
c© 2011 by Ayesha Yasmeen. All rights reserved.

FORMALIZING OPERATOR TASK ANALYSIS

BY

AYESHA YASMEEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Research Associate Professor Elsa Gunter, Chair and Director of Research
Professor Carl Gunter
Associate Professor Grigore Roşu
Assistant Professor Darko Marinov
Research Associate Professor Ralph Johnson
Professor Lori A. Clarke, University of Massachusetts

Abstract

Human operators are unique in their decision making capability, judgment and nondeterminism.
Their sense of judgment, unpredictable decision procedures, susceptibility to environmental ele-
ments can cause them to erroneously execute a given task description to operate a computer system.
Usually, a computer system is protected against some erroneous human behaviors by having nec-
essary safeguard mechanisms in place. But some erroneous human operator behaviors can lead to
severe or even fatal consequences especially in safety critical systems. A generalized methodology
that can allow modeling and analyzing the interactions between computer systems and human op-
erators where the operators are allowed to deviate from their prescribed behaviors will provide a
formal understanding of the robustness of a computer system against possible aberrant behaviors by
its human operators.

We provide several methodology for assisting in modeling and analyzing human behaviors ex-
hibited while operating computer systems. Every human operator is usually given a specific recom-
mended set of guidelines for operating a system. We first present process algebraic methodology
for modeling and verifying recommended human task execution behavior. We present how one can
perform runtime monitoring of a computer system being operated by a human operator for checking
violation of temporal safety properties.

We consider the concept of a protection envelope giving a wider class of behaviors than those
strictly prescribed by a human task that can be tolerated by a system. We then provide a framework
for determining whether a computer system can maintain its guarantees if the human operators
operate within their protection envelopes. This framework also helps to determine the robustness of
the computer system under weakening of the protection envelopes. In this regard, we present a tool
called Tutela that assists in implementing the framework.

We then examine the ability of a system to remain safe under broad classes of variations of the
prescribed human task. We develop a framework for addressing two issues. The first issue is: given
a human task specification and a protection envelope, will the protection envelope properties still
hold under standard erroneous executions of that task by the human operators? In other words how
robust is the protection envelope? The second issue is: in the absence of a protection envelope,
can we approximate a protection envelope encompassing those standard erroneous human behaviors
that can be safely endured by the system? We present an extension of Tutela that implements this

ii

framework.
The two frameworks mentioned above use Concurrent Game Structures (CGS) as models for

both computer systems and their human operators. However, there are some shortcomings of this
formalism for our uses. We add incomplete information concepts in CGSs to achieve better mod-
ularity for the players. We introduce nondeterminism in both the transition system and strategies
of players and in the modeling of human operators and computer systems. Nondeterministic action
strategies for players in incomplete information Nondeterministic CGS (iNCGS) is a more precise
formalism for modeling human behaviors exhibited while operating a computer system. We show
how we can reason about a human behavior satisfying a guarantee by providing a semantics of Al-
ternating Time Temporal Logic based on iNCGS player strategies. In a nutshell this dissertation
provides formal methodology for modeling and analyzing system robustness against both expected
and erroneous human operator behaviors.

iii

To my parents: Zainul and Aklima Abedin

iv

Acknowledgments

I first acknowledge the contributions of my advisor Professor Elsa L. Gunter. This dissertation would
not have been possible without her relentless support throughout my years at UIUC. Her eagerness
and patience in teaching me the topics that I was ignorant about was in my opinion phenomenal. Her
mathematical analysis prowess has never failed to impress me. I must also mention her eagerness
to help and understand the problems of a student mother. I will never forget the days she allowed
me to bring in my sick daughter with me to meet with her. She has introduced my eldest daughter
to puzzles, played with my younger daughter, offered to teach me driving, lent me a sturdy brush to
clean up my rented house, loaned me quarters for the parking meters whenever I was out, inspired
me to volunteer at my daughter’s school, introduced me to Lego Robotics, and above all shown how
to be a wonderful mother and successful Professor and researcher simultaneously.

I thank Professor Carl Gunter for introducing me to the topic of human operator influence on
system operations. I have always found his comments and suggestion invaluable. I thank Profes-
sor Grigore Roşu for suggesting runtime monitoring to me. I thank Professor Darko Marinov for
suggesting applying testing techniques to my research. I thank Professor Ralph Johnson for his real-
istic, informative comments. I am very grateful to Professor Lori Clarke for her elaborate comments,
suggestions about both my research and venues for publication.

I also thank my parents Zainul and Aklima Abedin. They have loved and supported me uncondi-
tionally throughout my life. My greatest regret is not being able to complete this dissertation before
my father left us for good.

I thank my husband Monir Mozumder for relentlessly supporting me and helping me with taking
care of my elder daughter at first and my younger daughter since last year. I would not have come this
far without his constant inspiration and unwavering support. I thank my daughters Nuha Mozumder
and Alisha Mozumder for providing me with the urge to pursue and finish my goal at UIUC through
their innocent smiles.

I also thank my colleagues Andrei Popescu, Christopher Osborn, Majid Kazemian for being so
full of encouragement and support. I also thank Dr. Marsha Woodbury and Professor Margaret
Fleck for being such wonderful and understanding instructors in the courses I have served as a
TA. I also thank Trisha Benson, Donna Coleman, Barbara Leisner, Shirley Finke, Barbara Cicone,
Donna Kennedy, and of course Mary Beth Kelly. Their support and help made academic life, getting
paychecks, conference travel, and dissertation submission so much easier.

v

Table of Contents

List of Figures . x

Chapter 1 Introduction . 1
1.1 Research Contributions . 5
1.2 Organization . 7

Chapter 2 Formalizing Recommended Task Specifications 8
2.0.1 Organization . 8

2.1 Example Scenario: Automated Identification and Data Capture 9
2.2 Formal Model for Task Specification . 11

2.2.1 Process Calculus Approach . 11
2.2.2 Human Behavior Model using CSP . 12
2.2.3 AIDC Scenario using CSP . 12
2.2.4 Advantages of using CSP for Modeling Humans 15

2.3 Safety Properties . 18
2.4 Summary . 20

Chapter 3 Runtime Monitoring of Human Operators 21
3.1 Introduction . 21

3.1.1 Temporal Logic for Requirement Specification 22
3.1.2 Runtime Verification . 23

3.2 Framework for Monitoring Computer Systems Operated by Human Operators . . . 23
3.2.1 The Monitoring Framework . 24
3.2.2 Framework with Chosen Monitoring Software 25

3.3 Human Task Execution Monitoring Case Study 26
3.4 Summary . 29

Chapter 4 Modeling and Verifying Tolerable Atypical Human Behaviors 30
4.1 Introduction . 30

4.1.1 Organization . 32
4.2 Human Behavior Categorization . 32
4.3 Monitoring Safety and Protection Envelope . 34

4.3.1 Safety Violation Blame Apportion . 35
4.3.2 Association of Blame in the AIDC Scenario 36
4.3.3 Issues with this Approach . 36

4.4 Example Scenario: Self-scan Checkout System 37

vi

4.4.1 Behavior Categorization of Customer in Self-scan Checkout Scenario . . . 38
4.5 The Framework . 39

4.5.1 Self-scan Checkout System Scenario Revisited 40
4.6 Methodology . 40

4.6.1 Framework in Details . 42
4.6.2 Concurrent Game Structures . 42
4.6.3 Identification and Information Collection Step 44
4.6.4 Protection Envelope and Safety Property Specification Step 44
4.6.5 Assessing Robustness of the Computer System with Respect to the Protected

Behavior . 45
4.6.6 Call . 47
4.6.7 Thinning . 49
4.6.8 Example Scenario Revisited . 49
4.6.9 Thinned model is the Maximal Model . 50
4.6.10 Experimentation with Protection Envelope 52

4.7 Find Protection Envelope? . 52
4.8 Tutela . 52

4.8.1 Identifying and Modeling Important Players 53
4.8.2 Modeling Protected Behavior . 55
4.8.3 Recommended Task Specification Model 57

4.9 Summary . 58

Chapter 5 Protection Envelope Robustness Analysis 59
5.1 Introduction . 59

5.1.1 Existing Classifications of Erroneous Human Actions 59
5.1.2 Hollnagel’s Characterization of Erroneous Human Actions 60
5.1.3 Contributions . 61
5.1.4 Organization . 62

5.2 Framework for Analyzing Operator Action Variations 62
5.2.1 Human Computer Interaction Model . 63
5.2.2 Human Computer Interaction Model using CGS 63
5.2.3 Recommended Task Specification . 64
5.2.4 Protection Envelope Model . 64
5.2.5 Obtaining Deviations from Recommended Procedure 65
5.2.6 Analyzing Mutant Task Specifications . 67
5.2.7 Model for Recommended Procedure and its Variations 67

5.3 Analyzing Aberrant Behavior CGSs . 67
5.4 AIDC Scenario Revisited . 69

5.4.1 Protection Envelope Suggestion . 71
5.5 Summary . 72

Chapter 6 Modeling Human Behavior with Incomplete Information 73
6.1 Introduction . 73

6.1.1 Contributions . 73
6.1.2 Organization . 74

6.2 Example Scenario: 2001 Japan Airline Mid-air Incident 74
6.3 Human Behavior Model . 75

6.3.1 Model of the Japan Airlines Incident using CGS 77

vii

6.4 Problems with Modeling with the Previous Approach 79
6.4.1 iTSGS: incomplete Information Turn Based Synchronous Game Structure . 80

6.5 Nondeterministic CGS with Incomplete Information 80
6.5.1 iNCGS . 80
6.5.2 Example Scenario using iNCGS . 82
6.5.3 Semantics of ATL with iNCGS . 82
6.5.4 ATL Symbolic Model Checking over iNCGS Models 82
6.5.5 Semantics of ATL* with iNCGS . 83

6.6 Relating iNCGS to other Multi-agent Game Structures 85
6.6.1 iTSGS and iNCGS . 85
6.6.2 ATL Interpretation using iTSGS carries over to iNCGS 88
6.6.3 iCGS . 89
6.6.4 Game Arenas . 90

6.7 Variations of iNCGS . 93
6.8 Strategic Modeling of Human Behavior . 93

6.8.1 Human Behaviors as Strategies . 94
6.8.2 Strategic Semantics of ATL using iNCGS 95

6.9 Alternative Semantics for ATL* . 96
6.9.1 Nondeterministic Strategies . 97
6.9.2 Strategic Semantics of ATL* with NCGS without Strategy Refinement . . . 97
6.9.3 Model Checking Complexity . 99
6.9.4 Strategic Semantics of ATL* with NCGS with Strategy Refinement 100

6.10 Summary . 100

Chapter 7 Related Work . 101
7.1 Human Task Execution Analysis . 101

7.1.1 Operator Task Analysis . 101
7.1.2 Human Reliability Analysis . 101
7.1.3 Workflow . 102
7.1.4 Web Services Orchestration . 103
7.1.5 Fault-Tolerant System . 103
7.1.6 Formal Models for Human Actions . 104
7.1.7 Model Checking . 105
7.1.8 Fuzz Testing . 105
7.1.9 Controller Synthesis . 106
7.1.10 Interface Synthesis . 106
7.1.11 Rely-Guarantee . 107

7.2 Imperfect Information . 107
7.3 Runtime Verification . 108

Chapter 8 Conclusion . 109

Appendix A Nurse Behavior and Mobile Mediator Reaction in AIDC Scenario 111

Appendix B Nurse using AIDC System . 113

Appendix C Monitor for AIDC Scenario . 116

viii

Appendix D CGSs for Self-scan Checkout Scenario Example 119
D.1 Sparse CGS . 119
D.2 Call from the Sparse CGS for Self-scan Checkout System 122
D.3 Recommended task specification for using the self-scan checkout system 125
D.4 Recommended task CGS for using the self-scan checkout system 126

References . 130

ix

List of Figures

2.1 AIDC system design . 9
2.2 AIDC system with mobile mediator . 10

3.1 Monitoring a system being operated by a human 24

4.1 Protection Envelope . 33
4.2 Computer System along with human operators . 34
4.3 Self-scan Checkout System . 37
4.4 Recommended customer task specification for using self-scan checkout system . . 38
4.5 Initial state in incomplete Call . 48
4.6 Initial state in a complete Call . 48
4.7 Thinning Call . 49
4.8 Flow chart for Tutela . 53
4.9 Screen shot from Tutela . 56
4.10 CGS for recommended way of executing task . 57

5.1 Framework implementation in Tutela . 68

6.1 Japan Airlines incident in CGS . 78
6.2 CGS for self-scan checkout scenario . 95

x

Chapter 1

Introduction

More than two thousand years ago, humans felt the need for a machine to aid in performing mathe-
matical computations. Then they invented the abacus. The realization of the necessity of computa-
tional tools and the endeavors to make them a reality can be observed across centuries through the
invention of Napier’s Bones, Leonardo da Vinci’s drawings, Pascal’s calculator Pascaline, Leibnitz’s
calculator, Babbage’s Analytical Engine, and in the last century the Hardavrd Mark I, the ENIAC,
the ILLIAC, the UNIVAC, the IBM mainframes, and finally the personal computers. The revolu-
tionary advances in the computational power, compactness, availability and affordability have made
computers an integral part of our lives.

In today’s world humans interact with computers in almost every sector of life: through using
personal computers at home; using self check-in kiosks at airports and clinics; taking automated
standardized tests for driver licenses and admission to educational institutions; withdrawing money
from a bank’s ATM; and so on. Although computers are used to simplify human lives, the humans
themselves may willingly or unwillingly complicate the safety and dependability of the computer
systems by adversely influencing their operations. They can jeopardize the operation of a comput-
erized system by using the computers in a manner that is unexpected by the designers of the system.
Just as human operators can help maintain the safety of a system by their capabilities of perception,
diagnosis, and problem-solving techniques, they can introduce operational errors due to their un-
predictability, judgment, and action improvisation tendencies. Computer systems are developed to
behave in a predictable and repeatable manner. Their interaction patterns can be anticipated by the
operators operating them. Human operators on the other hand are highly unpredictable in nature.
Each human operator’s behavior can be unique based on their experience, expertise, personality and
current frame of mind. Even the same operator may behave differently at different times. Often
deviant human operator actions can pose an unintentional threat to a computer system. Erroneous
human operator behavior can be hazardous for safety critical systems like aircrafts and air traffic
control systems, medical treatment systems and nuclear reactors. From the infamous “Three Mile
Island accident” [65] to patients dying from wrong doses of radiation [75], human handling and
judgment has led to immense and in some cases fatal consequences. Hence computer systems need
to be not only user-friendly but also user-safe. The impacts of failures of the computer systems
themselves in our personal, social, economic, national, and global lives are an extensively studied

1

topic. Formal verification of computer systems is thus a well established research area.
Let us consider the Three Mile Island Accident. The incident started to take shape on March

28, 1979, in the Three Mile Island Nuclear Generation Station with failures in the non-nuclear sec-
ondary system. This failure was followed by a valve getting stuck open leading to draining of vital
nuclear reactor coolant. There was an indicator light to warn the operators about the stuck open
valve. However, the design of the indicator was ambiguous. When everything operates smoothly,
the indicator light remains turned off indicating that the valve is closed. However, when an unusual
condition happens, the light still remained off indicating that the valve is open. The reactor operators
were not trained properly about this ambiguous attitude of the indicator light. They misunderstood
the situation and thought that there were an excess of coolants and took steps to remove coolants
from the reactor. They actually needed to ensure pumping in more coolants to maintain safe temper-
ature. The temperature inside the reactor kept rising. There was a temperature indicator capable of
displaying the abnormally high temperature. But this indicator was in the back of the panel hidden
from the operators and thus virtually useless. In this scenario the operators were not adversaries but
allies willing to ensure the safe operation of the generating station. However, human factors com-
bined with insufficient training made the human operators unintentionally fail to follow necessary
steps and led to a partial meltdown of the reactor.

The significance of human task execution behaviors have led to the research on Operator Task

Analysis (OTA) [72, 67, 104, 42]. OTA combines ideas from Human Factors (HF) and Human
Computer Interactions (HCI) to analyze what the expected human operator behavior while executing
a task is. In order to determine possible errors and therefore increase robustness of the system. We
augment this line of investigation by providing a formal methodology for modeling and analyzing
how the manner in which an operator performs a task affects the safe and effective operation of a
system. We will not consider the cognitive aspects of human decision making, instead we will focus
on all possible human operator action sequences and their effects. Moreover, we will focus on the
task specifications for operating computerized systems.

Formal verification provides insights into whether a computer system conforms to its desired
properties. These insights are provided modulo assumptions about the environment in which the
system operates. In this work, we focus on a very prominent component of the environment: the
humans who operate them. Their capability of autonomous judgment, decision making and im-
provising actions make them a unique component of the environment. However, whether human
operators should be considered as part of the environment or should be considered as another part of
the system itself is an interesting issue. Consider the scenario at an airport with an air traffic control
tower, where planes are landing and taking off regularly. Their arrivals and departures need to be
perfectly coordinated by the pilots of the planes and the operators at the air traffic control tower to
avoid accidents. The operators in the control tower can be regarded as part of the system generating
safe flight path information. The pilots need to adhere to the directions being issued from the control
tower. A pilot that always follows guidelines can be considered as part of the system. If the pilot

2

makes a misjudgment or fails to follow guidelines he will cease to be a part of the system and will
become a part of the environment. Hence, in one single scenario, we observe two different roles
for human operators. To be able to model human operators behaviors succinctly, a formal technique
will need to be able to capture both natures of human behavior: the typical behavior that is part of
the system and the atypical behavior that is part of the environment.

In systems depending heavily on human operators, providing tolerance of human errors becomes
more critical. Fault tolerance analysis considers tolerance of both hardware and software failure and
malfunctions. We intend to complement that research by focusing on an area that is often either
ignored or oversimplified. That area is the uncertainty contributed by deviations of operators from
procedures recommended to them. Human operators have the capability to subjectively introduce
errors in the system. They may unpredictably vary their behavior based on frame of mind, time,
presence and influence of other operators etc. Current formal frameworks sometimes omit any as-
sumptions about the human operators, sometimes they are considered as all powerful antagonists
who can do absolutely anything, and at some other times they are assumed to behave perfectly
and always operate within the guidelines provided to them. At some other times, a generic set of as-
sumptions are made about the entire environment in general. We suggest providing a middle ground,
where the human operators are neither neglected, nor are they allowed to be unrealistically power-
ful antagonists or unrealistically perfect operators. The human operators are also not considered
some random part of the environment. Instead the human operators can deviate within “tolerable”
bounds from their recommended task execution behaviors. From aircraft pilots to smart warehouse
operators, in all scenarios the human operators are given specific recommended task descriptions to
follow. Of course the recommended task specifications themselves need to be correct and the bulk
of research activity focuses on proving the safety and effectiveness of recommended task specifica-
tions. The focus of this dissertation is identifying, modeling, verifying and analyzing the tolerable
bounds of atypical human task execution behavior. Every human interaction-intensive system will
benefit from being modeled and analyzed against variations of human task execution manners.

A positive impact that we intend for our work to have is that, in the case where a possible human
error can be identified as a source of threat to a system, the system developers will get interested
enough that they will attempt to prevent such an aberrant behavior from occurring in the first place.
They will investigate the possible reasons for aberrant human behavior. If there is a lack of proper
guidelines or recommended behavior they will try to improve upon them; if there is ambiguous
human-computer interface they may either improve the interface or provide rigorous training to
eradicate any confusion to disambiguate it. Consider the Three Mile Island Accident. There the
expectation was that in the case of a valve problem, the operators will take immediate steps to seal
the reactor so that coolants do not leak. This should have been part of the recommended behavior for
the operators in case of an emergency. However, in this case ambiguous display system caused the
operator to omit the action of containing the coolants. The consequences of such a system is of such
enormous proportions that the system designers could have been encouraged by a formal analysis

3

delineating the dangers of the human operators not behaving in the expected manner. They could
have incorporated measures to ensure safety like: (i) detecting that operators have failed to perform
leak containment actions, (ii) some unambiguous secondary alert is set off that is extremely hard to
ignore or (iii) some drastic secondary safety measure is built into the system to contain coolants.

A system may not be safe against all possible human action variations. Our analysis will provide
the designers with a comprehensive list of human action variations that can be harmful to the system.
The designers can now make informed decisions about which action variations can be or should be
reconsidered and possibly be made safe against.

This dissertation demonstrates that:

A formal understanding of the tolerance of the system of both desired and erroneous human
behaviors while operating that system can be provided.

In order to support this claim, we first present a methodology for formulating, modeling and verify-
ing the desired or recommended manner of task execution by human operators. The questions that
we answer are: Is there a way to model and analyze computer systems as they get operated by hu-
mans behaving in the recommended manner? What is the best way to express system requirements
and human behavior guarantees?

Then we explore dynamic analysis techniques to study safety conformance of a system combined
with a human operator. Dynamic analysis studies execution of a software while interacting with a
real or virtual set of inputs. Unlike static verification of computer systems, where each and every
trace should conform to a given property for it to satisfy that property, in dynamic analysis we
focus on one particular trace of execution. The question we answer is: can we monitor a computer
system while interacting with a specific human operator behavior? Then we present a methodology
to dynamically monitor a system while interacting with a human behavior to determine whether the
system is robust against it.

We then move on to atypical human task execution behaviors and move back to static verifica-
tion. We define “tolerable” sets of deviant human operator behavior. The questions we answer are:
Is there a way for modeling human operators and computer system components as they interact with
each other, which is suitable for model checking? Is there a way to model the recommended task
execution behavior? Is there a way to encode the set of human behaviors which we are assuming the
system to be robust against? Is there a way to verify whether the system is indeed robust against this
set of atypical human operator behaviors? Is there a simple way of checking the system robustness
against various human behaviors guarantees? We then present a prototype tool that helps implement
our answers. We also present how we can determine the human operator or system component that
leads to requirement violation using their guarantees of “tolerable behaviors”.

Then we present methodology for assessing the robustness of the “tolerable” set of human op-
erator behavior itself. The question we answer is: Does the set of “tolerable” behaviors contain
well-established variations of human task executions manner like: repetition, out-of-order execution

4

etc. ? If it is hard to ascertain the set of the “tolerable” behaviors, can we suggest possible such
behaviors? We then present an extension of our prototype tool that implements our answers to these
questions.

Finally, we refocus on the actual model chosen for formalizing computer systems and human
operators. We present the need for a more realistic model for encoding the human operators and the
system components. Then we present improved formalisms for modeling human behavior and show
how to analyze the human behaviors expressed using them.

1.1 Research Contributions

This dissertation has the following contributions:

• Methodology based on process algebra for modeling recommended human operator task exe-
cution behavior.

– We provide a uniform modeling technique for computer systems, and their human oper-
ators using Communicating Sequential Processes (CSP) [56, 99].

– We show how the combined interactions of systems and humans can be verified for
requirement conformations. We show how the requirements can be specified as CSP
processes and how CSP process refinement can be used for verifying requirement con-
formation.

• A framework for dynamic analysis of the effect on safety conservation of atypical human task
execution behavior.

– We provide methodology for monitoring a the execution of a computer system being
guided by a human operator based on the JavaMOP [30] monitoring framework.

• Framework for modeling and analyzing protected human operator behavior. Protected behav-
iors may contain both the recommended behavior of executing a task and atypical and possibly
erroneous task execution behavior. Protected behaviors collectively form a protection enve-
lope of tolerable human operator task execution behavior.

– We present the logic and format suitable for specifying protection envelope and safety
properties: invariants specified in Linear Temporal Logic (LTL).

– We present methodology for obtaining a recommended task specification abiding model
from an unrestrained behavior model. The unrestrained behavior model is specified
using Concurrent Game Structures. The recommended task specification restricts the
unrestrained behavior model to provide a recommended behavior model.

5

– We present methodology for obtaining a protection envelope abiding model from an un-
restrained behavior model. Given an unrestricted behavior CGS model and a protection
envelope property, we refine the unrestricted human operator behavior in accordance
with the protection envelope property.

– We prove the maximality of the protection envelope abiding model.

– Methodology for analyzing the boundaries of the safe tolerable behaviors by using dif-
ferent protection envelopes.

– We present our prototype tool, called “Tutela”, for assisting in executing the framework.

• Methodology to combine notions from runtime monitoring and protection envelope to ascer-
tain the human operator responsible for safety requirement violation.

• Framework for modeling and analyzing the robustness of protected human operator behavior:

– Given a protection envelope property, we assess how robust it is:

∗ We present a method for creating a complete unrestrained behavior model from a
sparsely encoded unrestrained human behavior model encoded in a well established
verification modeling language.

∗ We present how to determine whether the common variations of human recom-
mended task execution behavior are protected or not.

∗ We show how to suggest a protection envelope in the absence of a protection enve-
lope.

∗ We present an extension to our prototype tool Tutela that implements this frame-
work.

• Enhancements of the Concurrent Game Structures (CGS) for more suitable modeling of hu-
man task execution behaviors.

– incomplete information Nondeterministic Concurrent Game Structure (iNCGS) is an ex-
tension of Concurrent Game Structures which supports nondeterministic transition sys-
tem and has capability of expressing incomplete information about the human operators.
We provide an Alternating Time Temporal Logic (ATL) model checking algorithm for
iNCGS.

– We present nondeterministic strategies for players in a CGS. We show how nondeter-
ministic strategies can be a better model for human behaviors.

– We provide strategic semantics of ATL and ATL* using iNCGS. Strategic semantics pro-
vides a more succinct and accurate method of stating whether a specific human behavior
can model a guarantee specified using ATL.

6

1.2 Organization

We have organized the rest of the dissertation as follows: In Chapter 2 we present our initial attempt
in modeling and analyzing human operator task execution behaviors. We present our framework
for dynamic analysis via monitoring of human operator behaviors in Chapter 3. In Chapter 4, we
present our framework for modeling and verifying protection envelopes. Here we also present how
to identify the human operator responsible in case of safety violations using runtime monitoring
and protection envelopes. In Chapter 5, we present our framework for studying the robustness of a
protection envelope. In Chapter 6, we present a nondeterministic CGS model capable of encoding
the notion of information hiding to provide a flavor of modularity to the modeled human operators
and system components. In Chapter 7, we survey existing works related to different parts of the
dissertation.

7

Chapter 2

Formalizing Recommended Task
Specifications

Task analysis is the study of what physical actions and cognitive thought processes a user needs to
perform to achieve a task objective. Task analysis determines the steps necessary for a single person
or a group of people to execute a task. It also involves considering the time required to perform
the tasks, task allocation, environmental effect on subtask selection and how activities belonging to
a task fit with each other. The outcome of task analysis is usually a hierarchical decomposition of
the given task into simpler subtasks. The analysis provides an understanding of how the subtasks fit
together. We focus only on the manner of execution of the steps in a task description demonstrated
by a human operator while operating a computer system. Every day human operators control the
course of execution of many computer systems in diverse sectors of life. These human operators
are usually given a task specification to be followed to operate the computer systems. The task
specification that is provided to human operators is assumed to be optimal and safe from the point
of view of the goal of the computer system. This task specification is usually recommended by
the system designers to be followed by the operators. The recommended task specification is thus
a human generated guide for operator behavior. Just as operator deviations from a recommended
task specification can be disastrous for a computer system, a wrongly specified recommended task
specification itself can be hazardous for the system. In this chapter we present how we can model
and verify recommended human operator tasks using process algebra.

2.0.1 Organization

We present an example scenario in Section 2.1. In Section 2.2 we present how to model human
task execution sequences using process algebra. In Section 2.3 we present how to specify system
requirements using process algebra. In Section 3.1 we present reasoning behind preferring temporal
logic formulation of system requirements over process algebraic modeling of system requirements.

8

2.1 Example Scenario: Automated Identification and Data
Capture

Correct identification and correlation of data and patients is very important in health care. Everyone
has heard horror stories about patients who got an operation intended for another patient [29], died
because they got the wrong medication [68], or had surgery that incorrectly identifies a limb that
needed to be amputated. Samples must be very carefully handled in labs and there is an especially
important gap between the collection of a reading and its entry into an Electronic Health Record
(EHR). As a result, health care facilities such as hospitals, labs, and clinics have rigorous task spec-
ifications for clinical personnel that involve careful identification. Clinicians, patients and samples
are all labeled with badges, arm tags and stickers respectively for use in many procedures.

Figure 2.1: AIDC system design

Hospitals are making efforts to improve medical data collection process by using Automated
Identification and Data Capture (AIDC). Traditionally hospital personnel follow a comparatively
manual procedure for this task. For instance, a nurse collects the temperature of a patient on a
mechanical scale and writes it on into a paper file. With the emergence of EHRs, the nurse then
enters this information into an EHR at a later stage. But if wireless medical devices were used,
the task could have been streamlined. For instance, a wireless scale can have a Blue-tooth link to
a computer. A reading from the scale can be transferred directly to the computer with the nurse
providing other necessary identifications. Or the scale can connect to a Personal Digital Assistant
(PDA) carried by the nurse by Blue-tooth. The PDA can display the reading and enter it via a
WiFi link into the EHR. A project involving building a prototype system for AIDC, modeling and
verifying it was undertaken at our university. The prototype system software was developed by Anh
Nguyen. We performed the task of formally modeling and verifying the prototype. This prototype

9

(a) Mobile Mediator (b) Mobile Mediator GUI

Figure 2.2: AIDC system with mobile mediator

AIDC system will be used as the example scenario in several different parts of this dissertation. In
the case of the prototype system built at our university, a pulse oximeter connects by Blue-tooth to
a PDA (which we will subsequently refer to as a medical mediator), which uses an RFID reader to
identify the patient and the clinician before entering the results into an EHR via a WiFi link. We
added the additional step of identifying the device taking the reading to obtain the following nurse
task description:

i. Identify the patient by scanning the patient’s identification tag.

ii. Identify the device to be used to take a reading by scanning its identification tag.

iii. View the information to verify whether the correct entities were identified.

iv. Take a reading

v. Check the reading to see if it is acceptable for entry into the EHR and

vi. Approve the reading if it is.

This task description can be augmented by some simple recovery instructions like using a reset
function if the entities are not correctly identified or the reading is not satisfactory. The goal of the
overall system is to ensure that there is correct association of patient and data in the EHR.

10

2.2 Formal Model for Task Specification

The task specification for a human operator needs to be encoded using a formalism that is expressive
enough to encode the sequence of subtasks that needs to be performed by the human operator.
During the process of executing the task, the human operators will interact with various components
of the computer system. Thus the formalism should also be capable of capturing the interactions
between the human operators and the computer system components. The formalism should also be
capable of modeling of the change in the state of the system and human operators as they interact
with each other and perform tasks. The formalism should enable expressing the safety requirements
of the computer system that the system must conform to irrespective of the behavior of the human
operators. We chose a process algebraic approach towards modeling human task execution behavior.

2.2.1 Process Calculus Approach

We first demonstrate the use of Communicating Sequential Processes (CSP) to formally model hu-
man operators and computer systems [51]. CSP is a process algebraic notation for concurrency and
communication. A simplified grammar of CSP is given below. It is based on a primitive set of events
e and booleans b.

P,Q ::= Stop |Skip | if b then P else Q | e→ P | P;Q | P |||Q | P|[{E}]|Q | P�Q | P u Q | P \ E

The constant Skip indicates successful completion while Stop indicates a deadlocked process.

The process if b then P else Q behaves like P if b holds and like Q otherwise.

Prefixing The process e→ P first does e and then behaves like P.

Sequencing The process P;Q behaves like P until P terminates, and then behaves like Q.

Interleaving The process P |||Q denotes arbitrarily interleaved parallel asynchronous composition
of the two processes P and Q.

Synchronization The process P|[{E}]|Q models parallel synchronized execution of two processes P

and Q where their synchronization is defined with respect to the occurrence of an event from
the interface event set E. An event e ∈ E can only occur if each component process can
execute e.

External Decision The process P � Q behave either like P or Q, but the choice between them is
made externally by the environment.

Internal Decision The process P u Q behave either like P or Q, but the choice between them is
made internally by the environment.

11

Abstraction The abstracted process P \ E provides a mechanism for hiding events. Each event e in
the set E is rendered unobservable by this process definition.

The operators ||| , |[{E}]|, �, and u are associative and commutative. We will abbreviate P(x1) � . . .

� P(xn) by �
x∈X

P(x) where X = {x1, . . . , xn}, and similarly for ||| and u. All sets will be assumed to
be finite. We will further abbreviate �

{C.x|x∈X}
C.x→ P(x), where X is an understood set of values for

a communication, by C?x → P(x) meaning the possible receipt of a value, and write C!v → P for
C.v → P, representing the sending of a value v. We will refer to the modifier C in a set of events
{C.x| x ∈ X} as a communication channel, or channel for short.

2.2.2 Human Behavior Model using CSP

Any process calculus is a language for describing the communication, interaction and synchroniza-
tion among different entities where each entity is essentially a process. We can consider a human
operator as a CSP process capable of interacting, communicating and operating synchronously with
a computer system. CSP provides a uniform methodology for modeling both the human operators
and the system components. The steps performed by a computer system can be considered as CSP
processes. Thus the parallel synchronous composition of CSP processes corresponding to human
operators and computer systems can be an abstract model to be analyzed and verified. CSP also
allows for modeling of infinite state systems. We will present the advantages of using CSP to model
human behavior as we present our CSP modeling of the AIDC scenario.

2.2.3 AIDC Scenario using CSP

Our approach to modeling AIDC is to represent each of the environment elements (entities supplying
identity and information: RFID tags as shown in Figure 2.1, the patient), the human task specifi-
cation, the identification system and the identification platform (the mobile mediator, the back-end
database: EHR) as CSP processes to be composed with synchronization. The environment and
the identification platform should be thought of as fixed and the purpose of their specification is to
capture existing functionality. The specifications for each of the human task specification and the
identification system should be thought of as stating the required behavior to be implemented. The
composition of the human task specification and the identification system is the total “system” to be
supplied. However, since the human behavior can not be guaranteed, it is critical that its specification
be broken out separately to clarify the precise limitations of the system deployed.

For each type of pairing of entities in the environment, human agents, identification system
components and platform components, we associate a parameterized family of channels, where the
parameters give the specific implicit and explicit participating entities. In our examples, we give
the parameters as indexing subscripts and superscripts. To the extent one can say one party “owns”
a channel, we use the subscript to indicate the owner. The superscripts indicate information about

12

the other participant(s) in the communication, and the source(s) of the data being communicated.
These are mathematical labeling of the channels by “real world” entities and are not visible to the
system being implemented; only the data transmitted is actually visible. However, these indices
play a critical role in enabling us to state the needed correspondence properties guaranteeing that the
recorded data had originated from the expected source, i.e., they have the expected identity.

We explore a scenario at a hospital where nurses take patient readings from devices capable of
reporting results via wireless. The challenge here is to ensure that the correct reading gets associated
with the correct patient in the hospital database. To aid in ensuring this, all elements of the hospital
environment are equipped with identification tags, and the nurse is required to identify with those
tags the patient and the device being used, and then the system should ensure that the data collected
are associated with the identified patient and device. The whole process can be seen as an interaction
among the physical actions taking place in the environment, like the nurse taking the reading using
a device and the actions in the electronic system, which receives, interprets and stores the readings
collected from patients.

In accordance with the general methodology outlined above, the environment comprises the pa-
tients, the medical devices, and all tags associated with these entities. The nurse must adhere to the
human task specification. The medical mediator (the PDA plus readers and software) is the identifi-
cation system, and the combination of the EHR and its interface make up the identification platform.
To model the RFID tags, the patients, the nurses, the mobile mediators, the medical devices, the
EHR interface and the back end EHR we will use the CSP processes Tag, Pat, Nurse, Med, Device,
EHRInterface and EHR respectively. Some of these processes will be further described in terms of
subprocesses, such as TakeCkReading for Nurse. The channels are as follows: HCInm is used for in-
teractions between the nurse n and the medical mediator m; RFIDChann,m

o for communicating RFID
tag numbers for a tagged object o to a medical mediator m operated by nurse n; BTAddrn,m

d is the
Blue-tooth connection between m and device d selected by n, while BTScanm represents scanning
the radio frequencies for blue-tooth devices; EHRChm is the channel for m to communicate with the
EHR interface to get names associated with id numbers, and EHRBEChm is the channel for m to use
to store information in the EHR.

13

Human task specification. In Section 2.1, we introduced the nurse’s task specification. We now
present CSP process for the nurse.

Nurse(n,m) =

HCInm!GetID→ u
p
(HCInm!(RFIDChann,m

p)→

u
d

(HCInm!(RFIDChann,m
d)→ HCInm?x→

if x = (Name(p),Name(d))
then (HCInm!Yes→ TakeCkReading(n,m, p, d))
else if x = Error then (HCInm!OK→ Skip)

else (HCInm!No→ Skip)))

The specification relies upon the specification TakeCkReading of the task specification to be fol-
lowed when taking and verifying a reading for a patient. Before presenting the CSP process for that
phase, we provide explanation of the CSP encoding presented above.

• The nurse first presses a GetID button on the display of the mobile mediator. This action
is encoded as a communication between the nurse and the mobile mediator HCInm!GetID.
All communication between a particular nurse n and a mobile mediator m is performed via
sending and receiving of messages over the human computer interface channel indexed by n

and m: HCInm. The nurse manifests her intention of scanning RFID tags by sending the GetID

message.

• Then the nurse indicates the patient whose tag she wants to scan by pointing the mobile
mediator to that patient’s tag. The patient that the nurse wants to indicate is chosen by the
nurse herself. Thus the choice of patient is an internal decision for her. We model this part
by u

p
(HCInm!(RFIDChann,m

p)). Whichever patient the nurse wants to handle is indicated by

the sending of the communication channel between that patient’s RFID tag and the mobile
mediator by the nurse to the mobile mediator. Thus this is again a communication over the
channel HCInm where the value that is communicated is another channel: RFIDChann,m

p . It
indicates the channel for communication between the RFID tag of the patient p and the mobile
mediator m associated with the nurse n. Similarly the nurse indicates the device that should
be scanned by sending the message RFIDChann,m

d over the same channel HCInm.

• Now the nurse needs to read the information about the scanned entities on the mobile mediator
display. This is modeled by the nurse waiting to receive message over HCInm.

• After reading the displayed information, the nurse needs to decide if the displayed information
is associated with the patient and device she had intended to use. If they are, then she affirms
the validity of the displayed information: HCInm!Yes and tries to collect a reading in the next
step. Otherwise, there are two possibilities. First: it may be the case that she decides that

14

the information displayed does not correlate with the patient and the device she intended to
use and she indicates this by sending out HCInm!No. Second: suppose the back end database
was not able to successfully find information about the scanned entities. Then an error will
be indicated to the nurse via the mobile mediator. In case of such an error message the nurse
indicates to the mobile mediator that she understands there is a problem with the scanned
identities and sends out an OK to the mobile mediator. In real life, the nurse will most probably
start over the entire AIDC procedure.

We now move on to the reading collection phase. When the nurse is ready to take a reading she
pushes a GetReading button on the medical mediator, then selects a blue-tooth device from the list
displayed assuming it is present, examines the results of the reading and decides whether to store
the results if they are meaningful. In CSP, we can encode this as:

TakeCkReading(n,m, p, d) =

HCInm!GetReading→ HCInm?X →

if BTAddrn,m
d < X

then HCInm!No→ Skip

else HCInm!BTAddrn,m
d → HCInm?data→

if data = Error

then HCInm!OK→ TakeCkReading(n,m, p, d)

else ((HCInm!Yes→ Skip)u

(HCInm!No→ Skip))

2.2.4 Advantages of using CSP for Modeling Humans

We now present the advantages of using CSP as the formalism for modeling human behavior.

1. Communication: CSP has a simple and elegant way of modeling communication. One can
very easily define channels and send and receive messages over them. For example, let us
consider the very first part of the nurse process: HCInm!GetID. Here, we define the channel
HCInm for communication between the nurse n and the mobile mediator m. A hospital has
many nurses and can have many mobile mediators. CSP provides a simple method of defining
channels of communication for each pairings of a nurse and a mobile mediator through such
indexed channels. Thus we can unambiguously indicate the channel of communication for
the exact nurse and mobile mediator. Moreover, CSP does not impose any restrictions on the
type of message that can be defined or more importantly sent over a channel. We sent abstract
messages like GetID, Yes and we also sent channels RFIDChann,m

p .

2. Correlation of identities: Correspondence of identities of objects at progressive stages of a
CSP process can be very easily achieved by using indexes for the channels and variables.
For example when we wanted to describe that a particular patient is internally chosen by the

15

nurse, we indicated that choice of a patient by p. If we examine the CSP code for the RFID
tag scanning phase, we see that we can use the same p as an index for the RFID channel for
the patient, for the decision part of the nurse, for indicating the same patient to the reading
collector process TakeCkReading(n,m, p, d).

3. Internal nondeterministic decision: A nurse is assigned several patients each day. She decides
which patient she is going to handle first. This decision is taken internally by her and we
model her decision procedure by the outcome of an internal nondeterministic choice by the
CSP process for the nurse: u

p
(...). Let us consider a more involved example to illustrate the

usefulness of internal nondeterminism operator. The nurse process presented in this section
corresponds to the recommended behavior for the nurse. If the displayed information is as-
sociated correctly with the patient and the device she had intended to use then she affirms
their validity. Only if there is a problem with the displayed information, she sends out No.
However, for a nurse not following this suggested course of action may send out a No even
if the displayed information is correct. Even worse, she may send out a Yes even if the dis-
played information is not associated with the patient and the device she was handling. Thus
the decision procedure is totally internal to the nurse and the outcome is nondeterministic.
CSP allows such internal decisions to be modeled easily by the u operator. A possible model
for a nurse can be:

Nurse(n,m) =

. . .

if x = Error then (HCInm!OK→ Skip)
else ((HCInm!Yes→ TakeCkReading(n,m, p, d))u(HCInm!No→ Skip))

Here if the mobile mediator displays that information about the patient and the device could
not be retrieved from the database, then the nurse takes the recommended action. However,
in the case where some information was retrieved from the database about the patient and
the device, the nurse makes a nondeterministic internal decision about whether to validate the
displayed information or not.

We will present some other advantages of CSP as we present more CSP encodings.

Environment. The tags in the environment should be modeled as processes that repeatedly an-
nounce their identification number to any party listening. All we directly know about a patient is
her tag. A blue-tooth device is similar to a tag, except that it chooses a fresh set of data for each
communication, instead of a single identification number. A device is viewed as a combination of a
tag and a blue-tooth device. Separate from the individual blue-tooth devices, we will have a channel

16

that is used for detecting all available blue-tooth devices. These are specified by:

Tag(o) = �
n,m

RFIDChann,m
o !(IDnum(o))→ Tag(o)

Pat(p) = Tag(p)

BTDev(d) = �
n,m

(u
data

(BTAddrn,m
d !data→ BTDev(d)))

Device(d) = Tag(d) |||BTDev(d)

BTDevs = �
m

(u
X⊆BTDevices

BTScanm!X → BTDevs)

Identification Platform. The two database components that are relied upon by the medical medi-
ator are the EHR and the EHR interface. For the interface, we assume that it can somehow determine
if the tag identifiers make sense, sort them and accompany them with the corresponding names. The
EHR is just required to accept whatever it is sent.

EHRInterface(m) = EHRChm?x→

((EHRChm!Error→ Skip)u

(u
(n1, n2)|∃y1 y2.(y1, y2) = x ∨ (y2, y1) = x

∧(n1 = Name(y1) ∧ n2Name(y2))

EHRChm!n1 → EHRChm!n2 →

EHRChm?r → EHRChm!FormatRaw(r)→

EHRChm?z→ if z = Auth(n,m)

then (EHRBEChm!(n,m, y1, y2, EHR(r))→ Skip)

else Skip))

EHR = �
m

(EHRBEChm?x→ EHR)

Identification System. The medical mediator is the system component that allows the nurse to
communicate with various environmental elements like the RFID tags as well as system components

17

like the EHR. We give the high-level CSP specification here.

Med(n,m) = HCInm?GetID→ HCInm?x1 → x1?y1 →

HCInm?x2→ x2?y2→EHRChm!(y1, y2)→EHRChm?n1

→ if n1 = Error then HCInm!n1 → HCInm?OK→ Skip

else EHRChm?n2 → HCInm!(n1, n2)→ HCInm?z→

if z = Yes then MedRead(n,m) else Skip

MedRead(n,m) = HCInm?GetReading→

BTScanm?X → HCInm!X → HCInm?y→

if y = No then Skip

else y?rdata→EHRChm!rdata→EHRChm? f data→

HCInm! f data→ if f data = Error

then HCInm?OK→ MedRead(n,m)

else HCInm?z→ if z = Yes

then EHRChm!Auth(n,m)→ Skip

else Skip

2.3 Safety Properties

There are a variety of different semantics and models for CSP processes. We concentrate on the
trace model and the failure model in this work. In a trace model a process is represented by the
sequences of communications or events it can perform. In the stable failures model, a process is
represented by its failures. A failure for a process, P, is given by a pair (s, X), where s is a trace
of P and X is a set of things it can refuse to perform after performing s. We provide some desired
safety and liveness properties for the hospital AIDC system. We also provide the specifications for
a CSP process by providing the most nondeterministic process satisfying the specification. The CSP
process for a hospital AIDC system satisfies a specification S if the CSP process P representing the
specification is refined by the AIDC system process. We consider two different types of refinement:
trace refinement for safety properties and failure refinement for liveness properties [99]. A process Q

is a trace refinement of another process P, denoted by P vT Q if traces(Q) ⊆ traces(P). A process
Q is a failure refinement of another process P, denoted by P vF Q if failures(Q) ⊆F failures(P).
If we have a process P and its safety specification S and we have S vT P, then we can say P is a
safe process, as all its traces are traces of the specification, so no bad event can be performed by P.
Similarly, failure refinement can be used to express liveness properties.

We now express the environment of a hospital AIDC system as the collection of all the iden-
tification tags representing the devices and patients and the devices sending out the readings for
patients, together with the electronic records system. These are the “given” components, which we

18

cannot control.
Given = (|||

d∈Dev
Dev(d)) ||| (|||

p∈Pat
Pat(p)) |||BTDevs |||EHR

We shall refer to the combination of all instances of nurses and medical mediators as the system.
It is important that only one nurse have use a medical mediator at a time. This is reflected in our
specification by allowing each medical mediator to “choose” a nurse.

System = ((|||
m

(u
n
(Nurse(n,m) |[{{y|∃x.y = HCInm.x}}]|

Med(n,m)) |[{{y|∃x.y = EHRChm.x}}]|

EHRInterface)) \ {y|∀n m p d x.

y , RFIDChann
p.x ∧ y , EHRBEChm.x ∧

y , BTAddrn,m
d .x ∧ y , BTScanm.x});

System

In the system, we hide away almost all internal and inter-element communication. The only events
that we are interested in are the actual scanning of patient and device identifier tags and the ultimate
sending of the medical measurement to the EHR for storage after it has been verified by the nurse.
This is another aspect of CSP that was very useful. The hiding operator of CSP allowed us to easily
abstract away the information we did not want to be observable. The other interesting CSP operator
in use here is the synchronization operator. We defined the nurse process and the mobile mediator
process separately and here we defined the combined process where they need to synchronize on
the communications occurring over the channel between them HCInm. Thus the mobile mediator can
only progress after the nurse has sent the GetID message, the nurse can only verify collected reading
after the mobile mediator has displayed them to her.

We now provide the safety specification for the hospital AIDC system, where the specification
ensures that if a tuple of data is entered into a database, stating that a particular device, d was used to
take a reading x from a patient p by a nurse n, then it had been the case that the nurse n did identify
p and d and had taken a medical measurement x from the patient p using d after identifying them.

Safety =

|||
m

(u
n
u
p
u
d

(((RFIDChann,m
p .IDnum(p))+ → (RFIDChann,m

d .IDnum(d))+)

u((RFIDChann,m
d .IDnum(d))+ → (RFIDChann,m

p .IDnum(p))+)

→ (Skip u (BTScanm?X → (Skip u

(if BTAddrn,m
d ∈ X then (BTAddrn,m

d ?r → (Skip u

EHRBEChm.(n,m, IDnum(p), IDnum(d), EHR(r))

→ Skip)) else Skip)))))); Safety

Now, we are ready to specify the desired safety and liveness properties. Let Vis = {y.(∃n d x. y =

19

RFIDChann,m
d .x) ∨ (∃m z. y = EHRBEChm.z)}. The properties then are as follows:

Safety|[{Vis}]|Given vT System|[{Vis}]|Given

LIVE vF System|[{Vis}]|Given

where LIVE = u
x

x → LIVE. LIVE is the most nondeterministic process that is deadlock free. The
first property states that no wrong, random, non-associated tuple gets stored in EHR and the second
property states that the nurse can eventually take steps and will not get deadlocked.

We have sketched proofs for the above results based on their semantics using traces of events.
Due to the large number of cases to be considered, we feel that such a proof is easily subject to acci-
dental omissions and hence is best checked by automated assistant. To this end we have encoded the
CSP processes described in this paper two such tools. The first system we used was the fully auto-
mated CSP failures-refined prover FDR2 (Failures-Divergence Refinement) [1]. A straightforward
encoding led the system to run for hours, probably indicating divergence due to the large number
of internal and external choices. The second system we used was the extension CSP-prover [60]
to the interactive theorem prover Isabelle [2]. In this system, there is a restricted type system for
communications and the encoding entailed creating a number of functions for coercing data into this
type system. Also, certain operators were lacking (index interleaving, in particular), and so we had
to expand the code to accommodate this lack. As of now the proofs in CSP-prover of the above
two results are incomplete. We conclude from this effort that there are interesting challenges to
automating proofs of task specifications using CSP for entities such as the ones for the mediator.

2.4 Summary

This chapter has shown how we can formalize human operator task executions using a process
algebraic approach, more specifically CSP. CSP provides a high level uniform abstract formalism
for modeling the computer systems along with their human operators. We have also presented how
system requirements can be specified using CSP. We demonstrate how we can model and analyze
the operation of a system being guided by a human operator.

20

Chapter 3

Runtime Monitoring of Human
Operators

In this chapter we present how the combined interactions of a computer system and human operator
can be monitored at run time to detect safety requirement violation.

3.1 Introduction

The process algebraic approach to modeling human operators, computer systems through their ac-
tions and interactions provides a procedural method for formally specifying them. Computer sys-
tems are highly procedural in nature. Human recommended task specification also has a procedural
flavor. It comprises of the sequences of actions that need to be performed to ensure successful com-
pletion of task. Computer software is usually composed of a collection of software modules. Each
module implements a specific procedure of actions to be performed. A computer system is designed
to perform a task to achieve a goal. For example, an ATM banking system software is designed
to perform tasks of performing the tasks of taking deposits, providing withdrawals and retrieving
customer account balance information. The requirement of the system is to maintain integrity of
the banking database and protecting client accounts from errors. For example: if a customer per-
forms a transaction then only that customer’s account should be impacted. Similarly in the AIDC
scenario the computer system is there to help collect and store correct data about the patients. A
safety requirement of the AIDC system can be:

Safety if a tuple 〈n,m, p, d, r〉 gets inserted into the EHR, then it has been the case that the nurse
n had identified the patient p, had identified the device d, and had collected the data r from
patient p using the device d.

As one can observe, the safety condition expressed using CSP in Section 2.3 is as different as pos-
sible from this natural description of the safety property. System requirements are usually logical
expressions. CSP allows logical reasoning through several refinement relations. These refinement
relations are expressed over CSP processes. Hence the only mechanism provided by CSP to express
system requirements is through the description of CSP processes conforming to those requirements.
This approach can become cumbersome and error-prone in complex scenarios. Safety properties

21

are provided by system designers. Since the system designers are human beings, the given require-
ments may have errors in them. If they are required to express system requirements using complex
CSP processes then it becomes too much of a burden for them. Usually the system designers only
provide an English description of the system requirement. The translation of the requirement into
a CSP process can introduce errors in the safety requirement itself, thereby nullifying the gains of
analyzing against it.

3.1.1 Temporal Logic for Requirement Specification

The system requirements are usually temporal in nature. The safety property presented in Sec-
tion 3.1 states that for every tuple of information recorded in the EHR, there had to have been a
previous point in time when the nurse had identified that patient and so on. An ATM banking soft-
ware must guarantee that if $X is withdrawn from the account of customer c then it must be the
case that at the immediately preceding point in time the same customer c had requested a with-
drawal of $X from his account. Thus we contend that using some form of temporal logic will be
most suitable for specifying system requirements. The most widely used temporal logic is Linear
Time Temporal Logic (LTL) [93]. The syntax of an LTL formula ϕ is as follows: ϕ = p (atomic
proposition) | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2 | ^ϕ | �ϕ. ©ϕ indicates that in the immediate
next step in time the temporal property ϕ will hold. ϕ1 U ϕ2 indicates that at some point in the
future, ϕ2 will hold and at each point in time before that ϕ1 will continue to hold. ^ϕ denotes that
eventually at some point in time the property ϕ will hold. �ϕ denotes that from now on at every step
the property ϕ will hold. There is a past-time extension of LTL called PTLTL [47, 46, 87, 79]. It has
the interesting operators _ϕ |ϕ1S ϕ2 |�ϕ. Here, _ϕ states that at some previous point in time ϕ was
true. ϕ1 Sϕ2 denotes that ϕ2 held at some earlier point in time and since then at every point in time
ϕ1 held. �ϕ indicates that at all earlier points in time ϕ held.

AIDC Scenario Safety Property in Temporal Logic

The safety property of the AIDC scenario as presented in Section 2.1 using PTLTL is:

getsStoredInEHR(n, m, p, d, r) → _scannedPatient(p) ∧ _scannedDevice(d)

∧ _capturedData(p, d, r)

The concept of a declarative temporal specification of system requirement presents the question of
whether we can consider runtime verification of the computer system under consideration while
being operated by human operators.

22

3.1.2 Runtime Verification

Runtime verification or runtime monitoring comprises of a monitor module monitoring an execution
of a software module to determine whether the execution trace of the software module conforms to
a requirement specification. Unlike static verification where an abstract model of the computer soft-
ware is verified, runtime monitoring is performed on the actual software program. The contention is
that although an abstract model of a system has been proved to be correct, the real implementation
may have some unexpected behavior when facing the real environment. These atypical behavior
may even be unsafe, thereby reducing the credibility of the verified abstract model. Static analysis
verifies each possible execution of the abstract software model. Runtime analysis is usually per-
formed on a specific execution trace. The execution trace may be from an actual or test deployment
of the system. The system requirement is usually specified using temporal logic. The desired goal
of the monitor system is to be able to detect a requirement violation and perform suitable steps to
guide the system to safety.

The concept of runtime monitoring presents this question to us: Is there a way we can monitor a
computer system as it gets operated by the human operators to detect violation of the safety of the
computer system? The answer is: yes we can. One approach is to design monitors for a computer
system and monitor its execution while being operated by humans. Another approach can be to
create a model of a human operator actions performed while executing a specific task. We focus on
this second approach in this chapter. We can create a monitoring program to monitor the execution
of a computer system as it interacts with the human operator action model to detect when a safety
requirement is violated and perform necessary steps to remedy the situation. In this chapter we
present a methodology for human operator and computer system interaction monitoring to assess
the safety of operation of the computer system by the human operator. The focus of this work is
not on monitoring and verifying just a computer system but on verifying a computer system whose
operation is being controlled by human operators to some degree. We present our framework in
Section 3.2. We present a case study in Section 3.3.

3.2 Framework for Monitoring Computer Systems Operated
by Human Operators

The execution of every computer system is guided by some human operator to some degree. The
human operator uses his past experience, expertise, sense of judgment and current frame of mind to
guide the operation of a system. In case of emergencies, many safety critical systems like aircrafts,
nuclear power plants rely on the judgment and decision making capability of the human operators to
steer the system towards safety. The scenarios presented in Chapter 1 (Three Mile Island Accident)
and Sections 6.2 (Japan Airlines Incident) are examples of such situations. Although the system
designers rely on the human operators’ capability to ensure safe operation of a system, the human

23

operators may get influenced by other environmental elements and their decisions may become er-
roneous. Even unwillingly they may steer a system towards a hazardous situation instead of guiding
it to safety. Hence there is a need to incorporate measures to ensure that human operator introduced
errors be captured and dealt with.

The issue that arises now is how to determine that a human operator behavior will not cause
unsafe computer system behavior. We have shown that given a recommended human task execution
behavior, we can verify that the system remains safe when operated by that recommended behavior.
However, the analysis is performed on a model of the system. What if when the actual computer
system is deployed, unexpected behavior of the human operators causes even more unexpected result
from the system? What if the fault actually lies with the computer system? A framework that will
allow us to determine whether a human operator behavior is safe for an actual system will help us
answer these questions. Since human operators are so unpredictable in nature there can be numerous
possible behaviors. It is not feasible to study each and every behavior of a human operator exhibited
while interacting with a system. Hence we suggest off-line monitoring of a software system with
a specific human behavior to determine whether the system can maintain safety when facing that
behavior.

3.2.1 The Monitoring Framework

The idea behind the monitoring methodology is very simple as presented in Figure 3.1. The method-
ology assumes existence of a monitoring framework that can be used to create the monitor specifi-
cation and execute it. The parts of a simple framework for monitoring human behavior is presented
below:

Figure 3.1: Monitoring a system being operated by a human

24

• Model a human operator behavior in a language acceptable to a monitoring tool.

• Identify the safety requirement of a system. Determine the procedure to be followed if a
violation to the safety requirement occurs.

• Create a monitoring specification for the combination of the human operator and the system.

• Execute the human behavior model, the computer system, and the monitor to ascertain if any
security requirement violation occurs.

The human behavior can be considered to consist of the steps or actions he takes in different states.
This can be thought of as his game plan in operating a computer system. And also this can be thought
of as his execution of his task specification. A task specification prescribes the action sequences an
operator should execute. The task specification or human behavior will then cause a trace of the
system to be created at runtime. This execution trace of the computer system is guided by the
human operator. If this execution trace does not lead to any requirement violation then we can state
that the corresponding human behavior is a safe one. Suppose the execution trace created at runtime
under the influence of the human operator leads to violation. Then if we assume that the system is
safe, then the human behavior is responsible for forcing the system to enter an unsafe state. Later
on in Section 4.3, we show how to determine whether the system itself or the human operator is
responsible for the safety violation.

3.2.2 Framework with Chosen Monitoring Software

The monitoring software chosen by us is JavaMOP [30] developed in FSL (fsl.cs.uiuc.edu) at
the University of Illinois. JavaMOP is a framework for runtime analysis of a software via monitor-
ing for conformance of a requirement specification. The requirement can be specified using many
different logics. We chose LTL and PTLTL (past time LTL) [47, 46, 87, 79] for the requirement
specifications. The monitor recognizes AspectJ [123, 3] events. AspectJ events can be the call to
a Java [4] method with or without a specific set of input parameters, exiting from a Java method
with or without a specific return value and so on. Each event is considered as an atomic proposi-
tion. The LTL or PTLTL property is specified using the event propositions. Given our choice of the
monitoring software the framework now becomes:

• Model a human operator behavior in a language acceptable to a monitoring tool.

– Identify the human operator vocabulary.

– Encode each human action with Java modules. The human actions will entail calls to the
modules in the actual software.

– Construct a human operator behavior model by composing human action methods. This
model will be contained in a Java module.

25

fsl.cs.uiuc.edu

• Identify the safety requirement of a system. Determine the procedure to be followed if a
violation of the safety requirement occurs.

– Create aspects corresponding to interesting events taking place in the execution of the
software program. A system needs to react to the steps that a human operator takes
to execute each step in a task description. The interesting events are essentially all the
human operator actions or the system reactions to human operator actions. Important
system method calls should also get events.

∗ For simply a call to a software module, we can create jointpoints.

∗ For a collection of calls to a specific software module, create a pointcut.

∗ For including some action that needs to be undertaken before or after a particular
jointpoint occurs declare advices accordingly.

• Obtain the safety requirements of the system.

– Considering the set of events defined in the last state as the set of propositions, formulate
a PTLTL or a LTL property.

– Include the appropriate steps that need to be taken in case of a violation of the formulated
property.

• Create a monitoring specification for the combination of the human operator and the system.

– Combine the event set and the property along with violation advice to create the actual
monitor program.

• Execute the human behavior model, the computer system, and the monitor in the JavaMOP
framework to ascertain if any security requirement violation occurs.

– Execute the monitor on the execution of the combination of the human operator module
and the computer system.

Execution of a monitor on the combination of a human operator behavior and a computer system
will present a violation if any. Then the action advice for the requirement violation will take place
to hopefully guide the system back to safety.

3.3 Human Task Execution Monitoring Case Study

We will consider the AIDC scenario for our case study. We must mention that we had to use a model
Java encoding of the scenario for the case study instead of the actual prototype software that had
been built. This scenario is simple enough in that the only active human operator is the nurse. The
most noticeable system component is the mobile mediator. The safety of the AIDC procedure is the
same from the point of view of the patient and the hospital:

26

• if the EHR has been asked to store a tuple containing a reading r that has been captured using
a device d from a patient p by a nurse n handling a mobile mediator m, then it has been the
case that the nurse n had

– identified that patient p using mobile mediator m

– identified that device d using mobile mediator m

– captured reading r from patient p using device d while still using mobile mediator m

In other words, correct correlation of data needs to be preserved. The EHR is only consistent when a
patient’s records contain reading information collected from exactly that patient. This property can
be easily formulated using temporal logic.

In this case study we slightly vary the recommended task description as presented in Section 2.1
to introduce an error to help illustrate the benefit of analyzing human actions. Here the nurse exe-
cutes most of the steps in the recommended task description correctly and identifies a patient and a
device. But in the data collection step collects medical information from a different patient and does
not notice the error. Let us now go through the steps in our framework provided in Section 3.2.1.

• Modeling human behavior:

– The actions that can be taken by the nurse are: identify a patient, identify a
device, verify captured identities, take a reading from a device, v-

erify the collected reading. We add an additional initial action of associating a
nurse with a mobile mediator. This action corresponds to the picking up of a mobile
mediator by the nurse in the nurse’s station.

– Each nurse action is then translated into a Java module. The complete collection of Java
modules is provided in Listing B.1 in the Appendix. As an example of human action,
we present the code for capturing medical information of a patient using a device here:

p u b l i c vo id c a p t u r e D a t a F r o m D ev i c e (Mob i l eMed ia to r
mob i l eMed ia to r , P a t i e n t p a t i e n t , Device d e v i c e) {
o b s e r v e d D a t a = m o b i l e M e d i a t o r . c ap t u r e D a t a F r om D e v i c e (
p a t i e n t , dev i ce , t r u e) ;

}

Listing 3.1: Nurse code for capturing data from a device

• For the analysis we present a combination of nurse and mobile mediator action sequence
encoded in Java in Listing A.1 in the Appendix. Lines of code corresponding to the actions
performed by the nurse is presented in Listing 3.2.

27

n u r s e 1 . a s s i g n M o b i l e M e d i a t o r (mmed) ;
n u r s e 1 . scanPa t i en t IDwi thMobiMed (p a t i e n t 1 , mmed) ;
n u r s e 1 . scanDeviceIDwithMobiMed (dev i ce , mmed) ;

n u r s e 1 . r eadScannedDev ice ID (mmed) ;
n u r s e 1 . r e a d S c a n n e d P a t i e n t I D (mmed) ;
mmed . g e t A p p r o v a l F o r S c a n n e d I D s (n u r s e 1 . approveScannedIDs (mmed)) ;
n u r s e 1 . ca p t u r e D a t a F ro m D e v i c e (mmed , patient2 , d e v i c e) ;
n u r s e 1 . readCapturedDataFromMMed (mmed) ;

mmed . g e t C a p t u r e d D a t a A p p r o v a l (n u r s e 1 . a p p r o v e D i s p l a y e d R e a d i n g ()) ;

Listing 3.2: Nurse actions for AIDC operation

This is a scenario where there are two patients and only one device. The nurse first checks out
a mobile mediator at the nurse station. Then she uses the mobile mediator to scan the RFID tag
of the first patient. Then she follows the same procedure for the medical device. Then mobile
mediator displays the identified entities on its screen. Then the nurse reads the displayed
information and the mobile mediator collects the verification of the scanned IDs from the
nurse. But as highlighted in the code, the nurse now erroneously captures reading from the
second patient. The nurse now reads the data collected by the mobile mediator which gets
displayed in the mobile mediator screen. The mobile mediator prompts the the nurse to verify
scanned entities and collected data. These mobile mediator actions are indirectly prompted
by preceding nurse actions and thus gets mentioned in Listing 3.2. Upon her (erroneous)
approval, the data is then stored in the back-end database.

• The safety property of the AIDC scenario is:

getsStoredInEHR(n, m, p, d, r) → _scannedPatient(p) ∧ _scannedDevice(d)

∧_capturedData(p, d, r)

• The monitor is created for execution in JavaMOP. The Monitor code is provided in Listing C.1
in the Appendix. The monitor recognizes the identification of a patient as an event, identifica-
tion of a device as an event, collection of data as an event and record insertion in a database as
an event. The monitor keeps track of the patient that has been identified, the device that has
been identified and the combination of device and patient that is used for medical information
collection through the corresponding events. If the nurse collects erroneous information and
subsequently validates the erroneous information, then the mobile mediator system will send

28

the erroneous information to the database to be stored. The safety condition is that when a tu-
ple of information is inserted into the EHR, only the data captured from the identified patient
with the identified device is recorded in the EHR. Hence any time a record is attempted to be
stored in the EHR where there is a mismatch in the patient or device involved in the identifica-
tion and data collection step or the collected medical information and the information getting
inserted in the EHR, erroneous tuple insertion event occurs. The monitor is asked to notify in
case a violation of the safety property that no erroneous tuple insertion event ever occurs.

• When the monitor presented in Listing C.1 in the Appendix is executed along with the AIDC
system model and human operator model, we find that a violation occurs when the event
ehrStoresTupleWrongPatient occurs indicating that a tuple was attempted to be stored in
the database where there is a mismatch in the identity of the patient: the patient from whom
the data that was collected is not the patient who was identified.

3.4 Summary

In this chapter we have presented a methodology for monitoring a computer system being operated
by a human operator for safety property violation. We have shown why a declarative specification
of safety requirements is more suitable. We demonstrate that existing monitoring techniques and
software can be used to model and analyze human operator influence on the safety and reliability of
a system. Runtime monitoring of a system being operated by a human operator can provide insights
into whether the task description of operating a system recommended to the humans is safe for the
system or not. The methodology presented in this chapter can actually help evaluate safety of a
system when composed with any arbitrary human task execution behavior.

29

Chapter 4

Modeling and Verifying Tolerable
Atypical Human Behaviors

In this chapter we present the methodology to model and verify safe human operator behaviors that
are claimed to be “tolerable” by the system designers. We present a technique to determine whether
each and every such tolerable behavior is actually safe or not. We also present Tutela, our prototype
tool that assists in executing the methodology. We first provide a characterization of human behavior
to help reason about them.

4.1 Introduction

Irrespective of the degree of automation, computer systems need to interact with human operators.
Even in highly automated safety-critical systems like aircrafts, hospitals, nuclear power reactors, am-
bulance dispatch systems, there are human operators guiding these systems to perform their tasks.
Sometimes the humans are there to initiate and terminate the operations of these systems: the au-
topilot system of modern aircrafts needs to be started by the pilots to take over the flying operation
of the aircrafts. Sometimes human operators are there to intervene in case of an emergency: in case
an aircraft faces inclement weather, only the human pilots are allowed to intervene and perform
crash-landing procedure. The responsibility of these human operators in ensuring safe operation is
tremendous. At the same time it is a critical responsibility of the system designers to secure the
systems against unsafe erroneous behaviors of the human operators.

Human operators are usually given a recommended task specification in order to operate a com-
puter system. However, human operators may easily deviate from the prescribed set of actions.
Their sense of judgment, susceptibility to environmental elements, unpredictable decision making
patterns can introduce errors in the process of executing the recommended task sequences. Let us
consider the AIDC scenario again. The goal of this scenario is to electronically identify, collect
and store medical information about patients. The process is safe when every record stored in the
medical database has correct association between data and patient. In order to achieve this goal the
nurse needs to ensure that she did not identify one patient and take reading from another one. She
should not allow incorrectly associated data and patient information to be stored in the database.
The reason for the nurse being the agent responsible for correct association of data and patient is

30

that in this scenario only the nurse is physically facing the patient and knows exactly which patient
got a device attached to. A mistake may occur purely unintentionally in this scenario but result
in consequences which can even be fatal. If the nurse follows the recommended task specification
provided in Section 2.1, then such errors do not get introduced into the EHR. However, “to err is
human”. Let us consider a situation build-up here:

• Nurse N walks into a room with two patients Bob and Tom carrying a single blood pressure
measuring device BPM that she intends to use upon both patients.

• Nurse N first identifies patient Bob.

• Nurse N then identifies device BPM

• Nurse N is suddenly summoned to the nursing station to receive a phone call.

• Nurse N leaves the room postponing the data capture process.

• Nurse N returns to the room and resumes data capture process.

• Nurse N now mistakenly uses device BPM to capture reading r from patient Tom.

• Nurse N keeps on being forgetful and approves the reading captured from patient Tom using
device BPM.

• The data tuple that gets stored in the EHR is (N, Bob, BPM, r) where there is no correlation
between Bob and r. At best the tuple could have been (N, Tom, BPM, r).

This erroneous task execution leads to an erroneous tuple getting inserted into the EHR and thereby
violating the safety of the AIDC system.

Throughout a data collection sequence in the AIDC scenario, it must be the case that the nurse
always correctly asserts that the patient from whom a data was collected is the patient whom she had
identified. Intuitively: ∀ patients p1 and p2. tookReadingFrom(p2) ∧ usingDevice(d)→

¬identifiedPreviously(p1).
However, one can notice that the computer system cannot provide a guarantee like this. This is

a constraint that has to be guaranteed by the operator of the system: the nurse. It is the duty of the
nurse to ensure that she took data from the patient she identified. No matter how many checks are
included at every step, if a nurse negligently asserts that an incorrect combination of data is correct,
the computer system has to accept that. This unfolding of a series of events leading to an erroneous
tuple getting stored in the EHR again signifies the fact that to ensure safe operation of a system, even
trusted users need to provide some “reasonable behavior” guarantees. Unless the nurse guarantees
that she will always ensure that she will use the device to capture data from only the intended patient,
with the current system design data integrity cannot be ensured.

31

Human operators are so unique in their sense of judgment, decision making capability, unpre-
dictability that considering them to be a mere part of the environment can lead to severe conse-
quences. Also, assessing requirement conformation of a system while getting guided by the rec-
ommended human task execution behavior is also not sufficient. A computer system needs to be
verified against all possible aberrant human operator behavior. However, analyzing a system against
all possible erroneous human behavior may not be feasible in any scenario. The questions that we
answer in this chapter are: Can we identify the guarantee of “reasonable” behavior that human op-
erators can provide to the computer system? How do we specify such a guarantee? What human
behaviors conform to this guarantee? How do we determine whether the computer system is actually
resilient against all human behaviors conforming to the “reasonableness” guarantee?

Ideally, a computer system should be resilient against all possible human judgment errors. In
reality, protecting against all possible human action variations may become tedious and not cost-
effective. However, there are always some important guarantees of behavior that the system expects
from the human operators. If the human operators deviate from these behaviors, then the system
may fail to remain safe and dependable. Hence there is a need to identify and precisely formulate
the expected “reasonable” human operator behaviors. In this chapter we present a methodology for
modeling and analyzing both typical and atypical human task execution behaviors.

4.1.1 Organization

This chapter is organized as follows: in Section 4.2, we present a characterization of human behavior
to assist in reasoning about them. Then in Section 4.3, we present work on runtime monitoring in
the presence of behavior guarantees of different operators. We present another example scenario
in Section 4.4 and the human behavior characterization in that scenario. In Section 4.5 we present
a framework for specifying and analyzing human task descriptions. In Section 4.6 we present our
methodology for realizing the framework. We present a prototype implementing the aforementioned
framework in Section 4.8.

4.2 Human Behavior Categorization

We now present a categorization of the set of all possible human behaviors using Venn diagrams
in Figure 4.1. This categorization will help us clarify the notion of reasonable human operator
behavior. This categorization is defined with respect to the behaviors of a complimentary set of
players, in this case the computer system, the operating platform etc. For any such analysis, we need
a domain-dependent concept for progress and loss. With a concept of progress and loss in place, the
different categories of human behaviors are as follows:

Safe: The Safe behaviors are those in which the actions of the operator never lead to any loss.

32

Figure 4.1: Protection Envelope

Hazardous: Each behavior that is not safe are hazardous.

Effective Effective behaviors are ones in which some progress is made.

Recommended Among the effective behaviors are some desired behaviors which we refer to as
recommended behaviors in which the operator exactly follows the steps in his task descrip-
tion. There may be ways to make progress that are not recommended, perhaps because the
recommended procedures are just meant to describe one of many ways to get the job done or
because other ways of doing the job may be hazardous.

Warned The warned behaviors, often specified in the warnings section of a user manual, are the
recognized set of hazardous behaviors.

Protected The protected behaviors are the prime focus of this dissertation. The behaviors in which
the operator may vary from recommended or effective behaviors without causing any haz-
ardous consequence are called protected behaviors. These behaviors do not have hazardous
consequences because the system developers have safeguarded the system against these be-
haviors. The collection of all protected behaviors is referred to as the “protection envelope”.
They are the set of safe behaviors that have been identified to be safe by the system devel-
opers. If the humans guarantee to never behave in an unprotected manner then the system
can guarantee that it will always remain safe. Thus the protection envelope is the guarantee
of good behavior provided by the humans that can be relied upon by the system to ensure
conformance to a requirement.

33

We observe that the effective behaviors may or may not be safe. While the recommended behaviors
are both effective and safe, the protected behaviors are guaranteed to be safe only, they may not
be effective in some situations. The “protection envelope” enforces less stringent guidelines for the
human operators at the cost of a reduction in its characteristics. The protection envelope is provided
by an engineered set of properties of the system that form a specified subset of safe behaviors of the
human operators.

In any scenario, the designers would like to identify all possible hazardous human behaviors
thereby extending the warned behaviors to become the overall hazardous behavior set. On the other
hand, designers of a system would also aim at increasing the robustness of a system against atypical
human behavior by enlarging the protection envelope. An idealized situation would be where the
protection envelope represents all possible safe behaviors. The notion of a protection envelope can
be generalized to be extended to each and every player in a scenario. Each player has to meet

Figure 4.2: Computer System along with human operators

some requirements on their behaviors: the human operator should behave within the restrictions
expected by the system developer (protection envelope); the computer system should execute to
meet some requirements set by the system designer(protection envelope); the human operator may
use the system along some specific step-by-step instructions (recommended task specification); the
computer system will execute according to some generic specification of the system (recommended
behavior).

4.3 Monitoring Safety and Protection Envelope

Every computer system component and human operators in a scenario needs to provide protection
envelope guarantees to each other. Each entity may rely on the guarantees provided by the other
components to ensure safe operation of the overall system. With the concept of protection envelope
in place we ask the question: If a computer system being guided by multiple human operators

34

violates its safety property, can we determine which entity was responsible for the violation? Was it
a system component failure? Was it a buggy piece of code? Or was it one of the human operators
operating the system erroneously? We found a suitable answer in runtime monitoring.

4.3.1 Safety Violation Blame Apportion

The framework presented in Section 3.2.1 will work for any property specified using temporal logic
and a specific behavior exhibited by a human operator. The task execution behavior can be the
recommended task specification for a human operator. Then if this recommended task execution
behavior raises no violation alarm while being monitored, then we can state that the recommended
task specification is indeed a safe one. This methodology will work for any human task execution
behavior. If we perform runtime monitoring of a system combined with an arbitrary human task
execution behavior and a safety property violation occurs, then we need to determine whether the
violation was caused by a component of the computer system or whether it was caused by an action
of the human operator. Even when a violation occurs because a system component was attempting
to perform an unsafe action, we would like to know whether there was a human operator action
performed earlier that led the system component to take an unsafe action.

To solve the issue raised above, we fall back to the notion of protection envelope as presented in
Section 4.2. Each and every computer system component and each and every human operator needs
to provide guarantees to each other. The protection envelope guarantees provided by an entity is
relied upon by the rest of the entities to ensure a requirement is satisfied. These protection envelope
guarantees can be used to determine the root cause of a violation. The idea is as follows:

• Obtain protection envelopes for each system component and each human operator.

• Monitor the execution of a system with a specific human behavior using the framework pre-
sented in Section 3.2.1.

• In case of a violation of the requirement occurring during the execution of the system

– Monitor the combination of the system and the human operators but this time monitor
once for protection envelope violation of each entity.

Monitoring for protection envelope violation will hopefully provide us with the set of entities whose
protection envelope guarantee was violated. An understanding of the entities who violated their
expected behavior guarantees will allow us to asses them for their role in the violation. The events
that triggered the monitor to report failure of a protection envelope property will hopefully provide
ideas to the system designers as to why the protection envelope was violated.

35

4.3.2 Association of Blame in the AIDC Scenario

Although the earlier monitoring experiment determines that an attempt was made to store an incor-
rectly associated data tuple in the EHR, it may have happened due to some coding error in the AIDC
system software or it may have been because the nurse had actually collected the reading from a
patient whom she had not intended to handle. To determine what was the cause of the violation
we perform monitoring again with the same human operator behavior, but first with the protection
envelope of the Mobile Mediator and then the protection envelope of the nurse. The protection en-
velope of the mobile mediator simply states that it will take the steps expected from it: after the
nurse presses the scanID button it will capture the RFID tag value of the intended entity, if the nurse
validates a collected data, then it will send the data to the EHR to be stored etc. The monitor does not
report any violation of the mobile mediator’s protection envelope. On the other hand, the protection
envelope of the nurse is the guarantee that she needs to provide to ensure correct information associ-
ation in the EHR. The nurse needs to guarantee that if she verifies a collected reading from a patient
p using a medical device d, then she had actually identified that particular patient p in a previous
step. This protection envelope is violated by a nurse who identifies one patient and captures reading
from another patient and also informs the mobile mediator that the (incorrectly collected) reading
is valid for insertion into the EHR. The nurse was required to use the device on the patient she had
identified. Any deviation from it violates the protection guarantee. And that is the case in the nurse
behavior presented in Listing A.1. The nurse identifies the first patient but captures reading from the
second patient. The monitor determines accurately that there is a violation of the protection enve-
lope of the nurse. Thus we know that the fault lies with the human operator. However, we observe
that the model of the scenario in this case allows the monitor to detect the occurrence of erroneous
data collection by the nurse. In real life, the computer system can only detect this if the RFID tag of
the patient is scanned again before capturing reading from a device.

4.3.3 Issues with this Approach

Runtime monitoring allows detecting run-time violation of safety and protection envelopes of the
entities. Performing off-line test-runs against human behaviors will help assess the strengths and
vulnerabilities of the actual system. However, the problem with this approach was that runtime
monitoring or runtime analysis in general is concerned with one particular execution of the system.
In our case it also means monitoring against one particular human operator behavior. In the frame-
work provided just above, a combination of erroneous behavior exhibited by human operators can be
monitored to determine which one of the operators were responsible for the violation. An issue with
this approach is that of test coverage. Given a recommended task specification, we can determine
whether it is (i) safe by monitoring against the safety property, (ii) protected by monitoring against
the corresponding protection envelope guarantees. But how do we assert that all human operator be-
haviors conforming to the protection envelope guarantee are safe? How do we obtain each of these

36

protected behaviors in the first place to analyze them via monitoring? We now present a framework
of formal methodologies that will assist us to model and analyze all possible protected behaviors.

4.4 Example Scenario: Self-scan Checkout System

Before presenting our methodology we present another example scenario that we will use throughout
the chapter.

Self-scan Checkout System

Everyday customers walk up to self-scan checkout systems at supermarkets to buy groceries. These
self-scan checkout systems are equipped with interactive touch-screen displays, bar code scanners,
bagging areas equipped with weighing scales and payment accepting devices. These equipments
are controlled by a computerized system in the back end. A customer begins by pressing the word
“Start”. Then the system officially allows the customer to start scanning the items. After scanning,
each item is placed in a bag in the bagging area where the weight of the item is matched with the
expected weight. Any significant weight mismatch results in an alarm. We will ignore grocery

Figure 4.3: Self-scan Checkout System

items that do not have any bar codes on them. After all items have been scanned, the customer then
presses the payment button, pays for the items and subsequently leaves the store with the items just
purchased. Just as much as the customers can successfully follow these steps to buy items from the
store, they can (un)willingly create system loss for the store owners. What if a customer scans one

37

item but places another more expensive item of the same weight in the bag? What if the customer
forgets to scan an item in the cart altogether? Having a formal, characterization of problematic and
non-problematic erroneous customer behaviors will help understand, analyze and possibly improve
the self-scan checkout system.

4.4.1 Behavior Categorization of Customer in Self-scan Checkout Scenario

Let us first define the notions of loss, effectiveness and safety in the context of the self-scan checkout
system as presented in Section 4.4. In this context (from the store owner’s point of view) a customer
being able to take an item out of the store without paying for it yields loss for the store. Being able
to perform any one of the actions of pressing the start button, scanning an item, putting an item
in a bag or paying for an item indicates progress for the customer. The recommended human task
specification is given in Figure 4.4. Let us now characterize the rest of the customer behaviors:

Figure 4.4: Recommended customer task specification for using self-scan checkout system

Safe: Any customer behavior that does not lead to loss for the store is a safe behavior. For example,
in the very beginning, before pressing the start button a customer can attempt to bag an item.
The self-scan checkout system is capable of detecting this and can generate an alarm. Hence
this is a safe but not recommended behavior.

Hazardous: The hazardous behaviors are where a customer leaves the store with items that have not
been purchased. If the customer leaves the store without paying for some items because they
were never scanned, then the self-scan system cannot detect this. This can result in loss on
part of the store and can only be avoided by the customer operating in the protected manner.

Effective: A behavior is effective if a customer is able to perform any of the actions of pressing
start, scanning an item, leaving the store with items in the cart. Some effective behaviors
may be hazardous: leaving the store with items that have not been paid for. Some effective
behaviors are safe but not recommended. Like putting an item in the bag before scanning it.

Protected behavior: The protected behaviors are where the customers do not leave the store with
items that have not been at least scanned. Once an item gets scanned the self-scan checkout

38

system can detect whether it was subsequently bagged and paid for. For example the customer
does not scan one item and put another more expensive item of equal weight in the bagging
area without scanning the second item at all.

The protection envelope is the collection of “reasonable” human operator behaviors. The protection
envelope provides a weakened set of restrictions on the human operators. If the human operators
guarantee to at least conform to the protection envelope then the system can be demonstrated to be
safe. We now present the framework for determining whether each and every protected behavior is
actually safe for a system.

4.5 The Framework

We present a methodology to specify, model and analyze the behavior guarantees and requirements
of computer systems and their environment components. The framework is comprised of four major
steps:

1. Identify major system components and human operators and get knowledge about these ele-
ments including their observable actions from the system designers.

2. Model the behavior expected from the operators, and the properties the system should main-
tain.

3. Verify whether the system can maintain the properties for all reasonable operator behavior i.e.
any human operator behavior that conforms to their expectations.

4. Study the robustness of the system either by allowing the human operators to deviate from
expected behavior or changing their expectations.

With the concept of different human behavior sequences given earlier, we now delineate some
generic, yet prominent issues that will need to be resolved in any scenario using our framework:

1. Verifying recommended task specification

• Safety issue: Is the recommended human behavior safe for the computer system? More
formally, do we have Computer System + Recommended Human Behavior |= Safety?
We should be able to perform sanity checks or even proofs that the recommended human
actions are safe.

• Effectiveness issue: Does the recommended task specification ever achieve what it
claims to achieve? More formally, do we have Computer System + Recommended Hu-
man Behavior |= Liveness/ Effectiveness ?

2. What happens if the human somehow deviates from the recommended human operator behav-
ior?

39

• Protection envelope: How do we express safe variations from the recommended human
behavior concisely?

• Verifying protection envelope: Is the protection envelope really protected? That is, are
the protected behaviors safe? More formally, do we have Computer System + Protected
Human behaviors |= Safety?

• Recommended task specification protected? Are the recommended human behaviors
protected behaviors? More formally, do we have Computer System + Recommended
Human Behavior |= Protection Envelope property ?

• Experimenting with the protection envelope: Is there a way to methodically, eas-
ily, and efficiently experiment with and possibly enlarge the action sequence boundary
specified by the protection envelope? This will allow us to expand towards the extreme
boundaries of protection against anomalous human behavior.

4.5.1 Self-scan Checkout System Scenario Revisited

Let us now fit the self-scan checkout system described in Section 4.4 in our framework.

• Entity identification: The prominent agents are the customer and the self-scan checkout sys-
tem. The observable actions of the customer are: scan an item, bag an item, pay for items
etc. The behavior of the self-scan checkout system consists of actions like allow scanning
an item, allow bagging an item etc. In order to ensure smooth execution of the system, the
self-scan checkout system needs to store some additional information like the bar code of the
items getting scanned, actual weight of items, expected weight of items, prices of items etc.

• Guarantee identification and modeling: The expected behavior (protection envelope) for the
customer includes: the customer will not take out of the store items that have not been scanned.
The expected behavior of the self-scan checkout system is that it will allow the customer to
press the start button in the beginning; allow scanning of an item, bagging of an item; accept
payment in the end etc. These properties will be modeled using temporal logic. The combined
system of the self checkout system and the customer will be modeled using Concurrent Game
Structures (Section 4.6).

We need to determine whether the self-scan checkout system will be able to maintain safety when
facing any protected human behavior maintaining human guarantees. We discuss the third and fourth
step in Section 4.6.

4.6 Methodology

The process algebraic modeling of human operators and system components as presented in Chap-
ter 2 had both its advantages and disadvantages. CSP is capable of capturing the interactions and the

40

communications of different agents operating concurrently. However, the procedural nature of the
formalism made it difficult to succinctly express any requirement properties. The semantics of trace
refinement was also not convenient. Let us take a brief recourse to the AIDC scenario to illustrate
the awkwardness of specifying reasonable behavior guarantee using CSP. The nurse needs to guar-
antee that she will only collect data from the patient she had identified. However, there can be many
different nurse action sequences conforming to this guarantee. A simple example is when a nurse is
unsure that she had identified the tag of a patient correctly and scans the same patient’s RFID tag
again. The CSP process representing the protection envelope of the nurse will have to include all
such safe behaviors. A possible such protection envelope can be:

NursePE(n,m) = HCInm!GetID→

((u
p
ScanPat(n,m, p)) u (u

d
ScanDev(n,m, d)))

ScanPat(n,m, p) = HCInm!(RFIDChann,m
p)→

(ScanPat(n,m, p) u (u
d

(HCInm!(RFIDChann,m
d)→

SeeID(n,m, p, d))))
ScanDev(n,m, d) = HCInm!(RFIDChann,m

d)→
(ScanDev(n,m, d) u (u

p
(HCInm!(RFIDChann,m

p)→

SeeID(n,m, p, d))))

SeeID(n,m, p, d) = HCInm?x→

if x = (Name(p),Name(d))
then ((HCInm!Yes→ TakeCkReading(n,m, p, d))
else if x = Error then (HCInm!OK→ Skip)
else (HCInm!No→ Skip))

In the protection envelope for the nurse, multiple scans of the identity tag of a patient or a device
has the same effect as scanning it once. After a nurse has scanned a patient, a nondeterministic
internal choice is made as to whether the patient will be scanned again or whether the device will
be scanned as the next action. Another possible situation arises when the nurse scans a medical
device’s tag first and then scans a patient’s tag instead of scanning the tag of the patient first and
then the device’s tag. This CSP process representing the protection envelope is not intuitive to
create from the intuitive understanding of a protection envelope property. Let us consider the human
behavior classification provided in Section 4.2. The recommended behaviors are best described in
a procedural manner. However, the safe, effective, protected and hazardous behaviors are better
modeled declaratively. Thus we need a formalism that provides a combination of both declarative
and procedural specification of human behaviors.

We need to be able to express the human operator reasonable behavior guarantee and then assert
that the combined model of reasonable human operators and computer systems satisfies a safety

41

property. Thus we essentially want to perform model checking. Model checking is the most well
established approach to software verification. Given a system model M and a property ϕ, the model
checking question M |= ϕ answers the question of whether the model satisfies the property ϕ. Model
checking is an automata based approach. We present the formalism chosen by us below:

4.6.1 Framework in Details

Let us study the framework presented in Section 4.5. The first step suggests that the formal method-
ology should be able to capture different identities and their action vocabularies. In the second step,
we see that the formal methodology needs to be capable of expressing the expected guarantees of
behavior for each entity identified in the first step. The third step poses these problems: how do
we verify that the system can maintain its guarantees in the face of all possible reasonable behavior
from its human operators? What is the model for the humans and the system? How do we model
and analyze all possible human behaviors? The fourth step requires the methodology chosen in the
third step to be robust enough so that we can easily modify the definition of “reasonableness” or
the protection envelope property and perform the same analysis without changing anything else. In
summary we need a formalism that will (i) allow distinguishing among different entities (first step of
framework), (ii) allow specifying the vocabulary of those entities (first step of framework), (iii) al-
low specifying properties on top of the formalism for each entity (first step of framework), (iv) allow
modeling entity behavior (third step of framework), (v) allow modeling the interactions among the
entities (third step of framework) (vi) allow reasoning about all possible reasonable behavior (third
step of framework), (vii) allow efficient and simple way of re-performing the entire analysis with
variations of the protection envelope. A formalism that meets these criterion is Concurrent Game
Structures devised by Alur et al in [9]. CGS provides a way of building an automaton of human
operators and computer systems where at each state, individual action choices of the entities also
provide a way of specifying sub-automaton for each entity.

4.6.2 Concurrent Game Structures

A CGS is an 8-tuple, 〈P,Q, q0,Σ,Π, π, e, δ〉 where the components are as follows:

• P is a finite set of players.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• We have abstract actions Σ instead of the numbers that are used as place holders for actions in
[9]. Σ is a finite nonempty set of actions for the players where the silent action τ ∈ Σ.

• Π is a finite set of propositional atoms that help identify the states.

• π : Q→ 2Π is a function that gives the set of propositional atoms that hold of a given state.

42

• The function e :
∏
p∈P

∏
q∈Q

2Σ gives which actions are enabled for each player in each state. We

denote the action choices available to a player p in a state q by ep(q). We enforce that the
silent action τ is enabled for each player in each state: ∀q ∈ Q.∀p ∈ P. τ ∈ ep(q). We will
use Σp to denote the vocabulary of player p where Σp =

⋃
q∈Q

ep(q). We will denote the action

choice for a player p in an action choice vector v̄ as v̄|p.

• The function δ is an element of the dependent product
∏
q∈Q

. (
∏
p∈P

ep(q)) → Q that defines state

transitions. That is, given a state q, and a vector of actions v̄ ∈ ΣP where v̄|p ∈ ep(q) for each
p, the value δ(q, v̄) is the next state q′. We require that ∀q ∈ Q. δ(q, τ × . . . × τ) = q. The
reason behind enabling the τ action for each player in each state and τ̄ self-loops in each state
is based on the perception that human operators cannot be assumed to always be synchronized
with the computer systems. They may idle away for some time before performing an action.

Given a finite or infinite sequence of states λ, we will denote the i-th state in the sequence as λi. We
will use λi2

i1
to denote the sequence of states starting from position i1 to position i2. A q-computation

r of a CGS C is an infinite sequence of states where r0 = q and for each i ≥ 0, there is a vector
ai ∈
∏
p∈P

ep(ri) of actions such that ri+1 = δ(ri, ai).

CGS vs CSP

CSP has many advantages for modeling human behaviors. The usual semantics of CSP is in terms
of process refinement. Although there has been efforts for checking traces of CSP process against
temporal properties, existing CSP tools provide process refinement support. This necessitates pro-
cedural modeling of system requirements like safety properties. The procedural description of all
behaviors conforming to safety requirement can be a cumbersome process. Another aspect that
was related was that CSP does not have specific modularity in the sense that we cannot associate
player identity with player actions like in a CGS. CSP also does not have explicit notions of states.
CSP processes provide a high level description of complex action sequences thus abstracting away
underlying states the processes go through.

Many human behaviors may conform to the protection envelope property. One may not be able
to enumerate the protected behaviors. Thus the methodology that we will present in this section
considers restricting an unrestricted human behavior model to obtain a representative protection
envelope model. Once a CSP process is defined it is not easy to automatically modify it. A property
conformance test is executed on the traces of execution of a CSP process. In the absence of states, it
is not easy to correlate the execution traces with codes in the CSP process to modify them.

On the other hand, CGS is a collection of player modules spread over states. The action choices
for the players in each states allows a procedural encoding of a behavior. Each player can make
an internal decision about which action to choose from the actions enabled for him in each state.
The action choices made by the other players are decided upon externally of this player. And the

43

temporal properties that can be imposed on the players in a CGS provides a declarative technique
of modeling system requirements. One can modify a CGS by modifying the components of each
state. And since CGS transition system can be thought of as the transition system of automata, we
can use existing model checking tools too. Thus we find that CSP is a high level and highly suitable
formalism for modeling and analyzing human behavior. But for protected behavior analysis, the
convenience of manipulating low level granular player modules in CGS, renders the CGS to be a
more suitable formalism. Let us now fit CGS in our framework:

4.6.3 Identification and Information Collection Step

CGS will allow us to easily model all the identifiable entities, such as the computer system and
the human operators as players operating concurrently. The actions available to a player across
the states will capture their vocabulary. Referring to the self-scan checkout system scenario, we
can have Self-scan system and Customer as the players. Since we allow abstract actions each ac-
tion of the self-scan system and the customer can be translated into abstract actions. For exam-
ple the actions of the customer like scanning an item, bagging an item, paying for items etc can
cause the following actions to be in the vocabulary of the customer: pressStart, scanItem,
bagItem, payforItems. Similarly, the vocabulary relevant to the self-scan system may contain:
allowPressStart, allowScan, allowBag, allowPayment etc.

4.6.4 Protection Envelope and Safety Property Specification Step

The protection envelope is a collection of protected or reasonable behaviors. It is much easier for
the system designer to provide the protection envelope using a property describing the protection
criteria. Every behavior conforming to the criteria will be a protected behavior. Now we show what
logic the protection envelope property can be expressed in.

The protection envelope properties are, in fact, a form of safety property. The protection en-
velope property for each human operator needs to state that in every state along a protected action
sequence, the human operator will guarantee nonviolation of a criterion. The criterion my very
well be of the form that the human operator will not perform certain task until some other enabling
task has been performed. So protection envelope properties are temporal in nature, and can be ex-
pressed using Linear Temporal Logic [93]. In fact protection envelope properties are a form of safety
properties [108]. Safety properties state that something bad does not happen and if there exists a
counter-example to a safety property it must be a finite one. In this dissertation we will consider
special form of safety properties called “invariants” [108] which are of the form �ϕ, where ϕ = p

(atomic proposition) | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2 | ♦ϕ | �ϕ. Invariants need to hold
in the initial state and along each trace emanating from the initial trace. The protection envelope
properties will also be of the form �ϕ. The protection envelope for the customer checking out items

44

in a supermarket using LTL:

�((¬baggedItem(i)U scannedItem(i)) ∧ (¬itemOutofStore(i)U itemPaidFor(i))))

Here baggedItem(i), scannedItem(i), itemOutofStore(i) and itemPaidFor(i) are atomic propo-
sitions.

4.6.5 Assessing Robustness of the Computer System with Respect to the
Protected Behavior

In a CGS, in each state, each player chooses an action to execute and their combined actions allow
the model to transition from one state to another. Thus the execution trace or computations of CGSs
can encode the interactions of different entities. We first show how we can model the behavior of
entities using CGSs.

Human Behavior Model

The e function provides the enabled action choices for each player in each state in a CGS. Here
we view a human behavior as the set of actions that the human may perform in a state. Hence,
we observe that the human operator behaviors can be viewed as refinements of the e function. The
scenario in Figure 4.1 is completed when the human operator is placed in conjunction with the
computer system. The combined interaction between each human behavior and the computer system
can be modeled using CGSs, where the behavior of the human operator will dictate the set of possible
actions for the operator in each state: the e function. Now that we have a method of modeling human
behavior, we need to determine how best we can analyze all possible protected human behaviors.

Maximal Model

We first need to be able to formulate all possible protected behaviors. Then we need to assess their
safety preservation capability. However, formulating and analyzing the protected behaviors one
by one may become cumbersome. Given only the protection envelope property, we will have to
generate each protected behavior and then analyze it. Hence we ask: can we get around the task
of verifying a model for each and every possible environment and find a representative model such
that satisfaction of that model in conjunction with that representative protected behavior guarantees
satisfaction of that property for any behavior? Grumberg et al suggest searching for an ordering
among environments such that given an ordering relation v, a model M, a property φ, if we can find
a maximal model of the environment E such that if E ‖ M |= φ then for each environment E′ v E,
we have that E′ ‖ M |= φ [50]. The motivation behind this approach is that now given a preordering
relation, a maximal model for that relation, determining satisfaction of an environment is determined
by simply determining preorder preservation. Our approach very closely follows the idea presented

45

by Grumberg et al. We first define an ordering relation among operator behaviors. Then we show
how we can find a maximal protected behavior such that all other protected behaviors are related
to it by the ordering relation. Then we show that this maximal behavior can actually represent all
protected behaviors: if the maximal behavior allows the system to operate safely then all protected
behaviors will also allow the system to operate safely.

Ordering Relation

We observe that in a CGS structure, the behavior of each player is completely defined by the action
choices available to it in different states. When we want to analyze the human behaviors, we are
interested in the actions they take while operating a system. Hence, any ordering relation that can
model human behavior will involve some restrictions on the actions available to the human operator
in different scenarios. A maximal model of a human will have the maximal set of actions available
to it. Any human behavior which is a sub-behavior of that human behavior will have fewer action
options. And if the maximal human behavior with all its potential for causing trouble in the maximal
number of ways available to it via the available actions, can still satisfy the desired property, then
any sub-maximal behavior will certainly satisfy the property as it will have fewer options to cause
trouble to the system. The characterization of human operator behavior using e function suggest
that the more constrained and restricted the behavior, the fewer action options an operator has in
each state. This leads to a notion of one behavior being contained in another behavior. Behavior
containment can be modeled with one CGS having a more restricted set of action options for a set
of players than another CGS. We define a CGS being a subaction CGS of another CGS as follows:

Definition Let C be a CGS where C = 〈P,Q, q0,Σ,Π, π, e, δ〉 and P ⊆ P be a set of players. C′ =

〈P,Q, q0,Σ,Π, π, e′, δ〉 is a P-subaction CGS of C denoted by C′ vP C if we have that ∀q ∈ Q.∀p ∈

P. if p ∈ P then e′p(q) ⊆ ep(q) else e′p(q) = ep(q).

Notice that vP is a transitive relation. The notion of behavior ordering through behavior contain-
ment raises the question of whether there exists a maximal protected behavior satisfying a specific
restriction such that all of its sub-behaviors will also satisfy the restriction. In other words, given a
protection envelope property, can we have a maximal CGS such that if it satisfies a safety specifica-
tion then each sub-action CGS of it will also satisfy the specification?

We are now in a quest for a maximal representative behavior respecting a property. The con-
cept of subaction CGS suggests that if we consider the CGS where the human operator can behave
without any constraint and restrict it using the property under consideration, then we will be able
to arrive at a behavior which has the least restricted behavior while preserving the property. We
will refer to the CGS with all possible human operator behavior CGS as Call with state space Q and
player set P.

46

4.6.6 Call

We focus on the resilience of a computer system while facing atypical human behavior. Call is a CGS
which contains the interactions among system components and human operators where at each state,
the human operators can execute any action that is physically possible by them. In every state in a
Call, each physically possible human action is enabled in each state. Hence the enabled actions and
the transitions must contain the responses of the computer system for each possible human action.
Usually at each state of a system there is a small subset of human actions that is expected by the
computer system. The rest of the human actions are either physically impossible or will lead to an
error state. We will present our tool in Section 4.8 which is capable of generating the Call from
the small subset of interactions among computer systems and human operators. We require that the
description includes the safe enabled actions and corresponding reactions for the human operators,
the actions that are physically impossible in each state. Any human action that is not explicitly
mentioned in the specification is assumed to lead to error. Let us consider the self-scan checkout
systems again. In Figure 4.5 we present a typical model provided for the initial state. In the figure,
the label of each state appears next to it. Let a1 be a computer system action and a2 be a human
action. The pair of actions (a1, a2) is mentioned next to the transitions they cause. In the initial state,
the customers cannot pay for an item as the self-scan system displays usually do not provide any pay
button at this point. This is indicated by a transition to a dummy state: DisabledAction. This dummy
state is only used to help denote the impossibility of the action, it is not part of the state space. The
customer may idle away the time or they may press the start button. However, the customers may
also attempt to scan an item, bag an item or leave the store without scanning and paying for any item.
All of these actions will result in an erroneous situation. For the sake of simplicity we use only one
error state for all types of erroneous conditions. In order to reduce the burden of providing input for
the entire CGS all error causing human actions can be omitted if our tool is used. The transitions
emanating from the initial state in Call are presented in Figure 4.6. We combine the action vectors
leading to the error state in Figure 4.6 for the sake of simplicity.

A Call is usually not the maximal protected behavior we need to find. Since our ordering relation
is based on player action set ordering, we will need to trim player actions in Call to obtain the
maximal protected behavior. Intuitively, the actions of the player whose behavior is getting analyzed
should be modified. Since protection envelope properties are safety properties, we should trim those
actions of the player which makes him do something bad. The easiest way of determining “badness”
is if the action choice helps the CGS land in a state where a protection property is violated.

Definition Given a CGS C, a behavior restriction ϕ for a player p, we define the set of bad statesB to
be the states that are unsafe or potentially unsafe: B(C, p, ϕ) = {q | η(C, p, q, ϕ)}. Here η(C, p, q, ϕ) =

(q 6|=C ϕ) ∨ (∃v̄. v̄|p = τ ∧ η(C, p, δC(q, v̄), ϕ)).

The bad states are those states where the specification is either immediately violated or where the
operator has performed such an action that he needs to rely on the other players helping him out to

47

Figure 4.5: Initial state in incomplete Call

Figure 4.6: Initial state in a complete Call

48

preserve the specification. Let us consider Figure 4.7. Here the customer has pressed the start button.
Let us assume he has a non-empty cart. Then according to the recommended task specification he
should scan an item from the cart. If he puts an item in the bags instead then it violates the protection
property as specified in Section 4.6.4. This item has been placed in the bags before having been
scanned. If the customer leaves the store with the items in his cart then items are leaving the store
without being paid for. Thus both q1 and q3 are bad states.

4.6.7 Thinning

We will refine a given Call to obtain a model representing all protected behaviors. Asarin et al thin
actions available to a player to find a winning strategy in a game automata [13]. In a similar fashion,
we “thin” the actions available to player p in an unrestricted behavior Call to obtain a maximal
protected behavior. The thinning process is defined below:

Figure 4.7: Thinning Call

Definition Given a CGS Call = 〈P, A,Q, q0,Σ,Π, π, e, δ〉, a player p ∈ P, a protection envelope
formula ϕ = �ϕp, the thinning of Call according to �ϕp denoted by Θ

ϕ
Call

provides a CGS C =

〈P, A,Q, q0 ,Σ,Π, π, e′, δ′〉, where e′ is defined as follows: ∀q ∈ Q.∀v̄ ∈
∏

p′∈P
ep′ (q). if δ(q, v̄) =

q′ then (if q′ ∈ B(C, p, ϕ) then e′p(q) = ep(q) \ {v̄p}) else e′p(q) = ep(q) and ∀q ∈ Q.∀p′ ∈ P \

{p}. e′p′ (q) = ep′ (q). Thus the transitions from state q where the action vector v̄′ has v̄′|p = v̄|p gets
removed in δ′.

4.6.8 Example Scenario Revisited

Let us consider the supermarket checkout scenario. We focus on the state q after an item has been
scanned in Figure 4.7. Here, the customer will have many action options in Call. He can put the
scanned item in a bag, scan another item, attempt to pay for the scanned item or even worse, leave

49

the store along with the item before paying for it. The protection envelope states that the customer
will not take an item out of the store before paying for it. So a protected behavior should not have
the leave store action enabled for the customer in state q. The mechanical infrastructure of the
supermarket is incapable of preventing this action. Only the customer himself has the capability of
guaranteeing that such loss for the store will not occur. Since the protection envelope of the customer
is under consideration at this point and only the customer himself can guarantee safe operation, only
his set of enabled actions should be reduced. This also illustrates our reasoning behind choosing
CGSs over Finite State Automata. In CGSs we can very easily examine the set of actions available
to players in each state and manipulate the set as necessary.

4.6.9 Thinned model is the Maximal Model

We can now relate the thinning of a CGS according to a specification ϕ with obtaining a maximal
model from that CGS according to ϕ. A thinned CGS is useful to us only if it can act as a repre-
sentative for all possible protected human behavior. Hence we need to thin only those states that are
reachable from the initial state. We will achieve this by thinning the operator actions in only those
states that appear in the q0-computations in a CGS. Let us define a reachability predicate ΥC(q1, q2)
as (q1 = q2) ∨ (∃q′ ∈ Q.∃v̄ ∈

∏
p∈P

ep(q2). δ(q2, v̄) = q′ ∧ ΥC(q1, q′)). Note that ΥC is a transitive

function.

Definition The fragment of a CGS C = 〈P,Q, q0,Σ,Π, π, e, δ〉 that is reachable from the initial state
q ∈ Q is another CGS denoted by R(C, q) = 〈P,Q, q0,Σ,Π, π, e′, δ〉 where ∀q′ ∈ Q.∀p ∈ P. if
ΥC(q′, q) then e′p(q′) = ep(q′) otherwise e′p(q′) = {τ}.

Now that we have defined the initial state reachable fragment of a CGS, let us define property
invariance. A property ψ is an invariant for a CGS C with state space Q denoted by Inv(C, ψ), if
we have ∀q ∈ Q.ΥC(q, qinit) → q |=C ψ. The following lemma states that the protection envelope
property holds at every state reachable from the initial state in the thinned CGS. Thus every q0-
computation satisfies the protection property in a thinned CGS.

Lemma 4.6.1 Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS. Let p ∈ P be a player, ϕ be the protec-

tion envelope for p. Let Θ
ϕ
C be the CGS obtained by thinning C according to ϕ. Then we have

Inv(R(Θϕ
C , q0), ψ).

This lemma can be proved from the definition of thinning, reachability and property invariance and
the fact that the protection envelope properties are always of the form �φwhere φ is an LTL formula.
We now present a lemma which correlates the initial state reachable and protection property invariant
fragment of any protected behavior with the thinned behavior.

Lemma 4.6.2 Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS. Let p ∈ P be a player, ϕ be the protection

envelope for p. Let Θ
ϕ
C be the CGS obtained by thinning C according to ϕ. Then each CGS C′

50

such that C′ is a p-subaction CGS of C and ϕ holds at every state reachable from q0 in C′, the

portion of C′ reachable from the initial state is a p-subaction CGS of Θ
ϕ
C . Mathematically speaking:

∀C = 〈P,Q, q0,Σ,Π, π, e, δ〉. ∀p ∈ P. ∀ϕ. ∀q ∈ Q. ∃Θϕ
C = 〈P,Q, q0,Σ,Π, π, eΘ, δ〉. ∀C′. (R(C′,

q0) v{p} C ∧ Inv(R(C′, q0), ϕ)⇒ R(C′, q0) v{p} Θ
ϕ
C).

Proof We will prove Lemma 4.6.2 by contradiction. Let us assume that there exists a CGS C′ =

〈P,Q, q0,Σ, Π, π, e′, δ〉 such that for a player p ∈ P, a property ϕ, R(C′, q0) is p-subaction CGS of C

and ϕ is true in every state reachable from q0 in C′ but the initial state reachable portion of C′ is not
a p-subaction CGS of Θ

ϕ
C .

Since R(C′, q0) v{p} C and R(C′, q0) @{p} Θ
ϕ
C , we have ∃q ∈ Q. ∃a ∈ Σp.ΥC′ (q, q0) ∧ a ∈

e′p(q) ∧ a < eΘ
p (q). Since R(C′, q0) v{p} C, we must have a ∈ ep(q). Now as Θ

ϕ
C v{p} C, we must

have that a < eΘ
p (q) due to ∃v̄ ∈

∏
p′∈P

ep′ (q).δ(q, v̄) = q′ ∧ q′ ∈ B(Call, p, ϕ) ∧ a = v̄|p. On one hand,

if q′ ∈ B(Call, p, ϕ) because q′ 6|=C ϕ then we have ΥR(C′,q0)(q, q0) ∧ ΥR(C′,q0)(q′, q). This provides a
state q′ such that ΥR(C′,q0)(q′, q0) but q′ 6|=C ϕ which contradicts our assumption of Inv(C′, ϕ). On
the other hand, if q′ ∈ B(Call, p, ϕ) because ∃v̄.v̄|p = a ∧ δ(q, v̄) = q′ ∧ ∃q1, q2, . . . , qk ∈ Q.q1 =

q′.∃v̄1, v̄2, . . . , v̄k.∀1 ≤ i ≤ k.v̄i|p = τ ∧ δ(q1, v̄1) = q2, . . . , δ(qk−1, ¯vk−1) = qk ∧ qk 6|=C ϕ. Using
ΥR(C′,q0)(q, q0), ΥR(C′,q0)(q′, q) and the v̄is as witnesses, we obtain ΥR(C′,q0)(qk, q0) ∧ qk 6|=C ϕ. This
again contradicts our assumption that Inv(C′, ϕ).

Now we show that any sub-behavior of the maximal behavior obtained by thinning will satisfy a
safety property if the maximal behavior satisfies it. This states that satisfaction of a safety property
is closed under behavior ordering. This theorem enables us to state that we only need to determine
whether the maximal model satisfies a safety property. All other protected behaviors will be sub-
behaviors of the maximal model obtained by thinning and will satisfy the same safety property.

Theorem 4.6.3 Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS, p ∈ P be a player, ϕ be the protection

envelope property for p. Let Θ
ϕ
C be the thinned maximal protected CGS. Then each CGS C′ that is

a p-subaction CGS of Θ
ϕ
C will satisfy a safety property ψ = �ψ′ if Θ

ϕ
C satisfies it. Mathematically:

∀C′ = 〈P,Q, q0,Σ,Π, π, e, δ〉. (C′ v{p} Θ
ϕ
C)→ (∀ψ = �ψ′. q0 |=Θ

ϕ
C
ψ→ q0 |=C′ ψ).

Proof (Sketch) Let us consider a safety property ψ′ = �ψ. Let the thinned CGS Θ
ϕ
C obtained by

thinning C according to ϕ satisfies ψ′ i.e. q0 |=Θ
ϕ
C
ψ′. This implies that each q0-computation will

satisfy �ψ in Θ
ϕ
C . Let us consider a CGS C′ such that C′ v{p} Θ

ϕ
C . Since p has possibly fewer actions

enabled at each state in C′ possibly fewer transitions are possible in each state in C′. Hence each
q0-computation in C′ is also a q0-computation in Θ

ϕ
C . Hence they will satisfy �ψ as well.

We now show how to resolve the issues raised in Section 4.5. Let us consider a human operator p

whose recommended task specification has been translated into a CGS Crec. Let us assume a Call

with initial state q0 for the combination of the human operator and a computer system is given. Let
the protection envelope property for p is PE and the safety property for the system is Safety.

51

• Are protected behaviors safe? To determine whether the computer system can operate safely
while facing any protected behavior expressed by p while executing a task we need to deter-
mine whether q0 |=ΘPECall

Safety where Safety is of the form �ψ (ψ as defined in Subsec-
tion 4.6.4).

• Is recommended behavior protected and safe? Then the recommended task specification is
protected and safe if we have Crec |= PE and Crec |= Safety. However given our framework
all we need to determine is whether Crec v{p} ΘPECall

. If Crec is a p-subaction CGS of ΘPECall
then

by Theorem 4.6.3 we have that Crec |= PE as PE is a safety property and if the thinned maximal
protected CGS ΘPECall

is safe then so is the recommended behavior CGS.

4.6.10 Experimentation with Protection Envelope

We have shown that given a Call, a player and the protection envelope of the player we can verify
that for all protected behavior of the player will allow the system to maintain its safety guarantees.
The protection envelope generation methodology we have presented this far has the advantage that
once a Call is built, different protection envelopes can be formulated and analyzed. Every time a new
protection property is considered, the “thinned” maximal protected behavior CGS can be generated
and verified against safety properties.

4.7 Find Protection Envelope?

A protection envelope for a human operator is a guarantee of “reliable” behavior. A system can
rely on the protection envelope of a human operator to ensure safe operation. Given a protection
envelope property and an unrestricted behavior model we can generate a CGS model corresponding
to the protected human behaviors. However, what if no protection envelope has been specified? If
only the safety requirement of a system is present, then we can thin the actions of a human operator
every time the safety property is violated instead of the protection envelope of that operator. Instead
of conforming to the protection envelope the human operator here needs to conform to the safety
property. Any violation of the safety property is then attributed to this human operator. One can even
observe that the reliable behavior guarantee of the human operator is now specified coarsely. The
safety property imposes lesser restrictions on the human operator actions except for the case where
the protection envelope coincides with the entire safe behavior region as depicted in Figure 4.1.

4.8 Tutela

We are building a prototype that implements the proposed framework that we call “Tutela”. Its
functionality in light of the framework presented in Section 4.5 is as follows:

52

4.8.1 Identifying and Modeling Important Players

Tutela provides a GUI to identify the major players in a scenario and build a Call that models their in-
teractions. It allows creation of a repository of the domain knowledge about the various components
of a scenario. These include identifying the players of interest, their vocabulary, the guarantees ex-
pected from their behaviors, the variables they need to modify to capture the effect of their behavior
on the environment. Tutela allows these collections to be dynamically modified at any stage. Tutela

Figure 4.8: Flow chart for Tutela

assists in building Call= 〈P,Q, q0,Σ,Π, π, e, δ〉. Tutela offers a GUI to allow creation and modifica-
tion of Σ and Π. It also allows creation of the set of variables that are handled by players in Call. The
state space of Call is built in an incremental fashion. Each state needs at least the propositions that
will identify it and the enabled vocabulary for each player. Tutela ensures that τ is in the vocabulary
of each player in each state. At each state, disallowing a human action indicates domain knowledge
on the part of the designer about physical impossibility of that action. A major component of each
state is the transitions emanating from a state. We allow new states to be added as needed while

53

creating the set of outgoing transitions from a state. This allows incremental build-up of a CGS. For
each state, all possible allowed action combinations need to be handled. Also the variable assign-
ments can be specified at each state. After all required transitions for all states have been specified,
the CGS is encoded into an intermediate language which can be translated into the input language
for a model checker. The BNF grammar for this CGS specification syntax is:

CGS := begincgs cgsexpr endcgs

cgsexpr := predicatesexpr plyersexpr allplayeractionexpr statelistexpr

predicatexpr := predicates stringlistexpr

playerexpr := players stringlistexpr

allplayeractionlistexpr := beginallplayeractionlist playeractionlistexpr endallplayeraction-

list

playeractionlistexpr := beginplayeractionlist string stringnonemptylistexpr endplayeraction-

list

statelistexpr := beginstatelist state expr list endstatelist

state expr := beginstate string playeractionlistexpr validpropositionexpr transitionlistexpr
endstate

validpropositionexpr := beginvalidpropositions propositionlistexpr endvalidpropositions

transitionlistexpr := begintransitions transitionlistexpr endtransitions

propositionlistexpr := ⊥ | string ; propositionlistexpr

transitionlistexpr := string , string , string ; transitionlistexpr

stringlistexpr := ⊥ | string ; stringlistexpr

stringnonemptylistexpr := string ; stringlistexpr

Alternate Method of Creating Call

The above interactive method of creating Call can become cumbersome. As mentioned in Sec-
tion 4.6.6, we can automatically generate Call from a restricted version of Call. Our tool accepts
sparse Calls written using the Promela language. Promela is the input language for the model checker
SPIN [59]. There are some necessary information that must be present in the incomplete Call: (i) the
set of state propositions, (ii) vocabulary of the system and the human operator, (iii) the state space
with enabled propositions, (iv) physically impossible human actions, (v) enabled system actions and
human actions should be mentioned. Any system action that is not explicitly enabled will be consid-
ered to be disabled in the state. Once the enabled action sets for the human and the computer system
have been established, the transition system of Call is populated with all specified transitions involv-
ing them. Any transition that is not explicitly mentioned in is assumed to lead to an error state. We

54

studied with a simplified self-checkout system scenario where the customer and the checkout system
had six actions each. There were six states. Thus there were 6×6×6 = 216 possible transitions in to-
tal. However, in most of the states most of the checkout system actions were physically impossible.
Like in the initial state, the checkout system does not accept payments and can not process scanning
of an item. Out of the 216 possible transitions 166 were disabled in this scenario. In the initial state,
one customer action and four checkout system actions were physically impossible. Thus out of the
36 possible transitions, only 10 were physically possible. Out of the ten possible transitions six led
to the error state. Like, attempting to bag an item before pressing the start button. Thus with sparse
Call specification method, one only needs to specify only the remaining four meaningful transitions
from the initial state instead of all ten possible transitions. An example sparse Call and the complete
Call is provided in the Appendix in Listing D.1 and Listing D.2 respectively. The Promela encoding
of Call is translated into our intermediary language for use in the next steps.

4.8.2 Modeling Protected Behavior

Currently one needs to formulate the protection envelope property to Tutela by themselves. In
future we intend to augment Tutela with a tool like Propel [109] to have a guided property creation
interface. Once Call has been created, we can thin Call with the protection envelope formula to arrive
at a model that captures only the protected human behaviors and the computer system’s response
to them. We can view Call as a finite state automaton where the state space remains the same and
the transition function gets modeled by labeled transitions in the automaton. We can perform LTL
model checking on this automata to check for protection envelope property satisfaction. Tutela uses
the LTL model checker SPIN to help in thinning the Call based on the protection envelopes of the
players. Call is thinned by Tutela by implementing an approximation of the definition in Section 4.6.7
by taking the following steps:

• Translate the Call into an automaton and encode the automaton in Promela. The translation
occurs as follows: The states are modeled as labeled regions of code. The players are modeled
as modules. All state propositions, boolean and integer variables are translated into Promela
variables of appropriate type. There is a central “transition controller” module that controls
transitions of the automaton. Each player receives the current state from the controller module,
makes a non-deterministic choice of action and updates some variables if needed. Depending
upon the current state, variable values and action choices made by each player, the controller
causes the automaton to transition from one state to another. Hence each state is a combination
of labeled regions from the modules of all the players and the controller. The state propositions
are always modified by the controller, whereas the player modules are allowed to modify any
variable.

• Obtain the Büchi automata for the protection envelope for the player currently under consid-
eration.

55

Figure 4.9: Screen shot from Tutela

56

• Generate scripts to execute SPIN to determine whether the CGS satisfies the protection enve-
lope. Execute those scripts.

• Analyze the output from SPIN to find whether there is a violation of the protection envelope
property. If there is a violation, automatically determine the last transition from the counter
example generated by SPIN. That transition indicates the action that need to be deleted from a
player’s available actions. For example, in the self-checkout model we studied, the customer
can put an item in the bag in the initial state before even pressing the start button as shown
in Figure 4.6. The proposition indicating that the start button has been pressed is false in the
error state and the proposition indicating that an item has been bagged is true in the error state.
Thus the error state is a bad or unsafe state. Hence Tutela removes the BagItem action from
the list of actions enabled for the customer in the initial state in the protection envelope CGS.

• The last two steps are repeated as many times as needed until no counter example trace starting
from the initial state can be found.

4.8.3 Recommended Task Specification Model

A CGS will be used to internally model the recommended method where the recommended steps
dictate the enabled human operator actions in each state. At this point we offer two methods of
providing the CGS corresponding to the recommended method. The first one uses the CGS creation
GUI to create the CGS corresponding to the recommended behavior, Crec. The other one transforms
a sequence of human actions into a CGS. This method requires that the Call be already created.

Figure 4.10: CGS for recommended way of executing task

Then each human action in the recommended task execution behavior allows Tutela to determine
the enabled action function and the transitions starting from the initial state. For example, given a
recommended task guidance : PressStart, ScanItem and the initial state of of Call as presented
in Figure 4.6, the the initial state of the CGS for the recommended behavior will be as presented

57

in Figure 4.10. An example simple recommended task specification and the CGS extracted from a
Call(Listing D.2) using it is presented in the Appendix in Listing D.3 and Listing D.4 respectively.

Performing Our Framework Steps

After creating protected behavior CGS CPE, one can verify that it satisfies the safety property via
model checking. Then, given a Crec and a CPE Tutela can help determine whether Crec vPCPE to see
if CPE is safe too. Once Call has been created, one can experiment with it by using different protec-
tion envelope properties to assess the degree of robustness of the computer system against atypical
human operator behavior. In future, we intend for Tutela to (i) automatically assist in assessing
the robustness of the computer system against common human errors suggested by Hollnagel [58],
like repetition, out of order execution, omission; (ii) automatically further assist in building Call.
For example: using user specified boolean propositional restrictions to automatically generate the
actions available to players in each state. Given a CGS C = 〈P,Q, q0,Σ,Π, π, e, δ〉 and a proposi-
tional formula ϕ over propositions in Π for an action a of player p, we translate it into an automaton
C′ = 〈P,Q, q0,Σ,Π, π, e′, δ′〉 as follows: for each state q ∈ Q, if q |= ϕ then a ∈ e′p(q) otherwise
a < e′p(q). δ′ is defined as: ∀q ∈ Q. ∀v̄ ∈ ep1 (q) × ep2 (q) × . . . ep|P| (q). δ′(q, v̄) = δ(q, v̄).

4.9 Summary

In this chapter we have provided a uniform modeling approach towards human behaviors and com-
puter systems. We have provided methodology for modeling different categories of human behav-
iors. The principal contribution of this chapter is a generic framework for modeling and verifying
protection envelope conforming human operator behaviors.

58

Chapter 5

Protection Envelope Robustness
Analysis

Once a protection envelope has been provided by the system designers, there arises the question
of whether the protection envelope is a sufficient one. In this chapter we provide a framework for
assessing the quality of protection envelopes.

5.1 Introduction

A protection envelope is a measure of the robustness of the automated system against human action
variations. The system is robust against a human behavior if that behavior does not lead to non-
safety. Ideally each and every aberrant human action variation should be a protected one. Since it is
usually infeasible to identify and protect against all possible atypical human behaviors, a trade-off

is needed. Usually human operators do not deviate too much from their recommended procedures.
Sudden change in working environment, ambiguously designed user interface, inattentiveness, error
detection failure of equipments can cause human operators to deviate from the recommended proce-
dure and perform erroneous actions. An erroneous human action is an action that causes the system
to land in a state different from the expected state. A protection envelope of a human operator is
a guarantee by that human of refraining from specific erroneous behaviors. A protection envelope
property may very well be satisfied by some human action sequences containing erroneous actions.
These erroneous actions are protected because they do not cause disastrous effects on the system.
Even so, these behaviors get classified as erroneous because they deviate from the recommended
task sequence in some way. However, they are still protected because the system can safeguard
itself against them. As a heuristic measure of the quality of the protection envelope, we take help
of the existing research on characterization of erroneous human actions. A prime focus of such
work is on the reasons humans perform erroneous actions. We will instead focus on the patterns of
erroneous human operator behaviors not the reasons behind the erroneous actions.

5.1.1 Existing Classifications of Erroneous Human Actions

There has been numerous work on classifications of human errors. Rasmussen [96] presented three
categories of human behavior: skill based, knowledge based and rule based. This classification

59

is the basis of error categorization in many modern works. Norman categorized human errors as
slips (unintentional) and mistakes (intentional) in [88]. Reason provides the “Swiss Cheese” model
for errors where both the human erroneous actions and the systems which the humans operate can
combine to cause more errors in [97]. Most of these research focuses on the reasons behind the
erroneous actions, not on the patterns of errors. We are in search of the common variations displayed
by humans executing the steps in a task. Swain et al proposes four human error categories: (i) errors
of omission, (ii) errors of commission, (iii) sequence error (out of order execution), (iv) time error:
performing actions too fast, too slow etc. in [114]. Apart from this work Hollnagel’s phenotypes of
erroneous actions [58] provide us with a thorough listing of usual patterns of atypical task executions
by humans. We present it in the next subsection.

5.1.2 Hollnagel’s Characterization of Erroneous Human Actions

Task analysis provides a hierarchical decomposition of a task into several subtasks. Hollnagel char-
acterizes the erroneous actions humans may perform while executing the subtasks or actions belong-
ing to a task. The characterization is comprised of two broad categories: phenotypes and genotypes.
The genotypes are based on the reasons leading to erroneous actions and is not considered by us.
The phenotypes of erroneous actions are based upon the way erroneous actions gets manifested.
Then based on the level of detection he provides three classes of erroneous actions:

• Zero-order detection: The erroneous actions that can be detected by comparing with an ex-
pected action or a prescribed action sequence.

– Zero-order erroneous action detections can be categorized based on the timing involved
in their execution:

∗ Premature start of an action: A subtask is started too early.

∗ Delayed start of an action: A subtask is started too late.

∗ Premature finishing of an action: A subtask is finished much earlier than the ex-
pected finishing time.

∗ Delayed finishing of an action: A subtask is finished much later than the expected
finishing time.

∗ Omission of an action: A subtask is never started.

– Sequence-based phenotypes have also been offered:

∗ Jump forward: An action much later in a task sequence is performed early.

∗ Jump backward: An action much earlier in a task sequence is performed later.

∗ Omission: This is actually a repeat of the time-based omission phenotype presented
earlier. Here an action in exactly the next step than the currently expected step is
executed.

60

∗ Repetition: An action in a step is executed a second time.

∗ Intrusion: An action from another task sequence gets executed.

• First-order detection: Detecting first-order erroneous actions involves combinations of several
zero-order erroneous actions and may need to consider history of zero-order erroneous actions
that have been performed.

– Spurious intrusion: In this a possibly unrelated or inappropriate action inserted in a task
description without any reason.

– Jump, skip: Several steps may be omitted or performed ahead or performed later.

– Place loosing: A more involved permutation of the actions in a task sequence almost
giving the impression of random execution of task.

– Recovery: A forgotten action or a group of actions may get performed.

– Side-tracking: An expected part of the task gets replaced by another part of the task. A
special case is restart.

– Capture: Here a part of another task sequence is inserted in place of a part of the desired
task sequence. A special case of capture is branching.

– Reversal: It is the permutation of two adjacent actions: constituted of a jump forward
and jump backward of actions.

– Time compression: A sub-sequence of actions gets performed in a time much less than
their combined expected execution time.

• Second-order detection: Detection of second-order erroneous actions involves detection of
nested or limited number of first order detections.

This deviant human task execution characterization provides us with a guideline as to how to test the
robustness of a protection envelope. Every interactive system may need to be capable of remaining
safe against these standard behavior variations. This idea is very similar to software testing. In this
case we focus on testing the computer system software against human action variations. Studying
variations of the recommended task specification according to such well established error patterns
can help obtain a reasonable understanding of the strength of the protection envelope. If a protection
envelope contains usual human action variations then we state that the protection envelope does a
quality job of tolerating all standard human action variations.

5.1.3 Contributions

We provide a framework that will help analyze a protection envelope if one is present [126]. How-
ever, if no protection envelope has been formulated yet, the framework will help identify a possible
protection envelope by studying the robustness of the computer system against erroneous human
behaviors.

61

• Protection envelope present: We can test its robustness. The questions that we answer are:
Given a protection envelope and a recommended task description, are the standard atypical
executions of the recommended task contained within the protected behaviors? More specifi-
cally, is the protection envelope capable of protecting the system from typical human operator
action variations as suggested by Hollnagel? If not, what are the erroneous behaviors that are
not covered by the protection envelope? The system designers should at least be aware of the
specific atypical behaviors that can compromise safe operation of the system.

• Protection envelope not present: We can suggest what it might look like. Even in the
absence of a protection envelope, we should be able to assess which variations of the rec-
ommended behavior are safe. This is the second issue that we resolve. There are situations
where system designers develop a system without striving to make it robust against the envi-
ronment. There can be cases where determining the expectations of the system about human
action variations is rendered unimportant by the extreme difficulty of developing a simple
non-robust system. There are situations where precisely formulating the protection envelope
is not an easy undertaking. In these types of situations the developers are tempted to design a
system without putting any thorough emphasis on the environmental effects. In all these sce-
narios although having a protection envelope would still be desirable, it will not be available
for analysis. In such situations, we still need to assess the robustness of the system against all
standard human action variations. This can be achieved by falling back to the safety proper-
ties. We can assess whether standard varied action sequences conform to the safety property
instead of the protection envelope. The advantage of our study in this case will be that the
analysis results will help identify the safe aberrant human behaviors. We will provide a col-
lection of human behaviors deviating from the recommended tasks specification that can be
demonstrated to be safe. This collection of deviant but safe human behaviors is in fact a

protection envelope.

• We present an extension of Tutela that can perform the robustness analysis.

5.1.4 Organization

In Section 5.2, we present the framework to assist in evaluating robustness of a protection enve-
lope. We present extension of Tutela that helps in implementing the framework in Section 5.3. In
Section 5.4 we present our findings in the study of the AIDC scenario with the extension of Tutela
implementing the framework.

5.2 Framework for Analyzing Operator Action Variations

The framework we propose is comprised of four steps:

62

1. Construct a model for the interactions among the automated system components and the hu-
man operators.

2. Capture the recommended task specification for the human operators and safety and protection
envelope definitions.

3. Introduce well established variations into the recommended task specification.

4. Perform analysis of the various mutant task specifications and provide results to the system
designers about safety conformance or containment in protection envelope for each of the
mutated task specifications.

We now need to resolve the following issues: How to encode the interactions between the hu-
man operator and the computer system? How to model the recommended task specification? How
to introduce variations into the recommended task specification? How to analyze the different trans-
formed tasks?

5.2.1 Human Computer Interaction Model

We need a model that can identify different entities, the actions performed by different entities in
different situations and is able to capture the evolution of the system through the combined actions of
the entities. The model offering all these characteristics is the Concurrent Game Structures(CGSs) as
presented in Section 4.6.2. A CGS is an 8-tuple, 〈P,Q, q0,Σ,Π, π, e, δ〉. Here P is the set of players.
Q is the set of states. q0 is the initial state. Σ is the action vocabulary of the players. Π is the set of
atomic propositions. π labels the states with the propositions that hold in that state. e provides the
actions enabled for each player in each state and δ is the transition function.

5.2.2 Human Computer Interaction Model using CGS

In any scenario under consideration, the human operators and the computer system can constitute
the set of players. The vocabulary of these players can be captured by Σ. The enabled action function
e can indicate which actions are physically possible for the human operators to perform. The com-
bined actions from the operators and the computer system can help the system transition from one
state to another. Thus the transition function δwill capture the interactions among the system compo-
nents and the human operators. In the AIDC scenario, the players can be: the nurse, the patients, the
devices, the RFID tags of the patients and the devices, the medical mediator and the EHR. The nurse
and the medical mediator can have actions like: {PressStart, ScanPatID(i), ScanDevID(i),
VerifyIDs, TakeReadingFromDev(p,d), VerifyDisplayedReading} and {AllowPressStart,
AllowScan-PatID, AllowScanDevID, DisplayScannedIDs, CaptureReadingFromDevice(d),
Display-CapturedReading(t),...} respectively. The collective action set of the CGS will be the
union of the action sets of each player in a scenario. In the initial state, the nurse is allowed to press

63

a start button to initiate the AIDC process. Then in the initial state, the enabled action function e for
the nurse and the medical mediator will contain the actions PressStart and AllowPressStart re-
spectively. Let there be a state AIDCstarted where a proposition PressedS tart is true indicating that
the start button has been pressed. From the initial state, if the nurse and the medical mediator per-
forms the actions PressStart and AllowPressStart then the system can go to the AIDCstarted

state.

5.2.3 Recommended Task Specification

Recommended procedures will be a sequence of human operator actions where the actions will be
in the action set Σ of any CGS corresponding to the procedure. Consideration of recommended
task descriptions with more complex control flow is a future direction. For example a recom-
mended task description for the nurse for taking reading from a patient can be a sequence of ac-
tions: PressStart, ScanPatID(i), ScanDevID(j), VerifyIDs, TakeReadingFromDev(i,j),
VerifyDisplayedR-eading.

5.2.4 Protection Envelope Model

The protection envelope is essentially assumptions or restrictions placed on the human operator by
the system designers. The operators cannot violate these restrictions and still be protected. The
protection envelopes can be most efficiently and succinctly specified by using logical properties.
Each human operator behavior satisfying the property will be a protected behavior. Since the pro-
tection envelopes will involve guarantees like “Step B is not taken until step A has been finished”,
the properties will need to be temporal in nature too. We will again use Linear Temporal Logic [93]
formulae for this purpose. LTL formulae are usually checked against finite state automata. The tran-
sition system of a CGS is similar to the transition system of a finite state automaton with a labeled
transition system. Specifying the protection envelope using LTL will allow us to verify inclusion of
a behavior in the protection envelope by simply checking whether the CGS corresponding to that
behavior satisfies the protection envelope property. Similar reasoning works for specifying safety
properties using LTL. Also the existence of efficient LTL model checkers is an added incentive for
this approach. In the AIDC scenario, the nurse is responsible for every pairing of patient ID, device
ID and data that is stored in the EHR. The nurse validates the IDs scanned from the patients and the
devices. A part of the protection envelope for the nurse can be:

�(patIDOked(i) ∧ devIDOked(j) → patIDScanned(i) ∧ devIDScanned(j))

Here patIDOked(i), devIDOked(j), patIDScanned(i) and devIDScanned(j) are CGS state propo-
sitions. They indicate that the nurse has just now verified i-th patient and j-th device’s IDs and at
some previous step i-th patient and j-th device’s IDs were scanned respectively. We have a simple

64

model where once a proposition is set to be true, it is set to be true for the subsequent states. For
example after the i-th patient has been scanned, the proposition patIDScanned(i) holds of subse-
quent states where a device is identified, readings are captured. After one execution of the AIDC
system finishes, the system returns to the initial state where all propositions are false. This allows to
work with LTL formulae instead of PTLTL property.

A nurse while undertaking training for using the medical mediator might ask whether she can
scan the RFID tag of one patient multiple times. What if she scans the RFID tag of the intended
device before scanning the RFID tag of the intended patient? Will she have to restart the whole
process if she makes this type of mistake? It is not readily comprehensible from the provided
protection envelope whether it contains such variations. This illustrates yet another utility of our
framework: a situation where the protection envelope is too convoluted to explicitly express closure
under different human action variations. Our framework will be capable of providing the answers to
such queries.

5.2.5 Obtaining Deviations from Recommended Procedure

The characterization provided in Section 5.1.2 is quite extensive. We consider zero-order and first-
order detection in our work.

• Zero-order detection:

– Zero-order erroneous action detection categorization based on the timing involved in
their execution:

∗ Premature start/end of an action and Delayed start/end of an action: We do not have
a timed model and hence are incapable of directly analyzing such modifications.
However we will show later how delayed task execution can be approximated due
to allowing each entity to stall temporarily using the silent τ action in each state in
our CGS models.

∗ Omission of an action: Let a task T be linearly composed of n subtasks Ti: T =

T0,T1, . . . ,Tn−1. Then for each subtask, we can create a new task specification by
omitting it. For example: T ′ = T0,T2, Then we analyze the task specification
to determine protection envelope containment.

– Sequence-based phenotypes:

∗ Jump forward and backward: Let a task T be linearly composed of n subtasks Ti,
T = T0,T1, . . . ,Tn−1. Then for each subtask Ti we insert it in front of all other
subtasks to create new task specifications and analyze them. For example: for sub-
task T1, we consider T ′ = T1,T0,T1, . . . ,Tn−1, T ′ = T0,T1,T1,T2, . . . ,Tn−1, . . .,
T ′ = T0,T1,T2,T1, . . . ,Tn−1,T1. Then we analyze all of these mutated task speci-
fications for possibility, validity and safety. Note that with our method of handling

65

jump forward and backward, the number of subtasks in the modified task descrip-
tions increases by one.

∗ Omission: The method for creating new task specification due to omission of a task
is the same as omission for the timing based phenotype.

∗ Repetition: Let a task T be linearly composed of n subtasks Ti: T = T0,T1, . . . ,

Tn−1. Then each subtask is repeated once to create new tasks T ′ = T0,T1, . . . ,Ti,Ti,

. . . ,Tn−1. Then each new task specification can be analyzed to determine whether
this is physically possible and safe or protected.

∗ Intrusion: Given two tasks T = T0,T1, . . . ,Tn and T ′ = T ′0,T
′
1, . . . ,T

′
n′ we obtain

new tasks T ′′ by inserting each subtask T ′i ∈ T ′ after each subtask T j in T . For
example: T ′′ = T0,T ′0,T1,T2,T3, . . . ,Tn.

• First-order detection: Detecting first-order erroneous actions involves combinations several
zero-order erroneous actions and may need to consider history of zero-order erroneous actions
that have been performed.

– Spurious intrusion: Let a task T be linearly composed of n subtasks Ti, T = T0,T1, . . . ,

Tn−1. Let a be an unrelated action not even belonging to another task description. Then
we can insert this spurious action in front of each subtask to create mutated task descrip-
tions as follows: T = a,T0,T1, . . . ,Tn−1, T = T0, a,T1, . . . ,Tn−1,

– Jump, skip: Let a task T be linearly composed of n subtasks Ti, T = T0,T1, . . . ,Tn−1.
Then meaningful omissions will omit i actions where 1 ≤ i ≤ n − 1. For each of these
cases, we can create a new task specification like: T ′ = T0,T3, . . ., T ′ = T0,T4, . . . and
so on.

– Place loosing: One possible way of testing against place loosing is considering each and
every permutation of the actions in a given task sequence. Given a task containing k

actions, this process will have O(k!) complexity though.

– Recovery: To some extent, recovery is covered by the pairwise permutation of actions.

– Side-tracking: We have not considered side-tracking as of yet.

– Capture: Given two tasks T = T0,T1, . . . ,Tn and T ′ = T ′0,T
′
1, . . . ,T

′
n′ we obtain new

tasks T ′′ by inserting each subsequence of task T ′ after each subtask T j in T . For
example: T ′′ = T0,T ′0,T

′
1,T1,T2,T3, . . . ,Tn.

– Reversal: Let a task T be linearly composed of n subtasks Ti: T = T0,T1, . . . ,Tn−1.
Then for each subtask Ti we permute it with all other subtasks and create new task
specifications. For example: for subtask T1, we consider T ′ = T1,T0, . . . ,Tn−1, T ′′ =

T0,T2,T1, . . . ,Tn−1, . . ., T ′′′ = T0,T2,T1, . . . ,Tn−1,T1 and so on. Then we analyze all
of these permuted task specifications.

– Time compression: We do not consider this type of erroneous action at this point in time.

66

5.2.6 Analyzing Mutant Task Specifications

We introduce a broad class of variations into the recommended task description to constitute new
task descriptions. We first need to build CGS models of human computer interactions for each new
task description to be able to analyze it. Each new task corresponds to a human behavior. The
behavior is exhibited by executing steps of the task while interacting with the computer system in
the specific order suggested by the task specification. Using this view of human tasks we describe
how we can create CGSs corresponding to the varied task descriptions.

5.2.7 Model for Recommended Procedure and its Variations

In order to facilitate the process of building a new CGS for each atypical behavior created from the
recommended behavior, we first construct a CGS we refer to as the Call as presented in Section 4.6.6.
In all states in the Call, each and every action that is physically possible for the operators to execute
along with the response of the computer system (and hence all corresponding transitions) will be
enabled in the e function. Referring to Figure 4.1, Call contains all possible safe and hazardous
human behaviors. Given a Call and a task specification, we will create the CGS corresponding to the
task specification by constricting the Call by restricting the actions available to the human operator at
each state. If the task represents a safe behavior, then this process will remove hazardous behaviors
from the Call. The first subtask of the task specification will be searched for in the initial state. All
other human operator actions (except for τ) will get disabled in that state. From then on, the subtasks
will help restrict the e function for the operators. Starting from the initial state, the transition induced
by the recommended operator action will be followed to ascertain the next state for inspection. At
every state reached by following the recommended tasks specification, the e function and hence the
transition function δ will be restricted. If at a state in Call, the operator action suggested by the task
specification cannot be performed then we know that the task specification is not a feasible one.

5.3 Analyzing Aberrant Behavior CGSs

Provided with a Call, a mutant task specification, and a protection envelope or safety property, we
can construct the CGS corresponding to that task specification using the procedure as described
in Subsection 5.2.7. We then need to analyze the CGS with a suitable model checker. We have
developed an extension to a tool Tutela that assists in analyzing recommended task specification
variations. The tool works as follows: it

1. takes a Call and a recommended task specification as input,

2. automatically

(a) derives new task specifications from the recommended task description,

67

Figure 5.1: Framework implementation in Tutela

(b) creates CGS corresponding to each new task, and

(c) analyzes the CGS with a model checker for property conformance.

A flow diagram for the relevant part of the software is presented in Figure 5.1. The Call is provided
in the Promela language which is the input language for SPIN. The recommended task is given
as a sequence of human operator actions using Call vocabulary. The protection envelope or safety
property is specified using LTL. We have described the interesting mechanisms of the tool like Call

creation from Promela input, CGS creation for a task description, CGS encoding into Promela for
analysis by SPIN in Section 4.8. After a task specification model has been created, we first determine
whether it is physically possible to be executed. Physical impossibility of execution is indicated by
the task specification requiring an action to be performed by the operator at a state where it is not
contained in the e function of that operator in that state in the CGS. A task variation that is not
physically possible is inherently safe as the system is capable of barring the human operator from
executing the task. Only feasible task specifications are analyzed for being protected or safe.

68

5.4 AIDC Scenario Revisited

Let us consider a simple AIDC scenario with two patients pat1 and pat2 and two medical devices
dev1 and dev2. There is only one nurse and one medical mediator. The nurse is supposed to take a
reading from pat1 using dev1. Later on she is supposed to take a reading from pat2 using dev2.
Simple recommended task descriptions for the nurse for these two procedures are: (1) press start,
scan pat1 ID, scan dev1 ID, verify IDs displayed, take reading, verify captured data for storage in
the back end database; and (2) press start, scan pat2 ID, scan dev2 ID, verify IDs displayed, take
reading, verify captured data for storage in the back end EHR database. The protection envelope for
the first recommended task is:
If the nurse verifies pat1ID and dev1ID then previously she had scanned only pat1ID and dev1ID

and if the nurse verifies pat1ID, dev1ID and data d then the data dWAS captured from pat1 using

dev1.
Now let us analyze the first recommended task description for the nurse. We discuss the er-

roneous action patterns that have been included in the tool. The erroneous actions that are not
mentioned here have not yet been implemented.

• Repetition: One time repetition of Press Start is feasible and safe. This might seem surprising,
but this is only feasible due to the fact that we allow τ actions for every player in every state.
Thus the mobile mediator is allowed to not respond to the pressing of the Start button by the
nurse. We allow the silent action τ to included as a possible action for each agent in a CGS.
We allow silent transitions so that we can model situations where the human operator does
not respond immediately to computer system actions and takes some time to start performing
an action. On the other hand, although a human operator may believe that he has performed
an action requiring concurrent response from the computer system, but the computer system
may not have registered the fact that an action has been performed by the human operator.
Repetition of scanning the ID tag of the patient and the device are also feasible. This is a very
important result, because scanning a tag multiple times can be a very common phenomenon
while using the AIDC system. This assures that the nurses will not need to restart the proce-
dure if they have inadvertently scanned the same ID multiple times.

• Reversal: Quite unsurprisingly, we find that the Press Start button action cannot be permuted
with any other action. If a nurse wants to perform AIDC using the medical mediator she needs
to press the start button as the first step of the entire procedure. The most significant finding
for reversal is that scanning of the ID for the patient and the device can be swapped. Hence
nurses will not need to restart the whole procedure if she has scanned the RFID tag of the
device before scanning the RFID tag of the patient.

• Omission: Similar to the findings discussed above omission of the Press start button action is
infeasible. Also the nurse needs to scan the IDs of the patient and device in some order for

69

the process to progress. Hence omitting these actions will result in the entire process getting
stalled.

• Delay: Since we do not perform timed analysis we are not capable of analyzing the effect
of delaying on part of the operators. However, since we insist that the silent action τ be an
enabled action for each player in each state in the CGSs it provides a mechanism for modeling
delayed action. This is evident from the analysis results from the repetition of actions step.
Although automated systems are supposed to be capable of almost immediate response, in
the case that the system is late in responding, the operator might have gotten impatient and
pressed a button twice. In future we will undertake inserting the silent τ action an arbitrary
number of times into the recommended task specification to incorporate delayed human action
analysis in our framework.

• Premature action/ Jump forward/ Jump backward: Instead of considering these patterns of
execution separately, we inserted each action from the the recommended task specification in
front of each action in the same recommended task specification. In the absence of timing
in our models, the best approximation we could achieve of a subtask getting performed too
early was its getting executed before another subtask. We obtained that most of the actions
like scanning the ID tags, obtaining a reading from a device cannot be performed ahead of the
Press start button action. The ID tags of the devices can however be scanned before the ID
tags of the patients are scanned. This result is very similar to the result obtained by reversing
the order of the actions.

• Intrusion: For this analysis, we inserted subtasks from the recommended task specification for
AIDC from the second patient into the recommended task specification for the first patient.
We did this for two different implementations of the AIDC scenario. During the initial stage
of the AIDC project, the system under development was somewhat rigid in the sense that
once the ID tag of a patient was scanned only a device ID tag could be scanned in the next
step. Then the design was made more flexible by allowing the same ID tag of a patient
or a device to be scanned multiple times. Ideally, an RFID tag scanner cannot distinguish
among the tags belonging to different entities. The mobile mediator can determine whether
the tag is a patient tag or a device tag after it has consulted with the back-end database.
Hence the most flexible form of the system should allow all RFID tags to be scanned in
the ID scanning steps. Then later on, when the nurse is asked to verify that the scanned
IDs are acceptable, the nurse gets a chance to correct any errors. We analyzed the last two
models. At this point we intend to focus on an unusual finding on our part. The finding
occurred in the second version of the AIDC model (first version analyzed by us). In this
model once the tag of a patient has been scanned, only that tag can be scanned multiple other
times. Then the ID tag of a device needs to be scanned. Now, our findings surprisingly
contained the result: "insertion of scanPat2ID after scanPat1ID is physically

70

possible"(may not be safe). Although this may seem to be an erroneous judgment, the
reasoning that leads to this is as follows:

– Nurse presses the start button.

– Nurse scans the ID tag of the first patient. The combination of the RFID tag scanner and
the mobile mediator is slow enough (modeled using the silent τ action) that the nurse
decides that she was not able to scan the ID tag of the patient successfully.

– Nurse now scans the ID tag of another patient because she wants to proceed with the
AIDC procedure of the second patient.

We had decided that the τ action be available to each entity at each step to enable modeling
delayed response from them. This result alerts us that if it is possible for the automated
systems to not respond to the operator actions in an immediate manner, the operators may get
confused and decide to wait, re-perform the step or even worse insert a step from a different
task specification. A modeling of the scenario where computer system components are not
allowed to stay idle through the τ actions would not have uncovered this issue. The analysis
results are available on the Tutela website.

5.4.1 Protection Envelope Suggestion

The methodology presented can be used alternatively for checking the robustness of a safety prop-
erty. Then the analysis will indicate which erroneous human behaviors are safe for the system and
which ones are not. The collection of erroneous human behaviors that are not hazardous for a system
can constitute a protection envelope for the system. Let us consider the AIDC scenario again. The
safety property for the AIDC scenario is very similar to the protection envelope property presented
earlier.
If the EHR stores (nurseID, mobileMediatorID, pat1ID,dev1ID, reading, r) then previously

she had scanned only pat1ID and dev1ID and the reading rWAS captured from pat1 using dev1.
We analyzed the AIDC system with respect to this safety property under erroneous variations of the
recommended nurse task description. Let us consider some parts of the analysis result:

• Repeated scanning of the RFID tag of a patient is safe.

• Repeated scanning of the RFID tag of a device is safe.

• The order of scanning the RFID tags of a patient and a device can be reversed.

• ID validation step cannot be performed before the RFID tags have been scanned.

From these results, one can observe that as long as the same patient and device is scanned it does
not matter how many times we scan them. It also does not matter whether the device or the patient

71

was scanned first. Thus as long as the nurse validates the correct patient and the correct device
identification information, the nurse behavior is safe. This observation can be translated into:

�(¬patdevIDOked(i, j)U (patIDScanned(i) ∧ devIDScanned(j)))

This property states that the nurse does not validate the identities of the i-th patient and j-th device
until she has actually scanned them. This can be a protection envelope for the nurse. This protection
envelope contains the recommended task description of first scanning the RFID tag of the patient
and then scanning the RFID tag of the device. It also includes the behavior where the device is
identified before the patient. It also includes multiple scanning of the RFID tags of the patients and
the devices.

5.5 Summary

In this chapter we presented how to test the robustness of a protection envelope against typical
human errors. We also show how these analysis can help formulate a protection envelope itself if no
protection envelope is present.

72

Chapter 6

Modeling Human Behavior with
Incomplete Information

In this chapter we provide a more fine grained formalism for modeling and reasoning about human
behaviors.

6.1 Introduction

A model for human behaviors exhibited in conjunction with a system should be able to encode the
actions they will perform at different states. We had decided on CGSs as the model for human be-
havior as they have agent identities, agent actions and the possibility of expressing properties where
a particular group of agents can provide a guarantee using ATL or variants of ATL like ATL*. Thus
CGSs provided us a mechanism that allowed for procedural encoding of recommended behaviors,
declarative encoding of safe, unsafe, effective and protected behaviors. ATL have not been utilized
as of yet due to several reasons. Syntactic restrictions of ATL rendered them somewhat undesirable
for expressing protection envelope properties. Let us consider the Self-scan checkout scenario. A
protection envelope for the customer is: 〈〈Customer 〉〉�(outofStore(i) → _paidForitem(i)).
This property can only be expressed using ATL* (with necessary conversion for past time operators)
not ATL. We focused on a specific subset of ATL*: LTL. The protection envelopes that we have
considered were invariants of the form �ϕ where ϕ is an LTL formula. LTL formulae served our
purposes and had the advantage of having a wide range of model checking softwares being avail-
able. We now refocus on the CGSs, ATL and ATL* to be able to present a more precise modeling
formalism and analysis technique for human behavior.

6.1.1 Contributions

Unlike the earlier chapters the contributions of this chapter are more theoretic in nature.

• We first present the shortcomings we found of modeling human behavior through the enabled
action function of CGSs (i) deterministic transition system, (ii) being incapable of modeling
history dependent human behavior and (iii) absence of information hiding among agents in a
CGS. Then we present an enhanced version of CGSs namely iNCGSs capable of overcoming

73

the issues of deterministic transition system and absence of information hiding with the usual
form of CGS.

• We present ATL semantics using iNCGS. We provide a model checking algorithm for ATL
semantics using iNCGS.

• We show how to preform semantics preserving transformation of incomplete information turn
based game structures into iNCGS.

• We also provide ATL* semantics using iNCGS.

• We show how human behavior can be modeled using player strategies to allow modeling
history sensitive human behavior. We show how to determine if a strategy satisfies an ATL
formula to provide a better formal technique of determining when a human behavior conforms
to a guarantee.

• We present nondeterministic strategies and present strategic semantics of ATL*.

• We also show how other work on incomplete information multi-agent structures can be related
to iNCGS.

6.1.2 Organization

We first present an example scenario in Section 6.2 where human operators play an important role
in the (un)safe executions of the relevant computerized systems. Then we show how the formalism
chosen in Section 4.5 can model the human operator behaviors in Section 6.3. Then we present the
shortcomings of that formalism in modeling human operator-intensive systems in Section 6.4. Then
we present the enhanced model iNCGS and ATL and ATL* semantics using iNCGS in Section 6.5.
We show how iNCGS can be related to other multi-agent game structures in Section 6.6. We present
some variations of iNCGS in Section 6.7. We present how strategies can model human behaviors in
Section 6.8. We present strategic semantics of ATL and ATL* in Section 6.9. We summarize our
results in Section 6.10.

6.2 Example Scenario: 2001 Japan Airline Mid-air Incident

Two Japan Airlines flights nearly collided in mid-air on Wednesday, January 31, 2001 due to human
error [117, 102]. Japan Airlines Flight 907 registered as JA8904 was going south-west from Tokyo
International Airport (Haneda Airport) in Ota, Tokyo, Japan to Naha International Airport in Naha,
Okinawa, Japan. We will refer to it as aircraft A. Japan Airlines Flight 958 registered as JA8546
bound from Gimhae International Airport in Busan, South Korea was going east to Narita Interna-
tional Airport in Narita, Chiba Prefecture, Japan. We will refer to it as aircraft B. Aircraft A was

74

ascending to 39,000 feet while making a left turn above water when a conflict was detected at the
Tokyo Area Control Center (TACC) because aircraft B was flying at a similar flight level. Aircraft
B was cruising at 37,000 feet towards aircraft A. The Traffic Alert and Collision Avoidance System
(TCAS) in aircraft A issued a Resolution Advisory (RA) for ascending higher to avoid a possible
collision with a dangerously nearby aircraft: the aircraft B. The TCAS in aircraft B had issued an
advisory for descending to avoid any possible collision with the ascending aircraft A. The trainee
operator at TACC was upset and in that state of mind issued descend request to the wrong aircraft:
aircraft A. Aircraft A actually needed to ascend to ensure collision avoidance.

An interesting scenario developed at this point. In spite of the TCAS advisory, the aircraft A
pilot decided to follow the TACC instructions to descend. On the other hand, the TACC detected that
aircraft B was not descending and requested it to change heading to avoid collision. This instruction
to aircraft B was lost and aircraft B had only its TCAS advisory to descend at its disposal. Aircraft
B pilot decided to follow the advisory. Thus both aircrafts ended up descending while approaching
each other. They ended up being able to see each other and a collision was avoided because at the
final moment the pilot of aircraft A drastically reduced their altitude. No passengers in aircraft B
was injured. Refreshments were being served on board aircraft A and several passengers were not
wearing seat belts, hence there were some injuries among the passengers there. The entire episode
lasted less than two minutes. During the entire process the TCAS for each aircraft kept issuing
warnings and advisories. These warnings were correct and appropriate. The TACC operators kept
issuing directions too. However in the heat of the moment they lost their nerve, issued wrong
direction to wrong aircraft and even issued a direction to an aircraft with a similar number which was
not even flying at that time. The aircraft B pilots received partial information and acted accordingly.
The aircraft A pilots received information from both their aircraft and the control towers but could
not take the correct step. On the other hand the control tower operators were not aware that the
TCAS of the two aircrafts had issued warnings and advisories. This information would have helped
them understand their own mistake and the real situation in the airspace. In this scenario human
error caused the incident and human judgment avoided it. Let us now formally model this scenario
to analyze human operator actions.

6.3 Human Behavior Model

The chosen formalism for implementing the framework presented in Section 4.5 was CGS. Let us
consider the definition of CGS again. CGS is an 8-tuple 〈P,Q, q0,Σ,Π, π, e, δ〉where the components
are as follows: P is a nonempty finite set of players. Q is a finite set of states and q0 ∈ Q is the
initial state. Σ is a finite nonempty set of actions for the players where the silent action τ ∈ Σ. Π is a
finite set of atomic propositions. π : Q → 2Π is a function that gives the set of propositional atoms
that hold of a given state. e : P × Q→ 2Σ, gives actions that are enabled for any given player in any
given state. The restrictions on the enabled actions function e are: (i) ∀p ∈ P.∀q ∈ Q. |ep(q)| > 0,

75

(ii) ∀p ∈ P.∀q ∈ Q. τ ∈ ep(q). These two restrictions state that at each state each player should be
able to perform at least one action. And also each player should be given the chance to remain idle
at a state if he so chooses. Given a vector of action choices ā, we denote the action chosen by player
p in that vector by ā|p and the actions chosen by a set of players P as ā|P. The transition function
δ : Q× (ep1 (q)× ep2 (q)× . . .× ep|P| (q))→ Q defines the state transitions. That is, given a state q, and
a vector of actions ā ∈ ΣP where ā|p ∈ ep(q) for each p, the state determined by δ(q, ā) is the next
state. δ has the restriction: ∀q ∈ Q. q ∈ δ(q, τ̄). τ action and τ̄ transitions allow human operators
to catch up with automated systems. Players can have strategies in a CGS for choosing actions at
states. A strategy for a player S p : Q+ → Σ an action to p for every finite prefix of computation.

CGSs were found suitable because they allow (i) identifying the important players in a scenario,
(ii) identifying the action vocabularies of the players, (iii) restricting the behavior of the players by
restricting the actions available to the players in each state. We modeled human behavior through
the enabled action function e of a CGS. Human behavior is how they respond to a situation → the
actions they may choose from in a state→ the enabled action function e. CGSs allow capturing the
transition of a system through player actions. Also, the logic imposed on CGSs is ATL. ATL allows
one to express the formulae of the form 〈〈 A 〉〉ϕ stating that the group of players in A can guarantee
ϕ irrespective of the behavior of the rest of the players. The syntax of ATL over a set of propositions
Π is as follows:

ϕ = p ∈ Π | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈 A 〉〉 © ξ | 〈〈 A 〉〉� ξ | 〈〈 A 〉〉 ξ1 U ξ2

Here ©, � and U are next step, always and until operator like Linear Temporal Logic (LTL). An
ATL formula of the form 〈〈 A 〉〉ϕ states that there exists a strategy for each player in the player
coalition A such that irrespective of any actions taken by the rest of the players, the players in
A have a way of guaranteeing ϕ. This formula essentially states that the players in the group A

may guarantee ϕ. However, we are more interested in must guarantees. A human operator must

maintain the guarantee expressed by his protection envelope. Thus we are driven towards ATL
formulae of the form ~A�ϕ. The intuitive meaning of ~A�ϕ is that the players in A cannot avoid
ϕ, they cannot cooperate to make it be false. More precisely, ~A��ϕ is defined to be ¬ 〈〈 A 〉〉^¬ϕ,
~A�©ϕ is defined to be ¬ 〈〈 A 〉〉 ©¬ϕ. ~A�ϕ1Uϕ2 is defined similarly. ~A�ϕ can also be interpreted
as: no matter what actions are performed by the players in A, the rest of the players can find a
strategy to ensure ϕ. Given these interpretations, we choose protection envelopes to be of the form
~Human Operator��ϕ i.e. the human operator cannot avoid behaving according to the protection
envelope property. Here presumably, the rest of the players in the CGS is just the computer system.
A protection envelope is a guarantee that the human operator will provide, hence the only way
the computer system can guarantee that no matter what actions the human operator performs the
human operator behavior will maintain protection property is if the human operator actually never
performs any unsafe action. Thus this type of protection envelope will hold only in those CGSs

76

where possible protection envelope violating human operator actions are disabled in each state i.e.
the human operator does not take any “bad” step. Thus every step performed by human operator is
a good step and hence the protection envelope guarantee of the human operator will hold. Now, just
as we said earlier, we prefer protection envelopes expressed using ATL*. The syntax of ATL* over
a set of propositions Π is as follows:

ϕ = ν ∈ Π | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈 A 〉〉ψ

ψ = ϕ | ¬ψ | ψ1 ∨ ψ2 | © ψ | ψ1 U ψ2

Here © and U are next step and until operator like Linear Temporal Logic(LTL). ATL* includes
LTL where 〈〈 〉〉ψ stands for LTL formulae. 〈〈 〉〉ψ states that no matter what actions all the players
perform the property ψ will hold.

6.3.1 Model of the Japan Airlines Incident using CGS

Let us model the Japan Airlines incident using CGSs. The players in the CGS are: AircraftA,
AircraftB (the control panel portion of these aircrafts); AirCraftAPilot, AircraftBPilot and
ATC (humans controlling the TACC). The action vocabulary for the pilots can be:
flyStraight, maneuverAscend, maneuver descend, changeHeading etc.
The aircrafts’ possible actions are:
calculateSpeed, detectCollision, adviseAscent, adviseDescent etc.
The ATC vocabulary can be comprised of:

monitorAirSpace, requestAscend, requestDescend, requestChangeHeading, permitToL-
and etc.

We will focus on interactions among aircrafts flying through a specific segment of air space and
the air space controllers. We will not consider aircraft landing and takeoff procedures at this time.
We want to ensure that given a particular airspace no two aircrafts are in the same air space zone at
the same altitude at a particular point in time. Very abstractly this can be formulated as
〈〈 ATC 〉〉�(¬(AirCraftAInAirSpaceWindow1∧ AirCraftBInAirSpace Window1)). The pro-

tection envelope of the pilots need to state that if the pilot performs ascend or descend then there
were either an ATC directive or TCAS directive to do so. For example:
~AirCraftAPilot ��(AircraftAascending→ (_ ATCreqAscendtoA)∨ (_ AscendAdviso

ryA)) The CGS corresponding to this scenario (partial) is given in Figure 6.1. In the figure, the
player action combinations are placed next to the states. The action of the ATC is listed first, then
AirCraftAPilot, AircraftBPilot, AircraftA and AircraftB’s actions are listed. We anno-
tate the states with some relevant state propositions enclosed within square brackets.

Let us consider a state q. In this state the ATC detects a conflict. Then the system moves
on to state q1. Then AircraftB detects a possible collision ahead and the system moves to q2.

77

Figure 6.1: Japan Airlines incident in CGS

78

Then AircraftA detects a possible collision leading to state q3. Now the ATC erroneously re-
quests AircraftA to lower altitude. Thus in this state the enabled actions for the ATC should in-
clude the desired request of descend to AircraftB in addition to all possible erroneous requests.
Then AircraftB detects collision again and issues resolution advisory suggesting descend. Then
AircraftA provides a resolution advisory suggesting ascend to higher altitude to avoid collision.
Then the ATC detects that despite the warning (to the wrong aircraft) AircraftB is not descending
to avoid collision. Then ATC requests AircraftB to change heading to avoid collision. However,
this communication is lost due to error and no action is taken by AircraftBPilot. However, given
a combination of player actions, a CGS can only transition to one particular state. Hence with the
action vector comprising of sending a heading change request by the ATC, we can either have the
transition from q4 to q5 or from q4 to q6 in the CGS.

6.4 Problems with Modeling with the Previous Approach

Several issues are highlighted by the CGS model as presented in the last subsection. Let us con-
sider them one by one. First, the CGS transition system is deterministic. When an ATC sends an
instruction to an aircraft, the communication may or may not reach that aircraft. Instructions issued
to AircraftB did not reach AircraftB. Thus with the same combination of player action choices,
the CGS should be capable of choosing among a set of states to transition to. In the scenario we are
considering, the TACC are not made aware of the warnings issued by the TCAS of the two aircrafts.
But in the CGS model the ATC can detect when an advisory has been issued for either plane. The
status of each and every proposition and variable are available to each player in a CGS. Pilots of
either aircraft should not be aware of what signals are being issued by the other plane’s TCAS to
their corresponding pilots. In this scenario, the pilots can see all actions of the other aircraft.

In order to avoid a collision two aircrafts approaching each other should not both ascend or
descend. In the least they should change their headings in opposite directions. In the CGS, we
observe that AirCraftAPilot can see that AircraftBPilot has received no warning from the
ATC, the AircraftB has issued a descend advisory, his AircraftA has issued an ascend advisory
and a descend advisory has reached him from the ATC. From all these information he can deduce that
the only option for AircraftBPilot is to descend. Hence he himself should not descend but get
confirmation from ATC or ascend according to TCAS advisory. Such a strategy can be formulated in
the CGS which is actually an unfaithful modeling of the scenario. To faithfully capture the scenario,
we need to be able to hide information from players.

The notion of inadequacy of information cannot be modeled by CGS’s in their current form. The
players are not “module” like with an incomplete view of the states of the world. Every player has
access to information that should have been visible to only a select set of players.

Alur et al presented Turn Based Synchronous Game Structure with incomplete information
(iTSGS) in [9] to be able to model information hiding. We discuss iTSGS below.

79

6.4.1 iTSGS: incomplete Information Turn Based Synchronous Game
Structure

A Turn Based Synchronous Game Structure with incomplete information is a tuple (S = 〈P,Q,Π, π,

σ,R〉,P) where S is a Turn Based Synchronous Game Structure and P provides the propositions
that each players can observe. Here P is a set of players, Q is a set of states, Π is a set of atomic
propositions, π : Q → 2Π defines which propositions are true in which state. σ : Q → P defines
which player gets to act in which state. R ⊆ Q × Q is a total transition relation. They model
incomplete information through the observability vector P : P → 2Π. It defines which propositions
can be observed by each player. A player cannot distinguish between two states if he cannot observe
the only proposition distinguishing them. They use πa(q) to denote the propositions observable to
player a in state q i.e. πa(q) = π(q) ∩ Pa. This notation can be easily extended to sequences of
states: πp(q0, q1, q2, . . .) = πp(q0), πp(q1), πp(q2), Any subset of πa for a player a is called an
a-view. And the set of all possible a-views is denoted by Va. A strategy for a player p is a function
fp : V+

a → Va. Thus given a computation prefix, the strategy suggests which states the system can
go to when it is p’s turn to execute.

However, we found iTSGS too simplistic to be a sufficient model for us. In an iTSGS, the
players do not have a specific set of actions to choose from. The vocabulary of players is implicit.
The transition system is represented with a relation and hence non-deterministic. But, the player
actions do not implicitly influence the transitions whereas our primary focus is on the player actions.
Human operator behaviors are expressed through the actions they take at different states. Hence,
having explicit action vocabulary and enabled action information in states is important to us. Also
we show later that the strategies of CGSs are more suitable to modeling human behavior. Given
a computational history, a CGS strategy for a player p indicates what action p should take. In the
example scenario, the strategy of AirCraftAPilot is to follow the ATC instruction after receiving
instructions both from the ATC and his own aircraft. Thus we present an extension of CGS namely
Nondeterministic CGS with imperfect recall (iNCGS) to more naturally capture human operator
behaviors.

6.5 Nondeterministic CGS with Incomplete Information

6.5.1 iNCGS

We present an extension to CGSs having more generalized notion of imperfect observational capa-
bility for the player along with non-deterministic transition system. We call this extension iNCGS
for incomplete information Nondeterministic CGS. An iNCGS C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δ〉 is
a 10-tuple. P, Q , Q0 ⊆ Q, Σ, Π and π and e are as defined in Section 6.3. The set of restrictions
mentioned about these constructs for CGSs carry over to the iNCGSs. The transition function δ is

80

the first modified component: δ : Q × ep1 (q) × ep2 (q) × . . . × ep|P| (q) → 2Q. That is, given a state q,
and a vector of actions ā ∈ ΣP where ā|p ∈ ep(q) for each p, the states in δ(q, ā) are the possible next
states. δ still has the restriction: ∀q ∈ Q. q ∈ δ(q, τ̄). τ action and τ̄ transitions allow human opera-
tors to catch up with automated systems. A q-computation r of an iNCGS C is an infinite sequence
of states where r0 = q and for each i ≥ 0, there is a vector ai ∈ ep1 (ri) × ep2 (ri) × . . . × ep|P| (ri) of
actions such that ri+1 ∈ δ(ri, ai).

iNCGSs model incomplete information through state and trace equivalence classes. ∼̇ is a set of
equivalence classes on states. We will denote the equivalent classes for each player p by ∼̇ p where
∼̇ p : 2Q×Q. A player p cannot distinguish between two states q1 and q2 where q1 ∼̇ p q2. We will
denote the equivalence class of a state q with respect to the point of view of player p by [q]p. We
require that e conforms to ∼̇ i.e. for a player p ∈ P and a state q ∈ Q, ∀q′ ∼̇ q. ep(q) = ep(q′). In
other words, if a player cannot distinguish between two states then he should have the same action
choices in both of them.
∼̈ is a set of equivalence classes on sequences of states. ∼̈ p denotes the “history” equivalence

classes for p. Given two finite sequences of states λ1 and λ2, if λ1 ∼̈ p λ2 then p cannot distinguish
between them. We require that ∼̈ p conform to ∼̇ p: (i) ∼̇ p ⊂ ∼̈ p and (ii) if λ1, λ2, λ3, λ4 ∈ Q+ and
λ1 ∼̈ p λ2 and λ1 ∼̈ p λ2 then λ1 · λ3 ∼̈ p λ2 · λ4.

Our notion of trace equivalence is more generalized in that we can define trace equivalence
relations in whatever way we please. For example: we can define traces to be stuttering equivalent
or inequivalent under stuttering. For this work, we impose the following restrictions on the trace
equivalence classes: for a player a ∈ P, λ1 ∼̈ a λ2 ⇐ |λ1| = |λ2| and ∀0 ≤ i ≤ λ1. λ1,i ∼̇ aλ2,i. Let us
extend the notions of state equivalences and trace equivalences from the point of view of a single
player to the point of view of a set of players.

• ∼̇ P: q1 ∼̇ P q2 = ∀p ∈ P. q1 ∼̇ p q2

• ∼̈ P: λ1 ∼̈ P λ2 = ∀p ∈ P. λ1 ∼̈ p λ2

• [q]P = {q′| q ∼̇ P q′}

• [λ]P = {λ′| λ ∼̈ P λ
′}

A strategy for a player p is a function S p : Q+ → Σ that given a history of visited states, S p

suggests the next action to take. A strategy S p has to conform to equivalence classes of states:
∀λ1, λ2 ∈ Q+. if λ1 ∼̈ p λ2 then S p(λ1) = S p(λ2) i.e. strategy should make the same suggestion
to a player p in states that are indistinguishable to p. The outcome O of following a strategy S P
by a group of players P in a state q is defined as O(q,P, S P) = λ where λ0 = q and for each
i ≥ 0. λi+1 ∈ δ(q, v̄) where v̄|P = S P(λi

0).

81

6.5.2 Example Scenario using iNCGS

Now we introduce the nondeterminism and information hiding in the CGS as presented in Figure 6.1.
Firstly, in iNCGSs, we can have nondeterministic transitions. Hence, we can have both the q4 to q5

and q4 to q6 transitions. The ATC should not be aware of the warnings and advisories being issued
by the TCAS systems of the aircrafts. Hence, to the ATC, the states q1, q2 and q3 should be the same.
So, [q1]ATC = {q1, q2, q3}. The ATC can not detect if a heading change request by him has reached the
AircraftBPilot or not. Hence, he cannot detect the difference between states q5 and q6. Thus we
have, [q4]ATC = {q5, q6}. For the the first pilot, he should not be aware of the situation that another
aircraft has detected a collision. Hence for pilot1, we can set [q1]pilot1 = {q1, q2}. Similarly, for
AircraftBPilot we can have: [q2]pilot2 = {q2, q3}.

6.5.3 Semantics of ATL with iNCGS

Given an NCGS C, a sequence of states λ and an ATL formula ϕ, we present the semantics of ATL
using iNCGS:

• q |=I ν ∈ Π if ν ∈ π(q).

• q |=I ¬ϕ if q 6|= ϕ

• q |=I ϕ1 ∨ ϕ2 if q |=I ϕ1 or q |=I ϕ2

• q |=I 〈〈 P 〉〉 © ψ if there exists a set of strategies S P such that ∀q′ ∼̇ P q. ∀λ ∈ O(q′,P, S P).
∀λ′ ∼̈ Pλ. λ

′
1 |= ψ

• q |=I 〈〈 P 〉〉�ψ if there exists a set of strategies S P such that ∀q′ ∼̇ P q. ∀λ ∈ O(q′,P, S P).
∀λ′ ∼̈ Pλ.∀1 ≤ i ≤ ∞. λ′i |= ψ

• q |=I 〈〈 P 〉〉ψ1U ψ2 if there exists a set of strategies S P such that ∀q′ ∼̇ P q. ∀λ ∈ O(q′,P, S P).
∀λ′ ∼̈ Pλ.∃1 ≤ j ≤ ∞. λ′j |= ψ2 ∧ ∀1 ≤ i < j. λ′i |= ψ

6.5.4 ATL Symbolic Model Checking over iNCGS Models

The model checking problem for a given iNCGS C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δ〉 and and ATL
formula ϕ asks for the set of states that satisfies ϕ. We reuse the symbolic model checking algorithm
for solving the model checking problem for ATL formula and CGSs with complete information as
given in [9] with some changes. The algorithm presented in [9] is defined for a deterministic CGS
with deterministic transition system. One can translate a nondeterministic transition system structure
like iNCGS into a deterministic one by introducing an oracle player who will decide among the
possible outcome states for every transition with multiple possible outcome states. This idea is very
similar to the Harsanyi transformation [53] in game theory.

82

The model checking problem for an ATL formula ϕ on an iNCGS I asks for the states q ∈ Q

such that q |= ϕ. Given an iNCGS I, we denote the desired set of states as Υ(ϕ). The ATL symbolic
model checking algorithm presented in [9] is modified for our setting in Algorithm 1 to handle state
equivalence classes. The auxiliary functions used by the algorithm are as follows:

• The function Sub, when given an ATL formula ϕ, returns a queue of syntactic subformulas of
ϕ such that if ϕ1 is a subformula of ϕ and ϕ2 is a subformula of ϕ1, then ϕ2 precedes ϕ1 in the
queue S ub(ϕ).

• The function Reg, when given a proposition p ∈ Π, returns the set of states in Q that satisfy p.

• The function Pre, when given a set A ⊆ P of players and a set ρ ⊆ Q of states, returns the
set of states q such that from q or any other state equivalent to q from the point of view of
players in A can cooperate and enforce the next state to lie in ρ. Formally Pre(A, ρ) = {q | ∃v̄ ∈∏
p∈A

ep(q). ∀v̄′ ∈
∏

p∈P\A
. ∀q′ ∈ [q]A. δ(q′, v̄ ◦ v̄′) ∈ ρ}.

The E function takes a set of states ρ and a set of players A and returns another set of states defined
as follows: for each E(ρ, A) = {q | q ∈ [q′]A and q′ ∈ ρ} i.e. E populates the set of states ρ with
each and every state that is observationally equivalent from the point of view of the players in A

to the states already in ρ. Thus if there is a state q from which the players in A can guarantee to
make the iNCGS to land in q′ then from each and every state q′′ ∈ [q]A, the players in A can force
the structure to land in q′ or another state [q′]A. The only change in the setting is due to the state
equivalence relations. Here a player a will have a strategy to ensure ϕ in the next step from a state q

iff it can ensure ϕ from each state q′ that is equivalent to it. This affirms that the behavior of a player
p is uniform across all states that are indistinguishable from the point of view of p. That is why for
set of states ρ and a player p, we need to consider the states that are observationally equivalent to p

to states in ρ. The model checking algorithm in [9] is PTIME-complete. However, in our case for
every player p, for every state q, we need to have [q]p pre-computed. This introduces O(P.Q2.Π)
additional complexity for initial processing. If this is pre-computed for each player then computing
necessary [q]As will be easy if efficient implementations are used. Also the E function adds O(Q2)
complexity to the steps of the algorithm.

6.5.5 Semantics of ATL* with iNCGS

ATL formulae are somewhat restrictive in structure. One cannot express formulae like “a group of
players P can guarantee that always if an accident happens, they will notify the police in the next
step”. This is due to the restriction that each temporal operator be preceded by a player coalition.
However, one can express such a property using ATL*. Using ATL* the aforementioned property
can be expressed as: 〈〈 P 〉〉�(accidentHappened → ©(policeInformed)). Given an iNCGS C,
a sequence of states λ and an ATL* formula ϕ, we present the most interesting part of the semantics
of ATL* using iNCGS:

83

Algorithm 1: ATLSymbolicModelChecking(C,ϕ)
Data: iNCGS C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δ〉, ATL formula ϕ
Result: A set of states S ⊆ Q
begin

foreach ϕ′ ∈ Sub(ϕ) do
case ϕ′ = p

Υ(ϕ′) := Reg(p)
case ϕ′ = ¬ϕ

Υ(ϕ′) := Q \ Υ(ϕ)
case ϕ′ = ϕ1 ∨ ϕ2

Υ(ϕ′) := Υ(ϕ1) ∪ Υ(ϕ2)
case ϕ′ = 〈〈 A 〉〉 © ψ

Υ(ϕ′) := E(Pre(A,E(Υ(ψ), A)), A)
case ϕ′ = 〈〈 A 〉〉�ψ

ρ := Q; τ = Υ(ψ);
while ρ * τ do

ρ = ρ ∩ τ;
τ := E(Pre(A,E(ρ, A)), A) ∩ Υ(ψ)

Υ(ϕ′) := ρ
case ϕ′ = 〈〈 A 〉〉ψ1Uψ2

ρ := {}; τ = Υ(ψ2);
while τ * ρ do

ρ = ρ ∪ τ;
τ := E(Pre(A,E(ρ, A)), A) ∩ Υ(ψ1)

Υ(ϕ′) := ρ

return ϕ

84

• C, q |= ν ∈ Π if ν ∈ π(q).

• C, q |= ¬ϕ if C, q 6|= ϕ

• C, q |= ϕ1 ∨ ϕ2 if C, q |= ϕ1 or C, q |= ϕ2

• C, q |= 〈〈 P 〉〉ψ if there exists a set of strategies S P such that ∀p ∈ P.∀q′ ∼̇ pq.∀λ ∈ O(q′,
P, S P).∀λ′ ∼̈ pλ.C, λ′ |= ψ

• C, λ |= ¬ϕ if λ 6|= ϕ

• C, λ |= ϕ1 ∨ ϕ2 if C, λ |= ϕ1 or C, λ |= ϕ2

• C, λ |= ©ψ if C, λ∞1 |= ψ

• C, λ |= ψ1U ψ2 if ∃ j ≥ 0. ∀0 ≤ i < j. C, λ∞i |= ψ1 and C, λ∞j |= ψ2

6.6 Relating iNCGS to other Multi-agent Game Structures

In this section we show how other multi-agent game structures are related to iNCGS.

6.6.1 iTSGS and iNCGS

iNCGSs implement incomplete information by using equivalence classes of states. Each state be-
longing to an state equivalence class for a player a is indistinguishable to a. On the other hand
iTS GS uses a-views to identify the same concept of indistinguishable states. Following this ob-
servation, we define a view-to-equivalence class transformation function in order to relate the two
different game structures. This function maps a-views in the iTSGS world to equivalence classes of
states in the iNCGS world:

Definition The view-to-state set transformation function V transforms a given observable set of
propositions v for a player p to the equivalence class of states where the viewable propositions hold:
V(v, p) = [q]p where πp(q) = v.

Let ν = v1, v2, . . . be sequence of views for a player p. Then the state sequences compatible with
this view sequence for the player p is T (ν, p) = {λ | ∀i ≥ 0. λi ∈ V(vi, p)}. This gives us a set
of sequences where each state in the sequence belongs to the state equivalence class defined by
the corresponding view. For any two traces λ1 and λ2 in T (ν, p) we have that ∀i ≥ 0. πp((λ1)i) =

πp((λ2)i) = vi.
We now define a function to translate a Turn Based Synchronous Game Structure (S = 〈P,Q,Π, π,

σ,R〉,P) into an iNCGS as follows:
Let C : iTS GS → iNCGS where C((S = 〈P,Q,Π, π, σ,R〉,P)) = 〈P′,Q′,Q0,Σ,Π

′, π′, e, ∼̇ , ∼̈ ,

δ〉 where we have:

85

• P′ = P

• Q′ = Q

• Q0 = Q

• Π′ = Π

• π′ = π

• Σ = {τ} ∪ 22Q

• ∀q ∈ Q.∀p ∈ P. if σ(q) = p then ep(q) = {[q′]p|∃q′. R(q, q′)} else ep(q) = {τ}

• ∀q ∈ Q. ∀v̄ ∈
∏
p∈P

ep(q). δ(q, v̄) = {q′|R(q, q′) ∧ ∀p ∈ P. v̄|p , {τ} → q′ ∈ v̄|p(q)}

• For each player p ∈ P, ∀q1, q2 ∈ Q. if π(q1) ∩ Pp = π(q2) ∩ Pp then q1 ∼̇ p q2.

• For each player p ∈ P, ∀λ1, λ2 ∈ Q+. if |λ1| = |λ2| and ∀0 ≤ i ≤ |λ1|. λ1,i ∼̇ p λ2,i then λ1 ∼̈ p λ2.

We now define a function F : (V+
a → Va) → (Q+ → Σ) that will transform an iTSGS strategy into

an iNCGS strategy.

Definition The function F (fa) = S a mapping an iTSGS strategy for a player a, fa : V+
a → Va to

S a is an iNCGS strategy for the player a where S a is defined as follows: for each view sequence
ν = v0, v1, . . . , vn, for each trace sequence λ ∈ T (ν, a), if σ(λ|λ|) , a then S a(λ) = τ. On the other
hand if σ(λ|λ|) = a, then S a(λ) = [q]a whereV(fa(ν), a) = [q]a.

Notice that the iNCGS strategy S a suggests equivalence classes of states which is the action set Σ

for the iNCGS obtained by translating the iTSGS. Given a state q ∈ Q, a set A of players and a
set FA of strategies, one for each player in A, a computation λ = q0, q1, q2, . . . is an outcome in
out(q, FA) if q = q0 and for all i ≥ 0, if σ(qi) = a ∈ A then πa(qi+1) = fa(πa(λ[0, i])). This states
that a trace will be in the outcome of following a strategy if at every point along the trace, if it is
the player’s turn then the next state has the same view as suggested by the strategy. In the case
of the iNCGS strategies, let us consider a collection of strategies S A for a group of players A. A
computation λ = q0, q1, q2, . . . is an outcome in out(q, S A) if q = q0 and for all i ≥ 0, qi+1 ∈ δ(qi, v̄)
for some v̄ ∈

∏
p∈P

ep(qi) with v̄|A = S A(λ0,i). Now, we present a theorem correlating the outcomes of

iTSGS and iNCGS strategies.

Theorem 6.6.1 Let T = (S = 〈P,Q,Π, π, σ,R〉,P) be a Turn Based Synchronous Game Structure.

Let C((S ,P)) = I where I = 〈P′,Q′,Q0,Σ,Π
′, π′, e, ∼̇ , ∼̈ , δ〉. Let, A ⊆ P be a group of players. Let

FA be a collection of iTSGS strategies and S A = F (FA) be the translated strategy. Let q ∈ Q be a

state. Then a computation λ ∈ OT (q, FA) =⇒ λ ∈ OI(q, FA). Here OT (q, FA) and OI(q, S A) are the

sets of computations of T and I obtained by following FA and S A respectively.

86

Proof Let us consider an arbitrary trace λ ∈ Q+ where λ ∈ OT (q, FA). The proof is by induction
on the length of λ. If |λ| = 0, then λ = q. Since the computations are rooted at q, we will have that
λ ∈ OI(q, S A). Now, let us consider an arbitrary position i in λ up to which the theorem holds.

Let us first consider the case where σ(qi) < A. Then by the definition of C, ∀a ∈ A. ea(qi) =

τ. And the destination state is not influenced by the decisions of the players in A. Then since
λ ∈ OT (q, FA), we have that R(qi, qi+1). Let there exists a player b ∈ P and b < A, such that
σ(qi) = b. Since the strategy FA does not influence the action options for b, b will be able to choose
[qi+1]b while the players in A are acting according to S A. Then since qi+1 ∈ [qi+1]b, we will have
qi+1 ∈ δ(qi, v̄) where v̄|b = [qi+1]b and v̄|A = S A(λ0,i). Thus if λ.qi+1 ∈ OT (q, FA) then λ.qi+1 will also
be in OI(q, S A).

Now, let us consider the more interesting case of σ(qi) = a ∈ A. Now, according to the definition
of C, we have that for all states to which there was a possible transition from qi in T , the equivalence
classes of a for those states are included in ea(qi). Moreover, for all possible action vectors v̄ in qi,
we will have that v̄|p = τ for all players p ∈ P \ {a}. And by the definition of C, we have that each
state belonging to the equivalent classes [q]a in ea(qi) is a possible outcome in qi if that particular
[q]a is chosen by a. Now by the definition of F , we have that if fa(q, λ0,i) = qi+1 then we have that
S a(λ0,i) = [qi+1]a. Now since qi+1 ∈ [qi+1]a, from the definition of C we have that qi+1 ∈ δ(q, v̄)
where v̄|a = [qi+1]a. Hence we will have that λ.qi+1 ∈ O(q, S A).

We now present ATL semantics using iTSGS to show that our translation preserves it too.

ATL Semantics using iTSGS

Given a state q ∈ Q, a set A ⊆ P of players, and a set FA = { fa| a ∈ A} of strategies one for each
player in A, a computation λ = q0, q1, q2, . . . is in an outcome in out(q, FA) if Q0 = q and for all
positions i ≥ 0, if σ(qi) ∈ A, then πa(qi+1) = fa(πa(λ[0, i])) for a = σ(qi). We now present the
semantics of an ATL formula ϕ using an iTSGS T . Let q be a state in T .

• ϕ = p ∈ Π. Then q |=T ϕ iff p ∈ Π(q).

• q |=T ϕ1 ∨ ϕ2 iff q |=T ϕ1 or q |=T ϕ2

• q |=T ¬ϕ iff q 6|=T ϕ

• q |=T 〈〈 A 〉〉 © ϕ iff either σ(q) ∈ A and there exists a σ(q)-view v ∈ Πσ(q) such that for all
states q′ with R(q, q′) and πσ(q)(q′) = v and q′ |=T ϕ or σ(q) < A and for all states q′ with
R(q, q′) we have that q′ |=T ϕ.

• q |=T 〈〈 A 〉〉�ϕ iff either σ(q) ∈ A and there exists a σ(q)-view v ∈ Πσ(q) such that for all
states q′ with R(q, q′) and πσ(q)(q′) = v and q′ |=T 〈〈 A 〉〉�ϕ; σ(q) < A and for all states q′ with
R(q, q′) we have that q′ |=T 〈〈 A 〉〉�ϕ.

87

• q |=T 〈〈 A 〉〉ϕ1Uϕ2 iff there exists a set of strategies FA such in all traces λ ∈ O(q, FA), we
have that there exists a j such that λ j |=T ϕ2 and for all 0 ≤ i < j, λi |= ϕ1.

6.6.2 ATL Interpretation using iTSGS carries over to iNCGS

In [9], only well formed ATL formulae are considered. Given a turn based synchronous game struc-
ture with incomplete information a formula of the form 〈〈 A 〉〉ψ is well formed if the propositions
mentioned in ψ are a subset of the propositions that can be observed by players in A. Now an iTSGS
models an ATL formula 〈〈 A 〉〉 φ if there exists a strategy for the players in A such that in all ensuing
views φ holds. We can translate it that an iNCGS will model 〈〈 A 〉〉 φ if there exists a strategy for the
players in A such that in all ensuing outcomes φ holds. We define the function E : Q+ → (2Q)+ where
E(q0, q1, q2, . . . , p) = [q0]p, [q1]p, [q2]p, The outcome of following a strategy S a by a player p at
a state q is defined as the set of traces {λ|λ0 = q ∧ ∀i ≥ 0. ∃v̄. λi+1 ∈ δ(q, v̄) ∧ λi+1 ∈ S p(E(λ, p))}.
By our translation when a trace λ = q0, q1, . . . ∈ OT (q, FA) then λ = q0, q1, . . . ∈ OI(q, F I

A) where
F I

A = F (FA).

Theorem 6.6.2 Let ϕ be an ATL formula. Let T = 〈S ,P〉 be an iTSGS and I = C(T) be an iNCGS.

Let q be state in T . Then q |=T ϕ iff q |=I ϕ.

The inductive hypothesis is that ∀q ∈ Q. q |=T ϕ → q |=I ϕ. The base case is when ϕ is an
atomic proposition. Now we discuss the steps of structural induction where ATL formulae is built
from ϕ using the structural operators:

Proof The proof is by induction on the structure of ϕ.

• ϕ = ν ∈ Π. C maps the states in T to states in I using the identity function. It does the same
for π. Hence if we have a proposition ν′ ∈ πT (q) then it is also the case that ν′ ∈ πI(q). Thus
we will have that if a state q ∈ Q |=T p then q ∈ Q |=I p.

• Let ϕ1 and ϕ2 be two ATL formulae such that q |=T ϕ1 or q |=I ϕ1, q |=T ϕ2, q |=I ϕ2. Then we
have that q |=I ϕ1 ∨ ϕ2 by the induction hypothesis.

• 〈〈 A 〉〉 © ϕ There exists a set of strategies FA such that all state sequences λ ∈ O(q, FA) we
have that λ1 |= ϕ. q |=T 〈〈 A 〉〉 © ϕ iff either σ(q) ∈ A and there exists a σ(q)-view v ∈ Πσ(q)

such that for all states q′ with R(q, q′) and πσ(q)(q′) = v we have q′ |=T ϕ or σ(q) < A and
for all states q′ with R(q, q′) we have that q′ |=T ϕ. In this case from the definition of the
translation, there will be transitions of the form q′ ∈ δ(q, v̄) where v̄|σ(q) = [q′]p. Also due to
the translation of strategies, the translated strategy will suggest [q′]p resulting in states in [q′]p

to be chosen by the transition function. And since in each of the states in [q′]p the property
holds by the induction hypothesis it will hold in the translated iNCGS also. If σ(q) = p ∈ A

then ep(q) = {[q′]p|R(q, q′)}. Then we have that S a ∈ [q′]p for some q′. Combining with
the definition of δ in the translation and the definition of outcomes, we get for all traces

88

λ ∈ out(q, S a) will have that λ1 ∈ [q′]p. Now for all traces λ ∈ out(q, S a) we will have
that λ1 |=I ϕ using the induction hypothesis. Similarly when a < σ(q), we have λ1 |=I ϕ

using the induction hypothesis. Now, in the iTSGS world, if q |=I 〈〈 A 〉〉 © ϕ, then there
exists a strategy S A such that for all computations λ ∈ O(q, S A), we have λ1 |= ϕ. Then let
us consider the case where we have that there exists a player p ∈ A such that σ(q) = p and
[λ1]p ∈ eP(λ0). Then we have that R(λ0, λ1). Also, we can have a strategy Fp for the player p

such that πp(λ1) = fp(q, Fp) which will help satisfy 〈〈 A 〉〉 © ϕ. The case where the turn does
not belong to the players in A is very similar.

6.6.3 iCGS

Schobbens presents iCGS (incomplete information CGS) in [103]. They also use state equivalence
classes to model incomplete information. There are some differences with iNCGS. The transition
system of iNCGS is nondeterministic as opposed to deterministic transition system of iCGS. We
have notions of trace equivalence classes in addition to state equivalence classes. They consider
imperfect information about traces while considering strategies. Their motivation for opting for this
approach is that only the strategies need to consider trace equivalences. However, we wanted a more
generalized notion of trace equivalence than theirs. They also provide a classification of strategies
based on the level of incognizance about trace differences. Let us show how we can encode the
four different types of strategies as presented in [103] into iNCGS strategies with deterministic δ or
iDCGS . A strategy for a player p is a function fp : T → Σ where different types of strategies can
be obtained in the iCGS world for different type of T .

• When T = Q+, then they refer to the strategy as perfect Information and perfect Recall strat-
egy. This type of strategies can distinguish between every step of two traces of equal length
and has no information hiding whatsoever. However, what if ∼p is not an identity? Should
p’s strategy still be able to distinguish among all states? This issue is not clear from their
work. Assuming that they mean for the player’s to have complete information, we translate
iCGSIR strategies to iDCGS strategies as follows: if we have for all players p, ∼̇ p and ∼̈ p

are equalities then iCGS strategies becomes iDCGS strategies.

• iCGS strategies with perfect Information and imperfect recall have T = Q that is they can
only consider the last step of a trace and for that last step state they have perfect information.
If for all players p, we have ∼̇ p be equality and ∀λ, λ′ ∈ Q+. λ ∼̈ pλ

′ if λ0 = λ′0 then it is the
same as iCGS strategy with perfect information and imperfect recall.

• iCGS strategies with imperfect information and perfect Recall have T = [Q]+
p . If for all

players p, we have ∀λ, λ′ ∈ Q+. λ ∼̈ pλ
′ if |λ| = |λ′| then it is the same as iCGS strategy with

imperfect information and perfect recall.

89

• iCGS strategies with perfect information and imperfect recall have T = [Q]p that is they can
only consider the last step of a trace and for that last step state they have imperfect view. If for
all players p, ∀λ, λ′ ∈ Q+. λ ∼̈ pλ

′ if [λ0]p = [λ′0]p then it is the same as iCGS strategy with
imperfect information and imperfect recall.

This illustrates the use of having ∼̈ in addition to ∼̇ . One can define ∼̈ in many different ways
and achieve the interpretation they want. ∼̈ may even not require that state sequences be of equal
length. Then we can have stuttering invariance of sequences. We can make different sequences be
equivalent if they have visited a certain set of states in their journey.

Our semantics for ATL* varies from their semantics for ATL* in the handling of player modality.
Let us consider their modeling of ATL* semantics where the ATL* formula is: 〈〈 A 〉〉ϕ. Then the
ATL* semantics provided in [103] states that given a sequence of states λ

• λ |= 〈〈 A 〉〉ϕ iff there exists a set of XY strategies FA, one for each player p ∈ A, such that
∀a ∈ A.∀q′ ∼̇ aλ0.∀λ

′ ∈ O(q′, FA) we have λ′ |= ϕ.

iNCGS semantics for the same formula is:

• λ |= 〈〈 A 〉〉ϕ iff there exists a set of XY strategies FA, one for each player p ∈ A, such that
∀a ∈ A.∀q′ ∼̇ Aλ0.∀λ

′ ∈ O(q′, A, FA) we have λ′ |= ϕ.

The difference in semantics is that given a formula 〈〈 A 〉〉ϕ, we consider a more constrained view of
the states from which the ensuing traces need to satisfy ϕ. According to our definitions, q ∼̇ A q′ if
∀a ∈ A. q ∼̇ a q′. Our contention is that, given a set of agents, two states are indistinguishable from
the point of view of that set of agents if no agent in that group can distinguish among them. Let
us consider the CGS presented in Figure 6.1 and the equivalence classes presented in Section 6.5.2.
Let us assume that AirCraftAPilot cannot distinguish among the states q1 and q2 because pre-
sumably he cannot observe AirCraftBDetCollision proposition. Similarly, AircraftBPilot
cannot distinguish among states q2 and q3. Then the equivalence classes for AirCraftAPilot
can look like: {{q}, {q1, q2}, {q3}, . . .} and the equivalence classes for AircraftBPilot can look
like: {{q}, {q1}, {q2, q3}, . . .}. Now if we are trying to evaluate q2, q3, q4 |= 〈〈 AirCraftAPilot,

AircraftBPilot 〉〉ϕ, then for a pair of strategies for the two pilots, iCGS semantics will con-
sider traces emanating from q1 because, q1 ∼̇ AirCraftAPilot q2, traces emanating from q3 because,
q2 ∼̇ AircraftBPilot q3 and of course the traces emanating from q2. Our semantics will only consider
the traces emanating from state q2.

6.6.4 Game Arenas

Dima et al present model checking ATL with knowledge, imperfect information, perfect recall and
communicating coalitions in [43]. They interpret ATL formulae over game arenas. A game arena
Γ = 〈Ag,Q, (Σa)a∈Ag, δ,Q0, (Υa)a∈Ag, γ〉 is defined as:

90

• Ag is a set of agents

• Q is a set of states

• Σa is a finite set of actions for agent a. We use ΣA to denote all tuples of action choices for the
players in A: ΣA = Π

a∈A
(Σa). We will also use Σ = ΣAg.

• Q0 ⊆ Q is the set of initial states

• Υa is a finite set of propositions observable by agent a. ΥA =
⋃
a∈A

Υa and Υ = ΥAg

• γ : Q→ 2Υ is the state labeling function

• δ : Q × Σ→ (2Q \ {})

They use q
c
−→ r for transitions (q, c, r) ∈ δ. Now, we show how to convert an iNCGS C =

〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δiNCGS 〉 into a game arena Γ = 〈Ag,Q, (Σa)a∈Ag, δ,Q0, (Υa)a∈Ag, γ〉.

Definition Let C = 〈P,Q,Q0,ΣiNCGS ,Π, π, e, ∼̇ , ∼̈ , δiNCGS 〉 be an iNCGS. Then we define a con-
version function G : iNCGS → Game Arena where G(C) = 〈Ag,Q, (Σa)a∈Ag, δ,Q0, (Υa)a∈Ag, γ〉 is
defined as follows:

• Ag = P

• Q = Q ∪ {qs}

• for each agent a ∈ Ag, Σa =
⋃

q∈Q
ea(q)

• Q0 = Q

• ∀a ∈ Ag.Υa = {ζ ∈ Π | ∀q1, q2 ∈ Q. q1 ∼̇ aq2 → (ζ ∈ π(q1)↔ ζ ∈ π(q2)}

• ∀q ∈ Q. γ(q) = π(q) and π(qs) = {}

• for each state q ∈ Q, for each c̄ ∈ ΣAg, if ∀a ∈ Ag. c̄|a ∈ ea(q) then ∀q′ ∈ δiNCGS (q, c̄). (q, c̄, q′) ∈
δ else (q, c̄, qs) ∈ δ.

In this translation qs is a sink state. Given an arena Γ, a run ρ is a sequence of transitions q′i
ci
−→ qi

′′

where for all i, q′i+1 = qi
′′. Given a run ρ = q0

c1
−→ q1

c2
−→ q2 . . ., qi is denoted by ρ[i] and ci+1 is

denoted by act(ρ, i). Runs ρ and ρ′ are indistinguishable from the point of view of a coalition of
agents A ⊆ Ag denoted ρ ∼A ρ′ if |ρ| = |ρ′|, act(ρ, i)|A = act(ρ′, i)|A for all i < |ρ|, and γA(ρ[i]) =

γA(ρ′[i]) for all i ≤ |ρ|. Here γA(q) = γ(q) ∩ ΥA. We denote γA(ρ) = γA(ρ[0]), γA(ρ[1]),
A strategy for a coalition A in a game arena is a function σ : (2ΥA)∗ → ΣA. A strategy σA is

compatible with a run ρ if for all i ≤ |ρ|, we have σA(γA(ρ[0, i])) = ci+1|A. Thus game arena agent
strategies are deterministic. A deterministic strategy FA for a group of players A ∈ P in an iNCGS is

91

a collection of strategies where each strategy is a function Fa : Q+ → Σ. A set of strategies FA can be
converted to a strategy for a coalition A, where for every sequence of states λ, σA(γA(λ)) =

∏
a∈A

Fa(λ).

Every computation λ ∈ O(q, A, FA) will correspond to a run ρ = q0
c1
−→ q1

c2
−→ q2 . . . = R(λ, A, FA)

where for all i ≥ 0, we have q0 ∈ Q0, qi ∈ [λi]A, ci|A = FA(λi). ρ will be compatible with σA by
definition of compatibility.

[43] considers the logic ATLD
iR: distributed knowledge, incomplete information and perfect recall

ATL. The syntax of is presented below:

ϕ = p ∈ Π | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈 A 〉〉 © ξ | 〈〈 A 〉〉 ξ1 U ξ2 | 〈〈 A 〉〉 ξ1 W ξ2 | KA(ϕ)

ATL syntax is contained in ATLD
iR syntax. Satisfaction of an ATL formula with respect to a given

game arena Γ, an infinite run ρ with ρ[0] ∈ Q0 and a position i in ρ can be excerpted from the ATLD
iR

semantics provided in [43] as:

• (Γ, ρ, i) |= p if p ∈ γ(ρ[i]).

• (Γ, ρ, i) |= ϕ1 ∧ ϕ2 if (Γ, ρ, i) |= ϕ1 and (Γ, ρ, i) |= ϕ2.

• (Γ, ρ, i) |= ¬ϕ if (Γ, ρ, i) 6|= ϕ.

• (Γ, ρ, i) |= 〈〈 A 〉〉 ©ϕ if there exists a strategy σA such that (Γ, ρ′, i + 1) |= ϕ for all infinite runs
ρ′ such that ρ′[0] ∈ Q0 which are compatible with σA and satisfy ρ′[0..i] ∼A ρ[0..i].

• (Γ, ρ, i) |= 〈〈 A 〉〉ϕ1Uϕ2 iff there exists a strategy σA such that for all infinite runs ρ′ such that
ρ′[0] ∈ Q0 which are compatible with σA and satisfy ρ′[0..i] ∼A ρ[0..i], there exists j ≥ i such
that (Γ, ρ′, j) |= ϕ2 and (Γ, ρ′, k) |= ϕ1 for all k = i, . . . , j − 1.

With all the necessary concepts in place we now show that if an ATL formula ϕ holds of a state
q ∈ Q in the iNCGS then it will hold of traces starting at q in the translated game arena.

Theorem 6.6.3 Let C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δiNCGS 〉 be an iNCGS. Let G(C) = Γ where

Γ = 〈Ag,Q, (Σa)a∈Ag, δ,Q0, (Υa)a∈Ag, γ〉. Let ϕ be an ATL formula. Then q |= ϕ if (Γ, ρ, 0) |= ϕ where

ρ is any infinite run of Γ with ρ[0] = q.

Proof The proof is by induction on the structure of ϕ.

• ϕ = υ ∈ Π. Then if q |= υ, then υ ∈ π(q) and hence υ ∈ γ(ρ[0]). Then (Γ, ρ, 0) |= υ as
υ ∈ γ(ρ[0]).

• Similar reasoning works for ϕ = ϕ1 ∧ ϕ2 and ϕ = ¬ϕ′.

• q |= 〈〈 A 〉〉 © ϕ if there exists a set of strategies FA such that for all computations λ ∈
O(q, A, FA), λ1 |= ϕ. Since every set of strategies FA can be translated into an equivalent

92

strategy σA such that every (Γ, ρ′, i + 1) |= ϕ for all infinite runs ρ′ with ρ′[0] ∈ Q0 which are
compatible with σA and satisfy ρ′[0..i] ∼A ρ[0..i]. Then we have that there exists a strategy
σA such that every infinite initialized run ρ′ compatible with σA, we have (Γ, ρ′, 1) |= ϕ due to
inductive hypothesis.

• q |= 〈〈 A 〉〉ϕ1Uϕ2, q |= 〈〈 A 〉〉�ϕ proof is similar.

This proof allows us to provide an alternate proof that there exists an algorithm for determining
whether a state in an iNCGS C satisfies an ATL formula ϕ. We can use the semantics preserv-
ing reduction of iNCGS into a game arena and conclude that since there exists an algorithm for
model checking ATL formula satisfaction with respect to a game arena, there exists an algorithm for
checking ATL formula satisfaction with respect to an iNCGS.

6.7 Variations of iNCGS

iNCGS has the capability to encode both non-deterministic transition system and incomplete obser-
vational capability of players. We now show how we can obtain different variations of an iNCGS.
Let us assume we have an iNCGS C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δ〉.

NCGS A Nondeterministic Concurrent Game Structure(NCGS) with complete observational capa-
bility of the players can be obtained by restricting the state equivalence classes and the trace
equivalence classes to be identities. For all p ∈ P, for all q1, q2 ∈ Q, we must have that
q1 ∼̇ pq2 iff q1 = q2. Similarly, for all p ∈ P, for all λ1, λ2 ∈ Q, we must have that λ1 ∼̇ pλ2 iff
λ1 = λ2. Two state sequences λ1 and λ2 are the same if |λ1| = |λ2| and ∀i ≥ 0. λ1(i) = λ2(i)

DCGS A Deterministic Concurrent Game Structure(DCGS) with complete observational capability
of the players can be obtained by restricting the state equivalence classes and the trace equiva-
lence classes to be identities and adding the constraint to make all the transitions deterministic:
∀q ∈ Q. ∀v̄ ∈

∏
p∈P

ep(q). |δ(q, v̄)| = 1. If Q0 is a singleton then DCGSs in fact coincide with

CGSs as presented in [9].

iDCGS A incomplete information Deterministic Concurrent Game Structure(DCGS) with incomplete

observational capability of the players can be obtained by just adding the constraint to make
all the transitions deterministic: ∀q ∈ Q. ∀v̄ ∈

∏
p∈P

ep(q). |δ(q, v̄)| = 1.

6.8 Strategic Modeling of Human Behavior

We focus on obtaining a suitable formalism for modeling human operator behavior. On this track we
now present another method of modeling human behavior. We present a semantics of ATL where
a group of human operators has decided on a course of action and wants to know whether their

93

plan of action can help them maintain a desired property. We find that modeling human operator
behavior through the e function of a CGS or an iNCGS can be too simplistic because the e function
is memoryless. Given a current state of affairs, using e function as behavior model, the human
operators only rely on the current state to offer a set of possible actions. However, in real life,
humans may vary their behavior based on their previous experience, guidance and training. Let us
consider the supermarket checkout scenario presented in Section 4.4. Here in the initial state, the
customer needs to press the Start button on the touch-screen display. Then they are supposed to
scan each item and then put it in the bags in the bagging area. The system can detect if an item has
been placed in the bagging area before having been scanned. Thus at this state, bagging an item is a
safe but not recommended action. Now let us assume the customer has never used the system before
and is a little confused about the order in which he should perform the necessary actions. He picks up
the first item and instead of placing it in front of the scanner, he places it inside a bag in the bagging
area. The scale detects the weight of an unscanned item and alerts the attendant. The attendant
comes in and puts the item back in the cart and restores the system to the previous state. Now this
time, the customer is aware of the correct sequence of steps he needs to perform and from now on
at this state he only chooses to perform the scanning of an item action. Thus his behavior changed
with his experience. he enabled action function e of a CGS will always offer the same set of actions
to the customer. He can always choose between scanning or bagging an item. One can attempt to
remedy this situation with having two copies of the state, one where a proposition indicating that
the customer has had such an experience is set to be true and one where such a proposition is set to
be false. However, we would like to have an easier and more succinct method of modeling history
dependent human behavior.

6.8.1 Human Behaviors as Strategies

A strategy for a player is a game plan that prescribes actions to him at each state depending upon the
states that have already been traversed in order to reach that state. The type of strategies is Q+ → Σ.
Thus given a history of states, the strategy suggests the next move to a player. The strategies are a
better model for human behaviors as they provide a mechanism to model history dependent human
action choices. Let us consider the supermarket self-scan checkout scenario situation again. Let
us consider a CGS corresponding to the scenario as presented (partial) in Figure 6.2. In state q0,
the customer presses the Start button and the CGS moves to state q1. Now, the customer may
bag an item or scan an item. If he puts the item in the bag then an alarm is raised by the scale.
The attendant can remedy the situation and make the self-scan system return to state q1. But from
now on, the customer does not want any repeat of the alarm incident and always scans an item first.
Thus the behavior of this customer is that given a history of just q0, q1, he may choose between
bagging an item and scanning an item. But given a history of q0, q1, q2, q1, he will only choose the
action of scanning an item. Thus we can describe this human behavior with a strategy S customer

94

Figure 6.2: CGS for self-scan checkout scenario

where S customer(q0) = PressStart, S customer(q0, q1) = BagItem(i), S customer(q0, q1, q2, q1) =

ScanItem(i).
We are also interested in determining what behavior guarantees human behaviors should provide

in order to ensure safe operation for the computer system. Given a human behavior we may ask the
whether the human behavior conforms to the protection envelope guarantee. One may ask: given
a human behavior, can it help maintain system safety? This gives rise to the concept of a human
behavior strategy satisfying an ATL property in an iNCGS. Moreover, we notice that in the original
semantics of ATL, once a strategy is chosen for a player it is not fixed for the player. A player
may change his strategy whenever a coalition involving him is encountered in a formula. Thus we
cannot reason about a single strategy modeling a behavior using the usual ATL semantics. We need
to perform irrevocable strategy modeling of behaviors in the manner of Ågotnes et al in [7]. In order
to help ascertain whether a behavior conforms to a guarantee, we present an alternate semantics of
ATL formulae.

6.8.2 Strategic Semantics of ATL using iNCGS

We call the semantics of ATL formulae defined over player strategies in iNCGS: strategic semantics.
This semantics deviates from the usual concept of ATL semantics using iNCGS in these ways: (i) it
provides an understanding of whether a strategy for a set of players are sufficient for satisfying an
ATL formula, (ii) it affixes strategies to players: once a strategy is chosen for a player the strategy
can not be revoked or modified during the rest of the analysis. Essentially, this provides us with
a mechanism to assess the “goodness” of a strategy. A strategy for a group of players is good if
the group of players can help maintain a guarantee by following the strategy. Given an iNCGS
C = 〈P,Q,Q0,Σ,Π, π, e, ∼̇ , ∼̈ , δ〉, a state q ∈ Q, a set of players P ⊆ P, a set of strategies S P

95

containing one strategy for each player in P, a state q and an ATL formula ϕ, we now present
strategic semantics:

• P,C, q, S P |= ν ∈ Π if ν ∈ π(q).

• P,C, q, S P |= ¬ϕ if P,C, q, S P 6|= ϕ

• P,C, q, S P |= ϕ1 ∨ ϕ2 if P,C, q, S P |= ϕ1 or P,C, q, S P |= ϕ2

• P,C, q, S P |= 〈〈 P′ 〉〉 © ψ if there exists a set of strategies S P′\P such that ∀q ∈ [q]a. ∀λ ∈

O(q′,C, S P ∪ S P′). ∀λ′ ∼̈ Pλ. P ∪ P′,C, λ′1, S P ∪ S P′ |= ψ

• P,C, q, S P |= 〈〈 P′ 〉〉�ψ if there exists a set of strategies S P′\P such that ∀q′ ∈ [q]a. ∀λ ∈

O(q′,C, S P ∪ S P′). ∀λ′ ∼̈ Pλ. ∀i ≥ 0. P ∪ P′,C, λ′i , S P ∪ S P′ |= ψ

• P,C, q, S P |= 〈〈 P′ 〉〉ψ1U ψ2 if there exists a set of strategies S P′\P such that ∀q′ ∈ [q]a.

∀λ ∈ O(q′,C, S P ∪ S P′). ∀λ′ ∼̈ Pλ. ∃ j ≥ 0. ∀0 ≤ i < j. P ∪ P′,C, λ′i , S P ∪ S P′ |= ψ1 and
P ∪ P′,C, λ′j, S P ∪ S P′ |= ψ2

Now we can ask of a human behavior or any strategy of any player in an iNCGS being sufficient for
satisfying an ATL property. We have not yet explored the feasibility of model checking strategic ATL
semantics in iNCGS. However, we believe model checking for the strategic semantics for ATL can
be achievable following the work of Ågotnes et al. They presented ATL with irrevocable strategies,
IATL and MIATL in [7]. There they perform tree unfolding of CGSs and update the unfolded CGS
according to chosen irrevocable strategies. However, even in the CGS setting, model checking ATL
with irrevocable strategies are NP-complete.

6.9 Alternative Semantics for ATL*

We have presented an alternate method for modeling human behavior and judging whether that
behavior will be sufficient in maintaining protection envelope guarantees. Let us first focus on
human behavior. Behavior is the choice of action in a scenario. The same human may choose
different actions in the same scenario depending upon how he arrived at that scenario. This led us
to considering strategies as models for human behavior. However, the strategies considered this far
are prescriptive in nature. For every history and a current state, the strategy suggests only one next
possible move. However, human behavior may not be so deterministic in nature. Let us consider the
example scenario presented in Section 6.2. AirCraftAPilot had information from both the ATC
and his own aircraft. The ATC recommendation was to descend and AircraftA recommendation
was to ascend. However, he was unsure of the capability of his aircraft being able to operate safely
in higher altitudes and decided to follow the ATC. However, the same pilot may have chosen the
AircraftA direction in the same situation. A strategy/behavior for the AirCraftAPilot for this

96

situation will have to provide both these action options to the AirCraftAPilot. In order to be able
to provide such a semantics, we first define nondeterministic strategies. In the discussion below, for
the sake of simplicity, we use NCGS as our ongoing model at first to present some concepts.

6.9.1 Nondeterministic Strategies

Definition Let us consider an NCGS C = 〈P,Q,Q0,Σ,Π, π, e, δ〉. A strategy for a player p ∈ P is a
function s : Q+ → 2Σ \ {}, where for each λ ∈ Q+ we must have s(λ) ⊆ ep(λ|λ|).

Given a state q ∈ Q, a set of players P ⊆ P, and a set S P = {sp|p ∈ P} of nondeterministic strategies,
we define the outcomes of following the strategies in S P from a state q to be the set O(q,P, S P) of
q-computations such that a q-computation λ = q0, q1, . . . ∈ O(q,P, S P) if q0 = q and for all positions
i ≥ 0, there is an action vector ā ∈

∏
p∈P

ep(qi) such that (i) ā|p ∈ sp(λi
0) and (ii) qi+1 ∈ δ(qi, ā). A

nondeterministic strategy S p is a deterministic strategy for the player p if ∀λ ∈ Q+. |S p(λ)| = 1.
Every deterministic strategy is a nondeterministic strategy. Deterministic strategies are the same
as strategies presented in [9]. In order to determine how nondeterministic strategies are related to
deterministic strategies we first define strategy refinement and then state the relationship between
the outcomes of following two strategies where one is a refinement of the other.

Definition Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS, P,P′ ⊆ P be two sets of players where
P ⊆ P′. Let S P and S ′

P′
be sets of strategies for the players in P and P′. Then S P is a refinement

or substrategy of S ′
P′

w.r.t. the set of players Ps ⊆ P denoted by S P vPs S ′
P′

if we have that
∀p ∈ P. ∀λ ∈ Q+. if p ∈ Ps then S p(λ) ⊆ S ′p(λ) else S p(λ) = S ′p(λ).

Lemma 6.9.1 Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS. LetP ⊆ P be a set of players in C and let

S P and S ′
P

be two sets of nondeterministic strategies where S P vP S ′
P

. Then ∀q ∈ Q. O(q,C, S P) ⊆
O(q,C, S ′

P
).

Proof Let us consider a state q ∈ Q. Let r be a q-computation such that r ∈ O(q,C, S P). For all
i ≥ 0, there exists an action vector ā such that ri+1 ∈ δ(ri, ā) and ∀p ∈ P. ā|p ∈ S p(ri

0). Then by
Definition 6.9.1 we have ∀p ∈ P. ā|p ∈ S ′p(ri

0). Hence we can say r ∈ O(q,C, S ′
P

).

6.9.2 Strategic Semantics of ATL* with NCGS without Strategy Refinement

In the original semantics of ATL* [9], whenever a player restriction is reached all responsibility of
satisfying the rest of the formula is delegated to those players and they can chose a new course of
action even if they had been proceeding with a different plan beforehand. The strategy for a group
of players P under consideration should not be revoked if another coalition of players are trying to
formulate a strategy to make parts of ϕ to be true. Instead the strategy under consideration should be
consulted at every step a strategy for a player in P is needed. We now present a semantics for ATL*

97

which deviates from this approach in three ways: (i) it handles nondeterministic strategies, (ii) it
provides an understanding of whether a strategy for a set of players are sufficient for satisfying an
ATL* formula, (iii) it affixes strategies to players: once a strategy is chosen for a player the strategy
can not be revoked or modified during the rest of the analysis. Given an NCGS C, a state q, a set
of players P, a set of nondeterministic strategies S P containing one strategy for each player in P, a
state q and an ATL* formula ϕ, we now present strategic semantics for ATL*:

• P,C, q, S P |=I ν ∈ Π if ν ∈ π(q).

• P,C, q, S P |=I ¬ϕ if P,C, q, S P 6|=I ϕ

• P,C, q, S P |=I ϕ1 ∨ ϕ2 if P,C, q, S P |=I ϕ1 or P,C, q, S P |=I ϕ2

• P,C, q, S P |=I 〈〈 P
′ 〉〉ψ if there exists a set of strategies S P′\P such that ∀λ ∈ O(q,C, S P ∪

S P′). P ∪ P′,C, λ, S P ∪ S P′ |=I ψ

• P,C, λ, S P |=I ψ if P,C, λ0, S P |=I ψ

• P,C, λ, S P |=I ¬ψ if P,C, λ, S P 6|=I ψ

• P,C, λ, S P |=I ψ1 ∨ ψ2 if P,C, λ, S P |=I ψ1 or P,C, λ, S P |=I ψ2

• P,C, λ, S P |=I ©ψ if P,C, λ∞1 , S P |=I ψ

• P,C, λ, S P |=I ψ1U ψ2 if ∃ j ≥ 0. ∀0 ≤ i < j. P,C, λ∞i , S P |=I ψ1 and P,C, λ∞j , S P |=I ψ2

Now that we have nondeterministic strategies and strategic semantics in place we can relate the two
concepts.

Theorem 6.9.2 Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS. Let P ⊆ P be a set of players and

let S P be a set of nondeterministic strategies and q ∈ Q be a state. Then P,C, q, S P |=I ϕ iff

∀S ′
P
vP S P. P,C, q, S ′P |=I ϕ.

Proof Given P,C, q, S P |=I ϕ. The most interesting case is again when ϕ = 〈〈 P′ 〉〉ψ. Then by
definition we have that there exists a set of strategies S P′\P for players in P′ \ P such that ∀λ ∈
O(q,C, S P ∪ S P′\P). P ∪P′,C, λ, S P ∪ S P′\P |=I ψ. Now let us consider a nondeterministic strategy
S ′
P

such that S ′
P
vP S P. Then we have S ′

P
∪ S P′\P vP S P ∪ S P′\P by Definition 6.9.1. Then from

Lemma 6.9.1 we know that O(q,P, S ′
P
∪ S P′\P) ⊆ O(q,P, S P ∪ S P′\P). Combining all these facts

we get, ∀λ ∈ O(q,P, S ′
P
∪ S P′\P). P ∪ P′,C, λ, S ′

P
∪ S P′\P |=I ψ. Hence, P,C, q, S ′

P
|=I 〈〈 P

′ 〉〉ψ .
Since we proved it for an arbitrary subset of S P, this result will hold for all possible substrategies of
S P.

Corollary 6.9.3 Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS. Let S N
P

be a set of nondeterministic

strategies for a set of players P. Then P,C, q, S N
P
|=I ϕ iff there exists a set of deterministic strategies

S D
P

such that P,C, q, S D
P
|=I ϕ.

98

Proof (Sketch) Let us construct the deterministic strategies S D
P

: for each λ ∈ Q+ and for each
p ∈ P, we set S D

p (λ) = {a} where a ∈ S N
p (λ). Then by Definition 6.9.1 we have S D

P
vP S N

P
. Now

from Theorem 6.9.2 we have P,C, q, S D
P
|=I ϕ. For proof in the other direction, we observe that

every deterministic strategy is a nondeterministic strategy. Then if we have P,C, q, S D
P
|=I ϕ then

there exists a set of nondeterministic strategies S N
P

such that P,C, q, S N
P
|=I ϕ where S N

P
= S D

P
.

Ågotnes et al proposes modeling irrevocable strategies and presents MIATL (Irrevocable strategy
ATL with memory) in [7]. They perform model update every time a strategy is fixed for a player.
Model updates are essentially restricting the e function according to a strategy. Since their strategies
are deterministic ones the e function cannot be further refined even if the player again gets a chance
to choose a strategy. They first provide a tree unfolding of CGSs and then restrict the tree-like
unfolded CGS according to the strategy under consideration. Our semantics carries the strategies
around instead of updating the models with them. We now show how we can relate the two different
types of semantics.

Theorem 6.9.4 Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS and φ be an ATL* formula. Then for a

state q ∈ Q, for a set of players P ⊆ P, {},C, q, e |=I ϕ iff C, q |=MIAT L∗ ϕ.

Proof (Sketch) If {},C, q, e |=I ϕ then we can show that C, q |=MIAT L∗ ϕ by induction on the structure
of ϕ. The only interesting case is when ϕ = 〈〈 P 〉〉ψ. At that point a nondeterministic strategy is
affixed to every player in P. Then by Corollary 6.9.3, there are deterministic strategies that can be
affixed to these players. From now on players in P will behave according to those strategies. In
[7], C (or rather its tree unfolding) is updated with some deterministic strategies for P. We can
use the strategies chosen in our semantics as witness strategies used by their semantics. Then the
outcomes in our semantics will be the same as outcomes in their updated model. Proof for the
opposite direction is similar.

6.9.3 Model Checking Complexity

In [7], the model checking complexity for IATL (irrevocable strategy ATL) is determined by showing
a translation of deterministic CGSs to model checking ATLir of [103]. Following this path we
determine complexity of model checking ATL* with irrevocable strategies with NCGSs. First we
translate the NCGS C to a deterministic CGS D. Then we consider a tree unfolding [7] of the DCGS.
Since we start with a specific set of strategies we update the tree model with the those strategies
first and then perform MIATL model checking on that updated tree model. Since MIATL model
checking on a CGS equivalent to IATL model checking on a tree unfolding of the CGS, MIATL
model checking is of the same complexity as IATL model checking [7]. So model checking ATL*
with irrevocable strategies with NCGSs is in NP wrt the size of the model and the formula.

99

6.9.4 Strategic Semantics of ATL* with NCGS with Strategy Refinement

The previous semantics does not allow any modification of a strategy chosen for a player. We now
provide a strategic semantics which is more flexible in the sense that each new player coalition will
allow the players to refine the strategies assigned to them. They will still have to operate within the
constraints set by the initial strategy but they will have the option to further restrict their choices
each time a player coalition involving them is considered. This semantics is presented below with
the help of notions of strategy refinements. Given a a set of players P, a set of strategies S P
containing one strategy for each player in P, a state q and an ATL* formula ϕ, we present strategic
semantics with strategy refinements as follows:

• P,C, q, S P |=R 〈〈 P
′ 〉〉ψ if there exists a set of strategies S P′\P a set of strategies S ′

P
where

S ′
P
vP S P such that ∀λ ∈ O(q,C, S ′

P
∪ S P′\P).P ∪ P′,C, λ, S P ∪ S P′\P |=R ψ

Since this semantics relies on the existence of a substrategy for S P that will be sufficient to maintain
an ATL* guarantee, we can relate S P with its substrategies only in the following manner.

Theorem 6.9.5 Let C = 〈P,Q,Q0,Σ,Π, π, e, δ〉 be an NCGS. Let P ⊆ P be a set of players and let

S P be a set of nondeterministic strategies and q ∈ Q be a state. If P,C, q, S P |= ϕ then ∃S ′
P
vP S P

such that P,C, q, S ′
P
|= ϕ.

Proof Given P,C, q, S P |= ϕ. The most interesting case is again when ϕ = 〈〈 P′ 〉〉ψ. Then by
definition we have that there exists a set of strategies S P′\P for players in P′ \ P and a substrategy
S ′′
P

such that ∀λ ∈ O(q,C, S ′′
P
∪ S P′\P). P ∪ P′,C, λ, S ′′

P
∪ S P′\P |= ψ. From these facts we can say

P,C, q, S ′
P
|= 〈〈 P′ 〉〉ψ because S ′

P
is a refinement of itself.

6.10 Summary

We have presented iNCGSs capable of handling incomplete information and nondeterminism. We
have presented ATL and ATL* semantics with respect to iNCGS. We have presented a symbolic
model checking algorithm for model checking ATL with respect to iNCGS. We also demonstrate
how iNCGSs can relate to other existing multi-agent game structures with incomplete information
like iTSGS and game arenas. We have presented strategies as an improved modeling formalism
for human behavior. We provide semantics for ATL and ATL* where we judge whether a human
behavior modeled using a strategy can satisfy a property.

100

Chapter 7

Related Work

7.1 Human Task Execution Analysis

7.1.1 Operator Task Analysis

The term “Operator Task Analysis” was first proposed by Lees in [72]. This work, and others with
similar objectives [52, 67], aims to determine how a task is actually accomplished by human opera-
tors, what special factors are involved in or required of the operators to accomplish the goal the task
is supposed to achieve. This provides insight into how human operators interact with the machines
and possibly indicates how the machinery can be improved to simplify the operator task. A key goal
is to analyze the possible operator action variances from a specified set of tasks depending upon
environmental effects. Hierarchical Task Analysis (HTA) performs similar tasks by decomposing
complex tasks in a hierarchical manner [42]. Action Error Analysis (AEA) [112, 113] attempts to
find the possible future deviations in operator behavior. Work Safety Analysis (WSA) [112, 122]
analyzes each step in a specific task and analyze how variations in performing that step can cause
different types of hazards. Tasks have been formally modeled using graphical techniques like fault
trees [74], cause-sequence diagrams, Petri nets and logical techniques like real time logic [61] and
predicate logic [62]. Operator Function Model (OFM) [85] provides a finite state machine based
analytical tool to give a task analytic structure of operator behavior. However OFM lacks ability
to efficiently model and analyze concurrent system parts. Object-Z [25] is an object-oriented task
specification language that formally models operator tasks. Although it models some operator action
aberrations like repetition and omission, it does not model concurrency.

7.1.2 Human Reliability Analysis

Another closely related field of study is Human Reliability Analysis (HRA) which mostly performs
probabilistic study of possible influence of environment on humans to find variations in human op-
erator actions. The goal of HRA is mostly focused on determining the actions in the protection
envelope so that the system can be extended or designed to be able to tolerate such actions. First
generation HRA techniques mostly computed the probability that a human operator will make a cer-

101

tain kind of error. Second generation HRA techniques like HEART [124], MERMOS [20], CREAM
[57], ATHEANA [35] attempt to improve the first generation HRA techniques by performing hu-
man error analysis at different levels of system implementation like design, creation, and operation
stages. This work also considers the effect of various contexts on human behavior while interacting
with computer systems.

7.1.3 Workflow

Apart from HRA techniques, there is an emerging research trend for specifying, modeling and ver-
ifying human workflow using the currently available workflow specification techniques often orig-
inally aimed at modeling business processes implemented as web services. The most prominent
workflow specification techniques are Yet Another Workflow Language (YAWL) [120], and the
Business Process Execution Language (BPEL) [10]. UML [45] also provides a graphical method
for similar applications. BPEL is (arguably) the most widely accepted technique by the business
community. Both BPEL and YAWL provide tools for modeling workflow. However, generic work-
flow languages treat human operators as any other elements of the system. Hence a need to specialize
workflow specification languages to support the unique human operators is a new area of attention.
BPEL has been extended for human task specification to give BPEL4People [6] which is capable of
describing distinguished tasks to be performed by specific group of people. The YAWL system uni-
formly supports several types of human task allocation and handling. Collaborative Activity Human
Workflow (CAHW) [115] provides support to specify human workflow and activities and collabo-
ration among them. These human workflow specification techniques are only aimed at specifying
recommended workflow for human operators and do not provide support for describing or reasoning
about operator variances.

Workflow Verification

Typically workflow verification entails determining whether a workflow is deadlock free, live, live-
lock free, conforms to the desired goals and so on. Many different formal models have been re-
searched on their usability as the model for workflow analysis. Many of the major process algebra
formalisms have been used for this purpose including studies based on CSP [125], Communicating
Concurrent Systems (CCS) [83, 111], and the π-Calculus [84, 95]. Moreover, BPEL4People has
been formally modeled using CSP [129]. Among non-process algebraic models, the most promi-
nent is that of Petri nets [90, 118]. Petri nets have both graphical appearance suitable for workflow
modeling and mathematical model for analysis. They can be used to model YAWL, which, in turn,
can model a wide range of workflow patterns [121, 5, 118]. WorkFlow net or WF-net [119] is
an extension of Petri nets for expressing business processes. We used CSP to model and analyze
operator workflow in our hospital AIDC project [51]. The main correctness properties there were
proved by hand, but we also tried to prove them with formal tools that support CSP. We first used

102

FDR2 (fsel.com) a model checker for CSP process to try to verify some refinement theorems for
the model of our system. Then we used an interactive theorem prover for CSP processes namely the
CSP-Prover [60] to attempt to prove the same refinement theorems. CSP-Prover is built on top of
the Isabelle theorem prover (isabelle.in.tum.de).

In another direction in the formal analysis of workflows, LTL-WF [127] combines WF-nets and
linear temporal logic so that expressing temporal properties for workflows becomes easier. Logic
(CTR) [40] is used to specify, analyze, and schedule workflows. YAWL has a model checker incor-
porated in its available software (yawl-system.com) for verifying some aspects of a workflow ex-
pressed using YAWL. The YAWL model checker models YAWL workflows using reset nets [11, 44],
a generalized version of Petri nets capable of handling multiple tokens at a time.

7.1.4 Web Services Orchestration

Web services orchestration [89] provides a standards-based approach for allowing web services to
interact together to create a higher level business process. Web service choreography is more collab-
orative in nature in the sense that it tries to track and manage public interactions among multiple web
services. Orchestration and choreography standards are required to ensure that the underlying in-
frastructure can handle workflow variations like errors and time outs and to allow for compensating
transactions. Compensating transactions are tasks performed to undo a transaction without causing
dependent or related transactions to abort. Compensation techniques [48] seek to semantically re-
move the effects of a transaction in a manner that preserves the consistency of the overall system.
Compensation is essentially a way to create a protection envelope, but compensation techniques in
the current literature are oriented toward database transactions rather than operator error.

7.1.5 Fault-Tolerant System

Fault-tolerant or fail-safe system design is another related field of work [44]. Fault-tolerant system
aim to design systems that can continue executing even when parts of the system fail. Byzan-
tine fault tolerance techniques [71, 28] aim to sustain overall system functionality even when some
components are not only behaving erroneously but also acting inconsistently while interacting with
multiple other components. Fault-tolerant system design is devoted to first determining which parts
of a hardware system, or in some cases software [77], may fail, how critical its failure will be, what
measures (viz. redundancy) can be taken to ensure that in case of such a failure enough backup mea-
sures are present to mitigate the fault and keep the overall system functioning. So, while our goal is
to focus on the actions of the users of the system causing a possible error, their focus is on the com-
puter system itself failing to function properly. Another noteworthy work is the simplex reference
model for fault-tolerant systems as given in [36] which comprises of four components: the external
environment influencing the operation of the system, knowledge about its external environment, the
machine control part which should be fault tolerant through redundancy, and the safety requirements

103

fsel.com
isabelle.in.tum.de
yawl-system.com

that should be maintained to guarantee a certain level of operation in the face of faults occurring in
the system or its use. The underlying idea of this work is similar to our goal, but our focus here is
on modeling and analyzing the human component of the external environment and how its behavior
variance affects the safety requirements.

7.1.6 Formal Models for Human Actions

Lindsay et al use CSP to model operator behaviors for an air-traffic control scenario in [76]. They
use temporal logic assertions to formally analyze human errors in that setting. Their focus is more
on the cognitive aspects of human errors. It is also not clear from their work how they realize their
idea of model checking CSP process traces against temporal logic properties. Another sequence of
works on human cognitive process modeling is that of Curzon et al [37, 39, 101, 38]. They formally
model and verify the human cognitive process: how a human interprets the interface provided to
him by a system, what actions he may perform based on his interpretations. They mostly model
the outcomes of human cognitive process as nondeterministic choice between all possible correct
and erroneous decisions. This is the same as our approach. Although we focus not on the human
decision process but on the actual decision, our nondeterministic choice model for decision among
possible actions is the same as their approach. Our technique implicitly models human cognitive
process.

In [105] Shin et al use graphs and deterministic finite state automata to model and analyze human
operator behavior. However, their approach is limited to recommended behavior analysis. Clarke et

al show in [33] how medical processes or any human-intensive processes can be specified using a
process specification language Little-JIL, and then subsequently translated to finite state automata
and analyzed for satisfaction of desired properties. Their focus is on providing a collaborative task
decomposition for humans to follow. At each level of decomposition, Little-JIL also allows model-
ing the actions recommended to the humans to take if an exceptional situation arises. For example, a
customer goes to purchase a train ticket but finds out all tickets have been sold. Our focus is different
from their work in that we only consider basic recommended actions and do not consider advices
for exceptional situations. We are more concerned about how the humans themselves can cause
exceptions instead of how they should handle the exceptional situations. We determine whether the
system is robust against exceptional situations caused by the humans. However, our recommended
task descriptions are very simple sequences and handling hierarchical description of a recommended
task is a future direction. There is another aspect in which our methodology is different from their
methodology. In their work, primary focus is on human task decomposition modeling. The com-
puter system is not modeled using Little-JIL. It is encoded in the language of the model checker
they use later on. We however take an uniform approach towards encoding humans and systems.
For example CSP can be used to succinctly model both human and system behaviors.

Bolton et al extend OFM to EOFM [23] with task sequencing and conditional constraints to bet-

104

ter model human task behavior. EOFM provides a formal model for hierarchical task decomposition
for humans. However, EOFM does not provide elegant mechanism for modeling multiple human
operators, their interactions among themselves, interactions among the humans and the system and
possibly other environment components. Nor does it provide elegant modeling of parallel possibly
synchronized executions of these aforementioned entities. In fact like Little-JIL work, the system
is ignored until actual property verification is performed using a model checker. One of their work
with EOFM [24] where they use the phenotypes of erroneous actions of Hollnagel to predict possi-
ble source of errors for a system is very close to us. Given a recommended task EOFM for a human
operator their approach is to (i) create another EOFM model which has all possible error pheno-
types embedded in it, (ii) model check the new EOFM against system requirements to find a counter
example. This counter example will demonstrate how an erroneous action might be problematic
for a system. Our approach is different in that at one time we only introduce a single phenotype.
Then we present which phenotypes the system is robust against and which phenotypes the system
is not robust against. Thus the system designers will now have a thorough analysis of all possible
erroneous actions and their possible effects on the system.

7.1.7 Model Checking

The usual trend in formal analysis in determining whether a system maintains a guarantee is by
performing model checking [32]. Model checking a system M is determining whether M satisfies
a requirement ψ denoted by M |= ψ. Although this works well for “closed” systems (systems with
no interaction with the rest of the world), for “open” (systems that interact with their environment)
systems it is not sufficient. This has given rise to “module checking”[69] where a . This has given
rise to the notion of “robust satisfaction” of a property [70]: a system M should satisfy a property
ψ when composed with any environment E, M||E |= ψ. This trend is the closest to our work here.
Any human operator system should be verified against all possible reasonable human behaviors. Our
goal is to provide a framework to assist in formulating reasonable or protected human task execution
behavior and determining that they are indeed protected behavior. However as suggested in [70],
checking against all possible is not practical. Hence we focus on reasonable human behaviors.

7.1.8 Fuzz Testing

Fuzz testing or fuzzing involves testing a computer system against unexpected, erroneous, random
inputs [82]. A software is provided with a fuzzed input and monitored against hazardous conse-
quences like crashes or invariant violations. Our technique of testing robustness of a system against
erroneous human actions is very similar to fuzz testing. Given a recommended task specification we
systematically introduce erroneous actions patterns into it. Then we check the system for safety or
protection envelope property conformation.

105

7.1.9 Controller Synthesis

Given a definition of reasonableness of behavior we will build a model for all models conforming
to that definition. Controller synthesis works are related in that regard. Controller synthesis [92]
works model the interactions between a system and its environment as a discrete game. Controller
synthesis aims at generating a winning strategy for the controller such that the system always wins
irrespective of the behavior of the environment.

7.1.10 Interface Synthesis

Interface synthesis research [55, 107] is a related research area. In modular program analysis, indi-
vidual modules can be analyzed separately and then only interfaces are used when the overall system
composed of all relevant modules are handled. Interfaces summarize acceptable call sequences for
a module. An interface is safe if it only allows sequences that do not violate the internal invariants
of its module. Permissive interfaces are those that allow all possible safe sequences. Full interfaces
are both safe and permissive. Safe interfaces correspond to the protected human behaviors as pre-
sented in the next subsection. Full interfaces are achieved when the all safe behaviors are protected
behaviors. Given a regular language description of an interface and its invariants, interface synthesis
techniques provide models that accept words belonging to that language. Given the behavior guar-
antees expected from the human operators, we will use refinement to derive a model representing
all well behaved human action sequences. Interface synthesis is performed for software modules
for languages like Java also [8]. Software environment generation from environment assumptions is
also a related to our work [116]. The concepts of these works are very related to our work. Interface
Automata [41] is also related. These works focus on modular software or hardware systems. For
one system module, the environment is comprised of other modules from that system. However, the
primary novelty of our work is the context chosen by us: human operators that will interact with
a system composed of hardware and software, concepts of categorizations of their interaction be-
haviors, guarantees systems can provide based on different categories of assumptions about human
operators. However, the underlying concepts used in our work is different from them. If we consider
human operators as modules then we see that they can have different safety invariants and expected
behavior guarantees. In the self-scan checkout scenario, a human module is safe for the human cus-
tomer if he is not made to pay for items he did not purchase. However, the customer needs to ensure
that he will not take items out of the store without paying for them first. Since the supermarkets can-
not distinguish items that have not been paid for, if the customer does not guarantee conforming to
the required manner of operation, the supermarket can suffer loss. For human operators we focus on
the guarantees that they need to provide to ensure safety of the automated system, for the automated
system we focus on their safety based on the guarantees maintained by human operators. Identifying
behavior requirements and individual safety requirements and then devising and analyzing models
for them is the main focus of our work.

106

7.1.11 Rely-Guarantee

The rely-guarantee method of software verification was originally devised for verification of multi-
threaded programs [63]. A thread provides a guarantee and the rest of the threads will rely on this
guarantee to ensure safe operation. This idea generalizes to modular software verification. Often it
is easier to verify each software module individually and later on combining the results to determine
overall safety preservation. Each module will provide a guarantee where the module has to rely on
guarantees provided by the other modules to provide this guarantee on its part. If there is clear notion
about the guarantees each module needs to provide then the modules can be verified individually.
The concept of rely-guarantee is very close to our concept of protection envelope. Each entity
irrespective of whether it is a software component or a human operator needs to provide a guarantee
of always staying within their protection envelopes.

7.2 Imperfect Information

ATL and CGS were presented by Alur et al in [9]. They presented ATL, ATL*, Alternating µ-
calculus, Fair ATL, Fair ATL* and ATL with incomplete information along with their model check-
ing complexities. Incomplete information game structures have been widely researched [78]. Reif [98]
has shown that incomplete information games are undecidable. Alur et al present iTSGS in [9] which
they claim cannot be model checked based on the proofs given in [98]. We extend their work by in-
troducing nondeterminism in the transition system of CGSs and allow the players to have incomplete
information about the state space and state sequences. Ågotnes et al presented ATL with irrevocable
strategies, IATL and MIATL in [7]. IATL only considers memoryless strategies and MIATL con-
siders strategies that can consider a sequence of states to provide guidance. We provide strategic
semantics for ATL formula using NCGS which provides a mechanism to permanently associate a
set of strategies with a set of players and thereby mimic irrevocable strategies. Schobbens present
ATL with imperfect information modeled using imperfect information CGS or iCGS in [103]. He
proposes four different types of strategies based on their having (in)complete view of the set of states
and being able to consider history (or not). Our notion of state and trace equivalences subsume their
work. Another related work is that of Brihaye et al who present ATL with strategy contexts and
bounded memory ATL∗sc,∞ and some variations of it in [26]. They analyze expressive power and
model checking complexity for their logics. Their semantics is very related to the strategic seman-
tics proposed by us in Section 6.9. The strategies carried around in our semantics is similar to their
strategy contexts. Dima et al present a very related work in [43]. They provide a model check-
ing algorithm for ATL with knowledge, imperfect information, prefect recall and communicating
coalitions and show that their version of ATL model checking with incomplete information is not
undecidable.

Broersen et al augment ATL with STIT(Seeing To It That) operators and present strategic se-

107

mantics for Alternating Transition Systems (ATS) in [27]. They also extend ATL with epistemic
operators in [27]. Mogavero et al present relentful strategic reasoning for ATL* and mATL* in [86].
Usually in ATL semantics the history is thrown out when a new player coalition is reached. They
suggest “memoryful” traces where each path is considered starting from its past not from the present.
They present variations of ATL* and mATL* namely pATL*, mpATL*, m−ATL* and p−ATL* along
with comparisons of their expressive power and satisfiability and model checking complexity. Here
p stands for past time and these logics are augmented with “previous” and “since” operators.

7.3 Runtime Verification

Runtime verification of a software performs dynamic analysis of a program. The interesting as-
pect of runtime analysis is that in this case the actual software can be analyzed instead of an ab-
stract model. However, runtime verification analyzes one specific execution trace at a time. Thus
runtime analysis falls in between static verification and unit testing. Runtime monitoring deploys
a software monitor which continuously monitors an execution of a software to detect whether it
violates a desired property. We use runtime monitoring techniques and software to study the pos-
sibility of runtime verification of a human operator behavior guiding the execution of a human-
intensive safety-critical system. In this regard all runtime monitor work is related as background
work [15, 18, 21, 17, 80, 81, 31, 12, 14, 18, 15, 49, 106, 100, 130, 128, 64, 91, 66, 22, 34]. Psaier
et al present a methodology for monitoring and self-adaptation approach of service-oriented collab-
oration networks in [94]. For collaboration networks where some services are provided by human
operators they provide a method for modeling and simulating human behavior through Web-services
test-bed. The test-bed allows for simulating erroneous behavior of services. They use standardize
Service-Oriented Architecture (SOA) infrastructures and they combine the capabilities of human
and software services through the use of well-established standards like Simple Object Access Pro-
tocol (SOAP) and the Web Service Description Language (WSDL). The focus of their architecture
is on developing monitors to monitor network services with capability for adapting the system is
faults are detected. The focus on our work on monitoring was on presenting a generic framework
for using existing monitoring techniques and softwares to study the effect of the human operator on
a generic system.

108

Chapter 8

Conclusion

We have learned and demonstrated a number of things in this dissertation. We set out with a goal
of providing methodologies for modeling and analyzing the effect of the task execution behaviors
of human operators on requirement conformation of computer systems. We now summarize our
achievements in this regard:

We have demonstrated that human operator behaviors manifested during execution of a task
involving use of a computer system can be formally modeled and analyzed. The goal of such analysis
is determining if safety requirements can be maintained by a computer system while being operated
by human operators.

We have learned that the human operators demonstrate many different task execution behaviors
while operating a computer system. The recommended task executions are the desired human op-
erator behaviors. They are also the easiest to formulate and analyze. Verification of a computer
system while combined with human operators operating them in the recommended manner provides
a necessary sanity check for recommended task specifications.

We have demonstrated that both formal verification techniques like process refinement checking,
model checking and runtime verification can be used for assessing the resilience of a computer
system against human operator behaviors. We have shown how human behavior can be modeled in
well established software programming platforms and then can be dynamically monitored for safety
conformation for a computer system. The technique suggested is robust in the sense that just as we
can analyze at runtime with a model of a human operator, we can use runtime monitoring to monitor
the executions of the computer system itself while being operated by real life operators.

We have shown that each computer system would benefit from a precise formulation of the
guarantees of good or tolerable behavior that it needs to rely upon to provide requirement confor-
mation. These tolerable behavior guarantee or protection envelopes provide an understanding of the
shortcomings of the computer systems in being able to meet safety requirements. If the human op-
erators do not restrain themselves to operate within the protection envelopes, then the system cannot
guarantee safety requirement conformation.

We have demonstrated that we can formally specify and analyze these protection envelope prop-
erties for each human operator of a computer system. We have also demonstrated that we can study
the robustness of these protection envelopes. We can formally assess if the computer system is

109

resilient against well established patterns of atypical task execution behaviors exhibited by human
operators.

We have also demonstrated that in the presence of multiple human operators, we can determine
the human operator responsible for violation of safety property. We perform this analysis by com-
bining formal analysis with the concept of protection envelope. Analysis of the system and human
operators against protection envelope properties help us identify the human operator whose protec-
tion envelope got violated. The human operator whose protection envelope gets violated did not
maintain his guarantee of tolerable behavior and is a possible reason behind safety violation of the
system.

We have demonstrated that Concurrent Game Structures (CGS), the formalism chosen by us for
modeling deviant human operator behaviors was lacking in some aspects for our purposes. CGS
provide a procedural method of encoding the concurrent operation of humans and computer sys-
tems. System safety requirements to be imposed upon the structure declaratively. The elements of
the structures can be conveniently manipulated to obtain representative erroneous human behavior
models. However, they lack nondeterminism and they do not support information hiding among
agents. We provide extension of CGSs with these features and extend the semantics for Alternating
Time Temporal Logic (ATL) for this setting. We also provide a strategy based semantics for ATL
which is a more faithful representation of a human task execution behavior satisfying a property.

In a nutshell, we have demonstrated that expected and erroneous human operator task execution
behaviors can be formally encoded and analyzed thereby providing a formal understanding of the
resilience of a computer system against both desired and atypical human operator behaviors.

In future, we plan to further carry on our research on broadening the work on modeling human
operators and analyzing them. We have the opportunities of increasing the level of automation at
every step of the frameworks we have presented: from the formulations of protection envelopes to
building abstract models for computer systems and human operators. Also in some parts of our
work like analysis for determining robustness against erroneous human actions we allowed for only
simple sequential description of human tasks. A future direction is to consider more complex task
description allowing for decision procedures and possibly exceptional situation handling advice.
Runtime verification work needs to be furthered so that we can provide a low-overhead generic
method of verifying the actual computer system against erroneous human operator actions. We will
further our work on the modeling of human operator behaviors through player strategies in CGSs.
We intend to explore complex, multi-layer protection envelopes for collections of human operators.
To facilitate this we intend to explore extensions for ATL* and model checking algorithms for them.

110

Appendix A

Nurse Behavior and Mobile
Mediator Reaction in AIDC Scenario

1 package a idcwi thaspec t ;

2

3 public class Main {

4

5 public s t a t i c void main (S t r i n g [] args) {

6 Nurse nurse1 = new Nurse (1 7 3) ;

7 EHR backEndEHR = new EHR() ;

8 Mobi leMediator mmed = new Mobi leMediator (backEndEHR , 4 5 6) ;

9

10 RFIDTag tag1 = new RFIDTag (1) ;

11 RFIDTag tag2 = new RFIDTag (2) ;

12 RFIDTag tag3 = new RFIDTag (3) ;

13

14 Pa t i en t pa t i en t1 = new Pa t i en t . Bu i l de r (tag1) . bloodPressure (1 3 0) .

15 pulseOxygenLevel (2 2) . b u i l d () ;

16 Pa t i en t pa t i en t2 = new Pa t i en t . Bu i l de r (tag2) . bloodPressure (1 0 5) .

17 pulseOxygenLevel (2 9) . b u i l d () ;

18

19 Device device = new Device (tag3) ;

20

21 nurse1 . ass ignMobi leMediator (mmed) ;

22 nurse1 . scanPatientIDwithMobiMed (pa t ien t1 , mmed) ;

23 nurse1 . scanDeviceIDwithMobiMed (device , mmed) ;

24

25 nurse1 . readScannedDeviceID (mmed) ;

26 nurse1 . readScannedPatientID (mmed) ;

27 mmed. getApprovalForScannedIDs (nurse1 . approveScannedIDs (mmed)) ;

28 nurse1 . captureDataFromDevice (mmed, patient2 , device) ;

29 nurse1 . readCapturedDataFromMMed (mmed) ;

30

31 mmed. getCapturedDataApproval (nurse1 . approveDisplayedReading ()) ;

111

32 }

33 }

Listing A.1: Human Operation Behavior

112

Appendix B

Nurse using AIDC System

1 package a idcwi thaspec t ;

2

3 /∗ ∗

4 ∗

5 ∗ @author Ayesha Yasmeen

6 ∗ /

7 public class Nurse {

8 private i n t nurseID ;

9 private i n t scannedPat ient ID = −1;

10 private i n t scannedDeviceID = −1;

11 private i n t observedData = −1;

12 private i n t displayedReading = −1;

13 private Pa t i en t c u r r P a t i e n t ;

14 private Device currDevice ;

15 private i n t mmedID ;

16

17 Nurse (i n t nurse id) {

18 nurseID = nurse id ;

19 }

20

21 public i n t getNurseID () {

22 return nurseID ;

23 }

24 public void assignMobi leMediator (Mobi leMediator mobi leMediator) {

25 mmedID = mobi leMediator . getMMedID () ;

26 mobi leMediator . associateWithNurse (th is) ;

27 }

28 public void scanPatientIDwithMobiMed (Pa t i en t pa t i en t , Mobi leMediator

29

30 mobi leMediator) {

31 c u r r P a t i e n t = p a t i e n t ;

113

32 mobi leMediator . captureRFIDTagFromPatient (p a t i e n t) ;

33 }

34 public void scanDeviceIDwithMobiMed (Device device , Mobi leMediator

35

36 mobi leMediator) {

37 currDevice = device ;

38 mobi leMediator . captureRFIDTagFromDevice (device) ;

39 }

40

41 public void readScannedPatientID (Mobi leMediator mobi leMediator) {

42

43 scannedPat ient ID = mobi leMediator . d isp layScannedPat ient ID () ;

44 }

45

46 public void readScannedDeviceID (Mobi leMediator mobi leMediator) {

47 scannedDeviceID = mobi leMediator . displayScannedDeviceID () ;

48 }

49

50 public boolean approveScannedIDs (Mobi leMediator mobi leMediator) {

51 i f (c u r r P a t i e n t . getRFIDTag () == scannedPat ient ID)

52 i f (currDevice . getRFIDTag () == scannedDeviceID)

53 return true ;

54 return fa lse ;

55 }

56

57 public void captureDataFromDevice (Mobi leMediator mobi leMediator ,

58 Pa t i en t pa t i en t , Device device) {

59 observedData = mobi leMediator . captureDataFromDevice (pa t i en t ,

60 device , true) ;

61 }

62

63 public void readCapturedDataFromMMed (Mobi leMediator mobi leMediator) {

64 displayedReading = mobi leMediator . d isplayCapturedDeviceData () ;

65 }

66

67 public boolean approveDisplayedReading () {

68 i f (displayedReading == observedData)

69 return true ;

70 return fa lse ;

71

72 }

114

73

74 }

Listing B.1: Human Operation Behavior

115

Appendix C

Monitor for AIDC Scenario

1 package mop;

2

3 import java . i o . ∗ ;

4 import java . u t i l . ∗ ;

5

6 AIDC(a idcwi thaspec t . Nurse nurse , a idcwi thaspec t . Mobi leMediator mmed,

7 a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Device device) {

8

9 i n t co l lec tedData ;

10 i n t p a t i e n t ID ;

11 i n t pa t ien t ID2 ;

12 i n t deviceID ;

13 event assignMMed a f t e r (a idcwi thaspec t . Nurse nurse ,

14 a idcwi thaspec t . Mobi leMediator mmed) :

15 c a l l (∗ a idcwi thaspec t . Nurse . ass ignMobi leMediator (∗))

16 && t a r g e t (nurse)

17 && args (mmed)

18 { }

19

20 event nurseScansPat ient ID a f t e r (a idcwi thaspec t . Nurse nurse ,

21 a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Mobi leMediator mmed) :

22 c a l l (∗ a idcwi thaspec t . Nurse . scanPatientIDwithMobiMed (∗ , ∗))

23 && t a r g e t (nurse)

24 && args (pa t i en t , mmed)

25 {

26 p a t i e n t I D = p a t i e n t . getRFIDTag () ;

27 }

28

29 event nurseScansDeviceID a f t e r (a idcwi thaspec t . Nurse nurse ,

30 a idcwi thaspec t . Device device , a idcwi thaspec t . Mobi leMediator mmed) :

31 c a l l (∗ a idcwi thaspec t . Nurse . scanDeviceIDwithMobiMed (∗ , ∗))

116

32 && t a r g e t (nurse)

33 && args (device , mmed)

34 {

35 deviceID = device . getRFIDTag () ;

36 System . out . p r i n t l n (” Device g e t t i n g used i s : ” +deviceID) ;

37 }

38 event nurseVal idates IDs a f t e r (a idcwi thaspec t . Nurse nurse ,

39 a idcwi thaspec t . Mobi leMediator mmed) :

40 c a l l (∗ a idcwi thaspec t . Nurse . approveScannedIDs (∗))

41 && t a r g e t (nurse)

42 && args (mmed)

43 { }

44 event nurseCapturesDataUsingDeviceAndMMed a f t e r (

45 a idcwi thaspec t . Nurse nurse ,

46 a idcwi thaspec t . Mobi leMediator mmed, a idcwi thaspec t . Pa t i en t

47 pa t i en t , a idcw i thaspec t . Device device) :

48 c a l l (∗ a idcwi thaspec t . Nurse . captureDataFromDevice (∗ , ∗ , ∗))

49 && t a r g e t (nurse)

50 && args (mmed, pa t i en t , device)

51 {

52 pa t ien t ID2 = p a t i e n t . getRFIDTag () ;

53 }

54 event mobimedCapturesReading a f t e r (

55 a idcwi thaspec t . Mobi leMediator mmed,

56 a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Device device ,

57 boolean b) r e t u r n i n g (i n t dataValue) :

58 c a l l (∗ a idcwi thaspec t . Mobi leMediator . captureDataFromDevice (∗ , ∗ , ∗))

59 && t a r g e t (mmed)

60 && args (pa t i en t , device , b)

61 {

62 co l lec tedData = dataValue ;

63 System . out . p r i n t l n (” Co l lec ted \ ” \+ co l lec tedData) ;

64 }

65

66 event ehrStoresTupleWrongPat ient a f t e r (a idcwi thaspec t .EHR ehr ,

67 a idcwi thaspec t . Nurse nurse , a idcwi thaspec t . Mobi leMediator

68 mmed, a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Device

69 device , i n t dataValue) :

70 c a l l (∗ a idcwi thaspec t .EHR. s toreTuple (∗ , ∗ , ∗ , ∗ , ∗))

71 && t a r g e t (ehr)

72 && args (nurse ,mmed, pa t i en t , device , dataValue)

117

73 && co n d i t i o n (pa t i en t ID2 != p a t i e n t . getRFIDTag ())

74 {

75 System . out . p r i n t l n (” Pa t i en t mismatch !

76 Did not i d e n t i f y t h i s p a t i e n t ”) ; }

77

78 event ehrStoresTupleWrongDevice a f t e r (a idcwi thaspec t .EHR ehr ,

79 a idcwi thaspec t . Nurse nurse , a idcwi thaspec t . Mobi leMediator

80 mmed, a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Device

81 device , i n t dataValue) :

82 c a l l (∗ a idcwi thaspec t .EHR. s toreTuple (∗ , ∗ , ∗ , ∗ , ∗))

83 && t a r g e t (ehr)

84 && args (nurse ,mmed, pa t i en t , device , dataValue)

85 && co n d i t i o n (deviceID != device . getRFIDTag ())

86 {

87 System . out . p r i n t l n (” Device mismatch ! Did not

88 i d e n t i f y t h i s device ”) ;

89 }

90

91 event ehrStoresTupleWrongData a f t e r (a idcwi thaspec t .EHR ehr ,

92 a idcwi thaspec t . Nurse nurse , a idcwi thaspec t . Mobi leMediator mmed,

93 a idcwi thaspec t . Pa t i en t pa t i en t , a idcw i thaspec t . Device device ,

94 i n t dataValue) :

95 c a l l (∗ a idcwi thaspec t .EHR. s toreTuple (∗ , ∗ , ∗ , ∗ , ∗))

96 && t a r g e t (ehr)

97 && args (nurse ,mmed, pa t i en t , device , dataValue)

98 && co n d i t i o n (dataValue != co l lec tedData)

99 {

100 System . out . p r i n t l n (” Data mismatch ! Did not c o l l e c t t h i s data ”) ;

101 }

102

103 l t l : [] (not (ehrStoresTupleWrongDevice

104 && ehrStoresTupleWrongPat ient

105 && ehrStoresTupleWrongData))

106

107 @vio la t ion {

108 System . out . p r i n t l n (” Erroneous tup l e

109 g e t t i n g i nse r t ed i n t o EHR! ”) ;

110 }

111 }

Listing C.1: Human Operation Monitor

118

Appendix D

CGSs for Self-scan Checkout
Scenario Example

D.1 Sparse CGS

1 bool itembagged , s ta r tp ressed , itemscanned , i tempaid , erred , a larmra ised ;

2 mtype = { noact ion , p resss ta r t , scanitem , payfor i tem , bagitem , leaves to re }

3

4 mtype = { noact ion , a l l owp resss ta r t , al lowbag , al lowpay , al lowscan , er rorReset }

5

6 mtype = { i n i t i a l , p resseds ta r t , scanneditem , baggeditem , pa id fo r i tem , e r r o r }

7 chan cschan = [1] o f { mtype } ;

8 chan humchan = [1] o f {mtype } ;

9 chan c t r l c h a n = [2] o f {mtype } ;

10 proctype CS()

11 {

12 i n i t i a l s t a t e :

13 cschan ! noact ion ;

14 i f

15 : : humchan?noact ion −> goto i n i t i a l s t a t e ;

16 f i ;

17 i f

18 : : humchan? p r e s s s t a r t −> goto i n i t i a l s t a t e ;

19 f i ;

20 i f

21 : : humchan? pay for i tem −> goto disabledHUMActionState ;

22 f i ;

23 cschan ! a l l o w p r e s s s t a r t ;

24 i f

25 : : humchan?noact ion −> goto i n i t i a l s t a t e ;

26 f i ;

27 i f

28 : : humchan? p r e s s s t a r t −> goto p r e s s e d s t a r t s t a t e ;

29 f i ;

119

30 p r e s s e d s t a r t s t a t e :

31 s ta r tp ressed = true ;

32 cschan ! noact ion ;

33 i f

34 : : humchan?noact ion −> goto p r e s s e d s t a r t s t a t e ;

35 f i ;

36 i f

37 : : humchan? p r e s s s t a r t −> goto disabledHUMActionState ;

38 f i ;

39 i f

40 : : humchan?scanitem −> goto p r e s s e d s t a r t s t a t e ;

41 f i ;

42 cschan ! al lowscan ;

43 i f

44 : : humchan?noact ion −> goto p r e s s e d s t a r t s t a t e ;

45 f i ;

46 i f

47 : : humchan?scanitem −> goto scannedi temstate ;

48 f i ;

49 scannedi temstate :

50 s ta r tp ressed = true ;

51 i temscanned = true ;

52 cschan ! noact ion ;

53 i f

54 : : humchan?noact ion −> goto scannedi temstate ;

55 f i ;

56 i f

57 : : humchan? p r e s s s t a r t −> goto disabledHUMActionState ;

58 f i ;

59 i f

60 : : humchan?bagitem −> goto scannedi temstate ;

61 f i ;

62 cschan ! al lowbag ;

63 i f

64 : : humchan?noact ion −> goto scannedi temstate ;

65 f i ;

66 i f

67 : : humchan?bagitem −> goto baggeditemstate ;

68 f i ;

69 baggeditemstate :

70 s ta r tp ressed = true ;

120

71 i temscanned = true ;

72 itembagged = true ;

73 cschan ! noact ion ;

74 i f

75 : : humchan?noact ion −> goto baggeditemstate ;

76 f i ;

77 i f

78 : : humchan? p r e s s s t a r t −> goto disabledHUMActionState ;

79 f i ;

80 i f

81 : : humchan?bagitem −> goto baggeditemstate ;

82 f i ;

83 cschan ! al lowpay ;

84 i f

85 : : humchan?noact ion −> goto baggeditemstate ;

86 f i ;

87 i f

88 : : humchan? pay for i tem −> goto p a i d f o r i t e m s t a t e ;

89 f i ;

90 p a i d f o r i t e m s t a t e :

91 s ta r tp ressed = true ;

92 i temscanned = true ;

93 i tempaid = true ;

94 cschan ! noact ion ;

95 i f

96 : : humchan?noact ion −> goto p a i d f o r i t e m s t a t e ;

97 f i ;

98 i f

99 : : humchan? p r e s s s t a r t −> goto disabledHUMActionState ;

100 f i ;

101 i f

102 : : humchan? leaves to re −> goto i n i t i a l s t a t e ;

103 f i ;

104 i f

105 : : humchan? pay for i tem −> goto disabledHUMActionState ;

106 f i ;

107 e r r o r s t a t e :

108 cschan ! noact ion ;

109 i f

110 : : humchan?noact ion −> goto e r r o r s t a t e ;

111 f i ;

121

112 i f

113 : : humchan? p r e s s s t a r t −> goto disabledHUMActionState ;

114 f i ;

115 i f

116 : : humchan?scanitem −> goto disabledHUMActionState ;

117 f i ;

118 i f

119 : : humchan? pay for i tem −> goto disabledHUMActionState ;

120 f i ;

121 i f

122 : : humchan?bagitem −> goto e r r o r s t a t e ;

123 f i ;

124 i f

125 : : humchan? leaves to re −> goto e r r o r s t a t e ;

126 f i ;

127 cschan ! er rorReset ;

128 i f

129 : : humchan?noact ion −> goto i n i t i a l s t a t e ;

130 f i ;

131

132 }

Listing D.1: Sparse CGS for Self-Scan System in Promela

D.2 Call from the Sparse CGS for Self-scan Checkout System

1 begincgs

2 pred ica tes itembagged ; s ta r tp ressed ; itemscanned ; i tempaid ; er red ; a larmra ised

3 p layers HUM;CS

4 b e g i n a l l p l a y e r a c t i o n l i s t

5 b e g i n p l a y e r a c t i o n l i s t HUM

6 noact ion ; p r e s s s t a r t ; scanitem ; pay for i tem ; bagitem ; leaves to re

7 e n d p l a y e r a c t i o n l i s t

8 b e g i n p l a y e r a c t i o n l i s t CS

9 noact ion ; a l l o w p r e s s s t a r t ; al lowbag ; al lowpay ; al lowscan ; er rorReset

10 e n d p l a y e r a c t i o n l i s t

11 e n d a l l p l a y e r a c t i o n l i s t

12 b e g i n v a r i a b l e l i s t

13 e n d v a r i a b l e l i s t

14 b e g i n s t a t e l i s t

15 beg ins ta te i n i t i a l s t a t e

16 b e g i n p l a y e r a c t i o n l i s t HUM

122

17 noact ion ; p r e s s s t a r t ; scanitem ; bagitem ; leaves to re

18 e n d p l a y e r a c t i o n l i s t

19 b e g i n p l a y e r a c t i o n l i s t CS

20 noact ion ; a l l o w p r e s s s t a r t

21 e n d p l a y e r a c t i o n l i s t

22 b e g i n v a l i d p r o p o s i t i o n s

23

24 endva l i dp ropos i t i ons

25 beginvarass igns

26 endvarassigns

27 b e g i n t r a n s i t i o n s

28 i n i t i a l s t a t e , noact ion , noact ion ; i n i t i a l s t a t e , p resss ta r t , noact ion ;

29 i n i t i a l s t a t e , noact ion , a l l o w p r e s s s t a r t ; p resseds ta r t s ta te , p resss ta r t , a l l o w p r e s s s t a r t ;

30 e r r o r s t a t e , scanitem , noact ion ; e r r o r s t a t e , scanitem , a l l o w p r e s s s t a r t ; e r r o r s t a t e , bagitem , noact ion ;

31 e r r o r s t a t e , bagitem , a l l o w p r e s s s t a r t ; e r r o r s t a t e , leavestore , noact ion ;

32 e r r o r s t a t e , leavestore , a l l o w p r e s s s t a r t

33 e n d t r a n s i t i o n s

34 endstate

35 beg ins ta te p r e s s e d s t a r t s t a t e

36 b e g i n p l a y e r a c t i o n l i s t HUM

37 noact ion ; scanitem ; pay for i tem ; bagitem ; leaves to re

38 e n d p l a y e r a c t i o n l i s t

39 b e g i n p l a y e r a c t i o n l i s t CS

40 noact ion ; al lowscan

41 e n d p l a y e r a c t i o n l i s t

42 b e g i n v a l i d p r o p o s i t i o n s

43 s ta r tp ressed

44 endva l i dp ropos i t i ons

45 beginvarass igns

46 endvarassigns

47 b e g i n t r a n s i t i o n s

48 presseds ta r t s ta te , noact ion , noact ion ; p resseds ta r t s ta te , scanitem , noact ion ;

49 presseds ta r t s ta te , noact ion , al lowscan ; scanneditemstate , scanitem , al lowscan ;

50 e r r o r s t a t e , payfor i tem , noact ion ; e r r o r s t a t e , payfor i tem , al lowscan ;

51 e r r o r s t a t e , bagitem , noact ion ; e r r o r s t a t e , bagitem , al lowscan ;

52 e r r o r s t a t e , leavestore , noact ion ; e r r o r s t a t e , leavestore , al lowscan

53 e n d t r a n s i t i o n s

54 endstate

55 beg ins ta te scannedi temstate

56 b e g i n p l a y e r a c t i o n l i s t HUM

57 noact ion ; bagitem ; scanitem ; pay for i tem ; leaves to re

123

58 e n d p l a y e r a c t i o n l i s t

59 b e g i n p l a y e r a c t i o n l i s t CS

60 noact ion ; al lowbag

61 e n d p l a y e r a c t i o n l i s t

62 b e g i n v a l i d p r o p o s i t i o n s

63 s ta r tp ressed ; itemscanned

64 endva l i dp ropos i t i ons

65 beginvarass igns

66 endvarassigns

67 b e g i n t r a n s i t i o n s

68 scanneditemstate , noact ion , noact ion ; scanneditemstate , bagitem , noact ion ;

69 scanneditemstate , noact ion , al lowbag ; baggeditemstate , bagitem , al lowbag ;

70 e r r o r s t a t e , scanitem , noact ion ; e r r o r s t a t e , scanitem , al lowbag ;

71 e r r o r s t a t e , payfor i tem , noact ion ; e r r o r s t a t e , payfor i tem , al lowbag ;

72 e r r o r s t a t e , leavestore , noact ion ; e r r o r s t a t e , leavestore , al lowbag

73 e n d t r a n s i t i o n s

74 endstate

75 beg ins ta te baggedi temstate

76 b e g i n p l a y e r a c t i o n l i s t HUM

77 noact ion ; bagitem ; pay for i tem ; scanitem ; leaves to re

78 e n d p l a y e r a c t i o n l i s t

79 b e g i n p l a y e r a c t i o n l i s t CS

80 noact ion ; al lowpay

81 e n d p l a y e r a c t i o n l i s t

82 b e g i n v a l i d p r o p o s i t i o n s

83 s ta r tp ressed ; itemscanned ; itembagged

84 endva l i dp ropos i t i ons

85 beginvarass igns

86 endvarassigns

87 b e g i n t r a n s i t i o n s

88 baggeditemstate , noact ion , noact ion ; baggeditemstate , bagitem , noact ion ;

89 baggeditemstate , noact ion , al lowpay ; pa id fo r i t ems ta te , payfor i tem , al lowpay ;

90 e r r o r s t a t e , scanitem , noact ion ; e r r o r s t a t e , scanitem , al lowpay ;

91 e r r o r s t a t e , leavestore , noact ion ; e r r o r s t a t e , leavestore , al lowpay

92 e n d t r a n s i t i o n s

93 endstate

94 beg ins ta te p a i d f o r i t e m s t a t e

95 b e g i n p l a y e r a c t i o n l i s t HUM

96 noact ion ; leaves to re ; scanitem ; bagitem

97 e n d p l a y e r a c t i o n l i s t

98 b e g i n p l a y e r a c t i o n l i s t CS

124

99 noact ion

100 e n d p l a y e r a c t i o n l i s t

101 b e g i n v a l i d p r o p o s i t i o n s

102 s ta r tp ressed ; itemscanned ; i tempaid

103 endva l i dp ropos i t i ons

104 beginvarass igns

105 endvarassigns

106 b e g i n t r a n s i t i o n s

107 pa id fo r i t ems ta te , noact ion , noact ion ; i n i t i a l s t a t e , leavestore , noact ion ;

108 e r r o r s t a t e , scanitem , noact ion ; e r r o r s t a t e , bagitem , noact ion

109 e n d t r a n s i t i o n s

110 endstate

111 beg ins ta te e r r o r s t a t e

112 b e g i n p l a y e r a c t i o n l i s t HUM

113 noact ion ; bagitem ; leaves to re

114 e n d p l a y e r a c t i o n l i s t

115 b e g i n p l a y e r a c t i o n l i s t CS

116 noact ion ; er rorReset

117 e n d p l a y e r a c t i o n l i s t

118 b e g i n v a l i d p r o p o s i t i o n s

119

120 endva l i dp ropos i t i ons

121 beginvarass igns

122 endvarassigns

123 b e g i n t r a n s i t i o n s

124 e r r o r s t a t e , noact ion , noact ion ; e r r o r s t a t e , bagitem , noact ion ;

125 e r r o r s t a t e , leavestore , noact ion ; i n i t i a l s t a t e , noact ion , er rorReset

126 e n d t r a n s i t i o n s

127 endstate

128 e n d s t a t e l i s t

129 endcgs

Listing D.2: Call for Self-Scan System in CGS specification syntax

D.3 Recommended task specification for using the self-scan
checkout system

1 p r e s s s t a r t

2 scanitem

3 bagitem

4 pay for i tem

125

5 l eaves to re

Listing D.3: Recommended task specification for purchasing a single item

D.4 Recommended task CGS for using the self-scan checkout
system

1 begincgs

2 pred ica tes itembagged ; s ta r tp ressed ; itemscanned ; i tempaid ; er red ; a larmra ised

3 p layers HUM;CS

4 b e g i n a l l p l a y e r a c t i o n l i s t

5 b e g i n p l a y e r a c t i o n l i s t HUM

6 noact ion ; p r e s s s t a r t ; scanitem ; pay fo r i tem ; bagitem ; leaves to re

7 e n d p l a y e r a c t i o n l i s t

8 b e g i n p l a y e r a c t i o n l i s t CS

9 noact ion ; a l l o w p r e s s s t a r t ; al lowbag ; al lowpay ; al lowscan ; er rorReset

10 e n d p l a y e r a c t i o n l i s t

11 e n d a l l p l a y e r a c t i o n l i s t

12 b e g i n v a r i a b l e l i s t

13 e n d v a r i a b l e l i s t

14 b e g i n s t a t e l i s t

15 beg ins ta te i n i t i a l s t a t e

16 b e g i n p l a y e r a c t i o n l i s t HUM

17 noact ion ; p r e s s s t a r t

18 e n d p l a y e r a c t i o n l i s t

19 b e g i n p l a y e r a c t i o n l i s t CS

20 noact ion ; a l l o w p r e s s s t a r t

21 e n d p l a y e r a c t i o n l i s t

22 b e g i n v a l i d p r o p o s i t i o n s

23

24 endva l i dp ropos i t i ons

25 beginvarass igns

26 endvarassigns

27 b e g i n t r a n s i t i o n s

28 i n i t i a l s t a t e , noact ion , noact ion ; i n i t i a l s t a t e , p resss ta r t , noact ion ;

29 i n i t i a l s t a t e , noact ion , a l l o w p r e s s s t a r t ; p resseds ta r t s ta te , p resss ta r t , a l l o w p r e s s s t a r t

30 e n d t r a n s i t i o n s

31 endstate

32 beg ins ta te p r e s s e d s t a r t s t a t e

33 b e g i n p l a y e r a c t i o n l i s t HUM

34 noact ion ; scanitem

126

35 e n d p l a y e r a c t i o n l i s t

36 b e g i n p l a y e r a c t i o n l i s t CS

37 noact ion ; al lowscan

38 e n d p l a y e r a c t i o n l i s t

39 b e g i n v a l i d p r o p o s i t i o n s

40 s ta r tp ressed

41 endva l i dp ropos i t i ons

42 beginvarass igns

43 endvarassigns

44 b e g i n t r a n s i t i o n s

45 presseds ta r t s ta te , noact ion , noact ion ; p resseds ta r t s ta te , scanitem , noact ion ;

46 presseds ta r t s ta te , noact ion , al lowscan ; scanneditemstate , scanitem , al lowscan

47 e n d t r a n s i t i o n s

48 endstate

49 beg ins ta te scannedi temstate

50 b e g i n p l a y e r a c t i o n l i s t HUM

51 noact ion ; bagitem

52 e n d p l a y e r a c t i o n l i s t

53 b e g i n p l a y e r a c t i o n l i s t CS

54 noact ion ; al lowbag

55 e n d p l a y e r a c t i o n l i s t

56 b e g i n v a l i d p r o p o s i t i o n s

57 s ta r tp ressed ; itemscanned

58 endva l i dp ropos i t i ons

59 beginvarass igns

60 endvarassigns

61 b e g i n t r a n s i t i o n s

62 scanneditemstate , noact ion , noact ion ; scanneditemstate , bagitem , noact ion ;

63 scanneditemstate , noact ion , al lowbag ; baggeditemstate , bagitem , al lowbag

64 e n d t r a n s i t i o n s

65 endstate

66 beg ins ta te baggedi temstate

67 b e g i n p l a y e r a c t i o n l i s t HUM

68 noact ion ; pay for i tem

69 e n d p l a y e r a c t i o n l i s t

70 b e g i n p l a y e r a c t i o n l i s t CS

71 noact ion ; al lowpay

72 e n d p l a y e r a c t i o n l i s t

73 b e g i n v a l i d p r o p o s i t i o n s

74 s ta r tp ressed ; itemscanned ; itembagged

75 endva l i dp ropos i t i ons

127

76 beginvarass igns

77 endvarassigns

78 b e g i n t r a n s i t i o n s

79 baggeditemstate , noact ion , noact ion ; baggeditemstate , noact ion , al lowpay ;

80 pa id fo r i t ems ta te , payfor i tem , al lowpay

81 e n d t r a n s i t i o n s

82 endstate

83 beg ins ta te p a i d f o r i t e m s t a t e

84 b e g i n p l a y e r a c t i o n l i s t HUM

85 noact ion ; leaves to re

86 e n d p l a y e r a c t i o n l i s t

87 b e g i n p l a y e r a c t i o n l i s t CS

88 noact ion

89 e n d p l a y e r a c t i o n l i s t

90 b e g i n v a l i d p r o p o s i t i o n s

91 s ta r tp ressed ; itemscanned ; i tempaid

92 endva l i dp ropos i t i ons

93 beginvarass igns

94 endvarassigns

95 b e g i n t r a n s i t i o n s

96 pa id fo r i t ems ta te , noact ion , noact ion ; i n i t i a l s t a t e , leavestore , noact ion

97 e n d t r a n s i t i o n s

98 endstate

99 beg ins ta te e r r o r s t a t e

100 b e g i n p l a y e r a c t i o n l i s t HUM

101 noact ion

102 e n d p l a y e r a c t i o n l i s t

103 b e g i n p l a y e r a c t i o n l i s t CS

104 noact ion ; er rorReset

105 e n d p l a y e r a c t i o n l i s t

106 b e g i n v a l i d p r o p o s i t i o n s

107

108 endva l i dp ropos i t i ons

109 beginvarass igns

110 endvarassigns

111 b e g i n t r a n s i t i o n s

112 e r r o r s t a t e , noact ion , noact ion ; i n i t i a l s t a t e , noact ion , er rorReset

113 e n d t r a n s i t i o n s

114 endstate

115 e n d s t a t e l i s t

128

116 endcgs

Listing D.4: Recommended task CGS

129

References

[1] http://www.fsel.com/software.html.

[2] http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[3] http://www.eclipse.org/aspectj.

[4] http://www.java.com.

[5] Application and Theory of Petri Nets 1997, 18th International Conference, ICATPN ’97,
Toulouse, France, June 23-27, 1997, Proceedings, volume 1248 of LNCS. Springer, 1997.

[6] A. Agarwal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Konig, F. Ley-
mann, R. Muller, G. Pfau, K. Plosser, R. Rangaswamy, A. Rickayzen, M. Rowley, P. Schimdt,
I. Trickovic, A. Yiu, and M. Zeller. WS-BPEL Extension for People (BPEL4People), version
1.0 edition, June 2007.

[7] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time temporal log-
ics with irrevocable strategies. In TARK, pages 15–24, 2007.

[8] Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam. Synthesis of interface spec-
ifications for java classes. In Jens Palsberg and Martı́n Abadi, editors, POPL, pages 98–109.
ACM, 2005.

[9] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002.

[10] Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Barreto, Ben Bloch, Francisco Curbera,
Mark Ford, Yaron Goland, Alejandro Guar, Neelakantan Kartha, Canyang Kevin Liu, Rania
Khalaf, Dieter Kig, Mike Marin, Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad
Yendluri, and Alex Yiu. Web Services Business Process Execution Language. Oasis, version
2.0 edition, April 2007.

[11] Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability problem
for petri nets. Theor. Comput. Sci., 3(1):85–104, 1976.

[12] Roy Armoni, Dmitry Korchemny, Andreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. Deter-
ministic dynamic monitors for linear-time assertions. In Havelund et al. [54], pages 163–177.

[13] E. Asarin, O. Maler, A. Pnueli, and J Sifakis. Controller synthesis for timed automata. In
IFAC Symp. System Structure and Control, pages 469–474. Elsevier, 1998.

130

[14] Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie J. Hendren, Ondrej Lhoták, Oege
de Moor, Neil Ongkingco, Damien Sereni, Ganesh Sittampalam, Julian Tibble, and Math-
ieu Verbaere. Aspects for trace monitoring. In Havelund et al. [54], pages 20–39.

[15] Pavel Avgustinov, Julian Tibble, and Oege de Moor. On the semantics of matching trace
monitoring patterns. In Sokolsky and Tasiran [110], pages 9–21.

[16] Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J.
Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors. Runtime Verification -
First International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceed-
ings, volume 6418 of Lecture Notes in Computer Science. Springer, 2010.

[17] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In Bernhard Steffen and Giorgio Levi, editors, VMCAI, volume 2937 of Lecture
Notes in Computer Science, pages 44–57. Springer, 2004.

[18] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for run-time
monitoring: From eagleto ruler. In Sokolsky and Tasiran [110], pages 111–125.

[19] Saddek Bensalem and Doron Peled, editors. Runtime Verification, 9th International Work-
shop, RV 2009, Grenoble, France, June 26-28, 2009. Selected Papers, volume 5779 of Lecture
Notes in Computer Science. Springer, 2009.

[20] C. Bieder, P. Le Bot, E. Desmares, J. L. Bonnet, and F. Cara. Mermos: Edf’s new advanced
hra method. In PSAM4, London, 1998. Springer-Verlag.

[21] Eric Bodden and Patrick Lam. Clara: Partially evaluating runtime monitors at compile time -
tutorial supplement. In Barringer et al. [16], pages 74–88.

[22] Eric Bodden, Patrick Lam, and Laurie J. Hendren. Clara: A framework for partially evaluating
finite-state runtime monitors ahead of time. In Barringer et al. [16], pages 183–197.

[23] Matthew L. Bolton and Ellen J. Bass. Enhanced operator function model: A generic human
task behavior modeling language. In SMC, pages 2904–2911. IEEE, 2009.

[24] Matthew L. Bolton and Ellen J. Bass. Using task analytic models and phenotypes of erroneous
human behavior to discover system failures using model checking. In 54th Annual Meeting
of the Human Factors and Ergonomics Society, page 992996, 2010.

[25] R. M. Botting and Chris W. Johnson. A formal and structured approach to the use of task
analysis in accident modelling. Int. J. Hum.-Comput. Stud., 49(3):223–244, 1998.

[26] T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts
and Bounded Memory. In LFCS, volume 5407 of LNCS, pages 92–106. Springer, 2009.

[27] Jan Broersen, Andreas Herzig, and Nicolas Troquard. A STIT-Extension of ATL. In JELIA,
volume 4160 of LNCS, pages 69–81. Springer, 2006.

[28] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[29] Mark R. Chassin and Elise C. Becher. The Wrong Patient. Ann Intern Med, 136(11):826–833,
2002.

131

[30] Feng Chen and Grigore Rosu. Java-mop: A monitoring oriented programming environment
for java. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume 3440 of Lecture
Notes in Computer Science, pages 546–550. Springer, 2005.

[31] Feng Chen and Grigore Rosu. Mop: an efficient and generic runtime verification framework.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
OOPSLA, pages 569–588. ACM, 2007.

[32] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, 1986.

[33] Lori A. Clarke, George S. Avrunin, and Leon J. Osterweil. Using software engineering tech-
nology to improve the quality of medical processes. In ICSE Companion, pages 889–898,
2008.

[34] Christian Colombo, Gordon J. Pace, and Patrick Abela. Compensation-aware runtime moni-
toring. In Barringer et al. [16], pages 214–228.

[35] S. E. Cooper, A. M. Ramey-Smith, J. Wreathall, G.W. Parry, D.C. Bley, W.J. Luckas, J. H.
Taylor, and M.T. Berriere. A Technique for Human Error Analysis (ATHEANA). Technical
Report NUREG/CR-6350, US Neuclear Regulatory Commission, Washington, DC, 1996.

[36] T. L. Crenshaw, A. Tirumala, S. Hoke, and M. Caccamo. A robust implicit access protocol
for real-time wireless collaboration. In Proceedings of the IEEE Euromicro Conference on
Real-Time Systems, Palma de Mallorca, Spain, 2005.

[37] Paul Curzon and Ann Blandford. From a formal user model to design rules. In Peter Forbrig,
Quentin Limbourg, Bodo Urban, and Jean Vanderdonckt, editors, DSV-IS, volume 2545 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2002.

[38] Paul Curzon and Ann Blandford. Formally justifying user-centred design rules: A case study
on post-completion errors. In Eerke A. Boiten, John Derrick, and Graeme Smith, editors,
IFM, volume 2999 of Lecture Notes in Computer Science, pages 461–480. Springer, 2004.

[39] Paul Curzon, Rimvydas Ruksenas, and Ann Blandford. An approach to formal verification of
human-computer interaction. Formal Asp. Comput., 19(4):513–550, 2007.

[40] Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic based
modeling and analysis of workflows. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3, 1998, Seattle,
Washington, pages 25–33. ACM Press, 1998.

[41] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE,
pages 109–120, 2001.

[42] Dan Diaper. Task Analysis for Human-Computer Interaction. Prentice Hall, New Jersey,
USA, 1990.

[43] Cǎtǎlin Dima, Constantin Enea, and Dimitar P. Guelev. Model-checking an alternating-time
temporal logic with knowledge, imperfect information, perfect recall and communicating
coalitions. In GANDALF, volume 25 of EPTCS, pages 103–117, 2010.

132

[44] Catherine Dufourd, Alain Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In ICALP, pages 103–115, 1998.

[45] Marlon Dumas and Arthur H. M. ter Hofstede. Uml activity diagrams as a workflow specifi-
cation language. In UML, pages 76–90, 2001.

[46] Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In Behnam Banieqbal, Howard Barringer, and Amir Pnueli, editors,
Temporal Logic in Specification, volume 398 of Lecture Notes in Computer Science, pages
409–448. Springer, 1987.

[47] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal basis of
fairness. In POPL, pages 163–173, 1980.

[48] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal and Irving L. Traiger,
editors, SIGMOD Conference, pages 249–259. ACM Press, 1987.

[49] Madhu Gopinathan and Sriram K. Rajamani. Runtime monitoring of object invariants with
guarantee. In Leucker [73], pages 158–172.

[50] Orna Grumberg and David E. Long. Model checking and modular verification. ACM Trans.
Program. Lang. Syst., 16(3):843–871, 1994.

[51] Elsa L. Gunter, Ayesha Yasmeen, Carl A. Gunter, and Anh Nguyen. Specifying and analyz-
ing workflows for automated identification and data capture. In HICSS, pages 1–11. IEEE
Computer Society, 2009.

[52] Willie Hammer. Handbook of Product and System Safety. Prentice Hall Inc., Englewood
Cliffs, N.J., 1972.

[53] John C. Harsanyi and Reinhard Selten. A Generalized Nash Solution for Two-Person Bar-
gaining Games with Incomplete Information. In Management Science, volume 18 of Theory
Series, Game Theory and Gaming, pages 80–106, 1972.

[54] Klaus Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors. Formal Ap-
proaches to Software Testing and Runtime Verification, First Combined International Work-
shops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised Selected
Papers, volume 4262 of Lecture Notes in Computer Science. Springer, 2006.

[55] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive interfaces. In Michel
Wermelinger and Harald Gall, editors, ESEC/SIGSOFT FSE, pages 31–40. ACM, 2005.

[56] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[57] E. Hollnagel. Cognitive Reliability and Error Analysis. In Elsevier Science Ltd, Oxford, UK,
1998.

[58] Erik Hollnagel. The phenotype of erroneous actions. International Journal of Man-Machine
Studies, 39(1):1–32, 1993.

[59] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
2004.

133

[60] Yoshinao Isobe1 and Markus Roggenbach. CSP-Prover. http://staff.aist.go.jp/y-isobe/CSP-
Prover/CSP-Prover.html.

[61] Farnam Jahanian and Aloysius K. Mok. Safety analysis of timing properties in real-time
systems. IEEE Trans. Software Eng., 12(9):890–904, 1986.

[62] C.W. Johnson and A.J. Telford. Extending the application of formal methods to analyse
human error and system failure during accident investigations. Software Engineering Journal,
11(6):335–365, 1996.

[63] C.B. Jones. Development Methods for Computer Programs Including a notion of Interference.
PhD thesis, Oxford University Computing Laboratory, 1981.

[64] Kari Kähkönen, Jani Lampinen, Keijo Heljanko, and Ilkka Niemelä. The lime interface spec-
ification language and runtime monitoring tool. In Bensalem and Peled [19], pages 93–100.

[65] John G. Kemeny. Report of The President’s Commission on the Accident at Three Mile Island:
The Need for Change: The Legacy of TMI. Washington, D.C.: The Commission, 1979.

[66] Chang Hwan Peter Kim, Eric Bodden, Don S. Batory, and Sarfraz Khurshid. Reducing con-
figurations to monitor in a software product line. In Barringer et al. [16], pages 285–299.

[67] B. Kirwan and L. K. Ainsworth, editors. A Guide to Task Analysis. Taylor and Francis,
London, 1992.

[68] J. M. Corrigan Kohn, L. T. and M. S. Donaldson. To err is human: Building a safer health
system. http://www.nap.edu/catalog/9728.html.

[69] Orna Kupferman and Moshe Y. Vardi. Module checking. In Rajeev Alur and Thomas A.
Henzinger, editors, CAV, volume 1102 of Lecture Notes in Computer Science, pages 75–86.
Springer, 1996.

[70] Orna Kupferman and Moshe Y. Vardi. Robust satisfaction. In Jos C. M. Baeten and Sjouke
Mauw, editors, CONCUR, volume 1664 of Lecture Notes in Computer Science, pages 383–
398. Springer, 1999.

[71] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[72] Frank P. Lees. Loss Prevention in the Process Industies. Butterworths, 1980.

[73] Martin Leucker, editor. Runtime Verification, 8th International Workshop, RV 2008, Bu-
dapest, Hungary, March 30, 2008. Selected Papers, volume 5289 of Lecture Notes in Com-
puter Science. Springer, 2008.

[74] Nancy G. Leveson. Software safety: Why, what, and how. ACM Comput. Surv., 18(2):125–
163, 1986.

[75] Nancy G. Leveson and Clark Savage Turner. Investigation of the therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

[76] Peter A. Lindsay and Simon Connelly. Modelling erroneous operator behaviours for an air-
traffic control task. In AUIC, pages 43–54, 2002.

134

[77] Michael R. Lyu, editor. Software Fault Tolerance. John Wiley and Sons Ltd., Chichester,
England, 1995.

[78] P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD thesis, University of
Madras, Chennai, India, 2001.

[79] Nicolas Markey. Temporal logic with past is exponentially more succinct, concurrency col-
umn. Bulletin of the EATCS, 79:122–128, 2003.

[80] Patrick Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. Efficient monitoring of para-
metric context-free patterns. In Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering(ASE ’08), pages 148–157. IEEE/ACM, 2008.

[81] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An
overview of the MOP runtime verification framework. International Journal on Software
Techniques for Technology Transfer, 2011. to appear.

[82] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix
utilities. Commun. ACM, 33(12):32–44, 1990.

[83] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[84] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes. In
Information and Computation, pages 1–40 and 41–77, September 1992.

[85] C.M. Mitchell. GT-MSOCC: A Domain for Research on Human Computer Interaction and
Decision Aiding in Supervisory Control Systems. IEEE Transactions on Systems, Man and
Cybernetics, 17(4):553–572, July 1987.

[86] F. Mogavero, A. Murano, and M. Y. Vardi. Relentful strategic reasoning in alternating-time
temporal logic. In LPAR (Dakar), volume 6355 of LNCS, pages 371–386, 2010.

[87] Louise E. Moser, P. M. Melliar-Smith, G. Kutty, and Y. S. Ramakrishna. Completeness and
soundness of axiomatizations for temporal logics. without next. Fundam. Inform., 21(4):257–
305, 1994.

[88] D. A. Norman. Errors in human performance. Technical Report 8004, University of Califor-
nia, San Diego, Center for Human Infromation Processing Report, 1980.

[89] Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52,
October 2003.

[90] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Fakultat fur Mathematik und
Physik, Technische Hochschule Darmstadt Germany, 1962.

[91] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-time
runtime monitor. In Barringer et al. [16], pages 345–359.

[92] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
New York, NY, USA, 1989. ACM.

[93] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.

135

[94] Harald Psaier, Lukasz Juszczyk, Florian Skopik, Daniel Schall, and Schahram Dustdar. Run-
time behavior monitoring and self-adaptation in service-oriented systems. In SASO, pages
164–173. IEEE Computer Society, 2010.

[95] Frank Puhlmann and Mathias Weske. Using the π-calculus for formalizing workflow patterns.
In Business Process Management, volume 3649, pages 153–168, 2005.

[96] Jens Rasmussen. Skills, rules, and knowledge: Signals, signs, and symbols and other distinc-
tions in human performance models. In SMC, volume 13, pages 257–267, 1983.

[97] J.T. Reason. Human error. Cambridge University Press, 1990.

[98] John H. Reif. The complexity of two-player games of incomplete information. J. Comput.
Syst. Sci., 29(2):274–301, 1984.

[99] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[100] Grigore Rosu, Feng Chen, and Thomas Ball. Synthesizing monitors for safety properties:
This time with calls and returns. In Leucker [73], pages 51–68.

[101] Rimvydas Ruksenas, Paul Curzon, Jonathan Back, and Ann Blandford. Formal modelling of
cognitive interpretation. In Gavin J. Doherty and Ann Blandford, editors, DSV-IS, volume
4323 of Lecture Notes in Computer Science, pages 123–136. Springer, 2006.

[102] Junzo Sato. Aircraft Accident Investigation Report: Japan Airline Flight 907,Japan Airline
Flight 958: A Near Mid-Air Collision over the sea off Yaizu City. Aircraft and Railway
Accident Investigation Commision, Japan.

[103] Pierre-Yves Schobbens. Alternating-time logic with imperfect recall. ENTCS, 85(2):82 – 93,
2004. LCMAS 2003.

[104] A. Shepherd. Analysis and training in information technology tasks. Task Analysis for
Human-Computer Interaction, pages 15–55, 1989.

[105] Dongmin Shin, Richard A. Wysk, and Ling Rothrock. Formal model of human material-
handling tasks for control of manufacturing systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part A, 36(4):685–696, 2006.

[106] Jocelyn Simmonds, Marsha Chechik, Shiva Nejati, Elena Litani, and Bill O’Farrell. Property
patterns for runtime monitoring of web service conversations. In Leucker [73], pages 137–
157.

[107] Rishabh Singh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning component
interfaces with may and must abstractions. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages 527–542. Springer,
2010.

[108] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. In Formal Aspect of Com-
puting, pages 495–511, 1999.

[109] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Propel: an
approach supporting property elucidation. In ICSE, pages 11–21. ACM, 2002.

136

[110] Oleg Sokolsky and Serdar Tasiran, editors. Runtime Verification, 7th International Workshop,
RV 2007, Vancover, Canada, March 13, 2007, Revised Selected Papers, volume 4839 of
Lecture Notes in Computer Science. Springer, 2007.

[111] Christian Stefansen. Smawl: A small workflow language based on ccs. In CAiSE Short Paper
Proceedings, 2005.

[112] Juoko Suokas. On the reliability and validity of safety analysis. Technical Report publications
25, Technical Research Center of Finland, Finland, September 1985.

[113] Juoko Suokas. The role of safety analysis in accident prevention. In Accident Analysis and
Prevention, volume 20(1), pages 67–85, 1988.

[114] A. D. Swain and H. E. Guttman. Handbook of human reliability analysis with emphasis on
nuclear power plant applications. Technical report.

[115] Yoichi Takayama, Ernie Ghiglione, Scott J. Wilson, and James Dalziel. Collaborative activity
human workflow (cahw) in eresearch.

[116] Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. Automated environment
generation for software model checking. In ASE, pages 116–129. IEEE Computer Society,
2003.

[117] Hiroaki Tomita. Accident investigation into a near mid-air collision. Investigator General,
ARAIC, Japan, 2005.

[118] W. M. P. van der Aalst. Verification of workflow nets. In ICATPN [5], pages 407–426.

[119] Wil M. P. van der Aalst. The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

[120] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl: Yet Another Workflow Lan-
guage. Inf. Syst., 30(4):245–275, 2005.

[121] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[122] David J. van Horn. Risk assessment techniques for experimentalists. In Chemical Process
Hazard Review, pages 23–29, Washington, D.C., 1985. American Chemical Society.

[123] Markus Voelter. Aspectj-Oriented Programming in Java. Java Report, January 2000.

[124] J. C. Williams. A Data-based Method for Assessing and Reducing Human Error to Improve
Operational Performance. In Proceedings of IEEE 4th Conference on Human Factors in
Power Plants, Monterey, CA, June 1988.

[125] Peter Y. H. Wong and Jeremy Gibbons. A process-algebraic approach to workflow specifica-
tion and refinement. In Markus Lumpe and Wim Vanderperren, editors, Software Composi-
tion, volume 4829 of Lecture Notes in Computer Science, pages 51–65. Springer, 2007.

[126] Ayesha Yasmeen and Elsa Gunter. Robustness for Protection Envelopes with Respect to
Human Task Variation(to appear). In IEEE International Conference on Systems, Man and
Cybernetics (SMC), Alaska, USA, 2011.

137

[127] Yang Yu and Xiaohui Li. A workflow model with temporal logic constraints and its automated
verification. In GCC, pages 681–684. IEEE Computer Society, 2007.

[128] Antonia Zhai, Guojin He, and Mats Per Erik Heimdahl. Hardware supported flexible moni-
toring: Early results. In Bensalem and Peled [19], pages 168–183.

[129] Xiangpeng Zhao, Zongyan Qiu, Chao Cai, and Hongli Yang. A formal model for human
workflow. In International Conference on Web Services (ICWS), pages 195–202, 2008.

[130] Wenchao Zhou, Oleg Sokolsky, Boon Thau Loo, and Insup Lee. MaC: Distributed monitoring
and checking. In Bensalem and Peled [19], pages 184–201.

138

	List of Figures
	Chapter 1 Introduction
	Research Contributions
	Organization

	Chapter 2 Formalizing Recommended Task Specifications
	Organization
	Example Scenario: Automated Identification and Data Capture
	Formal Model for Task Specification
	Process Calculus Approach
	Human Behavior Model using CSP
	AIDC Scenario using CSP
	Advantages of using CSP for Modeling Humans

	Safety Properties
	Summary

	Chapter 3 Runtime Monitoring of Human Operators
	Introduction
	Temporal Logic for Requirement Specification
	Runtime Verification

	Framework for Monitoring Computer Systems Operated by Human Operators
	The Monitoring Framework
	Framework with Chosen Monitoring Software

	Human Task Execution Monitoring Case Study
	Summary

	Chapter 4 Modeling and Verifying Tolerable Atypical Human Behaviors
	Introduction
	Organization

	Human Behavior Categorization
	Monitoring Safety and Protection Envelope
	Safety Violation Blame Apportion
	Association of Blame in the AIDC Scenario
	Issues with this Approach

	Example Scenario: Self-scan Checkout System
	Behavior Categorization of Customer in Self-scan Checkout Scenario

	The Framework
	Self-scan Checkout System Scenario Revisited

	Methodology
	Framework in Details
	Concurrent Game Structures
	Identification and Information Collection Step
	Protection Envelope and Safety Property Specification Step
	Assessing Robustness of the Computer System with Respect to the Protected Behavior
	Call
	Thinning
	Example Scenario Revisited
	Thinned model is the Maximal Model
	Experimentation with Protection Envelope

	Find Protection Envelope?
	Tutela
	Identifying and Modeling Important Players
	Modeling Protected Behavior
	Recommended Task Specification Model

	Summary

	Chapter 5 Protection Envelope Robustness Analysis
	Introduction
	Existing Classifications of Erroneous Human Actions
	Hollnagel's Characterization of Erroneous Human Actions
	Contributions
	Organization

	Framework for Analyzing Operator Action Variations
	Human Computer Interaction Model
	Human Computer Interaction Model using CGS
	Recommended Task Specification
	Protection Envelope Model
	Obtaining Deviations from Recommended Procedure
	Analyzing Mutant Task Specifications
	Model for Recommended Procedure and its Variations

	Analyzing Aberrant Behavior CGSs
	AIDC Scenario Revisited
	Protection Envelope Suggestion

	Summary

	Chapter 6 Modeling Human Behavior with Incomplete Information
	Introduction
	Contributions
	Organization

	Example Scenario: 2001 Japan Airline Mid-air Incident
	Human Behavior Model
	Model of the Japan Airlines Incident using CGS

	Problems with Modeling with the Previous Approach
	iTSGS: incomplete Information Turn Based Synchronous Game Structure

	Nondeterministic CGS with Incomplete Information
	iNCGS
	Example Scenario using iNCGS
	Semantics of ATL with iNCGS
	ATL Symbolic Model Checking over iNCGS Models
	Semantics of ATL* with iNCGS

	Relating iNCGS to other Multi-agent Game Structures
	iTSGS and iNCGS
	ATL Interpretation using iTSGS carries over to iNCGS
	iCGS
	Game Arenas

	Variations of iNCGS
	Strategic Modeling of Human Behavior
	Human Behaviors as Strategies
	Strategic Semantics of ATL using iNCGS

	Alternative Semantics for ATL*
	Nondeterministic Strategies
	Strategic Semantics of ATL* with NCGS without Strategy Refinement
	Model Checking Complexity
	Strategic Semantics of ATL* with NCGS with Strategy Refinement

	Summary

	Chapter 7 Related Work
	Human Task Execution Analysis
	Operator Task Analysis
	Human Reliability Analysis
	Workflow
	Web Services Orchestration
	Fault-Tolerant System
	Formal Models for Human Actions
	Model Checking
	Fuzz Testing
	Controller Synthesis
	Interface Synthesis
	Rely-Guarantee

	Imperfect Information
	Runtime Verification

	Chapter 8 Conclusion
	Appendix A Nurse Behavior and Mobile Mediator Reaction in AIDC Scenario
	Appendix B Nurse using AIDC System
	Appendix C Monitor for AIDC Scenario
	Appendix D CGSs for Self-scan Checkout Scenario Example
	Sparse CGS
	Call from the Sparse CGS for Self-scan Checkout System
	Recommended task specification for using the self-scan checkout system
	Recommended task CGS for using the self-scan checkout system

	References

