COMPACT INTEGRITY-AWARE ARCHITECTURES

BY

MICHAEL D. LEMAY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair and Director of Research
Professor Sarita V. Adve

Assistant Professor Samuel T. King

Doctor Peter G. Neumann, SRI International

Abstract

Malware often injects and executes new code to infect hypervisors, OSs and ap-
plications on a wide range of systems, from embedded systems to servers in data
centers. In this dissertation, we design and evaluate approaches for remotely at-
testing software integrity and blocking infections on a variety of systems using
integrity kernels. Existing hardware architectures provide inadequate support for
integrity kernels. Despite this, we equip commodity embedded systems with com-
pact integrity kernels. We also describe the limitations of existing non-embedded
processors. Then, we develop an extended processor architecture that provides
superior isolation, visibility, performance, and compatibility for integrity kernels.

We were the first to demonstrate practical remote attestation for Advanced
Metering Infrastructure (AMI), a core technology in emerging smart power grid
systems that requires integrity guarantees for each meter over an interval of time
rather than just at a given instant. Our prototype Cumulative Attestation Kernel
(CAK) uses less than one quarter of the memory available on 32-bit Atmel AVR32
flash MCUs similar to those used in AMI deployments. We analyze one of the
specialized features of such applications by constructing the first formal proof that
security requirements are met by a system even when it experiences unexpected,
repeated halt conditions, specifically concerning our prototype. We also developed
the only remote attestation mechanism for 8-bit Atmel AVR microcontrollers that
communicate over networks like those in AMI and that run untrusted application
firmware that can be remotely upgraded.

We created the Integrity-Aware Processor (IAP), which is the only processor
architecture with direct support for detecting attempts to execute unverified code.
Using the IAP as a base, we developed the smallest integrity kernel that checks all

code that ever executes in a target Linux system. It uses a network-hosted whitelist.

i

Soli Deo Gloria

11

Acknowledgments

This work was supported in part by DOE DE-OE0000097, NSF CNS 09-64392,
NSF CNS 09-17218, NSF CNS 07-16626, NSF CNS 07-16421, NSF CNS 05-
24695, NSF CNS 05-24516, NSF CNS 05-09268, NSF CNS 05-5170, ONR
N00014-08-1-0248, ONR N00014-04-1-0562, ONR N00014-02-1-0715, DHS
2006-CS-001-000001, HHS 90TR0003-01, and grants from the MacArthur Foun-
dation, Boeing Corporation, and Lockheed Martin Corporation. Michael LeMay
was supported on a National Defense Science and Engineering Graduate fellowship
from the Air Force Office of Scientific Research for part of this work. The views
expressed are those of the authors only.

My advisor, Professor Carl A. Gunter, gave me the freedom to discover and
explore my true research passions, even when they fell outside of his core em-
phases. His intellectual agility enabled him to generate pivotal ideas in our projects
regardless of their technical focus. He has actively encouraged and helped me to
become a member of the research community and has supported me in my efforts
to take our research beyond academia and make it relevant in broader contexts. He
encouraged me to take leadership roles soon after I arrived and later challenged me
to be a more effective teacher. Finally, he works hard to foster community among
the members of his laboratory, both inside and outside of the workplace.

Professor Samuel T. King has been a great source of help and advice throughout
my time as a student. I also want to thank the other members of my committee,
Professor Sarita V. Adve and Doctor Peter G. Neumann, for their valuable feedback
on this work during my preliminary exam, final defense, and on other occasions.

I have greatly enjoyed my collaborations with my labmates, Doctor Jianqing
Zhang and Doctor Omid Fatemieh, as well as our discussions and social gatherings.
It has been an honor and a privilege to have all of the members of the Illinois
Security Lab as associates and friends.

The Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project as

well as its predecessor, the TCIP center, were both critical resources that enabled

v

me to perform inter-disciplinary research with a group of diverse researchers and
that provided me with invaluable connections to industry and government.

My wife, Elizabeth, tirelessly and patiently supported me as I completed
my dissertation research. Her love and encouragement helped me to overcome
the challenges that the project entailed. I also want to thank my parents, David
and Susan LeMay, for their support, encouragement, and advice throughout my
education. A special thanks is due to my father for bringing me to his workplace

early in my life and demonstrating the joys of engineering to me.

Table of Contents

Listof Tables viii
Listof Figures X
List of Abbreviations o X
Chapter 1 Introduction
1.1 Motivation
1.2 Approach 3
1.3 Contributions L 7
1.4 Dissertation Scope and Organization 7
Chapter2 Background 10
2.1 Remote Attestation 10
2.2 Advanced Metering Infrastructure 12
2.3 FormalMethods 15
2.4 Processor Technologies 16
2.5 Memory Management and Protection 17

Chapter 3 Commodity Cumulative Attestation Kernels and Coprocessors . 19

3.1 Threat Model and Requirements 19
32 CAKDesign. e 22
3.3 CAK Implementation and Evaluation. 29
3.4 CAK Correctness and Fault-Tolerance Analysis 33
3.5 Alternate Implementation 39
3.6 CAC Design and Evaluation 43
37 Summary 52
Chapter 4 Architectural Extensions to Support Integrity Kernels 54
4.1 Threat Model 54
42 Desi@n e e e e 55
43 Discussion.l 70
4.4 Implementation 75
45 BEvaluation L L 76
4.6 Summary e e e e e 79

vi

Chapter5 RelatedWork L. 81

5.1 Coprocessor-Based Foreign Code Detection 81

5.2 Software-Based Foreign Code Detection and Remote Sensor
Node Recovery 82
5.3 Hypervisor-Based Foreign Code Detection 84
5.4 Foreign Code Detection Using Processor Security Extensions . . . 85
5.5 OtherWork 86
Chapter 6 Conclusions and Future Work 88
References 91

Vil

2.1

3.1
3.2

3.3
4.1

List of Tables

Temporal modal operators used in LTL formulas. 15
Lines of C++ code in each CRAESI kernel component. 30
Propositions used in LTL formulas to model check integrated

CRAESIdesign.. 34
Lines of C code in each component. 51
Comparison of the TCB sizes of various systems. 77

viil

2.1

3.1

3.2

33

3.4
3.5

3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

List of Figures

Full-featured bidirectional metering network interactions.

Three modes of attack on sensor data available to malicious
application firmware running during various lifetime phases
occupied by thatdata.
The general CAK program memory layout. The birds represent
“canary” values.
A basic state machine representation of CAK operation, in
which transitions are generated by the specified commands.
Prototype hardware components and interconnects.
A performance comparison of TPM-assisted and standalone
(integrated) CRAESL.o
Representative, legitimate firmware transitions.
Manual formal model generation workflow for CRAESI.
Examples of automatic formal model generation workflows.
Hardware prototype of CESIum.
A performance comparison of TPM-assisted and CESIum-
based remote attestation.

Internal connectivity of IAP components.
Connectivity of potential instruction data sources.
Vbitupdate timing.
Mean time required to perform benchmarks, including bars to

show the standard error.

1X

AMI
CAC
CAK
CCM
CESIum
CFI
CRAESI
CTR
DMA
DMM
ECB
ECC
ECDH
FAN
HAN
IAP

IED

(0]

JIT

LRU

List of Abbreviations

Advanced Metering Infrastructure
Cumulative Attestation Coprocessor
Cumulative Attestation Kernel
Counter-CBC MAC (cryptographic mode)
Cumulative Embedded System Integrity
Control-Flow Integrity

Cumulative Remote Attestation for Embedded System Integrity
Counter (cryptographic mode)

Direct Memory Access

Digital Multi-Meter

Electronic Codebook

Elliptic-Curve Cryptography
Elliptic-Curve Diffie Hellman

Field-Area Network

Home-Area Network

Integrity-Aware Processor

Intelligent Electronic Device

Input/Output

Just-In-Time

Least-Recently Used

LTL Linear Temporal Logic

MAC Message Authentication Code
MCU Microcontroller Unit

MMU Memory Management Unit

MPU Memory Protection Unit

NIC Network Interface Card

NIDS Network Intrusion Detection System
OS Operating System

PCR Platform Configuration Register
PCS Process Control System

RAM Random Access Memory

ROM Read-Only Memory

SMM (Intel) System Management Mode

SMRAM System Management RAM
TCB Trusted Computing Base

TLB Translation Lookaside Buffer
TOCTTOU Time Of Check To Time Of Use

TOUTTOC Time Of Use To Time Of Check

TPM Trusted Platform Module

VM Virtual Machine

WDT Watchdog Timer

XIVE eXecuting — Verified Enforcer
XNP XIVE Network Protocol

XST Xilinx Synthesis Tool

X1

Chapter 1

Introduction

1.1 Motivation

Hypervisors, OSs, and applications continue to be infected by malware [37]. One
common result of compromise is the execution of foreign code on the target system.
Foreign code can be injected directly into a process as a result of a memory
corruption bug, or it can be a separate program that is downloaded and installed on
the machine as a part of the attack. Detecting this foreign code is tantamount to
detecting the attack. Eliminating this foreign code would severely limit a successful
attack.!

Remote sensor networks are becoming widespread in critical infrastructure.
The networking of these systems often enables firmware to be updated in the
field to correct flaws or to add functionality. This capability could potentially be
exploited to install malware. A good example of this trend is in the deployment of
Advanced Metering Infrastructure (AMI), a centerpiece of “smart grid” technol-
ogy in which networked power meters are used to collect, process, and transmit
electrical usage data, and relay commands from utilities to intelligent appliances.
Meters are required to support remote upgrades [1]. Attackers are likely to attempt
to compromise the upgrade functionality on AMI devices, since meters have his-
torically been common targets of adversaries seeking to steal electricity [5]. AMI
devices may also attract new classes of attackers, given the potential for attacks on
AMI to induce large-scale effects. For example, coordinated attacks on demand
response systems that use signals from meters to control appliances such as air
conditioners may result in blackouts, since the US power grid may operate with a
delicate balance between generation and load [17].

It is a best practice to prevent unauthorized firmware (including malware) from

being installed on such systems by requiring firmware updates to be digitally signed

I'This chapter includes material from previous publications by LeMay and Gunter [43, 44].

by a trusted authority. However, the principle of defense-in-depth instructs us to
include fallback mechanisms to limit the damage that can occur as a result of
such protections failing. AMI system administrators can use firmware auditing
implemented as remote attestation to detect attacks and respond to them in such
a way that they are prevented from inducing large-scale effects. Due to their
different key storage structures, vulnerabilities in upgrade access controls and
remote attestation are not likely to be closely correlated.

A desktop or mobile system can use a Trusted Platform Module (TPM) to
protect and certify audit information concerning its configuration so that it can
implement remote attestation [68, 58]. However, TPMs are not ideal for use in
many embedded systems. TPMs impose relatively substantial cost, power, memory,
and computational overheads on embedded systems. Furthermore, they provide
audit data representing a limited time interval, which is incompatible with the
deployment model of embedded systems such as advanced meters that operate
unattended for extended periods of time.

To address the challenges put forth in this section, this dissertation makes use
of integrity kernels, which are operating system kernels that provide foreign code
detection or prevention services to the system. Many previous works have also
described integrity kernels for various systems. Existing processor architectures for
all classes of computer systems do not support integrity kernels as fully as possible.
In general, it is often feasible to implement functionality in either software or
hardware, with varying effects on the overall complexity of the resultant system.
The specific tradeoff decisions embodied in existing processors with state-of-the-
art security functionality result in integrity kernels that are unnecessarily large
and complex. Such processors include at least a Memory Management Unit
(MMU) that protects memory based on page tables, an IO-MMU that provides
similar protections for IO memory, and often one or more hardware functions
specifically intended to create and maintain isolated execution environments for
integrity kernels. However, no existing processor directly detects attempts to
execute unverified code, which is a core requirement for integrity kernels. This
omission along with other limitations implies that all existing mechanisms exhibit

deficiencies in some combination of the following requirements:
1. Isolation, making the integrity kernel vulnerable to compromise.

2. Visibility, reducing the integrity kernel’s capability to detect compromises

in the target system.

3. Performance, making integrity kernels impractical for some applications.

4. Compatibility, necessitating that the target be substantially modified.

1.2 Approach

1.2.1 Integrity Kernels for Commodity Microcontrollers

In this dissertation, we first describe two architectures that support remote attes-
tation of advanced meters, which should also serve as an example of how remote
attestation could be supported on other similar types of embedded systems. The
first architecture is a type of integrity kernel called a Cumulative Attestation Kernel
(CAK), which is implemented at a low level in the meter and provides crypto-
graphically secure audit data for an unbroken sequence of firmware revisions that
have been installed on the protected system, including the current firmware. This
audit data includes a cryptographic hash of the firmware. The CAK itself is never
remotely upgraded, so that it can serve as a static root of trust. Our specific ob-
jective is to show that CAKSs can be practically achieved on flash Microcontroller
Units (MCUs). Flash MCUs are distinguished from processors in other types of
computers by their onboard flash program memory, which typically contains a
monolithic firmware image with a static set of applications that run in a single
memory address space. In contrast, higher-end computers often run a full-featured
OS such as Linux. Flash MCUs also operate at low clock frequencies and may not
offer protection features such as an MMU. We account for these characteristics of
flash MCUs in our design.

CAKSs must provide high levels of robustness to satisfy the requirements of
AMI. For example, their flash memory operations must withstand unexpected,
repeated power supply interruptions. This makes CAKs resilient to battery backup
failures and even permits them to operate on meters lacking battery backup. We
demonstrate that CAKs are able to address these and other relevant requirements
using an implementation called Cumulative Remote Attestation of Embedded Sys-
tem Integrity (CRAESI) [43]. CRAESI is targeted at a mid-range Atmel AVR32
flash MCU equipped with a Memory Protection Unit (MPU). Since the robustness
requirement is unusual, we formally verify that CRAESI is resilient to unexpected,

repeated power supply interruptions. This result also implies resilience to some

other types of faults.

We also demonstrate the feasibility of Cumulative Attestation Coprocessors
(CACs) for use with flash MCUs that lack an MPU and have insufficient onboard
flash program memory to support a self-contained CAK. Our prototype CAC-based
system is called Cumulative Embedded System Integrity (CESIum) and incorporates
a coprocessor in addition to the main processor, both of which are 8-bit Atmel
AVRs. It also uses an external flash memory. The fact that such processors lack
substantial memory protection hardware greatly complicates the task of developing
an integrity kernel.

We do not extensively discuss node recovery in this dissertation, since it is
a distinct field of research, but we note that even recovery can be costly in AMI
networks. A node’s stored data may be erased during recovery, since the malicious
application firmware may have corrupted the data in a way that cannot be detected
after the fact. This can imply a massive loss of data on a large AMI network
that could cause significant revenue loss to a business dependent on that data. By
permitting individual infected nodes to be identified, and uninfected nodes to be

definitively validated, cumulative attestation can minimize this revenue loss.

1.2.2 Custom Hardware to Support Integrity Kernels

We demonstrate that it is possible to dramatically reduce the complexity of an
integrity kernel by adding a modest amount of hardware to a processor to directly
support monitoring and isolation tasks that otherwise would have required substan-
tial manipulations of the more general hardware protection mechanisms that are
present in existing processors. The hardware extensions are sufficiently powerful
that the integrity kernel built on top of them prevents foreign code from executing at
all in a full-featured SPARC Linux system. One way to prevent foreign code from
running on a system is to whitelist the code in legitimate applications and refuse to
run any code that is not on this whitelist, thus enforcing the eXecuting — Verified
property on all code. This conceptually straightforward approach has been difficult
to implement in practice. It is challenging both to identify legitimate applications
and to enforce the resultant whitelist. We assume that legitimate applications are

known in advance and focus on enforcement in this dissertation.

Many existing integrity kernels? rely on virtualization implemented using an
MMU. They manipulate page tables to cause a trap to the hypervisor whenever
an unverified page in a Virtual Machine (VM) is about to be executed [60, 47].
Popular virtual machines provide many features, but have correspondingly large
Trusted Computing Bases (TCBs) (e.g. ~ 230K lines of code in Xen [10]) that
may be unable to enforce isolation. Even target systems that can use minimalistic,
security-oriented hypervisors may suffer from virtualization-related performance
degradation. Furthermore, some virtualization approaches require substantial
changes in the target system’s code to make it compatible with the hypervisor.

Intel System Management Mode (SMM) can be used to overcome some of these
limitations, since it provides hardware separate from the MMU to set up an isolated
execution environment [10, 71]. However, the confidentiality and integrity of SMM
handlers can be tricky to guarantee due to the complex interactions between the
various system components involved in implementing SMM [24]. Furthermore,
some system state is invisible in SMM, and SMM can only be triggered by a few
types of events, such as an electrical signal at a processor pin or a write to a specific
IO location. Code has been observed to execute about two orders of magnitude
more slowly in SMM compared to protected mode.

We propose a new hardware mechanism that addresses the limits of other
approaches. The Integrity-Aware Processor (IAP) is an extended SPARC processor
that provides an isolated execution environment for an integrity kernel that can
enforce eXecuting — Verified or provide other functionality [44]. Although the
integrity kernel shares many processor resources with the target, IAP stores the
integrity kernel in a completely separate address space from the target and does not
permit the target to initiate any data transfers between the two spaces. On the other
hand, the integrity kernel has full visibility into the target. IAP stores the entire
integrity kernel on-chip to minimize access latency. Thus, integrity kernel code
runs at least as fast as code in the target system, and it can be invoked with the same
overhead as a native trap handler. IAP also incorporates hardware accelerators for
essential cryptographic primitives.

IAP transfers control to the integrity kernel in response to several configurable
conditions, including attempts by the processor to execute code that has not been

verified by the integrity kernel. It includes hardware structures to track code that

2For the sake of consistency, we use the term “integrity kernel” to refer to all code that runs on
the processor hosting the target OS and is involved in detecting and preventing the execution of
foreign code, although some of that code would not ordinarily be considered part of a kernel.

has been verified and to detect attempts to modify it after it has been initially
verified, subsequently causing it to be re-verified before it is re-executed. IAP
monitors individual pages of memory in the virtual address space of each pro-
cess, or the physical address space when the MMU is disabled. These features
permit the integrity kernel to enforce eXecuting — Verified without relying on the
configuration of the MMU page tables, further simplifying the TCB.

We developed the eXecuting — Verified Enforcer (XIVE) to demonstrate the
extent to which IAP can reduce the TCB of the integrity kernel. The XIVE whitelist
is located on a centralized approver connected to the network, to minimize the
complexity of the XIVE kernel and to simplify whitelist updates. We implemented
XIVE for an IAP end node based on a Field-Programmable Gate Array (FPGA),
the approver on a commodity Linux host, and connected the two using 100Mbps
Ethernet. The XIVE kernel contains 859 instructions, and successfully protects a
Linux target system that has been slightly modified so that it is efficient to monitor
and so that it tolerates sharing its physical network interface with the XIVE kernel.

Although they demonstrate some of the challenges that integrity kernels on
commodity architectures must overcome, CRAESI and CESIum are not directly
comparable to XIVE. CRAESI simply monitors all code that the target system
executes, rather than checking it against a whitelist ahead of time. However, XIVE
can be easily modified to also support this model if it is useful in a particular envi-
ronment. CRAESI and CESIum also place more restrictions on the software that
they support than XIVE. Some of these restrictions are imposed by the commodity
flash MCUs themselves. For example, the types of MCUs targeted by CESIum
do not support executing code from RAM. Although the types of MCUSs targeted
by CRAESI do support that, CRAESI prevents it from occurring. CESIum and
CRAESI both view the entire application firmware as a monolithic image, which is
consistent with the usage model of remote sensor nodes. In contrast, XIVE controls
programs on a page-by-page basis and recognizes individual programs. XIVE also
permits limited changes to be made to the executable pages of programs. The re-
strictions imposed by CRAESI and CESIum simplify their protection mechanisms,
but reduce their generality and applicability to systems outside the field of remote

sensor networks.

1.3 Contributions

We make the following contributions in the area of integrity kernels for commodity

microcontrollers:

e We develop CRAES]I, the first technology to support remote attestation for
mid-range flash MCUs in remote sensor networks, which are subject to high
jitter and permit sensors to collude with external computers. CRAESI’s
threat model admits malicious application firmware. We implemented it as
a CAK that leverages the moderately-sized flash memory and MPU of an
Atmel AVR32 MCU without requiring a coprocessor.

e We present a formal proof that CRAESI has certain security and fault-
tolerance properties. We accomplish this using the Maude model checker.
This is the first formal proof that a system is tolerant to power supply inter-

ruptions.

e We develop CESIum, the only approach to remote attestation for remotely-
upgradeable, low-end flash MCUs in remote sensor networks that is invul-
nerable to control-flow attacks launched by malicious application firmware.

It incorporates a security coprocessor and an external flash memory.

We make the following contributions in the area of integrity kernels for an

extended processor architecture:

o We develop IAP, the only processor architecture with hardware support for

directly detecting attempts to execute unverified code.

e We develop the XIVE kernel for IAP, the most compact integrity kernel that

is capable of enforcing eXecuting — Verified.

1.4 Dissertation Scope and Organization

We investigate compact integrity-aware architectures in this dissertation. That
investigation involves hardware, software, and firmware components, as well as
formal proofs. The size of a system can be measured in several ways. Like many
other works, this dissertation primarily uses source lines of code as the metric. In

general, a compact system can be expected to exhibit fewer security vulnerabilities

than a larger system, assuming that the two systems have similar characteristics
such as their implementation and verification techniques, their overall purpose, and
their history of usage and testing [4]. Furthermore, compact systems are generally
more amenable to formal verification [7]. Additionally, binary compactness is
important for integrity kernels on embedded systems, because those systems have

severe resource limitations. Our thesis is:

It is possible to develop compact integrity kernels to protect commodity microcon-
trollers in remote sensor networks, and a custom hardware architecture can enable

the construction of compact integrity kernels with superior isolation, visibility,

performance, and compatibility.

Chapter 2 contains background material that is helpful in understanding the
rest of the dissertation. It contains information on remote attestation, AMI, formal
verification, and processor technologies.

Chapter 3 discusses integrity kernels for commodity microcontrollers. The
CRAESI CAK for the Atmel AT32UC3A0512 AVR32 microcontroller is imple-
mented using C++ and is situated within a prototype that emulates an advanced
electric meter. We use the Maude model checker to formally verify that CRAESI
correctly implements core security functions related to audit log maintenance and
that it properly updates its audit log and internal filesystem in the presence of
repeated, unexpected power supply interruptions, provided that the power supply is
eventually restored for a sufficient period of time. The CESIum CAC-based system
uses an Atmel ATmega644V AVR microcontroller as a security coprocessor that
monitors the main microcontroller, an Atmel ATmega2560 AVR. The firmware
for both microcontrollers is implemented using C and assembly language. The
prototype also incorporates an external flash memory.

Chapter 4 presents our extended processor architecture, IAP, and discusses
integrity kernels for that architecture. IAP uses the LEON3 SPARC soft core
as the basis for a prototype. It is synthesized from VHDL for use on an FPGA.
The XIVE integrity kernel is written entirely in SPARC assembly language and is
more isolated, comprehensive, and compatible than other integrity kernels that are
capable of enforcing eXecuting — Verified. XIVE monitors all of the code that is
executed by a Linux target system running on IAP. We evaluate the performance of
a prototype system based on the XIVE kernel and a network-based whitelist server
we developed using multi-threaded C++ on Linux and show that it is adequate. We
also show that IAP imposes less overhead on integrity kernels compared to other

Pprocessors.

Chapter 5 compares our approaches to those in related work. It covers works
that rely on coprocessors, software, hypervisors, and processor extensions to
implement integrity kernels.

Chapter 6 summarizes our contributions and proposes future work.

Chapter 2

Background

This chapter discusses background material that is helpful for understanding the
rest of this dissertation. It briefly explains remote attestation. Next, it describes the
nature, scale, and motivations of ongoing AMI deployments, as well as anticipated
benefits from AMI. Then it provides a brief introduction to formal verification
using Maude. Finally, it discusses relevant processor technologies and the memory

management and protection mechanisms that they provide.!

2.1 Remote Attestation

Remote attestation is a process whereby a remote verifier V can obtain certified
measurements of parts of the state of a system C. A variety of protocols can
be used to accomplish this. They usually involve at least two messages. The
request V A C contains a nonce v used to ensure the freshness of the attestation
results. The response C Wrhene, V is digitally signed by the Root-of-Trust for
Measurement (RTM) of C (RTMC) to certify that it has not been tampered, and
contains the nonce v as well as a record of the system’s state o. Of course, this
assumes that the system contains some RTMC that is capable of securely recording
and certifying the system’s state. On desktop PCs, the TPM and supporting
components in the system software often fulfill this role.

A TPM is typically a hardware security coprocessor that comprises several in-
ternal peripherals coordinated by a central microcontroller core [68]. It is intended
to be difficult to remove from the platform in which it was originally installed. It
is also designed to make physical tampering evident upon subsequent physical
inspection. The TPM contains several keypairs. Two of them can be used to

digitally sign internal registers that contain cryptographic hashes. These registers

I'This chapter includes material from a previous publication by LeMay, Gross, Gunter, and
Garg [42]. It also includes material from a previous publication by LeMay and Gunter [43].

10

are called Platform Configuration Registers (PCRs). The TPM implements an
“Extend” function that requires a hash value as a parameter and then updates the
hash value in a particular PCR by appending the new hash to the old PCR value,
hashing the result, and storing it in the PCR. The OS on C maintains a log of
information that can be used to evaluate its configuration and state and performs
an extend operation to commit each new log entry as it is added. To generate a
trustworthy attestation using the basic protocol described above, the main processor
on C must send the nonce to the TPM and request that it digitally sign (“Quote”)
the PCRs. The processor is assumed to not have the capability to forge these
signatures, since the TPM’s private keys are never released by the TPM unless it is
physically compromised. Therefore, for the protocol to proceed, the TPM must
return the signed attestation data to the processor, and the processor must then
return that signature along with the log that is required to interpret the attestation
to V. The TPM contains many other structures to support true random number
generation, cryptography, and other functions.

Well-designed systems include multiple layers of protections to prevent com-
promises, including access controls for installation privileges and signatures on
code that are verified before installation. Remote attestation provides an additional
layer of defense in the event that these protections fail, hence providing defense-in-
depth. This is similar to the synergistic relationship between Network Intrusion
Detection Systems (NIDSs) and firewalls. A NIDS detects attacks that bypass fire-
walls, leading to faster attack recovery and a subsequent strengthening of firewall
rules. These mechanisms work well together because of their distinct failure modes.
Typical upgrade controls that require firmware to be signed can be compromised if
the private keys used to sign firmware are compromised, or the upgrade controls are
bypassed by a buffer overflow or other type of attack. Modern embedded systems
can run complex software stacks that may be vulnerable to attacks similar to those
that have plagued server and desktop machines. Even if a different key is used to
sign firmware upgrades for each node on a network, those private keys are all likely
to be stored in a central repository. The compromise of the repository could lead
to the compromise of all systems on that network. In contrast, CAKs and CACs
store their private keys within individual meters that are geographically scattered,
greatly increasing the cost of compromising large numbers of private keys. Only
the availability and authenticity of the corresponding public keys must be ensured
to provide secure auditing capabilities. This is generally a more tractable problem

than ensuring long-term confidentiality of a centralized private key repository.

11

Even if a system is never compromised, remote attestation is useful when
multiple parties are authorized to upgrade or use the system and they must be
able to verify that the configuration changes made by other parties are acceptable.
For example, government regulators could query an advanced meter to obtain
an unforgeable guarantee that it is using firmware that provides accurate meter

readings.

2.2 Advanced Metering Infrastructure

Advanced electric meters are embedded systems deployed by utilities in homes
or businesses to record and transmit information about electricity extracted from
the power distribution network and potentially to support more advanced function-
ality. They arose out of automated meter reading, which simply involves remote
collection of meter data. However, AMI can support new applications based on
bidirectional communication, such as the ability to manipulate power consumption
at a facility by sending a price signal or direct command to its meter (demand
response). AMI networks are being deployed on a massive scale [5]. A report by
Pike Research states that more than 250 million meters will be deployed worldwide
by the year 2015 [57]. AMI is a particularly good example of a remote sensor
network and a good benchmark for study because of its nascent but real deployment
and rich set of requirements.

The sophisticated functionality of advanced meters creates numerous attack
scenarios and increases the likelihood that they will contain security vulnerabilities
linked to firmware bugs. An outage of the meters in a region could entail a huge
financial loss for a utility. The “Guidelines for Smart Grid Cyber Security” pub-
lished by NIST specifically call for remote attestation of smart grid components [1].
In a previous work we further motivated the use of attestation to provide AMI
security [42].

Other embedded systems could also benefit from CAK-supported intrusion
detection. Intelligent Electronic Devices (IEDs) used in electrical substations to
monitor and control the transmission and distribution of electricity often support
remote firmware upgrades and can exert more direct control over the flow of
electricity than demand-responsive meters [29].

We now provide additional details on AMI. In the future, it will afford a number

of potential advantages to energy service providers, their customers, and many

12

other entities [28]:

1. Customer control: Customers gain access to information on their current

energy usage and real-time electricity prices.

2. Demand response: Power utilities can more effectively send control signals
to advanced metering systems to curtail customer loads, either directly or in

cooperation with the customer’s building automation system.

3. Improved reliability: More agile demand response can improve the relia-
bility of the distribution grid by preventing line congestion and generation
overloads. These improvements could also reduce the strain on the transmis-

sion grid.

There are several distinct categories of advanced metering systems that support
the functionality discussed above with varying degrees of success. The least
capable systems use short-range radio networks and may be less expensive to
deploy initially, but they require readers to drive by in vans to read the meters. More
capable systems support unidirectional network communication from the meter
data management service, and the most capable systems have fully bidirectional
network connections with the meter data management service. We focus on meters
with bidirectional connections in this dissertation. AMI networks with connectivity
to the meter data management service can distribute real-time pricing schedules to
meters, which can influence customer behavior and induce manual or automatic
demand response actions [15]. They can also support direct control signals.

In Figure 2.1, we show how a full-featured bidirectional metering network could
be organized. The network is divided into two main domains that are connected via
a Field-Area Network (FAN). The first domain houses the meter data management
service and the energy service provider that controls the physical delivery of
electricity. The second domain comprises the metered premises, which may have
mesh network connections between themselves to extend the overall reach of the
AMI network. Each of these premises may also be equipped with a Home-Area
Network (HAN) containing an in-home display, which interacts with the meter
and intelligent appliances and perhaps a home energy dashboard that provides
complementary features to those of the in-home display. We have investigated
the challenges involved in coordinating such a complex network and proposed a
hierarchical approach that accounts for the various levels of functionality present
in various devices within the HAN [45].

13

Energy Service
Provider

Billing and
outage data

Meter Data
Management
Service

Field-Area
Network

Other
Meters

ZigBee Home-

Direct condi
Control

Legacy Air

tioner

Real-Tim

WiFi

Management
Console with Home
Energy Dashboard

(Customer)

335@ :@
In-Home
Display
@) ‘\
'R
Prices

1

K

Pluggable Hybrid
Electric Vehicle

Refrigerator

Intelligent

Metered
Premise

14

Figure 2.1: Full-featured bidirectional metering network interactions.

Operator | Name | Description

Oy Next ¢ holds in the next state.

¥ holds in the current or a future state, and ¢
holds until that state is reached.

O Eventually | ¢ holds in some subsequent state.

O¢ Henceforth | ¢ must hold in all subsequent states.

¢ holds in all states until ¢ holds, or forever if ¢
is never satisfied.

eUY Until

oWy Unless

Strong Im-

plication ¥ holds in any state in which ¢ is satisfied.

=y

Table 2.1: Temporal modal operators used in LTL formulas.

2.3 Formal Methods

Formal methods are used to verify correctness and fault-tolerance properties of
CRAESI in §3.4. Specifically, model checking is a methodology for systematically
exploring the entire state space of a model and verifying that specific properties
hold over that entire space. Maude is the name of a language as well as a corre-
sponding tool that supports model checking based on rewriting logic models and
Linear Temporal Logic (LTL) properties [21]. Essentially, rewriting logic provides
a convenient technique to express non-deterministic finite automata. Maude is
a multi-paradigm language, and supports membership equational logic, rewrit-
ing logic, and even has a built-in object-oriented layer. We use Maude for our
verification tasks.

Maude provides a search function that can be used to explore all distinct
states that can be reached from an initial state. The search command can be pa-
rameterized to only display states that satisfy a particular property, and this can be
used to perform basic model checking. This is only suitable when the desired state
can be identified by a simple set of propositions combined using logical connec-
tives (-, A, V, —) on that state, not considering any preceding states. Appropriate
propositions must be defined for the particular model under consideration.

For more sophisticated model-checking operations, theorems and lemmata can
be formalized using LTL. An LTL formula is a predicate over a sequence of states.
Each formula comprises propositions that are connected with logical connectives

and the temporal modal operators described in Table 2.1.

15

2.4 Processor Technologies

We deal with several processor technologies in this dissertation, with a special
emphasis on flash MCUs and FPGAs. We describe the relevant characteristics of
these technologies in this section and compare them against others.

The flash MCUs in this dissertation are commodity processors that incorporate
a microprocessor core, data RAM, flash program memory, EEPROM persistent
data memory, clock generation circuitry, and peripherals such as various serial and
memory interfaces, analog-to-digital converters, etc. They are essentially complete
computers in a single chip, lacking only a power supply and connections to devices
that enable them to meaningfully interact with the physical world. Another way
to think of a flash MCU is as a single chip that contains analogous components
for most of the items found inside the case of a typical desktop PC. A PC requires
connections to a monitor, keyboard, power cord, and perhaps other devices to do
useful work, just as flash MCUSs are reliant on external components to interact with
the physical world. However, flash MCUs have very limited capabilities and low
levels of performance, because they target applications with tight energy and cost
constraints. A wide variety of flash MCUs are currently available, based on 8-bit
through 32-bit instruction set architectures. The security features in these designs
also vary widely, with some providing simple support for isolating a bootloader
from an application and others featuring MPUs that support separate privilege
levels and fine-grained memory access controls.

Most processors today, including flash MCUs, are manufactured as Application
Specific Integrated Circuits (ASICs), which means that their designs are etched
into silicon in such a way that they implement a single circuit design that provides
processor functionality. An alternative approach to implementing processors uses
FPGAs, which are chips that can be reconfigured many times to implement different
circuits. ASICs have many advantages over FPGAs that justify their popularity in
spite of their inflexibility. For example, an FPGA consumes more area, energy, and
time to perform a computation compared to an ASIC. However, FPGAs are very
useful for performing processor design research and can even be used in certain
applications that are not sensitive to the drawbacks of FPGAs. FPGAs are also
being combined with ASICs in some cases to provide benefits from both processor
technologies.

FPGAs must be configured to implement a particular circuit using a bit file,

which can be generated from a Hardware Description Language (HDL). Verilog

16

and VHDL are popular HDLs. A hardware design encoded in an HDL can repre-
sent the hardware’s circuit at various levels of abstraction. It resembles the source
code of a software program in many ways, and can even contain sequential state-
ments similar to those in source code from an imperative software programming
language. However, the bit file is not analogous to a binary program comprising a
sequence of instructions. The HDL source code undergoes a multi-step process that
ultimately transforms it into the bit file, which represents a low-level configuration
of the individual circuit elements within the FPGA that will then implement the
desired overall circuit. When the bit file contains the configuration information to
implement an entire processor within the FPGA, we refer to that processor as a

“soft core.”

2.5 Memory Management and Protection

Some of the processors in this dissertation primarily rely on an MPU or MMU
to protect and manage memory accesses from software. This section describes
the basic concepts underlying these mechanisms as they are implemented in the
specific processors in this dissertation.

An MPU is simpler than an MMU and simply defines and controls access
to regions of memory. Note that it does not perform any mapping of memory
addresses. The OS configures the MPU to divide the processor’s physical address
space into various regions, and to control access to those regions according to the
current mode of the processor when it is executing software. For example, the
software may be allowed to read, write, and execute some region of memory when
it is executing in supervisor mode, as would be the case when the operating system
kernel is active. It could be restricted so that it is only able to read that region when
it is executing in user mode.

An MMU maps addresses in a virtual address space to physical addresses
that correspond to physical memory locations and also enforces access controls
during that process. These mappings are defined using page tables. Page tables
are arranged hierarchically and terminate in page table entries that either reference
a specific page of physical memory or are invalid, indicating an undefined region
of virtual addresses. To map a virtual address to a physical one, the processor
performs an iterative process to walk through these page tables until it reaches

a page table entry. At each step, it uses a specific portion of the original virtual

17

address to perform the lookup to identify either the page table entry or the pointer to
the next page table. Once a valid page table entry has been accessed, the processor
combines it with the remaining portion of the original virtual address and uses
that as the physical address. Walking through page tables is an expensive process,
so the processor caches recently-accessed page table entries in structures called
Translation Lookaside Buffers (TLBs). If the page table walker encounters an
invalid page table entry or one that does not permit the requested type of access, it
generates a trap to the OS.

Operating systems typically allocate a separate virtual address space for each
process. Thus, it is not sufficient for the various caches in the processor (including
TLBs) to simply label entries with virtual addresses, since multiple processes
may use identical virtual addresses to refer to different physical addresses. The
processes may also be assigned different permissions for the same address. To deal
with this issue, the processor associates a unique context value with each process,
and includes that context value in each cache entry that is created when the process

1s active.

18

Chapter 3

Commodity Cumulative Attestation Kernels
and Coprocessors

We demonstrate in this chapter that we can develop compact integrity kernels for
commodity flash MCUs, and that those integrity kernels exhibit good performance
compared to well-known alternative approaches. We accomplish this by first
presenting a threat model and a set of requirements in §3.1 for these integrity
kernels. Second, we propose a design that satisfies those requirements on a flash
MCU with a modest amount of flash memory and an MPU in §3.2. We present
results from an experimental evaluation of a prototype implementation of that
design, called CRAESI, in §3.3. We then formally analyze CRAESI with respect
to important fault-tolerance and correctness properties in §3.4, using the Maude
model checker.

CRAESI is not applicable to flash MCUs that have a small amount of flash
memory or lack an MPU. However, such MCUs are still used in security-critical
environments. Thus, we discuss how the design of CRAESI can be adapted to
support such MCUs in §3.6. We also evaluate the performance of the adapted
design on a prototype system called CESIum.

3.1 Threat Model and Requirements

3.1.1 Threat Model

Data integrity on meters can be compromised by malicious application firmware
in various ways, as shown in Figure 3.1. Actuator controls can also be abused. A
typical remote attestation scheme provides evidence of the integrity of data (such as
firmware) at the time an attestation report is requested. Such a system is vulnerable
to what one might call Time-Of-Use-To-Time-Of-Check (TOUTTOC) inconsis-
tencies (dual to the more familiar Time-Of-Check-To-Time-Of-Use (TOCTTOU)

I'This chapter includes material from a previous publication by LeMay and Gunter [43].

19

Data Local Storage Reportin
Acquisition on Sensor P 9
Data may not be Stored data may Data may be
accurately be corrupted or withheld or
recorded. deleted. misreported.
Attacks detected by normal attestation

|._Attacks detected by cumulative attestationg_‘

Figure 3.1: Three modes of attack on sensor data available to malicious application
firmware running during various lifetime phases occupied by that data.

inconsistencies) wherein data was inaccurately recorded, corrupted, or deleted,
or actuator controls were abused, before the time of attestation if the system was
subsequently reset. In contrast, cumulative attestation detects such attacks.

We assume that an attacker is capable of communicating with a protected
system over a network and installing malicious application firmware. We also
assume that the attacker has a priori knowledge of the layout of the kernel’s code
and data memory spaces, as well as their static contents, but not the contents of
dynamic variables and static values that vary between kernels.

“Ordinary” environmental phenomena must not cause any of the security
requirements of the kernel to be violated. An example is an accidental power supply
interruption, unless the system has a robust, trusted power supply. On the other
hand, a bit flip caused by cosmic radiation would be considered an extraordinary
phenomenon in most ground-based embedded systems. These examples make
it clear that the definitions of ordinary and extraordinary will vary based on a
system’s intrinsic characteristics and its environment. In this paper, we only
include accidental power supply interruptions in our threat model, although we
discuss other types of faults that have similar effects and are therefore handled
by the same fault-tolerance mechanisms. We also exclude physical attacks on
microcontrollers such as fault analysis, silicon modifications, and probing [6, 31].
The use of a CAK does not exclude tamper-resistance, but CAKs address remote
attacks rather than local, physical attacks which are generally much more expensive
than remote attacks. Large-scale remote attacks potentially enable different classes
of attack outcomes (such as blackouts in our example).

The security of remote attestation based on a CAK depends upon the fact

20

that application firmware runs at a lower privilege level than the CAK and is not
permitted to access security-critical memory and peripherals. This excludes a wide
variety of attacks, such as Cloaker [22]. The specific peripherals that are considered
security-critical will vary between microcontrollers.

Note that a CAK does not detect attacks that succeed by simply modifying
data RAM. Although data RAM is not executable by the application, corruption
in data RAM can lead to system compromises in other ways [34]. However, it is
prohibitively expensive to record changes to data RAM. It is also more challenging
to characterize all legitimate values of data RAM. This limitation implies that
return-oriented programming can potentially be used to corrupt the control flow
of an audited firmware image to implement an attack. However, it can be more
difficult to construct a return-oriented program than it is to construct a program
intended for native execution. For example, the targeted firmware must contain a

sufficient set of “gadgets” to implement the desired attack [30].

3.1.2 Requirements

The basic security and functional requirements for a CAK are that it maintain an
audit log of application firmware revisions installed on a meter, and that it make a
certified copy of that log available to authorized remote parties that request it. It
must satisfy the following properties to provide security: /) Comprehensiveness:
The audit log must represent all application firmware revisions that were ever
active on the system. Application firmware is considered to be active whenever
the processor’s program counter falls somewhere within its installed code space.
2) Accuracy: Whenever application firmware is active, the latest entry in the audit
log must correspond to that firmware. The earlier entries must be chronologically
ordered according to the activation of the firmware revisions they represent.

We define the following requirements for a CAK based on the characteristics

and constraints of advanced meters:

1. Cost-effectiveness: Even the smallest added expenses in advanced meters

become significant when multiplied for massive deployments.

2. Energy-efficiency: Some embedded systems are critically constrained by
limited energy supplies, often provided by batteries. Although meters are
attached to mains power, they may be constrained to low energy consumption

to reduce energy costs.

21

Microcontroller

Program Memory:
Sensor Data (Not upgraded)

Firmware Upgrade Buffer
(Also backup of old firmware
for rollback)

Active Main Program
Firmware
Application Mode

I\ Kernel Data — Working Copy ™\
b Kernel Data — Backup b N

Cumulative Attestation
Kernel
Supervisor Mode

b

Figure 3.2: The general CAK program memory layout. The birds represent “canary’
values.

3. Suitability for hardware protections: The CAK must be adapted to the

protection mechanisms provided by the processor on which it runs.

3.2 CAK Design

We now present a kernel design that satisfies the requirements. The basic flash
memory layout of the system is depicted in Figure 3.2. The executable code for
the CAK is located at the beginning of memory, where bootloaders are usually
stored. Above that, two redundant regions are used to store data used by the
kernel. The Installed Region is the only memory containing instructions that can be
executed in user mode. The Upgrade Region is used to buffer firmware upgrades.
Finally, Sensor Data can potentially be used by the application to store arbitrary
non-executable data.

The content of each Kernel Data section is divided into several regions, and

contains the following:

22

3.2.1 Audit Log

Each audit log entry is denoted as € = (1,1, 6), where 1 € {hash, chain} specifies
the type of the entry, 17 specifies the event that caused € to be recorded in the log
if it was not recorded as a result of a successful upgrade, and 6 is a hash value
h(F;) if T = hash and F; is the currently installed firmware image, or a hash chain
if T = chain. The audit log AL = (€, €, . .. €,-1) when |AL| = n such that F; was
installed immediately after #;_;. It is possible for AL to overflow memory, so it can
be divided into two lists AL, = (€, €1, ... €,) and ALcons = (€ns1s Ems2s - - - €n—1).
The maximum length of AL, 1s dictated by the capacity of the flash. When
it overflows, the entry €., = {(chain,none, h(h(...||€,-1)||€,)) 1s included in the
audit log memory region, where || is used to indicate concatenation. Its hash value
represents a left fold of AL,,, with the function hz4(x,y) = h(xlly). ALiymem = AL
when |AL,,J = 0 and AL;ymem = (€chain) + ALpecens Otherwise. A counter A = |AL| is
also included.

If AL has overflowed, the remote party performing the attestation must already
know (h(%y), h(F1), . .. h(F,,)). This is a reasonable assumption if the embedded
system is used by a group of remote parties that can communicate with all parties
that have installed new firmware revisions on the system. In that case, the party
verifying the attestation can request that the updaters provide whatever hash values

the verifier does not yet know. It can then verify the current hash chain.

3.2.2 Asymmetric Keypairs

The public and private keys for keypair P, are denoted as Y, and R,, respectively.
R# is used to sign the firmware audit log during attestation operations. Ppy is
used during Diffie-Hellman key exchanges. R is used to sign Y& and Ypy. It is
generated by the CAK using its built-in random number generator when it is first
started and stored in memory, or burned into fuses at the factory in such a way that
no entity, including the manufacturer, can determine its value. Counters Az pp.q)
are used to record the number of signatures generated by the corresponding private
keys. P# and Ppy will be individually refreshed when their associated counters

reach a threshold value.

23

Waiting For Start Upgrade

Heartbeat

Commit
Upgrade

Testing

I Upgrading

Figure 3.3: A basic state machine representation of CAK operation, in which
transitions are generated by the specified commands.

3.2.3 System State

An explicit state variable o is used to control transactions. States in the automata
in Figure 3.3 illustrate the possible values of o

The CAK satisfies the Comprehensiveness and Accuracy requirements by
controlling all access to the low-level firmware modification mechanisms in the
system. The state machine in Figure 3.3 manages the application firmware upgrade
process within the CAK. The transition labels not in parentheses are commands
that can be issued by the application to cause itself to be upgraded. The current
state is recorded in 0. The “Waiting for Heartbeat” state causes the application
firmware to be reverted to its previous revision if no heartbeat command is received
within a certain period of time. Any unexpected command received by the CAK
will be ignored.

Three additional commands not shown in the figure can be executed by an
application to: /) Quote: digitally sign and transmit a copy of AL;,em, including a
nonce for freshness, 2) Retrieve Public Keys: retrieve Py, Ppy, P signed using
Rq, and 3) Handshake: perform a Diffie-Hellman key exchange. The Handshake
command demonstrates how the asymmetric cryptography implemented within
the kernel can be used to perform operations directly useful to the application
(establish a symmetric key with a remote entity, in this case), to defray the memory
space that the CAK requires. More general access could be provided in future
designs, but would complicate the security analysis of the APIL.

Transactional semantics must be provided for all the persistent data used by

the kernel. This design accomplishes that by maintaining redundant copies of

24

all persistent data in a static “filesystem” FS = (yo, ®,,, Y1, Y2, ,,¥3) where each
vi (i € {0,1,2,3}) is a Boolean “canary” flag, and ®,, and ®,, are tuples of the
form (o, P#, A#, Ppu, ApH, Pa, Aq, Tupg, ALinmem), Where o, encodes the state of
the upgrade process, as explained below. The tuple ®,, is a working copy that is
modified by the kernel and @, is a persistent copy that provides redundancy. The
working copy update process is described in Listing 1.

It is more conventional to represent a filesystem as a relation between filenames
and data, and in fact we use that representation in our formal analysis of this
filesystem’s fault tolerance in §3.4. In that case, F'S C FN X FD where FN is the

set of filenames and FD is the set of all possible file data values.

Listing 1 Update filesystem working copy.
procedure FsStore(addr, data)
vo < False
v1 < False
®,, « INserT(addr, data, ®,,)
vo < True
v « True
end procedure

The copies of the filesystem have canary values y; before and after the file
data as depicted in Figure 3.2. Whenever a file in the working copy is modified,
canaries o and 7y, are first invalidated and then re-initialized after the file has been
written. An unlimited number of modifications can be made to the working copy
within a single transaction. When the transaction is finally committed, y, and
3 are first invalidated. Next, (yo, ®,,,¥1) is copied over (y,, ®,, v3). If this copy
operation completes successfully, canaries vy, and y; will be automatically restored
(Listing 2).

Listing 2 Update filesystem persistent copy.
procedure FsCommit
v, « False > aborted(PostCritical) (—aborted(PreCritical))
v3 « False

(¥2, ©p,v3) < (Y0, Py, v1)
end procedure

The presence of comments in the pseudocode, like “aborted(PostCritical)
(—aborted(PreCritical))” on the right side of the first line indicates that the ref-
erenced propositions hold after that line has completed its execution. These

propositions are described in §3.4.

25

S e vet

4| 32-bit Main
| ucontroller

16MHz Core
64KiB RAM o :
512KiB Flash | [} RS-232 Serial
Program y Ports
Memory I

%

L I-.Mlb_!l{!l‘lll.l.
I Tt

Power Main

Figure 3.4: Prototype hardware components and interconnects.

When the processor boots up, it initializes the filesystem, which involves
checking the canaries (Listing 3). At most one copy will have invalid canaries,
and the other copy would then be used to restore the invalid copy. If both sets of
canaries are valid, but the filesystem data is not identical, the persistent copy will

be used to restore the working copy.

Listing 3 Initialize CAK filesystem.
procedure FsINiT
if (y»,v3) # (True, True) then
D, — D,
else if O, # ©, then
®, — D,
end if
end procedure > sff-inited

The application firmware upgrade process is also fault-tolerant, but has sig-
nificantly different fault-tolerance semantics than the filesystem. Two firmware
regions are maintained in the system’s flash. The upgrade region is used to store
a firmware upgrade as it is uploaded. The installed region is the region actually
executed when the application firmware is active. The commit process sequentially
swaps pages in the two regions, using a page-sized staging area elsewhere in kernel
program memory (Listing 4). The data in the two regions has been completely
swapped at the end of the commit process. A status value o, is stored in the
filesystem and updated as the commit process progresses to enable recovery after a
power failure that interrupts the process.

Every time the meter boots, the processor immediately transfers control to

26

Listing 4 Load firmware upgrade into executable space.
procedure UpGRADECOMMIT
while o,,.n < pagecnt do > n is initialized to 0 when an upgrade
is first initiated, and is not reinitialized here, because it is used to recover from
unexpected interruptions in the upgrade process.
if 0,,.5tage = Staging then v stage is initialized to Staging when an
upgrade is first initiated.
codeStagingArea «— upgradeRegion,
O upg-Stage «— BackingUp
FsCommir
else if 0,.stage = BackingUp then
upgradeRegion, « installedRegion,
O upg-Stage «— Finishing
FsCommit
else if 0 ,.stage = Finishing then
installedRegion, « codeStagingArea
O upgNl < Typg.t + 1
O ypg-Stage «— Staging
FsCommit
end if
end while
o « TestingUpgrade
FsCommiT
end procedure

27

the DIrINiT procedure in the CAK (Listing 5). The CAK first initializes the
memory protections, performs filesystem recovery if necessary, and completes
the application firmware upgrade transaction if one was interrupted by a power
failure. It then generates a cryptographic hash of the firmware and compares it to
the latest audit log entry. If they differ, it extends the log with a new entry. Finally,
it transfers control to the application.

Listing S Initialize director upon system reset.
procedure DIRINIT
FsIntt
if IsUPGRADING then
UpPGRADECOMMIT
end if
if o = Init v o = Idle then
DirPrEP(None, Idle)
else if o = Upgrading then
DirPrep(UpgradeAborted, Idle)
else if o = TestingUpgrade then
DirPrEP(None, Waiting ForHB)
else if o = WaitingForHB then
DrPrep(UpgradeHBFailed, Idle)
end if
end procedure
procedure DirRPrEP(77, o)
o—o"
FsCommir
if n # None V |ALpmem| =0 V €,.1 # (n, h(F,)) then
LocExTEND({n, h(F,)))
FsCommMir
end if
JumpMAIN > appfw-active
end procedure

Both fault-tolerance processes are analyzed in §3.4 to ensure that the particular
memory manipulations they use correctly recover from accidental power supply

interruptions.

28

3.3 CAK Implementation and Evaluation

In this section we present CRAESI, a prototype standalone CAK. The purpose
of this prototype is to demonstrate that our design satisfies the practical require-
ments put forth in §3.2, and to obtain preliminary performance, cost, and power-
consumption measurements. However, these preliminary measurements do not
indicate the parameters that will be exhibited by commercial implementations,

since our prototype relies heavily on unoptimized software.

3.3.1 Hardware Components

Our prototype implementation comprises five distinct devices. The first is an Atmel
ATSTK600 development kit containing an AT32UC3A0512 AVR32 microcon-
troller with a 3.3V supply voltage. The second device is a Schweitzer Engineering
Laboratories SEL-734 substation electrical meter. The SEL-734 has a convenient
RS-232 Modbus data interface. We could have used any similar device in our ex-
periments since it simply serves as a realistic data source connected to the AVR32
microcontroller. Third, we use a standard desktop PC to communicate with the
AVR32 microcontroller over an RS-232 serial port from a Java application that
issues Modbus commands. The final two devices are paired ZigBee radios that
relay RS-232 data between the PC and AVR32 microcontroller.

3.3.2 Application Firmware

We prepared two application firmware images for our experiments. They both
implement Modbus master and slave interfaces, where the master communicates
with the meter over an RS-232 serial port, and the slave accepts commands from
the PC over the ZigBee link and either passes them to the kernel or handles them
directly if they are requesting data from the meter. The first image accurately relays
meter data, whereas the second halves all meter readings, as might be the case
with a malicious firmware image installed on an advanced meter by an unethical
customer.

CRAESI would interfere with the operation of existing embedded operating
systems that require access to security-critical peripherals and memory areas.
However, virtualization techniques could be used to accommodate those accesses,

given sufficient resources to implement the virtualization.

29

Module Lines of Code

Core 810
Crypto 5684
Filesystem 160
Hardware Management 256
TOTAL 6910

Table 3.1: Lines of C++ code in each CRAESI kernel component.

3.3.3 Kernel Firmware

The kernel is invoked whenever the processor resets, and by the application firm-
ware when required. The AVR32 scall instruction is used to implement a syscall-
style interface between the application and kernel. TinyECC provides software
implementations of SHA-1 hashing and Elliptic Curve Cryptography (ECC) [48].
Pseudo-random numbers are generated by Mersenne Twister [49]. These libraries
are not significantly optimized for AVR32. Note that the algorithms and key lengths
used here may not be suitable for production use in systems with extended lifetimes
during which the algorithms may be compromised. A commercial implementation
would require a true random number generator. Table 3.1 provides a breakdown of
the lines of C++ code in each kernel component. These numbers were generated
from the raw source code directories, which include debugging and unused code.
We exclude the drivers provided by Atmel.

The kernel consumes 81,312 bytes of program memory. We reserved 88KiB of
flash memory to store the kernel code, and another 40KiB to store the persistent
data manipulated by the kernel. We set aside 12KiB of data RAM for the kernel
comprising 10,872 bytes of static data, 392 bytes for the heap, and 1024 bytes
for the stack. The memory consumed by the kernel is unavailable to the applica-
tion, which does impose an added cost if it becomes necessary to upgrade to a
larger microcontroller than would have been required without the kernel. In this
prototype, the maximum application firmware image size is 191.5KiB. However,
commercial kernel implementations will be significantly more compact in both
flash and data RAM than our unoptimized prototype, and clever swapping schemes
could potentially eliminate the data RAM consumption of the kernel when it is not
active. The audit log in this implementation can record up to 107 upgrades and

events before overflowing.

30

Retrieve public keys TPIM-Assisted

Derive key using ECDH B Integrated

Quote log with 2 entries

Commit and re-init. {x .0001) %ggggglﬁ
Cache 512B page
Startupgrade
Init. (no log extension) (x .1)
3210

Init. {first-time) (x .1)

0 1000 2000 3000 4000

a) Elapsed Time (ms)

Retrieve public keys TPIM-Assisted

M Integrated

Derive key using ECDH

Quote log with 2 entries

213.4115
213.384

Commit and re-init. {x .0001)

10.93
10.93

572
572

Cache 512B page

Startupgrade

Init. (no log extension) (x .1) 9 3259342
Init. {first-time} (x .1} 414.924

35.0889

0 100 200 300 400 500

b) Energy Consumed (m]))

Figure 3.5: A performance comparison of TPM-assisted and standalone (integrated)
CRAESI.

31

3.3.4 Performance Results

We now compare the energy and time consumed by our firmware-only prototype
(integrated CRAESI) to that consumed by an Atmel AT97SC3203 TPM performing
comparable operations (TPM-assisted CRAESI). We used a TPM installed in a
PC to perform similar operations to those that would be required by TPM-assisted
CRAESI if it were actually implemented. The TPM has a supply voltage of 3.3V
and relies on an LPC bus connection. We used Digital Multi-Meters (DMMs) that
have limited sampling rates (100-300 ms between samples) to measure the energy
consumption of both systems. This introduces some error into our calculations, so
we have presented an upper-bound on the energy consumed by integrated CRAESI
and a lower-bound on the energy consumed by TPM-assisted CRAESI. The time
and energy consumed for a variety of operations is presented in Figure 3.5. From
the figure, it is clear that the performance of CRAESI is comparable to a TPM
executing similar operations, with the exception of the initialization routines that
are much more expensive on a TPM for unknown reasons.

The TPM uses a 2048-bit RSA key to sign the PCRs, which provides security
roughly equivalent to that of a 224-bit ECC key, superior to the security of the
192-bit ECC keys used in integrated CRAESI [70]. Due to the use of hardware,
the TPM RSA signature generation mechanism is roughly as energy consumptive
as the ECC software implementation in the integrated design. The Elliptic-Curve
Diffie-Hellman (ECDH) key exchange supported by integrated CRAESI would not
be supported by TPM-assisted CRAESI, although it could potentially be replaced
with equivalent functionality.

The most significant efficiency drawback of the TPM is that it demands 10.6mW
when sitting idle. It may be possible to place the TPM into a deep sleep state to
reduce this constant burden, but that is not done in practice in our test system,
and may have unexamined security consequences. Let us consider the practical
implications of this overhead if attestation is performed once per day per meter in
an installation containing five million meters. If AT97SC3203 TPMs were installed
in all of those meters, they would consume at least 466,908 kWh per year. In
contrast, if integrated CRAESI were used instead, it would consume less than 31

kWh per year.

32

3.4 CAK Correctness and Fault-Tolerance Analysis

We used the Maude model checker to verify that CRAESI actually satisfies critical
aspects of the security requirements put forth at the beginning of §3.2 [27]. First,
we modeled CRAESI in rewriting logic, which represents transitions between
states using rewrite rules. Then, we expressed aspects of the requirements for the
design as theorems, which we converted into LTL formulas that were checked
using Maude. We discuss the outcome of this process in this section. We did not
discover any errors in the aspects of our implementation that we modeled, which
increased our confidence that those aspects of the implementation are correct.

The model comprises several objects within modules that roughly correspond to
the modules of functionality in the implementation. We verified the correspondence
between our C++ implementation and the rewriting logic model by careful manual
inspection. This was feasible because of the small size of the implementation
code. Originally, we attempted to unify the basis for a model and executable
implementation code into a single code base by implementing the design in a
small subset of C# and then compiling the Common Intermediate Language (CIL)
corresponding to that code into both assembly language and a model [36]. We
abandoned this approach when it became clear that a substantial development effort
would be necessary to generate sufficiently efficient assembly code. We provide
more details on our efforts to use C# in Section 3.5.

When the model is being used to check high-level properties, such as the
correctness of the application firmware upgrade operations, it assumes that any
operation runs until completion without interruption. However, this assumption
does not necessarily hold in the real world, since power supply interruptions can
occur and cause the processor to reset in the middle of any operation. We define
rewrite rules that model power supply interruptions that can occur at arbitrary times
in separate modules and then prove that the system is fault-tolerant in the presence
of power supply interruptions in representative scenarios. The power supply
interruptions that we model can be caused by the total loss of power to the processor
or a voltage reduction that activates a brown-out detector. Note that we assume
the brown-out detector is configured to reset the processor when the appropriate
voltage threshold is crossed, above which the processor can operate correctly. We
assume that such a power supply interruption results in unpredictable data being
written to only the page of flash memory, if any, that is being written when the

interruption occurs. We contacted Atmel support to validate that assumption.

33

Name

‘ Description

aborted(¥)

A static flash filesystem operation was aborted at stage
Y € {PreCritical, PostCritical}.

cur-logent-matches-

appfw

The current audit log entry corresponds to the firm-
ware image in the application’s installed region.

installed(F) The application’s installed region is occupied by F.
cached(F) The upgrade region is occupied by 7.
halted The processor is permanently halted.

appfw-active

The processor’s program counter points to a location
in the installed region.

rollback

The kernel is about to swap the firmware in the in-
stalled region and upgrade region.

sff-as-expected

The static flash filesystem is in the expected state
assuming that a particular transaction completed in a
filesystem with a particular initial state.

sff-inited

The static flash file system finished initializing.

sff-unchanged

The static flash filesystem is unchanged from its initial

State.

The application has cached ¥ in the upgrade region
and has requested that it be copied into the installed
region.

The application is about to begin caching a firmware
upgrade in the upgrade region.

upgrade-inited(F)

upgrade-started

Table 3.2: Propositions used in LTL formulas to model check integrated CRAESI
design.

Other types of faults may have similar effects to those of the faults just described,
and would therefore be handled by the fault-tolerance mechanisms in CRAESI.
For example, a soft error or program bug that corrupts a flash page that CRAESI
is modifying and then resets the processor before modifying any other data in
flash memory would cause damage indistinguishable from that of a power supply
interruption from the perspective of our analysis.

A wide variety of theorems could be important, but we have selected the ones
that deal with the parts of CRAESI that have the most complex interactions, since
these best illustrate the verification methodology and are the most likely places to
find errors. The propositions used to check integrated CRAESI are described in
Table 3.2.

The first theorem is concerned with the correctness and auditability of appli-

cation firmware upgrade procedures. To express it, we stipulate that the system

34

2| (75 B |-
Rk ma B’

a b c
I A
T B 5

d e f

Figure 3.6: Representative, legitimate firmware transitions.

can occupy three primary states when the application is executing, as illustrated in
Figure 3.6. The deployed state is occupied until an upgrade occurs. The upgraded
state is occupied after an upgrade has occurred until a rollback occurs. The rolled-
back state is occupied after a rollback has occurred until an upgrade occurs. To
fully explore each of these states, we model transitions between three firmware
images that can be installed in order: %, F, ¥>. The content of each firmware
image is immaterial. Exactly the transitions and states depicted in Figure 3.6 are
correctly permitted by the system. The system can halt in any state. Application
activity is represented by the horizontal arrows whose line patterns encode the
system state at that point in time. Single lines represent the deployed state, double
lines the upgraded state, and triple lines the rolled-back state. The stacked boxes
indicate the configuration of the firmware regions in the time represented by the
arrows leading away from the boxes. The upper box is the upgrade region and the
lower the installed region. An upward-pointing arrow indicates that the application
has issued an upgrade request, and a downward-pointing arrow indicates that the
kernel has initiated a rollback operation. A question mark in the upgrade region
indicates that the state of the upgrade region in the associated configuration is

either unpredictable or unimportant.

Theorem 1 At the conclusion of any operation that modifies the active application
firmware image, the audit log is updated to accurately reflect the new state. Addi-
tionally, the previous active application firmware image is cached if an elective

upgrade is performed (not a rollback).

Proof. We must verify that /) firmware is only modified by explicit firmware
upgrade and rollback operations, 2) those operations can be used to cause only

the transitions represented in Figure 3.6, 3) the audit log accurately represents the

35

history of the system whenever the application firmware is active. We prove this
by cases, with each case being encoded as a lemma. The initial state for the proof
of each lemma corresponds to a system with an initial firmware image ¥ in the
installed region, and the kernel state variables set to the values they would have
when the system is first deployed.

Lemma 1 states that the deployed state is stable until transition a occurs.
Lemma 2 states that transition a occurs correctly. Lemma 3 states that transitions
b and e operate correctly. Lemma 4 states that transitions d and f operate correctly.
Lemma 5 states that transition ¢ operates correctly. Finally, Lemma 6 states that

the firmware audit log is properly updated after every operation. O

Each stand-alone theorem and lemma in this section includes two descriptions,
the first in natural language and the second as the LTL formula that was machine-
checked.

Lemma 1 % is installed unless an upgrade operation is performed.
installed(7o) W (upgrade-inited(¥7) V upgrade-inited(7>))

This ensures that the initial application firmware on the device is not modified until

a specific command to do so is received from the application.

Lemma 2 If an upgrade to F, has been initiated, then F is installed and F is
cached by the time the application is activated, and the system remains in that state

unless some other upgrade or rollback operation is performed.

upgrade-inited(;) =

(—appfw-active U ((installed(77) A cached(Fp)) W ((upgrade-started A O(installed(57)
W upgrade-inited(73))) V rollback)))

This specifies that 7 is cached when replaced, and 7 can be successfully installed
at the proper time, and remains unmodified until the application firmware is

upgraded to 7, or it fails to send a heartbeat and is thus rolled back to F.

Lemma 3 If an upgrade to ¥, has been initiated, replacing F,, and no other
rollback operation has yet been performed, then 7, is installed and F, is cached

by the time the application is activated.
(installed(%;) A upgrade-inited(%>)) =

(—appfw-active U ((installed(#>) A cached(F,)) W rollback))

This is similar to Lemma 2, but handles transitions to ¥, from either ¥, or 7.

36

Lemma 4 If ¥ is cached at the time that a rollback occurs, then ¥ is installed
by the time the application is activated after the rollback unless another upgrade
operation occurs.

(cached(¥p) A rollback) = (—appfw-active U (installed(Fo) W upgrade-inited(7>)))

This specifies that the application firmware rollback action always operates as

expected when rolling back to 7.

Lemma 5 If 7, is cached at the time that a rollback occurs, then ¥ is installed
by the time the application is activated after the rollback, and remains installed
henceforth.

’ (cached(¥) A rollback) = (—appfw-active U (Oinstalled(57)))

This is similar to Lemma 4, but handles rollback operations that restore 7. If a
rollback restores 7, then it must be rolling back from an upgrade to 5, which
means that no further upgrades are possible within our model. Thus, this lemma
does not include an allowance for further upgrade operations, as is the case in

Lemma 4.

Lemma 6 The current audit log entry corresponds to the installed application

firmware whenever the application is active.

’ appfw-active = cur-logent-matches-appfw

This states that the latest entry in the audit log is accurate whenever the application
is running, ensuring that no undetected actions can be performed by the applica-
tion. It does not verify the mechanism that is responsible for actually inserting
new entries into the log and archiving old entries when the log overflows. That
mechanism is a short, isolated segment of code in the implementation that can be
manually verified. The primary value of the model checker is in verifying portions
of the implementation that interact in complex ways with other portions of the
implementation and the environment.

The following theorem is used to verify that the fault-tolerant application firm-
ware upgrade mechanism operates as expected. We modeled non-deterministic
power supply interruptions that may occur at any point in the upgrade process. The
model checker exhaustively searched all combinations of power supply interrup-
tions, and verified that the application firmware upgrade process always eventually
succeeds as long as the power supply interruptions do not continually occur forever.

Only one upgrade operation is modeled, because all upgrade operations are handled

37

similarly regardless of firmware content. We tested this theorem on real hardware
by pressing the reset button repeatedly during an upgrade and verifying that it
still eventually succeeded, but of course we were not able to exhaustively test all

possible points of interruption as the model checker did.

Theorem 2 Executing any application firmware upgrade operation eventually
results in the expected application firmware images being cached and installed
when the application is subsequently activated, regardless of how many times the
processor is reset during the upgrade process, if the processor does not continually
reset forever.

’ —O¢rebooted — (—appfw-active U (installed(77) A cached(%p)))

The initial state for the model checking run of Theorem 2 represents the system
running application firmware 7 after an upgrade to ¥, has been cached and is
about to be committed.

The following theorem is used to verify that the fault-tolerant persistent config-
uration data storage mechanism used by the kernel exhibits correct behavior. As in
the previous theorem, non-deterministic power supply interruptions are modeled at
every transition point in the model. We model only a single store-commit sequence,
because all persistent data is handled identically regardless of identity and content.
We tested this theorem on real hardware by setting breakpoints at critical locations
in the filesystem code and forcing the processor to reset at those locations. Again,
the model checker provides exhaustive testing, which is superior to our manual

tests.

Theorem 3 The filesystem correctly handles any transaction, regardless of how
many times the processor is reset during a transaction, as long as the processor

does not continually reset forever.

Proof. We must show that transactional semantics are provided whether or not the
transaction is interrupted prior to a critical point. The critical point occurs when
the processor executes the instruction that invalidates y,, as shown in Listing 2.
Lemma 7 checks transactions that are interrupted prior to the critical point and

Lemma & checks all other transactions. O

Lemma 7 Executing on FS any filesystem transaction that is intended to update

files according to w C FN X FD results in FS by the time the filesystem is subse-

38

quently initialized if the transaction is interrupted prior to the critical point.

’ (—O¢rebooted A ¢aborted(PreCritical)) — (¢sff-inited A (sff-inited = Dsff—unchanged))‘

Lemma 8 Executing on FS any filesystem transaction that is intended to update
files according to w C FNXFD results in wU{(v,9)|(v,0) € FS A (—-3n.(v,n) € @)}
following the successful completion of the transaction if it is first interrupted after
the critical point or is not interrupted at all. It must achieve this by the time the
filesystem is subsequently initialized or the processor is halted, whichever comes

first. The processor must eventually halt.
(—O¢rebooted A —¢aborted(PreCritical)) —

(Ohalted A ((halted Vv sff-inited) = Osff-as-expected))

3.5 Alternate Implementation

We explored an alternate approach to implementing CRAESI that was motivated by
our verification objectives. We attempted to unify the basis for a formal model and
executable implementation code into a single codebase by implementing the design
in a small subset of C#, with the intent of then compiling the CIL corresponding
to that code into both assembly language and a model. We first discuss general
principles and considerations that influenced our decision to make that attempt in
this section. We then describe the approach and results of that attempt.

It is important to verify the correspondence between a model and the actual
system being modeled, which can be accomplished in various ways. Figure 3.7 de-
picts the workflow that we actually used to process the source code of CRAESI and
to manually create the corresponding model. We used manual inspection to verify
that the Maude model corresponds to the C++ source code, but a more rigorous
approach would have been to formalize the semantics of one of the implementa-
tion languages and then directly prove that the implementation corresponds to the
model. Note that a system may actually use several implementation languages
even if its developers only write code in a single high-level language. For example,
a C++ compiler may generate assembly language which is then assembled into
binary machine code. The compiler may also use distinct intermediate program
representations internally. A drawback of proving correspondence between imple-
mentation code and a manually-created model is that the proof must be manually
constructed for each specific program.

Program representations at different levels may vary in how amenable their

39

Formal Model
(Maude)

A

I

Manual Creation |

|

|
Implementation

Source Code (C++)

Automatic Compilation

A\ 4

Compiler Internal
Representation(s)

Automatic Compilation

\ 4

Assembly Language

Automatic Assembly

\ 4

Machine Code

Figure 3.7: Manual formal model generation workflow for CRAESI.

40

Implementation
Source Code (C#)

Automatic Translation
Automatic Compilation

A\ 4

Compiler Internal A
. —» Formal Model
Representation(s) p

Automatic Compilation

v
Common
Intermediate
Language

Automatic Compilation

\ 4

Assembly Language

Automatic Assembly

A\ 4

l Machine Code ‘

Figure 3.8: Examples of automatic formal model generation workflows.

corresponding models are to formal verification of high-level properties. For
example, a high-level language program may contain a loop construct that explicitly
processes all elements in a collection, whereas it may be necessary to separately
prove that the low-level implementation of that construct actually processes all
elements. As another example, the compiler stage that allocates variables to
processor registers often reuses registers to hold distinct program variables, making
it difficult to track the current values and locations of such variables. On the other
hand, the compiler may be able to simplify a complex construct in the high-level
language program so that the low-level implementation is easier to analyze.

To eliminate the work involved in manually constructing a correspondence
proof for each implementation and model of a program, it may be desirable to
automatically translate one of the implementation languages into a model of the

program, as depicted in Figure 3.8. However, this assumes that the translator itself

41

operates correctly for the program in question. This assumption must be validated
using formal verification to provide a similar level of rigor to that provided by
a correspondence proof that was generated manually for a specific program. To
provide the practical benefits described above, such a proof of correctness for the
translator probably must apply with respect to a large number or all of the programs
that can be provided as valid inputs to the translator.

Regardless of the approach used to construct and verify the model, the validity
of that model is contingent on the correctness of the toolchain that operates on the
code corresponding to the model. An incorrect toolchain may generate lower-level
code that does not correspond to the input code. Further assumptions are necessary
regarding the correctness of the hardware, etc. Higher levels of assurance can be
achieved by validating such assumptions or by shortening the trusted toolchain.
Proving correspondence between the model and lower-level code shortens the
trusted toolchain by eliminating from consideration the portion of the toolchain
that generated that code.

Two observations led us to believe that CIL would be a good representation
to use as input to a translator that generates a model of CRAESI. First, CIL is
supported by the extensible, open-source Mono compiler for C# [52]. Second,
typical CIL code seems to use simpler, more uniform language constructs than
code written in a high-level language such as C++ or C# but is still more abstract
than AVR32 assembly language. The simplicity of the constructs should reduce the
amount of work involved in creating a compiler to generate parts of the model from
those constructs. The high level of abstraction compared to assembly language may
simplify proofs as explained above. However, exploring the differences between a
model generated from CIL and one generated from C# is an interesting area for
future research. The challenges that each model would introduce into the process
of formal verification are not clear at the outset.

By default, Mono used an interpreter or a Just-In-Time (JIT) compiler to trans-
late CIL into machine code. However, it would not have been feasible to run
the entire Mono runtime on an AVR32 processor due to memory constraints, so
we used an ahead-of-time compiler instead. The SharpOS project had developed
a modular ahead-of-time compiler based on Mono that targeted X86 assembly
code [65]. We modified that compiler to target AVR32 assembly code. SharpOS
did not fully implement C#, even omitting the garbage collector. Despite this, the
accompanying libraries, kernel, and applications included in SharpOS were too

large for the AVR32 processor we targeted, so we removed many of their com-

42

ponents. We also created preliminary implementations within SharpOS of much
of the functionality that was ultimately included in the C++ version of CRAESI.
Unfortunately, although we were able to generate valid AVR32 assembly code for
the system, the resultant binary image was much too large to fit on the processor.
Given this obstacle, we did not attempt to generate a model corresponding to the

implementation.

3.6 CAC Design and Evaluation

Flash MCUs with too little memory to fit a full CAK can use a simpler kernel
that offloads much of the security functionality to a CAC. The CAC includes
cryptographic primitives, limited storage for an audit log of the firmware revisions
installed on the main microcontroller, and a communications subsystem for inter-
acting with the kernel. Note that a CAC-based system does not provide security
and functionality identical to that of a CAK-based system, but the CAC shares
many parts of its design with the CAK. Rather than repeating information from
previous sections, we simply discuss where the CAC-based system differs from
one based on a CAK.

3.6.1 Security Coprocessor

Offloading security functionality onto a separate security coprocessor introduces ad-
ditional challenges that must be overcome by the design. First, although our threat
model does not address physical attacks in general, the communication channel
between the CAC and kernel may be particularly vulnerable to eavesdropping and
manipulation by attackers, e.g., using logic analyzers. Furthermore, on the types of
microcontrollers we target, it is not possible to prevent the untrusted application
from communicating in arbitrary ways with the CAC since the application has full
access to the control registers associated with the serial interface. Thus, certain
portions of the data communicated between the kernel and CAC are encrypted
using a symmetric key that is established when the system is first commissioned.
We use 128-bit AES encryption in Counter CBC-MAC (CCM) mode, which pro-
vides confidentiality and authentication at the expense of two blocks (32 bytes) of

overhead per message [26].

43

Second, the CAC and main microcontroller can potentially operate in parallel,
and a defective kernel may issue commands in an invalid manner when they are
not expected by the CAC. Both the timing and ordering of commands may be
significant. To address timing vulnerabilities, commands that modify the internal
state of the CAC are declared to be non-preemptible. The CAC must not receive
any command while executing a non-preemptible command. If this assumption is
violated, it indicates a severe error in the system’s trusted computing base, and is
recorded as such in the audit log. Such an error would either indicate a transient
electrical error or the presence of a design or implementation flaw in hardware
or software. The latter could require invasive system repair or replacement. Pre-
emptible commands are assigned a lower priority than non-preemptible commands,
to ensure that attackers are unable to launch a time-consuming preemptible com-
mand that could then block a critical non-preemptible command issued a short time
later, possibly preventing a firmware upgrade or compromise event from being
recorded. However, a preemptible command is unable to preempt another pre-
emptible command that is already executing. A command is permanently cancelled
when it is preempted.

To prevent incorrect command interleavings, the explicit state variable ocac 18
used to determine what commands can be accepted without error by the CAC at
each point in time. o ¢sc 1s analogous to o, but the “Testing Upgrade” and “Waiting
for Heartbeat” states are not applicable.

When the CAC is initialized after a reset, it must ensure that any aborted
transactions are cleaned up. It does this by checking o cac, and if it is in the
“Upgrading” state, indicating that the firmware hash accumulator was partially
initialized but never committed, it records an “Upgrade Aborted” event in the audit
log, to indicate that the main microcontroller’s firmware is in an unpredictable
state. It then clears the accumulator and transitions to the “Idle” state.

Many of the CAC commands manipulate the audit log or other variables stored
in flash. Thus, their operation could be undermined if the CAC lost power after the
command was received but before the associated modifications to memory could
be completed. Fault-tolerance techniques like those used in CRAESI could be
applied in this situation.

The CAC has a simple interface to the main microcontroller that allows the main
microcontroller to request attestation operations and submit firmware updates for
auditing, as previously described. The firmware provides software implementations

of the necessary cryptographic routines, specifically SHA-1 hashing, ECC public-

44

key cryptography, ECDH, and AES-CCM.
The total firmware image running on the CAC requires 24,346 bytes of flash
program memory and 820 bytes of EEPROM.

3.6.2 Main Microcontroller

Listing 6 Initialize main microcontroller upon system reset. Network communica-
tions between the main microcontroller M and the CAC C are included.
procedure Boor
M5 ¢
MeC
if « = newkey then > The CAC needs to send a new key. This must only
occur once for each system.
M&C
end if
v « ExternalFlash|UpgWaiting]
fori € (0,...,|BuiltinProgMem|) do > Handle each page of program
memory.
7 < BuiltInProgMem|i]
if v = True then > The application requested an upgrade.
Tupg < ExternalFlash|i]
if 7 = m,,, then > The upgrade firmware page data matches the

existing firmware page data.
extend({rt},)

M ——— — C » Extend the CAC’s firmware hash accumulator.
Encrypt the page data.
else
BuiltInProgMemli] < m,,, > Upgrade the firmware page.

extend({Typg i)

end if
end if
end for
M ¢ » Commit the firmware hash to the audit log if it is different
from the latest entry.

end procedure

The main microcontroller is the coordinator of the entire embedded system. The
microcontroller is configured to grant the kernel control over the microcontroller
when it is first powered on or subsequently reset. The initialization routine is
depicted in Listing 6. First, it attempts to establish communication with the CAC.

After acquiring the symmetric key from the CAC if required, the kernel transmits

45

the entire application firmware image to the CAC, which then ensures that the hash
of that firmware is the latest entry in the CAC’s audit log. The kernel then invokes
the application.

The application firmware upgrade process is implemented using an external
flash memory, since permitting the application to perform writes to the built-in flash
memory (program memory) would permit the application to execute unaudited
code and since the data RAM is too small. The application must simply write the
new firmware data to the external flash memory and then set a specific location
in external flash to a special value. It then resets the microcontroller to invoke
the kernel. Every time the kernel starts, it checks that location in flash to see if
an upgrade has been requested. Regardless, the kernel then sequentially reads
each page of application program memory. If an upgrade has been requested, it
then compares that page to the corresponding page read from the external flash. If
they differ, the kernel writes the external flash data over the page in the program

memory.

3.6.3 Hardware Implementation

Our prototype comprises two interconnected circuit boards, which are depicted
in Figure 3.9. The board on the left is the Atmel ATSTKS00 prototyping kit
with an ATmega644V microcontroller, the CAC. The second board is the Atmel
ATSTK600 prototyping kit with a daughtercard containing an ATmega2560 main
microcontroller. The ATmega2560 has 256KiB of program memory, but we only
use 8KiB for the kernel and 32KiB for the application. Each board has an RS-232
serial port, which is used to implement communication between the main processor
and the CAC at 115,200 bps. The STK600 also includes an SPI-accessible Atmel
AT45DB041B 4Mbit flash memory chip, which serves as the external flash memory.

The AVR architecture has several characteristics that introduce a variety of
security challenges for the kernel. We highlight these by outlining several possible
attacks, and also present the countermeasures that the kernel uses to detect or

prevent all such attacks.
Installing unaudited code The AVR architecture can be configured to only

permit code in the kernel to modify the program memory, but it does not permit the

kernel to restrict its entrypoints. The application can directly invoke any instruction

46

sE8E s Foovig)

ﬁ"i’ L

Figure 3.9: Hardware prototype of CESIum.

47

in the kernel. The kernel necessarily contains at least one SPM instruction (for “store
program memory’’) that writes to a location in program memory or performs other
flash configuration actions. Thus, a malicious application can directly jump to an
SPM instruction, bypassing the kernel auditing mechanisms that ordinarily precede
firmware upgrades. It may also be possible for the application to manipulate the
stack using return-oriented programming so that the application regains control
soon after the flash is written [30]. Since the AVR uses both 16- and 32-bit
instructions with 16-bit address granularity, it is even possible that attackers could
target “gadgets” starting with the latter half of a 32-bit instruction that happens to
have the bit pattern of an SPM instruction. Similar attacks have been devised for the
x86 architecture [64]. Persistent data in the program memory can also be executed
as instructions. Such attacks could lead to the execution of unaudited code.

To detect this sort of attack, we actually detect the unauthorized control flow.
We devised a lightweight Control-Flow Integrity (CFI) enforcer that is capable of
detecting attacks with high probability. More general CFI enforcers have previously
been developed for other architectures [2]. The kernel only has a single authorized
entrypoint, its reset vector, so all valid control flows must proceed from there.
The kernel reset vector copies a 64-bit CFI secret to a specific location in data
RAM, and the kernel clears all RAM and registers before transferring control to
the application to prevent direct disclosure of kernel secrets. Thus, to determine
whether a particular control flow is valid, it is necessary to check for the presence
of the CFI secret in data RAM. Such a check is also sufficient to validate the control
flow iff the CFI secret is actually safe from disclosure.

The kernel must perform a CFI check after any operation that could either lead
to the disclosure of a kernel secret or to a modification of the program memory. It
is necessary to perform a check after every SPM instruction in the kernel, and there
are many other security-critical locations in the kernel that we discuss below.

Interrupts could also be used to steal control back to the application. However,
this is prevented by setting the AVR lock bits, which are enforced by the hardware,
to automatically disable interrupts when control is transferred to the kernel section.
These bits are configured as soon as the main microcontroller establishes a key
with the CAC, which occurs before the application ever obtains control of the
microcontroller. These bits are also configured to prevent the bootloader from
modifying its own program memory, which would otherwise permit an attacker to

modify the bootloader.

48

Reading kernel secrets A malicious application could leverage two of the ker-
nel’s secrets to perform further attacks. First, it could forge arbitrary firmware
measurements if it obtained the symmetric key used to secure communications
with the CAC. Second, it could undermine the CFI checks if it obtained the CFI
secret. The AVR lock bits also prevent the application from reading kernel program
memory, so the only possible way for a malicious application to read the secrets is
to leverage instructions present in the kernel itself, using control-flow attacks. To
detect such attacks and prevent them from succeeding, the kernel performs a CFI
check after each instance of the ELPM instruction, which stands for “extended load
program memory.” That is the only instruction that can directly ready from the
kernel program memory. However, other instructions can potentially leave traces of
secret data in registers or data RAM, so it is necessary to guard such instructions on
a case-by-case basis for each particular kernel. There is another related threat that
is more subtle. It is possible for the kernel to contain an ELPM instruction in a loop
that can be manipulated in such a way as to load the CFI secret into the appropriate
region of data RAM and thus pass CFI checks and potentially disclose the entire
CFI secret. We place the CFI check inside the loop to detect such attacks. This
results in a worst-case scenario of the attacker causing the kernel to load at most
one byte of the CFI secret from kernel program memory prior to the CFI check
being performed, which does not substantially increase the attacker’s probability
of passing the CFI check and does not result in the disclosure of any part of the
CFI secret.

The attacker could potentially manipulate the very routine that checks the CFI
secret in memory in an attempt to discover the secret. For example, consider a
routine that loads a copy of the correct CFI secret into memory or registers and
neglects to clear that state prior to returning. If the routine were implemented as a
loop, the attacker could potentially manipulate the loop control variables to cause
the routine to terminate early, before checking the entire CFI secret. Then, the
attacker could retrieve the copy of the CFI secret from registers or memory. To
avoid such complexities, our prototype does not use a loop, but instead embeds
each byte of the CFI secret into a separate comparison instruction. It is still
possible that the attacker can gain partial knowledge of the CFI secret with a much
higher probability than it would have of guessing the entire secret value at once,
by jumping straight to a comparison instruction near the end of the sequence of
comparisons. The attacker could then leverage knowledge gained in that way to

partially initialize the CFI secret in data RAM prior to performing further guesses.

49

However, the overall probability of guessing the entire secret using such a process is
the same as performing a single guess, since every byte is generated randomly. The
attacker must possess the entire CFI secret (except perhaps one byte, as discussed
earlier) to avoid detection during control-flow attacks that read other kernel secrets
or modify flash memory. Furthermore, any failed guesses will cause the kernel to

record an event.

Corrupting kernel state The attacker could attempt to undetectably corrupt
kernel state by preventing the kernel from fully initializing, or by manipulating the
stack pointer to cause the kernel to overwrite its own data. In the first case, the
attacker could initialize registers and memory such that if it subsequently jumped to
a location near the beginning of the kernel initialization routine, that routine would
initialize the in-memory CFI secret and perhaps selected other kernel memory, but
not the entire kernel memory. The attacker could also initialize the locations that
are not overwritten to obtain advantage. The kernel leverages the fact that once it
has control in its initialization routine, it can maintain that control long enough to
verify that the entire memory has been properly initialized after the initialization
routine completes.

The malicious application could carefully set the stack pointer prior to transfer-
ring control to the kernel so that the kernel overwrites its own data in subsequent
operations and potentially compromises its CFIL. The kernel places code inline with
the security-critical routines to transition to a stack at a fixed location in memory
to prevent such attacks from succeeding.

There is a chance that the symmetric key used to secure communications with
the CAC contains the sequence of bytes for some arbitrary instructions, including
security-critical ones, but the presence and location of such a sequence would be
unpredictable to the attacker. It is also straightforward to detect problematic keys
at the time they are established if this is a concern.

When an attack has been detected, the kernel sets a flag in EEPROM and
immediately forces the processor to reset, since it has few guarantees about how
the processor is configured at that point in time. After resetting into a good
configuration, the kernel detects the flag in EEPROM and notifies the CAC, which
records a special value in the audit log to indicate the event. It then also records the
hash value of the modified application firmware. The application also has access
to the EEPROM, so it could trigger a false attack notification. However, it never

obtains control of the processor between the time that the kernel sets the attack

50

Module Lines of Code

Kernel 598

Coprocessor 1487
Crypto 6141
TOTAL 8226

Table 3.3: Lines of C code in each component.

flag in EEPROM and when it notifies the CAC, so it is unable to prevent an attack
notification from being sent in that way.

The kernel requires 8,090 bytes of program flash memory out of 8,192 bytes
available, and one byte of EEPROM. The kernel only uses data RAM while it is
active, so it does not restrict the application’s data RAM usage in any way.

We developed a prototype application to demonstrate the upgrade process and
to demonstrate the feasibility of performing an attack by jumping straight to a
flash programming instruction in the kernel. The attack is detected properly by the
kernel.

The firmware for the CAC and the main microcontroller are implemented in a
modular fashion, and actually share some code. Table 3.3 provides a breakdown of
the lines of C code in each module. These numbers were generated from the raw
source code directories, which include debugging and unused code. We exclude

the drivers provided by Atmel.

3.6.4 Performance Evaluation

We used a similar experimental configuration to the one we used for evaluating the
performance of CRAESI to evaluate the performance of the CESIum coprocessor.
The processor was powered using a 2.0V unregulated power supply for these
experiments, to reduce energy consumption. Since CESIum is a coprocessor-based
system like the TPM-assisted system, it also consumes power while idle. However,
it only demands 1.6mW when idle. The experimental results for various operations
are presented in Figure 3.10. As for CRAESI, some of operations are not directly
comparable. In particular, no direct analogue for the “Record external event”
operation in CESIum exists for the TPM-assisted system. These results actually
correspond to a slightly different version of the CESIum coprocessor. It was also

compiled using an older compiler with different settings, producing a larger binary

51

image. Thus, our performance results are likely pessimistic. We actually exercised
the functionality of the CAC by connecting it to a PC over its serial link. The CAC
generated its SMHz system clock using an energy-efficient internal oscillator.

We also tested the timing performance of the main microcontroller using a
DMM with a one second sampling interval. We performed a total of five test runs.
The process of measuring 32KiB of firmware and performing the corresponding
log extension process for the initial firmware took an average of 25.4 seconds with
a standard deviation of 0.5 seconds. The average time that the application required
to initialize the external flash memory with 256KiB of firmware and the associated
command value in preparation for an upgrade was 6.2 seconds with a standard

deviation of 0.8 seconds.

3.7 Summary

We presented requirements for cumulative attestation kernels and coprocessors
for flash MCUs to audit application firmware integrity. Auditing is accomplished
by recording an unbroken sequence of application firmware revisions installed on
the system in kernel or coprocessor memory and by providing a signed version
of that audit log to the verifier during attestation operations. We have shown
that this model of attestation is suitable for the applications in which sensor and
control systems are used, and proposed a design for an attestation kernel that can be
implemented entirely in firmware. CRAESI is cost-effective and energy-efficient
for use on mid-range 32-bit flash MCUs, and can be implemented without special
support from microcontroller manufacturers. We used a model checker to verify
that CRAESI satisfies important correctness and fault-tolerance properties. The

CESIum coprocessor is suitable for use with low-end 8-bit flash MCUs.

52

0 TPM-Assisted
Record external event
M 165 m CESlum
584
Retrieve public keys
I 2,680
. . 0
Derive key using ECDH
3,360
1100
Quote log with 25 entries
2,850
270
Initialize (normal) (x .1)
I 300
3,210
Initialize (first-time) (x .1)
— 1,700
I T T T 1
0 1,000 2,000 3,000 4,000
a) Time (ms)
0 TPM-Assisted
Record external event
1.02 m CESlum
54.66
Retrieve public keys
m15
. . 0
Derive key using ECDH
m18.38
58.9
Quote log with 25 entries
15.2
27.5
Initialize (normal) (x .1)
4.48
405.5
Initialize (first-time) (x .1)
9.31

0 100 200 300 400 500

b) Energy (m1)

Figure 3.10: A performance comparison of TPM-assisted and CESIum-based
remote attestation.

33

Chapter 4

Architectural Extensions to Support Integrity
Kernels

We can improve the isolation, visibility, performance, and compatibility of integrity
kernels by enhancing the architecture of host processors to specifically support
them. We demonstrate this with a new type of processor called IAP. In this chapter,
we first define our threat model in §4.1. It includes powerful attackers, even
those that can use Direct Memory Access (DMA) to modify memory without the
processor’s intervention. Next, we provide a rationale for our design decisions
in §4.2, including a detailed argument that IAP detects all attempts to execute
unverified memory. We then discuss the implications and limitations of the design,
including potential future directions in §4.3. §4.4 presents implementation details
for our prototype, which we based on an FPGA with a SPARC soft core. Finally,

we summarize the chapter in §4.6.!

4.1 Threat Model

We adopt the Dolev-Yao model for attacks on the LAN hosting XIVE [23]. The at-
tacker is permitted to use DMA to modify memory. It is technically possible for the
processor to fetch data from peripheral memory regions containing configuration
registers that can change their values using mechanisms other than monitored data
writes, and interpret those values as instructions. The bus used in IAP specifies
when an instruction is being fetched, and we require peripherals to respect those
signals and refuse to fulfill instruction fetches from memory regions encompassing
anything other than RAM or ROM. We disallow physical attacks in general, but

attackers are otherwise permitted to arbitrarily manipulate I/O ports and devices.

IThis chapter includes material from a previous publication by LeMay and Gunter [44].

54

4.2 Design

4.2.1 Background on SPARC and LEON3

IAP is based on the LEON3 SPARCVS soft core by Gaisler Research. We based
our design on an instantiation of the LEON3 that implements a 7-stage pipeline,
separate data and instruction caches (D-cache and I-cache, resp.), an MMU with a
split TLB (D-TLB and I-TLB), and an AMBA 2.0 AHB system bus. Full VHDL
source code for the processor is available, so we were free to modify any part of it.
Our changes are mostly concentrated in the pipeline, cache, and MMU subsystems.

SPARC is a RISC architecture with a large register file. Registers are organized
into a circular set of windows, so that each separate procedure and trap handler
is allocated a separate register window that overlaps with the previous one. The
overlapping registers can contain parameters and return values. Since only a finite
set of register windows are supported (eight, in our configuration), the processor
must sometimes swap data between register windows and memory.

SPARC processors support several distinct address spaces, each of which is
accessible using 36-bit addresses. Some of the address spaces refer to main memory
and peripherals, and others are used to configure the processor or access special
features. For example, one address space is used to perform cache flushes. Memory
accesses that reference main memory and peripherals and that utilize the MMU are
translated to physical addresses according to information contained in the MMU’s
internal state and page tables. The SPARC Reference MMU (which the LEON3
implements) uses a hardware page table walker, which automatically accesses
page tables in main memory until it finally reaches a page table entry that can
be used to translate the input virtual address to a physical address. It then stores
that translation in a TLB entry so that it can avoid walking the page table while
translating any address within the region mapped by the page table entry until that
TLB entry is replaced.

Memory accesses by the I-cache are handled specially. Any access by the
I-cache initiates a streaming process, whereby additional instructions besides the
one requested are automatically loaded from memory. A partial or full cache line

is streamed during each operation, depending on a variety of internal conditions.

55

AES Integrity-Aware

i Coprocessor
:| Crypto |

Hash Integer Pipeline |

MMU _ H I-Cache | D-Cache |

I-TLB [}——n
D-TLB K <
Wallker RAM i
1 | H
H System Bus E
i [[[
Memory IK Aux.
i [Controller ROM RAM

Figure 4.1: Internal connectivity of IAP components.

4.2.2 Integrity-Kernel RAM and ROM

Figure 4.1 illustrates the internal connectivity of the major components in IAP,
each of which will be discussed below. The central addition to the processor is a
region of on-chip RAM (called the integrity kernel RAM) that is only accessible in
integrity kernel mode, which is analogous to supervisor mode and possesses strictly
greater access privileges. Integrity kernel RAM can be accessed by the I-cache and
the D-cache, through a dedicated port for each. Integrity kernel RAM occupies a
dedicated address space. Accesses to integrity kernel RAM are not mediated by
the MMU since the entire integrity kernel is trusted. IAP contains a ROM from
which the integrity kernel is loaded into integrity kernel RAM immediately after
the processor is reset. Control is then transferred to the first instruction in the
integrity kernel.

4.2.3 Event Handling

For XIVE to be implemented efficiently, it requires hardware support for detecting

at least three types of events:

1. A new or recently-modified page of memory being accessed for execution
by the pipeline.

2. The program counter being set to a specific value.

56

Listing 7 Hardware handling of individual events.
procedure HANDLEEVENT
€ < DETECTEVENT
@ < PRESCRIBERESPONSE(€)
if @ = (Trap, 7,) then
TrAP(T, 0)
end if
end procedure
function DeETECTEVENT
if attempting to execute instruction from page with unset V bit then
return (HitVBit, y) > is the page information.
else if PC € Breakpoints then > Integrity kernel can modify breakpoints.
return (HitBreakpoint, None)
else
return None
end if
end function
function PRESCRIBERESPONSE(€) > Determine how to respond to the event.
if € = (1, 0) then
return (Trap, 7, 0) > Other types of responses could be supported in
future versions of IAP.
else
return None
end if
end function
procedure TrRAP(T, 0) > Trap to the integrity kernel.
ShadowPC < PC
ShadowNextPC < NextPC
PSR.IntegrityKernelMode < True > Controls access to processor resources
and causes the I-cache to fetch trap handler code from integrity kernel RAM.
PSR.TrapsPreviouslyEnabled < PSR.TrapsEnabled > Used to restore
PSR.TrapsEnabled when exiting integrity kernel mode.
(Continue invoking trap handler similarly to native trap handler.)
end procedure

3. aspecific standard SPARC trap being activated (currently only necessary for
prototyping).

Additional event detectors can be incorporated into future versions of IAP to
support other types of integrity kernels.
The process for detecting and handling each event in hardware has several

phases, as illustrated in Listing 7.

57

1. The event detector activates.
2. The event filter communicates any required actions to the processor pipeline.
3. The pipeline perform any required actions.

The following paragraphs describe these phases in reverse, since the earlier phases
are increasingly specific to particular types of events.

IAP can currently perform one type of action in response to an event: Generate a
trap to a handler in the integrity kernel. Integrity kernel traps are treated differently
than native SPARC traps. By convention, an empty register window is always
available for a trap handler to use. However, since integrity kernel traps can be
processed while a native trap is executing, they can’t rely on this window being
available. Specifically, this means that the window pointer used internally by the
SPARC pipeline is not adjusted in relation to integrity kernel traps. In fact, integrity
kernels do not use the register window functionality at all, unless they need to
access data in target registers. Instead, they manually save and restore register data
using fast on-chip RAM.

This does create a challenge, in that the pipeline must not set local registers
with the current and next program counter values as it usually does when invoking
trap handlers. Instead, it saves those values in a pair of coprocessor registers. The
coprocessor registers can be read and modified by the integrity kernel trap handler,
and their contents shadow their corresponding normal registers for “long jump”
and “return from trap” instructions. By only shadowing the registers for those
instructions, we ensure that the registers can otherwise be used normally by the
integrity kernel.

We extended the processor state register with two additional status bits. The
integrity kernel bit is set whenever the processor is executing the integrity kernel
and is used to control access to processor resources and to determine when integrity
kernel mode is active. The traps previously enabled bit is only set when the
processor is in integrity kernel mode and traps were enabled when integrity kernel
mode was activated. It is automatically used by the pipeline to restore the traps
enabled bit in the processor state register when exiting integrity kernel mode.
Neither the integrity kernel bit nor the traps previously enabled bit is visible nor
accessible in non-integrity kernel processor modes.

The event filter communicates with the pipeline using the coprocessor interface

specified in the SPARC standard. That interface standardizes program access

58

to 32 coprocessor registers. IAP event filter register contents can be used as
patterns during event detection. For example, the event filter reacts to “instruction
executed from address” events whenever an appropriate pattern is specified within
the appropriate coprocessor register. It is possible that the 32 coprocessor registers
natively accessible by SPARC will be insufficient to store all of the information
needed to support future integrity kernels. Thus, IAP implements register windows
to expand the register space that can actually be accessed. One of the registers
specifies a window index, and an operation on any windowed register actually
accesses that register in the window specified by the current value of the window
index. Our prototype uses two coprocessor register windows.

Attempts to execute unverified instructions are detected within the I-TLB and
the I-cache. Each I-TLB entry contains a V bit (for “Verified”) that is cleared when-
ever the entry is inserted into the I-TLB or the memory region that it encompasses
is written. However, TLBs are only consulted when the MMU is enabled, so IAP
also includes a separate set of non-MMU V bits that each map to a portion of the
physical address space. V bits allow an integrity kernel to ensure that specific
regions of virtual memory (in this context the physical address space constitutes
a separate virtual space) have been verified before any of their contents are exe-
cuted as instructions. The specific type of verification to be performed must be
implemented by each integrity kernel.

The hardware mechanisms for automatically maintaining and retrieving the
V bits are described in §4.2.6. TAP also provides facilities so that the integrity
kernel can selectively and efficiently set or clear any number of V bits controlling
a specific physical or virtual address region in constant time.

Instruction pointer breakpoints are implemented using simple value/mask reg-
ister pairs and can match either the virtual or physical address of the instruction.
Native SPARC traps are detected similarly, but are handled somewhat subtly. When
the trap matches, the integrity kernel handler is invoked. It is important that the
handler be able to determine the type of SPARC trap that triggered it, so IAP
preserves the original trap type in a pipeline register that can be read by a standard
SPARC instruction.

59

4.2.4 Ethernet Access

The Ethernet interface in IAP has been modified to support dual MAC addresses
and issue a second hardware interrupt request whenever a packet with the second
MAC address is received. It places the packet data into the same DMA buffer that it
uses for the first MAC address, which permits the integrity kernel to receive packets
without forcing the interface into promiscuous mode or switching between MAC
addresses. The separate interrupt can be used to efficiently notify the integrity
kernel when it receives packets, even when it is not currently active, although our
prototype does not currently use this feature. The auxiliary RAM holds DMA

buffers that the integrity kernel can use to interact with the Ethernet interface.

4.2.5 Cryptographic Accelerators

IAP also implements two cryptographic algorithms in hardware, since they are
heavily used by XIVE and relatively expensive to implement in software. First,
we selected the BLAKE hash routine for its open source VHDL implementation,
status as a SHA-3 finalist, and good performance [63]. It is integrated with the
pipeline itself, and can be used by executing 32- and 64-bit load instructions, the
results of which will then be hashed. We exploit the fact that the LEON3 SPARC
implementation only uses the lower five bits of address space identifiers to allow
the integrity kernel to specify that data should be hashed by setting the upper
three bits of the address space identifier to a specific value. The implementation is
sufficiently fast that hashing does not stall the pipeline. After a complete message
has been hashed, the final hash value can be retrieved by accessing a specific region
of memory in a special address space, which causes the hash to be finalized before
returning the value. The finalization process does stall the pipeline for a short
period of time, but is only invoked once per message.

Second, 128-bit AES is integrated in the pipeline and encrypts data loaded with
a different address space identifier modifier. Its key can be set by storing data to
specific locations within a configuration address space. IAP implements parts of
Counter (CTR) mode, since it lends itself naturally to the serialized data encryption
that is implemented in the pipeline, is popular in higher-level cryptographic modes,
imposes little additional hardware cost, and can be easily used to implement
Electronic Codebook (ECB) mode encryption. To generate ciphertext, CTR mode
sequentially XORs words of loaded memory data against words of a counter value

60

processed using AES. To implement ECB mode using CTR mode, the integrity
kernel must first manually set the counter value to a block of plaintext. Then, it
must load data from a static block of memory containing zeroes, which causes
the XOR transformation to simply load the raw AES output into the specified
register. The AES implementation can cause pipeline stalls. However, it mostly
operates in parallel with the pipeline, so stalls can be avoided by inserting sufficient
instructions between the point at which each AES operation is initiated and the

point at which its output is used.

4.2.6 Coverage of Pipeline Instruction Inputs

The circuitry that fetches instructions for the pipeline is complex, and it may
not be immediately obvious that IAP correctly requires all instructions to be
verified before being executed by the pipeline. This section argues that it does
so by presenting a detailed analysis of IAP’s interactions with the fetch circuitry.
Despite the complexity of this portion of IAP, note that IAP effectively removes
other components of the processor from the integrity kernel’s TCB. Specifically,
the specialized integrity kernel isolation mechanism in AP isolates the integrity
kernel by default, whereas MMU-based isolation must be correctly configured
to be effective. Furthermore, the mechanisms described in this section associate
verification data with structures that are populated by the page table walker in the
MMU, which removes the page table walker from the integrity kernel’s TCB.

To provide background for the following analysis, we also explain the compo-
nents within the processor that are capable of issuing system bus write requests.
Recall that our threat model only considers instructions fetched from memory
regions that are populated by such components. The relevant connectivity of the
system is depicted in Figure 4.2. The direction of data flow within the processor
core is indicated by arrows. Note that certain peripherals contain both bus master
and slave interfaces, such as the Ethernet interface.

The D-cache is responsible for storing data from the pipeline into system bus
memory regions. A variety of sequences of events can occur as a result of a write
to the D-cache. When the MMU is disabled, the D-cache immediately issues a
write request to the core bus interface. The core bus interface arbitrates between all
memory clients within the processor to serialize their accesses before issuing them

to the system bus controller. The interface uses a static priority scheme to select

61

o [D-Cache l—— jnteger | processor

I
| % nteg
| | Walker I-Cache Pipeline |: core
A A
|
I
| [Core Bus Interface ««+ |Ethernet Bus
| T] Masters
— System Bus |
: ! Bus
| Memory Controller | ««- Peripherals

Figure 4.2: Connectivity of potential instruction data sources.

between multiple outstanding requests. I-cache requests are top priority, followed
by requests from the D-cache, and finally the MMU page table walker. When the
MMU is enabled, the address must be translated before a write request is issued.
The MMU page table walker is also capable of modifying memory, because it
needs to update bits in page table entries when memory is accessed. Outside the
processor core, the Ethernet interface operates as a system bus master, and thus
can freely write to memory.

The D-cache already monitors all activity on the system bus, since it uses
snooping to update cache entries. IAP extends that monitoring circuitry to also
clear each V bit whenever a system bus master (including the processor core) writes
to a region encompassed by that bit. If the affected V bit is inside an I-TLB entry,
it is cleared in the same cycle that the system bus request is executed on the bus.
The updated bit state will be available to TLB requests fulfilled after that cycle.
The non-MMU V bits take one additional cycle to update, since their old values
must first be read from on-chip RAM, updated, and then stored back to the RAM.
Simultaneous read and write requests to the RAM cause the read request to return
the old value. The timing of these events is depicted in Figure 4.3a.

The pipeline issues a fetch request to the I-cache by sending it the virtual
address of the desired instruction. The I-cache can process the request in one
of several ways, depending on its current configuration and internal state. The
simplest scenario is when the instruction is already present in the cache. The only
way to modify data in the I-cache is to use a diagnostic channel, but IAP disables
that channel. Thus, all instructions in the I-cache have been previously verified.

The I-cache transitions directly into streaming mode when a cache miss occurs

with the MMU disabled, as shown in Figure 4.3b. Streaming mode attempts to

62

System | Write
Bus| Request
TLB lear
(a) V Bits Rc(e:qiaest Ready
Non-MMU Read Write
V Bits| Request | Request Ready
0 1 2
Idle | Streaming
Core Bus Read ..
(b) Interface Request
Non-MMU Read Response
V Bits| Request
0 1
Idle Translate Streaming
Core Bus Read e
(© Interface Request
MMU | Translate .. Translate
(I-TLB) | Request Response
0 m m+1

Figure 4.3: V bit update timing.

load a partial or whole cache line of instructions into the I-cache. The appropriate
non-MMU YV bit is consulted during that transition, and is processed by the IAP
event detector. Since the non-MMU V bit only reflects writes that occurred at least
2 cycles prior to the V bit read request, we specially handle the corner cases that
fall inside of that bound. The V bit read request is issued in the cycle prior to the
first cycle in streaming mode. To detect system bus writes to the region about to
be streamed that occur 2 cycles prior to streaming (when cycle 1 of Figure 4.3a
coincides with cycle 0 of Figure 4.3b), the I-cache monitors the non-MMU V bit
write requests issued by the D-cache. If a V bit write request is issued in that cycle
to the location that the I-cache is requesting, the updated V bit from the D-cache is
used, and the V bit read request is canceled.

Writes to the desired cache line one cycle prior to streaming through the end of
the streaming operation (mid-stream updates) are prohibited and result in a fetch
error. Mid-stream updates can in fact be performed without generating errors on
the stock LEON3. However, they ought to be discouraged, since some of them have
varying results depending on the configuration of the processor’s cache parameters.

The I-cache detects mid-stream updates by monitoring the V bit request channel

of the D-cache. Attempts to clear the V bit for an address within the I-cache’s

63

current cache line trigger an error. It is necessary to check both the current V bit
clear requests as well as those from the previous cycle during streaming mode, in
case cycle 0 of Figure 4.3a coincides with cycle O of Figure 4.3b. If a legitimate
program performs a mid-stream update, its desired effects can still be emulated
by a trap routine in the target OS. Future versions of [AP may handle mid-stream
updates like any other write to an executing page of memory, but that could increase
the complexity of the hardware and the potential cost currently seems unwarranted
for such unusual software constructs.

When the MMU is enabled, cache misses are first checked against the I-TLB.
If an I-TLB entry is hit, its V bit is provided to the IAP event detector and the
I-cache transitions to streaming mode. Otherwise, the MMU walks the page table
and inserts a new entry in the I-TLB before transitioning to streaming mode. The
V bit of the new I-TLB entry is initially unset. The timing of these processes is
denoted in Figure 4.3c. The streaming cache line modification detector described
above is also active when the MMU is enabled. It is necessary to check both the
current V bit clear requests from the D-cache as well as those from the previous
cycle during streaming mode, in case cycle 0 of Figure 4.3a coincides with cycle m

of Figure 4.3c.

4.2.77 XIVE Network Protocol

There are three requirements that the network communications protocol between

the integrity kernel and the approver must satisfy:
1. Security, to prevent eavesdropping and to detect attempts to modify packets.

2. Low latency, to minimize the amount of time that the end node is blocked

waiting for a response from the approver.

3. Simplicity, since it must be implemented in the integrity kernel, which has

a very small codebase.

We constrain the approver to occupy the same local area network as the end
node to minimize latency. This permits us to define a link layer protocol, called
the XIVE Network Protocol (XNP). Each XNP packet is 96 bytes long (excluding
the 14 byte Ethernet header and four byte Ethernet CRC), and can be represented
formally as a tuple (v, 7, ¢, ¢, u) (excluding the Ethernet header). To prevent replay

64

attacks, both approver and kernel nonces v are drawn from a single, strictly increas-
ing sequence. The packet type 7 € {boot, verify, exit} X {request, response}. The
sequence number ¢ is used to match responses to requests. The composition of the
payload ¢ is specific to each type of exchange described below. EAX mode is used
to encrypt and authenticate (v, 7, ¢, ¢) with AES, and the resultant MAC value u
is then appended [11]. The XIVE kernel implements logic to resend packets after
some timeout until a response is received. We now discuss specific XNP exchanges
between the XIVE kernel K and the approver (A. Only the payload ¢ is depicted
(when non-empty), but each transfer actually involves a complete packet.

The approver resets its internal representation of an end node’s state, which
we discuss later, whenever it receives a boot request from that node. The XIVE
kernel also uses the boot request to locate the approver by sending it to a specific
Ethernet multicast address whenever it initializes after a reset. It then stores the
MAC address of the approver for use in addressing all future transmissions. Using a
multicast group simplifies network configuration. It does not lead to vulnerabilities
potentially posed by a malicious host impersonating the approver, because of the
protection afforded by EAX using pre-shared keys.

The XIVE kernel issues a page verification request whenever it detects an
attempt to execute instructions from a page with an unset V bit: K M A,
where the page type 7, is derived from the size of the page, the state of the
MMU (enabled/disabled), and the processor mode (supervisor/user), v is a unique
identifier for the currently-executing process, £ is the virtual base address of the
page, and @ is the result of hashing the entire page using BLAKE. The XIVE kernel
blocks the execution of the processor until it receives a response from the approver:
K & A, where « specifies what action the XIVE kernel must take next, which
can be either to terminate the process or to resume its execution.

The XIVE kernel issues an exit request when it detects that a process context
is about to be destroyed: K o, A, where v is the same process identifier used in
the page verification requests. This permits the process identifier to subsequently
be reused. Note that this does introduce a certain level of trust in the target OS to
achieve the full assurances possible with XIVE, since an OS that causes XIVE to
issue an exit request without actually destroying the appropriate context can then
potentially be permitted by XIVE to execute programs that contain unapproved
combinations of pages. However, all code that is executed must still be recognized

and approved.

65

4.2.8 Approver

The approver’s roles include generating and maintaining a whitelist, a database of
pre-shared AES keys, and a representation of the internal state of each active end
node on the network. Our initial prototype is simplified in that it only communicates
with a single end node.

To maintain a partial representation of the internal state of each end node, the
approver creates an empty state when it receives an XNP boot request packet and
updates that state when each new page verification request or process exit request
packet is received. The current state of each node n can be represented as a function
o : I' — 21 generated in response to a set of “current” page request packets p
received from n, where I' is the set of all context numbers that are contained in p

and IT is the set of all approved programs:

o(y) = ﬂ {JT ell ‘ (t5,8,0) € 7r}

(Tp,y:B.0)ep

where (7,,5,0) € n iff the page with the specified characteristics is contained
within program 7. When o (y) = P, it means that the process identified by y has
only previously executed code that is contained in all programs in P. P may contain
many programs, since different programs can contain pages of code with identical
characteristics. A page request packet (7, 7y, 3, 0) loses currency and is removed
from p when the approver receives a process exit request packet (y). We say that n
has entered an unapproved state as soon as dy. o(y) = 0, meaning that the process
identified by vy is not a recognized program.

To generate a whitelist, the approver can be operated in learning mode, in which
it approves all pages of code and outputs a database representing all programs that
were executed by n.

The approver software is implemented as a multi-threaded C++ program.
One thread performs administrative functions, another receives, decrypts, and
verifies packets, a third processes the received packets with respect to the system
state database, and the final thread encrypts, authenticates, and transmits newly-

generated packets.

66

4.2.9 XIVE Kernel

The kernel was coded entirely in assembly language and is described in Listing 8.
It has 859 instructions and uses 496 bytes of data storage in integrity kernel RAM.
In an auxiliary RAM it also uses 648 bytes for Ethernet DMA buffers and 2304
bytes for the hash cache.

Listing 8 XIVE kernel.
procedure Boor > Obtains control immediately after every processor reset.
N4 < ADDRESSOF(destroy_context)
INnitBP(774.) > Initialize breakpoint to detect process context destruction.

INITAES () > Initialize AES using key shared with the approver.
XNPBoor > Perform XNP boot exchange.
N < ADDRESSOF(target OS)

Jump(ny,,) > Transfer control to target OS.

end procedure

procedure HANDLEBREAKPOINT
SAVELOCALREGISTERS
XNPProcessExiT(y) > Perform XNP process exit exchange.
RESTORELOCALREGISTERS

end procedure

procedure HANDLEUNSETVBIT(Y) > i is the page information.
SAVELOCALREGISTERS
SETVBIT(Y, True) > Doing this first ensures that any DMA accesses

that occur during the subsequent verification operations are detected when the
processor resumes normal execution.
0 «— BLAKEHASH(Y) > Hash entire page.
a «— XNPVERIFYPAGE(Y, 0) > Perform XNP page verification exchange.
if @ = resume then
RESTORELOCALREGISTERS
(Resume process execution.)
else
HacrProcessor> Our prototype simply halts the target when it enters an
unapproved state, rather than attempting to selectively terminate the unapproved
program.
end if
end procedure

The kernel initially sets a breakpoint to detect OS-level process exit events.
It also contains a handler for attempts to execute unverified memory. Each of
these handlers will be described below. After that, it installs the AES key that it

shares with the approver. Next, it performs the initialization step of XNP. Finally,

67

it transfers control to the main OS. The rest of this section discusses each of the
trap handlers and their supporting functions.

The unverified execution trap handler is executed each time a region of memory
is executed for the first time or has been modified since it was last verified. It
first sets the appropriate V bit. Doing this first ensures that any DMA accesses
that occur during the subsequent verification operations are detected when the
processor resumes normal execution. It then hashes the entire page of memory
using BLAKE. Next, it sends an XNP page request to the approver. It uses the
current MMU context number as the context value that is sent to the approver.
After the trap handler receives a valid response from the approver, it resumes the
processor’s normal execution. To simplify its implementation, our prototype kernel
simply halts the target when it enters an unapproved state, rather than attempting
to selectively terminate the unapproved program.

Physical pages of kernel code and shared libraries are mapped into multiple
virtual address spaces for different processes, so XIVE by default hashes and
verifies them in each address space. To reduce this unnecessary overhead, we
implemented a hash caching mechanism that stores the hash for each I-TLB entry
at the time that it is calculated. Subsequent invocations of the verification routine
check each entry in the cache prior to calculating the hash. We extended IAP with
the ability to read the V bit and valid bit associated with each I-TLB entry. If both
of those bits are set for an I-TLB entry associated with a hash cache entry that
was generating from the exact physical memory page currently being verified, the
pre-computed hash value is used. The hash cache-checking logic does introduce
additional overhead, but also commonly reduces the number of hash operations
that are required. Additional optimizations to reduce verification overhead should
be explored in the future. Our prototype uses 2304 bytes of auxiliary RAM for the
hash cache, although this is in fact vulnerable to manipulation by the target OS. A
deployable implementation would place the hash cache in integrity kernel RAM.

The process exit trap is triggered when the pipeline attempts to execute a
specific instruction in the kernel function that destroys a process context. It loads
the affected context number from the structure passed into the kernel function and
then performs the appropriate XNP exchange each time it is triggered.

Whenever a trap handler is entered, it first saves all of the local registers and
the processor state register to integrity kernel RAM. This permits the handlers to
freely use the local registers as well as instructions modifying the condition codes

in the processor state register. This means that the handlers have eight registers to

68

manipulate, which are insufficient for some operations. Thus, additional blocks
of memory are reserved to implement a pseudo-stack for register swapping. The
kernel does not implement an actual stack, because it is simpler to directly address
the reserved memory in the few instances that it is required.

The target-aware Ethernet driver is a significant source of complexity in the
integrity kernel. The integrity kernel shares the Ethernet interface with the target
OS, but it can’t rely on the target having configured it in a specific manner. So,
each time the integrity kernel sends a packet, it first checks to see if the target has
initialized the Ethernet interface. If so, it redirects the Ethernet interface to a new
transmit buffer in auxiliary RAM, but uses the receive buffer configured by the
target OS. Otherwise, it also redirects the receive buffer to auxiliary RAM.

By retaining the target-configured receive buffer, the integrity kernel ensures
that packets intended for the target that arrive while the integrity kernel is active
are still eventually received by the target. The integrity kernel simply processes all
packets that are intended for itself and restores their descriptors before resuming
the target. However, the integrity kernel does perturb the system in that its own
packets can become interleaved with those destined for the target, introducing
“holes” in the receive buffer. The Gaisler Ethernet driver in Linux by default does
not scan the entire receive buffer when it receives an Ethernet interrupt, so its
operation is disrupted by this behavior. However, it was a simple matter to modify

the Linux driver to scan the entire buffer upon receiving each Ethernet interrupt.

4.2.10 Target OS and Applications

Linux 2.6.36 serves as the target OS in our prototype, hosting a Buildroot userspace
environment. It was necessary to slightly modify the target system to make it com-
patible with XIVE. Beyond the modifications discussed in §4.2.9, it was necessary
to modify the Linux kernel to allocate smaller pages of memory containing kernel
code. By default, the entire kernel space was placed into a single 16MiB mapping.
Since many parts of the kernel are dynamic, this made it infeasible to generate a
comprehensive set of whitelist entries for the kernel and was also necessitating
an enormous number of verification operations. So, we break the 16MiB kernel
region into a set of contiguous 256KiB pages soon after the kernel begins booting.
We also modified the alignment of kernel code and data sections at link-time so

that code and data pages are not mixed.

69

An additional problem with the default Linux kernel is that the LEON3 ar-
chitectural support routines flushed the entire TLBs and caches very frequently.
This was predictably generating large numbers of re-verification requests to the
approver that hurt performance. To resolve this problem, we implemented selective
flushing by address regions for both TLBs and the I-cache in the hardware and the
Linux kernel. Many architectures already include such hardware functionality and
kernel support.

Userspace code also presented challenges for XIVE, because programs and
libraries mixed code and data pages. We modified the linker scripts to re-align
the program sections and thus avoid that issue. A secondary issue was caused by
the particular way in which Linux implements dynamic linking of programs with
shared libraries. It uses a structure, called the procedure linkage table, which is a
region of memory that is gradually filled in with jump instructions to shared library
routines. By default, it is gradually populated on-demand. This results in frequent
modifications to an executable page of code, which inflates the size of the whitelist
and generates additional traffic to the approver. To resolve this issue, we configured
all programs at link-time to preemptively populate the entire procedure linkage
table when they are first launched.

We optimized the context switching mechanism to cause the processor to switch
back to a dedicated kernel context upon entering the kernel. The I-TLB and I-cache
include the context number in their entries’ tags, so this reduces pressure on those
structures.

For the purposes of our experiments, the Linux kernel and the userspace root
filesystem are merged into a monolithic memory image that is loaded into main
memory over JTAG before the system boots. To permit the construction of a
whitelist, we cause the image to fill a whole 16MiB page, as initially used by the

kernel, and zero-fill all unused space within the image.

4.3 Discussion

4.3.1 Deployment and Management

In any XIVE-protected environment, the following elements must be deployed:

1. IAPs to operate all programmable portions of the end nodes.

70

2. At least one co-located approver server that is statically configured to be

resistant to attacks, since it is unable to rely on XIVE protection itself.
3. An integrity kernel ROM image for each [AP.

4. Pre-shared keys to permit authenticated, encrypted communication between

each end node and the approvers.

A variety of protocols can be devised to install keys and ROM images in end
nodes, and may resemble the protocols that have previously been developed to
securely configure sensor nodes, such as SCUBA [59]. In that example, software
attestation could be used to establish a tiny trusted environment on the end node
that then communicates with the pre-installed integrity kernel and uses a default
key to authenticate itself to the integrity kernel. It could then install a new key.
This process could be repeated whenever the key needs to be updated, using the
appropriate key for the initial authentication. If authentication failed during this
process, indicating that an attacker may have changed the key used by the integrity
kernel, the administrator would be alerted to the fact and could initiate physical
remediation procedures. A similar process could also be used to perform and verify
integrity kernel ROM upgrades, assuming that a default ROM image is initially
installed.

4.3.2 Data Integrity

XIVE does not enforce the integrity of all objects within the target OS. It enforces
the integrity of executable code, which can be used as a basis for enforcing the
integrity of other system objects, but it does not directly provide such protections.
Other systems have been proposed for protecting the integrity of data. For example,
Karger discussed the limitations of discretionary access control and proposed
a finer-grained discretionary mechanism to address the threat of trojan horse
programs abusing the permissions afforded to a specific user to maliciously modify
files [38]. It relies on a database containing information about what sorts of data
flows specific applications are expected to construct based on their input parameters
and uses a trusted path to the authorized user to grant additional permissions on-
demand.

Other policies with similar objectives have been devised. Biba proposed a vari-

ety of mandatory and discretionary access control policies that prevent low-integrity

71

data, computations, and subjects from influencing high-integrity or incomparable
data, computations, and subjects [14]. The mandatory controls proposed therein
are based on a lattice model of integrity levels derived from military applications.
Clark and Wilson proposed a different access control policy intended for commer-
cial applications [20]. It associates each program with specific data that can be
modified by the program when that operation is requested by a specific user. It
requires that each program be certified to properly transform all of its allowable
input data to valid output data. It also specifies that special programs should be
used to transform unconstrained data, such as user inputs, into allowable input data
for specific programs. Karger proposed implementing their model using the SCAP
secure capability architecture that was envisioned to provide hardware support
for capabilities, and discussed the practical challenges associated with such an

endeavor [39].

4.3.3 Denial-of-Service Attacks

Since XIVE relies on network communications to approve the forward progress
of each end node, attackers can deny service to legitimate users of those nodes by
interfering with XNP. However, XNP only operates on the LAN, which reduces
the ability of attackers outside of the LAN to launch Denial-of-Service attacks.

4.3.4 Control Flow Attacks

Control flow attacks can succeed without injecting new code into the target sys-
tem [16]. Thus, XIVE does not prevent them. However, some types of control
flow attacks, such as return-oriented-programming, can be prevented using address
space layout randomization [13]. Each XIVE whitelist is specific to a particular
address space layout. However, XIVE could potentially be adapted to work with
randomized address spaces by causing the approver to issue a seed to control
the randomization process on an end node. That seed could then be used by the

approver to translate page verification requests.

72

4.3.5 Bytecode Support

Programs written in Java, .NET, and other languages can be distributed as bytecode,
which poses a challenge for XIVE. Bytecode is never directly executed, but is
instead processed by an interpreter or a JIT compiler, the output of which is
ultimately executed. Currently, XIVE would simply verify instructions executed
within an interpreter, a JIT, and the output from the JIT. Certainly, it is desirable to
verify interpreters and JITs, but it is likely to be infeasible to whitelist JIT outputs,
since the JIT may dynamically generate various instruction streams. This can be
handled by monitoring data reads and writes by recognized JITs, so that bytecode
inputs can be verified and the output instruction streams intended to be executed in
the future can be excluded from verification. Patagonix includes some elements
of this approach [47]. Similar considerations apply to other programs that are

processed by JITs, such as those written in JavaScript.

4.3.6 Multicore

One potential strategy for adapting XIVE to a multicore environment is to replicate
most of its functionality on each core, designate one instance as the leader, and
create local communication channels that connect all instances. Then, whenever
an instance needed to communicate with the approver, it could route the commu-
nication through the leader, which would be the sole instance with access to the
Ethernet interface. The leader instance must be co-located on the core with the

Linux Ethernet driver, to prevent contention.

4.3.7 Alternate Usage Models

It would be a simple matter to adapt the approver to approve rather than deny
by default, and thus enforce a blacklist of known malware, permitting all other
software to execute.

Alternately, by simply approving all software that is measured by the end node
on the approver rather than preventing the execution of non-whitelisted software,
the approver could then field remote attestation requests on the behalf of the end
node. Some advantages of this approach over conventional remote attestation, such
as that implemented by the Linux Integrity Measurement Architecture [58], are

that audit logs are maintained in a central location to further reduce the TCB on end

73

nodes, cumulative attestation can easily be provided [43], it conclusively reveals
the presence of malware on infected target systems since malware is unable to
block attestation requests, and the use of public-key cryptography is centralized so

that fewer nodes must be upgraded if it is eventually broken.

4.3.8 Potential Applications for XIVE

Ideally, XIVE is applicable to any system based on IAP. However, it currently relies
on whitelists of allowed kernels and programs, which are only feasible to construct
for certain environments. It also requires sufficient connectivity between target
hosts and approvers to execute XNP. We focus on three particular environments
that are popular, security-critical, and amenable to whitelist construction.

Many data centers are well-suited to XIVE. They are centrally-administered,
run a slowly-changing set of programs, and have high-speed connectivity between
hosts. They exist in facilities with strong physical security, and primarily face
threats from remote attackers that can only influence the data centers’ network
traffic.

A variety of Process Control Systems (PCSs) are also well-suited to XIVE. For
example, Intelligent Electronic Devices (IEDs) are used in electric substations to
monitor and control the flow of electricity. They contain upgradeable computers,
so it is possible that they could be compromised with malware. Their operating
environment shares most of its characteristics with that of data centers, but it has
different external connectivity. Substations communicate over FANs that are acces-
sible from few facilities. Some substations are also accessible over maintenance
links. However, both types of networks can potentially be compromised and used
to propagate malware, and can also enable attacks by insiders.

AMI is another important type of PCS that can be protected by XIVE, since
meters contain upgradeable firmware. Meters communicate over a wide variety of
private FANSs, ranging from low-speed wireless links to broadband connections.
However, they also contain very simple software, so they require little communi-
cation to verify all of it. Meters operate with minimal physical protections, so it
may be unrealistic to prevent all physical attacks on them. However, meter compro-
mises are potentially most dangerous to the stability of the power grid when a large
number of meters is compromised, so preventing large-scale remote compromises

of meters is a valuable objective. Non-physical attack vectors include I/O ports on

74

the meter (such as short-range IR ports), HANs that are intended to communicate
with appliances associated with the metered premise, and compromised FANSs.
HANSs may be used to connect a wide variety of devices, including some under a
consumer’s control that could be particularly attractive tools for attacking meters.

Many networks of corporate desktop clients offer high-speed connectivity be-
tween clients and local servers and are centrally-administered. They are well-suited
to XIVE when they also enforce a policy regarding which programs clients are
permitted to run. They may face a variety of physical threats, but the primary vul-
nerabilities and threats affecting desktop clients are generated directly or indirectly
by their users operating standard I/O devices. Users may run vulnerable applica-
tions that are subsequently attacked by remote entities, run malicious applications
directly, or attempt to install legitimate applications that are disallowed by the

policy for non-security reasons.

4.4 Implementation

We synthesized IAP to run on the Digilent XUPv5 development board. It is based
on version 4104 of the LEON3. We also ported the changes in IAP that improve
performance in standard software to a reference version of the LEON3, which we
used as the basis for a series of benchmarks. Specifically, these enhancements
include support for selective I-TLB and I-cache flushing and a slight modification
to the DDR memory synchronization buffers. Both versions of the processor have
the following configuration features: D-cache with 1 set of 8KiB and a line size
of 4 words, D-cache system bus snooping, D-TLB with 8 entries, I-cache with 4
sets of 32KiB each and a line size of 8 words, I-TLB with 64 entries, hardware
support for multiplication and division, branch prediction, dual JTAG and serial
interfaces for debugging, 100Mbps full-duplex Ethernet, and 256MiB of DDR?2
main memory. Each of the TLB and cache structures in both processors implements
a Least Recently Used (LRU) replacement policy. We synthesized both processors
at a clock frequency of SOMHz using the Xilinx Synthesis Tool (XST) v.13.1.
FPGAs are implemented differently than commercial processors, so we are
unable to provide a simple comparison of the silicon area and quantity of wire used
by the two implementations. Instead, we compare the quantity of FPGA resources
that are utilized. The reference utilizes 52% of the slices and 33% of the Block-
RAMs and FIFOs. IAP utilizes 71% of the slices and 40% of the BlockRAMs and

75

FIFOs. Note that the additional silicon used by IAP for cryptographic acceleration
will remain dark for substantial periods of time. Recent trends in processor designs
suggest that dark silicon space will become increasingly plentiful [67].

The prototype permits access to the coprocessor registers by the target, so
that the target can initiate the integrity kernel ROM load process. It does this
by installing a pattern for a software trap, and then triggers that trap to initially
enter integrity kernel mode. A deployable implementation of IAP would disable
that access as well as the debugging interfaces. Another debugging feature in our
prototype that would not be present in a deployable implementation is that the
integrity kernel ROM data is actually stored on the auxiliary RAM at the time [AP
begins executing, before being copied into the on-chip integrity kernel space. This
permits easy experimentation with various versions of the integrity kernel. Code
outside the IK can access some BLAKE and AES functionality in our prototype,
which would be disallowed or carefully controlled in a deployable implementation.
Finally, the hash cache described in §4.5 is also located in auxiliary RAM, leaving
it vulnerable to modification in the prototype. A deployable implementation would

expand the integrity kernel RAM and store the hash cache within it.

4.5 Evaluation

4.5.1 TCB Size

XIVE was constructed to demonstrate that a very small integrity kernel is capable
of enforcing eXecuting — Verified on IAP. We compare the size of XIVE against
that of other systems with similar objectives in Table 4.1. All are discussed in
§5. XIVE is clearly much smaller than Patagonix, due to the fact that Patagonix
is incorporated into the full-featured Xen hypervisor. Like XIVE, SecVisor was
developed with the specific objective of minimizing its size, so it is much closer.
To be fair, we calculated the code size of SecVisor from the breakdown of code
they provided, excluding their SHA-1 and module relocation implementations
since XIVE does not contain analogous software functionality. SecVisor must use
page tables to detect the execution of unverified code and to protect itself, which
introduces additional complexity compared to XIVE. We thank the authors of [10]
for furnishing us with the relevant line count in Table 4.1, which includes comments

and debugging code, and could perhaps be reduced by future optimizations.

76

System \ Lines of Code

XIVE 932

Patagonix 3544 + ~230K (Xen)
SecVisor 2682

HyperSentry | ~3400

Table 4.1: Comparison of the TCB sizes of various systems.

4.5.2 Performance Methodology

We evaluated the performance implications of XIVE using a series of benchmarks.
We developed a Python script to automatically run the benchmarks and record the
time consumed by each test. It controls and monitors the benchmarks using the
target’s Linux serial console and the serial debugging interface. The whole series
of tests was run in sequence ten times for each processor configuration.

The reference system retains the network driver receive buffer handling adapta-
tion described in §4.2.9. It introduces substantial overhead in network processing,
but we retain it since we want to highlight the overhead introduced by XIVE’s
network traffic. It may be possible to optimize the network driver in the future to
reduce its overhead.

Figure 4.4a shows results from testing XIVE in two configurations. The
one labeled “Hash Cache” includes the full functionality of the XIVE kernel as
described in §4.2.9. The one labeled “No Hash Cache” disables the hash caching
functionality, since it is not obvious a priori which configuration imposes less
overhead.

Additionally, to demonstrate the overhead inherent in software-based ap-
proaches, we modified the Linux kernel to use page table manipulations to trap
attempts to execute unverified code. The kernel does not actually hash or verify the
code, so most of the overhead is generated by the page table manipulations and
associated traps themselves. We compared the results of benchmarks running that
configuration on the reference hardware, labeled ‘“Page Tables,” against a third con-
figuration of XIVE that does not perform any hashing or network communication,
labeled “Trap Only,” in Figure 4.4b.

Each of the configurations just discussed was used to run a series of five tests.
The first test (“Create Processes”) is a microbenchmark that demonstrates process
creation overhead in an adverse case. It executes the 1s command in an empty

directory 10 times in succession. Since 1s is a lightweight command that performs

77

little work in this case, it demonstrates the time that XIVE requires to verify code
during process creation and destruction.

Second, we tested the time it takes the Linux kernel to boot (“Boot Kernel”).
We modified the kernel to print out the base name of the command for each process
at the time that it is launched, so we considered the kernel to be fully booted when
we detected that the init process had been launched.

Third, we downloaded a 2MiB file using the wget command from an instance
of the LigHTTPD server running on the approver machine (“Download HTTP”).
This test demonstrates that XIVE is capable of sharing the Ethernet interface with
the target OS.

Finally, we demonstrated the effect of XIVE on a computationally-expensive
process by compressing the previously-downloaded file using GZip (“Compress
File”). GZip ordinarily involves a mixture of 10 and computational operations, but
the entire filesystem of our prototype is hosted in RAM, so IO is relatively fast.
This fact can also be derived by noting the time difference between this test and the
next one showing the cost to copy the same file (“Copy File”). We scaled all results
from the compression test by a factor of 0.5 to prevent them from dominating the
chart.

The FPGA was directly connected with an Ethernet cable to the machine
running the approver. That machine was a Thinkpad T61 with a 2GHz Core 2 Duo
processor and 2GiB of RAM running Ubuntu 10.10 64-bit desktop edition.

4.5.3 Performance Results

In general, the benchmark results in Figure 4.4a demonstrate that XIVE imposes
low overhead for important types of tasks. However, we present a detailed expla-
nation of the “Create Processes” microbenchmark results as well as those of the
“Boot Kernel” benchmark below.

We hypothesized that the repeated verification of shared kernel code and
userspace libraries was partially responsible for the order of magnitude perfor-
mance degradation observed between the reference and the “No Hash Cache”
configuration, which is what prompted us to develop the hash caching scheme.
It is apparent from the results generated by the “Hash Cache” configuration that
caching hashes for resident pages of memory dramatically reduces process creation

and destruction overhead. It is also apparent that the overall effect of hash caching

78

Reference

~N S
m XIVE - Hash Cache 0 22
- [e)]
100 XIVE - Trap Only Q
50 1 Page Tables
80
=
o
£
l_
)&e
@

(a) Reference configuration and enforcing configura- (b) Trap-only configuration of XIVE and
tions of XIVE. The test to the left of the dashed line page table-based software implementa-
is a microbenchmark, designed to demonstrate pro- tion.

cess creation and destruction overhead in an adverse

case.

Figure 4.4: Mean time required to perform benchmarks, including bars to show the
standard error.

on the large-scale benchmarks is often positive.

Booting the kernel involves verifying a large quantity of code, including several
verifications of the entire 16MiB system image prior to setting up fine-grained page
tables, so boot time suffers a substantial slowdown. It is possible to modify the
non-MMU V bits to operate with a finer granularity or to use a more sophisticated
mapping structure to reduce this overhead, but that increases hardware complexity
and seems unwarranted given the fact that this is a one-time cost per system reset.

We used the “Hash Cache” configuration to determine that XIVE generated
an average of 3.7MiB of verification-related network traffic with a standard error
of 7KiB as a result of running each series of tests and associated administrative

commands.

4.6 Summary

IAP is a processor technology that is specifically designed to efficiently support

integrity kernels. It provides high performance, hardware-enforced isolation, high

79

compatibility with target systems and flexible invocation options to ensure visibility
into the target system. We demonstrated the utility of IAP by developing XIVE, a
code integrity enforcement service with a client component that fits entirely within
IAP’s protected space, containing 859 instructions. XIVE verifies all the code that
ever executes on the target system against a network-hosted whitelist, even in the

presence of DM A-capable attackers.

80

Chapter 5

Related Work

This chapter discusses related work concerning foreign code detection (and preven-
tion, in some cases) and other areas that are foundational to our work or related
in some other way. Most foreign code detection mechanisms use code identity as
the basis for their monitoring and decisions, as do the integrity kernels described
in this dissertation. However, they differ greatly in the mechanisms they use as
the basis for their security guarantees and performance characteristics. Thus, we
categorize each work according to the architectural approach that best characterizes

it, although some of the works actually use elements from multiple architectures.!

5.1 Coprocessor-Based Foreign Code Detection

The Linux Integrity Measurement Architecture supports remote attestation of a
Linux system. It uses a TPM to record the configuration of the system and to
provide a signed copy of that configuration information to authorized remote
challengers [58]. It only maintains information about the configuration of a system
since it was last reset.

The Mobile Trusted Module standard supports the remote attestation features
provided by the TPM, as well as secure boot functionality [69]. It also supports a
small implementation footprint and non-ASIC implementations, including software
implementations [73].

It is possible to use a TPM with a sensor node to support remote attestation
and other services [33]. However, that paper does not discuss how to securely
handle remote firmware upgrades, which is substantially more challenging than
performing remote attestation of a static firmware image.

Attested Append-only Memory maintains a cumulative record of logged kernel

events in an isolated component to increase the proportion of attackers that can

!This chapter includes material from previous publications by LeMay and Gunter [43, 44].

81

be safely tolerated within Byzantine-fault-tolerant replicated state machines [19].
Their architecture proposals are oriented towards server applications, but the
paper provides examples of how attested information besides application firmware
identity can be useful. The Trusted Incrementer project showed that the trusted
computing base for Attested Append-only Memory and many other interesting
systems can be reduced to a simple set of counters, cryptography, and an attestation-
based API implemented in a trusted hardware component [46]. A CAK could be
adapted to provide similar functionality in firmware with a potentially different

threat model.

5.2 Software-Based Foreign Code Detection and
Remote Sensor Node Recovery

DataGuard detects when a data object is overflowed by first causing the application
to initialize canary values surrounding data objects using seed data that is deleted
from the sensor node immediately after initialization, and then permitting the
verifier to perform remote attestation by demanding that the sensor node produce
the canary values [74]. Since the seed data is no longer available to the sensor node
at the time of attestation, a compromised node that was infected using a buffer
overflow will be unable to produce the canary values. However, this assumes that
the application is initially trusted to not store the seed data, which is a weaker
threat model than the one we apply to CRAESI and CESIum.

As an alternative to attesting the code currently installed on a sensor node, it
is also possible for a sensor node to prove to a remote verifier that it has securely
erased all of its code, which can then be used as a foundation for proving that it has
subsequently installed specific new code [56]. This approach requires that the code
to coordinate that process be installed in ROM. It also requires that the sensor node
not offload computation during attestation, making it more narrowly applicable
than CRAESI and CESIum.

Attempts to perform return-oriented programming can be detected with high
probability by requiring all return addresses to be stored redundantly in encrypted
form on the stack [51]. However, it is not necessary to use such a complex scheme
in CESIum, as we have demonstrated. Furthermore, it is necessary to consider
several complex ways in which attackers can manipulate kernel code to bypass

CFI enforcement and potentially steal kernel secrets that can be leveraged in future

82

attacks.

SWATT is an approach to verify the memory contents of embedded sys-
tems [62]. Its basic operating model assumes that the external verifier knows
the precise type of hardware installed in the embedded system to be verified, that
the network exhibit low jitter, and that the system being verified not be able to
offload computation to an external device. Embedded systems often operate on
networks where the latter two assumptions is not valid. It provides no intrinsic as-
surances of the continuous proper operation of embedded systems. Other potential
pitfalls have been identified for attestation approaches on embedded systems that
involve software, and CRAESI and CESIum both avoid those pitfalls [18].

CRAESI and CESIum do not explicitly attempt to prevent embedded system
compromise or provide any mechanism for securely deploying firmware updates.
They only allow remote verifiers to detect the presence of untrusted firmware
during the past execution of the system. However, recovering from compromises
can be expensive, so it is critical that compromises be prevented whenever possible,
using good coding practices and any other applicable techniques, and that a secure
update mechanism be used to deploy firmware updates.

SCUBA is a software-based system for recovering sensor nodes that have been
compromised with malicious firmware [59]. It is based upon a revised version
of the Pioneer primitive [61], and uses self-checksumming code to construct an
indisputable code execution environment, which allows a remote party to ensure
that a specific code image is atomically executed on a remote sensor node. In
SCUBA, the particular code image that is used has the sole purpose of installing a
firmware image that is provided by the verifier. Of course, the malicious firmware
on the sensor node may interfere with this update process, in which case the
node must be blacklisted and manually restored later. This scheme can guarantee
the atomic completion of the restoration operation, but it does not provide any
assurances about the past or future operation of the node and exhibits many of the
same limitations as SWATT. Additionally, it requires the attacker’s hardware to not
be present in the network at the time of the restoration process. However, if all
these assumptions can be satisfied in particular systems, SCUBA provides a useful
technique for remotely restoring a compromised node.

Sluice uses a progressive verification scheme to efficiently propagate updates in
a secure manner by constructing “pipelines” of nodes that sequentially propagate
small portions of updates after individually verifying their origin and integrity [41].

No updates are applied until being verified, which helps to prevent some battery-

83

stealing attacks that exploit the energy-intensive nature of flash memory updates.

5.3 Hypervisor-Based Foreign Code Detection

SecVisor seeks to ensure that all kernel code ever executed is approved according
to a user-defined policy [60]. The prototype uses a whitelist of hashes as the
policy. SecVisor uses a variety of mechanisms to enforce the policy, all based on
an underlying hypervisor. XIVE monitors all code executed on the target system,
including userspace.

HyperSafe focuses on protecting the hypervisor itself by tightly controlling
access to page tables and enforcing control flow integrity [72]. The hypervisor must
be instrumented to guarantee control flow integrity. They noted that instrumenting
their prototype required some manual analysis.

Patagonix uses a modified Xen hypervisor and a management VM to measure
code executed in a guest VM [47]. It relies only on MMU and hypervisor protec-
tions to detect code execution. It uses identity oracles to identify programs and then
reports them to administrators. The identity oracles are constructed to efficiently
identify programs and handle relocated code. Patagonix handles JITs by excluding
the code that they produce from analysis. Patagonix has a large TCB, comprising
the hypervisor and the management VM. XIVE supports self-modifying code,
unlike Patagonix.

Lares isolates the integrity kernel by using the Xen hypervisor to run the service
in the system management VM, although they claim that Lares can be extended to
place the service within a dedicated VM [55]. The integrity kernel monitors other
VMs, but not Xen itself. The service can insert hooks at arbitrary locations within
each target VM that then transfer control to the service. The main challenge faced
by the author of a Lares integrity kernel is determining the proper locations for
hooks to achieve comprehensive protection. IAP allows integrity kernel authors to
more directly target security-relevant functionality.

Hypervisor-Based Integrity Measurement Agent measures and enforces the
integrity of user programs running in target VMs on Xen by intercepting security-
relevant events such as system calls leading to process creation in the target and by
permitting only measured pages to execute [9]. It assumes that the hypervisor is
statically measured, and it is tolerant of compromised kernels in VMs.

TrustVisor creates small VMs that isolate individual functions from a larger

84

overall system and persists their state using TPM-based sealed storage [50]. XIVE
monitors and controls the configuration of the whole system, which is largely an

orthogonal concern.

5.4 Foreign Code Detection Using Processor Security
Extensions

First, we provide background on SMM, since it is used by two of the papers in this
section. SMM is intended to handle system events such as memory and chipset
errors or processor thermal events. A System Management Interrupt (SMI) can
be triggered by sending an electrical signals to a processor pin and by sending
output to special IO locations [24]. When the processor enters SMM in response
to an SMI, it jumps to a location in physical memory that is based on the value
of an internal configuration register. That location is within a region of memory
called System-Management RAM (SMRAM). Physically, SMRAM is located in
main memory, but the chipset prevents access to it except by the processor in
SMM or when the chipset’s internal configuration registers are set to particular
values. Kernel-level malware can read and overwrite SMM handlers on many older
systems. The malware can replace the SMM handler in the cache without modifying
the original SMM handler in main memory, which defeats integrity-monitoring
mechanisms that monitor that space. Attackers accomplish this primarily by
cleverly manipulating processor configuration registers that control caching.
HyperSentry and HyperCheck both use SMM to isolate an integrity kernel
while it monitors the integrity of a hypervisor [10, 71]. HyperSentry uses an
external management device called an Intelligent Platform Management Interface
to permit arbitrary remote invocations of the integrity kernel by generating SMIs.
They overcome limitations of SMM that make it difficult to reliably retrieve certain
processor state, such as that associated with the Intel hardware virtualization exten-
sions. HyperCheck offloads a significant amount of functionality to a PCI Network
Interface Card (NIC). It uses the DMA capabilities of the NIC to directly read
critical hypervisor code and data and send those to a network host that evaluates the
snapshots for deviations from a baseline state. They rely on the SMM module to
read processor registers and verify that they change in approved ways and to trans-
late virtual addresses to the physical addresses required by the NIC. Both systems
exhibit TOCTTOU vulnerabilities, due to their periodic nature, and also depend on

85

comprehensively identifying security-critical code and structures. However, they
do have the advantage of measuring program data as well as instructions.

The Cell Broadband Engine Isolation Loader permits signed and encrypted
applications to be loaded into the Synergistic Processing Elements in the Cell
processor [53]. It uses a layered architecture based in hardware. The hardware
authenticates and loads a system software layer that then decrypts and authenti-
cates a user-provided application against certificates and hashes included in the
application assembly itself. The software loader erases itself before transferring
control to the user application, to protect its secrets. Unlike XIVE, this architecture
does not perform any ongoing monitoring of the executed code.

ARM TrustZone is a collection of hardware features that isolate the “secure
world” from the “normal world” [8]. TrustZone-enabled processors implement 2
virtual cores, one for each world. System bus accesses are tagged according to
the world from which they originate, and bus slaves enforce security restrictions
based upon that tag. Transitions from the normal world to the secure world can
be triggered by hardware interrupts or a special instruction. TrustZone does not
include support for directly detecting attempts to execute unverified code. Intel
Trusted Execution Technology and AMD Secure Virtual Machine have similar

characteristics [35, 3].

5.5 Other Work

The Capability Hardware Enhanced RISC Instructions (CHERI) project is an ex-
ample of another way in which processor hardware can be extended to help isolate
integrity kernels and other system components [54]. The CHERI processor is based
on a standard RISC instruction set, but includes special registers, instructions, and
memory tags that support capabilities. This provides compatibility with legacy
software and the ability to incrementally apply capability-based protections to
portions of the target system. Capabilities contain type information about the
resources that they protect, and they can operate at a finer granularity than memory
pages.

NOVA is another interesting approach to isolation that is based on virtualization
and separates the hypervisor from the virtual machine monitor, placing only the hy-
pervisor in privileged kernel space [66]. The hypervisor comprises only 9000 lines

of code, and only provides functionality for communication, resource delegation,

86

interrupt control, and exception handling. It is distinguished from microkernels by
its focus on full virtualization, instead of paravirtualization.

The ReVirt project has shown that it is feasible to maintain information on the
execution of a fully-featured desktop or server system running within a virtual
machine that is sufficient to replay the exact instruction sequence executed by
the system prior to some failure that must be debugged [25]. DejaView uses a
kernel-level approach to process recording to allow desktop sessions to be searched
and restarted at arbitrary points [40]. It is conceivable that these techniques could
support a CAK for desktops and servers, although it may not be feasible to store
cumulative information for a long enough period of the system’s life to be useful.

One primary factor leading to the security issues in hardware security coproces-
sors is the complexity of their APIs [32]. To ease analysis and reduce the incidence
of vulnerabilities our designs export very simple APIs. We have analyzed the
security of CRAESI using a model checker.

A previous methodology for modeling faults that can occur in systems and
verifying that the systems tolerate those faults using a model checker only gives
examples of logical faults, such as dropped messages [12]. We analyze the tolerance

of CRAESI against physical faults, such as power supply interruptions.

87

Chapter 6

Conclusions and Future Work

The goal of this dissertation was to demonstrate that it is possible to develop
compact integrity kernels to protect commodity microcontrollers in remote sensor
networks, and that a custom hardware architecture can enable the construction
of compact integrity kernels with superior isolation, visibility, performance, and
compatibility. This shows that modifying hardware to more effectively support
integrity kernels is feasible and helpful. It also provides a specific example of such
modifications, although many other types of enhancements would undoubtedly be
interesting as well. We have accomplished this demonstration in five main phases.

First, we argued that it is important to provide remote attestation support for
remote sensor networks by using AMI as an example. Advanced meters support
remote firmware upgrades, and that functionality could be abused to install malware.
Advanced meters may also have other vulnerabilities that could be exploited to
similar ends. Large-scale attacks on AMI could cause large-scale physical effects on
the electric power grid such as blackouts. Existing remote attestation mechanisms
do not support remote sensor networks that exhibit high jitter and permit sensors to
collude with other devices, and that permit the firmware of sensors to be remotely
upgraded.

We then argued that existing processors do not adequately support integrity
kernels. Existing processors incorporate various security mechanisms that have
been used to implement integrity kernels, but those kernels exhibit limitations that
stem at least partially from the inadequacies of the underlying hardware security
mechanisms. Such limitations are apparent in the CRAESI and CESIum integrity
kernels, as well as integrity kernels from other authors. A major theme of our
work on CRAESI and CESIum is the ability to create integrity kernels despite the
limitations of the underlying hardware. This reflects the process of discovering
and overcoming hardware-related challenges that we experienced while creating
them. Chronologically, we first attempted to create an integrity kernel for an 8-bit

Atmel AVR processor, since that was a good choice for inclusion in advanced

88

meters at the time. We summarized the challenges involved in creating an integrity
kernel for such processors in our discussion of CESTum. We then investigated the
newer AVR32 family of processors that was also well-suited for use in advanced
meters. That processor family provided additional memory protection capabilities
in hardware that made it easier to construct an integrity kernel, and even allowed
us to implement CRAESI without the support of a coprocessor and external flash
memory. However, the processor still lacked useful security functionality, such as
specific support for isolating an integrity kernel and detecting attempts to execute
unverified memory. This motivated us to develop IAP.

Third, we presented the details of CRAESI, which is an integrity kernel for
remote sensor nodes based on commodity flash MCUs that include a moderate
amount of flash memory and an MPU. That integrity kernel includes code to
protect itself from the target system by manipulating the MPU, and to block all
write accesses by the target system to the flash memory containing the program
code. This ensures that CRAESI is able to audit all code that is ever executed by
the application. It uses software implementations of ECC and SHA-1 to implement
remote attestation. The kernel consumes 81,312 bytes of program memory. We
reserved 88KiB of flash memory to store the kernel code, and another 40KiB to
store the persistent data manipulated by the kernel, out of a total of 512KiB of
flash memory built into the MCU. We set aside 12KiB of data RAM for the kernel.
Since CRAESI is implemented in software, it does not consume any energy while
idle, compared to the TPM’s idle power demand of 10.6mW. We used the Maude
model checker to formally prove with respect to a reasonable model that CRAESI
correctly implements firmware auditing and that its flash memory manipulations
correctly tolerate repeated, unexpected power supply interruptions, assuming the
interruptions eventually cease.

Next, we discussed how CRAESI can be adapted for commodity flash MCUs
that have small flash memories or lack an MPU, resulting in the CESIum system.
This can be accomplished by introducing an external flash memory and a second
microcontroller that implements much of the functionality of the integrity kernel. It
communicates over a local bus with the integrity kernel on the main microcontroller
that contains the target system, encrypting that communication using AES-CCM.
The only integrity kernel functionality that is hosted on the main microcontroller
is the software required to communicate with the coprocessor, to implement the
firmware upgrade process for the target system, and to protect the integrity kernel

from attacks launched by the target system, particularly control-flow attacks. The

89

total firmware image running on the CAC requires 24,346 bytes of flash program
memory and 820 bytes of EEPROM. The integrity kernel requires 8,090 bytes of
program flash memory out of 8,192 bytes available, and one byte of EEPROM. The
kernel only uses data RAM while it is active, so it does not restrict the applications
data RAM usage in any way. The CAC demands 1.6mW when idle, which is much
less than the TPM’s power demand.

Finally, we presented IAP, a SPARC processor that had been extended with
special support for integrity kernels. It provides intrinsic isolation guarantees for
integrity kernels by placing them in a dedicated address space and preventing
the target system from initiating transfers to or from that space. It also includes
special support for detecting attempts to execute unverified memory, even in the
presence of attackers with DMA capabilities. We developed the XIVE integrity
kernel for IAP that checks all unverified code against a network-hosted whitelist
before permitting it to execute. The kernel contains only 859 instructions. We
compared it against integrity kernels with similar objectives and showed that it is
the most compact. We evaluated its performance and showed that its fundamental
performance characteristics are superior to those of past techniques.

XIVE is currently unable to effectively handle bytecode and JITs, so we have
proposed future directions that will resolve that shortcoming. It is also unable to
completely prevent all attacks based on return-oriented programming, and we have
discussed how that can be accomplished. Another promising direction is exploring
how other architectures besides SPARC can be enhanced to serve as IAPs. We
also plan to explore the requirements for integrity kernels in health information

technology.

90

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Guidelines for smart grid cyber security. National Institute of Standards and
Technology IR 7628, August 2010.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS ’05, pages 340-353, Alexandria, VA, USA,
November 2005.

Advanced Micro Devices. AMD64 architecture programmers manual, volume
2: System programming. Publication Number: 24593, June 2010.

Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Security vulnerabilities
in software systems: A quantitative perspective. In Proceedings of the 19th
IFIP Working Group 11.3 Working Conference on Data and Applications
Security. Storrs, CT, USA, August 2005.

Ross Anderson and Shailendra Fuloria. On the security economics of elec-
tricity metering. In Proceedings of the 9th Workshop on the Economics of
Information Security, WEIS *10, Cambridge, MA, USA, June 2010.

Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant
devices. In Proceedings of the 5th International Workshop on Security
Protocols, pages 125-136. Paris, France, April 1997.

June Andronick, David Greenaway, and Kevin Elphinstone. Towards proving
security in the presence of large untrusted components. In Proceedings of
the 5th International Conference on Systems Software Verification, SSV 10,
Vancouver, BC, Canada, October 2010.

ARM Limited. ARM security technology—Building a secure system using
TrustZone technology. PRD29-GENC-009492C, April 2009.

Ahmed M. Azab, Peng Ning, Emre C. Sezer, and Xiaolan Zhang. HIMA:
A hypervisor-based integrity measurement agent. In Proceedings of the

25th Annual Computer Security Applications Conference, ACSAC *09, pages
461-470, Honolulu, HI, USA, December 2009.

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. HyperSentry: Enabling stealthy in-context measurement
of hypervisor integrity. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 10, pages 38—49, Chicago,
IL, USA, October 2010.

Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of
operation. In Proceedings of the 11th IACR Workshop on Fast Software
Encryption, FSE °04, pages 389-407, Delhi, India, February 2004.

Cinzia Bernardeschi, Alessandro Fantechi, and Stefania Gnesi. Model check-
ing fault tolerant systems. Software Testing, Verification and Reliability,
12(4):251-275, December 2002.

Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a board range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium, Security *03, Wash-
ington, DC, USA, August 2003.

Ken J. Biba. Integrity considerations for secure computer systems. Technical
Report ESD-TR-76-372, The MITRE Corporation, Bedford, MA, USA, April
1977.

Severin Borenstein, Michael Jaske, and Arthur Rosenfeld. Dynamic pricing,
advanced metering and demand response in electricity markets. Center for
the Study of Energy Markets, University of California Energy Institute, UC
Berkeley, October 2002.

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security, CCS 08, pages 27-38, Alexandria, VA, USA, October
2008.

B.A. Carreras, V.E. Lynch, I. Dobson, and D.E. Newman. Critical points
and transitions in an electric power transmission model for cascading failure

blackouts. Chaos: An Interdisciplinary Journal of Nonlinear Science, 12:985—
994, December 2002.

Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Sori-
ente. On the difficulty of software-based attestation of embedded devices. In
Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS 09, pages 400—409, Chicago, IL, USA, November 2009.

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz.
Attested append-only memory: Making adversaries stick to their word. In
Proceedings of 21st ACM Symposium on Operating Systems Principles, SOSP
’07, pages 189-204, Stevenson, WA, USA, October 2007.

92

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

David D. Clark and David R. Wilson. A comparison of commercial and mili-
tary computer security policies. In Proceedings of the S8th IEEE Symposium
on Security and Privacy, Oakland 87, Oakland, CA, USA, April 1987.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, and Carolyn Talcott. Maude manual (version 2.1). SR/
International, April 2005.

Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell.
Cloaker: Hardware supported rootkit concealment. In Proceedings of the
29th IEEE Symposium on Security and Privacy, Oakland °08, pages 296-310,
Oakland, CA, USA, May 2008.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, 29(2):198-208, March 1983.

Loic Duflot, Olivier Levillain, Benjamin Morin, and Olivier Grumelard.
Getting into the SMRAM: SMM reloaded. In CanSecWest '09. Vancouver,
Canada, March 2009.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, OSDI °02, pages 211-224, Boston, MA,
USA, December 2002.

Morris Dworkin. Recommendation for block cipher modes of operation:
The CCM mode for authentication and confidentiality. National Institute of
Standards and Technology Special Publication 800-38C, May 2004.

Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude
LTL model checker. In Proceedings of the 4th International Workshop on
Rewriting Logic and its Applications, WRLA 02, pages 162 — 187, Pisa,
Italy, September 2002.

EPRI IntelliGrid Consortium. Automatic meter reading (AMR) and
related customer service functions. http://www.intelligrid.info/
IntelliGrid_Architecture/Use_Cases/CS_AMR_Use_Cases.htm,
2004.

Hector J. Altuve Ferrer and Edmund O. Schweitzer, 3rd. Modern Solutions for
Protection, Control and Monitoring of Electric Power Systems. Schweitzer
Engineering Laboratories, Incorporated, 2010.

Aurélien Francillon and Claude Castelluccia. Code injection attacks on
harvard-architecture devices. In Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS *08, pages 15-26, Alexandria,
VA, USA, October 2008.

93

http://www.intelligrid.info/IntelliGrid_Architecture/Use_Cases/CS_AMR_Use_Cases.htm
http://www.intelligrid.info/IntelliGrid_Architecture/Use_Cases/CS_AMR_Use_Cases.htm

[31] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Proceedings of the 3rd Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES *01, pages 251-261. Paris,
France, May 2001.

[32] Jonathan Herzog. Applying protocol analysis to security device interfaces.
IEEE Security and Privacy, 4:84-87, July 2006.

[33] Wen Hu, Hailun Tan, Peter Corke, Wen Chan Shih, and Sanjay Jha. Toward
trusted wireless sensor networks. ACM Transactions on Sensor Networks,
7:5:1-5:25, August 2010.

[34] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In Proceedings of the
18th USENIX Security Symposium, Security ’09, pages 383—398, Montreal,
Canada, August 2009.

[35] Intel. Intel trusted execution technology software development guide. Docu-
ment Number: 315168-006, December 2009.

[36] ECMA International. ECMA-335: common language infrastructure (CLI),
June 2006.

[37] International Business Machines. IBM X-Force 2010 mid-year trend
and risk report. http://www.ibm.com/services/us/iss/xforce/
trendreports/, August 2010.

[38] Paul A. Karger. Limiting the damage potential of discretionary trojan horses.
In Proceedings of the 8th IEEE Symposium on Security and Privacy, Oakland
’87, Oakland, CA, USA, April 1987.

[39] Paul A. Karger. Implementing commercial data integrity with secure capabil-
ities. In Proceedings of the 9th IEEE Symposium on Security and Privacy,
Oakland 88, pages 130-139, Oakland, CA, USA, April 1988.

[40] Oren Laadan, Ricardo A. Baratto, Dan B. Phung, Shaya Potter, and Jason
Nieh. DejaView: a personal virtual computer recorder. In Proceedings of
21st ACM Symposium on Operating Systems Principles, SOSP *07, pages
279-292, Stevenson, WA, USA, October 2007.

[41] Patrick E. Lanigan, Rajeev Gandhi, and Priya Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. In Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems, ICDCS
’06, Lisboa, Portugal, July 2006.

[42] Michael LeMay, George Gross, Carl Gunter, and Sanjam Garg. Unified
Architecture for Large-Scale Attested Metering. In Proceedings of the 40th

Annual Hawaii International Conference on System Sciences, HICSS *07,
Waikoloa, HI, USA, January 2007.

94

http://www.ibm.com/services/us/iss/xforce/trendreports/
http://www.ibm.com/services/us/iss/xforce/trendreports/

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Michael LeMay and Carl A. Gunter. Cumulative Attestation Kernels for
Embedded Systems. In Proceedings of the 14th European Symposium on
Research in Computer Security, ESORICS 09, pages 655-670, Saint Malo,
France, September 2009.

Michael LeMay and Carl A. Gunter. Enforcing executing-implies-verified
with the integrity-aware processor. In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing, Pittsburgh, PA, USA, June
2011.

Michael LeMay, Rajesh Nelli, George Gross, and Carl A. Gunter. An in-
tegrated architecture for demand response communications and control. In
Proceedings of the 41st Annual Hawaii International Conference on System
Sciences, HICSS °08, Waikoloa, HI, USA, January 2008.

Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
TrInc: small trusted hardware for large distributed systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI *09, pages 1-14, Boston, MA, USA, April 2009.

Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor support for
identifying covertly executing binaries. In Proceedings of the 17th USENIX
Security Symposium, Security *08, pages 243258, San Jose, CA, USA, July
2008.

An Liu and Peng Ning. TinyECC: Elliptic curve cryptography on
TinyOS. http://discovery.csc.ncsu.edu/software/TinyECC/,
February 2011.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 8:3—
30, January 1998.

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Proceedings of the 31st IEEE Symposium on Security and
Privacy, pages 143—-158, Oakland, CA, USA, May 2010.

Stephen McLaughlin, Dmitry Podkuiko, Adam Delozier, Sergei Mi-
adzvezhanka, and Patrick McDaniel. Embedded firmware diversity for smart
electric meters. In Proceedings of the 5th USENIX Workshop on Hot Topics
in Security, HotSec *10, pages 1-8, Washington, DC, USA, August 2010.

Mono. http://www.mono-project.com.

95

http://discovery.csc.ncsu.edu/software/TinyECC/
http://www.mono-project.com

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Masana Murase, Kanna Shimizu, Wilfred Plouffe, and Masaharu Sakamoto.
Effective implementation of the cell broadband engine(TM) isolation loader.
In Proceedings of the 16th ACM Conference on Computer and Communi-
cations Security, CCS ’09, pages 303-313, Chicago, IL, USA, November
20009.

Peter Neumann and Robert Watson. Capabilities revisited: A holistic ap-
proach to bottom-to-top assurance of trustworthy systems. In Proceedings of
the 4th Annual Layered Assurance Workshop, LAW °10, Austin, TX, USA,
December 2010.

Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares:
An architecture for secure active monitoring using virtualization. In Proceed-
ings of the 29th IEEE Symposium on Security and Privacy, pages 233-247,
Washington, DC, USA, 2008.

Daniele Perito and Gene Tsudik. Secure code update for embedded devices
via proofs of secure erasure. In Proceedings of the 15th European Symposium
on Research in Computer Security, ESORICS ’10, pages 643-662. Athens,
Greece, September 2010.

Pike Research. Smart meter installations to reach 250 million worldwide by
2015. http://www.pikeresearch.com/newsroom/smart-meter-installations-to-
reach-250-million-worldwide-by-2015, November 2009.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design
and implementation of a TCG-based integrity measurement architecture. In
Proceedings of the 13th USENIX Security Symposium, Security 04, San
Diego, CA, USA, August 2004.

Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. SCUBA: Secure code update by attestation in sensor networks. In
Proceedings of the 5th ACM Workshop on Wireless Security, WiSe ’06, pages
85-94, Los Angeles, CA, USA, September 2006.

Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes.
In Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP *07, pages 335-350, Stevenson, WA, USA, October 2007.

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. Pioneer: Verifying code integrity and enforcing un-
tampered code execution on legacy systems. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles, SOSP °05, pages 1-16,
Brighton, United Kingdom, October 2005.

96

[62] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
SWATT: Software-based attestation for embedded devices. In Proceedings
of the 25th IEEE Symposium on Security and Privacy, Oakland *04, pages
272-282, Oakland, CA, USA, May 2004.

[63] SHA-3 proposal BLAKE. http://131002.net/blake/.

[64] Hovav Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS *07, pages
552-561, Alexandria, VA, USA, October 2007.

[65] SharpOS Development Blog. http://sharpos.blogspot.com.

[66] Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys *10, pages 209-222, Paris, France, April 2010.

[67] S. Swanson and M.B. Taylor. Greendroid: Exploring the next evolution
in smartphone application processors. Communications Magazine, IEEE,
49(4):112-119, 2011.

[68] Trusted Computing Group, Incorporated. TCG specification architecture
overview. Trusted Computing Group, August 2007.

[69] Trusted Computing Group, Incorporated. Mobile trusted module specification,
version 1.0. TCG Published, April 2010.

[70] Scott A. Vanstone. Next generation security for wireless: Elliptic curve
cryptography. Computers & Security, 22(5):412-415, July 2003.

[71] Jiang Wang, Angelos Stavrou, and Anup Ghosh. HyperCheck: A hardware-
assisted integrity monitor. In Proceedings of the 13th International Sympo-
sium on Recent Advances in Intrusion Detection, RAID *10, pages 158-177,
Ottawa, ON, Canada, September 2010.

[72] Zhi Wang and Xuxian Jiang. HyperSafe: a lightweight approach to provide
lifetime hypervisor control-flow integrity. In Proceedings of the 31st IEEE
Symposium on Security and Privacy, Oakland *10, Oakland, CA, USA, May
2010.

[73] Johannes Winter. Trusted computing building blocks for embedded Linux-
based ARM TrustZone platforms. In Proceedings of the 3rd ACM Workshop
on Scalable Trusted Computing, STC °08, pages 21-30, Fairfax, VA, USA,
October 2008.

97

http://131002.net/blake/
http://sharpos.blogspot.com

[74] Dazhi Zhang and Donggang Liu. DataGuard: Dynamic data attestation in
wireless sensor networks. In Proceedings of the 40th IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’10, pages 261-270,
Chicago, IL, USA, June 2010.

98

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Motivation
	Approach
	Integrity Kernels for Commodity Microcontrollers
	Custom Hardware to Support Integrity Kernels

	Contributions
	Dissertation Scope and Organization

	Chapter 2 Background
	Remote Attestation
	Advanced Metering Infrastructure
	Formal Methods
	Processor Technologies
	Memory Management and Protection

	Chapter 3 Commodity Cumulative Attestation Kernels and Coprocessors
	Threat Model and Requirements
	Threat Model
	Requirements

	CAK Design
	Audit Log
	Asymmetric Keypairs
	System State

	CAK Implementation and Evaluation
	Hardware Components
	Application Firmware
	Kernel Firmware
	Performance Results

	CAK Correctness and Fault-Tolerance Analysis
	Alternate Implementation
	CAC Design and Evaluation
	Security Coprocessor
	Main Microcontroller
	Hardware Implementation
	Performance Evaluation

	Summary

	Chapter 4 Architectural Extensions to Support Integrity Kernels
	Threat Model
	Design
	Background on SPARC and LEON3
	Integrity-Kernel RAM and ROM
	Event Handling
	Ethernet Access
	Cryptographic Accelerators
	Coverage of Pipeline Instruction Inputs
	XIVE Network Protocol
	Approver
	XIVE Kernel
	Target OS and Applications

	Discussion
	Deployment and Management
	Data Integrity
	Denial-of-Service Attacks
	Control Flow Attacks
	Bytecode Support
	Multicore
	Alternate Usage Models
	Potential Applications for XIVE

	Implementation
	Evaluation
	TCB Size
	Performance Methodology
	Performance Results

	Summary

	Chapter 5 Related Work
	Coprocessor-Based Foreign Code Detection
	Software-Based Foreign Code Detection and Remote Sensor Node Recovery
	Hypervisor-Based Foreign Code Detection
	Foreign Code Detection Using Processor Security Extensions
	Other Work

	Chapter 6 Conclusions and Future Work
	References

