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ABSTRACT
We consider reliable telemetry in white spaces in the form of pro-
tecting the integrity of distributed spectrum measurements against
coordinated misreporting attacks. Our focus is on the case where a
subset of the sensors can be remotely attested. We propose a prac-
tical framework for using statistical sequential estimation coupled
with machine learning classifiers to deter attacks and achieve quan-
tifiably precise outcome. We provide an application-oriented case
study in the context of spectrum measurements in the white spaces.
The study includes a cost analysis for remote attestation, as well as
an evaluation using real transmitter and terrain data from the FCC
and NASA for Southwest Pennsylvania. The results show that with
as low as 15% penetration of attestation-capable nodes, more than
94% of the attempts from omniscient attackers can be thwarted.

1. INTRODUCTION
Dynamic spectrum allocation promises to make spectrum use

more efficient by enabling opportunistic, unlicensed (secondary)
use of ‘white-space’ frequencies when they are not occupied by li-
censed (primary) users. This paradigm has gained significant trac-
tion due to the increasing demand for wireless services, the limited
availability of spectrum, and the FCC’s recent ruling that permits
operation of unlicensed users in the unused portions of the TV spec-
trum. This permission is considered the first significant increase in
unlicensed spectrum below 5 GHz in over 20 years [2].

Identifying unused portions of spectrum is a key requirement for
opportunistic spectrum access. Spectrum availability data is envi-
sioned to be centrally aggregated and consulted to govern the us-
age of spectrum. At least three scenarios for data collection have
been proposed. First, the data may be provided by volunteer white-
space devices or deployed sensors to build regional or nationwide
spectrum availability databases, or augment the white space geo-
location database mandated by the FCC. Second, a white-space
service provider may collect spectrum sensing data from white-
space devices in its network to determine areas of primary pres-
ence [1, 4, 11]. Third, by combining spectrum sensing data from
multiple devices (collaborative sensing), one can improve the de-
tection accuracy in highly shadowed environments [37].
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Reliable Telemetry, or reliable central aggregation of sensor data
in this context, is threatened by nodes that may report false data
with malicious intent. A coordinated group of attacker nodes may
aim to exploit a spectrum in a given region by falsely reporting that
a primary signal is present, or vandalize a primary by reporting that
its signal is not present and thereby creating interference and chaos.
Previous works on this problem have achieved moderate degrees of
success by identifying the data from individual or small groups of
attackers as abnormal. These approaches suffer from at least two
shortcomings. First, their effectiveness is limited by relying solely
on sensor data for inferring (dis)trust. Second, they assume limits
on the penetration of attackers in an area; attackers either constitute
a small fraction of nodes in a small local neighborhood [30], or if
they control the majority of nodes in a neighborhood, the prepon-
derance of adjacent neighborhoods must be un-compromised [18].

In this paper, we initiate a new direction in reliable distributed
measurement by relying on a small subset of nodes that can perform
remote attestation. These nodes can securely attest their operating
state to a remote server. They will be excluded if they are detected
as compromised. Otherwise, they will be used as a foundation for
security and reliability. To that end, we propose a practical frame-
work for using data from both attested and regular nodes to deter
attacks, while achieving quantifiably accurate results in the absence
of attacks. More specifically, we explore a strategy based on sta-
tistical sequential sampling and inference to obtain an estimate for
signal power in each small region. The sampling method uses data
from all of the attested nodes, as well as the minimum required data
from the rest of the nodes to achieve accuracy with a pre-specified
margin of error. Next, the data contributed by non-attested nodes is
verified against data from attested nodes in the neighboring areas.
This step is performed using SVM classifiers with quadratic ker-
nels that are trained with an initial set of trusted signal propagation
data in the region of interest.

We evaluate our scheme using predicted signal power data ob-
tained from applying empirical signal propagation data to real-world
TV transmitter and terrain data from the FCC and NASA databases.
We instantiate the evaluations to a hilly urban/suburban area in
Pennsylvania and measure the performance of our approach in the
absence and presence of omniscient coordinated attackers. In addi-
tion, we systematically enumerate the costs associated with remote
attestation and provide detailed data on these costs for prototypes
based on Trusted Platform Modules (TPMs) and AVR32 microcon-
trollers. The data shows attestation may introduce non-trivial costs,
which motivates our approach to leveraging attestation efficiently
to establish trust in spectrum sensing results. Our evaluation re-
sults show that our scheme is highly effective against attacks even
in cases where only a small subset of the sensors can be remotely
attested. For example, with as low as 15% of nodes being attested,



we show that more than 94% of the attacks can be defended against.
The protection gradually improves as the fraction of attested nodes
increases.

The contributions of this paper are summarized below:

• A new direction in reliable telemetry against coordinated mis-
reporting attacks that relies on a small subset of attestation-
capable sensors.

• A practical framework for using statistical sequential esti-
mation coupled with machine learning classifiers to deter at-
tacks and achieve quantifiably accurate outcome.

• A case study based on real TV transmitter and terrain data
from the FCC and NASA in Pennsylvania that includes an
evaluation for the proposed scheme, as well as a cost analysis
for remote attestation.

2. BACKGROUND AND PROBLEM FORMU-
LATION

In this section we first provide background information on spec-
trum measurements and remote attestation. Next, we describe our
setting and problem statement.

2.1 Spectrum Sensing and Aggregation in White
Spaces

The FCC’s ruling in November 2008 allows for operation of
unlicensed users in the unused portions of the TV spectrum [2].
Wireless communications in this spectrum (below 700 MHz) ben-
efit from favorable signal propagation and penetration properties,
which enable long transmission ranges. Access to this spectrum
could enable more powerful Internet connections in public areas,
campuses, and homes with extended range, fewer dead spots, and
improved speeds. Many other applications are envisioned; for ex-
ample, broadband access for rural areas, extended access to medi-
cal care in rural areas, and support for the communications of the
advanced meter infrastructure (AMI) [3, 17].

Sensing the spectrum to identify unused channels can be used to
improve the performance of white space networks. This is despite
the FCC’s September 2010 ruling which exempts the devices that
incorporate geo-location and can access a new TV band database
from mandatory spectrum sensing [3]: (1) The ruling still allows
for operation of sensing-only devices that cannot or do not access
the database. (2) The database is built from conservative propaga-
tion models, which results in declaring many unused channels as
occupied in places far from the transmitters. Real-time spectrum
sensing data can provide a more accurate view of spectrum avail-
ability, or be used to improve the database results. (3) In places
where multiple channels are available, the spectrum sensing details
can reveal the highest quality channels for communications.

There exist three scenarios for centrally aggregating spectrum
sensing results from sensors in a large region [19]. First, using
data from deployed spectrum sensors or volunteer (mobile) white-
space devices to build a regional or nationwide spectrum availabil-
ity database. Such a database can be used to augment the white
space geo-location database mandated by the FCC, or to learn spec-
trum usage as part of the recently passed Spectrum Inventory Bill [6].
Second, a white-space service provider or base station may col-
lect spectrum sensing data to determine areas of primary presence
from cognitive radios in its network. This centralized approach
has been endorsed by the IEEE 802.22 WRAN standard draft [4],
CogNeA [1] and recent research prototypes [11]. The spectrum
sensing data collected by the service provider may be provided by

not only in-network cognitive radios, but also deployed spectrum
sensors, and additional volunteer (mobile) devices to determine ar-
eas of primary presence. Third, spectrum sensing results from mul-
tiple devices may be combined to improve the detection accuracy
at low thresholds in highly shadowed environments [37].

To capture the common aspects of the above scenarios, we focus
on the case of building a regional spectrum availability database
by a service provider. The database may then be combined with
databases from other regions to form a nationwide database of spec-
trum sensing. The spectrum sensing data used to populate the
database is provided by one or more of the following sources.

• Volunteer Radios: a set of (mobile) devices with different
owners. The data would be collected by a modern ‘mobile
app’ built to perform spectrum sensing at its current location
and report the results to a central server. This form of partic-
ipatory sensing is also referred to as crowdsourcing.

• In-Network Cognitive Radios: cognitive radios that are part
of the service provider’s network.

• Dedicated Sensors: sensors (in the form of a wireless sensor
network) deployed for the specific task of spectrum sensing
alongside the main white-space network [16].

2.2 Remote Attestation
Remote attestation is a technique for a system to provide certi-

fied information about its operating state (i.e. software, firmware,
or configuration) to a remote party. This process is typically ini-
tiated by a request from the remote party. Upon receipt of the re-
quest, the queried system creates a (signed) record of the system’s
operating state and sends it to the initiator. To securely record and
certify its current state, the system needs to contain a number of
components. Trusted hardware components are often used to this
end, although software can also be used in some cases. Regardless,
remote attestation imposes additional computational, storage, en-
ergy, time, and potentially manufacturing costs on both parties. On
desktop PCs, the Trusted Platform Module (TPM) is often used to
provide remote attestation functionality. The Trusted Computing
Group (TCG) is developing trusted computing standards specifi-
cally for mobile devices to minimize costs and support appropri-
ate usage models, and have specified several primitives for a Mo-
bile Trusted Module (MTM). MTMs are expected to be available
for many new mobile applications in the near future [7]. Previ-
ous work has also shown that remote attestation can feasibly be
implemented in software on-chip for embedded processors such as
AVR32 micro-controllers [25].

2.3 Setting and Problem Statement
We consider building a spectrum availability database from re-

ceived signal power data from a combination of volunteer radios,
in-network cognitive radios, and deployed sensors. We refer to
these sources as nodes or sensors in the rest of this paper. Due
to their widespread adoption, ease of implementation, and small
sensing time, we assume that energy detectors will be the only sen-
sors in use [8, 36]. We also assume the primary signal faces path
loss and shadow fading due to irregular terrain and obstacles such
as trees, buildings, walls, and windows.

The spectrum availability database represents the region of inter-
est as a grid of small cells (or tiles) on the map of the region. Each
cell may be a 1km × 1km square and is the unit in which combin-
ing individual results, or collaborative sensing, occurs. Within a
cell, we combine the raw signal power measurements from nodes to
determine primary presence (as opposed to binary yes/no results).



This allows for using signal power as a measure of quality among
the available channels and enables us to detect misreporting attacks.
A common method for combining sensing results within each cell
is Equal Gain Combining (EGC), which periodically averages the
power measurements of individual nodes in each frequency channel
and compares it to a detection threshold λ. In the case of primary
Digital TV (DTV) transmitters, FCC has mandated -114 dBm as
the detection threshold.

We address the problem of performing reliable aggregation of
spectrum measurement data contributed by a distributed set of nodes.
An attacker may compromise a (large) subset of the nodes and
make them act in cooperation in order to change the spectrum sens-
ing outcome in any cell, including any number of adjacent cells.
For example, they may seek to change the perceived primary signal
power for a cell from a value below threshold (-120 dBm) to a value
above threshold (-100 dBm), or vice versa. The first attack is called
exploitation, and the second is called vandalism. In exploitation,
the attackers aim to deceive the network to abandon the channel to
exclusively use it for themselves, whereas in vandalism the main
goal is creating chaos or interference. We focus on canceling the
effect of such attackers that have a strong (e.g. majority) presence
in a cell, and (in the absence of any defense) are able to dominate
the cell and flip the detection outcome.

A particularly novel aspect of our work is that we assume that a
subset of nodes, for example 20%, are able to perform remote at-
testation (see Figure 1). For any such attestation-capable node, the
aggregation server can detect whether it is compromised and thus
running illegitimate code. The question that we aim to answer is
how to efficiently and effectively use this capability to obtain reli-
able spectrum sensing results. This question is particularly impor-
tant when the attestation-capable nodes constitute a small fraction
of the nodes. This may be due to the low penetration of the technol-
ogy among the volunteer nodes, or cost considerations of deploying
and using this capability by the service providers in the deployed
sensor scenarios (see Section 5).

While some of the nodes may be unreliable or compromised in-
siders, we assume that each node maintains a secure link to the
base station for sending spectrum sensing results, and that attack-
ers are unable to fabricate nodes or identities arbitrarily (‘Sybil’ at-
tacks [32]). The secure links can be realized using pre-shared keys
or a PKI, which may also serve as a foundation for preventing Sybil
attacks by being associated with the identity of each node. Alter-
natively, one can take the dual view that we aim to demonstrate
a method that forces adversaries to discover and deploy a practi-
cal Sybil attack, which requires a higher level of sophistication on
the attacker’s side (e.g. faking multiple link layer addresses). We
also assume that the locations of nodes are reliably known through
GPS or other localization techniques and nodes do not misreport
their locations. This assumption is easily achievable in two of
the most popular proposed applications of white space network-
ing that assume fixed nodes with known locations: (1) Residential
Internet access using IEEE 802.22 [36], and (2) AMI communica-
tions [17]. In cases where the network contains untrustworthy or
mobile devices, secure localization and location verification tech-
niques may ensure nodes’ locations are authentic [14, 24, 26, 27].
The above assumptions are common for the type of analysis we
perform here [15, 19, 31]; if they are violated then additional pro-
tective measures are required.

3. APPROACH
Consider Figure 1 as part of the region of interest for perform-

ing reliable aggregation of spectrum measurement data. There exist
two types of nodes; attestation-capable nodes (triangles), and reg-

ular nodes (circles). In any particular cell, the goal is to obtain an
estimate of the signal power in that cell, and compare it to a primary
detection threshold to determine whether the spectrum is unused.
Assume for now that we have performed remote attestation on all
attestation-capable nodes and have excluded those we believe are
compromised. Therefore, the remaining attestation-capable nodes
are considered trusted or attested. For regular nodes, however, we
do not have any prior information regarding their legitimacy.

Consider cell A in Figure 1 in which about half of the nodes are
attested. One may argue that the high number of reliable nodes pro-
vides enough diversity to absorb the variations due to path loss and
shadow-fading, and therefore there is no need to include the results
of regular nodes. This approach is safer (in terms of vulnerability
to false reports) than one in which the values from the (potentially
compromised) regular nodes are also included. But what if the rest
of the regular nodes are also legitimate? Is the safety worth the re-
duced precision? How would we determine whether it make sense
to rely only on trusted nodes, or we should use the data from regular
nodes as well? And if so, which ones?

A B C 
Attested Node 

Regular Node 

Figure 1: Illustration of a few cells with attested and regular
nodes.

Now consider cell B where unlike cell A there are very few
trusted nodes. Therefore, there is a high chance that aggregating
the measurements from such a small number of nodes does not pro-
vide enough diversity to obtain a precise measurement (estimate)
of the signal power. A similar situation can be seen in cell C; not
only there exist very few attested nodes, but their positioning also
makes it likely that they do not provide enough diversity. For exam-
ple, they may all be behind an obstruction that attenuates the signal.
Therefore, it seems necessary to include results from at least some
of the regular nodes. But what if some or all of them are com-
promised, and they skew the results to achieve their malicious goal
instead of adding legitimate diversity?

3.1 Key Issues and Overview
The examples above underline the importance of the following

needs. First, there must be a systematic strategy to determine when
there is enough diversity in the results that we can stop collecting
additional data within a cell. Second, if we decide we need ad-
ditional data beyond those from attested nodes, there should exist
a strategy to decide which nodes to include. Third, for each cell
in which additional regular nodes are added to the data ‘pool,’ we
need a strategy to ensure that the added nodes are not dominated by
attackers.

At a high level, our approach consists of three main phases (sum-
marized in Algorithm 0). First, within each cell we rely on statis-
tical inference and sequential estimation to aggregate data from all
of attested sensors as well as ‘enough’ regular nodes to achieve
the application-specified precision goal (Section 3.2). Note that
we only include the least required number of regular sensors to
limit unnecessary exposure to untrustworthy data. Various inclu-
sion strategies are proposed for this purpose (Section 3.3). The



aggregate is either the mean and median of the data, and is dy-
namically determined by our algorithm. This choice may change
throughout the execution of the algorithm according to pre-specified
rules (Section 3.4). Second, the regular nodes that were included
in the aggregation process in the cell are compared against the data
from the trusted nodes of the 8 neighboring cells. This process
involves using machine learning classifiers built from real signal
propagation data. The classifier detects irregular signal propaga-
tion patterns that most likely represent a coordinated misreporting
attack (Section 3.5). Third, after the potentially compromised data
is eliminated, we compute the final aggregate.

Algorithm 1 Simplified Approach Overview (for Each Cell)
Input:
(1) Green Data: measurements from attested nodes
(2) Yellow Data: measurements from regular nodes
(3) Strategy ∈ {Random, Geo-Diverse, Biased}: strategy for in-
cluding data from regular nodes
(4) Aggregate ∈ {Mean, Median}: dynamically changes based
on the situation

Phase 1: Node Selection
Add Green Data to aggregation Pool
while ¬SATISFY-PRECISION-REQUIREMENTS(data in Pool,
Aggregate) do

if | Yellow Data | > 0 then
MOVE-NEXT-ELEMENT-TO-POOL(Strategy, Yellow

Data)
else

Remove all Yellow Data from Pool
Go to Phase 3

end if
end while

Phase 2: Attack Detection
Yellow Suspects← Yellow Data in Pool from Phase 1
Green Neighbors← averages of Green Data in the neighboring
cells (i.e. 8 numbers)
if SVM-ATTACKER-DETECTION(Yellow Suspects, Green
Neighbors) then

Remove all Yellow Suspects from Pool
end if

Phase 3: Aggregate Calculation
Compute Aggregate from data in Pool

3.2 Using Statistical Inference to Ensure Pre-
cision

For many applications, including aggregation of spectrum sens-
ing data, it is not clear in advance how many sensors (observations)
should be used in each aggregation effort in order to achieve the de-
sired precision in the (estimation) outcome. Instead, data is evalu-
ated as it is collected, and further sampling is stopped in accordance
with a pre-defined stopping rule. This process is also referred to as
sequential estimation. In our case, we aim to achieve an acceptable
precision in the results while using as few data points from regular
nodes as possible. We argue that sequential estimation for achiev-
ing fixed width confidence interval for the estimated aggregate is an
ideal tool to achieve our goal. By stating the acceptable margin of
error (half the width of a confidence interval) for the quantity being
estimated, the application can ensure with high confidence that the
estimated outcome from the sample data is ‘close enough’ to the
true value. In other words, with high confidence (e.g. 95%), it can

be assured that the true mean (or median) is within a γ margin of
error from the estimated value (e.g. γ = 3dB). This is also referred
to in the form of a coverage probability (e.g. 0.95 = 1− α).

We first focus on a sequential procedure for finding fixed-width
confidence intervals for the mean. Let x1, x2, ... be a sequence
of independent and identically distributed (i.i.d.) random variables
having an unknown density function f(x), x ∈ R. The i.i.d. as-
sumption is not absolutely true for sensors that are very close and
face correlated shadowing; however in view of practical consider-
ations we proceed with this assumption, which is in-line with the
commonly used log-normal shadowing model [33]. Let µ and σ2

represent the mean and variance of density function f(x). It is
known that no fixed-sample size procedure will provide a fixed-
width confidence interval for µ having a prescribed coverage prob-
ability at the same time. The famous Chow-Robbins procedure for
sequential estimation defines the following stopping rule for a con-
fidence interval of size 2γ:

N = inf{n ≥ n0, n ≥ a2γ−2s2n}

where n0 ≥ 2 is the initial sample size, a = z(1−α/2) is the
100(1−α/2) percentile of the standard normal distributionN(0, 1)
(e.g. if α = .05 then a = 1.96), and sn is the sample standard de-
viation of n observations. The Chow-Robbins procedure is asymp-
totically tight, in the sense that the coverage probability is asymp-
totically 1−α, and is also asymptotically efficient in the sense that
the average required number of samples is asymptotically equal to
an optimal fixed-sample procedure with known σ2 [20].

Now we turn to the median. We begin by placing the measure-
ments in order, that is: x(1) < x(2) < ... < x(n). The goal is
to find an interval x(a) < m < x(b) such that P (x(a) < m <
x(b)) = 1 − α, where 1 − α is the desired probability that the
interval captures the median.

In order to have x(a) < m, at least a of the observations must
fall less than m, and in order to have m < x(b), at most b − 1 of
the observations must fall less than or equal to m. Since m is the
median and since the distribution of theX’s is continuous, we have

P (X < m) = P (X ≤ m) = .5.

Assuming independent observations, the probability that at least a
and at most b − 1 of the observations fall less than m is given by
the binomial probability with p = .5, that is

∑b−1
k=a

(
n
k

)
(.5)n. To

construct a 100(1 − α)% confidence interval for m, we choose a
and b so that this sum is 1 − α. For large samples, approximate
values of a and b may be found by using the normal approximation
to the binomial distribution. We may obtain a and b by solving for
them in the following equations [22]:

a− .5n√
.25n

= −z(1−α/2),
b− 1− .5n√

.25n
= z(1−α/2)

Note that both the confidence intervals were calculated by as-
suming the distribution of the original population is unknown.

3.3 Intra-cell Inclusion Strategies
We consider three inclusion strategies for including regular nodes

in the aggregate computation in each cell. The merits and disadvan-
tages of each strategy are discussed in this section and evaluated in
Section 4.

Random: Randomly adding data from regular nodes to the data
from attested nodes has the advantage that it is in-line with the sam-
pling assumptions made in computing the confidence intervals. In
addition, the randomness reduces the attacker’s chances of selec-
tively compromising nodes and carefully crafting false measure-
ments with minimum abnormality. However, it disallows deploy-



ing targeted inclusion strategies that could potentially lead to lower
attacker success rate.

Geo-Diverse: By selecting a geographically diverse set of regu-
lar nodes, we add diversity to the results and reduce the chances of
selecting (regular) nodes that are experiencing similar shadowing
effects. To achieve this goal, we use the widely cited Gudmund-
son shadow correlation model [21]. According to this model, the
correlation in shadow-fading in distance ∆x is represented as:

R(∆x) = e
−∆x
dcorr

with the correlation length dcorr dependent on the environment.
Empirical studies suggest values between 25m to 120m for urban
areas [9]. Using this model, we suggest the following greedy ap-
proach to adding nodes to the aggregation pool. Before each addi-
tion to the pool, we compute the aggregate correlation of all nodes
already in the aggregation pool with the candidates to be added to
the pool. At each step, we add the node with the least aggregate
correlation with existing nodes.

Biased: In this approach, we sort the data from the regular nodes
in the increasing order of the absolute value of their difference to
the median of the attested nodes. At each step, we move values to
the aggregation pool according to their rank in the sorted list. This
approach has the disadvantage that creates a ‘bias’ in the aggregate
calculation process, which makes the computations in Section 3.2
inaccurate. However, in many cases, this bias effectively works
as an implicit weighting mechanism in situations where attackers
have only compromised a subset of the regular nodes. In those
situations, this approach may limit the number of measurements
from compromised nodes that will be included in the final result
(see the results in Section 4).

3.4 Intra-cell Aggregation: Mean or Median?
Within each cell, the two main options for aggregating measure-

ments in a cell are calculating the average (EGC) or median of the
data (observations). A collection of observations is referred to as a
sample. The goal is to use all of attested nodes plus a dynamically
selected set of regular nodes such that we can ensure the computed
aggregate is within a pre-defined distance of the real mean or me-
dian for the signal in the cell.

The median has a key advantage over the mean as an aggregate;
it is less vulnerable to natural outliers or attacker nodes that con-
stitute a minority of nodes in a cell [18, 38]. However, computing
the sample median with a pre-specified confidence interval requires
more data (compared to mean). Or dually, with a fixed number of
observations, the confidence intervals achieved for the median are
larger than those computed for the mean (the calculation proce-
dures are presented in Section 3.2). To support our argument about
the relatively smaller confidence intervals for mean (with the same
number of samples), we generate sample signal propagation data
representing a log-normal shadowing model with average power of
−95dBm and standard deviation (a.k.a. dB-spread) of 4, 6, and
8. Table 1 presents the margins of error achieved using random
samples of size 20, 30, 40, and 50 from this distribution.

However, if the attackers obtain even a weak majority in a cell,
they can move the median to their desired number while being
less ‘abnormal.’ Figure 2 illustrates this observation. The attack-
ers’ goal is to change the aggregate from a value below the signal
threshold of -114 dBm to one above the threshold (e.g. -113 dBm).
When the median is used (the top picture), the attackers can achieve
their desired goal by simply reporting -113 dBm. However, when
the average is used (the bottom picture), the attackers need to report
an average false report of -105.5 dBm to change the total average
to their desired value of -113 dBm. The additional abnormality

Table 1: Margin of error (95% confidence) for randomly gen-
erated data of size |S| equal to 20, 30, 40, 50 from log-normal
(shadowing) distribution with standard deviation, σ, of 4, 6,
and 8.

|S| = 20 |S| = 30 |S| = 40 |S| = 50
σ = 4

Mean 1.7 1.4 1.2 1.1
Median 2.3 1.9 1.6 1.5

σ = 6
Mean 2.6 2.1 1.8 1.6

Median 3.5 2.8 2.5 2.3
σ = 8

Mean 3.5 2.8 2.4 2.2
Median 4.7 3.8 3.3 2.6

facilitates detecting them using SVM classifiers (Phase 2 of our ap-
proach), and is therefore desirable. Hence, we will rely on median
when the attested nodes represent the majority of nodes in the cell
and rely on the mean otherwise. This strategy helps with reducing
the effect of attackers and natural outliers when attackers do not
constitute a majority, and makes them more likely to be detected
when they do.

We further elaborate on the details of aggregate calculation in
Phase 1 with an illustrative example. We start by considering the
data from all of the attested nodes in the aggregation pool and ini-
tially use median as the aggregator. If the margin of error for the
median of attested nodes is below the application requirement γ,
we stop by declaring the median as the final result. Otherwise, we
need more data. Consider a cell with k attested nodes. After adding
the k attested nodes, we iteratively add up to k − 1 additional ele-
ments from regular nodes to the aggregation pool.

-100 -120 -80 

-100 -120 -80 

Average of attested nodes   : -122 dBm 

Average of attackers     : -105.5 dBm 

Average of all: -113 dBm 

 

 

Average of attested nodes   : -122 dBm 

Average of attackers    : -113 dBm 

Median of all:  -113 dBm 

 

 Signal Power (dBm) 

Signal Power (dBm) 

Figure 2: A simplified illustration of why attackers are forced to
deviate more when they aim to move the mean (bottom picture)
instead of the median (top picture).

The order in which the regular nodes are added to the pool is de-
termined by the chosen inclusion strategy (Random, Geo-Diverse,
or Biased). After each addition, if the margin of error for the me-
dian is reduced to a value lower than γ, we transition to Phase 2. If
this condition is not met at any point and there exist additional mea-
surements, we switch to using mean as the aggregator. Again, we
continue adding new data from the regular nodes to the aggregation
pool (using the same inclusion strategy) until the stopping rule is
satisfied. If so, we transition to Phase 2. Otherwise, if adding all of
the regular nodes does not result in satisfying the stopping rule, we
ignore all the added regular nodes and proceed to Phase 3 where
the median of attested nodes is computed as the aggregate.

3.5 Inter-Cell Attacker Detection using Clas-
sifiers



When the execution of Algorithm 0 reaches Phase 2, we have ob-
tained an aggregate from data provided by all of the attested nodes,
as well as some or all of the regular nodes in the cell. In this phase,
we aim to ensure that the regular nodes whose data is included in
the calculation are not part of an exploitation or vandalism attack.
We first separate the data points from those regular nodes that have
contributed to the aggregate (a.k.a. ‘yellow suspects’) and compare
them to the data from attested nodes in the neighboring cells (a.k.a.
‘green neighbors’).

A B C 

G H I 

F 

Attested Node 

Yellow Suspects 

E D 
E: Only yellow  
suspects shown 

A, B, C, D, F, G, H, I: 
Only attested  
nodes shown 

Figure 3: Classification-based attacker detection setting: reg-
ular nodes included in the aggregation for cell E and attested
nodes from neighboring cells.

To determine if the yellow suspects in a cell represent an attacker-
dominated group, we use real signal propagation data in the region
to build a classifier that is trained to differentiate between natural
and un-natural signal propagation patterns. The idea is to learn the
normal propagation patterns of the signal from the reliable signal
propagation data and use it to spot unnatural propagation of signal,
which may be caused by malicious false reports.

More specifically, we consider the local neighborhood NE of
any cell E to contain E and its 8 neighboring cells (Figure 3).
We represent NE by a 9-element tuple containing the ‘average’
reported powers from the yellow suspects in E and the average re-
ported power from the green neighbors in a pre-specified order. We
call this the neighborhood representation of E. For example, for
Figure 3, the first element would be the average of yellow suspects
in cell E, and the second to ninth elements would be the value in
the first element minus the average power of attested nodes in cells
A to I (excludingE). Assume for a moment that we have access to
reliable power measurements for a subset of the region of interest.
This data can be used to create one neighborhood representation
for each cell in the area. We refer to each such representation as an
‘example.’ Therefore, we can assume access to a large number of
such examples representing the ‘natural’ propagation of signal in
local neighborhoods. Also, as we will elaborate later, assume we
have access to the neighborhood representation for a sufficiently
large and diverse set of ‘un-natural’ (attacker-dominated) cells.

We now cast our problem to a binary classification problem.
Classification is a machine learning technique that is widely used
in domains ranging from spam email detection and unauthorized
spectrum usage to fraud detection and speech recognition. In a bi-
nary classification problem we are given a set of training examples
with their corresponding labels, (−→xi , yi), where −→xi is the represen-
tation of the ith example and yi ∈ {1,−1} (‘yes’ or ‘no’) is the
corresponding binary label. Each example is described by a vec-
tor of its attributes which is often called the feature vector. In our
case, the neighborhood representation of a cell serves as its fea-
ture vector. The goal is to predict a binary label for a test exam-
ple for which we do not know the label, using the classifier built

from training examples [12]. A classifier tries to partition the input
feature space into regions where positive examples lie versus re-
gions where negative examples lie. The boundary between regions
for positive and negative examples is called the decision boundary.
Training involves learning the decision boundary and classification
involves determining on which side of the decision boundary a test
example lies.

Now we turn to the problem of obtaining training examples. We
argue that normal (negative) instances can be obtained in a practi-
cal one-time process based on a trusted sensor grid. By one-time
we mean that in a particular region, we only need to collect signal
propagation data once to build the classifier for that region. Once
the classifier is built, it can be used forever (or until there is a sig-
nificant environmental change in the region). A typical strategy for
collecting this data is war-driving where a sensor is moved though
the region collecting training data as it goes. Having obtained such
natural (normal) examples, we modify them to inject un-natural
training instances to represent attacker-dominated cells.

Building such a classifier from the natural and un-natural exam-
ples has been discussed in detail in prior works [19] and has been
shown to effectively detect attacker-dominated regions in environ-
ments where there is no separation between regular and attestation-
capable nodes. By contrast, in our setting, the classifier is applied
in a slightly different manner where only the trusted data from the
neighbors is used in classification. However, due to potentially low
penetration of attested nodes, this translates to less data points be-
ing available for classification. This may negatively affect the clas-
sification accuracy. We build a similar classifier (using Support
Vector Machines (SVM) with quadratic kernels) to detect whether
the yellow suspects in a cell look abnormal compared to the green
neighbors and evaluate it in Section 4. If the classifier considers the
data to be anomalous, we only rely on the median of the attested
nodes in that cell. Otherwise, the aggregate computed in Phase 1
(using a mix of attested and regular nodes) is valid and should be
used as the representative signal power in that cell.

4. EVALUATION
We evaluate our system using predicted signal propagation data

obtained from real transmitters and terrain data. More specifically,
the TV transmitter location, signal power, height, and frequency is
obtained from FCC databases and terrain (i.e. elevation for any
given point) is obtained from NASA databases [5]. We choose
the FCC-endorsed Longley-Rice empirical outdoor signal propa-
gation model to generate predicted signal power for any location
and frequency of interest. Longley-Rice takes into account the ef-
fects of terrain as well as transmitter’s power, location, frequency,
and height. To account for additional uncertainties due to factors
such as shadow-fading we add log-normal variations with a mean
of zero and a standard deviation (dB-spread) of σdB = 6 to the pre-
dicted signal power for each point [37]. For evaluation purposes,
we consider this data as the ground truth.

We instantiated our evaluation to an urban/suburban area sur-
rounding Pittsburgh, Pennsylvania. The hilly nature of the area
introduces a large amount of legitimate signal variations, which
makes the task of precise signal power estimation and attacker de-
tection more challenging (compared to flat areas). Therefore, these
experiments should be considered a stress-test for our scheme.

The following points in (latitude, longitude) format define the
southwest and northeast corners of the considered 20km × 20km
square area in Pennsylvania: 〈 (40.35, -80.12), (40.53, -79.884)〉.
Each cell is 1km × 1km. We focus on signals from all DTV trans-
mitters within a 150 mile radius of this area with estimated received
powers higher than -130dBm. This results in a list of 37 DTV



Figure 4: (a) Transmitters in parts of Southwest Pennsylvania / East Ohio. (b) Distribution of received signal for the training and
testing data in Southwest Pennsylvania.
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Figure 5: No attack; percentage of cells with ground truth average within the margin of error from the calculated aggregate (left)
and false outcome rate (in percentage) as a function of the fraction of attested nodes (right).

transmitters, of which we randomly pick 29 for building the clas-
sifier, and 8 for testing it. An illustration of the area, including the
location of the majority of DTV transmitters in provided in Fig-
ure 4(a). The distribution of the received signal power across all
the cells in the region (from all 37 transmitters) is provided in Fig-
ure 4(b). Guided by approximate sample size requirements based
on methods in Section 3.2, we consider nodes to be scattered with
an expected density Ed of 50 nodes per cell. To add variation and
randomness, we consider the number of nodes to be normally dis-
tributed with a mean of Ed, and a standard deviation of 10. Such
densities will be easily achievable in urban areas. In suburban and
rural areas, the densities need to be achieved through provisioning
or other means in order for our approach to be fully effective.

4.1 No-Attack Performance
We first evaluate the accuracy of predictions generated by our

approach when there is no attack. We compare the aggregate pro-
duced by our approach to the ground truth (real average power in
the cell). In Figure 5(a) we show the percentage of cells for which
the real average power is within the chosen margin of error ε = 3dB
from the calculated aggregate. The results show that our approach
achieves a high overall success rate in terms of obtaining precise
estimates of signal power in a region. They also show that de-
spite Biased’s weaker performance in some cases, in most cases
the choice of inclusion strategy does not have a significant impact.

As a second performance metric in the absence of attacks, we
introduce the false outcome rate, representing the fraction of un-
attacked cells with ground truth power above (below) the primary
detection threshold of -114dBm that due to errors in our approach
are mistakenly assigned an aggregate below (above) -114dBm. Fig-
ure 5(b) represents the false outcome rate as a function of the frac-
tion of attested nodes. The results show that while overall false
outcome rates are low, the Biased inclusion strategy is the weakest

performer, particularly when the fraction of attested nodes is low.
This can be explained by situations in which the few attested nodes
are not providing values near the true average power in the cell, and
the Biased inclusion strategy aggravates the situation by including
similar data that effectively builds up on the already poor samples.

4.2 Performance against Attackers
To gauge performance in the presence of attacks, we simulate

omniscient (and coordinated) attackers that perform exploitation
and vandalism attacks. Attacker nodes act in cooperation and know
the exact number, measurements, and type of all the other nodes,
as well as the inclusion strategy in use (Random, Geo-diverse, or
Biased). In cells where the ground truth is below the -114dBm
threshold, they cooperate to perform exploitation to change the ag-
gregate to a value above the threshold. Similarly, in cells where the
ground truth is above -114dBm, they aim for vandalism by mov-
ing the aggregate to a value below the threshold. In both cases, the
attackers minimize the deviation of their false reports from the mea-
surements of un-compromised nodes by choosing to report values
that move the aggregate slightly below (above) the threshold (.5 dB
here) in order to perform exploitation (vandalism). This maximizes
their chances of being included in the aggregate pool in Phase 1
and minimizes their chances of being detected in Phase 2. If the at-
tackers conclude that the protections in Phase 1 do not allow them
to ‘flip’ the aggregate, they refrain from reporting false reports to
avoid detection.

To evaluate effectiveness against omniscient coordinated attacks,
we introduce the deterrence rate. This metric represents the frac-
tion of attacks by omniscient attackers that our approach thwarts.
Deterrence may occur in phase 1 (by partial or total exclusion from
the pool), or in phase 2 where their attack is detected by the clas-
sifier. We use data from 29 of the transmitters to build a unified
classifier for the region [19] and test deterrence of attacks on the
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Figure 6: Attack deterrence rate (in percentage) when the average fraction of attested nodes is .15 (left), .25 (center), and .35 (right).

remaining 8 channels. The deterrence rates for cases with aver-
age attested fractions ranging from .15 to .35, and average attacker
fraction ranging from .25 to .85 are presented in Figure 6. For at-
tested fractions higher than .35, our results (omitted due to space
constraints) show that it is more beneficial to avoid the complexities
of our approach and only rely on the average of attested nodes.

In Figure 6, a surprising phenomenon can be seen in the case
of Biased attacks. In some cases, when the attested fraction is in-
creased (particularly from .25 to .35), the deterrence rate decreases.
While this can be considered a flaw for the biased scheme, it can
be described as follows. When the attested fraction is increased,
there is less competition from regular un-compromised nodes (for
attacker nodes) to report values close to the average of attested
nodes and enter the aggregation pool. Therefore, the attackers have
a higher chance of entering the pool with false reports, influencing
the results, and passing Phase 1. The results in Figure 7 show this
observation; unlike Random and Geo-diverse cases in which the
deterrence at phase 1 does not change or increases as the attested
fraction increases, the rate decreases for the Biased strategy.

Overall, the results show the following. (1) All three approaches
are highly effective against omniscient attacks, even in cases where
a small fraction of nodes are attested. (2) In terms of attack de-
terrence, the Biased inclusion strategy outperforms others. This
is particularly true with lower attested and attacker fraction. This
can be attributed to the difficulty of influencing the aggregate by
attackers in these situations, since the attacker has to fulfil two con-
flicting goals of reporting values close to the attested average (to be
included in pool) and at the same time far from the attested average
(to move the aggregate and perform attack). (3) The relative out-
performance of the Biased approach comes at the price of relatively
higher false outcome rates when there is no attack.

5. ATTESTATION COSTS
Remote attestation can introduce potentially significant additional

costs into a system. This section briefly surveys these costs for
implementations of two remote attestation architectures. The first
uses a TPM, which is a distinct coprocessor, whereas the second
is implemented primarily in software, requiring only small hard-
ware adaptations. The TPM-based architecture represents an up-
per bound on the cost of attestation, since the TPM is intended
for use in desktop PCs with practically unlimited power supplies.
The software-based architecture represents a low-cost alternative,
although hardware and software innovations may result in archi-
tectures with even lower costs. The reason we include this section
is to emphasize the fact that attestation introduces significant costs,
which motivates our approach to leveraging relatively few attested
nodes to establish trust in spectrum sensing results. The specific
tradeoff between trust and cost can be made on a case-by-case ba-
sis.

Costs arise from various sources. Remote attestation support of-
ten requires additional hardware resources, which increase manu-
facturing costs. Some schemes involve a coprocessor, and even
those primarily implemented in software may necessitate larger
memories to store their code and data. Additional energy may
be consumed by several components involved in a remote attes-
tation transaction. Coprocessors and processors executing software
routines both consume energy. Additionally, coprocessors usually
consume some energy when inactive, and enlarged memories may
require additional energy. Remote attestation transactions increase
the amount of network data that is transmitted and received, which
may also increase the energy consumption of the wireless radio.
Increased network utilization can also impose time costs, as can
remote attestation transaction processing.

We evaluated an Atmel AT97SC3203 TPM installed in a desktop
PC. It imposes a manufacturing cost for the TPM chip itself, and
potentially for expanded memories to support interface software
installed on the attested processor. We measured its energy con-
sumption using a Digital Multi-Meter (DMM). It draws 10.6mW
of power when idle, which is likely to account for the bulk of its
total energy consumption. It consumes around 58.9 mJ when an at-
testation certification is generated. Other operations require some
energy, but are unlikely to contribute significantly to total consump-
tion either due to their infrequent invocation or the fact that they
do not involve expensive routines such as digital signature gener-
ation. Attestation operations require around 1.1 second to execute
and generate at least 276 bytes of uncompressed data if the TPM
uses a 2048-bit RSA key and the 160-bit SHA-1 hash algorithm,
regardless of the specific protocol in use. For reference, we mea-
sured the energy consumption of a Digi XBee 802.15.4 radio using
an oscilloscope, and determined that transmitting a packet with an
x-byte payload consumed about (0.017x + 1.83) mJ of energy at
1mW.

We also evaluated a software-based attestation scheme on an At-
mel AVR32 AT32UC3A0512 microcontroller [25]. It only con-
sumes extra energy when it is active. It uses Elliptic-Curve Cryp-
tography (ECC) rather than RSA, which uses shorter keys (192 bits
in this prototype) and simpler computations. Thus, although it does
not use any hardware accelerators such as those in the TPM, it still
consumes similar amounts of energy during attestation operations.
Each operation takes about 0.6 seconds to execute. Due to the sig-
nificantly shorter keys, each attestation operation only generates at
least 68 bytes of data.

6. RELATED WORK
Much of the prior work in the context of white space networks

uses various abnormality detection techniques to identify individ-
ual attackers within a cell as part of collaborative sensing. Such
approaches, however, are not capable of detecting cells that form
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Figure 7: The fraction of attack deterrences in Phase 1. For each bar with value x, 1 − x is the fraction deterred in Phase 2. The
average fraction of attested nodes is .15 (left), .25 (center), and .35 (right). Results for Geo-diverse (similar to Random) are omitted.

a majority in the cells [15, 31]. For example, Min et al.’s ap-
proach based on correlation-based filters fails to detect attackers
that constitute more than 1/3 of the population of the nodes in a
cell. Fatemieh et al. [18,19] consider detecting attacker-dominated
cells by outlier detection and classification techniques, however,
their solutions do not consider remote attestation and fall short if a
preponderance of neighboring cells are dominated by attackers.

Another body of related work in the context of white space net-
works considers primary user emulation (PUE) attacks [16, 29]. In
a PUE, an attacker may modify the air interface of a radio to mimic
a primary transmitter signal’s characteristics, thereby causing le-
gitimate secondary users to erroneously identify the attacker as a
primary user. We consider this problem to be orthogonal to the
problem we address.

In the context of sensor networks, Wagner introduced resilient
aggregation [38], where he studies resilience of various aggrega-
tors to malicious nodes in an analytical framework based on statis-
tical estimation theory and robust statistics. However, his work is
limited to small regions and does not consider attack detection as
we do. Zhang et al. [40] propose a framework that identifies read-
ings not statistically consistent with the distribution of readings in
a cluster of nearby sensors. Their proposal, however, is not able to
handle situations where attacker can compromise a large fraction of
the nodes in a cluster. Hur et al. [23] propose a trust-based frame-
work in a grid in which each sensor builds trust values for neighbors
and reports them to the local aggregator. Their solution, however,
does not consider natural uncertainties in the data, does not pro-
vide a global view for a centralized aggregator, and cannot identify
compromised ‘regions.’ For a survey on a closely related area of
secure data aggregation in wireless sensor networks see [10].

There has been a number of works on utilizing remote attesta-
tion capability to achieve security in sensor networks. For exam-
ple, there has been efforts on proposing architectures and building
platforms [35], detecting compromised nodes [39], and other activ-
ities such as secure code update and key establishment [34]. To the
best of our knowledge, no prior work has considered the problem of
using attestation to defend against malicious false reports by omni-
scient attackers in the context of white-space distributed spectrum
measurement.

Insider attacker detection in wireless networks is another area of
related work. This problem has been explored in a general set-
ting [13] as well as more specific contexts such as insider jam-
mers. As an illustrative example in the general context of sensor
networks, Liu et al. [28] propose a solution in which each node
builds a distribution of the observed measurements around it and
flags deviating neighbors as insider attackers. The solution, how-
ever, is local and peer to peer and does not work in areas with more
than 25% attackers.

7. CONCLUSIONS
The use of statistical sequential estimation and classification meth-

ods can help evaluate and improve the trustworthiness of spectrum
sensing results generated by a network containing a limited number
of attested nodes. These methods reduce the total cost incurred by
attestation. The results show that attestation capability for as low as
15% of the nodes can provide protection against more than 94% of
the attacks from omniscient coordinated attackers. The protection
improves as the fraction of attested nodes is increased. Our eval-
uation determined that the Biased node inclusion strategy is the
most effective at deterring attacks, but also generates more false
positives than Random or Geo-diverse strategies. These are not the
only strategies that can be used, and future research should evalu-
ate other strategies. One promising future direction is developing a
framework for formulating costs associated with including regular
and attested nodes, and systematically striking a balance between
the costs (from spectrum data aggregation and remote attestation)
and obtaining robust aggregation results.
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