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Abstract

During an Internet distributed denial-of-service (DDoS) attack, attackers pose as
a superpower overloading bandwidth and services that otherwise would have been
lightly used by genuine users. These legitimate users send few packets and occa-
sionally back-off and fail while competing for resources. The Internet architecture
provides only modest support for verifying the true origin of a packet or inten-
tion of a sender. This makes identification and filtering of attack traffic difficult.
DDoS attacks could be limited greatly if there were a way to fairly distribute the
resources among the parties despite limited origin integrity.

In our work, we propose two methods for achieving fairness despite no or
partial implementation for integrity verification. Adaptive Selective Verification

(ASV) provides legitimate clients service despite large but bounded attack rates
without any integrity infrastructure. ASV can be implemented, without the coop-
eration of the core routers, by slight modification of the client and server applica-
tions. The other system is Integrity Based Queuing (IBQ). In this work, we expect
that integrity will not be perfect, but observe that even an imperfect implementa-
tion can improve the effectiveness of queuing when parities with better a integrity
level are incentivized. ASV and IBQ together create a mechanism for incentives,
infrastructure and independence for network service assurance.

ASV is shown to be efficient in terms of bandwidth consumption using net-
work simulations. It differs from previously-investigated adaptive mechanisms
for bandwidth based payment by requiring very limited state on server. Our study
of IBQ includes proof of direct relationship of integrity to service, a network
simulation for comparative study, simulation with real attack traffic and security
analysis.

Our network assurance architecture provides a synergistic approach for defend-
ing against DDoS attacks. With moderate infrastructure support, IBQ can be an
architecture to provide graded source validation on the Internet. Clients that do not
have the support from the ISP, use their spare bandwidth with ASV for service.
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1 Introduction

The core of the Internet is structured with a few thousand links and routers that
carry traffic long distances, i.e., trans-ocean, trans-continent. These are highly
provisioned links and the routers operate at link speed to route traffic. ISPs and
servers connect to this core. Regular clients connect to the server through their
ISP. A communication is established from the client to server through the ISPs and
the core. The attackers use the same infrastructure as the clients use to launch a
distributed denial-of-service attack towards a server. The attack spans the clients,
the edge of the autonomous system (AS), the core and the server. Defense mecha-
nisms can also be deployed at one or many of these locations. We refer to security
investments as infrastructure services that can be installed by the client, its AS or
the core. Our proposal is architecture for network availability assurance where
such infrastructure services are matched by a network service that incentivizes
such investment directly. The incentivizing network service could be located at
the core or at the edge of the server AS. Additionally, infrastructure services are
graded. Organizations invest in a of grade infrastructure based on their business
priorities. But a higher grade of availability is provided for a higher grade of in-
frastructure. We have two proposals that fit in this graded incentive architecture,
Adaptive Selective Verification (ASV) and Integrity-Based Queueing (IBQ). In
ASV, clients are in bandwidth competition to get service. IBQ ASes provide their
clients with graded source authentication and better authentication is prioritized
at the service. Figure 1.1 shows this architecture.

1.1 Problem

Distributed Denial of service (DDoS) attacks are a growing concern as they con-
tinue to pose an elevated threat to the reliability of the Internet. Many attacks
aim to deplete scarce resources (e.g., CPU, memory, disk) by generating ille-
gitimate requests from one or many, possibly compromised, attacker-controlled
hosts [1, 2, 3, 4, 5, 6]. The army of attacker agents (bots) can comprise from
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Figure 1.1: A network architecture with IBQ. The nodes that provide a IS or INS service
have power bars. The level shows their participation level. They are most likely to use
combination of different kinds of IS and INS services.

hundreds to millions of bots located Internet-wide. The time required to process
these requests degrades the service to available clients to an unacceptable degree
or forces costly over-provisioning by the service provider. Instances of potentially
vulnerable services include IKE key exchanges for gateway security association
setup [7], legacy and digitally-signed DNS services [8], large file retrievals from
web servers, and computationally expensive query processing at database front-
ends. These malicious agents send traffic in a high magnitude and frequency
and the sheer volume of traffic can render chaos at the host. Hosts under attack
exhaust their resources such as computing power, memory and bandwidth. Legit-
imate clients, on the other hand, each send a single packet requesting a service.
These requests will fail while competing with attack traffic for scarce resources at
the end host or congested edge routers. In recent years attacks have been launched
equally against private hosts and nations [9]. Recent attacks on Estonia and Geor-
gia [2, 10] lasted more than days. Everything tied to the Internet, which includes
government and financial services, were at a halt. Attacks have disconnected us
from social networks (Twitter) [1] and cost businesses billions of dollars [11].
Table 1.1 summarizes some recent attacks over the decade. The attacks target a
diverse set of victims and motives.
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Year Victim Bandwidth Motive Protocol
2003 BetCris 1G Extortion TCP SYN, DNS, email, Ping
2007 Estonia 90M Cyber-war Ping, TCP SYN
2009 Facebook, 200M Political app layer, http

Twitter
2011 Sony Camouflage breach,

protest the arrest of a PS3 hacker

Table 1.1: Some well-publicized DDoS attacks over the decade.

There is a big gap between commercially used defense mechanisms and the
research in the area. Commercial tools for defense focus highly on over-
provisioning resources and intelligence based intrusion detection systems. Over
the past few years it has become easy for small servers to have great amount of
memory, cpu and bandwidth available through data-centers. The intrusion de-
tection systems keep a constant check on the traffic pattern for the organization
and the data-center. They trigger alerts at any suspicious activity. Servers are
also better capable at balancing load. For example, they do not allow a complete
downtime of the web traffic if the attack is targeting the mail server. Network
administrators are better prepared for typical DDoS attacks with SYN cache man-
agement and limits on ICMP messages. Commercially. the focus is at the server
and protecting its network.

DDoS has a wealth of research. Broadly the research efforts can be classified
as being on identification, filtration and allocation. Finding the source of an attack
is difficult. Attackers employ various redirections and spoofed identities to hide
their origin. An attack packet is structurally similar to a packet from a legitimate
client; just that there is more of them. Research on identification uses crypto-
graphic techniques to lightly authenticate the source of the packet. There are
proposals for deployment by clients, the edge or core routers — many times by a
combination of these. Researchers have studied deployment of static and dynamic
filters at different locations of the Internet once attack flows have been identified.
Once legitimate traffic is identified and attack traffic is filtered, researchers have
looked into mechanisms to allocate resources among the clients. There also has
been lot of focus into separate defenses for making a connection to the server and
sustaining that connection.
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1.2 Requirements

Our proposal looks into ways that ideas in research could be ported into deploy-
ment. It is hard to deploy defense that includes the core. But one deployed only
on the attacked server is not sufficient. Our goal is to involve the client and its ISP
and provide them assurance of availability.

We observe that, if legitimate clients can get their requests through, the mag-
nitude of the attack traffic is less important. Such situation can be created if the
network resources can be divided fairly among all the flows. Under such a regime,
attackers are not able to create widespread congestion because they mainly attack
themselves with abusive flows. Whatever the magnitude of the abusive traffic,
they cannot disrupt service to a legitimate client as they are not able get more
resources than their share.

We consider strategies for DDoS protection based on bandwidth payments and
anti-spoofing integrity measures where the benefit of implementation primarily
accrue to the party that invest in establishing and acting on security assurances.
Moreover, the goal is to provide this benefit incrementally so that even if only
some ASes provide only some assurance to some servers that implement our tech-
nique, then those that make this effort are rewarded for it by improved resilience
to DDoS flooding attacks. Ideally the system

• Does not require adoption by core routers but could benefit from their par-
ticipation;

• Offers direct benefit to parties who participate in it;

• Enables a small number of parties to participate in the system and gain a
benefit, but provides greater benefit if many parties participate;

• Provides at least one practical implementation strategy but does not rule out
others, including simultaneous use of distinct mechanisms.

In our work we propose two methods for achieving fairness despite no or partial
implementation for integrity verification. Adaptive Selective Verification (ASV)

provides legitimate clients service despite large but bounded attack rates without
any integrity infrastructure. The other is Integrity Based Queuing (IBQ). In this
work we expect that integrity will not be perfect, but observe that even an imper-
fect implementation can improve the effectiveness of queuing when parities with
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better a integrity level are incentivized. We introduce a system called Cheater
that integrates both and builds an architecture that protects clients with or without
cooperating ISPs.

1.3 Incentives for Source Integrity

Though the attackers have set up complex underground mechanisms to compro-
mise machines and build botnets, the actual attacks are still simple. Typically an
attacker targets a server and uses its large botnet to send a massive volume of pack-
ets with invalid source IP addresses [4]. This makes identification and filtering of
attack traffic difficult. Spoofing protections have modest incentives for the party
applying them—the main benefits are to the party under attack—and sometimes
are too coarse-grained when classifying the origin as valid or invalid.

In the Internet it is to be expected that integrity will not be perfect and imple-
mentation will be partial. However, even an imperfect implementation can im-
prove the effectiveness of queuing as defense against DDoS attacks when, rather
than treating each flow equally, a party with a better integrity level is better treated
as an incentive. Our approach is called Integrity Based Queuing (IBQ). IBQ gate-
ways classify packets according to the likelihood that they are from a spoofed ori-
gin and allocate bandwidth to high, medium and low integrity flows. Fair queuing
for high integrity flows has high effectiveness as each flow gets its own bucket.
Gateways impose a differential rate limit while fair-queueing medium integrity
flows. The rate limit is imposed as a function of the integrity. The low integrity
flows receive general queuing.

Approach. With IBQ, an ISP that properly authenticates the source IP address
of a packet gets the best guarantee of service when the server is under an attack.
An ISP that authenticates a packet only to its domain but does not bind the source
IP to the packet gets a good guarantee of service but not the best. An ISP that lets
the attack bot spoof the IP addresses on the packets gets service at approximately
the rate as it would without IBQ. As ISPs invest more in infrastructure, they may
choose to provide better integrity for clients. Better source validation enables
them get better service in the face of an attack and works as an incentive for an
ISP to spend on integrity-enhancing infrastructure. In Figure 1.2, we refer to this
as the cycle of integrity assurance.
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3 

Figure 1.2: The Cycle of Network Availability Assurance.

This proposal has number of advantages. First, it gives a graded definition of
integrity: good, bad and middle. Second, it provides a direct measure of incentive
to the ISP: as packets are queued based on integrity, an ISP can see how the
performance of applications have improved by increasing a grade of integrity.
Third, the middle gradation provides a strategy for ISPs to improve their integrity
and performance step-by-step.

1.4 Fight for the Right

Recent work has proven the effectiveness of bandwidth as a currency. In order
to get service, the clients are encouraged to spend more bandwidth by either
sending repeated requests from which the server selectively verifies (processes)
some [12, 13] (Figure 1.4), or dummy bytes on a separate channel to enable
a bandwidth auction [14]. Currency-based mechanisms impose a cost on the
system, particularly on the clients, so it is desirable to have adaptive counter-
measures that are deployed dynamically and proportionally to blunt attacks at
minimal cost. [14] describes how to do this for auction-based bandwidth payments
but the proposed solution potentially requires significant server state such as tens
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of thousands of TCP sessions. The selective verification algorithm in [12, 13] re-
quires almost no server state, but does not include any mechanism for adaptation.

In this dissertation we introduce Adaptive Selective Verification which is a dis-
tributed adaptive mechanism for thwarting attackers’ efforts to deny service to
legitimate clients based on selective verification. Our scheme uses bandwidth as
currency but the level of protection employed by the clients dynamically adjusts
to the current level of attack. At a high level, the clients exponentially ramp-up
the number of requests they send in consecutive time-windows, up to a threshold.
The server implements a reservoir-based random sampling to effectively sample
from a sequence of incoming packets using bounded space. This enables adap-
tive bandwidth payments with server state whose size remains small and constant
regardless of the actions of the attacker. The protocol itself is both natural and
simple.

A contribution of this work is an evaluation of the adaptive selective verification
protocol with the aim of understanding its performance in practice. Our simula-
tions show that under a time-varying attack, the performance of ASV protocol
adjusts quickly to the prevailing attack parameters. The performance is measured
in terms of success probability of each client, and the total bandwidth consumed
by the clients.

In theory, its performance is compared to an “omniscient” protocol in which
all attack parameters are instantaneously made known to all clients as well as
the server. Surprisingly, ASV closely approximates the performance of this om-
niscient protocol. The theoretical evaluation of ASV is out of the scope of this
thesis but can be found in [15, 16].

Approach. ASV is a distributed adaptive mechanism for thwarting attackers’
effort to deny service to legitimate clients based on selective verification [12]
(Figure 1.4). Our scheme uses bandwidth as currency but the level of protec-
tion employed by the clients dynamically adjusts to the current level of attack.
At a high level, the clients exponentially ramp-up the number of requests they
send in consecutive time-windows, up to a threshold. The server implements a
reservoir-based random sampling to effectively sample from a sequence of in-
coming packets using bounded space. This enables adaptive bandwidth payments
with server state whose size remains small and constant regardless of the actions
of the attacker [15, 16] (Figure 1.4).
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The theory is validated with ns2 experiments. We also measure the performance
of ASV with pulse attacks and over lossy networks and analyze effect on TCP
crosstraffic. The details of these experiments and the proofs can be found in the
relevant publications [15, 16].

S 

S makes 

channels 

lossy 

C adds 

redundancy 

A gets a 

reduced 

channel 

A 

C 

Figure 1.3: Attacker A uses the highest bandwidth available. To invert this ef-
fect the server S makes the channel lossy and legitimate clients send redundant
requests.

Server 

Requests 
 Legitimate 

 Clients 

  Attackers Overloaded  

(CPU, memory, etc.) 

Requests 

Processes 

Responses 

1 

Figure 1.4: Attackers send request at a high rate. Legitimate clients send a request
and wait for the response.

1.5 Thesis Statement

ASV and IBQ mitigate DDoS between two domains by directly in-

centivizing the amount of security effort expended by clients and their

ISPs.
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1.6 Contribution

To summarize the contributions made by this dissertation are:

• This is the first architecture supporting incentive structures for DDoS de-
fense;

• We introduce two systems, ASV and IBQ, supporting this architecture.
ASV exploits bandwidth; IBQ introduces “spoofing index” — gradation
of valid and invalid source addresses;

• We conduct the first scalable simulation analysis of a queueing defense
driven by a non-conjectural data-set;

• We built “fksim” — first scalable tool capable of supporting a DDoS queue-
ing analysis driven by such dataset.

This graded incentive network availability assurance architecture is presented
in Figure 1.1. Both, IBQ and ASV work within the bounds of this architecture.
IBQ is evaluated against 2007 attack dataset. We conduct the first comprehensive
analysis of this attack. Existing network experiment tools cannot scale for this
dataset. fksim is tested to scale with ten thousand client nodes. Also, it integrates
high-bandwidth trace with TCP flow simulation.

1.7 Organization

Distributed denial of service attacks and defenses are well-studied in the literature.
In the next chapter (Chapter 2) we classify and overview some of the classical and
state-of-the-art approaches. Chapter 3 present experiments exhibiting the legiti-
mate clients success with Adaptive Selective Verification. We present the loss rate,
delay and bandwidth overhead observed by ASV and compare it a naive and an
aggressive approach. We also present results on how TCP cross-traffic is effected
by ASV.

Integrity Based Queueing is presented in Chapter 4. We discuss the architec-
tural components and related design choices there. In Chapter 5, we bring forth
mathematical equations for incentives and gradations and qualitatively discuss
the threats that may be present in the architecture. The DDoS TCP simulation
tool fksim is presented in Chapter 6. We also discuss excellent performance of
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VoIP traffic when using IBQ. These set of experiments were conducted in ns2.
We evaluate IBQ with attack data from the wild collected by CAIDA [17] in §6.2
and §6.4. Our simulator fksim plays out the CAIDA attack and measure the degree
to which IBQ affects clients at various integrity levels. Unfortunately simulators
like ns2 cannot handle the load levels for such a study so we have implemented
our own simulation framework including a fresh implementation of TCP. Our sim-
ulations show TCP flows from a high integrity domain go on with a slightly lower
throughput, whereas for other mechanisms, similarly deployed only at the edges,
connection rate is 30% or lower.

Cheater in Chapter 7 combines IBQ and ASV for an integrated defense archi-
tecture for the Internet. Experiments in ns2 show how they complement each other
to fight DDoS.
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2 Related Work

In this chapter we are going to discuss network DDoS protections and what each
kind has to offer. At a higher level DDoS defenses can be categorized in quite
a few different ways, based on where in the network they are implemented and
based on the approach. Towards the source of the attack approaches try to focus
on intrusion detection and filtering at the client. At the end host measures are
taken to detect attack traffic and deploy measures to protect the server so that it
can still serve legitimate requests. There are measures that are taken at the net-
work to detect attack traffic and prevent them from reaching the destination host.
Most modern approaches require deployment almost network-wide. We are going
to discuss four broad approaches: filters, capability, bandwidth based and puz-
zles. For each approach we will discuss where in the network the implementation
goes. We are also going to discuss integrity, fairness and incentives on the Inter-
net. Interested readers are encouraged to go through [18, 19, 20, 21] for detailed
accounts of DDoS attack and defense mechanisms.

2.1 DDoS Defenses

2.1.1 Cookies

A cookie verifies that a request from a client comes from a given address and
delays the creation of state on the server until there is proof of some level of
commitment from the client. Cookies assure, to a reasonable degree of certainty,
that a client can receive a packet at its claimed source address. This is done by
sending a hard-to-guess value, the cookie, to the client in response to its initial
request. The client has to send that cookie back to the server on the next packet.
This makes spoofing of source addresses difficult without requiring the server to
save state. The idea is used in many contexts: TCP [22, 23], IKEv2 [7]. Lets have
a more detail look at the TCP SYN cookie (Figure 2.1).
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With TCP, first, the initiating host (client) sends a synchronization packet (the
SYN flag set to 1) to initiate a connection. It sets the packet’s sequence num-
ber to a random 32-bit value x. The other host receives the packet, records the
sequence number x from the client, and replies with an acknowledgment and
synchronization (SYN-ACK). The acknowledgment is a 32-bit field in the TCP
segment header. It contains the next sequence number that this host is expect-
ing to receive (x + 1). The host also initiates a return session. This includes a
TCP segment with its own initial sequence number of value y. The initiating host
responds with the next sequence number (x + 1) and a simple acknowledgment
number value of y+ 1, which is the sequence number value of the other host + 1.

Usual 3-way handshake Handshake with cookie 

Client Server 

Verify Cookie and  
Allocate Server State 

Client Server 

Calculate and  
Issue Cookie 

Include 
Cookie 
 in ACK 

Time Counter MSS md5(caddr, cport, saddr, sport, time counter) 

5 bits 24 bits 3 bits 

Figure 2.1: TCP with and without SYN cookie. The cookie replaces the 32 bit sequence
number and tries to encode information in the original request.

In TCP with SYN cookie, instead of any sequence number y the server sends
the cookie. The first 5 bits are t mod 32, where t is a 32-bit time counter that
increases every 64 seconds. Next 3 bits are an encoding of a Maximum Segment
Size (MSS) selected by the server in response to the client’s MSS. The final 24
bits are a server-selected secret function of the client IP address (caddr) and port
number (cport), the server IP address (saddr) and port number (sport), and time
counter.
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TCP SYN cookies are backwards compatible, transparent to clients, conform to
RFC requirements for TCP and have no performance impact until SYNs become
a problem. They have good performance under attack. But there are also draw-
backs: TCP hangs if the ACK is lost and it cannot use large window sizes. The
server only has 3 MSS bits to encode all options and rebuild the initial SYN from
that. Also the cookie only offers a 24-bit protection. But the idea of cookies have
been really useful for recent DDoS resistant protocol developments.

SYN cookies reverse the situation where the client rather than the server saves
state. The server is under no obligation before the client completes a round-trip.
Cookies are the simplest example where the load is shifted on the clients until
they provide some proof of trustworthiness. In a later subsection (2.1.5) we look
at some of others. There are also work that specialize in cookies. In CAT [24], all
flows must perform a three-way handshake with an in-network element to obtain
permission to send data. The three-way handshake dissuades source spoofing and
establishes a unique handle for the flow, which can then be used for revocation
by the receiver. CAT offers the protection qualities of network capabilities, and
yet does not require major architectural changes. Interestingly, dFence [25], a
proposal that selectively provides paying customers with protection, uses a middle
box with CAT for source authentication.

2.1.2 Filters

Figure 2.2: Ingress Filtering. The green domain ensures that each node sends packets
with its IP address. The yellow one only ensures that packets leaving the domain carry an
address from the domain. The unfiltered domains let nodes use any IP address.
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Filtering means to detect attack packets and drop them, possibly close to the
source. With ingress filtering [26] an ISP or AS can filter all packets sent with
an spoofed IP address. That is, if a packet sent from its subnet has an source IP
address that is not from that subnet it will be dropped. Though very effective,
ISPs have very less incentive to deploy such a scheme. Research by the Spoofer
project [27] shows that, as of July 2009, 16% netblocks are spoofable and about
25% AS’s do not execute any kind of filtering. Wang et al. [28] propose a simple
and robust mechanism for detecting SYN flooding attacks. Instead of monitoring
the ongoing traffic at the front end (like firewall or proxy) or a victim server itself,
they detect the SYN flooding attacks at leaf routers that connect end hosts to the
Internet.

Figure 2.3: Workings of the Pushback filter.

In Pushback [29, 30] (Figure 2.3), severe congestion from the server is back-
traced to the sources and filters are installed at routers close to congestion source
to limit the attack flow. IP Traceback [31], first described a general purpose trace-
back mechanism based on probabilistic packet marking in the network. It allows
a victim to identify the network path(s) traversed by attack traffic. This requires
a balance of good number of markings on packets, good number of packets with
markings and fast algorithms to reverse the markings to path information. Other
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schemes followed with the goal to optimize the amount of marks on each packet
and processing and storage on routers [32, 33, 34]. The problem is that, attackers
are using a million number of bots located in different parts of the Internet. It is lot
of effort for a server under attack to detect all those flows and send a filter request
and eventually stop the flow. Also as the attackers might keep rotating the attack
bots, the attack may have moved when eventually a filter is installed.

Recent work on filtering [35, 36, 37, 38, 39, 40] is a combination of these two
basic schemes but use source address validation schemes to minimize spoofing.
Routers are designed to mark packets with a signature so that the end host can
verify the source of a packet through those signatures. Attack packets then can
be differentiated and filtered by use of those markings at upstream routers and the
end host. These approaches require infrastructure support from the routers and
hosts. The domains are still required upgrade the router functionality.

Route-based filtering [41] takes a different approach. It proposes taking advan-
tage of the power-law property of the Internet and detecting routing anomalies
caused by a spoofed packet. The anomalies facilitate filtering or demoting such
packets. Alternatively, in Hop Count Filtering [42], using a mapping between IP
addresses and their hop-counts to an Internet server, the server can distinguish
spoofed IP packets from legitimate ones. But as the number of AS’s has grown
to almost 40,000 keeping a graph of connectivity and deducing such information
has become expensive and tricky. Efforts to create an reasonable map [43, 44] of
the Internet with core and PoP information using multiple sources of data, such as
BGP announcements and DNS, are active, so is the study to understand its com-
plexity [45, 46]. We discuss further about Internet complexity in Section 2.2). In
practice, [41] might be implemented with BGP route announcements and for the
least be used for ranking the validity of a packets origin.

In Mayday [47], the overlay nodes perform client authentication and protocol
verification, and then relay the requests to a protected server. The server is pro-
tected from outside attack by packet filtering rules that can be efficiently deployed
in backbone routers. The Detour [48] study noted that re-routing packets between
hosts could often provide better loss, latency, and throughput than the direct In-
ternet path. The RON project experimentally confirmed the Detour observations,
and showed that an overlay network that performs its own network measurements
can provide improved reliability [49]. In fact, Content Delivery Networks such
as Akamai [50] that use overlay networks to provide faster service to clients by
caching or eliminating redundant data transmission are the prime way for smaller
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end host to protect themselves from a DDoS attack. Essentially, they are increas-
ing the amount of resource allocated to their service.

Another thing to note is that these approaches have a free rider problem. Once
majority of ASes start participating the rest can benefit. But nobody wants to put
lot of work to start off as there is no benefit when only few parties are doing it.

2.1.3 Capabilities

Proof-based defense mechanisms instead of focusing on detecting attack traffic,
ask legitimate clients to provide a proof. This proof can be as simple as a cookie
transmission stage or a puzzle. Also it could be one of more complex, like a capa-
bility. In a network-wide capability defense [51, 52, 53, 38, 40, 54, 55], legitimate
clients are given an unforgeable capability to send traffic. Routers can verify this
capability and forward each packet. But a client may require round-trips to ac-
quire this capability and special routers are needed . Also, this is orthogonal to
filtering and integrity verification. We have to be able to identify a client to give
them a token and we need to filter out packets based on those tokens.

In TVA [55, 54] a server assigns its clients capability tokens. A token defines
how much traffic that client can send within a time window. Routers on the path
to the destination keep track of this allocation and forward packets that have an
unexpired token. The token are assigned fairly to all clients. To stop an attacker
from spoofing multiple source IP addresses and acquire multiple tokens special
routers are installed. To validate the source address, when a packet is travelling
through the chain of routers each router stamps it a verifiable hash. These hashes
provide the path signature to upstream routers and the destination to identify a
flow.

SNAPP [38] uses the path verifiers as the capability token. No separate alloca-
tion is made by the servers. This has the benefit of relieving the routers of main-
taining bandwidth allocation information for all the senders. Reputation-based
ticket-granting [53] proposes how long-term behavior of a client can influence
whether future tickets are granted.

Instead of using a fixed allocation, NetFence [56] uses feedback on the path-
pins to dynamically change congestion policing. The difference with [30] is that
congestion markers are put on request packets by the routers in network so that
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they can be applied on the data packets. This way NetFence avoids the problem
of tracing back to the congestion as Pushback did.

These defenses require a complex set-up including integrity infrastructure to
identify flows so that capabilities can be assigned to them.

2.1.4 Bandwidth

In DDoS defense mechanism based on bandwidth as a currency [12, 15, 16, 13,
14, 57], instead of sending one packet the client expands its traffic so that it is a
substantial fraction of the request-pull to the server. This gives the client equal
chance of success at the server as the attacker. But this puts much load on the
routers and the server (Figure 2.4).

Figure 2.4: The basic tit-for-tat approach of bandwidth based payments.

Perhaps, Burch and Cheswick [58] implement the first bandwidth-based
scheme while tracing back. They propose a controlled flooding of links to de-
termine how this flooding affects the attack stream. Flooding a link will cause all
packets, including packets from the attacker, to be dropped with the same proba-
bility. One can conclude from this that if a given link were flooded, and packets
from the attacker slowed, then this link must be part of the attack path. Then
recursively upstream routers are coerced into performing this test until the attack
path is discovered.

Yau et al. [59] propose router throttles to pushback attack traffic. It limits the
rate at which an upstream router can forward packets to the server, so that the
server exposes no more than its designed capacity to the global network. They
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introduce the notion of level-k max-min fairness, where the upstream routers are
maximum k hops away. This, too, reflects a bandwidth based approach rather than
a filter-based one that it was proposed as. Also, it is an excellent proposal on how
to push a filter rule to the edge of network few hops away. The assumption is that
the edge has more bandwidth capacity to handle it.

In ASV [16], the level of aggressiveness of the protection employed by the
clients dynamically adjusts to the current level of attack. At a high level, the
clients exponentially ramp-up the number of requests they send in consecutive
time-windows, up to a threshold. This enables them to come par with attackers
who are sending at a high rate. There are two benefits of doing this adaptively
rather than sending a burst of packets. First, this separates legitimate clients from
attackers. Second this enables clients to adapt to any attack rate without response
from network or the end server. The server implements a reservoir-based random
sampling to effectively sample from a sequence of incoming packets.

Speakup [14] throws bandwidth auctions that allow clients s to build credit by
sending bytes to an accounting system and the server takes requests from clients
that have built the most credit. With bandwidth based schemes no support is re-
quired from the routers. Only the server maintains some state for the reservoir
sampling. But the aggressive behavior of a legitimate client may cause prob-
lem for other users using the network. To a third party the legitimate clients and
the attacker both will look mischievous. So it is important that bandwidth based
schemes be used in a controlled setting, such as at the request channel for capa-
bility based approaches.

2.1.5 Puzzles

Puzzle-based protections [60, 61, 62, 63, 64, 65] use puzzles to validate a legit-
imate client. Puzzles can both authenticate a real client and provide a proof of
computational effort put by them. A client puzzle protocol is an one-way algo-
rithm, where serving the puzzle and validating the client response is easy thus it
is infeasible to make abuse of server resources.

CPP [60] is one of the earliest client-puzzle protocols for DDoS where clients
need to use computational power to compute the puzzle and thus prove to the
server that are incurring some cost for the service requested. Wang et al. [62]
propose use of puzzles as payment for bandwidth from routers. One weakness of
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this approach is that spoofing attackers might be able to choke legitimate clients
just by sending many bogus packets.

Kill-Bots [63], a kernel extension to protect Web servers against DDoS at-
tacks that masquerade as flash crowds. Kill-Bots provides authentication using
graphical tests but after the IP address of the client has been validated by a SYN
cookie and bloom-filtered against a black-list. Third, Kill-Bots combines authen-
tication with admission control. As a result, it improves performance, regardless
of whether the server overload is caused by DDoS or a true Flash Crowd.

Portcullis [64] use puzzles with dynamically adjusted hardness to protect the
request channel of a capability protection system.

Gligor [66] has strongly advised against proof-of-work protections. As the at-
tack is hosted from commandeered client machines, he suggests, they would have
similar capability to solve such puzzles. He argues for simpler rate-control agree-
ments and proves that they provide a stronger guarantee based on waiting time
limits.

2.2 Reflections on The Internet

1. Internet communication must continue despite loss of networks or

gateways.

2. The Internet architecture must accommodate a variety of networks.

3. The Internet architecture must permit distributed management of its

resources.

4. The Internet must support multiple types of communications service.

5. The Internet architecture must be cost effective.

6. The Internet architecture must permit host attachment with a low level

of effort.

7. The resources used in the internet architecture must be accountable.

D. Clark, 1988 [67]

15 years into the Internet, the year this paper [67] was written, congestion con-
trol [68] was introduced in TCP [69]. Thoughts on security were yet to come.
The end-to-end system design goals [70] highlighting the importance to keep the
core light and fast were presented just a few years back. And as Clark notes,
accountability of the resources on the Internet were least prioritized.
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2.2.1 Fairness and Queueing

The internal nodes or routers of the Internet have a complicated role in DDoS
defense. They operate with the goal to forward traffic fairly at line rate with mini-
mum processing delay and hence avoiding any memory and computation intensive
operation. Attack traffic, if not exactly at their door, does not impede on this regu-
lar operations. On the other hand, defense mechanisms may add to the delay. We
are going to discuss a little history of Internet bandwidth and how packet schedul-
ing and queuing has changed with it.

The Internet was designed with a fairness criteria, that is every party has equal
right to service and none should starve. That is if a router needs to schedule, sort
and send its packets it has to have a fair policy. Fairness usually is measured
based on allocation to flows. A flow is identified by its source and destination
addresses and ports. Fair-queuing is one of the earlier methods for such schedul-
ing. In fair-queuing each flow receives its own bucket or mini-queue. If a system
can serve at rate r and there are f flows, to preserve fairness, the system would
serve an unit from each flow every f/r time unit. There are three problems with
implementing this in a network of packets. First, how to implement the system
so that it simulates sending a packet from each flow every f/r time. Second, the
implementation has to take care of the fact that all packets might not be equal.
And finally, with the growing size of the Internet the total number of flows have
high space requirements.

Fair-queuing has been an active avenue for congestion control at the core of the
Internet [71, 72, 73, 74, 75, 76, 77] whereas use of TCP at the edge. Earlier work
discuss what is fair and defines fair queueing [71, 72, 74, 75]. According to max-
min fairness criterion every user has equal right to the resource, less demanding
users get the resources they want and large users split the rest. To implement
such a system Demers et al. [71] proposed a bit round robin system. That is,
if the line capacity is r bps, a bit is sent every 1/r, the flows can take turns in
sending the bit. To implement this, they proposed pre-calculating a packet’s final
bit sending time upon its arrival. Deficit round robin (DRR) [78] eliminates this
calculation by providing a quantum of service to each mini-queue. If a large
packet cannot be sent in the current round the remainder of the quantum is added
to the quantum next round. DRR is the implemented version of fair-queuing on
routers. In stochastic fair-queuing (SFQ) [79] tries to minimize per flow space
requirement. Rather than having a mini-queue or bucket for every possible queue,
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the flows that hash to same key share a bucket. Each bucket is than served in deficit
round-robin order. Fairness is not affected if hash index is sufficiently larger than
the number of active flows.

Fair-queuing was very useful when queuing delay was negligible compared to
propagation delay. This line of work was subdued for high state requirements
in optical fiber speed [76]. Also Random Early Detection (RED) gateways [80]
got adopted providing very good congestion avoidance with the over-provisioned
networks rarely requiring additional scheduling. But with increasing volume of
DDoS attacks there has been a renewed interest in fair-queuing algorithms [30,
59]. Approaches such as Pushback [30], TVA [55] and NetFence [56] use fair-
queuing with specially tagged packet flows as part of the protocol. Preferential
queuing is used by routers and ISP’s to provide QoS required by some service level
agreement. But use of it, specifically based on integrity as a protection against
DDoS is yet to be proposed.

Also with renewed interest in fairness the cost of queueing comes into play
again. The Coremelt attack [81] describes how amongN attackers there are O(N2)
connections, which can cause significant congestion and filter rule overhead in the
network core.

2.2.2 Integrity

There are quite a few implementations and proposals provide integrity verification
for defense mechanisms. Definitions of a valid client given by them are sometimes
either too narrow or too broad. For example, IPsec [82] provides public-key au-
thentication in IP but the cost of signature verification on core routers and the
general complexity of tunnel configuration is hindering to its deployment.

In TVA [54, 55], Pi [39] and SIFF [40], each router uses a self-verifiable MAC
to verify that the initial request packet had passed through it. This sets up and
authenticates the path for the flow. The cost here is incurred by the core routers.
MACs are lightweight to be verified at line rate at commercial routers. Pass-
port [37] and StopIt [52] use MACs with pre-shared keys. Diffie-Hellman public
keys [83] are shared between all routers. This way they can be verified by oth-
ers. Here the cost is more on the on the party that puts the MACs. As this is a
shared key the initiator has to figure out for whom to put the MAC for. Also an
infrastructure for key distribution sometimes becomes complex to integrate with
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an Internet-wide protocol. These approaches,too, have a free rider problem [84].
Each party needs either some incentive to participate or an enforced payment for
rides. For example, if a small fraction of the ISPs invest in an advance protection
the general security of the Internet rises very little, but sufficient benefit is not
propagated to the investor for the high cost incurred.

2.2.3 Complexity

Internet has become more and more complex over the years. It has connected
billions and changed the world for better but also there are avenues for evil. As
Floyd-Kohler [85] noted, networking researchers work from mental models of
the Internet. The scenarios used in simulations and experiments reveal aspects of
these mental models. All of these modeling assumptions affect simulation and
experimental results, and therefore our evaluations of research. But none of them
are confirmed by measurement studies, and some are actively wrong. At the same
time, simulating how the global Internet behaves is an immensely challenging un-
dertaking because of the network’s great heterogeneity and rapid change. The
heterogeneity exists at the individual links that carry the network’s traffic, proto-
cols that operate over the links, mix of different applications used at a site, levels
of congestion seen on different links [86]. But, nonetheless we try to understand
it.

Efforts to create an reasonable map [43, 44] of the Internet with core and PoP
information using multiple sources of data i.e., BGP announcements and DNS,
are active, so is the study to understand its complexity [45, 46, 87]. Many theories
and experiments have emerged over the years to map and measure the features of
the Internet.

Yook et al. [88] suggest that the physical layout of nodes form a fractal set,
determined by population density patterns around the globe. The placement of
links is driven by competition between preferential attachment and linear distance
dependence, a marked departure from the then used exponential laws.

Coates et al. [89] observe that the problem of extracting the hidden information
from active or passive traffic measurements falls in the realm of statistical inverse
problems, an area which has long been of interest to signal and image processing
researchers. Paxson [90] observed variance in the end-to-end packet dynamics
conducted by tracing 20000 TCP bulk transfers between 35 Internet sites.
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Given this complexity tools to simulate the Internet are too simplified or too
complex to scale at Internet-wide experiments. Fujimoto et al. [91] try to charac-
terize quantitatively the capability of parallel simulation tools to simulate large-
scale networks. These experiments include runs utilizing as many as 1536 pro-
cessors yielding performance as high as 106 Million pps. One can understand
the hardness of building such a parallelized testing framework to be used by re-
searchers world-wide. Planet-lab [92, 93, 94] is one such effort. It is a collection
of machines distributed over the globe, most of the machines are hosted by re-
search institutions, that is an overlay network testbed, a deployment platform and
a microcosm of the next Internet. Emulab [95] is a network testbed, giving re-
searchers a wide range of environments in which to develop, debug, and evaluate
their systems. There are installations of the Emulab software at more than two
dozen sites around the world, ranging from testbeds with a handful of nodes up
to testbeds with hundreds of nodes. The DETER testbed is a public facility for
medium-scale repeatable experiments in computer security. Built using Utah’s
Emulab software, the DETER testbed has been configured and extended to pro-
vide effective containment of a variety of computer security experiments, includ-
ing defense against attacks such as DDoS, worms, viruses, and other malware, as
well as attacks on the routing infrastructure. But in any case it is rarely possible to
simulate or emulate a DDoS attack with more than few thousand nodes [55, 96].

2.2.4 Validity Gradations and Incentives

Though computers are a binary world we see much more fine-grained detail in
computer security now. Access control, for example, has fine-grained detail per-
missions. Email and spam ranking have a continuous approach. Email goes
through series of tests before being discarded as a spam. Sender Policy Frame-
work [97] lets domains define rules for origin of emails from that domain. Do-
mains have control over how fine-grained rules they want to define. At verifica-
tion, when in doubt email falls into a soft-fail category.

In the recent years p2p systems such as file sharing and ad-hoc networks have
widely benefited from incentive-based protocols [98]. Internet security, even with
all the complex relationships of all the non-cooperating parties, would advance
with a good incentive mechanism.
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In recent years BGP and DNS vulnerabilities have caused much havoc. Similar
to DDoS defenses, the security benefits provided by the S*BGP protocols do not
kick in until a large number of ASes have deployed them. Recently, Gill et al.

[99], proposed a strategy that governments and industry groups can use to harness
ISPs’ local business objectives and drive global S*BGP deployment.

Accountability is key to effective DDoS defense [100, 101]. Real-time applica-
tions benefit greatly with tiered incentives for integrity protection [102]. An ISP
can see direct profit when clients receive great quality streaming media and live
sport even during a DDoS attack.
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3 Adaptive Selective Verification

In ASV, We consider DoS attacks within the province of a shared channel model
in which attack rates may be large but are bounded and client request rates vary
within fixed bounds. In this setting it is shown that the clients can respond effec-
tively to an attack by using bandwidth as a payment scheme and time-out win-
dows to adaptively boost request rates. The server will be able to process client
requests with high probability while pruning out most of the attack by selective
random sampling. ASV is efficient in terms of bandwidth consumption using
both a theoretical model and network simulations. It differs from previously-
investigated adaptive mechanisms for bandwidth-based payment by requiring very
limited state on the server. 1

3.1 The Setting

Consider the following one-round client-server protocol. The first step of the pro-
tocol is an REQ packet from a client C to the server S. In response, the server
sends back an ACK to the client. Each client employs a time-out window of dura-
tion T determined by the worst case expected round-trip delay between the clients
and the server: if after transmission of an REQ a client does not receive an ACK
within T seconds he assumes that the attempt has failed. The parameter T is known
to the clients as well as the server.

It will be convenient to partition time into a sequence of windowsW1,W2, . . . ,
each of duration T . We suppose that the server S can process requests at a rate
of S REQ packets per second so that the number of requests that it can process in
any given window is ST . In any given window W, new clients arrive at a rate of
R(W) = ρ(W)S clients per second. The client request factor ρ(W) = R(W)/S

determines the fraction of the server’s computational bandwidth that is required to
process new clients in the window W. We suppose that the client request factors

1This chapter includes material from previous publications by Khanna, Venkatesh, Fatemieh,
Khan and Gunter [15, 16]
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are uniformly bounded away from both zero and one, 0 < ρmin ≤ ρ(W) ≤ ρmax ≤
1, for some fixed ρmin, ρmax in the unit interval. We are particularly interested in
the situation where ρmax � 1 as it may reasonably be expected that REQ requests
are typically small packets with most of the server capacity dedicated to servicing
the bulk of the communication to follow.

We will assume that a diffuse, distributed, denial of service attack A on the
server takes the form of a potentially time-varying flood of spurious REQ packets
aimed at overwhelming the server’s capacity to process new REQs. We suppose
that, in any given window W, the attack A sends spurious REQs at a rate of
A(W) = α(W)S packets per second. The attack factor α(W) = A(W)/S de-
termines the excess computational bandwidth that will be required of the server
to process the illegitimate requests in window W. In keeping with the guiding
philosophy of the shared channel model that was articulated by the authors to
model DoS attacks [12], we assume that the attack factors are uniformly bounded,
0 ≤ α(W) ≤ αmax, for some fixed αmax, though the upper bound on the attack
factors may be very large. Clearly, when α(W) > 1 the attack prima facie over-
whelms the server’s capacity to process all requests and, abeyant a protocol to
handle overflows, there is the potential for the successful execution of a DoS at-
tack. Our interest is in the particular case where αmax � 1 and the attack can
occur on a scale much larger than the available server computational bandwidth.

In order to focus on the DDoS attack at the receiver, in the next two sections
we idealize the situation and assume that REQ and ACK packets are transmit-
ted instantaneously, the round-trip delay occasioned solely by processing time at
the server, and that no REQ or ACK packets are lost in transmission. Packet
drops at the server are then occasioned only because the arriving request stream
from clients and attackers combined exceeds the server’s computational band-
width. Thus, if ρmax + αmax > 1 then it cannot be guaranteed that an individual
client’s REQ will be processed by the server. If αmax � 1 it is in principle then
possible to almost completely throttle the clients of service and effect a successful
DoS attack.

In the sequel, logarithms are to base e. Long proofs are eliminated due to space
constraints and will appear in the full version of the paper.
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3.2 The Omniscient Protocol

Consider any time-out window W. Suppose that 0 < ρ = ρ(W) < 1 and 0 <
α = α(W) denote the client request factor and the attack factor, respectively, over
the window W. If clients and server clairvoyantly know ρ and α then it is easy
for them to thwart the DDoS attack using a modicum of repetition combined with
selective randomized sampling at the server. This simple, if unrealistic, situation
is worth analyzing as it provides benchmarks for more realistic situations.

OMNISCIENT CLIENT PROTOCOL: Given α and ρ, each new client in a given
windowW transmits dα/ρe copies of the REQ packet in that window. Clients who
do not receive an ACK from the server within T seconds leave never to return.

OMNISCIENT SERVER PROTOCOL: Given α and ρ, the server accepts an
arriving REQ packet in the window W, independently of other arriving packets,
with probability

p =
1

α+ ρ
⌈
α
ρ

⌉
and discards it with probability q = 1− p. The server sends out an ACK for each
accepted REQ.

The total number of REQs transmitted by clients in window W is
⌈
α
ρ

⌉
ρST . It

follows that, for any given window W, the cumulative mean transmission band-

width consumed by client REQs in the omniscient client-server protocol is approx-

imately αS packets per second. As the number of attack packets received in this
window is αST , the total number of REQs received by the server during window
W is given by

N = N(W) =
⌈
α
ρ

⌉
ρST + αST =

(
α+ ρ

⌈
α
ρ

⌉)
ST.

Accordingly, the expected number of packets processed by the server in window
W is given by pN = ST so that the server processes REQs at its rate of S packets
per second.

Theorem 1 (Omniscient Connection Confidence). Suppose 0 < δ < 1 is a given

confidence parameter. If

ρmax ≤
1

−2 log δ
(3.1)

then the probability that a given client has an REQ accepted is at least 1−δ under

the omniscient client-server protocol.
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Proof. A given client C transmits dα/ρe REQs in a window W. The probability
that each of these REQs is discarded by the server is given by

Q := qdα/ρe ≤ e−1/2ρ ≤ e−1/2ρmax ≤ δ (3.2)

in view of the elementary inequality 1− x ≤ e−x.

Thus, for all sufficiently small client request factors ρmax, the omniscient client-
server DDoS protocol accepts REQs from all but a small fraction of at most δ
of all clients at a cost in transmission bandwidth of (about) αS client packets per
second.

3.3 The Adaptive Protocol

The assumption in the omniscient client-server protocol that clients are continu-
ously aware of the client request factor and the attack factor current in each win-
dow is clearly unrealistic, especially given the distributed and—until connection
is established—as yet unknown location and legitimacy of the clients and, more
critically, the ability of the attack to vary rates continuously and unpredictably.
Designing a protocol for the worst-case attack is, of course, possible, but unnec-
essarily congests the network during periods when the attack is quiescent or at low
levels. Our goal, hence, is to design a client-server DDoS protocol which adapts
to the behavior of the attack A without clients having access to explicit current

information about the nature and intensity of the attack.
In view of our experience with the omniscient protocol, on the client side we

are led to seek a replicating protocol where the replication rate used by the clients
should ideally be proportional to the current attack factor (and inversely propor-
tional to the current request factor though this is likely to be under better regula-
tion). While the client does not have direct access to this information, he can infer
the state of the attack indirectly based on whether he receives an ACK or not in
response to REQ(s) sent in the previous window. The failure to receive an ACK in
response to transmitted REQ(s) can be construed provisionally as evidence of an
attack in progress and the client can then ramp up his replication rate in an effort
to counter current attack conditions. Experience with doubling algorithms (or,
on the flip side, exponential back-off in TCP protocols) suggests that it would be
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profitable to have the replication rate grow exponentially with repeated connection
failures (up to a worst-case maximum).

On the server side, a more detailed picture about current conditions can be di-
rectly obtained from the ensemble of packets arriving in each time-out window.
The server can now very simply maintain the advertised service rate by reservoir
sampling to generate a random sample of the sequentially arriving packets. The
randomized sampling of incoming packets helps obviate timing attacks or the ex-
ercise of other overt control by the adversary over the decision making process at
the server, while the adaptive changes in sampling rates that reservoir sampling
accords allows the server to respond to changes in attack factors across windows
while staying within the budgeted service bandwidth. These considerations lead
to the following adaptive client-server protocol.

Adaptive Client Protocol Given ρmax, αmax, and T , after each unsuccessful at-
tempt the client adaptively increases the number of REQs sent in the succeeding
time-out window up to a maximum number specified by the given parameters.

C1. [Initialize replication count.] Set j← 0 and J← ⌈
log

(
αmax
ρmax

)/
log(2)

⌉
.

C2. [Double replication.] Send 2j REQ packets to the server.

C3. [Time-out.] If no ACK packet is received within T seconds, set j ← j + 1;
if an ACK packet is received, exit the initiation protocol and proceed to the
next phase of communication.

C4. [Iterate till exit condition.] If j ≤ J, go back to step C2; else exit without
communicating with the server.

Adaptive Server Protocol The server performs reservoir sampling on incoming
REQ packets during each time-out window. Given S and T , the server processes a
random subset of the arriving REQs at a rate not exceeding S packets per second.

S1. [Initialize window count.] Set k← 1.

S2. [Form reservoir.] Store the first bSTc REQ packets arriving in windowWk in
a reservoir. If time-out expires without filling the reservoir, go to step S4.
Else, set REQ packet count to j← bSTc+ 1.

29



S3. [Randomly sample incoming packets.] If there is an incoming REQ numbered
j, accept it for placement into the reservoir with probability bSTc/j and
discard it with probability 1−bSTc/j. If the REQ is accepted for placement
in the reservoir, discard an REQ from the reservoir uniformly at random
and replace it with the accepted packet. Set j ← j + 1 and iterate until the
time-out window expires.

S4. [Time-out] Accept the packets in the reservoir and send out an ACK for each
accepted REQ.

S5. [Iterate.] Empty the reservoir, set k← k+ 1, and go back to step S2.

We have streamlined the protocols to focus on the critical ideas. In particular,
we adopt the convenient fiction that step S4 in the server protocol occurs instan-

taneously. Thus, there is no gap in time between the expiration of a time-out
window expires and the identification of the random subset of packets that is ac-
cepted by the server over that window. The reservoir sampling procedure is due
to Fan, Muller, and Rezucha [103] and guarantees that if N REQ packets arrive
in a given time-out window and N > ST , the server accepts a subset of size ST
REQ packets uniformly at random from theN packets, and discards the remaining
packets.

We call the quantity
J =

⌈
log

(
αmax
ρmax

)/
log(2)

⌉
(3.3)

the retrial span of a client. In the event that the attack is launched at maximum
severity, a client can replicate packets over a period of Jwindows until he achieves
a maximum replication rate of αmax/ρmax matched to the peak attack.

Blocking Probabilities Our results say that each client succeeds in establishing
a connection with essentially the same confidence guarantee as in the omniscient
case at the expense of some added delay.

Theorem 2 (ASV Connection Confidence). Suppose 0 < δ < 1 is a given confi-

dence parameter. If

ρmax ≤
1

−5 log δ
(3.4)

then the probability that a given client has a REQ accepted within JT seconds is

at least 1− δ under the adaptive client-server protocol.
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Note that the bound on ρmax as given in inequality (3.4) differs from the one in
inequality (3.1) by only a small constant factor.

Theorem 3 (ASV Bandwidth). The expected bandwidth consumption of the adap-

tive client-server protocol is only O
(
log(αmax)/ log( 1

ρmax
)
)

times larger than the

bandwidth consumed by the omniscient selective verification protocol.

It is worthwhile to contrast this bound with a non-adaptive approach that stays
in the high protection mode at all times. The bandwidth consumed by such an
approach can be O(αmax) times larger than the bandwidth consumed by the omni-
scient selective verification protocol. Thus the adaptive scheme can improve the
bandwidth consumption exponentially.

3.4 Extensions

In this section we focus on extending the basic adaptive protocol from two as-
pects. First, we identify and address two concerns with respect to the practical
deployment of the protocol. Specifically these relate to the possibility of an unre-
liable server and network. Second, we elaborate on the ways by which the clients
and the server could use the protocol in a more flexible and cost-effective fashion.
Specifically we consider regulation of bandwidth devoted to ASV by the server
and client, respectively.

Suppose that a server being protected by ASV goes down. Under the current
ASV protocol, this would cause a flood of requests from the clients, which would
only aggravate the situation. It would be desirable to avoid this unwanted side-
effect of the protocol. A potential solution is for the server to provide a special
type of ACK, DACKs (Drop ACK) at step S3 in Section 3.3 for every request it
receives but is not able to process. DACKs serve as an encouragement mechanism
which communicates a “please retry more aggressively” message to the clients. A
client in round i (which sends 2i requests), waits for the server’s ACK or DACK(s)
before moving to round i+1. He quits upon receipt of an ACK; else, if he receives
any DACK in T time units, he moves on to the next round; failing these two
possibilities, he quits. In addition, in order to obstruct the opportunity of creating
smurf-type attacks [104], the clients can put a nonce (as a weak authenticator) in
each of their REQs, and expect the server to return it in DACKs.
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We have so far assumed that the network is reliable. But, what if the network
is lossy (e.g. due to congestion) and REQs and/or server responses are sometimes
dropped? This could result in undesirable scenarios such as a client quitting under
perception of a down server. A potential solution is to modify the client’s protocol
as follows. If no DACK is received for K consecutive packets sent by the client, he
quits. This check is only performed at the beginning of each round. Therefore, if
the path from a client to the server experiences a drop rate of d, this modification
reduces the probability of a client incorrectly quitting to the order of dK. In addi-
tion, this can serve as a crude congestion control mechanism, particularly if K is
set to low values. We do not consider this addition a full-fledged congestion con-
trol mechanism. In particular, we intentionally do not want the clients to be overly
reactive to low-rate packet drops, since this would easily make them back off and
provide an opportunity for the attackers to build an advantage. However, if due to
a network link attack (which is out of the scope of this work), or any other reason
there exists heavy congestion in the network, it would be desirable for ASV clients
to back off and not further flood the network. We believe by properly setting the
value of K, the above mentioned effect could be achieved. We experimentally
investigate the effect of network congestion on ASV in Section 3.5.

We can also envision situations in which a server that uses ASV for protection
would be interested in devoting less bandwidth to the ASV process. For instance,
consider a number of co-located services that share bandwidth. Under certain
circumstances, it may not be economical for one service to consume too much
bandwidth just to prevent denial-of-service attacks. Another example could be a
server that would prefer to reduce the ASV bandwidth consumption in favor of
having more bandwidth available for a period of heavy bulk transfers. Concerns
of this type may be addressed by having the server inform the clients not to send
too much traffic. However, this comes at the cost of a potential degradation in
service guarantees to the legitimate clients. Translated to our protocol, this means
that the server provides clients with a new retrial span J when it is desired that the
clients reduce bandwidth consumption.

Consider a function F : r 7→ (BW, SuccProb) where r is a candidate retrial span,
BW is an upper-bound on bandwidth consumption, and SuccProb is the expected
probability that each client succeeds in getting a request served. Now, consider a
utility functionU

(
(BW, SuccProb), P

)
which takes these bandwidth consumption

and success probabilities together with a system priorities input P, and outputs
the expected utility for the system as a value between 0 and 1. P is a generic
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input for system parameters that encode the current priorities and constraints of
the system such as the ones discussed above: The goal is to pick a retrial span that
maximizes the utility of the system. The new J calculated below is communicated
to the clients to be used as their retrial span: J = arg maxr

{
U
(
F(r), P

)}
.

Suppose the server has successfully communicated the value of the retrial span
J to the clients. In simple words, J is the maximum bandwidth (price) that the
server is willing to accept from each legitimate client. However, what if the client
is not willing to spend this much bandwidth to get service? We use a client cost-
benefit analysis inspired by [61] to formulate this problem. Suppose each client
has a valuation function V indicating the value of receiving the service in some

units (for simplicity dollars). Also suppose that the client knows a non-decreasing
success function that maps the retrial span r of the client to the probability of
succeeding in getting service when the server is heavily loaded. Such a function
could be obtained from the server through DACKs. Based on this the client can
compute its retrial span as in [61]. On the other hand, there could be a client that
is willing to send the required number of repeated requests, but its low bandwidth
connection does not allow it to. Suppose that at a round i its connection allows
it to send (in a single window) only 2i

f
packets for some integer f ≥ 1. It is

easy to verify that if the client continues to send 2i

f
packets, in O(f) windows it

will succeed with the same probability as if it sent 2i packets in a single window
(provided that neither the attack rate nor the client traffic changes).

3.5 Experimental Evaluation

To measure the effectiveness of the proposed adaptive mechanism, we perform
several network simulations. The simulations provide an opportunity to test the
full protocol in settings that reflect the real world situations more closely. Specif-
ically, the simulations aim to evaluate the effectiveness of the adaptive scheme
against its non-adaptive counterparts and verify the accuracy of our analytical re-
sults. In addition, we study ASV’s behavior in the presence of network congestion,
as well as its effect on TCP-based cross traffic.
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3.5.1 Simulation Setup

The simulations are performed using the ns2 network simulator for the topology
shown in Figure 3.1. The topology shown is dynamic in the sense that, in each

10 ~100 Mbps, 

10 ms 

50 clients/s 

0~100 attackers 

Server S1 

Other servers 

Server S2 
TCP client C 

Figure 3.1: Simulation topology.

simulation scenario, the number of clients increases with time. Every second, 50
new clients join the topology and start sending REQs toward the server. Each
client that joins the topology needs to get one REQ served. The number of attack-
ers can range between 1 and 100 to represent different attack rates. Each attacker
constantly issues 400 REQs/s. So, depending on the number of attackers for each
scenario, the attack rate would range between 400 and 40, 000 REQs/s. S, the
number of requests that the server can process in a second, is set to 600. Trans-
lated into our notation αmax = 66, and ρ = ρmax = 0.08. RTT is 60ms and T is set
to 0.4s. REQs are 200 bytes, and server DACKs and ACKS are 50 and 200 bytes,
respectively. All the communications are over UDP unless otherwise noted. In
most of the experiments, the capacity of the bottleneck link is over-provisioned to
100Mbps to avoid any network congestion. However, in particular experiments,
we reduce this capacity and create network congestions as needed. The arrival
times of the clients and attackers, as well as the inter-packet intervals for attackers
are randomized in order to avoid any undesirable deterministic pattern. Given the
parameters above, based on the theoretical guidelines in Section 3.3, the retrial
span J should be set to 10. We performed separate experiments (not reported in
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this paper) using J = 10 which easily verify the theorems in that section. In view
of practical cost-benefit considerations outlined in Section 3.4, we present here
experiments for a retrial span of J = 7.

3.5.2 Comparing Adaptive and Non-Adaptive

In order to evaluate ASV against its non-adaptive counterparts, we implement
three different client behaviors and compare them against each other in various
attack conditions (solid line topology in Figure 3.1). The three client behaviors
are:

• Naive: Send one REQ every T seconds. Quit if an ACK is received or JT
seconds pass.

• Aggressive (Non-Adaptive): Send 2J REQs. Quit if an ACK is received or
JT seconds pass.

• ASV: Implement ASV for one REQ (which means for a maximum of JT
seconds).

Each experiment is performed with one type of client and a fixed average attack
rate for 30 seconds which proves to be sufficiently long for the system to stabilize.
The results are obtained by changing attack rates across different simulation runs.

Figure 3.2 shows the ratio of clients that succeed in getting one REQ served
against different attack levels. Figure 3.3 illustrates the expected time to service
for clients that succeed in getting service. And finally, the aggregate bandwidth
consumption from legitimate client REQs is depicted in Figure 3.4. We only
report on the client bandwidth overhead since in each scenario, the number of
REQs issued by attackers (and therefore the respective bandwidth consumption) is
fixed and the same across all three cases. Client bandwidth consumption numbers
are used to compare the bandwidth overhead (cost) introduced by each of the three
client behaviors.

It can be immediately concluded from Figures 3.2 and 3.4 that ASV outper-
forms the Aggressive scheme in terms of success ratio and bandwidth consump-
tion. This proves the effectiveness of the adaptation strategy in raising the costs
(bandwidth) in accordance with the attack rate. As expected, the average time to
service is lower for Aggressive, however, given the ASV’s benefits in terms of suc-
cess probability and bandwidth consumption, service latencies of at most 2.3s for
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Figure 3.2: The ratio of the successful clients to all clients (1500 in 30s) vs. attack
rate.

the fiercest attacks should be considered an acceptable trade-off (Figure 3.3). The
Naive clients, as expected, suffer serious failure rates, which underscores the ef-
fectiveness of ASV. End-to-end delay for the few successful naive clients is lower
than ASV for high rates of attack. This could be due to the uniformness of ns2
scheduler for constant rate traffic. The results also quantify the overhead of ASV,
which is a factor of 16 in terms of bandwidth, and 1.5 in terms of service latency
in the worst attack scenarios.

3.5.3 Pulse and Variable Rate Attacks

In each of the previous experiments the attack rate was fixed during the simulation.
Here, we explore the effect of varying attack rates on clients that implement ASV.
In the first set of experiments we subject the system to pulse attacks. In these
experiments we observe the system’s behavior under a 5 second no-attack period,
followed by 10 seconds of heavy (but fixed rate) attack, and another 10 seconds
with no attack. We performed this experiment for 25, 50, and 100 attackers. The
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Figure 3.3: Average time to service (for clients that succeed in getting service) vs.
attack rate.

detailed results are omitted due to space constraints. However, the most important
outcome is that in all three scenarios, in less than two seconds the system fully
adapts itself to attack conditions, i.e., success ratio, time to service, and bandwidth
consumption numbers converge to the corresponding values in Figures 3.2, 3.3,
and 3.4. In addition, after the attack stops, the system recovers to its pre-attack
conditions in less than two seconds.

To better understand the effect of highly variable-rate attacks we simulate 45
seconds of variable rate attacks, preceded and followed by 5 second periods with
no attack. The number of attackers changes and is dexp(r)e where r is a floating
point number chosen at random from [0, ln(100)) each second. The results are
depicted in Figure 3.5.

These experiments show how quickly the system adapts and then recovers to the
pre-attack pattern in the presence of pulse attacks. This significantly reduces the
attackers’ ability to disrupt the operation (and bandwidth consumption) of multi-
ple ASV protected servers’ at the same time by attacking them in rotation. The
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Figure 3.4: The aggregate bandwidth consumption for all the clients vs. attack
rate.

variable rate attack experiments (Figure 3.5) show how ASV preserves success
ratio, time to service, and bandwidth consumption within reasonable bounds.

3.5.4 Lossy Network

So far, we assumed links are over-provisioned, and thus there is no packet loss
in the network. In order to assess the effect of a lossy network, we make the
bottleneck link drop packets at different rates. The experiments are performed for
K = 3 and K = 7 with 50 attackers present. In brief, in both cases, for drop
rates of up to 30%, there is almost no quitting and client bandwidth consumption
stays approximately fixed. However, for network drop rates of 40% to 80%, the
quit ratio ranges from 0.08 to 0.71 for K = 3, and from 0.01 to 0.32 for K =

7. The corresponding client bandwidth consumption ranges from 4.26Mbps to
1.04Mbps, and 4.62Mbps to 4.08Mbps respectively.

Even though enforcing a cap on the maximum number of outstanding REQs
(with no DACK) is not meant to be a full-fledged congestion control mechanism,
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Figure 3.5: The effect of 45 seconds of variable rate attacks on success ratio and
aggregate client bandwidth consumption. Success ratio for clients is always 1.
Note that clients joining the system between times i and i + 1 are represented in
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it would still be desirable for the ASV clients to react to very serious network
congestions by backing off (please refer to Section 3.4 for details). Additional
simulations that we do not report here for lack of space provide evidence that
if (for any reason) clients face heavy congestion in the network, they eventually
react and stop aggravating the situation.

3.5.5 Effect on TCP Cross Traffic

To measure the effect of ASV on cross traffic we set up the following simula-
tion scenario. We create a client C that is communicating with a data-backup
server S2, co-located with the ASV-protected server S behind the bottleneck link.
The capacity of the bottleneck link is set to 10Mbps (see the shaded lines in Fig-
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ure 3.1). Client C is backing up data on S2, and thus uploads data on S2 at the
rate of 512Kbps over TCP. In parallel, we simulate DDoS attacks on S with a
clientele of 50 clients per second (Naive, and ASV with K = 3). As before, Naive
behavior represents a no-defense base for comparison reasons. The attack rates
and the queuing disciplines used in the bottleneck link vary in different scenarios.
The queuing disciplines in the bottleneck link are DropTail and Stochastic Fair
Queuing (SFQ) with 80 buckets. The amount of data that C can upload to S2 in
30s in each scenario is plotted in Figure 3.6.
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Figure 3.6: The amount of data that client C can upload to sever S2 in 30s. The
lines that are close to the horizontal axis represent values in the 7.5KB to 15KB
range.

The figure shows that when TCP cross traffic shares a bottleneck link with
non-congestion controlled traffic from attackers, it could be seriously throttled. It
confirms that unless the network links around a UDP-based service are highly
over-provisioned and protected against network link attacks, TCP cross traffic
would be seriously harmed in the face of fierce attacks. In addition we observe
that Stochastic Fair Queuing (SFQ) would provide better guarantees compared to
DropTail only until client C’s traffic is hashed into the same bucket as attackers
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packets. This results in C’s traffic being dropped, which in turn causes it to back-
off. However, the main result of this experiment is that the attack traffic is the
major cause of the TCP client’s suffering, and thus compared to Naive (which
represents no-defense attack-only scenarios) ASV does not cause any significant
extra harm to TCP cross-traffic.

3.6 Conclusions

In conclusion, ASV advances the state-of-the art in bandwidth based DDoS de-
fense mechanisms by introducing a distributed adaptive solution based on selec-
tive verification. In ASV, the clients exponentially ramp-up the number of requests
they send in consecutive time-windows, up to a threshold. The server implements
a reservoir based random sampling to effectively sample from a sequence of in-
coming packets using bounded space. ns2 network simulations of the protocol
verify and quantify the effectiveness of ASV against its non-adaptive counterparts
and illustrate that under highly variable-rate attacks, the performance of ASV ad-
justs quickly to prevailing attack parameters. In addition, it is shown that the effect
of ASV on the Internet cross traffic is minimal, and comparable to that of its naive
non-adaptive counterpart, which represents no-defense attack-only scenarios.
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4 IBQ Design

A key challenge to effective countermeasures for Distributed Denial of Service
(DDoS) attacks on the Internet is that some of the best strategies require hosts
and routers to implement altruistic measures that protect the network as a whole,
but provide little immediate benefit to the party implementing the measure. We
consider strategies for DDoS protection based on anti-spoofing integrity measures
and queueing where the benefit of implementation primarily accrue to the party
that invest in establishing and acting on integrity assurances. Moreover, the goal
is to provide this benefit incrementally so that even if only some ASes provide
only some integrity assurance to some servers that implement our technique, then
those that make this effort are rewarded for it by improved resilience to DDoS
flooding attacks that rely on spoofing.

4.1 Introduction

Countermeasures like ingress filtering, in which Autonomous Systems (ASes)
prohibit spoofed packets from passing into the Internet, can help, but these ben-
efits are limited by the fact that only about three quarters of the ASes perform
ingress filtering and most ingress-filtering ASes do not provide full integrity as-
surances. This situation is at least partially driven by the economics of source
integrity protections: in many cases these protections do not directly benefit the
party that implements them except to the degree they protect the Internet as a
whole.

The idea with IBQ is to enable routers or servers to implement classification
of packets based on source origin integrity and then assign different priority and
queuing disciplines based on this classification. To illustrate and analyze the IBQ
we introduce a design that uses authentication for ASes and fair queuing to im-
plement differential treatment of packets according to whether they have high,
medium, or low integrity assurances. We show that resilience to DDoS based on
spoofing can be incrementally improved by individual ASs in such a way that
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the primary beneficiary of an improvement is seen by the ASs that implement
the improved integrity assurances and the routers and servers that recognize this
improvement.

We motivate IBQ in Section 4.2, provide the concept in Section 4.3, give and
overview of the design in Section 4.4 and provide the detail of the components
and protocol in Section 4.5, 4.6 and 4.7.

4.2 What is Not Working Now?

Figure 4.1: Effect of fair-queue(FQ), stochastic fair-queuing (SFQ), spoofing and ingress
filtering in DDoS defense.

In this section, we look at the problem of why DDoS defense is hard and even
harder to have deployment. To set the goals of IBQ clear we conduct a simple
experiment in ns2 to show what happens with fundamental identification and fil-
tration approaches with bots.

We set up a topology with 1024 clients. The clients and attacked server have
a link distance of 10 hops and the bottleneck bandwidth is 10 Mbps. Legitimate
clients are sending at the rate of only 10 kbps. Clearly, the link is well-provisioned
and if there is no attack traffic it is not congested — there is no packet loss (Fig-
ure 4.1, first blue bar from the top). We then setup 103 of the clients are attackers
each sending UDP traffic at the rate of 10 Mbps. The rate is in accordance with
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what typically is seen on the Internet [105]. But as the attack traffic kicks in, about
94% of the legitimate packets are dropped (second bar).

Now, if we introduce fair-queuing(FQ) of the packets per source, at the server,
the attack packets and legitimate traffic go into separate buckets. Packets from
an given attacker are thrown in the same small bucket and are dropped. In the
meantime, the more modest legitimate flows are not impaired. When we also do
this experiment with stochastic fair-queuing (SFQ) where the number of buckets
are limited, legitimate clients still do moderately well. SFQ is employed with
100 bins, roughly equal to the number of attackers; when protections are put at
the server and the core network, legitimate clients lose only one-third of their
packets.

Unfortunately, in real life attackers often use spoofed source IP addresses which
means they muddle into legitimate flows. As a result, the good effect of fair
queuing completely disappears no matter how deeply it is installed in the network.
With ingress filtering [26] an ISP or AS can filter packets sent with a spoofed
source address. That is, if a packet sent from its subnet has an source IP address
that is not from that subnet it will be dropped. Though effective, not all ISPs
deploy such a scheme. Research by the Spoofer project [27] shows that, as of July
2009, 16% net blocks are spoofable and about 25% ASes do not execute any kind
of filtering. Note that an attacker in those ASes can spoof any IP address on the
Internet. Now let’s assume Alice is a filtering ISP and has a client with IP address
i. When the victim Bob receives a packet with IP address i it has no way to verify
if it is from Alice or not. There are two problems of such filtering. First spoofing
cannot be stopped until the last IP address is filtered. And second, the good ISP
does not observe any benefit of filtering as her clients cannot connect to Bob. For
example, in the ns2 experiment we also randomly picked 25% of the clients to
originate from domains that allow spoofing. Ingress filtering is applied to the 75%
of the clients. Still, about 94% of valid traffic is lost. One would naturally have
expected that the result for partial spoofing to be partial success. But the results
are worse. The attackers in the unfiltered domain have the capacity to overwhelm
valid packets from everywhere. The results do not reflect the proportion of the
filtered regions to the unfiltered.

We introduce a strategy for being partially successful in the face of partial
spoofing. Identifying a spoofed packet or a legitimate packet on the Internet is
a challenging task. Authentication, as we know, is not cheap. Neither it is some-
thing that the victim can easily control. The nodes helping out with authentication
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have put up with extra work. Additionally, the client needs to identify itself on the
first packet. A multi-message protocol may suffer heavy losses during an attack
and never be able to complete the task. In this work any effort put by an ISP for
integrity protection and verification is awarded by treating its packets preferably.

4.3 IBQ Concept

AS 

AS   

AS 

Figure 4.2: The special access entry at an IBQ server opens only for packets from domain
that marks them after filtering. Packets from unmarked domains get best effort service.

Our goal is to have availability between domains even when one is suffering
a heavy DDoS attack. When two ASes install IBQ, the client AS puts an au-
thenticator on packets from its domain. During a DDoS attack packets carrying
the authenticator get preferential service. Attack bandwidth does not affect this
incentive-based service for early adopters. Legitimate clients that do not carry
such authenticator do not get such service. To achieve this, the participating ASes
set up some infrastructures.

When the ISP installs “source integrity token” service it makes an announce-
ment to its customers to validate her spoofing index to the server’s “spoofing index
service provider”. With just few clients responding this is set. Now when a packet
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leaves for the server, the source ISP puts a token on it. This token is generated as
a MAC with a key shared between the ASes. The shared key is generated from
their public keys. The server prefers packets with valid tokens and queues them
according to the “spoofing index” which is defined in Section 4.5.

4.4 Architecture

In this section we motivate key components of IBQ. The goal of IBQ is to facil-
itate communication between two hosts despite attack on the server. The clients,
server, client’s ISP and en-route AS gateways all can choose to have a role in
this facilitation in accordance to our incentivizing network services architecture
(Figure 1.1). We define two types of roles: source integrity validating “integrity
services” and “integrity-based service providers”. Participation in an integrity ser-
vice or integrity-based service provider is optional and involvement can be at one
of multiple graded levels. A party can decide if it wants to install an integrity
service and how fine-grained a service the integrity service provides. An integrity
service has higher chances of early adoption if the implementer is well incen-
tivized by an integrity-based service provider.

For example, a content-provider e.g., ESPN.com and an ISP, e.g. Comcast could
diminish the effect of DDoS between them if the ISP installs a high-grade integrity
service and the content-provider prioritizes traffic from the ISP with its integrity-
based queueing service. The ISP filters spoofed packets to achieve an “source
IP integrity level” and puts an “integrity token” on the packets for the server as
an assurance that packets originated from her domain. The server has an IBQ
enabled gateway and filters packets based on the presence of integrity tokens and
the integrity level of the originating ISP. A global “spoofing index table” measures
and maintains the integrity level or the spoofing index of all ASes through crowd
sourcing the Internet hosts. In Section 6.1 we look at live sports and video services
and measures how exactly quality of service improves.

This extends readily to others customers the content-provider might have and
who are interested in some change in their infrastructure for a better quality of
service. Packets from all such integrity-service domains are treated with high pri-
ority during a denial-of-service attack on the server. Moreover, packets originated
from domains with a higher integrity level are prioritized over the ones from a
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lower one. Thus IBQ incentivizes not only ingress filtering but also promotes
better quality of filtering.

Figure 1.1 shows the network design with IBQ. The power meters signify the
gradation of service provided. There could be many infrastructure services and
network services incentivizing them other than IBQ and ASV. Many existing
mechanisms may have these features. But all integrity providing technologies
are not integrity services. It must have two features; it should provide a rank of
integrity and that should be verifiable by others. Ingress filtering by itself is not
an integrity service. Though it gives a rank, it provides no proof. An incentivizing
network service, on the other hand, provides a preferential service based on single
or multiple security infrastructure ranks and directly improves the service for the
implementer. The Internet society might benefit some but the installers benefit a
lot. Variables other than integrity could be the unit for ranking and incentives too.

In the Section 4.5 4.6 and 4.7 we discuss the integrity service infrastruc-
tures, i.e., spoofing index and source integrity token, and queueing service in-
centivizing those.

4.5 Spoofing Index Table

Though a good 75% of the autonomous systems on the Internet deploy ingress
filtering [27], they differ in depth of filtering (Figure 4.3). We propose ‘spoofing
index table’ for ingress filtering data on domains. A host from, University of
Illinois at Urbana-Champaign, can spoof 511 neighboring addresses within its
\23 prefix. That is it has a 9-bit freedom to spoof an IP address. We define 9 as
spoofing index or integrity level for University of Illinois. The lower this number
is the better integrity that AS provides. A spoofing index table (SIT) is a table
providing spoofing index information for all net-blocks. We propose a spoofing

index server (SIS) that crowd sources clients for spoofing index.
Clients opt to run an integrity level checking program. This sends spoofed pack-

ets to the SIS. The program starts by sending a packet with the valid IP address.
Next it sends packets with a single bit of the IP address spoofed and then with the
two lowest bits. This goes on for the 32-bit space of the IP address. The spoofing
index is determined based on the packets received by the SIS. The SIS waits for a
few minutes for the spoofed packet. If up to the nth bit of the IP address could be
spoofed and received by the SIS then n is the integrity level of the domain and the
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Figure 4.3: Quality of ingress filtering. The green domain filters strictly and checks that
each node send with its own IP address. The yellow domain performs a less strict ingress
filtering and only verifies that packets leaving the domain carry IP addresses owned by
that domain.

SIS stores that information in the spoofing index table indexed by the 32 − n bit
IP prefix. MIT ANA Spoofer project [27] has been collecting spoofing data from
clients similarly since 2003. Their data is anonymized and publicly available.

SIS also functions as provider of spoofing index information. IBQ gateways
query the SIS with the integrity level of a domain and use it to decide what grade
of queueing service to provide it. SIS entries are cached locally for a week on the
server, too. Spoofing index information is mostly stable over years [27].

Crowd sourcing the clients takes the ISP out-of-the loop of spoofing index mea-
surement. The ISP might have a motive to report falsely and get a high integrity
index. One way the ISP could achieve false reporting is through the use of spe-
cially colluded clients. Malicious clients could pollute the report, for example, by
not sending any of the spoofed packets. But to get a conservative assessment, the
worst integrity level among those reported is chosen. The ISP could specifically
ingress filtering packets to the SIS servers but no to all end hosts. This involves,
if not more, equal level of effort as ingress filtering. And studies [106] suggest
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that lack of ingress filtering in many cases just represents lack of knowledge or
hardware. reported chosen.

An SIS could be the target of a DDoS attack itself. But as a SIT could be cached
for a long time the attack will not be successful. We propose to integrate SISes
with Domain Name Service (DNS) in future. An SIS has DNS like characteristics
and its just natural for hosts to collect spoofing index information along with the
DNS entry. Even if multiple hosts start creating their own SIS they can be col-
lected together at DNS easily once there is wide adoption. This way hosts do not
need to wait for integration with DNS to start using IBQ.

4.6 Source Integrity Tokens.

Client Server 

AS1 ASn 

IP Header IBQ Data 

MAC 

MAC= H(KAS1ASn || src || dst ||data) 

Figure 4.4: Integrity tokens carried by the packet from the originating AS. It has a MAC
for the destination AS.

On the Internet, the initial request packets from a client do not bear any proof
of origin. IBQ domains attach integrity tokens to their packets. These tokens
authenticate the vouching domain to the end host (and en-route domains). An
integrity token, represented as a keyed MAC, is inserted for each AS hop that is
an integrity based service provider. The key used in the MAC is a shared DH key
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Client Server 

AS1 AS2 AS3 AS4 

IBQ 
routers 

MAC1= H(KAS1AS2 || src || dst ||data) 
MAC2= H(KAS1AS3 || src || dst ||data) 
MAC3= H(KAS1AS4 || src || dst ||data) 

IP Header IBQ Data 

MAC1 MAC2 MAC3 

Figure 4.5: Integrity tokens carried by the packet from the originating AS. It has a MAC
for every en-route AS and one for the destination AS.

IP Header IBQ Header MACs,1 . . . MACs,n

IBQ Header Flags Length PKI IDs AS1 . . . ASn nonce

Figure 4.6: IBQ Header

derived from the public keys of the domains. Figure 4.6 shows how the integrity
tokens are created. The header contains a PKI ID to identify the party that put the
token. Each token is 64-bits. The MAC is computed on the source and destination
IP addresses, the IP ID field and the length and the first 8-bits of payload. The
token includes the source address so that it cannot be spoofed. Also it has part
of the packet data so that attackers cannot steal them from valid clients. This
technique is well examined. For the purposes of DDoS defense it was first used at
Passport [37]. We suggest a 64-bit tag as per the RFC [107]. This gives us a 264

nonce or sequence number space.
Even if only the client and the server implement integrity tokens IBQ would

has great benefits (Figure 4.4). DDoS is mitigated within those two domains. As
more and more autonomous systems deploy it, they form a click that has service
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despite attack floods. Also the spoofed attacker flow is filtered much closer to the
origin.

The Diffie-Helman public keys for the integrity tokens are distributed by the
SIS, too. Each AS generates their own public-private key pair and shares the
public key value with the SIS. The AS also re-keys at regular interval to provide
stronger security. ASes use a known CA for certificates. BGP announcements are
used to bind an IP address to a prefix and ASN. There are also commercial and
non-profit whois services for this.

Figure 4.5 shows how the integrity tokens are created are passed on. If only
the client and the server implement integrity tokens IBQ would have little benefit.
But as more and more autonomous systems deploy it, the spoofed attacker flow is
filtered much closer to the origin.

MACs are used to provide path verification in multiple DDoS defense ap-
proaches. Passport [37] and StopIt [52] use a similar mechanism as ours. One
could imagine a MAC being added only for the next hop. The next hop after pro-
cessing the request could add a new MAC verifying itself to be on the route. This
adds the burden of signature to the intermediate nodes but has the benefit of path
verification for less stable routes. There could be further study in terms of relative
costs of both.

Signatures provide much stronger security and we would need only one per
packet. Recent work [108] demonstrated line rate signature verification at a
10Gbps link. But historically network providers have shown less interest in sig-
natures. IBQ implementation will get much easier if signatures are adopted. But
for this paper we work with MACs and show how even with the added overhead
of key distribution they can be effective (Section 6.5).

Another challenge in this design is verifying the ownership of an IP prefix and
certificate distribution. DNS is an option. But DNS itself is vulnerable. DNSSEC
has just recently rolled out signed root zone certificates. Many protocols have
relied on unsecure DNS for distribution of core information. One great example
is sender policy framework for SPAM [97]. SPF uses DNS to specify the IP
address range that can send emails for that domain. An email received is then
ranked based on this policy. SSL certificates, on the other hand, can be obtained
commercially and the vendor decides how to validate ownership for that domain
name and the mapping to an IP address. One key point to notice here is that
an attack on the signing infrastructure deteriorates the performance of the client if
also there is an DDoS attack going on at the server. With IBQ packets are demoted
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to a lower priority when something cannot be verified. With wide deployment
of IBQ, DNS may take on the role of a distributed SIS. IBQ can use in-band
distributions mechanisms such as IPA [96], but there is no added benefit. Also
distribution through SIS is more direct and motivates early adoption.

MAC  
verified? 

N 

Spoofing 
Index ? 

Y 

=0  

>0  

Per source high integrity filters 

Per integrity-block filters 

Low integrity filters 

Figure 4.7: Integrity Based Queuing.

4.7 Availability Based on Spoofing Index

The basis of integrity-based queuing is standard fair-queuing where each flow is
put into a separate bucket and all the buckets are served in a round robin fashion
(assuming equal sized packets). In IBQ, a flow is defined as a group of packets
from the same identifiable origin. All packets being identifiable to be from a
source are sent into the same bucket. This means any group of packets that can
be identified to be from same prefix-block compete for bandwidth. When packets
arrive from non-IBQ domains and their origin cannot be verified, they receive
general queuing. These are the low integrity packets.

Packets that come with an integrity token for the IBQ router are verified against
the spoofing index table for their integrity level. If the home AS has an spoofing
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index of 0, the flow is classified as having high integrity and a filter is created for
it. All the high integrity packets are queued in individual per-source buckets. If the
spoofing index is higher than zero the packet is in the middle integrity category.
It is queued with all other packets sharing a IP prefix of (\32− spoofing index)
with it. For example, University of Illinois packets from AS38 will be filtered by
\23 prefix address. All the packets having the same \23 prefix will be queued
together. We call these filters per-integrity block filters. Integrity-block filters are
part of the fair queue system. But they achieve weighted queuing as the number
of sources addresses that are hashed into a filter differs. For example, for an AS
that has a spoofing index of 4 only 16 IP addresses hash into a filter whereas for
a spoofing index of 8 there are 256 possible sources. But both of these filters
are served equally. This means fewer packets from a high spoofing index AS are
forwarded.

Exact implementation of this protocol can be done in quite a few ways. Queues
for each integrity netblock might result in an explosion of number of queues. This
can be handled by concatenating lower integrity queues to make room for higher
integrity ones. A practical challenge for this scheme is adjustment of queue num-
bers dynamically at runtime. Another option is too set up filters to rate limit flows
to follow the preference levels. This really gives the server freedom to decide
a particular implementation based on the resources it has. Many newer routers
might have better queuing capacity, while filters might be useful for others. In the
literature sometimes filters, queues and priority schedulers are used interchange-
ably. But we felt it is necessary to delineate the differences.
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5 IBQ Analysis

In this chapter we analyze the incentive and security provided by IBQ. In Sec-
tion 5.1, we build an analytic model of the incentive scheme that mathematically
relates the spoofing index of a client to its defense against a DDoS attack. In
Section 5.2, we take a look at the IBQ protocol itself and and look for security
strengths and weaknesses. 1

5.1 Mathematical Analysis

In this section, we mathematically show that lower spoofing index decreases the
loss rate observed by a legitimate client. First we analyze a simple scenario with
one client and one attacker. Next, we analyze the probability of the client sharing
the same integrity information (Integrity IP prefix) as a bot in the presence of
multiple bots. We provide an analysis of how a better integrity level enables a
legitimate client to have a better service.

5.1.1 Single Attacking Node

B 

A 

S 
IBQ Gateway 

α 

β 

s 

Figure 5.1: A simple three-node topology.

1This chapter includes material from a previous publication by Khan and Gunter [102]
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Consider the simple topology in Figure 5.1. An attacker A and a legitimate
client B are communicating with a server S. The server can process s packets in
a particular time window. We provide an analysis of how a better integrity level
enables B to have a better service.

The server is over-provisioned for a legitimate client. The client B sends pack-
ets at the rate of β per time window where β � s. That means all packets from
the legitimate client are processed by the server when there is no attack. The at-
tacker, on the other hand, seeks to overwhelm the capacity of the server to process
packets by sending many spurious packets. A sends packets at the rate of α, where
α� s� β.

In such a scenario the server can process only portion of the incoming packets.
With general best-effort service the probability of a client packet being processed
is β/(α + β) ≈ 0. The attacker traffic takes over all the capacity of the server.
When IBQ is deployed by the server this scenario changes. Flows are queued
based on their integrity. If all the flows have high integrity, the capacity of the
server is equally shared between them. So A and B both get a fair share of s/2.
Client B sends at a much lower rate β than its fair share, so all of its packets are
processed and it is not adversely affected by the DDoS attack.

Now let us consider the scenario where B is in a domain with a spoofing index
of i. Also consider that the attacker agent is likely to spoof any address on the
Internet that it can. The probability that the attacker is spoofing the address of B
is one in a few billions (assuming a 32-bit address space). But the probability that
the attacker is in the same domain as B and will carry the same degree of source
authentication is, p = 1/2c−i, where i is the spoofing index and c = 32, for IPv4
addresses. In that case the success probability for client is, β/(α + β), tends to
zero. This same as the case where there was no defense.

The expected number of packets processed for B is,

E(B) = sp
β

α+ β
+ β(1− p) = β− βp+

spβ

α+ β

So the loss rate l for B is,

l = 1−
E(B)

β
= p

(
1−

s

α+ β

)
= 1/2c−i

(
1−

s

α+ β

)
(5.1)

If the spoofing index i is close to zero the loss rate is negligible. If there is
no source authentication (i = c) the loss rate is same as the regular best-effort
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Figure 5.2: Relationship of spoofing index i and the loss rate experienced by a client for
a simple three-node topology.

service(1− s
α+β

). But with each grade of integrity (smaller values of i) the chance
gets better. This exponential trend is shown in Figure 5.2. This exponential result
extends for any topology as DDoS attack rate is always much higher than what
the server can process and p dominates.

5.1.2 Attack with Multiple Bots

Now let us consider that the attackerA is using n bots for his DDoS attack against
the server. We show the relationship of number of bots, spoofing index and prob-
ability of sharing source integrity with attack traffic.

With general queuing the probability of a client request being processed is
β/(nα + β) ≈ 0. The attack traffic takes over all the capacity of the server.
If all the flows have high integrity, the server’s capacity is equally shared between
them. All the clients, B and the bots, get a fair share of s/(1 + n). If B has a
request rate lower than the fair share, that is β > s/(1 + n), all of its requests
are processed. The client can be overwhelmed by the DDoS attack if n� s, i.e.,
there is a massive number of bots.

Now let us consider the scenario where B is in a domain with a spoofing index
of i. Also consider that the attacker agents are likely to spoof any address on the
Internet that they can. The probability that the attacker is spoofing the address of
B is one in a few billions, 1/232 (32-bit address space). But the probability that a
bot is in the same domain as B and will carry the same authenticating source IP
prefix is, 1/2c−i, where c = 32. We are going to usem = 2c−i.
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So far this is similar to the situation where there is only one attacker. The
client observes heavy loss when it shares identity with attack traffic. We analyze
the probability of that. We can see that this problem is similar to the birthday
problem. What is the probability with Internet full of n attackers one or more
has same authenticating IP-prefix as A? The probability that a particular bot does
share integrity prefix with A is,

m− 1

m
= 1−

1

m

The probability of having one or more bots with same integrity IP prefix can be
presented with q.

q = 1−

(
1−

1

m

)n

Figure 5.3: Relationship of the spoofing index i of an AS and the probability q that bots
are spoofing the IP prefix of a client; n is total number of bots in the attack.

This is plotted in Figure 5.3. If there is no source authentication (i = c,m = 1),
the client receives general queueing and shares the queue with bots (q = 1). In
that case there is less chance of getting a legitimate packet through. As i grows
smaller,m grows exponentially and

(
1− 1

m

)→ 1. The attacker needs many more
bots to exponentiate this fraction to close to zero and make an attack effective
(Figure 5.4).
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Figure 5.4: Relationship of the spoofing index i of an AS and the probability q that
bots are spoofing the IP prefix of a client. Millions of bots are not sufficient to launch a
successful attack if the spoofing index is good (low).

5.2 Threat Analysis

In this section we provide an analysis of how our design withstands threats such
as malicious clients and gateways collusion and different attack patterns.

Malicious clients

Malicious clients do not get much leverage in IBQ. Malicious clients cannot spoof
a valid IBQ header. The authenticator is created by the source AS and the key is
known only to the source and the destination AS.

Packets with illegitimate IBQ header cannot overload the destination. MACs
can be verified at network line rate. Additionally, if the source AS is an IBQ AS it
detects and replaces fake headers. It can limit the bandwidth usage of or blacklist
the client. This, in fact, is an excellent way for network administrators to detect
bot host machines and inform the owners. If the source AS is not an integrity
service provider the IBQ gateway will detect these malformed packets and put
them into low priority queueing. Once IBQ has good coverage we recommend to
drop such packets as SPF is planning to do for email.
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We have discussed Section 4.5 potential malicious behavior for spoofing index
crowd-sourcing. To get a conservative assessment, the worst integrity level among
those reported are chosen.

Malicious Source Gateway

IBQ is well-protected against malicious AS. Such an AS cannot affect availability
for clients of other AS. Also it can enable its own clients to get higher integrity
results then the integrity it is providing them. It cannot collude with a client to
provide wrong information for the spoofing index table. The spoofing index is
verified from the globally available table. The the table is created with information
from many clients.

Malicious Routers

A malicious downstream router can override the IP and IBQ header of a packet.
It can also intentionally drop packets. This is unusual for few reasons. First
packets traverse through domains that they have service level agreement with.
So it is economically not profitable for a core router to drop packets. It is hard
for a malicious core router to sustain malicious behavior without detection. The
Internet-wide faults caused by them initiates fast discovery of the root cause.

Colluding Routers

IBQ is not robust against certain threats. When there are colluding malicious
routers the situation is prett bad. However, it has happened on the Internet. Ma-
licious routers may collude and share their private keys for the source authentica-
tion. This way they can generate IBQ headers with each others identity which is
synonymous to spoofing. This is unlikely as it would violate the security infras-
tructure investments of the ISP. Traffic with spoofed authenticators would share
the authentication prefix with its clients and be queued in same bucket. Also
blacklisting such ISP upon detection would discourage them from such an mali-
cious action.
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6 IBQ Evaluations

In this Chapter, we evaluate performance of IBQ with simulated VoIP traffic and
real attack traces, and analyze overhead of implementing IBQ. Our results show
that IBQ incentivizes adoption by ISPs that appreciate reliable performance of
real-time traffic. Our work contains the first published use as a test scenario of the
2007 CAIDA DDoS attack dataset. Our tool fksim integrates this trace with TCP
flows and shows how two domains can mitigate the effect of DDoS between them
with IBQ. 1

6.1 Incentives for Real-time Traffic

We are particularly interested in how real-time applications such as VoIP are af-
fected by IBQ. Traditional circuit-based telephony systems are being replaced by
VoIP services on clients (e.g., Skype, Vonage) and ISPs (e.g., Comcast, Turner).
Many ISPs are also teaming up with broadcasters for live-streaming of events
(e.g., ESPN 360). It is critical for a client that these services perform well under
all circumstances. A provider that keeps up the quality even in extreme situations
will keep the market share.

6.1.1 Topology Setup

The Internet has grown into billions of nodes and thousands of autonomous sys-
tems. Three quarters of the ASes implement some level of ingress filtering and rest
none. We use the ingress filtering statistics available from the Spoofer [27] project
to model our simulations. As ns2 only scales up to few thousand nodes, we scale
down the topology accordingly. We simulate 2048 nodes and 256 autonomous
systems. We assume only 3% of the nodes from any AS are active clients. The
nodes are connected to a high-speed core network with 64 Mbps links. The con-

1This chapter includes material from a previous publication by Khan and Gunter [102]
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Figure 6.1: ns2 Topology.

gested link at the server has a capacity of 1 Gbps. The link capacities have been
scaled down for the scaled down topology.

6.1.2 Attack Parameters

Attackers use the complete link capacity available to them. They also use their
spoofing ability. Attackers are placed uniformly randomly within the clients. For
our topology we scale down the address space to 216 bits. Each AS has a prefix of
\8.

6.1.3 VoIP Parameters

We set the parameters of the VoIP communication for our clients according to the
Cisco guidelines [109]. Each client sends packets at a rate of 65 kbps to maintain
a good quality communication. Each packet is around 190 Bytes. A reasonable
quality call should observe less than 1% loss of packets, less than 150ms of delay
and a packet delay dispersion of less than 30ms based on International Telecom-
munication Union-Telecommunication (ITU-T) standards. At this rate the client
links and the bottleneck link to the server both are underutilized. Total client band-
width is about 3Mbps. Without an attack the packets observe an average delay of
50ms and no variation. Loss rate is 0%.
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6.1.4 The Effect of the Attacks
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Figure 6.2: Queuing and source authentication have immense effect on performance.

To compare our approach to base cases, we observe what happens to the VoIP
service with changing attack rates. We simulate attacks ranging from 1 to 32 Gbps
in bandwidth. The attacks are on a lightly-used link. Though the clients have very
good VoIP capability when otherwise that capability vanishes very fast with an
attack. Any mechanism that tries to sort out the good and bad packets fail due to
the lack of source authentication. We observe that, IBQ performs very well even
when using mid-range source validation and only fail when attackers fall in the
gray area on the integrity block and choke up the queues. Figure 6.2 shows the
result of this analysis.

6.1.5 Comparison to other fairness schemes

Next we compare IBQ to existing methods that deploy source authentication and
fairness as a measure of defense. The best comparison should be when both pro-
tocols are fully deployed. We experiment with deploying a per-AS fairness in ns2
topology. We use the same parameters as before. The results are shown in Fig-
ure 6.3. Even at its best, a per-AS scheme has a performance similar to IBQ with
mid-integrity flows. Attackers distribute their agents globally and a single bot in
such a domain could choke all the legitimate clients in that domain.
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Figure 6.3: IBQ compared to fully deployed per-AS queuing such as TVA.

Partial deployment with per-AS or path queues are tricky. If we imagine the
link between the server and the clients to be replaced by a complex topology, one
would wonder how would the authentication mechanism effect the communica-
tion. TVA request channel prefers the newest token on packet rather than the old
one while queuing. That might defend against some edge cases of attack, but
hampers performance in a regular spoofed packet attack. In the next section we
evaluate and compare results for partial deployments.

6.1.6 Performance Incentive

In this set of experiments, we fix our attack rate to 8 Gbps and relate application
performance to the spoofing index. We have shown in Chapter 5 how performance
improves exponentially with integrity level. The results in Figure 6.4 validate that
analysis.

One important question that rises from these results is this: should all packets
be sent through a preferential service or should that service be used only for the
request packets? Every protocol starts with few initial packets that request entry
into the protocol. Any authentication mechanism used by the application layer
starts thereafter. But the tricky part is how to identify and sort those initial packets.
In our experiments we observe that the VoIP packets suffer from a loss rate higher
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Figure 6.4: Loss rate as integrity level increases.

than the application can tolerate. So VoIP would benefit from using IBQ to make
the call and then establish a secure communication channel. But VoIP, like other
network protocols, comes in many flavors, some open and some proprietary. It
would help if request packets were easily recognizable by core-routers.

6.2 DDoS Attack Dataset Analysis

CAIDA has recently made anonymized data on a DDoS attack on the day of Au-
gust 4, 2007 available by subscription. We show that a client in an ISP using IBQ
and a server can indeed communicate when this attack happens. First we analyze
the characteristics of this data. Next we use this to set an attack profile in ns2 and
verify IBQ performance for clients using both UDP and TCP communication.

The CAIDA 2007 DDoS attack dataset has very interesting traits. We provide
the first comprehensive analysis of this data. The CAIDA trace is for a bandwidth
based attack that lasts about an hour. As CAIDA describes it, the attack starts
around 21:13 in some unspecified host. Within a few minutes the network load
increases from about 200 kbps to about 80 Mbps. Though there is no mention of
the actual bandwidth of the bottleneck link it would be fair to assume that it is 80
Mbps. The trace itself contains only attack traffic. The victim’s response rate is
about 700 kbps.
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Figure 6.5: CAIDA Data Set for a DDoS Attack.

Our analysis of this trace shows interesting results. The attacker uses around
9311 unique source IP addresses. These bots sent about 400 million packets over
the hour of the attack. The packets were mostly ICMP and TCP SYN packets of
about 100 bytes. The destination address on all the packets were the same.

We also looked at how many packets were sent using each IP address and at
what rate packets were sent every second (Figure 6.5, 6.6, 6.7, and 6.8). The
attacker seems to be testing the network capacity for about first 20 minutes and
then there is a rapid hike in the rate. The choice of addresses seems to be pretty
well distributed over the IP range except two gaps. The attacker might be avoiding
the pool of reserved and local addresses. But we cannot be sure as the trace has
been anonymized.

The trace has another fascinating trait. The attack while sorted by address or
time looks uniform. But if we look at how many packets were sent by each at-
tacker we can see that it has a staircase pattern (Figure 6.8). Some IP addresses
occur only once while the largest two occurrences are 340,067 and 225,399. The
average number of packets sent by an IP address is 38,626.97 while the standard
deviation is 38,430.12. If we sort them by number of packets sent and take the
difference between each pair the average is 24.21 with a standard deviation of
150.08.
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Figure 6.6: CAIDA Data Set for a DDoS Attack.

Let us look at the sending pattern from few of these addresses. Packets from
each address also arrive in a staircase pattern. Rather than using new bots existing
bots keep increasing the number of packets sent. Figure 6.9 shows the sending
pattern for the addresses that were used the most. Also, given that the attack took
15 minutes to start it is surprising how abruptly it ends.

6.3 fksim: Trace and TCP Tool

Our C++ tool fksim replays the CAIDA trace along with simulated TCP traffic
in less than a second. fksim is optimized to maintain minimal state information
for the nodes and the flows. This enables it to run efficiently. Simulators such as
ns2 and ns3 do not scale for 10,000 nodes—ns2 scales up to 2,000 and ns3 up to
1,000. They are general purpose network simulators that maintain the overhead of
packet headers and complex routing information. Each node added to the topology
introduces new possibilities that are stored throughout the simulation. For DDoS
experiments the ability to simulate many clients is important. The added overhead
with each new entity in existing systems make that impossible. Also replaying
traces with simulations is not trivial.
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Figure 6.7: CAIDA Data Set for a DDoS Attack.

fksim does not maintain any header, topology or per node state. Instead, loss
and delay are calculated frequently and results are stored. The reduced overhead
also makes it possible to simulate TCP clients and assign some memory to TCP
state information. We implement TCP according to the related RFCs. Our imple-
mentation yields same results for bulk transfer as an ns2 agent. This supports our
claim of correctness.

6.4 Simulation of Legitimate Traffic

We validate that indeed if a server is using a incentivizing integrity and a client
domain is using an integrity authentication, DDoS attack is mitigated between
them. We use our custom C++ simulator to use this trace as the attack traffic
and introduce lab-created legitimate traffic. We have multiple objectives for these
simulations. First we want to evaluate how the legitimate client performs while
such an attack is going on. Second, we compare performance of IBQ with TVA.
This experiment is conducted for simulated TCP.
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Figure 6.8: CAIDA Data Set for a DDoS Attack.

6.4.1 TCP Experiment Setup

We evaluate throughput and connectivity of long running TCP connections be-
tween the client and the server. The objective is to show that with only the client
domain installing source integrity infrastructure and the server providing service
based on quality of integrity attack is mitigated between them. Though more ser-
vices at other places in the network have a more global effect on DDoS, local ser-
vices benefit the parties installing them the most. It is interesting to see how TCP,
itself a fascinating protocol, work outs its traits during an attack and with other
queuing protocols such as IBQ and TVA. TVA service differentiates between the
first packets and others whereas IBQ does not.

Next, we discuss how each protocol is set up for the experiment.

IBQ. IBQ clients carry a MAC from the domain that is verifiable by the server.
We take the spoofing index of the domain to be zero. There is only a single domain
using IBQ. So, the server, accordingly, allocates only 1% of its resources for IBQ
integrity-token packets and rest for legacy traffic.

TVA Setup. TVA [55] uses per-source fair-queuing for request packets and per-
destination queues once the channel is set up. For different protocols a channel
setup may take varying number of messages. TVA uses the first packet to iden-
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Figure 6.9: Top 10 highest sending bots

tify the path based on the self-verifiable MACs put by en-path routers. We test
partially deployment of TVA only at the originating ISP and the server. So for
this setup legitimate packets get a tag from the originating domain. It is as simple
as spoofing an IP address to add a fake tag to its packet as no other party can
verify the tag. This is challenging for incremental implementation of TVA on the
network. Early adopters see no benefit. In fact there request packets are put in a
constricted channel with the attack packets.

TCP. We configure TCP with regular bandwidth setting. The receiver window
size is 64KB with a segment size of 536 bytes. The slow start threshold is also
64KB. The connection timeout is 3s and the persistent timeout is 6s. We use
a long lasting TCP connection to transfer a stream of bytes to the victim. Web
traffic follows a pattern more like UDP where after the connection is typically one
or two more transmissions fetch the webpage. The disconnection that the user
experiences frequently is reflected with UDP loss rates.

Server. The victim server reflects the victim in the CAIDA attack. Its victim ca-
pacity is set up to 1Mbps. The attack traffic throughput is 80Mbps. This capacity

69



is much greater than the 20kbps traffic it was observing before that attack as well
as sets the attack to be severe.

The parameters used for network protocols here are comparable to the CAIDA
attack. As the Internet bandwidth increases we will see much higher bandwidth
attacks on higher bandwidth links as well as higher bandwidth network protocols.
The characteristics of the results hold true there too.

6.4.2 TCP Experiment and Results

Figure 6.10: Transmission of a TCP agent without any other traffic.

We analyze the sensitivity of TCP to the CAIDA attack traffic in terms of
longevity and throughput and compare the result with IBQ and TVA employed.
We start a TCP agent regularly every second. We show the results 5 minutes
apart for clarity of the figures. The attack varies over time. TCP connection setup
works differently than data transfer in a connection that is already set up. Starting
new agents regularly tests both of these behaviors. Some results are presented in
Figure 6.10, 6.12, 6.11, and 6.13.

Without any attack traffic the client yields a good-put of about 970 kbps, trans-
ferring about half a gigabyte of data. The agent keeps sending the maximum
window size of 64 kilobytes every roundtrip (500 ms). It back-offs a bit when a
few packets are dropped as her sending rate is higher than the line rate. Without
any defense in place TCP performs well at the beginning of the attack. The agent
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Figure 6.11: Transmissions of TCP agents under attack without any defense.

starting at the beginning of attack yields 180 MB but disconnects once the attack
hits link capacity. But after some time the TCP agents fail to even establish a
connection. The agents already connected rarely can make a successful transmis-
sion. TCP’s exponential back-off during congestion effects its throughput. After
several timeouts it makes very few transmission attempts during rest of the attack
period.

With IBQ even with constricted capacity the client observes good consistent
throughput of about 546–661 kbps throughout the attack. TVA suffers extensively
as the attacker is using spoofed tags and all the request packets are queued to-
gether. Deployment of more TVA routers at the core network or even more at the
edges alleviates the effect of spoofing. As, we have argued, the limitation of this
approach is that such deploying parties are not directly incentivized because only
traffic between two other parties is aided.

But it cannot be defined as a directly incentivizing network service.
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Figure 6.12: Transmissions of TCP agents under attack with IBQ.

6.5 Overhead

6.5.1 Spoofing Index Table

The spoofing index table has similar overhead of a BGP table. Each entry is
indexed by an IP prefix and contains the spoofing index and the PKI ID for that
prefix. Spoofing indexes verified by clients in that prefix-block are available in the
table. The size of the spoofing index table depends on the granularity of spoofing
and filtering boundaries. We make a design decision to use BGP IP prefix for in-
dexing the spoofing index table. This limits the growth of the table but challenges
the correctness.

For example, University of Illinois at Urbana-Champaign announces a 16-bit IP
prefix in BGP but has a spoofing index of 9. This means that it has 128 netblocks,
each of size 512, within this prefix. A client would validate spoofing index of one
of these netblocks. To reflect this we add a fourth column in the table indicating
how many netblocks have been validated. The spoofer project [27] found 35% of
the spoofing boundaries to be exactly the BGP prefix. It makes sense for domains
to filter at traffic at the border. Nevertheless, this check keeps the table and the
domains honest.
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Figure 6.13: Transmissions of TCP agents under attack with TVA.

Any contradictions are reflected with a separate entry in the table. For example,
may be the Department of MoreSecure filters more rigorously and spoofing index
is 0. Though they share IP prefix with a bigger organization their longer prefix is
an entry in SIT, too.

The size if SIT is comparable to the global BGP table which currently has
40,000 entries. Each entry being 12 - 24 bytes (IP-v4 and IP-v6) the table is under
1MB.

6.5.2 Spoofing Index Server

The spoofing index server has three roles. It coordinates with clients to determine
the spoofing index of an IP prefix. It responds to queries for the spoofing index and
public key certificates for domains. It works as a CA to validate prefix-ownership
requests, rekey and revoke keys.

The load on SIS for crowd-sourcing is lower than that of a web-hosting site.
The majority of the work is done by the client. The SIS gives a timestamped
cookie to the client to verify a spoofed packet received is indeed originated by its
request. We use connection timeout of 3s similar to TCP for this. The client sends
out 10 spoofed packets for testing each spoofing index and 20 for reserved, bogon
and internal addresses. 300 packets will time out in approximately 2.5 minutes.
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The SIS starts storing state once it receives the first spoofed packet with a valid
cookie. An attack on this is possible only using a valid IP address. A server
capable of storing millions of spoofing index can process 24 million requests per
hour. It denies requests from a domain from which it already has fresh spoofing
index information.

The spoofing index table is cached locally at the edge routers. Queries re-
sponses are fast as the table is indexed by IP prefix. Software routers and switches
such as CLICK [110] and OpenFlow [111] have optimized implementations for
IP prefix classifiers.

SIS also distributes keys for the domains. The overhead of rekeying every week
by all ASes has been measured to be less than 17ms per minute [52]. Let us
analyze how much traffic is tagged with this week long key. Some of the Internet2
core links have up to 5 Gbps data usage [112]. With a conservative packet size
of 500 bytes this link will process 604.8G packets in a week for all destinations.
A 64-bit nonce space in the hash of the MAC can handle much more than this.
Nevertheless, our proposal allows the origin ISP to set the nonce size based on its
network load.

6.5.3 The IBQ Tokens

The IBQ header adds up to 8 bytes for each token. For 4 ASes the header length
could be at least 24 bytes for 32 bit Tokens and 44 bytes for 64 bit Tokens. We
recommend a maximum of 4 tokens. It takes about half a microsecond to put
or verify a 32-bit token on a commodity GHz device [37]. A throughput of two
million packets per second verification is excellent for a server with a GHz of
processing capacity.

6.5.4 Queuing and Filtering

Ideally, an integrity-based queueing service sorts packets per authenticated IP pre-
fix. Even if routers can install thousands of filters that is not enough for a network
with many high and medium integrity flows. The 32-bit IP space can have a max-
imum of 4 billion filters. If we look at the adoption of ingress filtering [27] and
base our calculation on the probability distribution of spoofing indices, IBQ will
have 125 million integrity blocks. A host might get only a fraction of these as

74



clients and attacker flows, but those filters need to get installed at runtime. But
dynamic memory management is neither recommended for hardware nor for soft-
ware routers. For example, in CLICK router the spoofing index table is installed
as a classifier. Flows from each class go into separate BandwidthMeter elements
and separate queues for round-robin and priority scheduling.

IBQ scales much better with monitors that look for high-bandwidth flows
and punish them. RED-PD [113] and DiffServe are two such implementations.
OpenFlow [111] switches have support for DiffServ. We design IBQ with three
high capacity queues for – high (0 ≤ si ≤ 8), medium (9 ≤ si ≤ 16),
moderate(17 ≤ si ≤ 24) and low integrity traffic. Bandwidth limiters such as
RED-PD are implemented for the three higher class flows. These detect and limit
the sending rate of flows sending at a higher rate than the set threshold. Traffic
from the higher integrity flows are prioritized according to the spoofing index dis-
tribution. The high integrity queue also uses a shadow backup queue. This way
the overhead of IBQ is the related to the number of higher integrity attack flows.
For example for the CAIDA attack dataset in the worst most unlikely case, 9311
filters would have been installed. High bandwidth legitimate traffic follows TCP
congestion rules and would not trigger filters.
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7 Cheater

Cheater combines multiple DDoS defense systems to complement each other. It
looks into the solutions that make big differences and builds a defense in depth.
There are four layers of protection in Cheater. First, the server implements IBQ
and incentivizes based on integrity. Second, the server uses cookies to enable
legitimate users not from an IBQ domain to send packets. Third, we enable le-
gitimate clients to scavenge for cookies. A client can feed on a spoofed agent
request that scatters back to her and use the capability on it for itself. Finally, the
legitimate client does not back off as it would traditionally and uses ASV to send
more requests. So putting these all together, the client that is not from an integrity
domain has two other approaches. She will peek in any packet that reaches her
and check if it contains a cookie from a server she is targeting. She will also
periodically make the same request again and again and in larger number each
time.

7.1 Architecture

7.1.1 Scavenging

When a legitimate client makes a request she listens for the reply on any port. That
way she can pick up any reply from the server on any port. This way the client
can ‘scavenge’ off the spoofed packets. The server sends a scavenger cookie with
each response. This cryptographic cookie contains the source and destination IP
address and a timestamp.

Attacker agents, to avoid detection, often spoof their source IP addresses.
Replies to these requests go back the address that was spoofed. Legitimate clients
make some benefit of this situation at zero cost by scavenging off the spoofed re-
quests. The attackers cannot scavenge a cookie unless they are willing to use their
own IP address.
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7.1.2 IBQ and the Cookie Channel

Cheater uses the allocation for low-integrity flows as the request channel. Packets
that are selected get a cookie that they can use for later packets. As mentioned
before, this cookie is self-signed by the server. Clients that do not have an integrity
provider ISP can use the cookie channel to request for a cookie and include the
cookie in future packets. The returned cookie proves to the server that the client
has finished a round-trip and somewhat ownership of that IP address. Packets
carrying a cookie are prioritized over other packets in this channel. It is as if they
move into the 31 1

2
spoofing index queueing class.

7.1.3 ASV and the Cookie Channel

We propose that the legitimate clients ramp up their requests in the face of an
attack. This is similar to the proposals in Chapter 3. Our proposal is similar
to ASV with the server implementing the reservoir. But this is deployed only
for the low-integrity flows. The client keeps retrying up to certain rounds or if a
maximum number of packets in a sequence go unacknowledged. The client ramps
up its requests if it does not get an ACK from the server. To avoid situations where
the server is down or there are other network problems, the server sends back a
DAC to the legitimate clients before dropping a packet. For the packets that are
accepted a self-signed cookie mentioned before is sent back.

7.1.4 Defense-in-depth

Cheater is a defense-in-depth approach combining these three mechanisms for
the low-integrity channel (Figure 7.1). Cheater dedicates a small fraction of the
link for cookie requests. Using this channel clients can request for a token of
service. Once a user has this token she can use the data channel. The specific
token can be chosen by the server. For example an e-commerce site might have a
complex token like a capability. A news site might opt for a simple puzzle token.
For our experiments we use a simple hash cookie with the source and destination
address and a time stamp. To enable scavenging, client host listens on all ports
(promiscuous port listening). Also the client is set up for ASV. Clients wait for
an acknowledgement from the server. If none is received within a time-period the
clients send two requests. The sending rate doubles in each round. The server is
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Figure 7.1: Cheater with scavenging, IBQ and ASV on low-integrity traffic.

set up for ACK and DACK responses. The server also initiates IBQ to sort out the
requests it receives. Once a request is received and selected the server sends back
a cookie. If this was a spoofed source request it will backscatter to another host.
That host can scavenge the cookie.

7.2 Evaluations

In this section we simulate Cheater in ns2 to evaluate how well it combines ASV
and IBQ to defend DDoS attacks on the Internet. We also compare Cheater to
TVA and ASV to highlight the performance differences. Cheater is implemented
as discussed in Section 7.1. The clients are set up to send a request at regular
intervals and step-up accordingly if no reply is received. IBQ is implemented on
the server to filter the requests for attackers. We set up the queue parameters based
on the simulation topology. Also the clients listen in promiscuous port mode to
scavenge on spoofing attacker’s responses. The attackers are set to send requests
at a very high rate to disrupt the service. First, we describe our experimental setup
and methodology. Then we discuss the results.
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Figure 7.2: Sample experiment topology. Subnets = 32, subnet size is 256 (4
nodes shown for the clarity of the figure).

7.2.1 Topology Setup.

The Internet DDoS attacks are too large to be simulated in existing tools. If we
consider the AS-level network topology there are more than 25K ASes. Unfortu-
nately, existing simulation tools cannot scale to such a large number. In particular,
ns2 can handle topologies with 1000—2000 nodes. To address this issue, we
scale down the Internet topology into a size that can be handled by ns2 and at the
same time that will capture the relational properties of clients, routers and servers.
We analyzed the available Internet topologies such as Abilene [114], commer-
cial backbone maps and AS maps. We also consulted connectivity and subnets of
University of Illinois and University of Pennsylvania. Based on those we propose
a simulation topology of 1058 nodes: 1024 clients, 33 routers, and a destination
server. We propose 32 subnets, where we may very the subnet address size from
32 to 512, that is 25 to 29. We refer to this index as the spoofing index. By varying
the spoofing index we can vary the degree an attacker can use spoofed IP address.
The spoofing index is scaled to our topology. Figure 7.2 shows a trimmed topol-
ogy with 4 nodes per subnet.

We assign 5% of the link capacity to the low integrity cookie request channel.
All the links except the bottleneck are 200Mbps. All the links have 10ms of
delay. The bottleneck link from the edge router to the server is 2Gbps. Our
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study of the network shows that servers are closer to the backbone and sit on high
capacity links. On the Internet this link would be 40Gbps to 100Gbps. We scale
the bandwidth down for our much smaller number of end hosts. The Internet
links are highly over-provisioned with less then 10% utilization. So allocating the
request channel 5% is also over-allocation. We want to test Cheater in extreme
situations so we have chosen parameters values as extreme as ns2 would allow.

7.2.2 Attack and Defense Parameters

Attack

We have 10% of our hosts set as attacker agents. Total attack bandwidth ranges
from 100 to 700Mbps. These agents want to bombard the resources with packets
to queue and process. We simulate their sending rate at the higher end of the
request channel capacity. As discussed earlier, to avoid detection the attackers
spoof their source IP address within a spoofing index.

Cheater

For Cheater and ASV the edge core routers have a legacy setup. Any commercial
router can forward ASV and cheater packets. The sink link to the server is set up
for IBQ for Cheater. There are 1024 low-integrity clients for IBQ.

ASV

Clients, on the other hand just try to send a 50B request packet. If they do not
get an acknowledgement by a certain time, they resend their request, but twice
this time. This is done for 12 rounds before timing out. ASV2 is more aggressive
than ASV1. ASV1 and Cheater wait the same amount of time for a response from
server before sending out the next round of packets. ASV2 time outs faster. For
example, in Figure 7.4 ASV1 waits 200ms before sending out packets for the next
round, whereas ASV2 waits 80ms.
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TVA

For TVA 75% routers are setup to run TVA and H-PFQ [115, 116]. H-PFQ, not
being a stochastic algorithm, can require as many queues as path identifiers. In
our system this will be 32 ∗ 28 ≈ 8000 queues on each router that has TVA in-
stalled. Unfortunately, according to [55] this a number is higher than what would
be available to a similar size network. So we perform the TVA experiments in
two settings. One version uses as many queues as needed. This gives it a ad-
vantageous setup compared to Cheater and ASV. In the other version uses 1024
queues. For the later queue-system maximum queue space required per router is
approximately 200KB.
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Figure 7.3: Delay observed by legitimate clients with Cheater, two setups of TVA
and two setups of ASV when the attacks are sending a packet every 400µs. Attack
bandwidth 102Mbps

7.2.3 Performance compared to TVA and ASV

The first experiment compares Cheater to two existing methods, TVA and ASV.
Both variations of TVA and ASV are tested. We run this experiment for multiple
attack bandwidths starting from 102 Mbps to 714 Mbps. With the 102 Mbps rate
the attackers are bombarding the bottleneck link but they are not yet congesting
the edge links or intra-AS links. Each attacker is sending at 1 Mbps and the request
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Figure 7.4: Delay observed by legitimate clients with Cheater, two setups of TVA
and two setups of ASV when the attacks are sending a packet every 133µs. Attack
bandwidth 306Mbps
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Figure 7.5: Delay observed by legitimate clients with Cheater, two setups of TVA
and two setups of ASV when the attacks are sending a packet every 80µs. Attack
bandwidth 510Mbps.

channel bandwidth for these links are 10 Mbps. With 306 Mbps attack bandwidth
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Figure 7.6: Delay observed by legitimate clients with Cheater, two setups of TVA
and two setups of ASV when the attacks are sending a packet every 57µs. Attack
bandwidth 714Mbps.
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Figure 7.7: Bandwidth used by Legitimate clients in Cheater and ASV. Attack
bandwidth 306Mbps.

the attackers start to congest some of the intra-AS links. 510 Mbps and 714 Mbps
attack bandwidth congests all the links.
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Figure 7.8: Bandwidth used by Legitimate clients in Cheater and ASV. Attack
bandwidth 510Mbps.
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Figure 7.9: Bandwidth used by Legitimate clients in Cheater and ASV. Attack
bandwidth 714Mbps.

Figures 7.3, 7.4, 7.5 and 7.6 show the results. With Cheater all clients get a
response from the destination server within 2s for all the attack scenarios. TVA
and ASV have good performance at lower attack rates, but stall as attack starts to
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Figure 7.10: Delay caused by queuing in TVA1 and Cheater. TVA results are for
average 5%, 1% and 0.5% full queues.

congest the links. With both variations of TVA when the attack rate is more than
1Mbps they fail to provide service to a big percentage of legitimate users. For
example, in Figure 7.4 TVA1 can get only 90% of legitimate clients under 10s
and TVA2 only 65%. The spoofing that goes on at the subnets that do not install
TVA on routers stalls legitimate clients indefinitely in TVA1. In TVA2, routers
are not able to differentiate between a legitimate client and an attacker within a
subnet. This causes the attacker and legitimate client packets ending up in the
same queue. As a result a large portion of clients are deprived of the service. The
percentage of choked clients go up as the attack factor goes up. TVA performs
worse than Cheater with higher memory requirements for queues. ASV performs
better in terms of providing service to legitimate clients. In all attack scenarios
ASV1 serves all the legitimate clients in less than 3s and ASV2 in less than 2s.
But performance comes at cost. ASV2, the aggressive version of ASV, performs
similar to Cheater but with much higher network bandwidth usage.

Figures 7.3, 7.4, 7.5, and 7.6 show the difference of bandwidth usage between
Cheater and ASV at different attack rates. At attack bandwidth of 302Mbps,
for 90% of the legitimate clients, Cheater bandwidth is less than 15kbps. For
ASV2, the more aggressive ASV, it goes upto 472kbps and for the rest 10% of the
clients it is more than 80kbps. At attack bandwidth of 510Mbps, for 90% legiti-
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mate clients in Cheater bandwidth is less than 20kbps. Though the maximum is
200kbps only few legitimate clients reach that. For ASV2 it goes upto 790kbps
and for 65% clients it is more than 100kbps. At attack bandwidth of 714Mbps,
for 90% legitimate clients in Cheater bandwidth is less than 80kbps. Though the
maximum is 905kbps. For ASV2 it goes upto 14Mbps and for 32.5% clients it
is more than 400kbps. Cheater uses ASV as one of its protection steps. As it
is strengthened by other steps, legitimate clients get service faster. As a result
a legitimate client gets service without stepping up its sending rate to extreme
levels.

Figure 7.10 shows the difference of queueing overhead between Cheater and
TVA. Cheater only experiences 12.3ms of queuing delay if the queue on the bot-
tleneck link is full 100% all the time. TVA1 has queues on 75% of the routers
and the path length for end-to-end traffic is on average is 5. Total delay observed
for queueing with the queues being on average 5% full is 23.78ms. The delay
is 47.5ms if the queues are 10% full and 118.9ms for 25% full queues. TVA2
has queues only at a subnet level, so the path length is 4. But as this allows
more spoofing by attackers, the queues are more full. In our experiment topology
queueing delay is 26.2ms for 5% full queues, 52.4ms for 10% full queues and
131.1ms for 25% full queues. These are high delay on a 150ms long route. That
is why we observed among the clients who received service, many of them did not
get a response within 3s. Cheater uses IBQ only at the end host incurring minimal
queuing delay.

7.2.4 Cheater Defense-in-depth.

This set of experiments analyzes the effect each protection has in overall outcome
of Cheater. We separately run Cheater and its steps Scavenger, ASV and IBQ to
two different attack setting (Figure 7.11, 7.12). At 102Mbps attack rate all three
steps perform reasonably well. But none of them independently can provide ser-
vice to all the legitimate clients. Both Scavenger and ASV stall at 99% clients.
IBQ can provide service to 90% legitimate clients after 7s. At 514Mbps attack
rate performance of individual steps suffer. Scavenger can serve 93% legitimate
clients before timing out at 10s. In the same duration ASV serves 99% clients.
IBQ serves only 11% legitimate clients. At higher attack rates congestion takes
place all over the network. The defense steps individually cannot protect clients
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Figure 7.11: Comparing delay observed by legitimate clients with Cheater and the
Cheater steps working independently. Attack bandwidth 102Mbps.
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Figure 7.12: Comparing delay observed by legitimate clients with Cheater and the
Cheater steps working independently. Attack bandwidth 510Mbps.
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from flooding at all directions. ASV enables legitimate clients to overcome inter-
mediate congestion. IBQ provides defense close to the server. Scavenger, being
an opportunistic algorithm does not have guaranteed success. With cheater they
strengthen each others shortcomings and provide more efficient and less expensive
defense.
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8 Future Work and Conclusion

Summary. In conclusion, we provide an architecture for incentivizing investment
in security infrastructure (Figure 1.1). We design and analyze two systems based
on such incentives. In ASV, clients use bandwidth as a payment for service. Ex-
periments quantify the effectiveness of ASV against its non-adaptive counterparts
and illustrate that under highly variable-rate attacks, the performance of ASV ad-
justs quickly to prevailing attack parameters. ASV is a great tool available for
clients in an Internet monopoly situation.

IBQ is a more structured way for a competitive ISP to provide graded source au-
thentication and better service during a DDoS attack on a server. IBQ successfully
mitigates DDoS attacks between two participating domains. This work shows its
success for real-time traffic and TCP traffic. IBQ clients perform really well for
both TCP connectivity and throughput with the 2007 DDoS attack trace. Our tests
show that IBQ connectivity protection exceeds TVA and IBQ throughput matches
it when both are deployed only at the edge of the network. Such results make
IBQ suitable for early adoption. Optimizations can reduce overhead of IBQ; for
instance, our proposal for implementation with rate-limit filters greatly reduces
the queuing overhead.

IBQ is orthogonal to other techniques for differential queuing. For example,
real time traffic can be separated from other traffic and IBQ can be applied to
either type of traffic. Indeed, experiments in Section 6.1 show how VoIP can
perform without jitter or loss under DDoS attack using IBQ.

Cheater shows how the seemingly very different techniques such as ASV and
IBQ can complement each other and work for the defense of denial-of-service
attack. We look forward to other security infrastructure to define incentive struc-
tures for protection. It would be interesting to explore incentive-based options for
the Internet core. One driving force for them is the market and as larger content-
providers start providing service based on integrity they may be able to influence
the core providers.

89



Discussion. In future, it would be interesting to work out more details for prac-
tical impediments to Internet-wide use of IBQ. We proposed using a vouching and
receiving table to enable smaller ISPs to participate. A receiving table stores the
ASPATH that a packet would take to reach that AS. This is the inverse of ASPATH
used by BGP forwarding table where it contains a path from its domain to all other
domains. A receiving table enables to gateway to deduce spoofed packet based
on the wrong route it has taken. But vouching directly benefits a domain only if
there is a customer-provider relationship. Also asymmetry in Internet routes have
an effect on forward tables. It is important to know the extent of that effect. Even
after adding these capabilities there could be clients in parts of the network that
cannot get an integrity service or do not have adequate bandwidth.

In practical terms IBQ has some kinship to SPF, which we mentioned earlier.
The idea behind SPF is to provide a light-weight integrity service that can be used
by recipients of email as they wish: to inform a spam protection weighting, to
place a message in a low priority queue, or to drop the message. Thus SPF as an
integrity service can combined with other integrity services and processed by di-
verse recipients in diverse ways. One speculates along these lines about how well
one can unify some of these integrity sources or exploit new avenues for integrity
assessment. This could provide help with other problems we encountered, like
how to address variations in the spoofing index for large autonomous systems.

Future Directions. Distributed denial-of-service is a rich research area. It is
important to give a deeper look at this research and classify defenses according to
incentives provided for early adoption; put them in the incentive-based network
service architecture. There two particular areas that need more focus: incentive
model for the core network and efficient queueing. Proposals that provide solu-
tions at the edge of the network have a hard time handling a massive attack on the
core of the Internet. On the other hand, it is more challenging to find an incentive
for deployment of solutions at the core routers. They operate at a high frequency
and efficiency of the solution is important for them.

There has not been much overlap between the dense areas of denial-of-service
and quality-of-service research. Many times it is not clear how the theories of QoS
would scale with high rates of DDoS. We looked at the the limits of dynamism
in queueing for routers in Section 6.5. This is true for many DDoS defense pro-
tocols. A theoretical and empirical study of limits of the underlying queueing
mechanism in terms of scalability and state maintenance overhead in relationship
to high bandwidth traffic is needed.
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If the Internet stumbles, it will not be because we lack for technology,

vision, or motivation. It will be because we cannot set a direction and

march collectively into the future [117].

—A Brief History of the Internet, 2009.
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