
Making DTNs Robust Against Spoofing Attacks

with Localized Countermeasures

Md Yusuf Sarwar Uddin, Ahmed Khurshid, Hee Dong Jung, Carl Gunter, Matthew Caesar, Tarek Abdelzaher

Department of Computer Science

University of Illinois at Urbana-Champaign

{mduddin2, khurshi1, jung42, cgunter, caesar, zaher}@illinois.edu

Abstract—In this paper, we propose countermeasures to mit-
igate damage caused by spoofing attacks in Delay-Tolerant
Networks (DTNs). In our model, an attacker spoofs someone
else’s address (the victim’s) to absorb packets from the network
intended for that victim. Address spoofing is arguably a very
severe attack in DTNs, compared to other known attacks, such
as dropping packets. Without a Public Key Infrastructure in
DTNs, providing protection against this attack is challenging. We
propose SPREAD (countermeasure against SPoofing by REplica
ADjustment), a solution that assesses evidence of spoofing and
offers countermeasures designed for quota-based multi-copy
routing protocols. Our solution relies on reducing the weight
of packet copies, charged to the routing quota, when these
packets are given to a node suspected of spoofing. The weight
reduction increases as spoofing evidence mounts against a node.
The approach is designed to probabilistically maintain the same
number of packet copies in the network as would be the case in
the absence of attacks, despite the actual occurrence of spoofing.
We show that SPREAD makes DTNs robust against spoofing
attacks, does not overburden the network, and limits the overall
overhead within a certain bound1.

I. INTRODUCTION

Delay-Tolerant Networks (DTNs) [1] experience intermit-

tent connectivity due to various kinds of disruptions such as

unavailability of links (e.g., links to low-earth orbit satel-

lites), short transmission range of sparsely located mobile

nodes (e.g., disaster-response networks), and limited energy

resources (e.g., duty-cycled sensor networks). In DTNs, pack-

ets are not transferred along a connected multi-hop path.

Instead, nodes store packets in their buffers until the next link

becomes available (or, in some cases, physically carry packets

onward) and transfer them to the next node when a transfer

opportunity arises. The wait between node encounters requires

a larger amount of time for packets to reach their destinations,

requiring services constructed atop this infrastructure to be

delay-tolerant.

Like other distributed communication networks, DTNs may

suffer from malicious behavior of participants. Unfortunately,

DTNs are often deployed in settings where network oper-

ators lack the ability to tightly monitor and repair nodes

from anomalous behavior, making it difficult to detect and

localize attacks. Nevertheless, DTNs are used for scientific,

1In the Proceedings of the 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), 2011, Salt Lake City, Utah, USA, June 27–30, 2011

military, and industrial applications that place high demands

on correctness of operation. There are several kinds of at-

tacks that are possible in DTNs, such as packet dropping,

flooding with unnecessary spurious packets, corrupting routing

state, and counterfeiting network acknowledgments [2], [3].

In [3], the authors evaluate the robustness of DTN protocols

without an authentication system. They show that network-

wide delivery of packets can be reduced by a set of attacks

including packet drops and routing state pollution. Another

paper [4] shows a similar set of results for a particular routing

protocol, MaxProp, in the presence of attackers that tamper

with routing metrics. None of these efforts, however, provide

countermeasures against those attacks.

Many of the above attacks can be addressed by conventional

solutions, such as encryption and authentication. One unique

challenge is that authentication is really hard to achieve

in DTNs, due to the challenges of deploying Public Key

Infrastructure (PKI) based solutions with trusted Certificate

Authorities (CAs) [2], [3], [4]. This makes DTNs prone to yet

another severe attack; namely, the spoofing attack. In DTNs,

nodes do not usually remove packets from their buffers when

they forward them. Instead, they retain such packets for further

replication (making multiple copies of each packet). A packet

is buffered until either the relay node delivers it to its ultimate

destination or the packet’s TTL (time to live) expires. After

delivery, the packet is removed from the buffers. Exploiting

this method of operation, an attacker hiding its real identity

can claim someone else’s identity (the victim’s) and explicitly

solicit packets from other nodes that are destined for the

victim. Once it receives these packets, the attacker simply

drops them. The sender also removes them, thinking they

have been delivered to their intended destination. Spoofing

is arguably a severe attack, because it not only results in

removal of packets by the attackers themselves, but also

causes other relay nodes (possibly non-attackers) to remove

packets from their buffers as they think they delivered those

packets, whereas they actually did not. Without authentication,

combating this type of attack is very challenging.

We propose a localized solution in order to reduce the

damage caused by the attackers without using any network-

wide authentication procedure. We do not necessarily stop

nodes from spoofing, neither do we detect nor isolate spoofers

so that honest nodes can avoid them while forwarding data

2

packets. Instead, we attempt to make the whole network robust

enough so that even though there could be spoofing attacks, the

end performance of the network would not degrade much. A

key element of the approach is that it is adaptive to the attack

as explored in several DoS mitigation techniques [5], [6] and

we investigate a new one. In our approach, nodes continuously

assess the level of attacks in the network and adaptively create

more replicas of packets. The adaptive nature of the solution

ensures that the solution incurs nearly zero cost when there

is no attacker. Moreover, the solution is localized in the sense

that here nodes act independently without any coordination

among themselves.

To this end, we propose SPREAD (countermeasure against

SPoofing by REplica ADjustment), a localized countermea-

sure against spoofing attacks in DTNs. To the best of our

knowledge, we are the first to propose a countermeasure for

spoofing attacks in DTNs. SPREAD uses the basic DTN

operation, replication of packets, to produce a few more copies

of packets to reduce the ultimate effect caused by the attackers.

SPREAD allows nodes to locally assess spoofing evidence

against addresses and is designed for quota-based multi-copy

routing protocols that limit, by setting a quota, the maximum

number of replicas per packet. Once spoofing evidence is

detected, SPREAD spreads more copies of affected packets

into the network, by reducing the amount charged by each

replica to the replication quota. More copies are injected as

spoofing evidence mounts against an address. The accounting

scheme ensures that SPREAD probabilistically maintains the

same number of packet copies in the network in the presence

of attackers, as would be the case in the absence of attacks,

despite the actual occurrence of spoofing. Thus, SPREAD does

not overburden the network and limits the overall overhead

within a certain bound.

We simulate spoofing attacks and our proposed counter-

measure in ns-2. We made necessary extensions to ns-2

to support DTN environments. Simulation results show that

packet delivery ratio decreases significantly in the presence

of attackers and then improves when SPREAD is applied. We

also measure the overhead caused by SPREAD in terms of the

number of copies per packet and show that overhead remains

within a certain bound.

II. BACKGROUND AND RELATED WORK

There are several DTN models available, such as IPN (Inter-

PlaNetary Internet) [7], DakNet [8], and DieselNet [9]. Exam-

ples of DTNs range from networks of public buses in a city to

emergency response networks comprising relief vehicles and

rescue workers deployed after a large-scale disaster. In this

type of network, nodes are sparse and mobile. They physically

carry packets around and occasionally “meet” (come within

the radio range of) other nodes to exchange packets with them.

Since such node encounters are less predictable and there

are generally no guaranteed sequences for forwarding packets

(akin to traditional paths in connected networks), traditional

single-copy routing protocols are not usually suitable in DTNs.

Most routing protocols proposed for DTNs allow multiple

copies of a given packet to be created in order to increase the

possibility of delivering the packet to the ultimate destination,

despite failures of some of the paths. These are called multi-

copy routing protocols.

In DTNs, packet transfer decisions are made upon a “con-

tact” (meeting between a pair of nodes). Based on the identity

of the peer node, the transfer event can be one of two types;

delivery or replication:

• Delivery occurs when a node meets the final destination

of a packet. On delivery, packets are transferred to the

destination and removed from the sender buffer.

• Replication occurs when transfers are made to peers

other than the final destination. When replicated, packets

may still reside in the sender’s buffer, but with an updated

state (specific to the routing protocol used).

DTN routing protocols can be broadly classified into two

major classes: flooding-based and quota-based. Flooding-

based schemes replicate packets as many times as they require,

whereas quota-based schemes set an explicit limit on the num-

ber of replicas per packet. Flooding-based schemes include

Epidemic routing [10], PROPHET [11], MaxProp [12] and

Delegation routing [13]. Epidemic routing simply floods the

network with packets, whereas PROPHET estimates delivery

predictability to destinations using meeting history and makes

regulated flooding. MaxProp computes delivery probability

(called rank) for each destination and replicates packets in the

order of their ranks. Delegation routing keeps states in packet

headers in the form of probability of delivery and updates this

probability upon replication.

Spray-and-Wait [14], Encounter-Based Routing (EBR) [15]

and Inter-contact Routing [16] are examples of quota-based

protocols. In such protocols, each packet contains a header

field, called replica count or quota, that indicates how many

times the packet can be replicated. On replication, the quota is

split, such that the sender retains some (logical) copies of the

packet and the peer receives the remaining copies. The packet

is not sent repeatedly to generate the logical copies. Rather it

is sent once and the replica count field is adjusted accordingly.

A split factor, r, decides what fraction of copies is retained

by the sender for a given contact. Binary Spray-and-Wait uses

r = 1
2 for all contacts, whereas, EBR determines r based on

popularity of nodes and Inter-contact routing computes it from

delay distributions along paths and delivery probabilities. Each

packet starts with an initial replica count, called initial quota,

and replicates itself until the replica count becomes 1. At that
point, the packet cannot be replicated further, but is buffered

until it can be delivered directly to the ultimate destination or

removed from the buffer when its TTL expires.

There have been a few research efforts on securing DTNs.

Work by Seth et al. [17] has shown that traditional mechanisms

including a combination of PKI certificates issued by trusted

third parties and Certificate Revocation Lists (CRLs) are not

suitable for DTNs. They, however, do not discuss how the

disconnectedness and opportunistic nature of communication

can be exploited by malicious agents to disrupt packet flow

between legitimate nodes. Other approaches addressing secu-

3

rity issues in DTNs include [18], [19], [20]. In this work, we

try to make DTNs robust against spoofing attacks instead of

securing them.

Burgess et al. [3] show that DTNs are more robust to

adversaries than usual connected networks. They compare

single-copy routing methods with multi-copy ones and show

that multi-copy methods yield a higher delivery ratio in the

presence of malicious nodes. They compare four routing

algorithms (MaxProp and its three variants) against four attack

models: dropping packets, flooding packets, route falsifica-

tion and counterfeiting delivery ACKs. They also show that

performance of DTNs degrades by a mere 15% even in the
presence of 30% adversary nodes for a particular set of attack
models. They do not provide any countermeasure against those

attacks. In this paper, we consider spoofing attacks and provide

a countermeasure against the attack.

III. ATTACK/THREAT MODELS

We consider spoofing attacks in DTNs, where attackers act

maliciously by identity forgery. Without PKI, identity protec-

tion is hard in DTNs. An alternative could be to distribute a

common public key apriori to all nodes. Some DTNs pose

this to be infeasible. Consider the aftermath of a disaster. A

set of entities arrive from different organizations; community

fire-fighters, rescue workers from the Red-Cross, volunteers

from distressed neighborhoods, and supply vehicles from relief

centers. Establishing a common public key across all nodes

would require global coordination that may not be feasible

considering the immediate nature of deployment. Moreover,

any node can be compromised with all of its credentials

and can operate as an attacker. A few malicious users can

deliberately act as spoofers, claiming identity of, say fire-

fighters or volunteers, to disrupt rescue services. Beyond

rescue operations, DTNs may arise in military scenarios,

where attackers may be motivated to intercept packets and

disrupt communication.

A spoofing attack is executed in the following way. An

attacker learns addresses from the network. The detail of

attackers discovering addresses may depend on node discovery

protocols used by the network, and is not our concern. While

initiating a session with another node when they are in contact,

an attacker passes an address other than its real address.

Consequently, the other peer (which may be an honest one)

delivers the packets destined to this spoofed address and

removes them from its buffer. Unless those packets have been

sufficiently replicated earlier, their delivery probability to the

actual destination would thus be reduced.

In each meeting, a spoofer can choose whatever address it

likes. It is, however, reasonable to assume that attackers will

not choose an address outside the network that does not belong

to an existing node. Obviously, spoofing a non-existing address

will not lead to interception of valid packets originating in the

network and will not serve the attack intention. There can be

several forms of spoofing attacks:

• Single-node spoofing: A set of spoofers all claim a single

address intercepting all packets destined to that node,

aiming to prevent the rest of the network from sending

packets to the victim node. Here, attackers target a single

node causing the classical Denial of Service (DoS) attack

on the victim.

• Peer-wise spoofing: Attackers choose different addresses

while meeting different peers, but consistently claim the

same spoofed address when meeting the same peer. Since

attackers need to remember which address they claimed

to which peer, we call this a stateful attack, as discussed

later on.

• Random spoofing: Spoofers can claim any random ad-

dress they know of. This would intercept packets from

random destinations, and network-wide delivery of packet

will degrade evenly.

The packets for which a spoofer is the claimed destination

are absorbed and taken off from the network by the attacker.

Transit packets, intended for other addresses not spoofed

by the attacker, can also be dropped. The attacker can do

other things to transit packets as well, such as corrupting

packet headers or putting garbled content in packet’s body.

It can alternatively forward them intact. In designing our

countermeasure, we assume that transit packets forwarded to

an attacker are lost too.

On the surface, address spoofing may resemble Sybil at-

tacks. Sybil attackers usually produce multiple identities so

that a single node can multiply its presence in the system.

This is usually done for biasing results achieved via a majority

consensus or to confuse a reputation system. A Sybil instance

of a node prefers to appear as a new node so that the system

recognizes one more member. In contrast, in spoofing attacks,

an attacker pretends to be some other existing node instead of

claiming to be a new one. They want to duplicate identities in

place of making newer identities.

IV. SPREAD MECHANISM

One possible protection mechanism against spoofing attacks

is to identify attackers and avoid them. As we mentioned

earlier, due to the lack of PKI, identity protection is not

possible in DTNs. Instead, we increase robustness of the

network against spoofing attacks and let the level of robustness

depend on an individual node’s own experience of spoofing

evidence. In contrast to static wireless networks, we exploit

two unique features of DTNs in designing our countermeasure:

multi-copy routing and diversity of encounters. Multiple copies

of the same packet allow several ways of delivering packets

to destinations, even when a few of them are consumed by

attackers. Mobility of nodes causes diversity of encounters

that allows a given node to meet several other nodes and not

remain surrounded by attackers all the time. This allows nodes

to replicate their packets bypassing attackers, as long as they

are able to keep enough copies per packet.

We propose SPREAD, a localized countermeasure against

spoofing attacks. In SPREAD, nodes try to assess the pres-

ence of attackers in the network. The scheme focuses more

on “assessing” evidence in support of spoofing, instead of

“detecting” an individual spoofer. A probabilistic assessment

4

is performed of whether a particular address is spoofed, given

prior evidence. While replicating or delivering packets to an

address that may be spoofed, an honest node takes into consid-

eration the fact that the other end could be an attacker and that

forwarded packets might therefore be lost. Accordingly, it may

choose not to remove packets from its buffer upon delivery or

may create more copies of packets upon replication. These

two actions improve packet delivery ratio in the presence of

attackers. The challenge is to use these actions in moderation,

without overburdening the network with too many replicas.

SPREAD does not overburden the network and keeps the

expected total number of replicas within a certain bound. In

the following, we describe various components of SPREAD.

A. Assessing spoofing evidence

The spoofing assessment is done as follows. Every node X

generates a unique secret (long bit string) for each peer address

Y it encounters. This bit string is called a token, TX(Y).
TX(Y) is computed from some hash function on ID of Y and
a private string of X , PX , i.e., TX(Y) = HX(Y, PX). Nodes
exchange these tokens when they first meet. In subsequent

meetings between the same pair of nodes, each of them

reproduces the token that it received from the other earlier.

Hence, when X sees again some node who claims it has

address Y , X expects Y to reproduce the token TX(Y) that
X sent to Y earlier. If a different token is returned instead

(or an empty token is returned), we say that there is a token

mismatch. A mismatch indicates that the address Y is claimed

by two (or more) different nodes, indicating the presence of

spoofers. In the absence of attackers, a node should experience

zero token mismatches after the initial token exchange with

each peer address.

Let cnX(Y) be the mismatch count for an address Y com-

puted at a given node X , and pX
s (Y) be the probability that a

node claiming address Y is a spoofer, as assessed by node X .

The mismatch count may not necessarily reflect the accurate

number of spoofers. It may be the case that a single attacker

does not care about storing tokens and reproduces random

tokens at each meeting, thereby artificially increasing the

count. This is fine, however, because the pessimistic estimate

of the number of spoofers will simply lead to increasing the

number of packet replicas sent to that address, which has a

beneficial effect on delivery ratio. For simplicity, we use this

cnX(Y) as X’s estimate of the number of potential spoofers

who claimed address Y . Assuming uniformity of contacts, the

probability that a node claiming address Y is a spoofer is thus

estimated at X by:

pX
s (Y) = 1 −

1

cnX(Y) + 1
(1)

Each node maintains a mismatch counter for each node it

encounters. We simply use ps(Y) when node X that computes

the spoofing probability is obvious from the context. Given a

certain contact, i.e., meeting of two nodes, we even drop Y to

simply write ps, which denotes the probability that the other

end’s address of the current contact has been spoofed.

B. Replica adjustment by SPREAD

In DTNs, a node takes packet transfer decisions when it

meets another node. Upon a contact, the node computes ps

for the peer and makes delivery and replication decisions for

its buffered packets accordingly. Below we describe the actions

taken by the node for an arbitrary packet P .

On delivery: When P is delivered to the peer, there is a ps

probability that the peer is a spoofer. Let α be the fraction of

replicas remaining out of the initial quota. Note that, α starts

with 1, and becomes 0 when replicas are exhausted and no

further replication is allowed. A higher α value implies that a

good number of copies are subject to be lost if P is given to

an attacker. Hence, a node will retain a copy of P with higher

probability when α is high. A node will also retain P with

higher probability when ps is high. Hence, upon delivery, the

delivered packet is removed from the sender’s buffer with the

probability:

P{remove P | delivery} = (1 − α)(1 − ps) (2)

The above probability becomes 0 if α = 1, implying that
the very first copy (with α = 1) that has not generated any
copy yet would not be removed when delivered to a peer that

is suspected of being spoofed.

On replication: In quota-based replication schemes, the

sender adjusts the replica count of the packet based on its split

factor for the current contact. Let the current replica count of

a packet be k and r be the split factor. In these schemes,

the sender keeps ⌈rk⌉ copies and the peer gets ⌊(1 − r)k⌋
copies. So, a total of k copies are maintained. In case the peer

is an attacker (who eventually drops or corrupts the received

packets), the fraction of copies replicated to the peer will be

lost. In suspicion of possible loss of copies, the sender creates

more replicas per packet, yet tries to keep the average number

of replicas bounded by k. We call this the “k-copy invariant”

principle.

Definition (k-copy invariant) Irrespective of whether the peer

is an attacker or not, an honest sender raises the replica count

of packet P in such a way that the total expected number of

replicas for P remains the same as for the non-attacker case.

Let γ be the raise factor by which the replica count of

packet P is multiplied, before replicating to the peer. That

means, replica count becomes γk and then, the usual quota-

based protocol is used to split the copies between the sender

and the peer. If the peer is an honest node (with probability

1 − ps), a total of k copies are there. If the peer is a spoofer

(with probability ps), only the sender’s copies remain. Due to

the k-copy invariant, the expected number of copies should

remain k, as follows:

E[K] = (1 − ps) × γk + ps × (rγk)

⇒ γ =
1

1 − ps(1 − r)
(3)

The last equation computes the raise factor for the current

contact. Since 1 − r > 0, we have γ > 1.
In the presence of attackers more replicas of packets are

created when they are forwarded to a spoofed address. It

5

is important to remember that spoofing evidence is recorded

per address. That means extra overhead due to creating more

copies is only attributed to those addresses that are spoofed

(with a few exceptions discussed in Section IV-E). This is

particularly important in handling cases when a set of attackers

spoof a certain target node leaving other nodes untouched.

In that case, a certain address (the victim’s) is affected and

the countermeasure is only enforced while meeting with those

nodes claiming that partciular address. This keeps overall

overhead of the network limited, still providing higher delivery

to the victim.

We argue that the assessment of spoofing evidence works

due to two properties:

• An attacker cannot produce the token that an honest node

generates for a particular peer, unless it has received that

token from that honest node in the first place or it colludes

with another attacker who knows the token. In evaluation,

we show the sensitivity of our solution in the presence of

colluders and it is shown that colluding does not degrade

the results much.

• An attacker cannot avoid token mismatches at an honest

node by spoofing an address that the honest node had

already seen.

C. Bounded number of copies by SPREAD

Although SPREAD increases the number of copies, we can

show that the expected number of total replicas per packet is

bounded. The exact count of copies generated out of a packet

actually depends on which contacts the packet passes through

in the network and the corresponding ps’s and r’s of those

contacts. Since it is not possible to know of all these contacts

for a particular packet, getting an exact count of copies is

somewhat intractable. In order to obtain an approximate count

of copies, in the following description we use the term ps to

denote an average spoofing probability of nodes instead of

different probabilities for different peers at different nodes.

Theorem (Bounded number of replicas) Out of replica quota

k, SPREAD produces a bounded number of copies per packet

and creates on average k
1−ps

copies, where ps is the average

spoofing probability per peer address.

Proof. Initially, all k copies are contained at the source in

a single packet with replica count k. Let r be the common

split factor and γ be the raise factor for all contacts. During

replication the sender retains rγk copies, and the peer receives

(1−r)γk copies. In the next contact, the sender retains (rγ)2k
copies and the other peer gets the remaining. Next, it keeps

(rγ)3k copies and so on. The replication continues until the
sender ends up of having the last copy with replica count 1.
The last copy cannot be replicated anymore, but can only be

delivered. We demonstrate the process of copy creation by a

tree, called a spreading tree, shown in Figure 1. Each internal

node in the tree represents a contact and the leaves are the

packet copies.

Due to the k-copy invariant principle, the expected sum of

total copies at each level of the tree remains k. To prove that

SPREAD creates a bounded number of copies, we need to

rlγlk r(1 − r)l−1γlkrl−1(1 − r)γlk

k

(1 − r)2γ2kr(1 − r)γ2kr(1 − r)γ2kr2γ2k

rγk (1 − r)γk

(1 − r)lγlk

Fig. 1. A spreading tree (each internal node represents a contact)

show that the tree has a finite depth, yielding (rγ)lk = 1 at
some depth l. This can only happen if rγ < 1. We show that
it holds.

rγ =
r

1 − ps(1 − r)
=

1

ps + 1
r
(1 − ps)

(4)

Since 1
r

> 1 and 0 ≤ ps < 1, hence ps + 1
r
(1 − ps) > 1.

Therefore, rγ < 1. Actually, we can also compute the depth
l from (rγ)lk = 1, that is, l = ln(k)

− ln(rγ) .

The spreading tree has k copies at its last level, all sup-

posedly with replica count 1. These last copies may also
create further copies because they are not always deleted from

buffers as they are delivered to the destinations, but retained

with probability ps (i.e., removed with probability 1 − ps).

Each successive delivery attempt effectively generates one

more copy, if not removed in that attempt. Due to geometric

distribution, each last copy is tried on an average 1
1−ps

times

until it gets removed. Therefore, a total of k
1−ps

copies are

created. �

In practice, the number of copies would be quite smaller,

because packets may be delivered before their replica count

reaches 1, not generating successive copies afterward. It may
seem that SPREAD creates an infinite number of copies as

ps approaches 1. Actually it does not, because packets would
eventually be removed when their TTLs expire.

There is, however, a case when SPREAD creates a large

number of copies where attackers only spoof addresses, but

relay transit packets instead of dropping them. We know that

in the absence of dropping, due to the raise factor, a total of γk

copies are created at each contact. Copies are split between

nodes upon a contact. We can compute the total number of

copies as the sum of replica counts of leaf nodes of the

spreading tree (Figure 1), which is
∑l

i=1

(

l

i

)

ri(1−r)l−iγlk =
(r + (1 − r))lγlk = γlk. Considering the last copy removal

issue as before, a total of γl

1−ps

k copies can be created.

Since our usage of ps’s is an overarching simplification of

the actual copy generation situation, these bounds hold only

approximately in an average sense.

This really raises a concern. Huge number of replicas may

cause congestion in the network. We can argue that packets

passed through an attacker cannot be trusted anyway, so we

need at least a few copies that are clean and SPREAD ensures

that. But SPREAD cannot remove those extra packets by itself

other than naturally dropping them when their TTLs expire.

Moreover, it may appear that SPREAD costs near to flooding

6

as ps goes up. Unlike flooding though, SPREAD does not

burden network with replicas even if the network does not have

any attackers. It does not do anything more than necessary. In

evaluation, we show that overhead due to SPREAD is far less

than flooding. To limit this extra overhead, we can put a cap

on ps so that replica count does not go beyond certain limit.

We can even think of classifying packets into “important” and

“ordinary” types so that most important packets are replicated

more while leaving ordinary packets subject to attacks.

D. Stateless vs. Stateful attacks

Since a high mismatch count brings forth more replicas

into the network, a question arises whether an attacker should

remember the token it receives from a peer and spoof the same

address when it meets that particular node. An attacker that

does so may avoid further mismatches at the corresponding

peer. This generates fewer replicas yielding a lower delivery

ratio, consistently with the intent of the attack. This type

of attack is called a stateful attack. This attack requires an

attacker to remember the token it obtains from a node and

the associated spoofed address. The other variant that simply

chooses a random address to spoof and a random token can

be regarded as stateless attack. In stateless spoofing, attackers

may not remember previously received tokens. This causes

repeated increment of token mismatch counts leading to a

higher number of replicas.

E. Aspects of SPREAD

We describe a few important aspects of SPREAD as well

as a few limitations along with associated possible remedies.

Underestimation of ps: Suppose, node X meets only one

node who claims an address Y and happens to be a spoofer,

not the real Y . Equation 1 concludes that Y is honest by

calculating ps(Y) = 0. Again, it can happen that several nodes
claim Y , but the real Y has never been met. In that case, ps(Y)
should be 1, but it computes less than that. In either case, the
ultimate packet delivery to Y by X is not affected if X never

meets Y anyway. If node X ultimately meets Y , then the

mismatch count is properly updated.

ps ≥ 0.5, if not 0: Due to Equation 1 when cn > 0. This
means that when an address gets spoofed, there are at least

two nodes involved; the honest node and a single attacker

producing all spoofing evidence. So, spoofing probability can

be at least 0.5.
Non-intrusiveness: This is a very strong feature of

SPREAD. Without any attacker in the network (i.e., ps = 0),
SPREAD results in γ = 1 (Equation 3). That means it does
not raise the replica count at all. This indicates that SPREAD

is absolutely non-intrusive in that it does not cause additional

overhead to the network unless there is any attacker. Extra

overhead is incurred only when there are attackers.

False positives: A node stores only one token per address.

Although it may receive multiple tokens from different nodes

(possibly from spoofers), SPREAD stores only the most recent

one. This may produce false positives. Suppose, node Y

meets node X and receives a token TX(Y). Then, Y meets

X ′, who also claims to be X , and overwrites TX(Y) with
TX′(Y). Next, it meets the real X again, and reproduces

the corresponding token which is TX′(Y). In this case, X

detects a mismatch since TX′(Y) is different from TX(Y). It
will increase the mismatch count for Y , whereas in fact the

address Y is not spoofed. If Y meets X andX ′ alternately, the

mismatch count for Y at node X would grow unboundedly.

Figure 2 describes the situation. Occurrence of this kind of

situation is however very rare, particularly the strict alternate

meeting with X and X ′. One solution to this problem could

be to store all tokens received per address, and then reproduce

the entire list so that the receiving node can verify whether its

token is included.

Higher mismatch counts: Stateless spoofing does not repro-

duce tokens, thus increasing mismatch counts, which makes

ps → 1. Then, rγ becomes 1 (Equation 4) allowing the
sender to retain rγk = k, i.e., all copies, as if the current

contact has not happened. This leads to a large number of

packet copies because packets are now removed only when

their TTL’s are expired. A dropping policy or some congestion

control schemes (e.g., Retiring Replicant [21]) can be applied

to reduce copies.

2.2

2.1

4.4

4.3

4.2

3

1

4.1

STY (X ′) STY (X ′)

STY (X)

Y

X ′

Y

Y

STY ′(X)

Y ′

TX(Y)

YX

Fig. 2. A token distribution and reproduction scenario. 1. NodeX meets node
Y , passes its token, TX(Y), to Y , and Y stores the token as STY (X). 2.
Y meets X again and reproduces the stored token STY (X). The reproduced
token matches with TX(Y), hence no token-mismatch occurs (actually,
STY (X) 6= TX(Y) indicates a token mismatch). 3. X meets Y

′ (another
node claiming itself Y) and Y

′ returns STY ′ (X) that does not match with
TX(Y) and a token mismatch is detected at X (Y is spoofed). 4. Y meets
X

′ (a spoofed X) and replaces its stored token by STY (X′). Then, Y meets
X again and gets its returned token mismatched at X (false positive).

F. Token management

Nodes generate tokens using a hash function (e.g., SHA-1)

on an in-node secret key and the peer address for which the

token is generated. Nodes maintain a peer token table (PTT)

where they store the tokens received from other peers and the

current mismatch count, indexed by peer address. Initially all

the entries in PTT are empty. When two nodes meet, they first

learn each other’s address by exchanging HELLO messages.

Then they extract the corresponding peer token from PTT (if

available) and send it in the HELLO-REPLY message. Then,

the token match is done. If the token does not match, the

associated mismatch count is incremented and the token for

that peer is sent by SET-TOKEN message. Note that nodes do

not store the tokens they send to other nodes. They are easily

regenerated whenever required.

Tokens are private to nodes. It is not possible for attackers

to know or guess the tokens computed for other peers, unless

7

they can overhear or collude. DTNs are generally less subject

to overhearing problems because of wide spatial separation

among nodes. Yet the token can be passed encrypted by

establishing a session key via the popular Diffie-Hellman

protocol. Subsequent token exchange may not happen in

plaintext either. When both parties have their tokens in place,

they can challenge each other by sending a random integer and

asking the other one to return the next integer hashed by the

stored token. Both ends can easily verify whether the other end

has the desired token or not. For simplicity of implementation,

we assume that tokens are exchanged in plaintext by HELLO-

REPLY and SET-TOKEN messages.

G. Implementing SPREAD

As a proof of concept, we instrument SPREAD onto the

Spray-and-Wait routing protocol (which we refer to as Spray).

Spray has r = 1
2 . So, γ = 2

2−ps

. We prefer Spray because

it does not maintain any routing state that can otherwise

be corrupted by attackers. Spray is the simplest quota-based

protocol and provides a bare benchmark to evaluate our

countermeasure. We augment the basic Spray to incorporate

SPREAD, as shown below.

Delivery (Contact c, Packet P)
Compute ps for contact c
After successful transfer

α = P.replica-count/initial-quota
if P .replica-count = 1 then α = 0
Generate a random value rv ∼ uniform(0, 1)
if not the first meeting and (rv < (1− α)(1− ps)) then
Remove P from buffer

Replication (Contact c, Packet P)
Compute ps for contact c
γ ← 2/(2− ps)
P .replica-count ← ⌈γ × P.replica-count⌉
After successful transfer

P .replica-count ← P .replica-count / 2

All the results presented in Section V are based on this

augmented Spray protocol.

V. PERFORMANCE EVALUATION

We use ns-2 to evaluate the effects of spoofing attacks in a

DTN and the countermeasures offered by SPREAD.

A. Simulation setup

We extend ns-2 to incorporate DTN-like functionality. Two

key functions we need to implement are: (i) support for

disrupted connections among different nodes and (ii) a node’s

ability to transfer packets to any other node in the network

when they are in contact. In our implementation, every DTN

node creates a separate communication agent for every other

node in the network, and all these agents are statically con-

nected pair-wise beforehand. When it is time for two nodes

to communicate, the associated agent pair is simultaneously

activated. A pre-generated connection pattern file containing

activation/deactivation schedule (as experienced by nodes due

to their mobility) is provided to simulate disruption. A more

detailed description is available in our technical report [22].

We use the ONE (Opportunistic Network Environment)

simulator [23] to generate the connection pattern file used

in our simulations. We use a city mobility model [23] with

3 kinds of nodes; 20 pedestrians (random movement within
a confined area), 20 cars (random movement in the entire
area) and 10 trams (4, 3 and 3 trams in 3 fixed cyclic routes
respectively). The nodes run the augmented Spray protocol

with an initial quota of 10. Packets are generated at a Poisson
rate of 1 message per 5 minutes per node, and the simulation
runs for 24 hours of simulated time.

B. Simulation results

We present our simulation results in terms of two major

metrics: packet delivery ratio and overhead. Packet delivery

ratio is the fraction of uniquely generated packets that have

been delivered to their intended destinations. In the case of

multiple copies reaching the destination, only the first delivery

is counted. The overhead is computed as the total number

of transmissions of all packets (i.e., copies) divided by the

total number of unique packets transmitted at least once

(we do not consider packets that have been generated but

did not get transmission opportunities). During replication,

each transmission generates a new copy. The final delivery

needs one additional transmission. If there are k copies all

with replica count 1, at most k additional transmissions can

be made. To create k copies in the first place, it requires

another k − 1 transmissions (the number of internal nodes
in the spreading tree, Figure 1). So, for a replica quota k,

at most 2k − 1 transmissions can be made, resulting in that
much overhead. Given the relationship between overhead and

the number of packet copies, we will use these two terms

interchangeably.

In Figure 3(a, b), we show the effects of attackers on

delivery ratio and overhead without SPREAD. As we see

in Figure 3(a), the delivery ratio declines as the number of

attackers increases. To confirm the relative severity of spoofing

attacks, we compare delivery ratio when attackers do not spoof

addresses but only drop packets to that when attackers are

spoofers. It reveals that the spoofing attack has a more adverse

effect on delivery ratio than dropping. This is due to the fact

that a spoofer, by claiming a false ID, not only grabs packets

destined to other nodes, but also causes honest nodes to clear

their buffers. Without SPREAD in action, both stateless and

stateful spoofing result in nearly the same delivery ratio as

well as a similar overhead (Figure 3(b)). Recall that a stateful

spoofer remembers the address it needs to choose to avoid

mismatches. Overhead remains the same for attackers that

are spoofers or droppers. This is because spoofers also drop

packets that they intercept. As more attackers drop packets,

the replicas per packet gradually decline.

Figures 3(c, d) shows the same set of results when SPREAD

is applied. We see that delivery ratio improves significantly

with SPREAD (10% – 40%). We also observe that stateless
spoofing results in a higher delivery ratio along with an

increased overhead. This is because it causes more replicas

to be created due to a larger number of mismatches. On the

8

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f
p

a
c
k
e

ts
 d

e
liv

e
re

d

% of attackers within network

Dropping
Stateless spoofing

Stateful spoofing

(a) Delivery (w/o SPREAD)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

O
v
e

rh
e

a
d

% of attackers within network

Dropping
Stateless spoofing

Stateful spoofing

(b) Overhead (w/o SPREAD)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f
p

a
c
k
e

ts
 d

e
liv

e
re

d

% of attackers within network

No countermeasure
Flooding

Stateless (SPREAD)
Stateful (SPREAD)

(c) Delivery (with SPREAD)

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

O
v
e

rh
e

a
d

% of attackers within network

No countermeasure
Flooding

Stateless (SPREAD)
Stateful (SPREAD)

(d) Overhead (with SPREAD)

Fig. 3. Delivery ratio and overhead due to spoofing with and without SPREAD

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f
p

a
c
k
e

ts
 d

e
liv

e
re

d

% of attackers within network

No countermeasure
Flooding
SPREAD

(a) Single node attack: Delivery ratio

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

O
v
e

rh
e

a
d

% of attackers within network

No countermeasure
Flooding
SPREAD

(b) Single node attack: Overhead

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 10 20 30 40 50

%
 o

f
p

a
c
k
e

ts
 d

e
liv

e
re

d

% of attackers within network

0%
20%
60%

100%

(c) Colluding attack: Delivery ratio

Fig. 4. (a, b) Delivery ratio and overhead when spoofers attack a single node, (c) Delivery ratio for colluding attackers

other hand, stateful spoofing results in a slightly lower delivery

ratio as well as a lower overhead than that of stateless spoofing.

Stateful spoofing seems to be a better attack than the stateless

one in terms of delivery ratio, but a stateful attack allows

countermeasure to be enforced with less expense.

In Figure 3(c), we demonstrate how SPREAD performs

compared to flooding. We run the Epidemic flooding [10]

protocol. Flooding does not follow any replication quota, but

replicates packets as long as they are not delivered or expired.

We observe that flooding offers a persistently higher delivery

ratio (> 80%), irrespective of the number of attackers, but at
a very high overhead due to massive replication (Figure 3(d)).

SPREAD’s overhead against stateless spoofing is still very

low compared to pure flooding. We note that a node does

not send those packets that are already in the peer’s buffer.

As an attacker has an empty buffer, an honest node tends to

send all packets to that peer, much higher than the case when

there is no attacker. This causes overhead to rise, notably for

flooding, compared to the zero attacker case, as more nodes

become attackers. Beyond a certain fraction of attackers (after

30%), the dropping effect dominates over this extra replication.
Then, overhead begins to decline.

Next, we consider the case when attackers target a single

node and all attackers spoof the same victim’s identity. The

intention is to degrade the delivery ratio of the victim node to

a very low value. Surprisingly, the attackers cannot achieve

that when SPREAD is in action (Figure 4(a, b)). In the

experiments, we choose a random node and allow all attackers

to spoof that node’s address. While calculating the delivery

ratio, we only consider those packets originally destined to

that address. We see that without any countermeasure, the

delivery ratio declines drastically as more nodes spoof the

victim’s address. Even flooding does not improve upon this

much, because flooding also removes packets from buffers

once packets are delivered to a spoofer. SPREAD, however,

retains a higher delivery ratio.

To calculate overhead for the above case, we consider the

overall overhead instead of that of replicas only pertaining to

the victim. This is because packets for other nodes are also

affected (replica count is raised) while forwarded to a spoofed

address. We observe that SPREAD keeps overall overhead

very low, because it does not penalize all addresses with more

replicas, but only does so for addresses that are spoofed.

We also show results when a certain fraction of attackers

collude (Figure 4(c)). Colluding attackers are assumed to

share their learned tokens through some “hidden” channels.

Colluding attack seems like yet another stateful attack with at

most one token mismatch accounted for multiple attackers.

We observe that collusion does not degrade delivery ratio

much compared to stateful attacks, even when 100% attackers
collude. This is because an attacker cannot control the physical

mobility of nodes to meet a certain node whose token it knows

of to exploit identity forgery. Moreover, the probability of a

node, to which the attacker meets, having packets destined to

the spoofed address is quite low.

We now analyze internals of SPREAD. Recall that SPREAD

counts token mismatches and replicates packets accordingly.

Figure 5 depicts the relationship between the average mis-

match count per address and the overhead exerted in the

network thereby. We see that, as the number of attackers

increases, nodes experience more mismatches that leads to

higher overhead. Obviously, stateless spoofing produces more

mismatches as well as more replicas than stateful spoofing.

In Figure 6, we show a summary of SPREAD’s perfor-

mance. In particular, we plot delivery ratio and overhead of

SPREAD for zero and 20% attackers. As a baseline, the first

9

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50
 10

 20

 30

 40

 50

 60

 70

 80

A
v
e

ra
g

e
 m

is
m

a
tc

h
 c

o
u

n
t

O
v
e

rh
e

a
d

% of attackers within network

Mismatch count (stateless)
Overhead (stateless)

Mismatch count (stateful)
Overhead (stateful)

Fig. 5. Effect of mismatch count on overhead

 0

 20

 40

 60

 80

 100

SPREAD (Stateless)-20%SPREAD (Stateful)-20%Attackers-20%No attackers
 0

 20

 40

 60

 80

 100

 120

%
 o

f
p

a
c
k
e

ts
 d

e
liv

e
re

d

O
v
e

rh
e

a
d

% of packets delivered
Overhead

Fig. 6. Summary results of SPREAD with 0% and 20% attackers

two left bars are for the case without any countermeasure.

Generally, the delivery ratio increases when SPREAD is

applied. With SPREAD, stateless spoofing results in a better

delivery ratio than stateful spoofing, but at the cost of higher

overhead. Therefore, a stateless attacker may redirect its attack

intention to “resource exhaustion” by inducing an excessive

number of copies into the network rather than degrading the

delivery ratio. This however generates higher delivery ratio.

Resource exhaustion attack can be mitigated by rate-limiting

transfer of packets on contact or putting caps on the highest

possible number of replicas per packet. The following table

shows different attack strategies for different intentions.

Countermeasure Attack choice Purpose of attack

NONE Spoof Delivery degradation

SPREAD Stateless spoof Resource exhaustion +
Delivery degradation

SPREAD Stateful spoof Delivery degradation

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider spoofing attacks in DTNs. We

show that spoofing reduces delivery ratio to a low value,

either to a single node or network-wide. Our proposed coun-

termeasure makes DTNs robust against spoofing attacks and

significantly improves the delivery ratio with a slight, but

bounded, increase in the number of packet copies.

In the future, we plan to investigate the possibility of design-

ing trusted naming services and address discovery protocols

for DTNs that can incorporate public keys with addresses. In

that case, delivering packets to the wrong destinations can be

prevented to some extent, subject to correct discovery of des-

tination addresses and their public keys without a cerification

authority. Another possible direction could be to understand

whether having some infrastructure (may be a few nodes with

trusted hardware) instead of a purely non-structured network

could help in limiting spoofing attacks in DTNs.

ACKNOWLEDGMENT

This work was supported in part by Fulbright S&T Fellow-

ship, ONR N00014-10-1-0172,NSF CNS 06-26825, DOE DE-

0000097, HHS 90TR0003-01, NSF CNS 09-64392, NASA

09-VVFCS1-09-0010, NSF CNS 09-17218, NSF CNS 07-

16421, NSF CNS 10-40391 and grants from the MacArthur

Foundation and Lockheed Martin. The views expressed in this

paper are those of the authors only.

REFERENCES

[1] IRTF DTN Research Group, “http://www.dtnrg.org.”
[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant networking architecture, RFC
4838,” http://www.rfc-editor.org/rfc/rfc4838.txt.

[3] J. Burgess, G. D. Bissias, M. Corner, and B. N. Levine, “Surviving
attacks on disruption-tolerant networks without authentication,” in Proc.
of MobiHoc, 2007.

[4] F. C. Choo, M. C. Chan, and E.-C. Chang, “Robustness of DTN against
routing attacks,” in Proc. of COMSNETS, 2010.

[5] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS Defense by Offense,” in ACM SIGCOMM 2006, September
2006.

[6] S. Khanna, S. S. Venkatesh, O. Fatemieh, F. Khan, and C. A. Gunter,
“Adaptive selective verification,” in Proc. of INFOCOM, 2008.

[7] InterPlanetary Internet, “www.ipnsig.org.”
[8] A. Pentland, R. Fletcher, and A. Hasson, “DakNet: Rethinking connec-
tivity in developing nations,” Computer, vol. 37, no. 1, pp. 78–83, 2004.

[9] DieselNet, “http://prisms.cs.umass.edu/dome/umassdieselnet.”
[10] A. Vahdat and D. Becker, “Epidemic routing for partially connected

ad hoc networks,” Department of Computer Science, Duke University,
Tech. Rep. CS-2000-06, April 2000.

[11] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” Mobile Computing and Communications
Review, vol. 7, no. 3, pp. 19–20, July 2003.

[12] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “MaxProp: Routing
for vehicle-based disruption-tolerant networks,” in Proc. of INFOCOM,
April 2006.

[13] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation
forwarding,” in Proc. of MobiHoc, 2007.

[14] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and Wait: An
efficient routing scheme for intermittently connected mobile networks,”
in Proc. of the 2005 ACM SIGCOMM workshop on Delay-tolerant
networking (WDTN ’05), 2005.

[15] S. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in
DTNs,” in Proc. of IEEE INFOCOM, 2009.

[16] M. S. Uddin, H. Ahmadi, T. Abdelzaher, and R. Kravets, “A low-energy
multicopy inter-contact routing protocol for disaster response networks,”
in Proc. of IEEE SECON, 2009.

[17] A. Seth and S. Keshav, “Practical security for disconnected nodes,” IEEE
Workshop on Secure Network Protocols, vol. 0, pp. 31–36, 2005.

[18] S. Symington, S. Farrell, and H. Weiss, “Bundle security protocol
specification,” May 2006.

[19] S. Farrell and V. Cahill, Delay- and Disruption-Tolerant Networking.
Artech House, Inc., 2006.

[20] A. Kate, G. Zaverucha, and U. Hengartner, “Anonymity and security in
delay tolerant networks,” in Proc. of SecureComm, 2007.

[21] N. Thompson, S. Nelson, M. Bakht, T. Abdelzaher, and R. Kravets,
“Retiring Replicants: Congestion control for intermittently-connected
networks,” in Proc. of INFOCOM, 2010.

[22] M. S. Uddin, A. Khurshid, H. D. Jung, and C. Gunter, “Denial in DTNs,”
UIUC, Tech. Rep., 2010.

[23] Opportunistic Network Environment simulator,
“http://www.netlab.tkk.fi/ jo/dtn/index.html.”

