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Abstract—Denial-of-service (DoS) attacks are considered within
the province of a shared channel model in which attack rates may
be large but are bounded and client request rates vary within fixed
bounds. In this setting, it is shown that clients can adapt effectively
to an attack by increasing their request rate based on timeout win-
dows to estimate attack rates. The server will be able to process
client requests with high probability while pruning out most of
the attack by selective random sampling. The protocol introduced
here, called Adaptive Selective Verification (ASV), is shown to use
bandwidth efficiently and does not require any server state or as-
sumptions about network congestion. The main results of the paper
are a formulation of optimal performance and a proof that ASV is
optimal.

Index Terms—Bandwidth, distributed denial of service (DDoS),
performance analysis, selective verification, shared channel model,
theorem.

I. INTRODUCTION

D ENIAL-OF-SERVICE (DoS) attacks are a growing
concern as they continue to pose an elevated threat to the

reliability of the Internet. Such attacks can occur at all levels in
the protocol stack and threaten both routers and hosts. Many
attacks aim to deplete scarce resources (e.g., CPU, memory,
disk) by generating illegitimate requests from one or many,
possibly compromised, attacker-controlled hosts [14], [17], [2],
[15], [13], [16]. The time required to process these requests
degrades the service to available clients to an unacceptable de-
gree or forces costly overprovisioning by the service provider.
Instances of potentially vulnerable services include IKE key
exchanges for gateway security association setup [9], legacy
and digitally signed DNS services [7], large file retrievals from
Web servers, and computationally expensive query processing
at database front ends.

A variety of countermeasures have been proposed to address
these problems. Currency-based mechanisms are ones in which
a server under attack demands some type of payment from
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clients in order to raise the bar for provoking work by the server.
Classic currency examples in this context are money [12] and
CPU cycles [22], [3], [6]. Our focus in this paper is on the use
of bandwidth as currency. In order to get service, the clients
are encouraged to spend more bandwidth by either sending
repeated requests from which the server selectively verifies
(processes) some requests [4], [8], [19] or sending dummy
bytes on a separate channel to enable a bandwidth auction [21].
Currency-based mechanisms impose a cost on the system,
so it is desirable to have adaptive countermeasures that are
deployed dynamically and proportionally to blunt attacks at
minimal cost. Auction-based bandwidth payments accomplish
this by an accounting system in which clients to build credit
by sending dummy bytes in congestion-controlled streams, and
the server periodically takes requests from clients that have
built the most credit. This may require significant server state
and is vulnerable to adversaries who are able to create network
congestion that causes legitimate clients to back off while
attackers ignore backoffs. Selective verification requires no
server state or congestion assumptions. However, the existing
state of the art does not provide any precisely analyzed strategy
for adaptation.

In this paper, we introduce Adaptive Selective Verifica-
tion (ASV), which is a distributed adaptive mechanism for
thwarting attackers’ efforts to deny service to legitimate clients
based on selective verification. Our scheme uses bandwidth as
currency, but the level of protection employed by the clients
dynamically adjusts to the current level of attack. At a high
level, the clients exponentially ramp up the number of requests
they send in consecutive time-windows, up to a threshold.
The server implements a reservoir-based random sampling to
effectively sample from a sequence of incoming packets using
bounded space. This enables adaptive bandwidth payments
with server state whose size remains small and constant regard-
less of the actions of the attacker. While the protocol itself is
both natural and simple, analyzing its performance turns out to
be a rather intricate task. A primary contribution of this work
is a novel theoretical analysis of ASV whereby we evaluate
its performance as compared to an “omniscient” protocol in
which all attack parameters are instantaneously made known
to all clients as well as the servers. Surprisingly, we show that
ASV closely approximates the performance of this omniscient
protocol. The performance is measured in terms of the success
probability of each client and the total bandwidth consumed
by the clients. We also perform an empirical evaluation of
the adaptive selective verification protocol with the aim of
understanding its performance in practice. Besides validating
our theoretical guarantees, our simulations show that under
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a time-varying attack, the performance of the ASV protocol
adjusts extremely quickly to the prevailing attack parameters.

II. RELATED WORK

Protection mechanisms that assure availability remain a
difficult challenge for the Internet. Attacks can come from
many sources in distributed DoS (DDoS) or from a single
source where spoofed addresses create the appearance of a
DDoS attack. They can occur at link, network, transport, or
application layers. They can be sudden and dramatic or gradual
and subtle. Intentional attacks, aimed at disabling services, are
easy to confuse with misconfiguration errors or heavy legiti-
mate use. Most network protocols were designed without DoS
protection and are vulnerable by design. This rich collection of
attack vectors combines with various options for what can be
changed to effect a countermeasure. For instance, is it possible
to involve the routers, or do solutions need to work exclusively
at hosts? Is it possible to change packet formats and protocols,
or must these be handled in a transparent manner? Can one
assume the attackers have limited knowledge of network state
(such as eavesdropping on packets), or must they be assumed to
have global knowledge? Solutions vary according to the types
of attacks envisioned and these options for countermeasures.
For instance, there are trace-back methods [18] to find attackers
so action can be taken to cut them off and filter mechanisms to
remove attack traffic from the network [11]. There are capa-
bility-based mechanisms to allow parties that can prove their
legitimacy to gain priority or to limit the impact of unproven
parties [10], [23], [24]. Moreover, there are currency-based
schemes that aim to limit attackers by making them sacrifice
a valuable resource like money or CPU cycles in order to get
access to server resources [12], [22], [6], [3].

Perhaps the most counterintuitive DoS countermeasure
strategy is the use of bandwidth as payment. In such a scheme,
clients use additional bandwidth to get access. The idea is
that attackers are using all of the bandwidth available to them
(or the maximum bandwidth they can afford to use without
being detected by other mechanisms) to execute an attack,
whereas legitimate clients are using only the resources they
require to accomplish their less-demanding objectives. Hence,
legitimate clients have bandwidth to spare and can use this
fact to differentiate themselves from attackers. This strategy
was introduced in [8] in the context of authenticated broadcast
using selective verification and extended to general Internet
protocols in [21] using bandwidth auctions. Selective veri-
fication allows clients to send extra requests and the server
samples from these requests probabilistically. This technique
is very effective in diminishing the effects of a DoS attack if a
sufficient level of client redundancy is employed. It is usable
in unidirectional communications, requires no server state, and
makes no assumptions about network congestion. However,
extra client requests are a cost that should ideally be avoided
when there is no attack and used proportionately to the strength
of attack when there is one. The aim of this paper is to do this
by surrendering unidirectional communication capabilities and
developing an acknowledgment-based adaptive technique.

There are several works that address adaptive measures for
DoS protection in other contexts. Zou et al. [26] provide ideas

that are effective for filter schemes, although it is unclear how
they can be applied to bandwidth payments. Srivastsa et al. [20]
show how to use information available in the application layer to
identify and differentiate between low- and high-utility clients
to provide better service to more valuable customers. Their solu-
tion requires more feedback from the application than selective
verification and is more applicable to scenarios where the clients
have a history of interactions with the server. Wang et al. [22]
show how to provide adaptation for client puzzles. Because of
the nature of the client puzzle schemes, where the cost factor of
the defense on the server is minimal, their proposal mainly fo-
cuses on cost minimization for the clients. However bandwidth
payment schemes must account for costs to the server and net-
work as well as the client. Finally, Yau et al. [25] propose an
adaptive solution for installing router throttles in the network.
The main focus of their approach is network flooding attacks
and router-based distributed defense against them, but it shares
many of the same high-level adaptation concerns as bandwidth
payment.

III. SETTING

Consider the following one-round client–server protocol. The
first step of the protocol is an REQ packet from a client to the
server . In response, the server sends back an ACK to the
client. Each client employs a timeout window of duration de-
termined by the worst-case expected round-trip delay between
the clients and the server: If after transmission of an REQ, a
client does not receive an ACK within seconds, he assumes
that the attempt has failed. The parameter is known to the
clients as well as the server.

It will be convenient to partition time into a sequence of win-
dows , each of duration . We suppose that the
server can process requests at a mean rate of REQ packets
per second so that, in any window, the mean number of re-
quests that it can process is . In any given window , new
clients arrive at a rate of clients per second.
The client request factor determines the
fraction of the server’s (computational) bandwidth that is re-
quired to process new clients in the window . We suppose
that the client request factors are uniformly bounded above by

, for some fixed in the unit interval.
We will assume that a diffuse, distributed, denial-of-service

attack on the server takes the form of a potentially time-
varying flood of spurious REQ packets aimed at overwhelming
the server’s capacity to process new REQs. We suppose that,
in any given window , the attack sends spurious REQs
at a rate of packets per second. The attack
factor determines the excess bandwidth
that will be required of the server to process the illegitimate re-
quests in window . In keeping with the guiding philosophy
of the shared channel model that was articulated by the authors
to model DoS attacks [8], we assume that the attack factors are
uniformly bounded, , for some fixed ,
though the upper bound on the attack factors may be very
large. Clearly, when , the attack overwhelms the
server’s capacity to process all requests unless there is a mech-
anism to efficiently handle the attack packets. Our interest is in
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the case where and the attack can occur on a scale
much larger than the available server bandwidth.

In order to focus on the DDoS attack at the receiver, we
idealize the situation and assume that REQ and ACK packets
are transmitted instantaneously, the round-trip delay occasioned
solely by processing time at the server, and that no REQ or ACK
packets are lost in transmission. Packet drops at the server are
then occasioned only because the arriving request stream from
clients and attackers combined exceeds the server’s computa-
tional bandwidth. Thus, if , then it cannot be
guaranteed that an individual client’s REQ will be processed by
the server. If , it is in principle then possible to almost
completely throttle the clients of service and effect a successful
DoS attack.

On Notation: As a default convention, when the base is not
explicitly specified, logarithms are to be assumed to be to the
Napier or natural base ; there are a few places, especially in
the proof of Theorem 8, where base 2 is more natural, but in
these cases we explicitly specify the base.

IV. OMNISCIENT PROTOCOL

Consider any timeout window . Suppose that
and denote the client request factor

and the attack factor, respectively, over the window . If clients
and the server clairvoyantly know and , then it is relatively
easy for them to thwart the DDoS attack by having the clients
send multiple identical requests, with the server implementing
a random sampling scheme for processing these requests. Infor-
mally speaking, if the server samples incoming requests with
probability , then a legitimate client succeeds with high prob-
ability by sending copies of any request. On the other
hand, requests sent by an attacker now reach the server at a rate
that is reduced by a factor of . Thus, when is chosen to be
much smaller than 1, it significantly cuts down the effective at-
tack rate.

Of course, the assumption that clients and the server know
the client request factor and the current attack rate at all times
is rather unrealistic. However, this simple setting is worth an-
alyzing as it provides a performance benchmark for protocols
operating under more realistic assumptions.

OMNISCIENT CLIENT PROTOCOL: Given and
, each new client in a given window trans-

mits copies of the REQ packet in that window.
Clients who do not receive an ACK from the server within

seconds leave never to return.
OMNISCIENT SERVER PROTOCOL: Given and , the

server accepts an arriving REQ packet in the window ,
independently of other arriving packets, with probability

and discards it with probability
. The server sends out an ACK for each accepted REQ.

For comparative purposes, we begin by noting two immediate
consequences of the protocol. We first ensure that the server is
operating within its rated capacity.

Theorem 1: Server utilization in the omniscient protocol is
within its rated mean capacity of packets per second.

Proof: Consider any given window . The number of
attack packets received in this window is , where

is assumed known to the server. For the given client

request factor , the total number of clients ar-
riving during this window is , with each client transmitting

REQs. The total number of REQs received by the server
during this window is hence given by

Accordingly, the expected number of packets processed by the
server in window is given by so that the server
processes REQs within its rated mean capacity.

By design, the bandwidth required by the clients expands to
match the attack.

Theorem 2: In any given window with client request factor
and attack factor , the band-

width consumed by the clients is bounded between and
REQs.

Proof: The total number of REQs transmitted by clients in
window is . As , the stated
conclusion follows.

It follows that, in the domain and of interest, the
cumulative transmission bandwidth consumed by client REQs
in the omniscient client–server protocol is approximately
packets per second.

The next two results show that the protocol works as adver-
tised by ensuring that each client gets connected with high prob-
ability provided the client request factor does not get too large.

Theorem 3: Suppose is a given confidence param-
eter. If , then the probability that a given
client has an REQ accepted is at least under the omniscient
client–server protocol.

Proof: Consider any window with client request factor
and attack factor . We may as well sup-

pose that the acceptance probability as else the REQ from
each client is guaranteed to be accepted.

Now, each client in window transmits REQs in
the window. The probability that each of these REQs is dis-
carded by the server is given by

(1)

in view of the elementary inequality . As the func-
tion increases monotonically with for

, it follows that

if .
The choice , for instance, yields the standard 95%
confidence interval: Any given client has an REQ accepted with
confidence at least 95% if .

Thus, for all sufficiently small client request factors ,
the omniscient client–server DDoS protocol accepts REQs from
all but a small fraction of at most of all clients at a cost in
transmission bandwidth of (about) client packets per second.
Somewhat sharper results can be stated asymptotically in the
limit of large server bandwidths.



718 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 3, JUNE 2012

Theorem 4: Suppose and let be any fixed real con-
stant. Suppose further that, in any given window , the attack
factor satisfies and the client request factor
satisfies

(2)

Let denote the number of clients that are rejected
by the server in the window . Then, under the omni-
scient client–server protocol, the number of rejected clients

converges in law to the Poisson distribution with
mean . More specifically, for every nonnegative integer

as , and, a fortiori, the probability that no new clients
are rejected in a given window tends asymptotically to .

Proof: The number of rejected clients is binomially
distributed and corresponds to the number of successes obtained
in tosses of a coin whose success probability is

. In view of the given conditions on and which ensure
that , we may refine the estimate given in (1) to obtain
the sharper result

asymptotically by Taylor’s formula for the logarithm. As
, it follows that . But with given asymptot-

ically by (2), we have as , whence
the expected number of clients rejected in the window satisfies

. The claimed result follows in view of the clas-
sical convergence of the binomial to the Poisson.

The fine order of infinity manifested in the expression (2)
is worthy of note: the first term is dominant (a
phase transition), while the asymptotically emergent behavior
for the blocking probability is squirrelled away within the con-
stant in the second subdominant term. Roughly speaking, any

less than will result in almost all clients being
accepted; and any larger than will result in a
significant fraction of rejections.

V. ADAPTIVE SELECTIVE VERIFICATION PROTOCOL

The assumption in the omniscient client–server protocol that
clients are continuously aware of the client request factor and
the attack factor current in each window is clearly unrealistic,
especially given the distributed and—until connection is estab-
lished—as yet unknown location and legitimacy of the clients
and, more critically, the ability of the attack to vary rates con-
tinuously and unpredictably. Designing a protocol for the worst-
case attack is, of course, possible, but unnecessarily congests the
network during periods when the attack is quiescent or at low
levels. Our goal, hence, is to design a client–server DDoS pro-
tocol that adapts to the behavior of the attack without clients
having access to explicit current information about the nature
and intensity of the attack.

In view of our experience with the omniscient protocol, on the
clientsideweareledtoseekareplicatingprotocolwhere therepli-
cation rate used by the clients should ideally be proportional to
the current attack factor (and inversely proportional to the current
request factor though this is likely to be under better regulation).
While the client doesnot have direct access to this information, he
can infer the state of the attack indirectly based on whether he re-
ceives an ACK or not in response to REQ(s) sent in the previous
window. The failure to receive an ACK in response to transmitted
REQ(s) can be construed provisionally as evidence of an attack in
progress, and the client can then ramp up his replication rate in an
effort to counter current attack conditions. Experience with dou-
bling algorithms (or, on the flip side, exponential backoff in TCP
protocols) suggests that it would be profitable to have the replica-
tionrategrowexponentiallywithrepeatedconnectionfailures(up
to a worst-case maximum).

On the server side, a more detailed picture about current con-
ditions can be directly obtained from the ensemble of packets ar-
riving in each timeout window. The server can now very simply
maintain the advertised mean service rate by reservoir sam-
pling to generate a random sample of the sequentially arriving
packets. The randomized sampling of incoming packets helps
obviate timing attacks or the exercise of other overt control by
the adversary over the decision-making process at the server,
while the adaptive changes in sampling rates that reservoir sam-
pling accords allows the server to respond to changes in attack
factors across windows while staying within the budgeted mean
service bandwidth.

These considerations lead to our ASV protocol.
ASV CLIENT PROTOCOL: Given , and ,

after each unsuccessful attempt, the protocol adaptively in-
creases the number of REQs sent in the succeeding timeout
window up to a maximum number specified by the given
parameters.
C1. [Initialize replication count.] Set and

.
C2. [Double replication.] Send REQ packets to the

server.
C3. [Timeout.] If no ACK packet is received within

time units, set ; if an ACK packet is
received, exit the initiation protocol and proceed to
the next phase of communication.

C4. [Iterate till exit condition.] If , go back to
step C2; else exit without communicating with the
server.

ASV SERVER PROTOCOL: The server performs reser-
voir sampling on incoming REQ packets during each
timeout window. Given and , the server processes a
random subset of the arriving REQs at a mean rate not
exceeding packets per second.

S1. [Initialize window count.] Set .
S2. [Form reservoir.] Store the first REQ packets

arriving in window in a reservoir. If timeout
expires without filling the reservoir, go to step S4.
Else, set REQ packet count .

S3. [Randomly sample incoming packets.] If there is an
incoming REQ numbered , accept it for placement
into the reservoir with probability and dis-
card it with probability . If the REQ is
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accepted for placement in the reservoir, discard an
REQ from the reservoir uniformly at random and re-
place it with the accepted packet. Set and
iterate until the timeout window expires.

S4. [Timeout.] Accept the packets in the reservoir and
send out an ACK for each accepted REQ.

S5. [Iterate.] Empty the reservoir, set , and
go back to step S2.

We call the quantity

the retrial span of a client. In the event that the attack is launched
at maximum severity, a client can replicate packets over a pe-
riod of windows until he achieves a maximum replication of

matched to the peak attack.
We have streamlined the protocols to focus on the critical

ideas. In particular, we adopt the convenient fiction that step S4
in the server protocol occurs instantaneously. Thus, there is no
gap in time between the expiration of a timeout window and the
identification of the random subset of packets that is accepted
by the server over that window.

Reservoir sampling dates to Fan et al. [5] and permits a se-
quential random selection of arriving packets. Specializing to
our setting, we obtain the following lemma.

Lemma 1: If REQ packets arrive in a given timeout
window, then each packet is accepted with probability

and discarded with probability ,
independently of the other packets.

The expected number of accepted REQs in a given
window during which requests were received is hence

, and as this is bounded by , we obtain the following
theorem.

Theorem 5: Server utilization in the adaptive selection pro-
tocol is within its rated mean capacity of packets per second.

A. Blocking Probabilities

A first step in the analysis of the Adaptive Selective Verifica-
tion Protocol is to consider the attrition rate of clients. We begin
by showing that each client succeeds in establishing a connec-
tion with essentially the same confidence guarantee as in the
omniscient case at the expense of some added delay.

Theorem 6: Suppose is a given confidence pa-
rameter. If , then under
the ASV protocol, any given client will establish a connection
with the server within seconds
with probability at least ; the client is turned away with
probability no larger than .

The nuisance factor in the upper bound accounts
for the correction due to integer roundoff; in the case of interest
where is large, it is essentially negligible. As will be clear
from the proof, the upper bound on the client request rate can be
improved slightly at the expense of a slightly more inscrutable
condition.

We say that a client is in generation with respect to
window if he initiated his protocol windows in advance of

. We begin with two simple observations.
Lemma 2 (Traffic Bound): The total number of REQs, legiti-

mate and illegitimate, received by the server during any window

can be bounded by

(3)

Proof: Consider any window . Client requests in
window may then arise from clients in generations

, with any client in generation submitting REQs
during . As the number of generation clients does not ex-
ceed , it follows that the number of generation client
REQs received by the server during window cannot exceed

, while the number of attack packets received during
cannot be in excess of . It follows that the total

number of REQs, both legitimate and illegitimate, received by
the server during window is bounded by

via the standard geometric summation. As
for some , we have

, and the claimed result follows.
The uniform bound on the number of packets that can be re-

ceived during any window allows us to bound the probability
that a client repeatedly fails to establish a connection with the
server.

Lemma 3 (Blocking Probability): Suppose .
Then, the probability that a client in generation with re-
spect to a window fails to establish a connection with the
server by the end of is bounded by

for each .
Proof: The probability that is blocked through

successive windows is bounded above by the probability
that he is blocked in conditioned on being blocked in the
previous windows . However,
a surviving generation client of will transmit REQs in

, and each of these REQs is dropped with probability
. Accordingly

by another deployment of the inequality .
The proof of Theorem 6 is now in hand. Reusing notation,

write for the probability that fails to make a connec-
tion and leaves the protocol—this is the blocking probability for
client . Setting in the Blocking Probability Lemma and
observing that , we obtain

(4)

as . Theorem 6 follows.
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Tighter asymptotic results may be shown along the lines of
Theorem 4 with essentially the same blocking probability rates.
We shall content ourselves with a one-way result indicative of
what is available.

Theorem 7: Let denote the number of new
clients arriving in window who fail to make a connection
with the server and eventually leave the protocol. If

, then as .
Proof: Let be the indicator for the event that client

arriving during window fails to make a connection with
the server and eventually leaves. The number of connec-
tion failures for clients newly arrived in window is then

as there are new arrivals

during window . As by (4),
by additivity of expectation, .
In view of (4), if , then is
bounded above by .
As is nonnegative and integer-valued, we have

.

B. Bandwidth Considerations

The proof of Lemma 2 shows that if the attack factor is
maintained at , then the cumulative mean transmission
bandwidth consumed by client REQs is packets
per second. The estimate is rather pessimistic, however, and
we anticipate that the adaptive protocol does much better in
periods of lulls in attack.

The key idea is provided by the Blocking Probability Lemma,
which shows that the probability that a client is blocked de-
creases very rapidly at each successive generation. Indeed, for
moderate attacks, any given client is likely to be accepted by
the server well before the end of his retrial span . Indeed, he is
likely to form a connection within gen-
erations. (Bear in mind that so that .)
This suggests that there is relatively little client traffic build up
due to unconsummated connections near the end of the retrial
span. It follows that the upper bound on traffic given by (3)
may be much too generous in periods where attack rates are low.
We will show here that, indeed, the transmission bandwidth re-
quired by clients in the adaptive protocol is essentially of the
same order as that commandeered in the omniscient protocol.

We formalize the intuition that client requests are typically
accepted relatively quickly by considering successive windows
forming generational slices of width

windows. For later reference, we observe that

(5)

and, in particular, .
For any window , we call the swath of

windows preceding it the segment preceding and denote it
. It will suffice to suppose that

to ensure that and . Again, for later reference, we
note that

and, in particular, that

if (6)

Finally, we write to denote the largest attack
factor of any window in the segment . (To obviate trivi-
alities, we will, at need, replace by the larger of 1 and .) We
are now ready for the main result.

Theorem 8: Suppose and
. Then, the cumulative mean trans-

mission bandwidth consumed by client REQs in window
under the adaptive client–server protocol is bounded above by

In the asymptotic regime where and increases
unboundedly with , the upper bound becomes .

Corollary 1: Under the conditions of Theorem 8, the
expected bandwidth consumed by clients in the adaptive
client–server protocol is larger than the bandwidth con-
sumed by the omniscient selective verification protocol
only by a multiplicative factor of order not exceeding

.
Remarks:

1) If the attack factor in a given window is , omniscient
clients aware of both the current attack and request factors
will occupy a bandwidth of REQs. The adaptive pro-
tocol achieves essentially this order working from tabula
rasa with no specific state knowledge.

2) It is easy to verify that for the specified
ranges of parameters, whence the width of the generational
slices satisfies over the entire specified range.

3) We have opted for conservative bounds to keep the proof as
uncluttered as possible. It will be apparent that the attack
and client request factors may be expanded at the cost of
increased algebraic tedium.

4) The adaptive scheme can exponentially improve bandwidth
consumption over a nonadaptive approach that stays in a
high protection mode at all times.

An elementary preliminary result smooths the way.
Lemma 4: Suppose is a nonnegative integer and

. If , then .
Proof: By the binomial theorem

(7)

The ratio of the absolute values of successive terms in the alter-
nating sum is given by
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Accordingly, if, and only if,

or, equivalently, . As

, it follows that for ,

and consequently the terms in the alternating sum on the right
of (7) decrease monotonically in absolute value. Truncating the
alternating series at any point hence yields an error whose sign
is that of the first neglected term. It follows a fortiori that

, the first neglected term being positive.

Proof of Theorem 8: We will suppress integer roundoff fac-
tors to keep the burgeoning notation compact. In the asymptotic
domain, these factors become negligible.

1) Notation and Proof Structure: We may assume, without
loss of generality, that the windows in the segment are
numbered . To estimate the accumulated
traffic in window , we may conservatively consider clients
arriving in the segment windows for together
with those originating in windows , where can
range over at most the retrial span .

While the nominal number of active generations in play for
is given conservatively by the retrial span ,

we may anticipate that, starting from , as one progresses
down the segment toward , in any target window suf-
ficiently far along in the segment, generations beyond

will have been absorbed with high probability. The key idea
in the proof is a successive refinement of active generations in
play: Starting from the nominal generations at , we recur-
sively prune the number of unabsorbed generations seen by each
window as we progress down the segment so that by the time we
reach , the target window sees only active generations.

It will be convenient to introduce notation for the geometri-
cally decreasing sequence

Starting from , as we progress along the segment, we identify
the sequence of marker windows

with separations decreasing exponentially along the segment.
The nominal number of active generations seen by the initial
marker window is given by

so that denotes the generational “excess” that we seek to
prune. We begin by showing that the ancestral generations,

, of contribute a negligible amount
of traffic to the next marker window , and thence to all
subsequent marker windows. The number of effectively active
generations seen by the marker window is hence reduced
from the nominal value to the value

Fig. 1. Pictorial view of the sequential culling of generations. The � earliest
generations in the � active generations of the marker window� are culled,
leaving the marker window � , which is � windows to the right of
� , with a smaller number � of active generations.

The induction step consists in showing that given

active generations for marker window , the ancestral
generations, , of contribute a negligible
amount of traffic to the next marker window , and thence
to all subsequent marker windows. The marker window
then effectively sees only

active generations, and the excess generations are culled expo-
nentially fast. The process is sketched in Fig. 1.

Let be the unique integer for which and ,
that is to say, is the largest integer for which . It follows
that

(8)

in consequence of which, asymptotically in

as under the condi-
tions of the theorem. Thus, after at most reductive stages,
the number of active generations seen by the marker window

is no more than with all preceding
generations absorbed with high probability. (Edge effects are
accommodated in the final stage by adjusting the value of
as necessary.) As

all subsequent windows with
in the segment will each see an effective number of active

generations .
2) Induction Base: The analysis for the first stage of reduc-

tion provides a model for the general recurrence step. We begin
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Fig. 2. To move from the first marker window� to the next marker window

� , we traverse the first � windows in the segment sequentially. We
proceed recursively: For � � � � � � �, we successively estimate the traffic

in the �th window that originates in the generational slice of the marker
window � .

accordingly by a consideration of the generations of
the marker window . Let denote the amount of
traffic in the marker window originating in the
ancestral generations, , of .

To estimate , we begin by partitioning windows in
the retrial span of the initial marker window into
generational slices where, for

identifies the indices of the windows of clients whose gen-
erations range from to with
respect to . The relation of the generational slices to the win-
dows in the segment is sketched in Fig. 2.

Begin by considering the generational slice

of the furthest generations with respect to window . These
are the windows comprising the generations at the end of the
retrial span of the protocol for . Let the random variable
denote the number of REQ packets sent in from clients ar-
riving in the generational slice . In view of the Blocking Prob-
ability Lemma, we may bound the expected value of by

as and
. Identifying , we

may write the bound more compactly in the form

Differentiation shows that the function
decreases monotonically with for or, equiva-
lently, . It follows that the bound on the right
decreases monotonically as decreases over the entire range
of values for specified in the theorem (see Remark 2 fol-
lowing the statement of the theorem).

We constrain so that or, equivalently,
. Simple estimates suffice here: Tthese

bounds are automatically achieved if we select
and as the interval is

contained in the interval and is hence in the monotonic
range of and simple computations serve to verify that

for . (As , these conditions are equiv-
alent to the stated condition .)
It follows then that, under the conditions of the theorem, we have

Markov’s inequality now allows us to limit the excursions
of quite sharply. With denoting the
segment swath width as before

in view of the upper bound (6) on . The probability of a large
excursion for decays to zero satisfactorily fast.

For , let now denote the number of REQ
packets sent in by clients who arrive in the generational
slice . Let denote the “bad” event that . We
work inductively.

Conditioned on the event that none of the bad events
have occurred, the total client traffic in orig-

inating in the generational slices is bounded
by

(9)

On the other hand, the client traffic in that originates from
clients in generations is, by the usual
geometric summation, no more than . As
is part of the segment, the attack factor in the window is no larger
than . Consequently, conditioned on none of the bad events

occurring, the total traffic in window may be
bounded by

(10)

However, as , we have

whence we observe that

Consequently, the conditional traffic seen in window is
bounded by

(11)
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where, if necessary, we replace by the larger of 1 and to
eliminate trivial cases from consideration. As window is sit-
uated windows to the right of , with respect to the gen-
eration number of the left edge of the generational slice is

, and the right edge of the genera-
tional slice with respect to is

. The Blocking Probability Lemma tells us
then that the conditional expected value of given that none
of the bad events occur may be bounded by

However, the quantity in curly brackets on the right is certainly
no larger than , which, in our esti-
mate of , we have already seen is bounded above by
under the given conditions on and . It follows that

Markov’s inequality for conditional probabilities hence yields

On the other hand, the probability that any of the bad events
occur is given by

Simple bounds suffice to bound the right-hand side, and we may
bound from above by the string of
inequalities

(12)

as , the final step
following because for the given range of . We now
claim that the bound

(13)

holds for all . Indeed, if , then
and

so that equality in the claimed bound holds for trivial reasons.
If , then and

and the bound is verified in this range of
as well. Finally, if , temporarily set

, and
. Simple

bounds suffice again: We have

and it follows that . Differentiation
shows that decreases monotonically for

and a fortiori also for the range
specified in the theorem. Numerical com-

putation now shows that for ,
and so for , we have . Lemma 4 is
hence in force, and the claimed result is proved for ,
and hence for all .

In view of (12) and (13), we obtain the compact bound

For future reference, let be the event that one or more
of the inequalities is violated for the windows
preceding the marker window up to (and including) the
previous marker window . Thus,

. The superscript in denotes that this event is asso-
ciated with the inductive step for marker window . As the
previous inequality holds for each , specializing in particular to
the case shows that

so that the probability of occurrence of one or more bad events
is and vanishes asymptotically.

To return to the analysis, if any of the bad events
occurs, we can hence afford to be cavalier and

bound the client traffic in window via the Traffic Bound
Lemma. Thus, by conditioning on the two cases, the expected
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client traffic in window that originates in generational
slice may be bounded by

for each and .
Thus, the contribution of each of the generational slices

to client traffic is essentially extinguished by window . In-
deed, the total expected contribution to traffic in the marker
window from clients in the generational slices

, that is to say, the traffic originating in the an-
cestral generations, , of the previous marker
window , may now be bounded by

The ancestral generations of the previous marker
window hence contribute asymptotically small amounts
of traffic to . The effective number of active generations
for the marker window has now been reduced from the
nominal number corresponding to the retrial
span of the protocol to

We may now begin anew with the marker window as the
new origin and consider the contribution to the traffic in the
next marker window that originates in the ancestral
generations, , of the marker window .
The stage is set for an induction.

3) Induction Step: The analysis for the base case may now
be systematically reproduced, stage by stage, with minor modi-
fications: At the th stage, the th marker window serves
as the new origin and effectively sees only active
generations. Let denote the contribution to the traffic
in the marker window that originates in the ances-
tral generations, , of the previous marker
window .

As before, the ancestral generations, ,
of are partitioned into generational slices, each of
width . Reusing notation, now denotes the traffic due to the
th generational slice in the th window following ; as

before, is the “bad” event that ; and is
the event that one or more of the inequalities is
violated for the windows preceding the marker window
up to (and including) the previous marker window . As
induction hypothesis we suppose that, for each

For the estimate for the total traffic in window
corresponding to (10), we now also have to take into account
the contribution due to the earlier ancestral slices carried for-
ward from the earlier marker windows. By conditioning now
on the event that none of
occurs, we guarantee that none of the ancestral generational
slices contributes an excessive amount. With this conditioning
then, corresponding to the estimate (9) the total client traffic in

originating from all previous ancestral slices is
bounded by

(as ) the upper bound unchanged from (9). The
expression corresponding to the conditional traffic bound (11)
hence becomes

With the additional conditioning on the joint occurrence of
, the analysis for the base case now goes

through with little more than the replacement of and
by and , respectively, and and by and ,
respectively, to yield

This completes the induction.
4) Steady-State Bandwidth Consumption in the Segment:

The expected contribution to the marker window due to
the cumulative contributions from the ancestral generations,

, of for each exhausts all
generations beyond of . The total expected contribu-
tion from these ancestral generations may be bounded by

where we can afford to crudely bound the upper estimate for
in (8) by . Thus, the entire expected contribu-
tion to the traffic in due to generations
beyond is asymptotically. It only remains to estimate
the traffic from the remaining generations. However, this, by
geometric summation, is no larger than
(the extra factor of 2 in the upper bound reintroduced here to
take into account integer roundoff in the exponent).

By shifting all windows right one step at a time, it is clear that
the analysis holds for all windows with

in the segment. Moreover, a fortiori, the expected client
traffic in the target window is bounded above by

as claimed.

VI. EXTENSIONS

We now turn to mechanisms by which the basic adaptive pro-
tocol may be extended to cover: 1) the possibility of an unre-
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liable server and network; and 2) a more flexible regulation of
bandwidth by server and client.

If a server being protected by ASV goes down, the basic
ASV protocol would escalate a flood of requests from the
clients, which would only aggravate the situation. A simple
remedy is for the server to provide a special type of ACK,
Drop ACKs (DACKs) at step S3 in Section V, for every request
it receives but is not able to process. DACKs serve as an
encouragement mechanism that communicates a “please retry
more aggressively” message to the clients. A client in a given
round (operational timeout window) establishes connection
upon receipt of an ACK; else, if he receives any DACK in
time units, he moves on to the next round; failing these two
possibilities, he quits. Smurf-type attacks [1] can be inhibited
by using nonces (as a weak authenticator) in REQs and DACKs.

A slight modification of the client protocol can also handle
lossy networks in which REQs or (D)ACKs are dropped. If no
DACK is received for consecutive packets sent by the client,
he quits. This check is only performed at the beginning of each
round. Therefore, if the path from a client to the server experi-
ences a drop rate of , this modification reduces the probability
of a client incorrectly quitting to the order of .

Some network situations may also call for a more flexible
allocation of bandwidth under ASV. For instance, if a number
of colocated services share bandwidth, it may not be econom-
ical for one service to consume too much bandwidth just to
prevent DoS attacks. In another instance, a server may wish
to reduce ASV bandwidth consumption in favor of having
more bandwidth available for a period of heavy bulk transfers.
Concerns of this type may be addressed by having the server
inform the clients not to send too much traffic by providing
clients with a new retrial span when it is desired that the
clients reduce bandwidth consumption. In the general setting,
the server computes a maximum bandwidth consumption and
client request success probability pair for each
retrial span and, for a given parameter vector of system pri-
orities , selects a retrial span to maximize a utility function,

. On the client side, on receipt
of a (maximum) retrial span from the server, clients can use
a client cost–benefit analysis inspired by [22] to select a retrial
span within the permitted range by optimizing a client valuation
function based on the nondecreasing success function
(which the client can obtain from the server through DACKs).

VII. EXPERIMENTAL EVALUATION

The simulations described in this section test the full adap-
tive protocol in settings reflecting real world situations. We:
1) verify our analytical predictions by evaluating the effective-
ness of the adaptive scheme vis à vis nonadaptive counterparts;
2) study ASV’s behavior in the presence of network congestion;
and 3) consider its effect on TCP-based cross traffic.

Simulation Setup: The simulations were performed using the
NS-2 network simulator for the topology shown in Fig. 3. The
topology is dynamic with clients arriving at a fixed rate of 50
per second, each arriving client needing to get one REQ served.
Varying attack rates are simulated by having the number of at-
tackers vary between 1 and 100, each attacker constantly issuing
400 REQs/s. The attack rate hence ranges between 400 and

Fig. 3. Simulation topology.

40 000 REQs/s. We set the number of requests that the server
can process in a second to so that, in our notation,

and . For the topology, we fix
RTT at 60 ms and to 0.4 s. All communications are over UDP
unless otherwise noted, REQs are 200 B, DACKs and ACKs are
50 and 200 B, respectively. The capacity of the bottleneck link
is overprovisioned to 100 Mb/s to avoid any network conges-
tion in all the experiments except those where we evaluate the
performance of ASV in a lossy network. Arrival times of clients
and attackers and interpacket intervals for attackers are random-
ized to avoid creating undesirable deterministic patterns.

Comparing Adaptive and Nonadaptive: For the solid line
topology in Fig. 3, clients send one or more REQs every

seconds until either a connection is established with the re-
ceipt of an ACK (success) or timeout expires after seconds
(failure). In this setting, we compare ASV with the following
two static client behaviors.

• Naive: Send one REQ every seconds.
• Aggressive: Send REQs every T seconds.

For these experiments, we chose . Each experiment is
performed with one type of client, varying attack rates from 1
to 100 attackers, and a fixed average attack period of 30 s, which
proves to be sufficiently long for the system to stabilize. Com-
parative results for the three distinct client behaviors are shown
in Figs. 4–6.

As predicted analytically, the experimental results provide
clear evidence for the effectiveness of the adaptation strategy
in raising the costs (bandwidth) in accordance with the attack
rate. ASV provides clear benefits in success ratios and client
bandwidth consumption over the high protection Aggressive
strategy with concomitant service latencies of at most 2.3 s for
the fiercest attacks. Given ASV’s marked benefits in success
ratios and bandwidth consumption, these worst-case latencies
for severe attacks may be considered acceptable. At the other
extreme, Naive clients, as expected, suffer serious failure rates,
again underscoring the effectiveness of ASV. The results also
quantify the overhead of ASV—a factor of 16 in terms of
bandwidth and 1.5 in terms of service latency in the worst
attack scenarios.

Variable Rate Attacks: In each of the previous experiments,
the attack rate was fixed during the simulation. We now explore
the effect of varying attack rates on clients implementing ASV.
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Fig. 4. Ratio of the successful clients to all clients (1500 in 30 s) versus attack
rate.

Fig. 5. Average time to service (for clients that succeed in getting service)
versus attack rate.

In the first set of experiments, we subject the system to pulse at-
tacks where we observe the system’s response to a 5-s no-attack
period, followed by 10 s of a heavy (but fixed rate) attack, fol-
lowed by another 10 s with no attack. We performed this exper-
iment for 25, 50, and 100 attackers. While we omit the detailed
results here in view of space considerations, the most important
observed outcome was that in all three scenarios, in less than
2 s the ASV implementation fully adapts itself to attack con-
ditions with the success ratio, time to service, and bandwidth
consumption numbers converging to the corresponding values
in Figs. 4–6. In addition, after the attack stops, the system re-
laxes to its pre-attack conditions in less than 2 s.

To better understand the effect of highly variable rate attacks,
we also simulated 45 s of variable rate attacks, preceded and
followed by 5-s periods with no attack. During each attack pe-
riod, the number of attackers was randomly set at each second
to , where is a floating point number chosen at
random from . The results depicted in Fig. 7 show
how quickly the system adapts and then recovers to the pre-
attack pattern in the presence of pulse attacks. These experi-
ments show how ASV preserves success ratio, time to service,
and bandwidth consumption in consonance with our analyti-
cally predicted bounds, even in the face of highly variable rate

Fig. 6. Aggregate bandwidth consumption for all the clients versus attack rate.

Fig. 7. Effect of 45 s of variable rate attacks on success ratio and aggregate
client bandwidth consumption. Success ratio for clients is always 1. Clients that
join the system between times � and �� � are represented in front of time �.

attacks. This significantly reduces the attackers’ ability to dis-
rupt the operation (and bandwidth consumption) of multiple
ASV protected servers at the same time by attacking them in
rotation.

Lossy Network: So far, we have assumed links are overpro-
visioned and that there is thus no packet loss in the network. In
order to assess the effect of a lossy network, with 50 attackers
present, we made the bottleneck link drop packets at different
rates and modified the ASV protocol using DACKs as outlined
in Section VI for and . To summarize our find-
ings, in both cases, there is almost no quitting, and client band-
width consumption stays approximately fixed for drop rates of
up to 30%. However, for network drop rates of 40%–80%, the
quit ratio ranges from 0.08 to 0.71 for , and from 0.01
to 0.32 for . The corresponding client bandwidth con-
sumption ranges from 4.26 to 1.04 Mb/s and 4.62 to 4.08 Mb/s,
respectively.

Even though enforcing a cap on the maximum number of out-
standing REQs (with no DACK) is not meant to be a full-fledged
congestion control mechanism, it would still be desirable for
ASV clients to react to serious network congestion by backing
off. Additional simulations that we do not elaborate on here in
view of space considerations provide evidence that if (for any
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Fig. 8. Amount of data that client can upload to sever � in 30 s. The
lines that are close to the horizontal axis represent values in the 7.5–15 kB
range. Queueing disciplines in the bottleneck link are DropTail and SFQ with

80 buckets. The clients use ASV and Naive to connect to server .

reason) clients face heavy congestion in the network, they even-
tually react and stop aggravating the situation.

Effect on TCP Cross Traffic: To measure the effect of ASV
on cross traffic, we set up the following simulation scenario.
We created a client communicating with a data-backup
server , colocated with an ASV-protected server behind
the bottleneck link (capacity 100 Mb/s), as illustrated in the
shaded lines in Fig. 3. Client is backing up data on at
the rate of 512 kb/s over TCP. In parallel, we simulated DDoS
attacks on with a clientele of 50 clients per second (clients
protocols are either Naive or ASV with ). As before,
Naive behavior represents a no-defense base for comparative
purposes. The attack rates and the queueing disciplines used
in the bottleneck link vary in different scenarios. The amount
of data that can upload to in 30 s in each scenario
is plotted in Fig. 8. The figure shows that when TCP cross
traffic shares a bottleneck link with non-congestion-controlled
traffic from attackers, it could be seriously throttled. It confirms
that unless the network links around a UDP-based service are
highly overprovisioned and protected against network link
attacks, TCP cross traffic would be seriously harmed in the
face of fierce attacks. In addition, we observe that Stochastic
Fair Queueing (SFQ) provides better guarantees compared to
DropTail until client ’s traffic is hashed into the same bucket
as attackers’ packets. This results in ’s traffic being dropped,
which in turn causes it to backoff. Our main conclusion is
that the attack traffic is the major cause of the throttling of
the TCP client and not the particular client protocol in place:
Compared to Naive (which represents a no-defense attack-only
scenario), SASV does not induce any significant extra harm to
TCP cross-traffic.

VIII. CONCLUSION

In conclusion, ASV advances the state of the art in band-
width-based DDoS defense mechanisms by introducing a
distributed adaptive solution based on selective verification. In

ASV, the clients exponentially ramp up the number of requests
they send in consecutive time-windows, up to a threshold.
The server implements a reservoir-based random sampling to
effectively sample from a sequence of incoming packets using
bounded space. The novel theoretical analysis of the protocol
proves that the performance of ASV (in terms of client success
probability and bandwidth consumption) closely approximates
an “omniscient” protocol in which all attack parameters are
known to clients and the server. NS-2 network simulations
of the protocol verify and quantify the effectiveness of ASV
against its nonadaptive counterparts and illustrate that under
highly variable rate attacks, the performance of ASV adjusts
extremely quickly to prevailing attack parameters. In addition,
it is shown that the effect of ASV on Internet cross traffic
is minimal and comparable to that of its naive nonadaptive
counterpart, which represents no-defense attack-only scenarios.
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