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Abstract. Malware often injects and executes new code to infect hyper-
visors, OSs and applications. Such malware infections can be prevented
by checking all code against a whitelist before permitting it to execute.
The eXecuting Implies Verified Enforcer (XIVE) is a distributed system
in which a kernel on each target system consults a server called the ap-
prover to verify code on-demand. We propose a new hardware mechanism
to isolate the XIVE kernel from the target host. The Integrity-Aware
Processor (IAP) that embodies this mechanism is based on a SPARC
soft-core for an FPGA and provides high performance, high compatibil-
ity with target systems and flexible invocation options to ensure visibility
into the target system. This facilitates the development of a very small
trusted computing base.

1 Introduction

Hypervisors, OSs, and applications continue to be infected by malware [11]. One
common result of compromise is the execution of foreign code on the target
system. Foreign code can be injected directly into a process as a result of a
memory corruption bug, or it can be a separate program that is downloaded
and installed on the machine as a part of the attack. Eliminating this foreign
code would severely limit a successful attack.

One way to prevent foreign code from running on a system is to whitelist
the code in legitimate applications and refuse to run any code that is not on
this whitelist, thus enforcing the eXecuting → Verified property on all code.
This conceptually straightforward approach has been difficult to implement in
practice. It is challenging both to identify legitimate applications and to enforce
the resultant whitelist. We assume that legitimate applications are known in
advance and focus on enforcement in this paper. Past efforts exhibit deficien-
cies in some combination of the following requirements: 1) Isolation, making the
integrity enforcer vulnerable to compromise; 2) Visibility, reducing their capa-
bility to detect compromises in the target system; 3) Performance, making them
impractical for some applications; 4) Compatibility, necessitating that the target
be substantially modified.
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Patagonix manipulates Memory Management Unit (MMU) page tables to
cause a trap to the Xen hypervisor whenever an unverified page in a Virtual
Machine (VM) is about to be executed [13]. Xen provides many features, but
has a correspondingly large Trusted Computing Base (TCB) (∼ 230K lines of
code [4]) that may be unable to enforce isolation. Even target systems that can
use minimalistic, security-oriented hypervisors, like SecVisor [18], may suffer
from virtualization-related performance degradation. Furthermore, some virtu-
alization approaches require substantial changes in the target system’s code to
make it compatible with the hypervisor.

Intel System Management Mode (SMM) can be used to overcome some of
these limitations, since it provides hardware separate from the MMU to set
up an isolated execution environment [4, 20]. However, the confidentiality and
integrity of SMM handlers can be tricky to guarantee due to the complex in-
teractions between the various system components involved in implementing
SMM [9]. Furthermore, some system state is invisible in SMM, and SMM can
only be triggered by an electrical signal at one of the processor’s pins or by
writes to a control register. Code has been observed to execute about two orders
of magnitude more slowly in SMM compared to protected mode [4].

We propose a new hardware mechanism that addresses the limits of other
approaches. The Integrity-Aware Processor (IAP) is an extended SPARC proces-
sor that provides an isolated execution environment for an integrity kernel that
can enforce eXecuting → Verified or provide other functionality. Although the
integrity kernel shares many processor resources with the target, IAP stores the
integrity kernel in a completely separate address space from the target and does
not permit the target to initiate any data transfers between the two spaces. On
the other hand, the integrity kernel has full visibility into the target. IAP stores
the entire integrity kernel on-chip to minimize access latency. Thus, integrity
kernel code runs at least as fast as code in the target system, and it can be
invoked with the same overhead as a native trap handler. IAP also incorporates
hardware accelerators for essential cryptographic primitives.

IAP transfers control to the integrity kernel in response to several config-
urable conditions, including attempts by the processor to execute code that has
not been verified by the integrity kernel. It includes hardware structures to track
code that has been verified and to detect attempts to modify it after it has been
initially verified, subsequently causing it to be re-verified before it is re-executed.
IAP monitors individual pages of memory in the virtual address space of each
process, or the physical address space when the MMU is disabled. These features
permit the integrity kernel to enforce eXecuting → Verified without relying on
the configuration of the MMU page tables, further simplifying the TCB.

We developed the eXecuting → Verified Enforcer (XIVE) to demonstrate
the extent to which IAP can reduce the TCB of the integrity kernel. The XIVE
whitelist is located on a centralized approver connected to the network, to min-
imize the complexity of the XIVE kernel and to simplify whitelist updates. We
implemented XIVE for an FPGA-based IAP end node, the approver on a com-
modity Linux host, and connected the two using 100Mbps Ethernet. The XIVE



kernel comprises 859 instructions, and successfully protects a Linux target sys-
tem that has been slightly modified so that it is efficient to monitor and so that
it tolerates sharing its physical network interface with the XIVE kernel.

The rest of this paper is organized as follows. §2 contains the rationale for our
design decisions. §3 discusses implications and limitations of the design, including
potential future directions. §4 evaluates our implementation. §5 explains the
relationship of this paper to related work. §6 concludes the paper.

2 Design

2.1 Threat Model

We adopt the Dolev-Yao model for attacks on the LAN hosting XIVE [8]. The
attacker is permitted to use Direct Memory Access (DMA) to modify memory.
We disallow physical attacks.

2.2 Hardware

Fig. 1: Internal connectivity of
IAP components.

IAP is based on the LEON3 SPARCv8 soft
core by Gaisler Research. We based our de-
sign on an instantiation of the LEON3 that
implements a 7-stage pipeline, separate data
and instruction caches (D-cache and I-cache,
respectively), an MMU with a split Trans-
lation Lookaside Buffer (TLB) (D-TLB and
I-TLB) and a hardware page table walker,
and an AMBA 2.0 AHB system bus. SPARC
processors support several distinct address
spaces. Some of the address spaces refer to
main memory and peripherals, and others are
used to configure the processor or access spe-
cial features. Our changes to the LEON3 are
mostly concentrated in the pipeline, cache,
and MMU subsystems. IAP partially relies on
the SPARC coprocessor interface to interact
with the pipeline.

Figure 1 illustrates the internal connectivity of the major components in IAP,
each of which will be discussed below. The central addition to the processor is a
region of on-chip RAM (called the integrity kernel RAM ) that is only accessible
in integrity kernel mode, which is analogous to supervisor mode and possesses
strictly greater access privileges. Integrity kernel RAM can be accessed by the I-
cache and the D-cache, through a dedicated port for each. Integrity kernel RAM
occupies a dedicated address space. Accesses to integrity kernel RAM are not
mediated by the MMU since the entire integrity kernel is trusted. IAP contains
a ROM from which the integrity kernel is loaded into integrity kernel RAM



immediately after the processor is reset. Control is then transferred to the first
instruction in the integrity kernel.

Attempts to execute unverified instructions are detected within the I-TLB
and the I-cache. Each I-TLB entry contains a V bit (for “Verified”) that is
cleared whenever the entry is inserted into the I-TLB or the memory region that
it encompasses is written. However, TLBs are only consulted when the MMU
is enabled, so IAP also includes a separate set of non-MMU V bits that each
map to a portion of the physical address space. V bits allow an integrity kernel
to ensure that specific regions of virtual memory (in this context the physical
address space constitutes a separate virtual space) have been verified before any
of their contents are executed as instructions. The specific type of verification
to be performed must be implemented by each integrity kernel. IAP provides
facilities so that the integrity kernel can selectively and efficiently set or clear
any number of V bits associated with a specific physical or virtual address region
in constant time.

XIVE minimally requires hardware support for detecting and handling two
types of events. Additional types of events could be supported by future versions
of IAP to support other types of integrity kernels. The process for handling each
event in hardware is described in Listing 1. Certain aspects of the event han-
dling warrant further explanation, which we now provide. Native SPARC traps
automatically allocate an empty register window for the handler by adjusting
the register window pointer. However, integrity kernel traps may be invoked
within a native trap, so they do not adjust the SPARC register window pointer.
Thus, storing the current and next program counter values in local registers as
usual would overwrite program data. In this case, IAP stores those values in
shadow registers instead. Their contents shadow the corresponding normal reg-
isters for “long jump” and “return from trap” instructions. By only shadowing
the registers for those instructions, we ensure that the registers can otherwise
be used normally by the integrity kernel. Neither of the new Processor State
Register (PSR) bits defined in Listing 1 is visible outside the integrity kernel.

The circuitry that fetches instructions for the pipeline is complex, and it
is not immediately obvious that IAP correctly requires all instructions to be
verified before being executed by the pipeline. We do not have space in this
paper to provide a complete argument that it does so, but we note that it uses
the D-cache bus snooping circuitry to detect write accesses by all bus masters to
memory and appropriately update the affected V bits. It also contains circuitry
to handle the corner cases that arise when bus masters write to memory that is
currently being accessed by the I-cache in its various modes of operation.

IAP implements two cryptographic algorithms in hardware, since they are
heavily used by XIVE and relatively expensive to implement in software. First,
we selected the BLAKE hash routine for its open source VHDL implementation,
status as a SHA-3 finalist, and good performance [19]. The implementation is
sufficiently fast that hashing does not stall the pipeline, except during finaliza-
tion. Second, IAP supports 128-bit AES. The AES implementation can cause
pipeline stalls. However, it mostly operates in parallel with the pipeline, so stalls



Listing 1 Hardware handling of individual events.

procedure HandleEvent
ε← DetectEvent
α← PrescribeResponse(ε)
if α = 〈Trap, τ, δ〉 then

Trap(τ, δ)
end if

end procedure
function DetectEvent

if attempting to execute instruction from page with unset V bit then
return 〈HitVBit, ψ〉 . ψ is the page information.

else if PC ∈ Breakpoints then . Integrity kernel can modify breakpoints.
return 〈HitBreakpoint,None〉

else
return None

end if
end function
function PrescribeResponse(ε) . Determine how to respond to the event.

if ε = 〈τ, δ〉 then
return 〈Trap, τ, δ〉 . Other types of responses could be supported in future

versions of IAP.
else

return None
end if

end function
procedure Trap(τ , δ) . Trap to the integrity kernel.

ShadowPC← PC
ShadowNextPC← NextPC
PSR.IntegrityKernelMode← True . Controls access to processor resources and

causes the I-cache to fetch trap handler code from integrity kernel RAM.
PSR.TrapsPreviouslyEnabled← PSR.TrapsEnabled . Used to restore

PSR.TrapsEnabled when exiting integrity kernel mode.
(Continue invoking trap handler similarly to native trap handler.)

end procedure

can be avoided by inserting sufficient instructions between the point at which
each AES operation is initiated and the point at which its output is used.

The Ethernet interface in IAP has been modified to support dual MAC ad-
dresses, which permits the integrity kernel to receive packets without forcing the
interface into promiscuous mode or switching between MAC addresses. It places
packets for both MAC addresses into a single DMA buffer.

2.3 Networking

There are three requirements that the network communications protocol between
the integrity kernel and the approver must satisfy: 1) Security, to prevent eaves-
dropping and to detect attempts to modify packets. 2) Low latency, to minimize



the amount of time that the end node is blocked waiting for a response from the
approver. 3) Simplicity, since it must be implemented in the integrity kernel,
which has a very small codebase.

We constrain the approver to occupy the same local area network as the
end node to minimize latency. This permits us to define a link layer proto-
col, called the XIVE Network Protocol (XNP). Each XNP packet is 96 bytes
long (excluding the 14 byte Ethernet header and four byte Ethernet CRC),
and can be represented formally as a tuple 〈ν, τ, ς, φ, µ〉 (excluding the Eth-
ernet header). To prevent replay attacks, both approver and kernel nonces ν
are drawn from a single, strictly increasing sequence. The packet type τ ∈
{boot, verify, exit}×{request, response}. The sequence number ς is used to match
responses to requests. The composition of the payload φ is specific to each type
of exchange described below. EAX mode is used to encrypt and authenticate
〈ν, τ, ς, φ〉 with AES, and the resultant MAC value µ is then appended [5]. The
XIVE kernel implements logic to resend packets after some timeout until a re-
sponse is received. We now discuss specific XNP exchanges between the XIVE
kernel K and the approver A. Only the payload φ is depicted (when non-empty),
but each transfer actually involves a complete packet.

The approver resets its internal representation of an end node’s state, which
we discuss later, whenever it receives a boot request from that node.

The XIVE kernel issues a page verification request whenever it detects an

attempt to execute instructions from a page with an unset V bit: K 〈τp,γ,β,θ〉−−−−−−→ A,
where the page type τp is derived from the size of the page, the state of the MMU
(enabled/disabled), and the processor mode (supervisor/user), γ is a unique
identifier for the currently-executing process, β is the virtual base address of the
page, and θ is the result of hashing the entire page using BLAKE. The XIVE
kernel blocks the execution of the processor until it receives a response from the

approver: K 〈α〉←−− A, where α specifies what action the XIVE kernel must take
next, which can be either to terminate the process or to resume its execution.

The XIVE kernel issues an exit request when it detects that a process context

is about to be destroyed: K 〈γ〉−−→ A, where γ is the same process identifier used in
the page verification requests. This permits the process identifier to subsequently
be reused. Note that this does introduce a certain level of trust in the target OS to
achieve the full assurances possible with XIVE, since an OS that causes XIVE
to issue an exit request without actually destroying the appropriate context
can then potentially be permitted by XIVE to execute programs that contain
unapproved combinations of pages. However, all code that is executed must still
be recognized and approved.

Approver. The approver’s roles include generating and maintaining a whitelist,
a database of pre-shared AES keys, and a representation of the internal state of
each active end node on the network. Our initial prototype is simplified in that
it only communicates with a single end node.

To maintain a partial representation of the internal state of each end node,
the approver creates an empty state when it receives an XNP boot request packet



and updates that state when each new page verification request or process exit
request packet is received. The current state of each node n can be represented as
a function σ : Γ → 2Π generated in response to a set of “current” page request
packets ρ received from n, where Γ is the set of all context numbers that are
contained in ρ and Π is the set of all approved programs:

σ(γ) =
⋂

〈τp,γ,β,θ〉∈ρ

{
π ∈ Π

∣∣∣ 〈τp, β, θ〉 ∈ π}
where 〈τp, β, θ〉 ∈ π iff the page with the specified characteristics is contained
within program π. When σ(γ) = P , it means that the process identified by γ
has only previously executed code that is contained in all programs in P . P may
contain many programs, since different programs can contain pages of code with
identical characteristics. A page request packet 〈τp, γ, β, θ〉 loses currency and is
removed from ρ when the approver receives a process exit request packet 〈γ〉. We
say that n has entered an unapproved state as soon as ∃γ. σ(γ) = ∅, meaning
that the process identified by γ is not a recognized program.

To generate a whitelist, the approver can be operated in learning mode, in
which it approves all pages of code and outputs a database representing all
programs that were executed by n.

The approver software is implemented as a multi-threaded C++ program.
One thread performs administrative functions, another receives, decrypts, and
verifies packets, a third processes the received packets with respect to the sys-
tem state database, and the final thread encrypts, authenticates, and transmits
newly-generated packets.

2.4 XIVE Kernel

The kernel was coded entirely in assembly language and is described in Listing 2.
It contains 859 instructions and uses 488 bytes of integrity kernel RAM and
2952 bytes of auxiliary RAM. Each trap handler saves all of the local registers,
which on the SPARC are eight registers in the current register window, and
the processor state register to integrity kernel RAM upon entry, which permits
the handlers to freely use the local registers as well as instructions modifying
the condition codes in the processor state register. Some trap handlers require
more than eight registers. Thus, blocks of integrity kernel RAM are reserved to
implement a pseudo-stack for register swapping, although this is not described
here. The prototype kernel does not implement an actual stack, because it is
simpler to directly address the reserved memory in the few instances that it is
required.

Physical pages of the target’s kernel code and shared libraries are mapped
into multiple virtual address spaces for different processes, so XIVE by default
hashes and verifies them in each address space. To reduce this unnecessary over-
head, we implemented an optional hash caching mechanism that stores the hash
for each I-TLB entry at the time that it is calculated, and re-uses that hash
during subsequent attempts to verify the same physical page, as long as it has



Listing 2 XIVE kernel

procedure Boot . Obtains control immediately after every processor reset.
ηdc ← AddressOf(destroy context)
InitBP(ηdc) . Initialize breakpoint to detect process context destruction.
InitAES(κ) . Initialize AES using key shared with the approver.
XNPBoot . Perform XNP boot exchange.
ηto ← AddressOf(target OS)
Jump(ηto) . Transfer control to target OS.

end procedure
procedure HandleBreakpoint

SaveLocalRegisters
XNPProcessExit(γ) . Perform XNP process exit exchange.
RestoreLocalRegisters

end procedure
procedure HandleUnsetVBit(ψ) . ψ is the page information.

SaveLocalRegisters
SetVBit(ψ,True) . Doing this first ensures that any DMA

accesses that occur during the subsequent verification operations are detected when
the processor resumes normal execution.

θ ← BlakeHash(ψ) . Hash entire page.
α← XNPVerifyPage(ψ, θ) . Perform XNP page verification exchange.
if α = resume then

RestoreLocalRegisters
(Resume process execution.)

else
HaltProcessor . Our prototype

simply halts the target when it enters an unapproved state, rather than attempting
to selectively terminate the unapproved program.

end if
end procedure

not been modified. Our prototype uses 2304 bytes of auxiliary RAM for the hash
cache, although this is in fact vulnerable to manipulation by the target OS. A
deployable implementation would place the hash cache in integrity kernel RAM.

The integrity kernel shares the Ethernet incoming DMA buffers with the
target OS whenever the target OS has enabled the Ethernet interface. This
makes it possible for packets intended for the target that arrive while the integrity
kernel is active to eventually be received by the target. Otherwise, the integrity
kernel uses a total of 512 bytes of auxiliary RAM for incoming DMA buffers.
The integrity kernel always uses 136 bytes of auxiliary RAM as outgoing DMA
buffers.

3 Discussion

Deployment and Management. In any XIVE-protected environment, the follow-
ing elements must be deployed: 1) IAPs to operate all programmable portions of



the end nodes, 2) At least one co-located approver server that is statically con-
figured to be resistant to attacks, since it is unable to rely on XIVE protection
itself, 3) An integrity kernel ROM image for each IAP, and 4) Pre-shared keys
to permit authenticated, encrypted communication between each end node and
the approvers. A variety of protocols can be devised to install keys and ROM
images in end nodes, and may resemble the protocols that have previously been
developed to securely configure sensor nodes, such as SCUBA [17].

Limitations. XIVE currently exhibits several limitations, which we now discuss
in conjunction with likely remediation strategies. Since XIVE relies on network
communications to approve the forward progress of each end node, attackers
can deny service to legitimate users of those nodes by interfering with XNP.
However, XNP only operates on the LAN, which reduces the ability of attackers
outside of the LAN to launch denial-of-service attacks.

Control flow attacks can succeed without injecting new code into the target
system [7]. Thus, XIVE does not prevent them. However, some types of con-
trol flow attacks, such as return-oriented-programming, can be prevented using
address space layout randomization [6]. Each XIVE whitelist is specific to a par-
ticular address space layout. However, XIVE could potentially be adapted to
work with randomized address spaces by causing the approver to issue a seed
to control the randomization process on an end node. That seed could then be
used by the approver to translate page verification requests.

Bytecode is never directly executed, but is instead processed by an interpreter
or a Just-In-Time (JIT) compiler, the output of which is ultimately executed.
Currently, XIVE would simply verify instructions executed within an interpreter,
a JIT, and the output from the JIT. Certainly, it is desirable to verify interpreters
and JITs, but it is likely to be infeasible to whitelist JIT outputs, since the JIT
may dynamically generate various instruction streams. This can be handled by
monitoring data reads and writes by recognized JITs, so that bytecode inputs
can be verified and the output instruction streams intended to be executed in
the future can be excluded from verification. Patagonix includes some elements
of this approach [13].

One potential strategy for adapting XIVE to a multicore environment is
to replicate most of its functionality on each core, designate one instance as
the leader, and create local communication channels that connect all instances.
Then, whenever an instance needed to communicate with the approver, it could
route the communication through the leader, which would be the sole instance
with access to the Ethernet interface.

Alternate Usage Models. It would be a simple matter to adapt the approver
to approve rather than deny by default, and thus enforce a blacklist of known
malware, permitting all other software to execute.

Alternately, by simply approving all software that is measured by the end
node on the approver rather than preventing the execution of non-whitelisted
software, the approver could then field remote attestation requests on the behalf
of the end node. Some advantages of this approach over conventional remote



attestation, such as that implemented by the Linux Integrity Measurement Ar-
chitecture (Linux-IMA) [16], are that audit logs are maintained in a central
location further reducing the TCB on end nodes, cumulative attestation can
easily be provided [12], it conclusively reveals the presence of malware on in-
fected target systems since malware is unable to block attestation requests, and
the use of Public-Key Cryptography (PKC) is centralized so that fewer nodes
must be upgraded if it is eventually broken.

4 Evaluation

Implementation. We synthesized IAP to run on the Digilent XUPv5 development
board. We also ported general performance enhancements in IAP (selective I-
TLB and I-cache flushing) to a reference version of the LEON3, which we used as
the basis for a series of benchmarks. Both versions of the processor configure their
I-cache with four sets of 32KiB each, a line size of eight words, and an I-TLB with
64 entries. Each of the TLB and cache structures in both processors implements a
Least Recently Used (LRU) replacement policy. We synthesized both processors
at a clock frequency of 50MHz using the Xilinx Synthesis Tool (XST) v.13.1.
The reference utilizes 52% of the FPGA slices and 33% of the BlockRAMs and
FIFOs. IAP utilizes 71% of the slices and 40% of the BlockRAMs and FIFOs.
The prototype includes various debugging features that weaken its security, but
these would be removed from a deployable implementation.

Linux 2.6.36 serves as the target OS in our prototype, hosting a Buildroot
userspace environment. It was necessary to modify the Linux kernel to allo-
cate smaller pages of memory containing kernel code and data (256KiB versus
16MiB), to reduce the size of the whitelist and the number of re-verification
operations. We optimized the context switching mechanism to cause the pro-
cessor to switch back to a dedicated kernel context upon entering the kernel.
The I-TLB and I-cache include the context number in their entries’ tags, so this
reduces pressure on those structures.

Userspace programs and libraries also presented challenges for XIVE, because
they mixed code and data pages, and the dynamic linkage process incrementally
modified an executable region in each program. These issues caused the overhead
from XIVE to increase to the point of infeasibility. We modified the linker scripts
to re-align the program sections and thus avoid the first issue. We configured
all programs at link-time to preemptively complete the dynamic linkage process
when they are first launched to resolve the second issue.

For the purposes of our experiments, the Linux kernel and the userspace root
filesystem are merged into a monolithic memory image that is loaded before the
system boots. To permit the construction of a whitelist, we cause the image to
fill a whole 16MiB page, as initially used by the kernel, and zero-fill all unused
space within the image.

TCB Size. XIVE was constructed to demonstrate that a very small integrity
kernel is capable of enforcing eXecuting→ Verified on IAP. We compare the size



of XIVE against that of other systems with similar objectives in Table 1. All
are discussed in §5. XIVE is clearly much smaller than Patagonix, due to the
fact that Patagonix is incorporated into the full-featured Xen hypervisor. Like
XIVE, SecVisor was developed with the specific objective of minimizing its size,
so it is much closer. To be fair, we calculated the code size of SecVisor from the
breakdown of code they provided, excluding their SHA-1 and module relocation
implementations since XIVE does not contain analogous software functionality.
SecVisor must use page tables to detect the execution of unverified code and to
protect itself, which introduces additional complexity compared to XIVE. We
thank the authors of [4] for furnishing us with the relevant line count in Table 1,
which includes comments and debugging code, and could perhaps be reduced by
future optimizations.

System Lines of Code

XIVE 932
Patagonix 3544 + ∼230K (Xen)
SecVisor 2682
HyperSentry ∼3400

Table 1: Comparison of the TCB sizes
of various systems.

Performance Methodology. We evalu-
ated the performance implications of
XIVE using a series of benchmarks.
The whole series of tests was run in
sequence ten times for each processor
configuration. The version of Linux
running on the reference system re-
tains a network driver receive buffer
handling adaptation that introduces
substantial overhead in network pro-
cessing, since we want to highlight the overhead introduced by XIVE’s network
traffic itself. The driver checks the whole DMA buffer for received messages
during each poll operation, since XIVE can introduce “holes” in the buffer by
removing messages that it receives. It may be possible to optimize the network
driver in the future to reduce its overhead.

Figure 2a shows results from testing XIVE in two configurations. The one
labeled “Hash Cache” includes the full functionality of the XIVE kernel as de-
scribed in §2.4. The one labeled “No Hash Cache” disables the hash caching
functionality, since it is not obvious a priori which configuration imposes less
overhead.

Additionally, to demonstrate the overhead inherent in software-based ap-
proaches, we modified the Linux kernel to use page table manipulations to trap
attempts to execute unverified code. The kernel does not actually hash or verify
the code, so most of the overhead is generated by the page table manipula-
tions and associated traps themselves. We compared the results of benchmarks
running that configuration on the reference hardware, labeled “Page Tables,”
against a third configuration of XIVE that does not perform any hashing or
network communication, labeled “Trap Only,” in Fig. 2b.

Each of the configurations just discussed was used to run a series of five tests:
1) Create Processes: A microbenchmark that demonstrates process creation over-
head in an adverse case. It executes the ls command in an empty directory 10
times in succession. Since ls is a lightweight command that performs little work
in this case, it demonstrates the time that XIVE requires to verify code during



process creation and destruction. 2) Boot Kernel: This tests the time it takes
the Linux kernel to boot. We considered the kernel to be fully booted when we
detected that the init process had been launched. 3) Download HTTP: This
demonstrates that XIVE is capable of sharing the Ethernet interface with the
target OS. The end node downloaded a 2MiB file containing random data using
the wget command from the LigHTTPD server running on the approver machine.
4) Compress File: This demonstrates the effect of XIVE on a computationally-
expensive process by compressing the previously-downloaded file using GZip.
GZip ordinarily involves a mixture of IO and computational operations, but the
entire filesystem of our prototype is hosted in RAM, so IO is relatively fast.
This fact can also be derived by noting the time difference between this test and
the next one showing the cost to copy the same file (5: Copy File). We scaled
all results from the compression test by a factor of 0.5 to prevent them from
dominating the chart.

The FPGA was directly connected with an Ethernet cable to the machine
running the approver. That machine was a Thinkpad T61 with a 2GHz Core 2
Duo processor and 2GiB of RAM running Ubuntu 10.10 64-bit desktop edition.

(a) Reference configuration and enforcing con-
figurations of XIVE. The test to the left of the
dashed line is a microbenchmark, designed to
demonstrate process creation and destruction
overhead in an adverse case.

(b) Trap-only configuration of XIVE
and page table-based software im-
plementation.

Fig. 2: Mean time required to perform benchmarks, including bars to show the
standard error.



Performance Results. In general, the benchmark results in Fig. 2a demonstrate
that XIVE imposes low overhead for important types of tasks. However, we
present a detailed explanation of the “Create Processes” microbenchmark results
as well as those of the “Boot Kernel” benchmark below.

We hypothesized that the repeated verification of shared kernel code and
userspace libraries was partially responsible for the order of magnitude perfor-
mance degradation observed between the reference and the “No Hash Cache”
configuration, which is what prompted us to develop the hash caching scheme.
It is apparent from the results generated by the “Hash Cache” configuration
that caching hashes for resident pages of memory dramatically reduces process
creation and destruction overhead. It is also apparent that the overall effect of
hash caching on the large-scale benchmarks is often positive.

Booting the kernel involves verifying a large quantity of code, including sev-
eral verifications of the entire 16MiB system image prior to setting up fine-
grained page tables, so boot time suffers a substantial slowdown. It is possible
to modify the non-MMU V bits to operate with a finer granularity or to use
a more sophisticated mapping structure to reduce this overhead, but that in-
creases hardware complexity and seems unwarranted given the fact that this is
a one-time cost per system reset.

We used the “Hash Cache” configuration to determine that XIVE generated
an average of 3.7MiB of verification-related network traffic with a standard error
of 7KiB as a result of running each series of tests and associated administrative
commands.

5 Related Work

SecVisor seeks to ensure that all kernel code ever executed is approved according
to a user-defined policy [18]. The prototype uses a whitelist of hashes as the
policy. SecVisor uses a variety of mechanisms to enforce the policy, all based
on an underlying hypervisor. XIVE monitors all code executed on the target
system, including userspace.

Several projects have used Xen to isolate an integrity service from a target
VM that is monitored. Lares allows the integrity service to insert hooks at arbi-
trary locations within the monitored VM that transfer control to the integrity
service. Hypervisor-Based Integrity Measurement Agent (HIMA) enforces the in-
tegrity of user programs running in target VMs by intercepting security-relevant
events such as system calls leading to process creation in the target and by per-
mitting only measured pages to execute [3]. Patagonix also ensures that only
measured pages can execute [13]. These approaches all have large TCBs, due to
their reliance on Xen. Lares and HIMA also have the challenge of determining
the proper locations for hooks and the proper types of intercepts, respectively,
to achieve comprehensive protection.

HyperSentry and HyperCheck both use SMM to isolate an integrity service
while it monitors the integrity of a hypervisor [4, 20]. HyperCheck also offloads
a significant amount of functionality to a DMA-capable PCI Network Interface



Card (NIC) [20]. Both exhibit Time-Of-Check-To-Time-Of-Use vulnerabilities,
due to their periodic nature, and also depend on comprehensively identifying
security-critical code and structures. However, they do have the advantage of
measuring program data as well as instructions.

ARM TrustZone includes a collection of hardware isolation features that
could be used to protect an integrity kernel [2]. However, TrustZone does not
include support for directly detecting the execution of unverified code. Intel
Trusted Execution Technology and AMD Secure Virtual Machine have similar
characteristics [1, 10].

TrustVisor creates small VMs that isolate individual functions from a larger
overall system and persists their state using TPM-based sealed storage [14].
XIVE monitors and controls the configuration of the whole system, which is
largely an orthogonal concern.

The Cell Broadband Engine Isolation Loader permits signed and encrypted
applications to be loaded into the Synergistic Processing Elements in the Cell
processor [15]. Unlike XIVE, this architecture does not perform any ongoing
monitoring of the executed code.

6 Conclusion

IAP is a processor technology that is specifically designed to efficiently support
a variety of integrity kernels. It provides high performance, hardware-enforced
isolation, high compatibility with target systems and flexible invocation options
to ensure visibility into the target system. We demonstrated the utility of IAP by
developing XIVE, a code integrity enforcement service with a client component
that fits entirely within IAP’s protected space, containing 859 instructions. XIVE
verifies all the code that ever executes on the target system against a network-
hosted whitelist, even in the presence of DMA-capable attackers.
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