
Specification and Formal Analysis of a PLAN Algorithm in Maude

Bow-Yaw Wang�
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104-6389, USA
bywang@saul.cis.upenn.edu

José Meseguery
Computer Science Laboratory

SRI International
333 Ravenswood Ave

Menlo Park, CA 94025, USA
meseguer@csl.sri.com

Carl A. Gunterz
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104-6389, USA
gunter@cis.upenn.edu

Abstract

Rewriting logic can be used as a semantic framework
to model next-generation networks and algorithms such as
those of active networks with greater flexibility than stan-
dard model checking approaches. Using reflection, a wide
range of formal analyses can be performed on a given spec-
ification by specifying an analysis algorithm as a metalevel
theory that executes the specification as an object-level en-
tity. We illustrate how the reflective rewriting logic lan-
guage Maude can be used for this kind of formal specifica-
tion and analysis by means of an active network algorithm
written in the PLAN language, whose correct behavior from
a given initial state is formally analyzed using the proposed
methods.

1. Introduction

In this paper we show how to formally specify an ac-
tive network algorithm calledFlow Based Adaptive Routing
(FBAR) that was introduced in [11] using the Packet Lan-
guage for Active Networks (PLAN) [10]. Our formalization
uses Maude [4], and we use Maude to prove correctness of�Supported by DARPA through Rome Laboratories Contract F30602-
97-C-0312 and by Office of Naval Research Contract N00014-96-C-0114.ySupported by DARPA through Rome Laboratories Contract F30602-
97-C-0312 and by Office of Naval Research Contracts N00014-96-C-0114
and N00014-99-C-0198.zSupported by DARPA contract N66001-96-C-852.

the algorithm for a given scenario. Anactive network is
an internet in which routers provide a programmable inter-
face to network users. A wide range of interfaces have been
explored [17, 16] with the goal of finding a programming
model that will allow users to exploit increased flexibility
for routing elements. In FBAR, packets are enabled to ob-
tain information about the network from the routers and use
this information to set up customized flows that take advan-
tage of learned network attributes. For instance, an appli-
cation requiring high bandwidth may set up labels to use a
satellite link, whereas an application requiring low latency
may establish a path using low-bandwidth terrestrial links.
The algorithm sends outscoutpackets which collect net-
work attributes and then determines a good route based on
the collected information.Configurationpackets set labels
to allow flows to take advantage of the information, and
then data packets in the flow reference these labels to ob-
tain customized routing. Because the main point of active
networks is to provide flexibility, it is inherent that active
networks will run many protocols, with corresponding risk
to the users running the new protocols and even the net-
work itself. Hence there is an added need to find techniques
for reasoning about the correctness of active network proto-
cols. We illustrate our approach by looking at the correct-
ness problem for FBAR.

Due to its global requirements and distributed execution
behavior, network protocols are known to be error prone.
Verifying network protocols has been recognized as an in-
teresting and challenging problem [12]. One approach to
the problem is model checking [9, 8, 2]. In the model check-

ing paradigm, an abstract model is chosen to specify the
network and the protocol. In PROMELA [13], an inter-
leaving network model with channels forms the basic struc-
ture of the network model. One can then specify the proto-
col and check its correctness based on the underlying net-
work model. However, it is not always convenient to adopt
a fixed network modela priori. Suppose one would like
to model synchronous communication in PROMELA, then
one would have to simulate the communication on top of the
interleaving network model. Sometimes, it may not be clear
how to simulate various properties on a fixed model. One
can avoid relying on a fixed network model by using more
general abstract models. For instance, in shared variable
models like reactive modules [1], both the network and the
protocol can be specified by different modules. These mod-
ules are in turn composed together to form the system. It
therefore provides more flexibility at the price of explicitly
specifying the network as components in the model specifi-
cation. However, in spite of the added flexibility, users still
have to rely on the built-in general purpose model check-
ing algorithm to verify the protocol. Also, if the network
model or the protocol have properties different from those
of the general abstract model underlying the model check-
ing algorithm, such properties will not be utilized by these
tools.

We therefore need a general abstract framework for pro-
tocol specification that can naturally express the features of
new network models. Rewriting logic [15] offers both a
general semantic framework for concurrent system speci-
fication and a solution to the modeling of active packets
thanks to its reflective properties. In this new paradigm,
both the network model and the algorithms are specified
by a rewrite theory. Since rewriting logic is reflective, the
rewrite theory is itself a first-class entity in the logic. There-
fore, all information about a given rewrite theory can be
used by another rewrite theory at the metalevel for verifica-
tion and formal analysis purposes. Since the network and
the algorithm specifications form a rewrite theory, users can
then specify their own verification or formal analysis algo-
rithm in another rewrite theory that uses additional knowl-
edge about the specifications. Different verification and for-
mal analysis algorithms can be easily specified for different
network models within the same framework. This approach
thus provides a new paradigm for specification analysis and
verification in which users can specify a wide variety of
analysis and verification tasks instead of relying on an all-
purpose algorithm.

In this paper, we use the Maude rewriting logic lan-
guage [4] to model the FBAR algorithm and check its cor-
rectness on a specific initial state. The active network is
modeled by an object-oriented module in Maude [4]. Ac-
tive network nodes are modeled as objects, and active pack-
ets as messages. Active nodes as well as active packets have

local states that are kept in fields of the different objects
and messages. A network state is then a multiset of objects
and messages. Since the order of objects and messages in a
state is irrelevant, we can use an equational theory to iden-
tify equivalent network states. Maude provides built-inACI
attributes (Associative, Commutative and Identity) for mul-
tiset union. Hence a network state is modeled as a multiset
of objects and messages in the module, which is called a
configuration.

The network algorithm itself is specified by rewriting
rules. Since network states are configurations, each com-
putation of the algorithm can be thought of as a sequence of
rewrites from a configuration to a new configuration. There-
fore, the local behavior of the active network algorithm is
modeled by local changes to the configuration, expressed
as local applications of rewrite rules. In this way, we re-
duce the specification of a network algorithm to a set of
rewrite rules. That is, rewriting logic allows specifying lo-
cal changes to a global distributed state as local rewrites on
a term modulo some equational axiom such asACI. As our
example shows, the specification is intuitively clear, once
the underlying network model has been determined.

The formal analysis algorithm is also implemented in
Maude. It uses reflection to treat the specification of the
network and the network algorithm as data that can then be
both analyzed and executed using theMETA-LEVEL rewrite
theory [4]. Roughly speaking, theMETA-LEVEL theory pro-
vides users with facilities to access object-level entities at
the metalevel. With the help of meta level operators like
meta-apply, meta-reduce andmeta-rewrite, one can
control and analyze how the rewrites in an object-level
rewrite theory are performed. The formal analysis algo-
rithm then uses Maude to rewrite the network configura-
tions and checks whether the network algorithm satisfies
the desired correctness criteria. Since the network states are
modeled by an equational subtheory, not by rewrite rules,
one can analyze the same network algorithm on different
underlying network models, provided that the specification
has been changed properly. It is therefore possible to reuse
the same formal analysis algorithm on a variety of network
models. On the other hand, since the rewrite rules are first-
class entities in the metalevel theory, users can design a
wide range of formal analysis and formal verification algo-
rithms at the metalevel that exploit specific features of the
specification being analyzed.

In Section 2 we describe the network model as an object-
oriented module in Maude. The network algorithm is spec-
ified in Section 3. Section 4 introduces to theMETA-LEVEL
theory and the formal analysis algorithm. Future research
and conclusion are discussed in Section 5.

2

2. Network Model

A distributed configuration of objects and messages has
the following form:hO1 : C1jatts1i � � � hOm : CmjattsmiM1 � � �Mn
where we assume that the concatenation operator (multi-
set union) expressed by juxtaposition satisfies theACI at-
tributes, and where theOi’s are object ids, theCi’s are
classes, theatti’s are the attributes of objectOi and theMj ’s are messages. A rewrite rule in Maude specifies the
local concurrent transition from one configuration to an-
other. A general object-oriented rewrite rule in Maude is
as follows:hO1 : C1jatts1i � � � hOm : CmjattsmiM1 � � �Mn!hOi1 : C 0i1 jatts0i1i � � � hOik : C 0ik jatts0ik ihQ1 : D1jatts001i � � � hQp : Dpjatts00piM 01 � � �M 0q if C
whereC is the condition of the rule,Q1; : : : ; Qp are new
objects, andM 01; : : : ;M 0q are new messages.

In the specification of the FBAR algorithm, distributed
states of the network are modeled by configurations, and the
transitions of the algorithm are specified by rewrite rules in
Maude applied moduloACI.

2.1. Network Node

We define a classNode of network nodes with three at-
tributes, corresponding to the local information stored in
each node:

class Node | neighbors : Set,
mem : Dictionary,
table : Dictionary .

The attributeneighbors is a set of object ids. It con-
tains the ids of its immediate neighbor nodes. Attributes
mem andtable represent a local memory and a routing ta-
ble, respectively. The data structureDictionary is speci-
fied in Maude as follows.

sorts Entry Dictionary .
subsort Entry < Dictionary .
op entry : Key Value -> Entry .
op blank : -> Dictionary .
op dict : Dictionary Dictionary -> Dictionary

[assoc comm id:blank] .

This fragment of the Maude specification declares two sorts,
Entry and Dictionary, and their subsort inclusion re-
lation. One can construct a dictionary by supplying two
smaller dictionaries to the operatordict. The square brack-
ets specify the attributes of the operatordict, namely, as-
sociative (assoc), commutative (comm) and with identity
blank (id:blank).

In PLANet, each PLAN packet can retrieve and store
data at its current host node. Initially, each node is associ-
ated with a metric, to be used as a local measurement of the
environment by the algorithm. For example, one may con-
sider the average length of the waiting queue of the node.
The entry of the local memory with the key’metric mod-
els the measurement associated with the node.

An instance of classNode is represented as:

< ’n0 : Node | neighbors: set(’n1, ’n3),
table: blank,
mem: entry (’metric, 5) >

Here’n0 is the object id of the instance and its memory
contains an entry mapping’metric to 5. Notice that the
order of the attributes is immaterial.

2.2. Packets

Packets are modeled by messages. There are three kinds
of packets in the algorithm. The comments (lines following
***) indicate the meanings of arguments.

*** pScout : sId loc src dst path
msg pScout : Session Host Host Host List

-> Message
*** pFlow : sId loc dst last path
msg pFlow : Session Host Host Host List

-> Message
*** pData : data sId loc dst
msg pData : Data Session Host Host

-> Message

Each packet has a session id and a current location. The
source and the destination inpScout andpFlow packets
denote the source node and destination node of the message.
They also keep a list, where the visited nodes and their met-
rics are stored. In addition to the destination,pData has
also a field storing the data of the message.

3. Algorithm Specification

As mentioned earlier, each step of the algorithm is speci-
fied by rewrite rules in Maude. The algorithm is divided into
three parts. When the user wants to send a message from
nodesrc to nodedst, the algorithm first sends out scout
packets, trying to find an optimal route fromsrc to dst ac-
cording to the predefined metric. After a route is found, a
flow packet is created to set up the route fromsrc to dst.
After a route is established, the data packets are sent todst.

Since packets and nodes only have local information, it
is possible for some data packets to arrive to the destination
while some scout packets are still in transit. Similarly, the
route may change while data packets are still on their way.
Because of this complexity, it is not obvious that this infor-
mal description of the algorithm actually delivers messages
correctly.

3

3.1. Initialization

When a user issues a message sending command, a
Maude message is created to model this phenomenon.

msg send_from_to_of_ : Data Host Host Session
-> Message .

The infix notation uses underlines () to indicate where the
arguments of the message are placed.

This message is then translated into a scout packet and a
wait message in the source node.

*** Wait : sId data src
msg Wait : Session Data Host -> Message .

rl [Init] :
(send d from src to dst of sId)

=>
pScout(sId, src, src, dst, nil)
Wait(sId, d, src) .

The keywordrl indicates that the statement is a rewrite
rule. It is followed by the rule label (Init) placed inside
square brackets. If a subterm of the configuration matches
the lefthand side instance of the rule, it is replaced by the
righthand side of the rule when the rule is applied. Con-
ditional rewrite rules have a similar form, except that the
keywordcrl is used, and another keywordif follows the
rule to specify the applicable condition.

3.2. Scouting

When a scout packet arrives at a node, it tries to com-
pare its route with previous ones by looking up the node’s
local memory. If its route has a better metric than the metric
stored in the memory, the new metric is stored in the node’s
local memory, and the node and the new metric are stored
in the packet’s local list as well. The scout then goes on
scouting neighbors of the current node.

crl [RecScout] :
< N : Node | neighbors: S, mem: D >
pScout(sId, N, M, M’, list(pair(N’, metric), L))

=>
< N : Node | neighbors: S,

mem: assign(sId,
metric+lookup(’metric, D), D) >

scoutNeighbors(sId, S, N, M, M’,
list(pair(N, metric+lookup(’metric, D)),

pair(N’, metric), L))
if (metric+lookup(’metric,D) < lookup(sId,D))
and (N =/= M’) .

The metric of the route from the source to the current
node is stored in the local memory with key equal to the
session id. Each scout packet also stores the pair consisting
of the node and its associated metric on its list. The infor-
mation on the list is used to compute the metric on the next
node.

Notice that it is unnecessary to list all attributes of an
object in a rule. In the above code fragment, the attribute
table of classNode does not appear in the rule, because
it is irrelevant to the transition. If some attributes do not
appear in a rule and the rule is applied to an object, the value
of the unspecified attributes of the object stay unchanged.

If, on the other hand, the scout packet finds that there is
another route which is better than its own, then it kills itself.
This can be specified by the following rewrite rule.

crl [RecScout] :
< N : Node | mem: D >
pScout(sId,
N, M, M’, list(pair(N’, metric), L)))

=>
< N : Node | mem: D >

if (lookup(sId, D) <= metric + lookup(’metric, D))
and (N =/= M’) .

When a scout packet arrives at its destination (that is,
its loc anddst fields are equal) it installs the route metric
on the destination node’s local memory, and sends a flow
packet to set up the route.

rl [SendFlow] :
< N : Node | mem: D >
pScout(sId,
N, M, N, list(pair(N’, metric), L)))

=>
< N : Node | mem: assign(sId, metric, D) >
pFlow(sId,
N’, N, N, list(pair(N’, metric), L))) .

Notice that the entire list built by the scout packet is
passed to the flow packet. It is essential to keep all infor-
mation while the new route is being established.

3.3. Establishing a Route

Each flow packet is associated with a route. The job of
the flow packet is to establish the route from the source to
the destination. However, since the algorithm is running
in a distributed manner, one cannot install the route naively.
This is because the route it finds may be invalidated by other
scout packets. If we were to set up the old route blindly,
the algorithm might not use a better route to transmit data
packets. Even worse, no route fromsrc to dst would be
established under some circumstances.

Since each node contains the metric of the best route so
far, this information is used to check whether the route is
still valid or not. Therefore, if the flow packet finds out that
the stored metric on the node is not the same as its own, it
garbage collects itself.

crl [RecFlow] :
< N : Node | mem: D >
pFlow(sId, N, M, N’, list(pair(N, metric), L)))

=>
< N : Node | mem: D >

if lookup(sId, D) =/= metric .

4

However, if it finds out that the two metrics are the same,
it installs the next hop on the routing table and continues its
way back to the source node.

crl [RecFlow] :
< N : Node | mem: D, table: T >
pFlow(sId, N, M, N’, list(pair(N, metric),

pair(M’, metric’), L)))
=>
< N : Node | mem: D,

table: assign(sId, map(M, N’, metric), T) >
pFlow(sId, M’, M, N,

list(pair(M’, metric’), L))
if lookup(sId, D) == metric .

Finally, when it arrives at the source node, the route has
been established and the flow packet dies.

rl [EndFlow] :
< N : Node | table: T >
pFlow(sId, N, M, N’, pair(N, metric)))

=>
< N : Node |

table: assign(sId, map(M, N’, metric), T) > .

3.4. Sending Data

Now a route for this session is established. The next step
is to send data to the destination via the route. Recall that
the original data is stored in theWait message. If a route
associated with the same session id is installed on the same
node, theWait message is transformed into a data packet.
This is done by the following rule:

rl [Send] :
Wait(K, m, N)
< N : Node |

table: dict(entry(K,
map(M, M’, metric)), T) >

=>
pData(m, K, N, M)
< N : Node |

table: dict(entry(K,
map(M, M’, metric)), T) > .

The data packet is then sent to the destination. It is sent
to the next hop if there is an entry associated with the same
session id and destination in the routing table.

crl [RecData] :
< N : Node |

table: dict(entry(K,
map(N’, M, metric)), T) >

pData(m, K, N, N’)
=>
< N : Node |

table: dict(entry(K,
map(N’, M, metric)), T) >

pData(m, K, M, N’)
if N =/= N’ .

Otherwise, it dies:

crl [RecData] :
< N : Node | table: T >
pData(m, sId, N, N’)) =>
< N : Node | table: T >

if not(inD(sId, T)) and (N =/= N’) .

At the end of the successful computation, the configura-
tion has the following form:hN0 : Nodejneighbors:Nbr0; mem:D0; table:T0i� � �hNm : Nodejneighbors:Nbrm; mem:Dm; table:Tmi
pData(d0; sId0; dst0; dst0)� � �
pData(dn; sIdn; dstn; dstn)
4. Formal Analysis of the Algorithm

Even though one can test the algorithm by running the
Maude specification as shown above, it is far from clear
whether the algorithm will always deliver messages cor-
rectly. In this section, we explain how one can use Maude as
a formal analysis tool to check that all the possible concur-
rent executions of the FBAR algorithm from a given initial
state yield a correct result.

4.1. Reflection and theMETA-LEVEL

Rewriting logic is reflective [6, 3] in the sense that there
is a universal, finitely presented rewrite theoryU that can
simulate all other finitely presented theories, including it-
self. Specifically, given a rewrite theoryR and termst, t0 inR, there are termsR, t, t0 in U representing them such thatR ` t! t0 , U ` hR; ti ! hR; t0i

In Maude, key functionality of the universal theoryU has
been efficiently implemented in theMETA-LEVEL module.
RepresentationsR of rewrite theoriesR, that is of modules,
are terms of sortModule. Similarly, the representation of a
termt is a termt of sortTerm.

TheMETA-LEVEL module provides several useful func-
tions that simulate at the level of their metarepresentation
deduction steps in any Maude module (that is, rewrite the-
ory)R. The most important such function for our purposes
in this paper is themeta-apply function, that simulates
the application of a given rewrite rule to a term. Its operator
declaration is

op meta-apply : Module Term Qid Substitution
MachineInt -> ResultPair

Its first four arguments are metarepresentations of a mod-
ule R, a termt in R, a rule label̀ , and a (partial) sub-
stitution �. Its last argument is a natural numbern. Its

5

result is a pair consisting of the metarepresentations of a
term and a substitution, or an error expression. We have
meta-apply(R; t; `; �; n) = ft0; �0g if and only if�0 is thenth substitution extending� such that a rulè : u! v inR
rewrites in one step�0(u) = t to �0(v) andt0 is the fully re-
duced term resulting from applying to�0(v) the equations
in R. If no such substitution exists, the result is an error
expression.

Themeta-apply function allows us to simulate at the
metalevelelementarysteps of rewriting. We can then define
arbitrarily complex sequences of rewriting, that is, arbitrar-
ily complexstrategiesby stating their defining equations in
terms ofmeta-apply and other such functions in a module
extendingMETA-LEVEL. In particular, we can analyze the
behavior of a module such as the specification of the FBAR
algorithm by writing an adequate strategy that will explore
all the behaviors from an initial state up to termination.

4.2. General Framework

In Sections 2 and 3 we explained how to model the net-
work and how to specify the algorithm using an object-
oriented module in Maude to describe the network states
(configurations) and the algorithm (rewrite rules). Our ap-
proach is to use the reflective kernelMETA-LEVEL pro-
vided in Maude to control the rewrite strategy and to ex-
plore all the possible concurrent computations from an ini-
tial state specified in the model to check the correctness of
the algorithm for the given initial configuration.

Let the object theoryFBAR-ALG be the Maude specifica-
tion of the FBAR algorithm. At the metalevel one can repre-
sent the object theoryFBAR-ALG by a termFBAR-ALG, and
each termt in FBAR-ALG can likewise be represented by a
term �t. Then a rewritet ! t0 in FBAR-ALG is equivalent
to a rewritehFBAR-ALG; ti ! hFBAR-ALG; t0i at the met-
alevel. Furthermore, we can ask Maude to apply a particular
rewrite rule ofFBAR-ALG using themeta-apply function.

4.3. Overview of the Formal Analysis Algorithm

The formal analysis algorithm is also implemented in
Maude. As explained in the previous section, the analy-
sis algorithm resides at the metalevel, while the specifica-
tion is at the object level. The goal is to explore all possible
computations from a given initial state to check correctness.
Therefore, we analyze all possible rewrite sequences and
check whether the data packets arrive to their destinations
at the end of each computation.

Even for small initial states such as those in our experi-
ment, there are many different computation paths and there-
fore a naive breadth-first analysis algorithm can easily lead
to a combinatorial explosion. Therefore, we introduced two
optimizations in the analysis algorithm.

���� I@@@R����	@@@R
n1
n2n0 n3

Figure 1. Simple Network

Since we are only interested in the final states, the com-
putations of different runs can be executed independently
until they terminate. This gives us the first optimization of
the algorithm, namely, parallelization. Our idea is to give
an ordering on sequences of rewrite rules. The analysis al-
gorithm is then modified to check all possible rewrite se-
quences between two given rewrite sequences in a lexico-
graphic order of sequences. Hence, the job can be divided
into several smaller jobs and these smaller jobs can be as-
signed to different machines.

Our second optimization comes from observing the rep-
etition of the visited states. If the current configuration has
been explored, it is not necessary to traverse its descendants
again. If one can keep track of a cache of states that have
already been explored, the revisited states will not be ex-
plored again.

4.4. Correctness Criterion

Consider the simple network shown in Figure 1. Suppose
the initial configuration contains two messages:

(send 0 from ’n0 to ’n3 of ’session1)
(send 1 from ’n0 to ’n1 of ’session2)

Our correctness criterion for the algorithm consists in
checking that in all execution sequences all messages ar-
rive to their destinations. One can easily write a predicate
to check this requirement in the object theory:

op valid : Configuration -> Bool .

vars s0 s1 : Session .
vars dst0 dst1 : Host .
vars c : Configuration .

eq valid(pData(0, s0, dst0, dst0)
pData(1, s1, dst1, dst1) c) =

(dst0 == ’n3) and (dst1 == ’n3) .

The operatorvalid takes a configuration (a multiset of
objects and messages) and checks if it contains twopData

messages at noden3.
6

4.5. Rewrite Sequence Ordering

We define an order on the execution of the FBAR algo-
rithm to explore the computation in parallel. All possible
computations can be partitioned and distributed to different
machines according to the execution order. Each machine
in turn is responsible for exploring its portions of compu-
tations. Since each elementary step in the algorithm is a
rewrite in the object theory, a computation is therefore a
sequence of rewrites. Each rewrite in Maude can be rep-
resented by a rewrite rule label and a natural number. The
label corresponds to the rewrite rule being applied; the natu-
ral number denotes the maximum number of rule rewrites to
be performed. By assigning an integer label to each rewrite
rule, one can compare two rewrites as two pairs of inte-
gers. Once the order of two rewrites is determined, we
can use lexicographic ordering to compare two sequences of
rewrites. The implementation of these predicates in Maude
is straightforward.

4.6. Exploring States

Given the initial configuration and a sequence of
rewrites, our task is to find the next sequence of rewrites
according to the rewrite sequence order. This section ex-
plains thenextRewrites function. We declare the opera-
tor nextRewrites as follows.

op nextRewrites : Module RuleIdList Term
Rewrites Rewrites Strategy
-> Strategy .

The first argument indicates which object theory is used.
In Maude, the term encoding the object theory is of sort
Module. It is followed by a list of rule labels. The next
argument is the term representing the current state. The
applied rewrite rules and the last sequence of rewrites are
followed by a strategy. The sortStrategy keeps the infor-
mation needed for search.

The key strategy isresume. It stores the cache and the
remaining rewrites of the current rewrite sequence. At the
top level, one invokesnextRewrites as follows.

op resume : Rewrites Cache -> Strategy .
nextRewrites(FBAR-ALG, SCOUTRuleIdList,

init, emptyRewrite, end,
resume(start, emptyCache)) .

WhereFBAR-ALG is the term representing the algorithm
specification module,FBARRuleIdList is the list of all
rule labels,init is the initial configuration,end is the last
rewrite sequence to check,start is the first rewrite se-
quence to check, andemptyCache will store visited con-
figurations.

NextRewrites then tries to apply the first rewrite of the
resume strategy. If it succeeds, it looks for the resulting

configuration in the cache in order to avoid repetition. The
built-in operatormeta-apply applies a rewrite rule to an
object-level term and reduces it according to the equational
object theory.

If the configuration is in the cache, it means that another
previously explored rewrite sequence already reached that
configuration. Therefore, it is unnecessary to check it again.
Instead, we check the next rewrite sequence with the next
prefix in the rewriting sequence order.

When there is no remaining rewrite in theresume strat-
egy, one has to check whether a terminating configuration
has been reached. Because of the cache, theresume strat-
egy only contains a prefix of a terminating computation. It
is necessary to explore new states even if there are no more
rewrites in theresume strategy.

At the end of each computation, we use thecheck strat-
egy to check the correctness criterion.

op check : Term Rewrites Rewrites Cache
-> Strategy .

Finally, the back strategy handles backtracking.
Since the current rewrite sequence is a parameter of
nextRewrites, we just replace it by the next rewrite and
insert the current configuration in the cache.

We have analyzed a simple active network with four
nodes within the framework. Figure 1 shows the connec-
tions in our experiment. It took about 8 CPU days on two
computers (4 processor Sparc and Pentium 266) to perform
the analysis. There is ample room for improving perfor-
mance, including much more aggressive parallelization ex-
ploiting the independence of search subtasks. Our experi-
ment used a prototype version of Maude. We plan to further
optimize and parallelize the algorithm and to perform fur-
ther experiments on the latest version of Maude, which can
reach up to 1.66 million rewrites per second on a 500 MHz
Alpha for some applications.

5. Conclusion and Future Directions

We have argued that rewriting logic and the Maude lan-
guage offer great flexibility for modeling network protocols
in which new network models and new forms of analysis
not supported by standard model checking approaches are
needed. We have illustrated how this can be done in the area
of active networks by analyzing the behavior of a PLAN al-
gorithm. It is clear from this experience that rewriting logic
can be used not only to specify new network models, but
also to specify a wide range of formal analysis and formal
verification algorithms by reflection within the logic. Our
approach can be summarized by the following correspon-
dence:

equational theory $ network model

7

rewrite rules $ network algorithm

metalevel theory $ formal analysis algorithm

At each level, rewriting logic offers a suitable abstraction
for the specification and for the formal analysis algorithm.
For example, the equivalence classes of terms abstract away
unnecessary information about the concrete representations
of network states. TheMETA-LEVEL theory makes gen-
eral analysis and verification algorithms possible, regard-
less of any particular network model or algorithm. Since
current research on next generation networks intends to de-
velop new protocols and new network models, rewriting
logic seems quite promising as a formal specification and
analysis framework in this area. In fact, the following tasks
should be supported:

1. formal specification of network models and protocols;

2. simulation of designs by execution of their specifica-
tions;

3. formal analysis of designs by model checking tech-
niques;

4. formal analysis by symbolic model checking;

5. formal verification using theorem proving techniques.

The present work has illustrated how tasks 1 – 3 can be
carried out in Maude. As already mentioned, the perfor-
mance of task 3 should be drastically improved through par-
allelization, optimization and program transformation tech-
niques. Task 4, in which the formal analysis can be car-
ried out not from a single initial state, but from a possibly
infinite set of states represented by a symbolic expression
is currently under investigation. For task 5 it may be ad-
vantageous to use temporal logic specification formalisms
that exploit the object-oriented features of Maude rewriting
logic specification, such as those proposed by Denker [7]
and Lechner [14]. The theorem proving tools already de-
veloped for Maude [5], and other such tools that could like-
wise be developed using reflective techniques could be used
to mechanize this task.

The present case study involved formalizing the PLAN
algorithm in rewriting logic, and then formally analyzing
the resulting Maude specification. A promising alternative,
that we intend to explore, is to give aformal semanticsin
Maude to the PLAN language. In this way, formal analysis
and formal verification of PLAN algorithms could be car-
ried out within Maude using both metalevel strategies and
Maude’s theorem proving tools [5] without any need for a
separate specification of the algorithms.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. InProceed-
ings, 11th Annual IEEE Symposium on Logic in Computer
Science, pages 207–218, New Brunswick, New Jersey, 27–
30 July 1996. IEEE Computer Society Press.

[2] E. M. Clarke. Temporal logic model checking. In
J. Małuszyński, editor,Proceedings of the International
Symposium on Logic Programming (ILPS-97), pages 3–4,
Cambridge, Oct.13–16 1997. MIT Press.

[3] M. Clavel. Reflection in General Logics and in Rewriting
Logic with Applications to the Maude Language. PhD thesis,
University of Navarre, 1998.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-
Oliet, J. Meseguer, and J. Quesada.Maude: Speci-
fication and Programming in Rewriting Logic. Com-
puter Science Laboratory, SRI International, March 1999.
http://maude.csl.sri.com/manual/maude-manual-html.

[5] M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building
equational proving tools by reflection in rewriting logic. In
Proc. of the CafeOBJ Symposium, Numazu, Japan, April
1998. CafeOBJ Project.

[6] M. Clavel and J. Meseguer. Reflection and strategies in
rewriting logic. In J. Meseguer, editor,Proc.1st Intl. Work-
shop on Rewriting Logic and its Applications, volume 4 of
Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

[7] G. Denker. From rewrite theories to temporal logic theories.
In H. Kirchner and C. Kirchner, editors,Proc. 2nd Workshop
on Rewriting Logic and its Applications, Pont-A-Mousson,
France, September 1998. Elsevier Science B.V.

[8] E.A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositional mucalculus. InProccedings
of the First Annual Symposium on Logic in Computer Sci-
ence, pages 267–278, Washington, D.C., 1986. IEEE Com-
puter Society Press.

[9] E. A. Emerson. Model checking and efficient automation
of temporal reasoning.Lecture Notes in Computer Science,
962:393–??, 1995.

[10] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. PLAN: A packet language for active networks. InPro-
ceedings of the Third ACM SIGPLAN International Confer-
ence on Functional Programming Languages, pages 86–93,
Baltimore, Maryland, September 1998. ACM Press.

[11] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and
S. Nettles. PLANet: An active internetwork. InProceed-
ings of the Eighteenth IEEE Computer and Communica-
tion Society Infocom Conference, pages 1124–1133, Boston,
Massachusetts, March 1999. IEEE Communication Society
Press.

[12] G. J. Holzmann.Design and Validation of Computer Proto-
cols. Prentice Hall, 1990.

[13] G. J. Holzmann. Proving properties of concurrent systems
with SPIN.Lecture Notes in Computer Science, 962:453–??,
1995.

[14] U. Lechner. Object-oriented specifications of distributed
systems in the�-calculus and Maude.Electronic Notes in
Theoretical Computer Science, 4:384–403, 1996.

8

[15] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theoretical Computer Science, 96(1):73–
155, Apr. 1992.

[16] J. M. Smith, K. L. Calvert, S. L. Murphy, H. K. Orman,
and L. L. Peterson. Activating networks: A progress report.
IEEE Computer, 32(4):32–41, April 1999.

[17] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, pages 80–86,
January 1997.

9

