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Abstract 

Electronic Medical Records (EMRs) provide convenient access to patient data for parties who should have it, but, 

unless managed properly, may also provide it to those who should not.  Distinguishing the two is a core security 

challenge for EMRs. Strategies proposed to address these problems include Role Based Access Control (RBAC), 

which assigns collections of privileges called roles to users, and Experience Based Access Management (EBAM), 

which analyzes audit logs to determine access rights.    In this paper, we integrate RBAC and EBAM through an 

algorithm, called Roll-Up, to manage roles effectively.  In doing so, we introduce the concept of “role prediction” to 

identify roles from audit data.  We apply the algorithm to three months of logs from Northwestern Memorial 

Hospital’s Cerner system with approximately 8000 users and 140 roles. We demonstrate that existing roles can be 

predicted with 50% accuracy and intelligent grouping of roles through Roll-Up can facilitate 65% accuracy. 

Introduction 

There are two dominant strategies for limiting access to Electronic Medical Records (EMRs) within enterprises such 

as hospitals.  One strategy, known as Role Based Access Control (RBAC)1
,
2, groups access privileges into 

collections called roles and then assigns user to roles to determine their access privileges.  This is commonly done 

by looking at the job positions in the enterprise and the tasks the employees in these positions need to perform, then 

assigning privileges to positions, or variants of them, to enable the employees to accomplish their assigned tasks.3
 
 

A second strategy, which we group under the general heading of Experience Based Access Management (EBAM), 

emphasizes accountability and the use of audit data to punish abuse.  An often referenced strategy for EBAM is to 

manually review the audit logs of VIPs to determine when abuses transpire.4
,
5

,
6 Another strategy, often called 

“break-the-glass” security, discourages abuse by warning users that certain types of access are likely to be manually 

reviewed.7 

However, at the current point in time, RBAC and EBAM are used without much common foundation.  This is a pity 

since there seems to be significant opportunities for synergy between the techniques.  Consider, audit data may 

provide valuable information about roles, such as whether a new role would be beneficial or whether two existing 

roles should be merged.  More appropriate role definitions, or roles that are context-specific, driven by auditing 

analytics, may be applied to restrict access so that fewer checks are required in the auditing process. 

The aim of this paper is to investigate a key step that could lead to such a synergy between RBAC and EBAM.  We 

call the concept role prediction and it refers to the ability to use audit logs to predict whether a given user is 

associated with a given role.  Role prediction can be a valuable tool for the role engineer, that is, the security 

administrator responsible for creating roles and managing assignments to them.  For instance, a pair of roles that are 

often confused in the role prediction process might be good candidates for merging.  Moreover, role prediction can 

provide insights into role hierarchies, such as indicating whether the right relationships have been allocated. 

This paper has three specific goals: 

 Hospital Role Classification: First, we aim to determine the extent to which expert-defined job titles in a large 

academic medical center help to distinguish between roles.  To perform this part of the investigation, we train a 

machine learning-based classifier over the various features invoked by users acting in a role while accessing a 

patient record, and classify a test set of users. The accuracy acquired is used to measure the quality of the role 

specifications. 

 Intelligent Role Abstraction: Second, we hypothesize that certain abstractions of roles can permit more 

accurate differentiation of roles in the system.  To answer this hypothesis we developed and applied role 

hierarchies to determine appropriate levels of role auditing. Moreover, we develop a heuristic-based algorithm, 

called Role-Up, to execute a “rolling-up” procedure for the hierarchy. 
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 Empirical Evaluation Third, we apply our methods to three months of access logs from a large academic 

medical center, Northwestern Memorial Hospital. From these results we judge whether the role specification 

performs well and how role specification might be optimally informed.  

Our findings suggest that RBAC for EMR systems can be effectively guided through information mined from audit 

logs. We demonstrate generalization of roles can improve the predictability of role behavior with minimal sacrifices 

to the specificity of the system.   

The remainder of this paper is structured as follows.  In the following section we review access control and auditing 

principles, as well as the limits of RBAC in healthcare environments.  Next, we introduce the environment and EMR 

access logs used, as well as the Role-Up algorithm designed for this study.  We then report on an extensive 

experimental analysis of role prediction and the recommendations made by the algorithm.  Finally, we conclude 

with a review of the contributions, relationship of this work to recent federal recommendations for health 

information technology, and next steps. 

Background 

As EMR systems expand in size, scope, and distribution, it is critical, and a federal requirement8, to ensure the 

privacy of those whose information is stored.  Uncontrolled access to health information could lead to privacy 

compromise, breaches of trust, and eventually harm.9
,10 

 Thus, it is worthwhile to consider the extent to which 

established approaches for access control could be applied in the healthcare domain. 

The notion of access control was first formalized by the Access matrix model (AMM), a conceptual framework that 

specifies each user’s permissions for each object in the system.
11

  While formal, the AMM is limited in scalability 

and a variety of methods for more efficient and effective access management have been proposed. The most popular 

model is Role-based access control (RBAC), where permissions for access to objects are assigned to roles instead of 

to individual users as in the AMM.1 Users are associated with one or more roles and thus acquire corresponding 

access permissions. RBAC is now widely deployed in a wide range of domains because the deconstruction provided 

simplifies access control management in that organizational roles may be mapped to a set of functions.
12

 

It is also worth noting that RBAC is context independent and a growing list of extensions has been proposed to 

address complex environments.  For instance, Task-based Access Control (TBAC) extends traditional user-object 

relationships by including task-based contextual information.
13 

 With respect to healthcare, this concept forms the 

basis of Situation-based Access Control, where access rights depend on where in a guideline, or workflow, the 

patient is situated.
14,15

  Also of merit, Team-based Access Control augments TBAC by providing a more natural way 

of grouping users in an organization. Specifically, this is accomplished by associating a collaboration context with 

the activity to be performed.
16 

Although RBAC, and related models, may provide a practical initial strategy, their refinement and maintenance of 

within large organizations, whose complex workflows undergo continuous evolution, lack an obvious practical 

application.
17 

Several studies have been conducted to find such a solution, often called role engineering.3
,18

  

Generally, there are two types of approaches for role engineering: top-down and bottom-up. The former extracts 

roles by analyzing business processes and scenarios, and largely depends on knowledge in the minds of an 

organization’s experts. By contrast, the latter approach defines potential roles from existing user-permission 

relationships, such as the AMM. This style of “bottom-up” role engineering is often automated by data mining 

algorithms and is also referred to as role mining.
 
 However, little research on role engineering leverages access logs, 

the approach chosen for our research. 

Studies of auditing RBAC in clinical health care systems are not yet widely published.  Bertino et al
19 

conducted a 

study on intrusion detection in an RBAC-administered database. In doing so, they built a behavioral profile for each 

role in terms of the SQL commands issued by users. When the behavior of a user was inconsistent with the profile of 

the corresponding role, they claimed it was an outlier that potentially represented a violation. However, their work 

differs from ours in it does not assess whether roles may be distinguished from each other, nor did it quantify the 

extent to which they are distinguishable. Moreover, such an approach was not assessed in the context of an 

established clinical information system. 

To mitigate the rigid nature of access control systems, EMRs often permit users to invoke “break the glass” when 

they lack sufficient access privileges. When a user opts to issue such an access, the system logs the event for follow-

up investigation. This type of approach to auditing works well when the number of exceptions is relatively small. 

However, there is evidence to suggest that the initial role specification in a healthcare domain do not lead to such 
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scenarios. A study conducted by Røstad et al
20 

in the Central Norway Health Region provides a compelling 

illustration of this situation. After setting up an access control system, they monitored the system for one month. 

During this time, they observed that more than 50% of 100,000 patients' records were accessed via break the glass 

and that approximately 45% of users invoked this option. Overall, there over 290,000 exceptions issued, which is 

significantly more than can be followed up on by a human for investigation. 

Methods 

The Northwestern Memorial Hospital is an 854 bed primary teaching affiliate for the Feinberg School of Medicine 

at Northwestern University. All clinicians (including physicians and nurses) retrieve clinical content and enter 

inpatient notes and orders online using the Cerner Corporation’s PowerChart® EMR system. The access logs 

generated by the system consist of user- and patient-specific information as summarized in Table 1. 

Table 1. A summary of the data captured in the Northwestern EMR access logs. For the purposes of this study we 

represent roles (attribute 3) as a function of Reason, Service, and Location (attributes 5 through7). 

When approved by an authorizing entity, (e.g., the Medical Staff Office), each user of the system receives a login ID 

tied to a User Position. The User Positions enable or prevent access to specific EMR functions. As an example, a 

medical student orders require co-signing by a physician. As another example, specific administrative roles do not 

provide comprehensive result flow-sheet access. 

As an additional safeguard, users select a “Chart Access Reason” upon first access to a chart for a particular 

“encounter.” The available Chart Access Reasons displayed for selection are tied to the individual’s User Position. 

Selected User Positions with minimal use case scenarios have only one potential Chart Access Reason and are 

therefore not prompted. An encounter in this context is defined as a hospital visit and is more narrowly specified for 

the research cohort below. 

The cohort of accesses we reviewed covers a 3 month period of time for which patients were either in an “inpatient” 

status or an “observation” encounter status. Observation status refers to an admission for which discharge is 

expected within 24 hours.  An example of such a log is presented in Figure 1. 

User Patient Time Service User Position Reason Location 
u1 p1 8/4/10  OBSTETRICS NMH Physician Office - CPOE Attending Phys/Prov Ward A 

u2 p2 12/14/10  OBSTETRICS NMH Physician - CPOE Patient Care Ward A 

u23 p3 12/14/10  PEDIATRICS Unit Secretary 2 Unit Secretary Orders Ward B 

Figure 1. A fictional example of records in the Northwestern EMR access logs. 

Each entry in the access logs  corresponds to one access to the EHR, including the information on the user, patient, 

reason for the access, type of service, location where the access happens, and whether orders or notes activity 

occurred. For the purpose of privacy, the names of patient and users are replaced by pseudonyms. Moreover, for the 

purposes of our study, the User Position is considered to be a surrogate for  the role . There are 8,095 users and 140 

different roles involved by this log. Summary statistics for users and roles  with respect to Reasons, Locations, 

Services, and accesses are provided in Table 2. 

 

Attribute Description 

1 User ID Login credentials (de-identified) 

2 Patient ID Medical record number (de-identified for cohort) 

3 User Position Assigned role within the medical record system 

5 Date and Time Stamp Dates were randomly shifted in a 365 day period for de-identification purposes 

4 Chart Access Reason 
Option selected when a chart is first accessed by each user during a hospitalization. 

Options available are tied to the User Position 

5 Orders Entered 
Indicates the number of order entered by the user during the current chart access (not 

used in this study) 

6 Location General location of the patient within the hospital  

7 Service 

The hospital service caring for the patient as specified by the doctors caring for the 

patient. If the field is blank (OB service, e.g.), the specialty of the attending physician 

is used. 
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Table 2. Summary statistics for the EMR access logs used in this study. 

 Users Roles Reasons Locations Services Accesses 

Total 8095 140 143 58 43 1,138,555 

Average per user - - 2 10 9 140 

Average per role - - 4 23 20 8132 

Roles and Hierarchies 

One of the specific aims of this study is to determine how generalizations of roles in the EMR system could permit 

more effective access control. However, at the time this study was conducted, there was no explicit relationship 

established between the user positions in the Cerner EMR.  Thus, the investigators collaborated with several 

clinicians at Northwestern to design a role generalization hierarchy.  This hierarchy, a section of which is depicted in 

Figure 2, was designed as a tree data structure and consists of four levels: 1) Specific-Position, 2) General-Position, 

3) Conceptual-Position, and 4) Employee.  The lowest level in the hierarchy, termed Specific-Position, consist of the 

140 user positions (i.e., job titles) defined for the current EMR system.  The next level up, termed the General-

Position level, was established by suppressing semantic qualifiers from the user positions.  This level consists of 62 

nodes in the hierarchy.  The qualifiers that were removed represented certain administrative pay (or responsibility) 

grades or specializations of particular job titles.  For instance, the job titles “Dietary 1” and “Dietary 2” were 

generalized to the common “Dietary”.  

 

 
 

Figure 2. A selection of the role generalization hierarchy designed for this study. 

The next level up is called the Conceptual-Position level, and was defined with the assistance of the clinicians.  This 

level is composed of five roles defined to capture the anticipated workflow of the healthcare domain.  These roles 

are: 

i) Doctor: all users whose workflow is most consistent with that of a physician and includes entering orders/notes 

using the physician tools; 

ii) General Clinician: all non-physician clinical staff who do not have a restricted domain of work (e.g., nurses who 

rotate among various care areas); 

 iii) Specific Clinician: all non-physician clinical staff who work in a specific clinical care domain (e.g., Oncology, 

Cardiology, and Gastroenterology). This group likely represents a more diverse set of users in comparison to the 

other roles at this level; 

iv) Billing: users who interact with charts from a billing specific perspective; and 

v) Admin: users who interact with charts from an administrative and not immediate clinical care perspective. 
 

One of the key reasons why these roles deviate from the terms used in the lower levels is that the “User Positions” 

address concerns that are less characteristic of the user and instead reflect system design nuances at the time the user 

was enrolled. An example of this somewhat artifactual name distinction is the existence of positions reflecting 

whether or not a user had access to CPOE when the user was first enrolled. Now, all physician users have CPOE 

capability whether or not their user role at inception indicated this was available. Thus, it is anticipated that this  

higher level view should help mitigate outliers of particular users or job titles.  And, at the same time, we believe 

this level should provide a structure for other healthcare organizations, and EMR systems, to adopt for similar role 

assignment endeavors. 

Finally, and for the purposes of completeness, the highest level in the hierarchy corresponds to the root of the tree 

and consists of a single role, namely Employee or Affiliate. 
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A Formal Representation of the Users 

Before delving into the details of the hierarchy-based role assignment process, we take a moment to formalize the 

EMR access log system and the resulting transformations.  Let U = {u1, …, um} be the set of EMR users and let Role 

= {role1, …, rolen} be the set of roles.  For reference, we use || to represent the number of elements in a set. 

Given a database of EMR access transactions, we construct a vector space model for each user.  Specifically, let V = 

{v1, …, vm} be a set of vectors, where vi is the corresponding vector for ui. Each vector is composed of three 

subvectors, ri, si, and li, which represent the access features (i.e., reason, service, and location). Each of these 

subvectors is defined over the domain of categorical values the feature to which it is associated.  For instance, ri 

contains a position for each of the 143 specific reasons that could have been selected by a user during a session with 

a patient’s record. For each reason, and for each user, we weight the j
th

 reason and refer to it rij.  

For the purposes of this study, we represent rij using the term frequency – inverse document frequency (TF-IDF) 

weighting model
20

, which is widely used in text mining: 

              
   

  
    

| |

  
                                                             (1) 

where nij is the number of times ri was invoked by ui during their EMR sessions , Ni is the total number of accesses 

issued by ui, and dj is the number of users in the system who invoked reason rj.  We apply the TF-IDF schema based 

on the premise that the more times a user invokes a reason, the more likely the reason is indicative of the user (i.e., 

TF) and that the smaller the number of users that invoke a reason, the more closely related they are (i.e., IDF).  We 

define si and li similarly. 

A Machine Learning Approach to Role Prediction 

The aforementioned vectors provide a summarized view of EMR users’ behavior in the healthcare system.  We use 

the vectors as the basis of our role prediction procedure.  Specifically, we train a Naïve Bayes classifier
21

 with roles 

as the class labels and the user vectors as input.  The task of predication is to determine the class label (i.e., role) for 

a new user vector. For the Naïve Bayes classifier, the new instance will be assigned the class label according to 

equation (2).  

                                                                                        |              (2) 

Using Bayes theorem and assuming conditional independence over the features, we can rewrite the expression as: 

                                  (     )∏  (   |     )∏  (   |     )∏  (   |     )     (3) 

In this work, however, the features are continuous variables, which makes it difficult to estimate  (   |     ), 

 (   |     ),  and  (   |     ) directly.  As a result, we replace the conditional distribution function with the 

conditional probability density function, for which a Gauss distribution is used. 

Hence, P(rolej) is estimated as the proportion of users in rolej, while P(rix|rolej) is estimated by the Gaussian density 

function.
21

For the latter, the parameters of µ and σ are estimated by calculating the mean and standard deviation of 

feature rix of the users in rolej, respectively.  P(siy|rolej) and P(liz|rolej) are estimated similarly.  

The Role-Up Algorithm 

The primary goal of this work is to apply EBAM in the context of EMRs to discover, and assess, the appropriateness 

of users’ roles.  To achieve this goal, we developed an algorithm called Role-Up.  The algorithm is based on two 

foundational premises.  First, the more roles in the system, the greater the ability to ultimately manage user groups 

and achieve a key security goal of separation of duty.  Second, the more homogenous the user behavior is in a role, 

the easier it will be to monitor and audit users with respect to their actions.  Pseudocode for Role-Up is provided in 

Figure 3.   

Here, we provide a high-level walkthrough of the algorithm.  First, in step 1, we extract the roles in the middle levels 

of the hierarchy.  Next, in step 2, we employ the Naïve Bayes classifier to predict roles in all of levels of the 

hierarchy. We use a leave-one-out cross-validation approach to evaluate the predictions. Specifically, role prediction 

is executed such that the classifier is trained with all, but one, user vectors. The remaining vector is then classified 

into a role. This procedure is repeated for each user until all users receive predictions. Then, to measure how well 

the roles are specified, we compute the accuracy of the system: 

           
                    

            
                                                    (4) 
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In step 3, we initialize the set of roles to be returned to the administrator as null.  In step 4, we calculate a score for 

each role at the General-Position and Conceptual-Position levels using the evaluation function of equation (5): 

                                                                                                                                           (5) 

R is computed by  | |          | |, where       is the number of users covered by this role, and reflects the 

specificity after generalizing this role to its parent in the hierarchy. A is computed as 

                      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
          , where         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

          is the average accuracy of all subroles of role at the 

Specific-Position level.  

INPUT: Vectors: A set of EMR user access vectors; Hierarchy: an EMR user role hierarchy; : a real-valued weighting 

parameter in the range (0,1). τ: a threshold.  

OUTPUT: ROLES: The roles an EMR security administrator should apply for system management 

Steps:   

1.   Let H be the set of roles in the General-Position and Conceptual-Position levels of Hierarchy 

2.   Let             be the predictive accuracy score for each role in Hierarchy (the reader is referred to the main text for  

      the details on how Vectors is applied in the accuracy computation)  

3.   ROLES ← NULL 

4.   for each role in H 

      4.1.         | |          | | , where       is the number users in this role 

      4.2.                             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
           

      4.3.                         

5.   Sort H by the corresponding scores       in descending order  

6.   For each role in H 

      6.1. If       < τ 

              6.1.1. break; 

      6.2. Else 

   6.2.1. ROLES ← ROLES ∪role 

   6.2.2. ROLES ← ROLES – the children of role in HIERARCHY 

   6.2.3. H ← H – the children of role in HIERARCHY 

7. Return R 

Figure 3. Pseudocode for the Role-Up algorithm. 

Then in Steps 5 and 6, we use a greedy procedure to roll-up the hierarchy. We iteratively select the role with the 

highest score and implement the corresponding generalization for all of its subroles. This procedure iterates until the 

highest score is greater than a certain threshold value.  At this point, the set of roles is returned to the administrator 

and the algorithm terminates. 

Experiments and Results  

Initial Role Prediction  
Before applying the Role-Up algorithm, we first investigated the predictability of the roles when the system is 

trained and tested at each level of the role hierarchy.  The results of this experiment are reported in Table 3. First, we 

observe that when the system is trained and tested at the initial Specific-Position level (i.e., with 140 user positions) 

we observe that the system is 51% accurate.  In other words, a little more than half of the users can be accurately 

predicted as their corresponding roles.   

Table 3.  Predictability of users’ roles when the system is trained and tested at various levels of the hierarchy. 

Level of Role Hierarchy Accuracy 

Specific-Position (original role design) 51.34% 

General-Position 52.45% 

Conceptual-Position 82.38% 

When we step up the hierarchy one level to General-Position, we find there is only a marginal gain in performance.  

We observed that the accuracy increased by approximately 1% to 52.5%.  This was somewhat surprising because 

this level has less than half the number of roles than Specific-Position.  However, when stepped up one more level to 

Conceptual-Position, we find that the system became significantly more predictable.  Notably, the accuracy 

increased by approximately 30% to 82%. 
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However, it should be noted that the accuracy of Specific-Position and General-Position is not uniformly distributed 

across roles.  Rather, there are a significant number of roles that are highly predictable.  To illustrate this observation, 

Figure 4 depicts the distribution of accuracy scores for the roles at each level in the role hierarchy.  Notice that for 

the Specific-Position and General-Position levels, an accuracy of 0.5 or greater is achieved for a 57 and 39 (or 79% 

and 81.2%) roles, respectively.  

 

Figure 4.  The distribution of role predictability (i.e., accuracy) at various level of the role hierarchy. 

To make this result more concrete, Table 4 provides a summary of the five most and five least predictable roles in 

the Specific-Position level.  There were ten roles that achieved 100% prediction, so for presentation purposes we 

randomly selected five roles. 

Table 4.  Left) The most predictable roles and Right) the least predictable roles in the system. 

Rank Most Predictable Accuracy Users  Rank Least Predictable  Accuracy Users 

1 (tie) AP-Technologist 100% 54  140 Patient Care Staff Nurse 7.6% 1554 

1 (tie) ED Assistant 100% 26  139 Rehab OT 14.3% 28 

1 (tie) ED NMH Physician-CPOE 100% 43  138 Transfer 20.0% 20 

1 (tie) NMH Resident/Fellow ID 

Clinic-CPOE 

100% 10  137 View Only PC 3 21.4% 14 

1 (tie) Patient Care Staff Nurse – 

Lactation 

100% 14  136 Patient Care Staff Nurse 

(Pilot) 

22.1% 217 

Despite the finding that a significant number of roles received accuracy greater than the system average of 0.5, many 

of these roles were smaller in terms of the number of users that they cover.  Thus, although there are a few outliers, 

it appears that roles in the EMR system with a small number of users tend to obtain a high predictability while roles 

with a large number of users are less predictable. It is not surprising too much, because a small number of users 

implies the role is more specific, and have more specialized responsibilities compared to other roles.  As such, roles 

with a small number of users can be distinguished from other roles more easily. Figure 5 provides a visual depiction 

of the relationship between the number of users in a role and the prediction accuracy.  As also noted in Table 4, the 

largest role, Patient Care Staff Nurse, was also the least predictable.  However, some of the larger roles, such as Med 

Student – CPOE, which contained about 500 users, achieved very high prediction rates (i.e., over 80%).  This is a 

clear illustration of why there is no one-size-fits all approach to role engineering or role mining. 

A Case Study in Incorrect Predictions 

Accuracy provides an indication of how predictable each role (and the system) is, but it obscures the intuition behind 

why the system is failing to predict roles correctly.  Thus, we take a moment to illustrate a case study in the types of 

mispredictions that occur in the system. 

As Table 4 shows, the role of Patient Care Staff Nurse is the least predictable role among all 140 roles in the 

Specific-Position level.  Thus, it is useful to know which roles the system has predicted these users belong to. Table 

5 depicts the probabilities for the five least correct predictions for Patient Care Staff Nurse and Transfer, 

respectively. Semantically (and literally), they are very similar roles, and we may infer that these roles are often 

assigned the same tasks as Patient Care Staff Nurse. Hence, merging Patient Care Staff Nurse with Patient Care 
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Staff Nurse – Lactation, RAD – Nurse or other similar roles in this table should lead to a more predictable role. This 

was one of the inspirations for the expert design of reasonable role hierarchies.  

 

Figure 5.  A plot of accuracy of role as a function of the number of users in the role. 

Table 5.  Most likely incorrect role predictions for Left) Patient Care Staff Nurse and Right) Transfer. 

Predicted Role Percent  Predicted Role Percent 

Patient Care Staff Nurse - Lactation 19.6%  RX-Pharmacist 15.0% 

View Only PC 1 14.3%  Patient Care Staff Nurse - Lactation 10.0% 

RAD – Nurse 14.0%  “Unspecified” 10.0% 

Patient Care Staff Nurse (Pilot) 10.4%  Unit Secretary 1 10.0% 

SN-RN/Customer Service 5.8%  SN-Management 5.0% 

Table 6 provides an indication of which roles were being confused in the prediction process.  Specifically, it reports 

on the conditional probability of predicting a role given the original role.  For instance, there was an 85% chance of 

predicting Rehab PT if the original role was Rehab OT. Similarly, there was a 60% chance of predicting Rehab OT 

if the original role was Rehab PT.  This is further justification for generalizing roles for EMR management purposes. 

Table 6.  Most likely incorrect predictions among all of the predictions. 

Original Role Predicted Role Probability 

Rehab OT Rehab PT 85.7% 

Patient Care Staff Nurse - Agency Patient Care Staff Nurse - Lactation 75.0% 

Rehab PT Rehab OT 60.0% 

View Only PC 3 Patient Care Staff Nurse - Lactation 50.0% 

Medical Records - Scanner Medical Records 47.4% 

Rolling-up Role Prediction 

The following set of experiments report on the application of the Role-Up algorithm.  For the purposes of this work, 

we set the threshold in the algorithm equal to .  In contrast to the earlier experiments, Role-Up permits the 

hierarchy to allow for roles managed at different levels in the hierarchy. Table 7 shows the number of roles 

recommended by the approach and the accuracy of the resulting system under different values of . From this table 

we wish to highlight three findings. First, there is a tradeoff in specificity in roles and accuracy of the system.  

Notice that when  is low, between 0.1 and 0.4, the number of roles is relatively small (i.e., 27), but the accuracy of 

the system is relatively high (i.e., approximately 63%).  And, when  is higher, such as at 0.8, the specificity of the 

system is relatively high (i.e., 60 roles), but the accuracy is lower (i.e., approximately 52%). 

Table 7.  Results of rolling-up the hierarchy under different alpha . 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Number of Roles Recommended 27 27 27 27 54 55 55 60 64 

Accuracy of Role Predictions 63.3% 63.3% 63.3% 63.3% 49.9% 50.2% 50.2% 51.8% 51.3% 

Second, we note that   0.8 appears to be the most appropriate choice.  When the system is set at this level, Role-

Up achieves an accuracy that is slightly better than that of original role designation while maximizing the number of 

roles retained for all  settings. 
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Third, a security administrator might also wish to consider   0.4.  At this setting, the system proposed by Role-Up 

achieves high accuracy, but at the loss of a significant number of roles. 

As an illustration of the tradeoff between high and low ’s, Figure 6 provides a distribution of the accuracy per role.  

 
Figure 6.  Distribution of the accuracy for the system when  is set to 0.2 and 0.8. 

Discussion and Conclusions 

Summary of Findings 

Over the past several years, the healthcare community has expanded its adoption and utilization of information 

technologies.  In the United States, this is due, in part, to incentives provided by the Health Information Technology 

for Economic and Clinical Health Act (HITECH), enacted as part of the American Recovery and Reinvestment Act 

of 2009.
22

  At the same time, there is a growing movement to facilitate the dissemination of patient information 

across organizational boundaries, through health information exchanges, to enable more effective care and reduce 

costs.  However, before such exchanges can be executed, appropriate security policies for access to patient-specific 

information need to be set in place. 

This study illustrates that usage patterns of a commercial EMR system can enable accurate prediction of certain 

roles in a healthcare system.  Additionally, we illustrated that an automated approach can be leveraged to integrate 

role hierarchies with information learned from EMR access logs to improve role management.  These findings are 

notable because they suggest that RBAC, in combination with some EMR usage mining, may assist in minimizing 

the management of access to an EMR system.  Moreover, the increased specificity provided by User Positions 

versus higher levels within the role hierarchy enables more detailed access pattern analysis. 

These results are further notable because a recent report from the President’s Council of Advisors on Science and 

Technology (PCAST) recommended that emerging health information architectures should leverage security 

principles that have proven successful in a range of industries beyond healthcare.
23

  In particular, the PCAST report 

alludes to RBAC as a foundation upon which such policies can be defined.  With respect to the healthcare domain, 

RBAC is intended to be a scalable framework for commissioning (and decommissioning) users with access rights to 

functions (e.g., order issuance) or elements of a clinical information system (e.g., a specific patient’s record).  And, 

notably, various commercial EMR systems have integrated such security frameworks into their design. Yet, as the 

PCAST report acknowledges, healthcare organizations rarely execute RBAC on the scale found in other domains.  

Limitations of the Study 

There are several limitations of this study that we wish to highlight to help pave the way for future research in this 

area.  The first drawback of this study to note is that the original roles; i.e., User Positions, were defined over time 

and not in a single security engineering design. As a consequence, in certain cases, User Position designations 

represent vestigial remnants of a prior CPOE roll-out strategy. That is, for a time, selected physician user roles were 

not entering orders online, although now all physician User Positions include this functionality. Additionally, User 

Position assignments fail to take into account some workflow idiosyncrasies. For example, hospital medicine 

physicians, or hospitalists, often serve as a pilot physician group requiring their User Position to be distinct from 

other internal medicine physicians. Hospitalists may also work as a non-hospitalist (e.g., as a teaching attending), 

however, and, at those times, their chart access patterns would differ from their hospitalist service rotations. 
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The second drawback of this study is a function of the Role-Up algorithm.  Currently, the roll-up procedure is 

guided by a greedy heuristic.  Specifically, in each iteration, the algorithm generalizes the set of sibling roles (i.e., 

roles with a common parent) that provide the greatest gain in predictive accuracy without sacrificing much role 

specificity.  However, this process does not guarantee the discovery of a system that maximizes the number of roles 

and system accuracy.  Thus, as a next step, we intend to determine how to mitigate the greedy nature of the search. 
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