Specification and Formal Analysis of a PLAN Algorithm in Maude

Bow-Yaw Wang José Meseguer
Department of Computer and Information Science Computer Science Laboratory
University of Pennsylvania SRI International
200 South 33rd Street 333 Ravenswood Ave
Philadelphia, PA 19104-6389, USA Menlo Park, CA 94025, USA
bywang@saul.cis.upenn.edu meseguer@csl.sri.com

Carl A. Guntet
Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389, USA
gunter@cis.upenn.edu

Abstract the algorithm for a given scenario. Aarctive network is
an internet in which routers provide a programmable inter-

Rewriting logic can be used as a semantic framework face to network users. A wide range of interfaces have been
to model next-generation networks and algorithms such asexplored [17, 16] with the goal of finding a programming
those of active networks with greater flexibility than stan- model that will allow users to exploit increased flexibility
dard model checking approaches. Using reflection, a wide for routing elements. In FBAR, packets are enabled to ob-
range of formal analyses can be performed on a given spec-ain information about the network from the routers and use
ification by specifying an analysis algorithm as a metalevel this information to set up customized flows that take advan-
theory that executes the specification as an object-level entage of learned network attributes. For instance, an appli-
tity. We illustrate how the reflective rewriting logic lan- cation requiring high bandwidth may set up labels to use a
guage Maude can be used for this kind of formal specifica- satellite link, whereas an application requiring low latency
tion and analysis by means of an active network algorithm may establish a path using low-bandwidth terrestrial links.
written in the PLAN language, whose correct behavior from The algorithm sends owcoutpackets which collect net-
a given initial state is formally analyzed using the proposed work attributes and then determines a good route based on
methods. the collected informationConfigurationpackets set labels
to allow flows to take advantage of the information, and
then data packets in the flow reference these labels to ob-
tain customized routing. Because the main point of active
networks is to provide flexibility, it is inherent that active
networks will run many protocols, with corresponding risk

In this paper we show how to formally specify an ac- to the users running the new protocols and even the net-
tive network algorithm calle&low Based Adaptive Routing work itself. Hence there is an added need to find techniques
(FBAR)that was introduced in [11] using the Packet Lan- for reasoning about the correctness of active network proto-
guage for Active Networks (PLAN) [10]. Our formalization cols. We illustrate our approach by looking at the correct-
uses Maude [4], and we use Maude to prove correctness ohess problem for FBAR.

1. Introduction

*Supported by DARPA through Rome Laboratories Contract B306 Due to its global requirements and distributed execution
97'TCS'0312 anddt?y 8:;2 :fr']\‘ava'hRsseafCE‘ Eomrac_f N%OOLW;;% behavior, network protocols are known to be error prone.
upporte y tl roug ome Laboratories Contract e . L.
97-C-0312 and by Office of Naval Research Contracts NOO@&&-9114 Verlfyl_ng network prOto_C()ls has been recognlzed asanin
and N00014-99-C-0198. teresting and challenging problem [12]. One approach to

tSupported by DARPA contract N66001-96-C-852. the problemis model checking [9, 8, 2]. Inthe model check-

ing paradigm, an abstract model is chosen to specify thelocal states that are kept in fields of the different objects
network and the protocol. In PROMELA [13], an inter- and messages. A network state is then a multiset of objects
leaving network model with channels forms the basic struc- and messages. Since the order of objects and messages in a
ture of the network model. One can then specify the proto- state is irrelevant, we can use an equational theory to iden-
col and check its correctness based on the underlying nettify equivalent network states. Maude provides builAi@I

work model. However, it is not always convenient to adopt attributes (Associative, Commutative and Identity) for mul-

a fixed network modeh priori. Suppose one would like tiset union. Hence a network state is modeled as a multiset
to model synchronous communication in PROMELA, then of objects and messages in the module, which is called a
one would have to simulate the communication on top of the configuration

interleaving network model. Sometimes, it may not be clear

how to simulate various properties on a fixed model. One The network algorithm itself is specified by rewriting
can avoid relying on a fixed network model by using more ryles. Since network states are configurations, each com-
general abstract models. For instance, in shared variablebutation of the algorithm can be thought of as a sequence of
models like reactive modules [1], both the network and the rewrites from a configuration to a new configuration. There-
protocol can be specified by different modules. These mod-fore, the local behavior of the active network algorithm is
ules are in turn composed together to form the system. Itmodeled by local changes to the configuration, expressed
therefore pI‘OVides more f|eXIbI|I'[y at the pl‘ice of explICIﬂy as local appiications of rewrite rules. In this way, we re-
specifying the network as components in the model specifi- quce the specification of a network algorithm to a set of
cation. HOWeVer, in Spite of the added ﬂeX|b|l|ty, users still rewrite rules. That iS, rewriting |ogic allows Specifying lo-
have to rely on the built-in general purpose model check- cal changes to a global distributed state as local rewrites on
ing algorithm to verify the protocol. Also, if the network 3 term modulo some equational axiom suchh\@s. As our
model or the protocol have properties different from those example shows, the specification is intuitively clear, once

of the general abstract model underlying the model check-the underlying network model has been determined.
ing algorithm, such properties will not be utilized by these

tools. The formal analysis algorithm is also implemented in

We therefore need a general abstract framework for pro- Maude. It uses reflection to treat the specification of the
tocol specification that can naturally express the features ofnetwork and the network algorithm as data that can then be
new network models. Rewriting logic [15] offers both a both analyzed and executed using MEFA- LEVEL rewrite
general semantic framework for concurrent system speci-theory [4]. Roughly speaking, th&ETA- LEVEL theory pro-
fication and a solution to the modeling of active packets vides users with facilities to access object-level entities at
thanks to its reflective properties. In this new paradigm, the metalevel. With the help of meta level operators like
both the network model and the algorithms are specified net a- appl y, met a- r educe andnet a-rewri t e, one can
by a rewrite theory. Since rewriting logic is reflective, the control and analyze how the rewrites in an object-level
rewrite theory is itself a first-class entity in the logic. There- rewrite theory are performed. The formal analysis algo-
fore, all information about a given rewrite theory can be rithm then uses Maude to rewrite the network configura-
used by another rewrite theory at the metalevel for verifica- tions and checks whether the network algorithm satisfies
tion and formal analysis purposes. Since the network andthe desired correctness criteria. Since the network states are
the algorithm specifications form a rewrite theory, users can modeled by an equational subtheory, not by rewrite rules,
then specify their own verification or formal analysis algo- one can analyze the same network algorithm on different
rithm in another rewrite theory that uses additional knowl- underlying network models, provided that the specification
edge about the specifications. Different verification and for- has been changed properly. It is therefore possible to reuse
mal analysis algorithms can be easily specified for different the same formal analysis algorithm on a variety of network
network models within the same framework. This approach models. On the other hand, since the rewrite rules are first-
thus provides a new paradigm for specification analysis andclass entities in the metalevel theory, users can design a
verification in which users can specify a wide variety of wide range of formal analysis and formal verification algo-
analysis and verification tasks instead of relying on an all- rithms at the metalevel that exploit specific features of the

purpose algorithm. specification being analyzed.
In this paper, we use the Maude rewriting logic lan-
guage [4] to model the FBAR algorithm and check its cor- In Section 2 we describe the network model as an object-

rectness on a specific initial state. The active network is oriented module in Maude. The network algorithm is spec-
modeled by an object-oriented module in Maude [4]. Ac- ified in Section 3. Section 4 introduces to MeTA- LEVEL

tive network nodes are modeled as objects, and active packtheory and the formal analysis algorithm. Future research
ets as messages. Active nodes as well as active packets hawand conclusion are discussed in Section 5.

2. Network Model

In PLANet, each PLAN packet can retrieve and store
data at its current host node. Initially, each node is associ-

A distributed configuration of objects and messages has@ted with a metric, to be used as a local measurement of the

the following form:
(O1 : Cylattsy) - (Op, : Cpplatts,)My - - My,

environment by the algorithm. For example, one may con-
sider the average length of the waiting queue of the node.

where we assume that the concatenation operator (multi-1N€ entry of the local memory with the keyret ri ¢ mod-

set union) expressed by juxtaposition satisfiesAkx at-
tributes, and where thé;’s are object ids, the&’;'s are
classes, thait;'s are the attributes of objecd; and the
M;'s are messages. A rewrite rule in Maude specifies the
local concurrent transition from one configuration to an-
other. A general object-oriented rewrite rule in Maude is
as follows:

(O1 : Cylattsy) - (Op, : Cpplatts,)My - - My,
_)
(O, : Cf |atts;,) -+ (O;, = Cf |atts])
(Q1 : Dlattsy) ---(Qp : Dylattsy)
My --- M, if C
where(is the condition of the rule@),,. .., Q, are new

objects, and\j, ..., M, are new messages.
In the specification of the FBAR algorithm, distributed

states of the network are modeled by configurations, and the** pScout :

transitions of the algorithm are specified by rewrite rules in
Maude applied modulACI.

2.1. Network Node

We define a classode of network nodes with three at-
tributes, corresponding to the local information stored in
each node:

cl ass Node | neighbors : Set,

mem : Dictionary,
table : Dictionary .

The attributenei ghbor s is a set of object ids. It con-
tains the ids of its immediate neighbor nodes. Attributes
memandt abl e represent a local memory and a routing ta-
ble, respectively. The data structubect i onary is speci-
fied in Maude as follows.

sorts Entry Dictionary .
subsort Entry < Dictionary .

op entry : Key Value -> Entry .
op blank : -> Dictionary .
op dict : Dictionary Dictionary -> Dictionary

[assoc comm i d: bl ank]

This fragment of the Maude specification declares two sorts,
Entry andDi cti onary, and their subsort inclusion re-
lation. One can construct a dictionary by supplying two
smaller dictionaries to the operattirct . The square brack-
ets specify the attributes of the operadibrct , namely, as-
sociative &ssoc), commutative ¢onm) and with identity

bl ank (i d: bl ank).

els the measurement associated with the node.
An instance of classode is represented as:

< 'n0 : Node | neighbors: set(’'nl, 'n3),
tabl e: bl ank,
mem entry ('netric, 5) >

Here’ n0 is the object id of the instance and its memory
contains an entry mappirigret ri c to 5. Notice that the
order of the attributes is immaterial.

2.2. Packets

Packets are modeled by messages. There are three kinds
of packets in the algorithm. The comments (lines following
**) indicate the meanings of arguments.

sld loc src dst path
nmsg pScout : Session Host Host Host List
-> Message
***x pFlow : sld loc dst last path
msg pFlow : Session Host Host Host List
-> Message
*** pData : data sld loc dst
nmsg pData : Data Session Host Host
-> Message

Each packet has a session id and a current location. The
source and the destination jrscout andpFl ow packets
denote the source node and destination node of the message.
They also keep a list, where the visited nodes and their met-
rics are stored. In addition to the destinatipiat a has
also a field storing the data of the message.

3. Algorithm Specification

As mentioned earlier, each step of the algorithm is speci-
fied by rewrite rules in Maude. The algorithm is divided into
three parts. When the user wants to send a message from
nodesrc to nodedst, the algorithm first sends out scout
packets, trying to find an optimal route frosnc to dst ac-
cording to the predefined metric. After a route is found, a
flow packet is created to set up the route frem to dst.
After a route is established, the data packets are sehitto

Since packets and nodes only have local information, it
is possible for some data packets to arrive to the destination
while some scout packets are still in transit. Similarly, the
route may change while data packets are still on their way.
Because of this complexity, it is not obvious that this infor-
mal description of the algorithm actually delivers messages
correctly.

3.1. Initialization Notice that it is unnecessary to list all attributes of an
object in a rule. In the above code fragment, the attribute

When a user issues a message sending command, gabl e of classNode does not appear in the rule, because

Maude message is created to model this phenomenon. it is irrelevant to the transition. If some attributes do not
appear in arule and the rule is applied to an object, the value

of the unspecified attributes of the object stay unchanged.
If, on the other hand, the scout packet finds that there is

The infix notation uses underlineg (o indicate where the another route which is better than its own, then it kills itself.

msg send_fromto_of _ : Data Host Host Session
-> Message .

arguments of the message are placed. This can be specified by the following rewrite rule.
This message is then translated into a scout packet and a
. ; crl [RecScout] :

wait message in the source node. <N: Node | mem D >

*** Wit : sld data src pScout (sl d,

msg Wit . Session Data Host -> Message . R N, M M, list(pair(N, netric), L)))
< N: Node | nem D >
if (lookup(sld, D) <= nmetric + | ookup('metric, D))

and (N=/=M) .

rl [Init]

(send d fromsrc to dst of sld)
=>

pScout (sld, src, src, dst, nil)

Vait(sid d src) . When a scout packet arrives at its destination (that is,

its | oc anddst fields are equal) it installs the route metric
The keywordr | indicates that the statement is a rewrite on the destination node’s local memory, and sends a flow
rule. It is followed by the rule labell i t) placed inside packetto set up the route.
square brackets. If a subterm of the configuration matches, [SendFl ow
the lefthand side instance of the rule, it is replaced by the < N : Node | nem D >
righthand side of the rule when the rule is applied. Con- pScout(sld,
ditional rewrite rules have a similar form, except that the N M N list(pair(N, netric), L)))

keywordcr | is used, and another keyword follows the _>< N: Node |

rule to specify the applicable condition. pFl ow(sl d,
N, N N, list(pair(N, nmetric), L))) .

mem assign(sld, netric, D) >

3.2. Scouting Notice that the entire list built by the scout packet is

passed to the flow packet. It is essential to keep all infor-

When a scout packet arrives at a node, it tries to com- mation while the new route is being established.

pare its route with previous ones by looking up the node’s
local memory. If its route has a better metric than the metric
stored in the memory, the new metric is stored in the node’s
local memory, and the node and the new metric are stored
in the packet’s local list as well. The scout then goes on
scouting neighbors of the current node.

3.3. Establishing a Route

Each flow packet is associated with a route. The job of
the flow packet is to establish the route from the source to
the destination. However, since the algorithm is running

crl [RecScout] : in a distributed manner, one cannot install the route naively.
< N: Node | neighbors: S, mem D> _ This is because the route it finds may be invalidated by other

:>pS°°“t(S' do N.-M M, Tist(pair(N, mtric), L)) goqut packets. If we were to set up the old route blindly,
< N: Node | neighbors: S, the algorithm might not use a better route to transmit data

mem assign(sld, packets. Even worse, no route frome to dst would be
ccout Nei ghbgtrets[isf: nguﬁ(' "\TAE‘:VI' ¢, D, D > established under some circumstances.

i st (pair (N, met Fiotl Obkup(, metri ¢, D), Sln_ce.each no_de pontalns the metric of the best route.so
pair(N, metric), L)) far, this information is used to check whether the route is

if (metric+l ookup(’metric,D) < |ookup(sld,D)) still valid or not. Therefore, if the flow packet finds out that
and (N =/=M) . the stored metric on the node is not the same as its own, it

The metric of the route from the source to the current 92rPage collects itself.
node is stored in the local memory with key equal to the cri [RecFl ow
session id. Each scout packet also stores the pair consisting < N : Node | mem D> _ _
of the node and its associated metric on its list. The infor- =>pF' ow(std, N M N, Tist(pair(N metric), L)))
mation on the list is used to compute the metriconthe next < N . node | mem D >
node. if |ookup(sld, D) =/= metric .

However, if it finds out that the two metrics are the same, crl [RecDat a]
it installs the next hop on the routing table and continuesits < N : Node | table: T >

pData(m sid, N, N)) =>
way back to the source node. <N: Node | table: T >

crl [RecFl ow if not(inD(sld, T)) and (N=/=N) .

< N: Node | nem D, table: T > . .)
bFlow(sid, NN M N . list(pair(N, metric), At the end of the successful computation, the configura

pair(M, metric'), L))) tionhasthe following form:
=>

< N: Node | mem D, _ (N : Node|nei ghbor s: Nbry, mem Dy,t abl e: Tp)
table: assign(sld, map(M N, netric), T) > B

pFlow(sld, M, M N, ' .
list(pair(M, metric'), L)) (N, : Node|nei ghbor s: Nbr,,,,mem D,,,tabl e: T,,)

if 1ookup(sld, D) == netric . pDat a(dy, sIdy, dsty, dstg)

Finally, when it arrives at the source node, the route hasypat a(d,,, sId,,, dst,, dst,,)
been established and the flow packet dies.

ri [EndFl ow : i .
< N: Node | table: T > 4. Formal Analysis of the Algorithm
pFlow(sld, NN M N, pair(N netric)))
=>< N Node | Even though one can test the algorithm by running the
table: assign(sld, map(M N, netric), T) > . Maude specification as shown above, it is far from clear
whether the algorithm will always deliver messages cor-
3.4. Sending Data rectly. In this section, we explain how one can use Maude as

a formal analysis tool to check that all the possible concur-
Now a route for this session is established. The next stepre”t ex_ecutions of the FBAR algorithm from a given initial
is to send data to the destination via the route. Recall thatState yield a correct result.
the original data is stored in th&i t message. If a route)
associated with the same session id is installed on the samé-1. Reflection and thevETA- LEVEL
node, thenai t message is transformed into a data packet.

This is done by the following rule: Rewriting logic is reflective [6, 3] in the sense that there
is auniversal finitely presented rewrite theogy that can
ri [Send] : simulate all other finitely presented theories, including it-
\<MINt (Kl'\bg‘e :\') self. Specifically, given a rewrite theo and termg, ¢’ in

table: dict(entry(K R, there are term®, 7,7 in U representing them such that

mp(M M, netric)), T) >

= Rttt oUt- (R - (R,T)
pbata(m K, N M . . .
< N: Node | In Maude, key functionality of the universal the@dnhas
table: dict(entry(K, been efficiently implemented in theETA- LEVEL module.

map(M M, metric)), T) > . Representatior® of rewrite theoriesR, that is of modules,
The data packet is then sent to the destination. It is sent e ter_ms of sombdul e. Similarly, the representation of a
termt is a termt of sortTer m

o th? ”?Xt hop if th_ere IS an entry as;omated with the same The META- LEVEL module provides several useful func-
session id and destination in the routing table. . : ; .
tions that simulate at the level of their metarepresentation

crl [RecData] : deduction steps in any Maude module (that is, rewrite the-
< N: Node | ory) R. The most important such function for our purposes
table: dict(entry(K in this paper is theret a- appl y function, that simulates

map(N, M netric)), T) > L . .
pData(m K N N) the application of a given rewrite rule to a term. Its operator

= declaration is

< N : Node |) : . .
table: dict(entry(K, op neta-apply : Mddule Term Q d Substitution

map(N, M metric)), T) > Machi nel nt -> Resul t Pair
pbData(m K, M N)

if N=/=N . Its first four arguments are metarepresentations of a mod-
ule R, a termt in R, a rule labell, and a (partial) sub-
Otherwise, it dies: stitution o. Its last argument is a natural number Its

result is a pair consisting of the metarepresentations of a

term and a substitution, or an error expression. We have 79

met a- appl y(R,%,7,7,n) = {T 7'} ifand only if o' is the

nth substitution extending such thatarulé : w — vin R / \
rewrites in one step’(u) = ¢t to o’ (v) andt’ is the fully re- g n3

in R. If no such substitution exists, the result is an error
expression. N9

Thenet a- appl y function allows us to simulate at the
metaleveklementarsteps of rewriting. We can then define
arbitrarily complex sequences of rewriting, that is, arbitrar-
ily complexstrategiesy stating their defining equations in Figure 1. Simple Network
terms ofnet a- appl y and other such functions in a module
extendingMETA- LEVEL. In particular, we can analyze the
behavior of a module such as the specification of the FBAR
algorithm by writing an adequate strategy that will explore
all the behaviors from an initial state up to termination.

duced term resulting from applying 0 (v) the equations \ /

Since we are only interested in the final states, the com-
putations of different runs can be executed independently
until they terminate. This gives us the first optimization of
the algorithm, namely, parallelization. Our idea is to give
an ordering on sequences of rewrite rules. The analysis al-
gorithm is then modified to check all possible rewrite se-
guences between two given rewrite sequences in a lexico-

In Sections 2 and 3 we explained how to model the net- graphic order of sequences. Hence, the job can be divided
work and how to specify the algorithm using an object- jnto several smaller jobs and these smaller jobs can be as-
oriented module in Maude to describe the network statessigned to different machines.

(configurations) and the algorithm (rewrite rules). Ourap- oyr second optimization comes from observing the rep-
proach is to use the reflective kerdETA- LEVEL pro- etition of the visited states. If the current configuration has
vided in Maude to control the rewrite strategy and to ex- peen explored, it is not necessary to traverse its descendants
plore all the possible concurrent computations from an ini- again. If one can keep track of a cache of states that have

tial state specified in the model to check the correctness ofgjready been explored, the revisited states will not be ex-
the algorithm for the given initial configuration. plored again.

Let the object theorfBAR- ALGbe the Maude specifica-
tion of the EBAR algorithm. Atthe metalevel one canrepre- 4 4 Correctness Criterion
sent the object theolyBAR- ALGby a termFBAR- ALG, and
each termt in FBAR- ALG can likewise be represented by a
term¢. Then a rewritet — t' in FBAR- ALG is equivalent
to a rewrite(FBAR- ALG,7) — (FBAR-ALG ?) at the met-
alevel. Furthermore, we can ask Maude to apply a particular(send 0 from' n0 to 'n3 of ’sessioni)
rewrite rule ofFBAR- ALG using thenet a- appl! y function. (send 1 from’'n0 to 'nl of 'session2)

4.2. General Framework

Consider the simple network shown in Figure 1. Suppose
the initial configuration contains two messages:

Our correctness criterion for the algorithm consists in
checking that in all execution sequences all messages ar-

))) _ _rive to their destinations. One can easily write a predicate

The formal anqusm_algonthm is also mplemented N to check this requirement in the object theory:
Maude. As explained in the previous section, the analy-
sis algorithm resides at the metalevel, while the specifica-op valid : Configuration -> Bool
tion is at the object level. The goal is to explore all possible .

. . ars sO sl : Session .
computations from a given initial state to check correctness., ;¢ gsto dst1 : Host .
Therefore, we analyze all possible rewrite sequences andrars ¢ : Configuration .
check whether the data packets arrive to their destinations i d(pData(o, 0. dsto, dsto)
; eq valid(pData(0, sO, dstO, dst

at the end of each_ c_o_mputatlon. _ _ pData(l sl dst1 dst1) c) =

Even for small initial states such as those in our experi- (4sto == 'n3) and (dstl == 'n3) .
ment, there are many different computation paths and there-
fore a naive breadth-first analysis algorithm can easily lead The operatoral i d takes a configuration (a multiset of
to a combinatorial explosion. Therefore, we introduced two objects and messages) and checks if it containgen a
optimizations in the analysis algorithm. messages at nods.

4.3. Overview of the Formal Analysis Algorithm

4.5. Rewrite Sequence Ordering configuration in the cache in order to avoid repetition. The
built-in operatomet a- appl y applies a rewrite rule to an

We define an order on the execution of the FBAR algo- object-level term and reduces it according to the equational

rithm to explore the computation in parallel. All possible object theory.

computations can be partitioned and distributed to different If the configuration is in the cache, it means that another

machines according to the execution order. Each machineopreviously explored rewrite sequence already reached that

in turn is responsible for exploring its portions of compu- configuration. Therefore, itis unnecessary to check it again.

tations. Since each elementary step in the algorithm is alnstead, we check the next rewrite sequence with the next

rewrite in the object theory, a computation is therefore a prefix in the rewriting sequence order.

sequence of rewrites. Each rewrite in Maude can be rep- When there is no remaining rewrite in thesune strat-

resented by a rewrite rule label and a natural number. Theegy, one has to check whether a terminating configuration

label corresponds to the rewrite rule being applied; the natu-has been reached. Because of the cache,dbene strat-

ral number denotes the maximum number of rule rewrites to egy only contains a prefix of a terminating computation. It

be performed. By assigning an integer label to each rewriteis necessary to explore new states even if there are no more

rule, one can compare two rewrites as two pairs of inte- rewrites in the esune strategy.

gers. Once the order of two rewrites is determined, we At the end of each computation, we use theck strat-

can use lexicographic ordering to compare two sequences o&gy to check the correctness criterion.

rewrites. The implementation of these predicates in Maude

is straightforward op check : TermRewites Rewrites Cache

-> Strategy .

4.6. Exploring States Finally, the back strategy handles backtracking.
Since the current rewrite sequence is a parameter of
Given the initial configuration and a sequence of nextRewrites, we just replace it by the next rewrite and
rewrites, our task is to find the next sequence of rewrites insert the current configuration in the cache.
according to the rewrite sequence order. This section ex- We have analyzed a simple active network with four
plains thenext Rewr i t es function. We declare the opera- nodes within the framework. Figure 1 shows the connec-

tor next Rewr i t es as follows. tions in our experiment. It took about 8 CPU days on two

op nextRewrites : Mbdule RuleldList Term computers_(4 processor Sparc and Pentlgm 265) to perform
Rewites Rewites Strategy the anal_y5|s. .There is ample room for improving perfor-
-> Strategy . mance, including much more aggressive parallelization ex-

i o i]) ploiting the independence of search subtasks. Our experi-
The first argument indicates which object theory is used. ment used a prototype version of Maude. We plan to further

In Maude, the term encoding the object theory is of sort ontimize and parallelize the algorithm and to perform fur-
Mbdul e. It is followed by a list of rule labels. The next {her experiments on the latest version of Maude, which can

argument is the term representing the current state. Theeach up to 1.66 million rewrites per second on a 500 MHz
applied rewrite rules and the last sequence of rewrites area|pha for some applications.

followed by a strategy. The sd#t r at egy keeps the infor-
mation needed for search.

The key strategy isesune. It stores the cache and the
remaining rewrites of the current rewrite sequence. At the

5. Conclusion and Future Directions

top level, one invokesext Rewr i t es as follows. We have argued that rewriting logic and the Maude lan-
_ guage offer great flexibility for modeling network protocols
op resune : Rewrites Cache -> Strategy . in which new network models and new forms of analysis
next Rewrites(FBAR- ALG SCOUTRul el dLi st , .
init, enptyRewrite, end, not supported by ;tandard model ghecklng apprqaches are
resume(start, enptyCache)) . needed. We have illustrated how this can be done in the area

of active networks by analyzing the behavior of a PLAN al-

WhereFBAR- ALGis the term representing the algorithm gorithm. It is clear from this experience that rewriting logic
Specification moduIeFBARRuI el dLi st is the list of all can be used not 0n|y to Specify new network models, but
rule labels; ni t is the initial configurationend is the last also to specify a wide range of formal analysis and formal

rewrite sequence to checktart is the first rewrite se- verification algorithms by reflection within the logic. Our

quence to check, anehpt yCache will store visited con- approach can be summarized by the following correspon-
figurations. dence:

Next Rewr i t es then tries to apply the first rewrite of the
resune strategy. If it succeeds, it looks for the resulting equational theory <» network model

rewrite rules < network algorithm References

metalevel theory «+ formal analysis algorithm

(1]

At each level, rewriting logic offers a suitable abstraction
for the specification and for the formal analysis algorithm. 2]
For example, the equivalence classes of terms abstract away
unnecessary information about the concrete representations
of network states. Th&ETA- LEVEL theory makes gen-
eral analysis and verification algorithms possible, regard- [3]
less of any particular network model or algorithm. Since
current research on next generation networks intends to de-
velop new protocols and new network models, rewriting [4]
logic seems quite promising as a formal specification and
analysis framework in this area. In fact, the following tasks
should be supported:

(5]

1. formal specification of network models and protocols;

2. simulation of designs by execution of their specifica-
tions; [6]

3. formal analysis of designs by model checking tech-
nigues;

4. formal analysis by symbolic model checking; 71

5. formal verification using theorem proving techniques.
8

The present work has illustrated how tasks 1 — 3 can be]
carried out in Maude. As already mentioned, the perfor-
mance of task 3 should be drastically improved through par-
allelization, optimization and program transformation tech-
niques. Task 4, in which the formal analysis can be car- [9]
ried out not from a single initial state, but from a possibly
infinite set of states represented by a symbolic expression
is currently under investigation. For task 5 it may be ad-
vantageous to use temporal logic specification formalisms
that exploit the object-oriented features of Maude rewriting
logic specification, such as those proposed by Denker [7]
and Lechner [14]. The theorem proving tools already de- [11]
veloped for Maude [5], and other such tools that could like-
wise be developed using reflective techniques could be used
to mechanize this task.

The present case study involved formalizing the PLAN
algorithm in rewriting logic, and then formally analyzing
the resulting Maude specification. A promising alternative,
that we intend to explore, is to givefarmal semanticén
Maude to the PLAN language. In this way, formal analysis
and formal verification of PLAN algorithms could be car-
ried out within Maude using both metalevel strategies and [14]
Maude’s theorem proving tools [5] without any need for a
separate specification of the algorithms.

[12]

[13]

R. Alurand T. A. Henzinger. Reactive modules.Rroceed-
ings, 12" Annual IEEE Symposium on Logic in Computer
Sciencepages 207-218, New Brunswick, New Jersey, 27—
30 July 1996. IEEE Computer Society Press.

E. M. Clarke. Temporal logic model checking. In
J. Matuszyhski, editorProceedings of the International
Symposium on Logic Programming (ILPS-9@ages 3-4,
Cambridge, Oct.13-16 1997. MIT Press.

M. Clavel. Reflection in General Logics and in Rewriting
Logic with Applications to the Maude LanguadhD thesis,
University of Navarre, 1998.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and J. QuesadaMaude: Speci-
fication and Programming in Rewriting Logic Com-
puter Science Laboratory, SRI International, March 1999.
http://maude.csl.sri.com/manual/maude-manual-html.

M. Clavel, F. Duran, S. Eker, and J. Meseguer. Building
equational proving tools by reflection in rewriting logia |
Proc. of the CafeOBJ Symposiutdumazu, Japan, April
1998. CafeOBJ Project.

M. Clavel and J. Meseguer. Reflection and strategies in
rewriting logic. In J. Meseguer, editd?roc. 15t Intl. Work-
shop on Rewriting Logic and its Applicatignsolume 4 of
Electronic Notes in Theoretical Computer ScierElsevier,
1996.

G. Denker. From rewrite theories to temporal logic thesr

In H. Kirchner and C. Kirchner, editorBroc. 2nd Workshop
on Rewriting Logic and its Application®ont-A-Mousson,
France, September 1998. Elsevier Science B.V.

E.A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositional mucalculus. Rroccedings

of the First Annual Symposium on Logic in Computer Sci-
ence pages 267-278, Washington, D.C., 1986. IEEE Com-
puter Society Press.

E. A. Emerson. Model checking and efficient automation
of temporal reasoninglLecture Notes in Computer Science
962:393-?7, 1995.

10] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-

tles. PLAN: A packet language for active networks.Pro-
ceedings of the Third ACM SIGPLAN International Confer-
ence on Functional Programming Languagpages 8693,
Baltimore, Maryland, September 1998. ACM Press.

M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and
S. Nettles. PLANet: An active internetwork. Froceed-
ings of the Eighteenth IEEE Computer and Communica-
tion Society Infocom Conferenqeages 1124-1133, Boston,
Massachusetts, March 1999. IEEE Communication Society
Press.

G. J. HolzmannDesign and Validation of Computer Proto-
cols Prentice Hall, 1990.

G. J. Holzmann. Proving properties of concurrent syste
with SPIN.Lecture Notes in Computer Scien6é2:453-??,
1995.

U. Lechner. Object-oriented specifications of diait#d
systems in theu-calculus and MaudeElectronic Notes in
Theoretical Computer Scienc&384—403, 1996.

(15]

(16]

(17]

J. Meseguer. Conditional rewriting logic as a unifieddab

of concurrency. Theoretical Computer Scienc86(1):73—
155, Apr. 1992.

J. M. Smith, K. L. Calvert, S. L. Murphy, H. K. Orman,
and L. L. Peterson. Activating networks: A progress report.
IEEE Computer32(4):32-41, April 1999.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazinpages 80-86,
January 1997.

