
- <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="Designation" /> …

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Manager</AttributeValue>
</Apply>

- <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">…
- <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="Department" />…

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Payroll</AttributeValue>
</Apply>
</Apply>

…
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

…
</Apply>

</Condition>
</Rule>…

<Rule RuleId="FinalRule" Effect="Deny" />

...

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
PolicyId="GeneratedPolicy“ RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-
overrides">…

Figure A.1: Sample Policy

36

References

[And05] XACML references. Technical Report v1.54, OASIS, May 2005.

[AZHG06] Raja Afandi, Jianqing Zhang, Munawar Hafiz, and Carl A. Gunter.
AMPol: Adaptive Messaging Policy. In European Conference on
Web Services (ECOWS ’06), Zurich, Switzerland, December 2006.
IEEE.

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis.
KeyNote: Trust management for public-key infrastructures (po-
sition paper). In Proceedings of the 6th International Workshop
on Security Protocols, pages 59–63, London, UK, 1999. Springer-
Verlag.

[BFK+06] Rakesh Bobba, Omid Fatemieh, Fariba Khan, Carl Gunter, and
Himanshu Khurana. Enabling attribute-based messaging using
attribute-based access control. In Annual Computer Security Ap-
plications Conference (ACSAC) ’06, Miami, FL, December 2006.
ACSA. Accepted.

[BIK00] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Trust man-
agement and network layer security protocols. In Proceedings of the
7th International Workshop on Security Protocols, pages 103–118,
London, UK, 2000. Springer-Verlag.

[BIK02] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Trust man-
agement for IPsec. ACM Transactions Information and System
Security, 5(2):95–118, 2002.

[BS00] Piero Bonatti and Pierangela Samarati. Regulating service access
and information release on the web. In CCS ’00: Proceedings of the
7th ACM conference on Computer and communications security,
pages 134–143, New York, NY, USA, 2000. ACM.

[BS02] Piero A. Bonatti and Pierangela Samarati. A uniform framework
for regulating service access and information release on the web. J.
Comput. Secur., 10(3):241–271, 2002.

[BSJ+05] Norbert Bieberstein, Rawn Shah, Keith Jones, Sanjay Bose, and
Marc Fiammante. Service-Oriented Architecture COMPASS: Busi-
ness Value, Planning, and Enterprise Roadmap. Pearson Educa-
tion, 2005.

[CLZ04] David Chadwick, Graeme Lunt, and Gansen Zhao. Secure Role-
based Messaging. In CMS ’04: Eighth IFIP TC-6 TC-11 Con-
ference on Communications and Multimedia Security,Windermere,
UK, pages 263–275, 2004.

37

[DVS05] E. Damiani, S. Vimercati, and P. Samarati. New Paradigms for
Access Control in Open Environments. In 5th IEEE International
Symposium on Signal Processing and Information, Athens, Decem-
ber 2005.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th
NIST-NCSC National Computer Security Conference, pages 554–
563, 1992.

[FKMT05] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and
Michael Carl Tschantz. Verification and change-impact analysis
of access-control policies. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 196–205,
New York, NY, USA, 2005. ACM Press.

[FKR03] D.F. Ferraiolo, D.R. Kuhn, and R.Chandramouli. Role Based Ac-
cess Control. Artech House, 2003.

[GMMT05] Michael Matthew Greenberg, Casey Marks, Leo Alexander
Meyerovich, and Michael Carl Tschantz. The soundness and com-
pleteness of margrave with respect to a subset of xacml. Technical
Report CS-05-05, Department of Computer Science, Brown Univer-
sity, April 2005.

[God03] eXtensible Access Control Markup Language (XACML). Technical
Report v1.1, OASIS, August 2003.

[KSB05] Himanshu Khurana, Adam Slagell, and Rafael Bonilla. Sels: a
secure e-mail list service. In SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing, pages 306–313, New York,
USA, 2005. ACM.

[LM03a] N. Li and J. Mitchell. Datalog with constraints: A foundation for
trust management languages, 2003.

[LM03b] Ninghui Li and John Mitchell. Rt: A role-based trust-management
framework, 2003.

[LMBG05] Kevin D. Lux, Michael J. May, Nayan L. Bhattad, and Carl A.
Gunter. WSEmail: Secure internet messaging based on web ser-
vices. In International Conference on Web Services (ICWS ’05),
Orlando FL, July 2005. IEEE.

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design
of a role-based trust management framework. In IEEE Symposium
on Security and Privacy, Oakland, May 2002.

[LPL+03] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and
Sumit Shah. First experiences using XACML for access control in
distributed systems. In XMLSEC ’03: ACM workshop on XML
security, Virginia, pages 25–37. ACM, 2003.

[LYJ05] Yunyao Li, Huahai Yang, and H.V. Jagadish. Nalix: an interactive
natural language interface for querying xml. In ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 2005),
Baltimore MD, June 2005.

38

[LYJ06] Yunyao Li, Huahai Yang, and H.V. Jagadish. Constructing a
generic natural language interface for an xml database. In In-
ternational Conference on Extending Database Technology (EDBT
2006), Munich Germany, March 2006.

[MBH03] Marco Casassa Mont, Pete Bramhall, and Keith Harrison. A Flexi-
ble Role-based Secure Messaging Service: Exploiting IBE Technol-
ogy for Privacy in Health Care. In DEXA ’03: 14th International
Workshop on Database and Expert Systems Applications, page 432.
IEEE, 2003.

[MPI+03] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis, A. Keromytis,
and J. Smith. Secure and flexible global file sharing, 2003.

[San98] R. S. Sandhu. Role-based access control. In M. Zerkowitz, editor,
Advances in Computers, volume 48. Academic Press, 1998.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[WL02a] William H. Winsborough and Ninghui Li. Protecting sensitive at-
tributes in automated trust negotiation. In WPES ’02: Proceedings
of the 2002 ACM workshop on Privacy in the Electronic Society,
pages 41–51, New York, NY, USA, 2002. ACM Press.

[WL02b] William H. Winsborough and Ninghui Li. Towards practical auto-
mated trust negotiation. In POLICY, pages 92–103. IEEE Com-
puter Society, 2002.

[WWJ04] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-
based framework for attribute based access control. In FMSE ’04:
ACM workshop on Formal methods in security engineering, Wash-
ington DC, pages 45–55. ACM, 2004.

[YGHS06] Noel Yuhanna, Mike Gilpin, Lindsey Hogan, and Andrew Sahalie.
Information fabric: Enterprise data virtualization. White Paper,
Forrester Research Inc., January 2006.

[YMW00] Ting Yu, Xiaosong Ma, and Marianne Winslett. Prunes: an efficient
and complete strategy for automated trust negotiation over the
internet. In CCS ’00: Proceedings of the 7th ACM conference on
Computer and communications security, pages 210–219, New York,
NY, USA, 2000. ACM.

[YT05] Eric Yuan and Jin Tong. Attributed Based Access Control (ABAC)
for Web Services. In ICWS’05: IEEE International Conference on
Web Services, Orlando, page 569. IEEE, July 2005.

[YWS01] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable
strategies in automated trust negotiation. In ACM Conference on
Computer and Communications Security, pages 146–155, 2001.

[YWS03] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting
structured credentials and sensitive policies through interoperable
strategies for automated trust negotiation. ACM Trans. Inf. Syst.
Secur., 6(1):1–42, 2003.

39

[Zim95] Philip R. Zimmermann. The official PGP user’s guide. MIT Press,
Cambridge, MA, USA, 1995.

40

Author’s Biography

Fariba Mahboobe Khan received her B.S. in Computer Science and Engineer-

ing from Bangladesh University of Engineering and Technology in 2004. After

graduation she spent a short time as a lecturer in Ahsanullah University of Sci-

ence and Technology. She is expecting her M.S. on Oct 2006 from University of

Illinois at Urbana-Champaign (UIUC). Currently she is a PhD student in Com-

puter Science at University of Illinois at Urbana-Champaign and working as a

research assistant with Professor Carl Gunter in Illinois Security Lab. She also

works closely and has been an intern with Dr. Himanshu Khurana in National

Center for Super Computing Applications (NCSA). She has been awarded with

Sarah and Shohaib Abbassi Fellowship on 2004-05 and 2005-06 academic year

by the department of Computer Science. This year she had a publication in An-

nual Computer Security Applications Conference (ACSAC) and a peer-reviewed

abstract presentation 1st Midwest Security Workshop (MSW).

41

