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Abstract—To mitigate the threat of malware intrusions on
networked embedded systems, it is desirable to provide remote
attestation assurances for them. Embedded systems have special
limitations concerning cost, power efficiency, computation, and
memory that influence how this goal can be achieved. Moreover,
many types of applications require integrity guarantees for the
system over an interval of time rather than just at a given instant.
We propose a Cumulative Attestation Kernel (CAK) that addresses
these concerns. We demonstrate the value of CAKs for Advanced
Metering Infrastructure (AMI) and show how to implement a
CAK in less than one quarter of the memory available on low end
flash MCUs similar to those used in AMI deployments. Regarding
this prototype, we present the first formal proof we are aware
of that a system is tolerant to power supply interruptions. We
also discuss how to provide cumulative attestation for devices
with tighter memory constraints by offloading computation and
storage onto a Cumulative Attestation Coprocessor (CAC).

Index Terms—Intrusion detection, power system security,
smart grids, meter reading

I. Introduction

NETWORKED embedded systems are becoming increas-
ingly widespread and important. The networking of these

systems often enables firmware to be updated in the field to
correct flaws or to add functionality. This capability could
potentially be exploited to install malware. A good example
of this trend is in the deployment of Advanced Metering
Infrastructure (AMI), a centerpiece of “smart grid” technology
in which networked power meters are used to collect, process,
and transmit electrical usage data, and relay commands from
utilities to intelligent appliances. Meters are required to support
remote upgrades, since it is necessary to add new features
to them in the field [1]. Attackers are likely to attempt to
compromise the upgrade functionality on AMI devices, since
meters have historically been common targets of adversaries
seeking to steal electricity [2]. Advanced meters potentially
enable attackers to induce large-scale effects. For example,
coordinated attacks on demand response systems controlled
via meters may result in blackouts, since the US power grid

M. LeMay and C.A. Gunter are with the Department of Computer
Science, Siebel Center, 201 N. Goodwin, Urbana, IL 61801-2302. E-mail:
{mdlemay2,cgunter}@illinois.edu.

This work was supported in part by DOE DE-OE0000097, NSF CNS
07-16626, NSF CNS 07-16421, NSF CNS 05-24695, ONR N00014-08-1-
0248, NSF CNS 05-24516, DHS 2006-CS-001-000001, HHS 90TR0003-01,
NSF CNS 09-64392, NSF CNS 09-17218, and grants from the MacArthur
Foundation, Boeing Corporation, and Lockheed Martin Corporation. Michael
LeMay was supported on an NDSEG fellowship from AFOSR for part of this
work. The views expressed are those of the authors only. In: IEEE Transactions
on Smart Grid, vol. 3, pp. 2:744–2:760, June 2012 (http://dx.doi.org/10.1109/
TSG.2011.2174811))

may operate with a delicate balance between generation and
load [3].

It is a best practice to prevent unauthorized firmware
(including malware) from being installed on such systems by
requiring firmware updates to be digitally signed by a trusted
authority. However, the principle of defense-in-depth instructs
us to include fallback mechanisms to limit the damage that
can occur as a result of such protections failing. We argue
that tamper-resistant firmware auditing on advanced meters can
serve as such a mechanism. We also argue that AMI system
administrators can use firmware auditing to detect attacks and
respond to them in such a way that they are prevented from
inducing large-scale effects.

A desktop or mobile system can use a Trusted Platform Mod-
ule (TPM) to protect and certify audit information concerning
its configuration, using a process called remote attestation [4],
[5]. Unfortunately, TPMs are not ideal for use in many
embedded systems. TPMs impose relatively substantial cost,
power, memory, and computational overheads on embedded
systems. Furthermore, they provide audit data representing a
short time interval, which is incompatible with the deployment
model of embedded systems such as advanced meters, which
operate unattended for extended periods of time.

In this paper, we describe an architecture for providing
remote attestation for advanced meters, which should also
serve as an example of how it could be provided on other
similar types of embedded systems. The architecture is called a
Cumulative Attestation Kernel (CAK), which is implemented at
a low level in the meter and provides cryptographically secure
audit data for an unbroken sequence of firmware revisions
that have been installed on the protected system, including the
current firmware. This audit data includes a cryptographic hash
of the firmware. The kernel itself is never remotely upgraded, so
that it can serve as a static root of trust. Our specific objective
is to show that CAKs can be practically achieved on flash
Microcontroller Units (MCUs). Flash MCUs are distinguished
from other computers by their onboard flash program memory,
which typically contains a monolithic firmware image with a
static set of applications that run in a single memory address
space. In contrast, higher-end computers often run a full-
featured OS such as Linux. Finally, flash MCUs operate at low
clock frequencies, and may not offer protection features such
as a Memory Management Unit (MMU). We account for these
characteristics of flash MCUs in our design.

CAKs must provide high levels of robustness to satisfy
the requirements of AMI. For example, their flash memory
operations must withstand unexpected, repeated power supply
interruptions. This makes CAKs resilient to battery backup
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failures and even permits them to operate on meters lacking
battery backup. We demonstrate that CAKs are able to address
these and other relevant requirements using an implementation
called Cumulative Remote Attestation of Embedded System
Integrity (CRAESI) [6]. CRAESI is targeted at a mid-range
Atmel AVR32 flash MCU equipped with a Memory Protection
Unit (MPU). Since the robustness requirement is unusual, we
formally verify that CRAESI is resilient to unexpected, repeated
power supply interruptions. This result also implies resilience
to some other types of faults.

We also demonstrate the feasibility of Cumulative Attestation
Coprocessors (CACs) for use with flash MCUs that lack an
MPU and have insufficient onboard flash program memory to
support a self-contained CAK. Our prototype CAC is called
Cumulative Embedded System Integrity (CESIum) and is based
on a platform using a coprocessor in addition to the main
processor, both of which are 8-bit Atmel AVRs.

We do not extensively discuss node recovery in this paper,
since it is a distinct field of research, but we note that even
recovery can be costly in AMI networks. A node’s stored data
may be erased during recovery, since the malicious application
firmware may have corrupted the data in a way that cannot be
detected after the fact. This can imply a massive loss of data on
a large AMI network that could cause significant revenue loss
to a business dependent on that data. By permitting individual
infected nodes to be identified, and uninfected nodes to be
definitively validated, cumulative attestation can minimize this
revenue loss.

Our contributions are as follows: 1) requirements and design
for CAKs that are fault-tolerant and respect the constraints of
advanced meters, 2) prototype standalone CAK called CRAESI
that satisfies these requirements for mid-range flash MCUs,
3) prototype CAC called CESIum that is suitable for lower-end
flash MCUs, and 4) formal proof that CRAESI has certain
security and fault-tolerance properties, including the first formal
proof we are aware of that a system is tolerant to power supply
interruptions.

The rest of this paper is organized as follows. §II contains
additional background. §III describes the threat model and
requirements for a CAK. §IV discusses a design that satisfies
those requirements. §V presents experimental results from
CRAESI. We formally analyze important properties of CRAESI
in §VI. We describe and evaluate CESIum in §VII. We discuss
additional related work in §VIII. Finally, we conclude in §IX.

II. Background

A. Remote Attestation

Remote attestation is a process whereby a remote verifier
V can obtain certified measurements of parts of the state of a
system S. A variety of protocols can be used to accomplish
this. They usually involve at least two messages. The request
V

〈ν〉
−−→ S contains a nonce ν used to ensure the freshness of

the attestation results. The response S
[〈ν,σ〉]RTMS
−−−−−−−−→ V is digitally

signed by the Root-of-Trust for Measurement (RTM) of S
(RTMS) to certify that it has not been tampered, and contains
the nonce ν as well as a record of the system’s state σ. Of
course, this assumes that the system contains some RTMS that

is capable of securely recording and certifying the system’s
state. On desktop PCs, the TPM and supporting components
in the system software often fulfill this role.

A TPM is typically a hardware security coprocessor that
comprises several internal peripherals coordinated by a central
microcontroller core [4]. It is intended to be difficult to remove
from the platform in which it was originally installed. It
is also designed to make physical tampering evident upon
subsequent physical inspection. The TPM contains several
keypairs. Two of them can be used to digitally sign internal
registers that contain cryptographic hashes. These registers
are called Platform Configuration Registers (PCRs). The TPM
implements an “Extend” function that requires a hash value
as a parameter and then updates the hash value in a particular
PCR by appending the new hash to the old PCR value, hashing
the result, and storing it in the PCR. The OS on S maintains a
log of information that can be used to evaluate its configuration
and state and performs an extend operation to commit each new
log entry as it is added. To generate a trustworthy attestation
using the basic protocol described above, the main processor
on S must send the nonce to the TPM and request that it
digitally sign (“Quote”) the PCRs. The processor is assumed
to not have the capability to forge these signatures, since the
TPM’s private keys are never released by the TPM unless
it is physically compromised. Therefore, for the protocol to
proceed, the TPM must return the signed attestation data to the
processor, and the processor must then return that signature
along with the log that is required to interpret the attestation
to V. The TPM contains many other structures to support true
random number generation, cryptography, and other functions.

Well-designed systems include multiple layers of protec-
tions to prevent compromises, including access controls for
installation privileges and signatures on code that are verified
before installation. Remote attestation provides an additional
layer of defense in the event that these protections fail, hence
providing defense-in-depth. This is similar to the synergistic
relationship between Network Intrusion Detection Systems
(NIDSs) and firewalls. A NIDS detects attacks that bypass
firewalls, leading to faster attack recovery and a subsequent
strengthening of firewall rules. These mechanisms work well
together because of their distinct failure modes. Typical upgrade
controls that require firmware to be signed can be compromised
if the private keys used to sign firmware are compromised,
or the upgrade controls are bypassed by a buffer overflow
or other type of attack. Modern embedded systems can run
complex software stacks that may be vulnerable to attacks
similar to those that have plagued server and desktop machines.
Even if a different key is used to sign firmware upgrades for
each node on a network, those private keys are all likely to be
stored in a central repository. The compromise of the repository
could lead to the compromise of all systems on that network.
In contrast, CAKs store their private keys within individual
meters that are geographically scattered, greatly increasing the
cost of compromising large numbers of private keys. Only the
availability and authenticity of the corresponding public keys
must be ensured to provide secure auditing capabilities. This
is generally a more tractable problem than ensuring long-term
confidentiality of a centralized private key repository.
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Even if a system is never compromised, remote attestation is
useful when multiple parties are authorized to upgrade or use
the system and they must be able to verify that the configuration
changes made by other parties are acceptable. For example,
government regulators could query an advanced meter to obtain
an unforgeable guarantee that it is using firmware that provides
accurate meter readings.

B. Advanced Metering Infrastructure

Advanced electric meters are embedded systems deployed
by utilities in homes or businesses to record and transmit infor-
mation about electricity extracted from the power distribution
network and potentially to support more advanced functionality.
They arose out of automated meter reading, which simply
involves remote collection of meter data. However, AMI can
support new applications based on bidirectional communication,
such as the ability to manipulate power consumption at a
facility by sending a price signal or direct command to its
meter (demand response). AMI networks are being deployed on
a massive scale [2]. A report by Pike Research states that more
than 250 million meters will be deployed worldwide by the
year 2015 [7]. AMI is a particularly good example of a remote
sensor network and a good benchmark for study because of
its nascent but real deployment and rich set of requirements.

The sophisticated functionality of advanced meters creates
numerous attack scenarios and increases the likelihood that
they will contain security vulnerabilities linked to firmware
bugs. An outage of the meters in a region could entail a huge
financial loss for a utility. The “Guidelines for Smart Grid
Cyber Security” published by NIST specifically call for remote
attestation of smart grid components [1]. In a previous work
we further motivated the use of attestation to provide AMI
security, but did not address the need for cumulative attestation
or provide a design suitable for use on practical flash MCUs [8].

Other embedded systems could also benefit from CAK-
supported intrusion detection. Intelligent Electronic Devices
(IEDs) used in electrical substations to monitor and control
the transmission and distribution of electricity often support
remote firmware upgrades and can exert more direct control
over the flow of electricity than demand-responsive meters [9].

We now provide additional details on AMI. In the future, it
will afford a number of potential advantages to energy service
providers, their customers, and many other entities [10]:

1) Customer control: Customers gain access to information
on their current energy usage and real-time electricity
prices.

2) Demand response: Power utilities can more effectively
send control signals to advanced metering systems to
curtail customer loads, either directly or in cooperation
with the customer’s building automation system.

3) Improved reliability: More agile demand response
can improve the reliability of the distribution grid by
preventing line congestion and generation overloads.
These improvements could also reduce the strain on
the transmission grid.

There are several distinct categories of advanced metering
systems that support the functionality discussed above with

varying degrees of success. The least capable systems use short-
range radio networks and may be less expensive to deploy
initially, but they require readers to drive by in vans to read the
meters. More capable systems support unidirectional network
communication from the meter data management service, and
the most capable systems have fully bidirectional network
connections with the meter data management service. We focus
on meters with bidirectional connections in this paper. AMI
networks with connectivity to the meter data management
service can distribute real-time pricing schedules to meters,
which can influence customer behavior and induce manual or
automatic demand response actions [11]. They can also support
direct control signals.

In Figure 1, we show how a full-featured bidirectional
metering network could be organized. The network is divided
into two main domains that are connected via a Field-
Area Network (FAN). The first domain houses the meter
data management service and the energy service provider
that controls the physical delivery of electricity. The second
domain comprises the metered premises, which may have
mesh network connections between themselves to extend the
overall reach of the AMI network. Each of these premises
may also be equipped with a Home-Area Network (HAN)
containing an in-home display, which interacts with the meter
and intelligent appliances and perhaps a home energy dashboard
that provides complementary features to those of the in-home
display. A bidirectional AMI network is useful for upgrading
the firmware on meters to support HAN connectivity [12].
Firmware upgrades can also enable maintenance of meters and
be used to introduce updated functionality. The frequency and
total number of upgrades that will actually be issued is hard
to estimate, since utilities can use AMI quite differently from
each other. Some utilities may have ambitious demand response
programs that make use of cutting-edge, frequently-updated
HAN technology, whereas other utilities may only use basic
meter-reading functionality that is rarely updated.

C. Formal Methods

Formal methods are used to verify correctness and fault-
tolerance properties of CRAESI in §VI. Specifically, model
checking is a methodology for systematically exploring the en-
tire state space of a model and verifying that specific properties
hold over that entire space. Maude is the name of a language
as well as a corresponding tool that supports model checking
based on rewriting logic models and Linear Temporal Logic
(LTL) properties [13]. Essentially, rewriting logic provides
a convenient technique to express non-deterministic finite
automata. Maude is a multi-paradigm language, and supports
membership equational logic, rewriting logic, and even has a
built-in object-oriented layer. We use Maude for our verification
tasks.

Maude provides a search function that can be used to
explore all distinct states that can be reached from an initial
state. The search command can be parameterized to only display
states that satisfy a particular property, and this can be used to
perform basic model checking. This is only suitable when the
desired state can be identified by a simple set of propositions
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Fig. 1: Full-featured bidirectional metering network interactions.

Operator Name Description

©ϕ Next ϕ holds in the next state.

ϕ U ψ Until ψ holds in the current or a future state, and ϕ
holds until that state is reached.

♦ϕ Eventually ϕ holds in some subsequent state.
�φ Henceforth φ must hold in all subsequent states.

ϕW ψ Unless ϕ holds in all states until ψ holds, or forever
if ψ is never satisfied.

ϕ⇒ ψ
Strong Im-
plication ψ holds in any state in which ϕ is satisfied.

TABLE I: Temporal modal operators used in LTL formulas.

combined using logical connectives (¬,∧,∨,→) on that state,
not considering any preceding states. Appropriate propositions
must be defined for the particular model under consideration.

For more sophisticated model-checking operations, theorems
and lemmata can be formalized using LTL. An LTL formula is
a predicate over a sequence of states. Each formula comprises
propositions that are connected with logical connectives and
the temporal modal operators described in Table I.

III. ThreatModel and Requirements

A. Threat Model

Data integrity on meters can be compromised by mali-
cious application firmware in various ways, as shown in
Figure 2. Actuator controls can also be abused. A typical

remote attestation scheme provides evidence of the integrity
of data (such as firmware) at the time an attestation report is
requested. Such a system is vulnerable to what one might call
Time-Of-Use-To-Time-Of-Check (TOUTTOC) inconsistencies
(dual to the more familiar Time-Of-Check-To-Time-Of-Use
(TOCTTOU) inconsistencies) wherein data was inaccurately
recorded, corrupted, or deleted, or actuator controls were
abused, before the time of attestation if the system was
subsequently reset. In contrast, cumulative attestation detects
such attacks.

We assume that an attacker is capable of communicating with
a protected system over a network and installing malicious
application firmware. We also assume that the attacker has
a priori knowledge of the layout of the kernel’s code and
data memory spaces, as well as their static contents, but not
the contents of dynamic variables and static values that vary
between kernels.

“Ordinary” environmental phenomena must not cause any
of the security requirements of the kernel to be violated. An
example is an accidental power supply interruption, unless the
system has a robust, trusted power supply. On the other hand,
a bit flip caused by cosmic radiation would be considered an
extraordinary phenomenon in most ground-based embedded
systems. These examples make it clear that the definitions
of ordinary and extraordinary will vary based on a system’s
intrinsic characteristics and its environment. In this paper, we
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Fig. 2: Three modes of attack on sensor data available to
malicious application firmware running during various lifetime
phases occupied by that data.

only include accidental power supply interruptions in our threat
model, although we discuss other types of faults that have
similar effects and are therefore handled by the same fault-
tolerance mechanisms. We also exclude physical attacks on
microcontrollers such as fault analysis, silicon modifications,
and probing [14], [15]. The use of a CAK does not exclude
tamper-resistance, but CAKs address remote attacks rather
than local, physical attacks which are generally much more
expensive than remote attacks. Large-scale remote attacks
potentially enable different classes of attack outcomes (such
as blackouts in our example).

The security of remote attestation based on a CAK depends
upon the fact that application firmware runs at a lower privilege
level than the CAK and is not permitted to access security-
critical memory and peripherals. This excludes a wide variety of
attacks, such as Cloaker [16]. The specific peripherals that are
considered security-critical will vary between microcontrollers.

Note that a CAK does not detect attacks that succeed by
simply modifying data RAM. Although data RAM is not
executable by the application, corruption in data RAM can
lead to system compromises in other ways [17]. However, it is
prohibitively expensive to record changes to data RAM. It is
also more challenging to characterize all legitimate values
of data RAM. This limitation implies that return-oriented
programming can potentially be used to corrupt the control
flow of an audited firmware image to implement an attack.
However, it can be more difficult to construct a return-oriented
program than it is to construct a program intended for native
execution. For example, the targeted firmware must contain a
sufficient set of “gadgets” to implement the desired attack [18].

B. Requirements

The basic security and functional requirements for a CAK are
that it maintain an audit log of application firmware revisions
installed on a meter, and that it make a certified copy of
that log available to authorized remote parties that request it.
It must satisfy the following properties to provide security:
1) Comprehensiveness: The audit log must represent all appli-
cation firmware revisions that were ever active on the system.
Application firmware is considered to be active whenever the

Fig. 3: The general CAK program memory layout. The birds
represent “canary” values.

processor’s program counter falls somewhere within its installed
code space. 2) Accuracy: Whenever application firmware is
active, the latest entry in the audit log must correspond to
that firmware. The earlier entries must be chronologically
ordered according to the activation of the firmware revisions
they represent.

We define the following requirements for a CAK based on
the characteristics and constraints of advanced meters: 3) Cost-
effectiveness: Even the smallest added expenses in advanced
meters become significant when multiplied for massive de-
ployments. 4) Energy-efficiency: Some embedded systems are
critically constrained by limited energy supplies, often provided
by batteries. Although meters are attached to mains power,
they may be constrained to low energy consumption to reduce
energy costs. 5) Suitability for hardware protections: The CAK
must be adapted to the protection mechanisms provided by the
processor on which it runs.

IV. CAK Design

We now present a kernel design that satisfies the require-
ments. The basic flash memory layout of the system is depicted
in Figure 3. The executable code for the CAK is located at the
beginning of memory, where bootloaders are usually stored.
Above that, two redundant regions are used to store data used by
the kernel. The Installed Region is the only memory containing
instructions that can be executed in user mode. The Upgrade
Region is used to buffer firmware upgrades. Finally, Sensor
Data can potentially be used by the application to store arbitrary
non-executable data.

The content of each Kernel Data section is divided into
several regions, and contains the following:
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A. Audit log

Each location in the audit log contains an entry εi = 〈τ, η, θ〉,
where τ ∈ {hash, chain} specifies the type of the entry, η
specifies the event that caused ε to be recorded in the log
if it was not recorded as a result of a successful upgrade, and θ
is a hash value h(Fi) if τ = hash and Fi is the currently installed
firmware image, or a hash chain if τ = chain. The audit log
AL = (ε0, ε1, . . . εn−1) when |AL| = n such that Fi was installed
immediately after Fi−1. It is possible for AL to overflow
memory, so it can be divided into two lists ALovf = (ε0, ε1, . . . εm)
and ALrecent = (εm+1, εm+2, . . . εn−1). The maximum length of
ALrecent is dictated by the capacity of the flash. When it
overflows, the entry εchain = 〈chain, none, h(h(. . . ||εm−1)||εm)〉
is included in the audit log memory region, where || is used
to indicate concatenation. Its hash value represents a left fold
of ALovf with the function hfold(x, y) = h(x||y). ALinmem = AL
when |ALovf| = 0 and ALinmem = (εchain) + ALrecent otherwise. A
counter λ = |AL| is also included.

If AL has overflowed, the remote verifier must indepen-
dently obtain the hash values that are no longer stored:
(h(F0), h(F1), . . . h(Fm)). This is a reasonable assumption if the
embedded system is used by a group of remote parties that know
and can communicate with all parties that have legitimately
installed new firmware revisions on the system. In that case, the
remote verifier can use a separate protocol to request that the
updaters provide whatever hash values the verifier does not yet
know, so the verifier can construct a complete hash chain. For
example, a shared repository at a well-known Internet location
could be collaboratively maintained by all updaters and then
accessed as needed by verifiers. An example of a simple and
sufficient system is an FTP server containing a file for each
upgrade specifying when it was installed, what its hash value
was, and potentially other helpful metadata. The FTP server
would need to only allow uploads from authorized updaters and
only allow downloads from authorized verifiers. This would
necessitate encryption of the FTP connections, some form of
authentication, and the existence of an entity to administer the
authentication system. A variety of approaches can be used
to control which parties are authorized to update the system’s
firmware, such as controlling access to one or more private
keys that are used to sign firmware updates. In this example,
the keys could be distributed to additional parties at any time,
even after the meter has been deployed. An attacker is likely
to be unknown or to refuse to provide hashes of the firmware
that it installed, but the past or current presence of firmware
installed by the attacker will still be detected by the verifier
when the list of known hashes does not produce the expected
hash chain value.

B. Asymmetric keypairs

The public and private keys for keypair Px are denoted as Yx

and Rx, respectively. The firmware audit private key RF is used
to sign the firmware audit log during attestation operations.
The Diffie-Hellman keypair PDH is used during Diffie-Hellman
key exchanges. The master private key RΩ is used to sign the
firmware audit public key YF and the Diffie-Hellman public
key YDH. The keys can be generated by the CAK when it is first

Fig. 4: A basic state machine representation of CAK operation,
in which transitions are generated by the specified commands.

initialized using a Random Number Generator (RNG) that we
assume is available. Counters λ{F ,DH,Ω} are used to record the
number of signatures generated by the corresponding private
keys. PF and PDH will be individually refreshed when their
associated counters reach a threshold value.

C. System state

An explicit state variable σ is used to control transactions.
States in the automata in Figure 4 illustrate the possible values
of σ.

The CAK satisfies the Comprehensiveness and Accuracy
requirements by controlling all access to the low-level firmware
modification mechanisms in the system. The state machine in
Figure 4 manages the application firmware upgrade process
within the CAK. The transition labels not in parentheses are
commands that can be issued by the application to cause
itself to be upgraded. The current state is recorded in σ. The
“Waiting for Heartbeat” state causes the application firmware
to be reverted to its previous revision if no heartbeat command
is received within a certain period of time. Any unexpected
command received by the CAK will be ignored.

Three additional commands not shown in the figure can be
executed by an application to: 1) Quote: digitally sign and
transmit a copy of ALinmem, including a nonce for freshness, 2)
Retrieve Public Keys: retrieve PF , PDH, PΩ signed using RΩ,
and 3) Handshake: perform a Diffie-Hellman key exchange.
The Handshake command demonstrates how the asymmetric
cryptography implemented within the kernel can be used to
perform operations directly useful to the application (establish
a symmetric key with a remote entity, in this case), to defray
the memory space that the CAK requires. More general access
could be provided in future designs, but would complicate the
security analysis of the API.

Transactional semantics must be provided for all the persis-
tent data used by the kernel. This design accomplishes that
by maintaining redundant copies of all persistent data in a
static “filesystem” FS = 〈γ0,Φw, γ1, γ2,Φp, γ3〉 where each γi

(i ∈ {0, 1, 2, 3}) is a Boolean “canary” flag, and Φw and Φp are
tuples of the form 〈σ, PF , λF , PDH, λDH, PΩ, λΩ, σupg,ALinmem〉,
where σupg encodes the state of the upgrade process, as
explained below. The tuple Φw is a working copy that is
modified by the kernel and Φp is a persistent copy that provides



7

redundancy. The working copy update process is described in
Listing 1.

It is more conventional to represent a filesystem as a
relation between filenames and data, and in fact we use that
representation in our formal analysis of this filesystem’s fault
tolerance in §VI. In that case, FS ⊂ FN × FD where FN is
the set of filenames and FD is the set of all possible file data
values.

Listing 1 Update filesystem working copy.
procedure FsStore(addr, data)

γ0 ← False
γ1 ← False
Φw ← Insert(addr, data,Φw)
γ0 ← True
γ1 ← True

end procedure

The copies of the filesystem have canary values γi before
and after the file data as depicted in Figure 3. Whenever a file
in the working copy is modified, canaries γ0 and γ1 are first
invalidated and then re-initialized after the file has been written.
An unlimited number of modifications can be made to the
working copy within a single transaction. When the transaction
is finally committed, γ2 and γ3 are first invalidated. Next,
〈γ0,Φw, γ1〉 is copied over 〈γ2,Φp, γ3〉. If this copy operation
completes successfully, canaries γ2 and γ3 will be automatically
restored (Listing 2).

Listing 2 Update filesystem persistent copy.
procedure FsCommit

γ2 ← False . aborted(PostCritical)
(¬aborted(PreCritical))

γ3 ← False
〈γ2,Φp, γ3〉 ← 〈γ0,Φw, γ1〉

end procedure

The presence of comments in the pseudocode, like
“aborted(PostCritical) (¬aborted(PreCritical))” on the right
side of the first line indicates that the referenced proposi-
tions hold after that line has completed its execution. These
propositions are described in §VI.

When the processor boots up, it initializes the filesystem,
which involves checking the canaries (Listing 3). At most one
copy will have invalid canaries, and the other copy would then
be used to restore the invalid copy. If both sets of canaries
are valid, but the filesystem data is not identical, the persistent
copy will be used to restore the working copy.

The application firmware upgrade process is also fault-
tolerant, but has significantly different fault-tolerance semantics
than the filesystem. Two firmware regions are maintained in the
system’s flash. The upgrade region is used to store a firmware
upgrade as it is uploaded. The installed region is the region
actually executed when the application firmware is active. The
commit process sequentially swaps pages in the two regions,
using a page-sized staging area elsewhere in kernel program
memory (Listing 4). The data in the two regions has been

Listing 3 Initialize CAK filesystem.
procedure FsInit

if 〈γ2, γ3〉 , 〈True,True〉 then
Φp ← Φw

else if Φw , Φp then
Φw ← Φp

end if
end procedure . sff-inited

completely swapped at the end of the commit process. A status
value σupg is stored in the filesystem and updated as the commit
process progresses to enable recovery after a power failure that
interrupts the process.

Only the kernel has permission to actually write to the
upgrade region. The application issues requests to the kernel
to write individual pages and the kernel then performs the
write operations. Thus, the application is responsible for
properly initializing the upgrade region even in the presence of
undesirable situations such as simultaneous upgrade requests
from different remote parties. Regardless, the kernel will audit
whatever firmware is actually installed.

Listing 4 Load firmware upgrade into executable space.
procedure UpgradeCommit

while σupg.n < pagecnt do .
n is initialized to 0 when an upgrade is first initiated, and
is not reinitialized here, because it is used to recover from
unexpected interruptions in the upgrade process.

if σupg.stage = Staging then . stage is initialized to
Staging when an upgrade is first initiated.

codeStagingArea← upgradeRegionn
σupg.stage← BackingUp
FsCommit

else if σupg.stage = BackingUp then
upgradeRegionn ← installedRegionn
σupg.stage← Finishing
FsCommit

else if σupg.stage = Finishing then
installedRegionn ← codeStagingArea
σupg.n← σupg.n + 1
σupg.stage← Staging
FsCommit

end if
end while
σ← TestingUpgrade
FsCommit

end procedure

Every time the meter boots, the processor immediately trans-
fers control to the DirInit procedure in the CAK (Listing 5).
The CAK first initializes the memory protections, performs
filesystem recovery if necessary, and completes the application
firmware upgrade transaction if one was interrupted by a power
failure. It then generates a cryptographic hash of the firmware
and compares it to the latest audit log entry. If they differ, it
extends the log with a new entry. Finally, it transfers control
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Fig. 5: Prototype hardware components and interconnects.

to the application.

Listing 5 Initialize director upon system reset.
procedure DirInit

FsInit
if IsUpgrading then

UpgradeCommit
end if
if σ = Init ∨ σ = Idle then

DirPrep(None, Idle)
else if σ = Upgrading then

DirPrep(UpgradeAborted, Idle)
else if σ = TestingUpgrade then

DirPrep(None,WaitingForHB)
else if σ = WaitingForHB then

DirPrep(UpgradeHBFailed, Idle)
end if

end procedure
procedure DirPrep(η, σ+)

σ← σ+

FsCommit
if η , None ∨ |ALinmem| = 0 ∨ εn−1 , 〈η, h(Fn)〉 then

LogExtend(〈η, h(Fn)〉)
FsCommit

end if
JumpMain . appfw-active

end procedure

Both fault-tolerance processes are analyzed in §VI to ensure
that the particular memory manipulations they use correctly
recover from accidental power supply interruptions.

V. CAK Implementation and Evaluation

In this section we present CRAESI, a prototype standalone
CAK. The purpose of this prototype is to demonstrate that
our design satisfies the practical requirements put forth in
§IV, and to obtain preliminary performance, cost, and power-
consumption measurements. However, these preliminary mea-
surements do not indicate the parameters that will be exhibited

by commercial implementations, since our prototype relies
heavily on unoptimized software.

A. Hardware Components

Our prototype implementation comprises five distinct devices.
The first is an Atmel ATSTK600 development kit containing
an AT32UC3A0512 AVR32 microcontroller with a 3.3V
supply voltage. The second device is a Schweitzer Engineering
Laboratories SEL-734 substation electrical meter. The SEL-
734 has a convenient RS-232 Modbus data interface. We
could have used any similar device in our experiments since
it simply serves as a realistic data source connected to the
AVR32 microcontroller. Third, we use a standard desktop PC
to communicate with the AVR32 microcontroller over an RS-
232 serial port from a Java application that issues Modbus
commands. The final two devices are paired ZigBee radios that
relay RS-232 data between the PC and AVR32 microcontroller.

B. Application Firmware

We prepared two application firmware images for our
experiments. They both implement Modbus master and slave
interfaces, where the master communicates with the meter over
an RS-232 serial port, and the slave accepts commands from
the PC over the ZigBee link and either passes them to the
kernel or handles them directly if they are requesting data
from the meter. The first image accurately relays meter data,
whereas the second halves all meter readings, as might be the
case with a malicious firmware image installed on an advanced
meter by an unethical customer.

CRAESI would interfere with the operation of existing
embedded operating systems that require access to security-
critical peripherals and memory areas. However, virtualization
techniques could be used to accommodate those accesses, given
sufficient resources to implement the virtualization. Even a
coprocessor-based approach would need to restrict access to
security-critical resources, so this limitation is not specific to
CRAESI.

C. Kernel Firmware

The kernel is invoked whenever the processor resets, and by
the application firmware when required. The AVR32 scall
instruction is used to implement a syscall-style interface
between the application and kernel. TinyECC provides software
implementations of SHA-1 hashing and Elliptic Curve Cryp-
tography (ECC) [19]. Pseudo-random numbers are generated
by Mersenne Twister [20]. These libraries are not significantly
optimized for AVR32. Note that the algorithms and key lengths
used here may not be suitable for production use in systems
with extended lifetimes during which the algorithms may be
compromised. A commercial implementation would require a
true RNG. Table II provides a breakdown of the lines of C++

code in each kernel component. These numbers were generated
from the raw source code directories, which include debugging
and unused code. We exclude the drivers provided by Atmel.

The kernel consumes 81,312 bytes of program memory. We
reserved 88KiB of flash memory to store the kernel code,
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Module Lines of Code

Core 810
Crypto 5684
Filesystem 160
Hardware Management 256
TOTAL 6910

TABLE II: Lines of C++ code in each CRAESI kernel
component.

and another 40KiB to store the persistent data manipulated
by the kernel. We set aside 12KiB of data RAM for the
kernel comprising 10,872 bytes of static data, 392 bytes for
the heap, and 1024 bytes for the stack. The memory consumed
by the kernel is unavailable to the application, which does
impose an added cost if it becomes necessary to upgrade
to a larger microcontroller than would have been required
without the kernel. In this prototype, the maximum application
firmware image size is 191.5KiB. However, commercial kernel
implementations will be significantly more compact in both
flash and data RAM than our unoptimized prototype, and clever
swapping schemes could potentially eliminate the data RAM
consumption of the kernel when it is not active. The audit
log in this implementation can record up to 107 upgrades and
events before overflowing.

D. Performance Results

We now compare the energy and time consumed by our
firmware-only prototype (integrated CRAESI) to that consumed
by an Atmel AT97SC3203 TPM installed in a popular type
of desktop PC. It was expensive and difficult to obtain
measurements from this TPM, so we did not perform additional
experiments on other TPMs. We used the TPM to perform
similar operations to those that would be required by a TPM-
assisted version of CRAESI if it were actually implemented.
The TPM has a supply voltage of 3.3V and relies on an LPC
bus connection. We used Digital Multi-Meters (DMMs) that
have limited sampling rates (100-300 ms between samples)
to measure the energy consumption of both systems. This
introduces some error into our calculations, so we have
presented an upper-bound on the energy consumed by integrated
CRAESI and a lower-bound on the energy consumed by TPM-
assisted CRAESI. The time and energy consumed for a variety
of operations is presented in Figure 6. From the figure, it is
clear that the performance of CRAESI is comparable to a
TPM executing similar operations, with the exception of the
initialization routines that are much more expensive on a TPM
for unknown reasons.

The TPM uses a 2048-bit RSA key to sign the Platform Con-
figuration Registers (PCRs), which provides security roughly
equivalent to that of a 224-bit ECC key, superior to the security
of the 192-bit ECC keys used in integrated CRAESI [21]. Due
to the use of hardware, the TPM RSA signature generation
mechanism is roughly as energy consumptive as the ECC
software implementation in the integrated design. The Elliptic-
Curve Diffie-Hellman (ECDH) key exchange supported by
integrated CRAESI would not be supported by TPM-assisted

Fig. 6: A performance comparison of TPM-assisted and
standalone (integrated) CRAESI. The energy measurements
for TPM-assisted CRAESI represent the energy consumed by
the TPM alone.

CRAESI, although it could potentially be replaced with
equivalent functionality.

The most significant efficiency drawback of the TPM is that
it demands 10.6mW when sitting idle. It may be possible to
place the TPM into a deep sleep state to reduce this constant
burden, but that is not done in practice in our test system, and
may have unexamined security consequences. Let us consider
the practical implications of this overhead if attestation is
performed once per day per meter in an installation containing
five million meters. If AT97SC3203 TPMs were installed in
all of those meters, they would consume at least 466,908 kWh
per year. In contrast, if integrated CRAESI were used instead,
it would consume less than 31 kWh per year.

Another advantage of using ECC with a shorter key than
the one used by RSA in a TPM is that less network data is
generated by digital signature operations. An ECC signature
using a 192-bit key over and accompanied by a 160-bit hash
generates a total of 68 bytes of data, whereas the corresponding
RSA signature using a 2048-bit key contains 256 bytes of
signature data in addition to the 20 bytes of hash data, for a
total of 276 bytes.
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VI. CAK Correctness and Fault-Tolerance Analysis

We used the Maude model checker to verify that CRAESI
actually satisfies critical aspects of the security requirements
put forth at the beginning of §IV [22]. First, we modeled
CRAESI in rewriting logic, which represents transitions be-
tween states using rewrite rules. Then, we expressed aspects
of the requirements for the design as theorems, which we
converted into LTL formulas that were checked using Maude.
We discuss the outcome of this process in this section. We did
not discover any errors in the aspects of our implementation
that we modeled, which increased our confidence that those
aspects of the implementation are correct.

The model comprises several objects within modules that
roughly correspond to the modules of functionality in the
implementation. We verified the correspondence between our
C++ implementation and the rewriting logic model by careful
manual inspection. This was feasible because of the small size
of the implementation code. Originally, we attempted to unify
the basis for a model and executable implementation code
into a single code base by implementing the design in a small
subset of C# and then compiling the Common Intermediate
Language (CIL) corresponding to that code into both assembly
language and a model [23]. We abandoned this approach when
it became clear that a substantial development effort would
be necessary to generate sufficiently efficient assembly code.
LeMay’s dissertation provides more details on our efforts to
use C# [24].

When the model is being used to check high-level prop-
erties, such as the correctness of the application firmware
upgrade operations, it assumes that any operation runs until
completion without interruption. However, this assumption
does not necessarily hold in the real world, since power supply
interruptions can occur and cause the processor to reset in the
middle of any operation. We define rewrite rules that model
power supply interruptions that can occur at arbitrary times in
separate modules and then prove that the system is fault-tolerant
in the presence of power supply interruptions in representative
scenarios. The power supply interruptions that we model can
be caused by the total loss of power to the processor or a
voltage reduction that activates a brown-out detector. Note that
we assume the brown-out detector is configured to reset the
processor when the appropriate voltage threshold is crossed,
above which the processor can operate correctly. We assume
that such a power supply interruption results in unpredictable
data being written to only the page of flash memory, if any, that
is being written when the interruption occurs. We contacted
Atmel support to validate that assumption.

Other types of faults may have similar effects to those
of the faults just described, and would therefore be handled
by the fault-tolerance mechanisms in CRAESI. For example,
a soft error or program bug that corrupts a flash page that
CRAESI is modifying and then resets the processor before
modifying any other data in flash memory would cause damage
indistinguishable from that of a power supply interruption from
the perspective of our analysis.

A wide variety of theorems could be important, but we have
selected the ones that deal with the parts of CRAESI that have

Name Description

aborted(ψ) A static flash filesystem operation was aborted at
stage ψ ∈ {PreCritical,PostCritical}.

cur-logent-
matches-appfw

The current audit log entry corresponds to the
firmware image in the application’s installed region.

installed(F ) The application’s installed region is occupied by F .
cached(F ) The upgrade region is occupied by F .
halted The processor is permanently halted.

appfw-active The processor’s program counter points to a location
in the installed region.

rollback The kernel is about to swap the firmware in the
installed region and upgrade region.

sff-as-expected
The static flash filesystem is in the expected state
assuming that a particular transaction completed in
a filesystem with a particular initial state.

sff-inited The static flash file system finished initializing.

sff-unchanged The static flash filesystem is unchanged from its
initial state.

upgrade-
inited(F )

The application has cached F in the upgrade region
and has requested that it be copied into the installed
region.

upgrade-
started

The application is about to begin caching a firmware
upgrade in the upgrade region.

TABLE III: Propositions used in LTL formulas to model check
integrated CRAESI design.

Fig. 7: Representative, legitimate firmware transitions.

the most complex interactions, since these best illustrate the
verification methodology and are the most likely places to find
errors. The propositions used to check integrated CRAESI are
described in Table III.

The first theorem is concerned with the correctness and
auditability of application firmware upgrade procedures. To
express it, we stipulate that the system can occupy three primary
states when the application is executing, as illustrated in
Figure 7. The deployed state is occupied until an upgrade occurs.
The upgraded state is occupied after an upgrade has occurred
until a rollback occurs. The rolled-back state is occupied after
a rollback has occurred until an upgrade occurs. To fully
explore each of these states, we model transitions between
three firmware images that can be installed in order: F0, F1,
F2. The content of each firmware image is immaterial. Exactly
the transitions and states depicted in Figure 7 are correctly
permitted by the system. The system can halt in any state.
Application activity is represented by the horizontal arrows
whose line patterns encode the system state at that point in
time. Single lines represent the deployed state, double lines
the upgraded state, and triple lines the rolled-back state. The
stacked boxes indicate the configuration of the firmware regions
in the time represented by the arrows leading away from the
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boxes. The upper box is the upgrade region and the lower the
installed region. An upward-pointing arrow indicates that the
application has issued an upgrade request, and a downward-
pointing arrow indicates that the kernel has initiated a rollback
operation. A question mark in the upgrade region indicates that
the state of the upgrade region in the associated configuration
is either unpredictable or unimportant.

Theorem 1. At the conclusion of any operation that modifies
the active application firmware image, the audit log is updated
to accurately reflect the new state. Additionally, the previous
active application firmware image is cached if an elective
upgrade is performed (not a rollback).

Proof. We must verify that 1) firmware is only modified by
explicit firmware upgrade and rollback operations, 2) those
operations can be used to cause only the transitions represented
in Figure 7, 3) the audit log accurately represents the history
of the system whenever the application firmware is active. We
prove this by cases, with each case being encoded as a lemma.
The initial state for the proof of each lemma corresponds to
a system with an initial firmware image F0 in the installed
region, and the kernel state variables set to the values they
would have when the system is first deployed.

Lemma 1 states that the deployed state is stable until
transition a occurs. Lemma 2 states that transition a occurs
correctly. Lemma 3 states that transitions b and e operate
correctly. Lemma 4 states that transitions d and f operate
correctly. Lemma 5 states that transition c operates correctly.
Finally, Lemma 6 states that the firmware audit log is properly
updated after every operation. �

Each stand-alone theorem and lemma in this section includes
two descriptions, the first in natural language and the second
as the LTL formula that was machine-checked.

Lemma 1. F0 is installed unless an upgrade operation is
performed.

installed(F0) W
(upgrade-inited(F1) ∨ upgrade-inited(F2))

This ensures that the initial application firmware on the
device is not modified until a specific command to do so is
received from the application.

Lemma 2. If an upgrade to F1 has been initiated, then F1
is installed and F0 is cached by the time the application is
activated, and the system remains in that state unless some
other upgrade or rollback operation is performed.

upgrade-inited(F1) ⇒
(¬appfw-active U ((installed(F1) ∧ cached(F0)) W
((upgrade-started ∧ ©(installed(F1) W upgrade-
inited(F2))) ∨ rollback)))

This specifies that F0 is cached when replaced, and F1
can be successfully installed at the proper time, and remains

unmodified until the application firmware is upgraded to F2,
or it fails to send a heartbeat and is thus rolled back to F0.

Lemma 3. If an upgrade to F2 has been initiated, replacing Fn,
and no other rollback operation has yet been performed, then
F2 is installed and Fn is cached by the time the application is
activated.

(installed(Fn) ∧ upgrade-inited(F2)) ⇒
(¬appfw-active U ((installed(F2) ∧ cached(Fn)) W roll-
back))

This is similar to Lemma 2, but handles transitions to F2
from either F0 or F1.

Lemma 4. If F0 is cached at the time that a rollback occurs,
then F0 is installed by the time the application is activated
after the rollback unless another upgrade operation occurs.

(cached(F0) ∧ rollback) ⇒
(¬appfw-active U (installed(F0) W upgrade-inited(F2)))

This specifies that the application firmware rollback action
always operates as expected when rolling back to F0.

Lemma 5. If F1 is cached at the time that a rollback occurs,
then F1 is installed by the time the application is activated
after the rollback, and remains installed henceforth.

(cached(F1) ∧ rollback) ⇒
(¬appfw-active U (�installed(F1)))

This is similar to Lemma 4, but handles rollback operations
that restore F1. If a rollback restores F1, then it must be rolling
back from an upgrade to F2, which means that no further
upgrades are possible within our model. Thus, this lemma does
not include an allowance for further upgrade operations, as is
the case in Lemma 4.

Lemma 6. The current audit log entry corresponds to the
installed application firmware whenever the application is
active.

appfw-active ⇒ cur-logent-matches-appfw

This states that the latest entry in the audit log is accurate
whenever the application is running, ensuring that no undetected
actions can be performed by the application. It does not verify
the mechanism that is responsible for actually inserting new
entries into the log and archiving old entries when the log
overflows. That mechanism is a short, isolated segment of
code in the implementation that can be manually verified. The
primary value of the model checker is in verifying portions of
the implementation that interact in complex ways with other
portions of the implementation and the environment.

The following theorem is used to verify that the fault-
tolerant application firmware upgrade mechanism operates
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as expected. We modeled non-deterministic power supply
interruptions that may occur at any point in the upgrade process.
The model checker exhaustively searched all combinations of
power supply interruptions, and verified that the application
firmware upgrade process always eventually succeeds as long
as the power supply interruptions do not continually occur
forever. Only one upgrade operation is modeled, because all
upgrade operations are handled similarly regardless of firmware
content. We tested this theorem on real hardware by pressing
the reset button repeatedly during an upgrade and verifying
that it still eventually succeeded, but of course we were not
able to exhaustively test all possible points of interruption as
the model checker did.

Theorem 2. Executing any application firmware upgrade op-
eration eventually results in the expected application firmware
images being cached and installed when the application is
subsequently activated, regardless of how many times the
processor is reset during the upgrade process, if the processor
does not continually reset forever.

¬�♦rebooted →
(¬appfw-active U (installed(F1) ∧ cached(F0)))

The initial state for the model checking run of Theorem 2
represents the system running application firmware F0 after an
upgrade to F1 has been cached and is about to be committed.

The following theorem is used to verify that the fault-tolerant
persistent configuration data storage mechanism used by the
kernel exhibits correct behavior. As in the previous theorem,
non-deterministic power supply interruptions are modeled at
every transition point in the model. We model only a single
store-commit sequence, because all persistent data is handled
identically regardless of identity and content. We tested this
theorem on real hardware by setting breakpoints at critical
locations in the filesystem code and forcing the processor to
reset at those locations. Again, the model checker provides
exhaustive testing, which is superior to our manual tests.

Theorem 3. The filesystem correctly handles any transaction,
regardless of how many times the processor is reset during
a transaction, as long as the processor does not continually
reset forever.

Proof. We must show that transactional semantics are provided
whether or not the transaction is interrupted prior to a critical
point. The critical point occurs when the processor executes the
instruction that invalidates γ2, as shown in Listing 2. Lemma
7 checks transactions that are interrupted prior to the critical
point and Lemma 8 checks all other transactions. �

Lemma 7. Executing on FS any filesystem transaction that is
intended to update files according to $ ⊂ FN × FD results in
FS by the time the filesystem is subsequently initialized if the
transaction is interrupted prior to the critical point.

(¬�♦rebooted ∧ ♦aborted(PreCritical)) →
(♦sff-inited ∧ (sff-inited ⇒ �sff-unchanged))

Lemma 8. Executing on FS any filesystem transaction that
is intended to update files according to $ ⊂ FN × FD
results in $ ∪ {(ν, δ)|(ν, δ) ∈ FS ∧ (¬∃η.(ν, η) ∈ $)} following
the successful completion of the transaction if it is first
interrupted after the critical point or is not interrupted at all.
It must achieve this by the time the filesystem is subsequently
initialized or the processor is halted, whichever comes first.
The processor must eventually halt.

(¬�♦rebooted ∧ ¬♦aborted(PreCritical)) →
(♦halted ∧ ((halted ∨ sff-inited) ⇒ �sff-as-expected))

VII. CAC Design and Evaluation

Flash MCUs with too little memory to fit a full CAK can use
a simpler kernel that offloads much of the security functionality
to a CAC. The CAC includes cryptographic primitives, limited
storage for an audit log of the firmware revisions installed on
the main microcontroller, and a communications subsystem
for interacting with the kernel. Note that a CAC-based system
does not provide security and functionality identical to that of
a CAK-based system, but the CAC shares many parts of its
design with the CAK. Rather than repeating information from
previous sections, we simply discuss where the CAC-based
system differs from one based on a CAK.

A. Security Coprocessor

Offloading security functionality onto a separate security
coprocessor introduces additional challenges that must be
overcome by the design. First, although our threat model does
not address physical attacks in general, the communication
channel between the CAC and kernel may be particularly
vulnerable to eavesdropping and manipulation by attackers,
e.g., using logic analyzers. Furthermore, on the types of
microcontrollers we target, it is not possible to prevent the
untrusted application from communicating in arbitrary ways
with the CAC since the application has full access to the control
registers associated with the serial interface. Thus, certain
portions of the data communicated between the kernel and
CAC are encrypted using a symmetric key that is established
when the system is first commissioned. We use 128-bit
AES encryption in Counter CBC-MAC (CCM) mode, which
provides confidentiality and authentication at the expense of
two blocks (32 bytes) of overhead per message [25].

Second, the CAC and main microcontroller can potentially
operate in parallel, and a defective kernel may issue commands
in an invalid manner when they are not expected by the CAC.
Both the timing and ordering of commands may be significant.
To address timing vulnerabilities, commands that modify the
internal state of the CAC are declared to be non-preemptible.
The CAC must not receive any command while executing
a non-preemptible command. If this assumption is violated,
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it indicates a severe error in the system’s trusted computing
base, and is recorded as such in the audit log. Such an error
would either indicate a transient electrical error or the presence
of a design or implementation flaw in hardware or software.
The latter could require invasive system repair or replacement.
Preemptible commands are assigned a lower priority than non-
preemptible commands, to ensure that attackers are unable to
launch a time-consuming preemptible command that could then
block a critical non-preemptible command issued a short time
later, possibly preventing a firmware upgrade or compromise
event from being recorded. However, a preemptible command
is unable to preempt another preemptible command that is
already executing. A command is permanently cancelled when
it is preempted.

To prevent incorrect command interleavings, the explicit state
variable σCAC is used to determine what commands can be
accepted without error by the CAC at each point in time. σCAC

is analogous to σ, but the “Testing Upgrade” and “Waiting for
Heartbeat” states are not applicable.

When the CAC is initialized after a reset, it must ensure
that any aborted transactions are cleaned up. It does this by
checking σCAC, and if it is in the “Upgrading” state, indicating
that the firmware hash accumulator was partially initialized but
never committed, it records an “Upgrade Aborted” event in the
audit log, to indicate that the main microcontroller’s firmware
is in an unpredictable state. It then clears the accumulator and
transitions to the “Idle” state.

Many of the CAC commands manipulate the audit log or
other variables stored in flash. Thus, their operation could be
undermined if the CAC lost power after the command was
received but before the associated modifications to memory
could be completed. Fault-tolerance techniques like those used
in CRAESI could be applied in this situation.

The CAC has a simple interface to the main microcontroller
that allows the main microcontroller to request attestation oper-
ations and submit firmware updates for auditing, as previously
described. The firmware provides software implementations
of the necessary cryptographic routines, specifically SHA-1
hashing, ECC public-key cryptography, ECDH, and AES-CCM.

The total firmware image running on the CAC requires
24,346 bytes of flash program memory and 820 bytes of
EEPROM.

B. Main Microcontroller

The main microcontroller is the coordinator of the entire em-
bedded system. The microcontroller is configured to grant the
kernel control over the microcontroller when it is first powered
on or subsequently reset. The initialization routine is depicted
in Listing 6. First, it attempts to establish communication with
the CAC. After acquiring the symmetric key from the CAC if
required, the kernel transmits the entire application firmware
image to the CAC, which then ensures that the hash of that
firmware is the latest entry in the CAC’s audit log. The kernel
then invokes the application.

The application firmware upgrade process is implemented
using an external flash memory, since permitting the application
to perform writes to the built-in flash memory (program

Fig. 8: Hardware prototype of CESIum.

memory) would permit the application to execute unaudited
code and since the data RAM is too small. The application
must simply write the new firmware data to the external flash
memory and then set a specific location in external flash to
a special value. It then resets the microcontroller to invoke
the kernel. Every time the kernel starts, it checks that location
in flash to see if an upgrade has been requested. Regardless,
the kernel then sequentially reads each page of application
program memory. If an upgrade has been requested, it then
compares that page to the corresponding page read from the
external flash. If they differ, the kernel writes the external flash
data over the page in the program memory.

C. Hardware Implementation

Our prototype comprises two interconnected circuit boards,
which are depicted in Figure 8. The board on the left is
the Atmel ATSTK500 prototyping kit with an ATmega644V
microcontroller, the CAC. The second board is the Atmel
ATSTK600 prototyping kit with a daughtercard containing
an ATmega2560 main microcontroller. The ATmega2560 has
256KiB of program memory, but we only use 8KiB for the
kernel and 32KiB for the application. Each board has an RS-
232 serial port, which is used to implement communication
between the main processor and the CAC at 115,200 bps. The
STK600 also includes an SPI-accessible Atmel AT45DB041B
4Mbit flash memory chip, which serves as the external flash
memory.
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Listing 6 Initialize main microcontroller upon system reset. Network communications between the main microcontroller M
and the CAC C are included.

procedure Boot
M

init
−−→ C

M
α
←− C

if α = newkey then . The CAC needs to send a new key.
M

κ
←− C

end if
υ← ExternalFlash[UpgWaiting]
for i ∈ (0, . . . , |BuiltInProgMem|) do . Handle each page of program memory.

π← BuiltInProgMem[i]
if υ = True then . The application requested an upgrade.

πupg ← ExternalFlash[i]
if π = πupg then . The upgrade firmware page data matches the existing firmware page data.

M
extend({π}κ)
−−−−−−−−→ C . Extend the CAC’s firmware hash accumulator. Encrypt the page data.

else
BuiltInProgMem[i]← πupg . Upgrade the firmware page.

M
extend({πupg}κ)
−−−−−−−−−−→ C

end if
end if

end for
M

commit
−−−−−→ C . Commit the firmware hash to the audit log if it is different from the latest entry.

end procedure

D. Firmware Implementation

The AVR architecture has several characteristics that in-
troduce a variety of security challenges for the kernel. We
highlight these by outlining several possible attacks, and also
present the countermeasures that the kernel uses to detect or
prevent all such attacks.

a) Installing unaudited code: The AVR architecture can
be configured to only permit code in the kernel to modify
the program memory, but it does not permit the kernel to
restrict its entrypoints. The application can directly invoke
any instruction in the kernel. The kernel necessarily contains
at least one SPM instruction (for “store program memory”)
that writes to a location in program memory or performs
other flash configuration actions. Thus, a malicious application
can directly jump to an SPM instruction, bypassing the kernel
auditing mechanisms that ordinarily precede firmware upgrades.
It may also be possible for the application to manipulate the
stack using Return-Oriented Programming (ROP) so that the
application regains control soon after the flash is written [18].
Since the AVR uses both 16- and 32-bit instructions with
16-bit address granularity, it is even possible that attackers
could target ROP “gadgets” starting with the latter half of a
32-bit instruction that happens to have the bit pattern of an
SPM instruction. Similar attacks have been devised for the x86
architecture [26]. Persistent data in the program memory can
also be executed as instructions. Such attacks could lead to the
execution of unaudited code.

To detect this sort of attack, we actually detect the unau-
thorized control flow. We devised a lightweight Control-Flow
Integrity (CFI) enforcer that is capable of detecting attacks with
high probability. More general CFI enforcers have previously

been developed for other architectures [27]. The kernel only
has a single authorized entrypoint, its reset vector, so all valid
control flows must proceed from there. The kernel reset vector
copies a 64-bit CFI secret to a specific location in data RAM,
and the kernel clears all RAM and registers before transferring
control to the application to prevent direct disclosure of kernel
secrets. Thus, to determine whether a particular control flow is
valid, it is necessary to check for the presence of the CFI secret
in data RAM. Such a check is also sufficient to validate the
control flow iff the CFI secret is actually safe from disclosure.

The kernel must perform a CFI check after any operation
that could either lead to the disclosure of a kernel secret or
to a modification of the program memory. It is necessary to
perform a check after every SPM instruction in the kernel, and
there are many other security-critical locations in the kernel
that we discuss below.

Interrupts could also be used to steal control back to
the application. However, this is prevented by setting the
AVR lock bits, which are enforced by the hardware, to
automatically disable interrupts when control is transferred
to the kernel section. These bits are configured as soon as
the main microcontroller establishes a key with the CAC,
which occurs before the application ever obtains control of the
microcontroller. These bits are also configured to prevent the
bootloader from modifying its own program memory, which
would otherwise permit an attacker to modify the bootloader.

b) Reading kernel secrets: A malicious application could
leverage two of the kernel’s secrets to perform further attacks.
First, it could forge arbitrary firmware measurements if it
obtained the symmetric key used to secure communications
with the CAC. Second, it could undermine the CFI checks if
it obtained the CFI secret. The AVR lock bits also prevent the
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application from reading kernel program memory, so the only
possible way for a malicious application to read the secrets
is to leverage instructions present in the kernel itself, using
control-flow attacks. To detect such attacks and prevent them
from succeeding, the kernel performs a CFI check after each
instance of the ELPM instruction, which stands for “extended
load program memory.” That is the only instruction that can
directly ready from the kernel program memory. However,
other instructions can potentially leave traces of secret data
in registers or data RAM, so it is necessary to guard such
instructions on a case-by-case basis for each particular kernel.
There is another related threat that is more subtle. It is possible
for the kernel to contain an ELPM instruction in a loop that can
be manipulated in such a way as to load the CFI secret into
the appropriate region of data RAM and thus pass CFI checks
and potentially disclose the entire CFI secret. We place the
CFI check inside the loop to detect such attacks. This results
in a worst-case scenario of the attacker causing the kernel to
load at most one byte of the CFI secret from kernel program
memory prior to the CFI check being performed, which does
not substantially increase the attacker’s probability of passing
the CFI check and does not result in the disclosure of any part
of the CFI secret.

The attacker could potentially manipulate the very routine
that checks the CFI secret in memory in an attempt to discover
the secret. For example, consider a routine that loads a
copy of the correct CFI secret into memory or registers and
neglects to clear that state prior to returning. If the routine
were implemented as a loop, the attacker could potentially
manipulate the loop control variables to cause the routine to
terminate early, before checking the entire CFI secret. Then, the
attacker could retrieve the copy of the CFI secret from registers
or memory. To avoid such complexities, our prototype does
not use a loop, but instead embeds each byte of the CFI secret
into a separate comparison instruction. It is still possible that
the attacker can gain partial knowledge of the CFI secret with
a much higher probability than it would have of guessing the
entire secret value at once, by jumping straight to a comparison
instruction near the end of the sequence of comparisons. The
attacker could then leverage knowledge gained in that way
to partially initialize the CFI secret in data RAM prior to
performing further guesses. However, the overall probability
of guessing the entire secret using such a process is the same
as performing a single guess, since every byte is generated
randomly. The attacker must possess the entire CFI secret
(except perhaps one byte, as discussed earlier) to avoid detection
during control-flow attacks that read other kernel secrets or
modify flash memory. Furthermore, any failed guesses will
cause the kernel to record an event.

c) Corrupting kernel state: The attacker could attempt
to undetectably corrupt kernel state by preventing the kernel
from fully initializing, or by manipulating the stack pointer to
cause the kernel to overwrite its own data. In the first case,
the attacker could initialize registers and memory such that
if it subsequently jumped to a location near the beginning of
the kernel initialization routine, that routine would initialize
the in-memory CFI secret and perhaps selected other kernel
memory, but not the entire kernel memory. The attacker could

Module Lines of Code

Kernel 598
Coprocessor 1487
Crypto 6141
TOTAL 8226

TABLE IV: Lines of C code in each component.

also initialize the locations that are not overwritten to obtain
advantage. The kernel leverages the fact that once it has control
in its initialization routine, it can maintain that control long
enough to verify that the entire memory has been properly
initialized after the initialization routine completes.

The malicious application could carefully set the stack
pointer prior to transferring control to the kernel so that
the kernel overwrites its own data in subsequent operations
and potentially compromises its CFI. The kernel places code
inline with the security-critical routines to transition to a stack
at a fixed location in memory to prevent such attacks from
succeeding.

There is a chance that the symmetric key used to secure
communications with the CAC contains the sequence of bytes
for some arbitrary instructions, including security-critical ones,
but the presence and location of such a sequence would be
unpredictable to the attacker. It is also straightforward to detect
problematic keys at the time they are established if this is a
concern.

When an attack has been detected, the kernel sets a flag in
EEPROM and immediately forces the processor to reset, since
it has few guarantees about how the processor is configured at
that point in time. After resetting into a good configuration, the
kernel detects the flag in EEPROM and notifies the CAC, which
records a special value in the audit log to indicate the event.
It then also records the hash value of the modified application
firmware. The application also has access to the EEPROM, so
it could trigger a false attack notification. However, it never
obtains control of the processor between the time that the
kernel sets the attack flag in EEPROM and when it notifies
the CAC, so it is unable to prevent an attack notification from
being sent in that way.

The kernel requires 8,090 bytes of program flash memory
out of 8,192 bytes available, and one byte of EEPROM. The
kernel only uses data RAM while it is active, so it does not
restrict the application’s data RAM usage in any way.

We developed a prototype application to demonstrate the
upgrade process and to demonstrate the feasibility of perform-
ing an attack by jumping straight to a flash programming
instruction in the kernel. The attack is detected properly by
the kernel.

The firmware for the CAC and the main microcontroller are
implemented in a modular fashion, and actually share some
code. Table IV provides a breakdown of the lines of C code
in each module. These numbers were generated from the raw
source code directories, which include debugging and unused
code. We exclude the drivers provided by Atmel.
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E. Performance Evaluation

We used a similar experimental configuration to the one we
used for evaluating the performance of CRAESI to evaluate
the performance of CESIum. The processor was powered using
a 2.0V unregulated power supply for these experiments, to
reduce energy consumption. Since CESIum is a coprocessor-
based system like the TPM-assisted system, it also consumes
power while idle. However, it only demands 1.6mW when idle.
The experimental results for various operations are presented
in Figure 9. As for CRAESI, some of operations are not
directly comparable. In particular, no direct analogue for the
“Record external event” operation in CESIum exists for the
TPM-assisted system. These results actually correspond to a
slightly different version of CESIum. It was also compiled
using an older compiler with different settings, producing a
larger binary image. Thus, our performance results are likely
pessimistic. We actually exercised the functionality of the
CAC by connecting it to a PC over its serial link. The CAC
generated its 8MHz system clock using an energy-efficient
internal oscillator. The relative slowness of CESIum compared
to the TPM is reflective of its 8-bit processing and slow clock
rate.

We also tested the timing performance of the main microcon-
troller using a DMM with a one second sampling interval. We
performed a total of five test runs. The process of measuring
32KiB of firmware and performing the corresponding log
extension process for the initial firmware took an average
of 25.4 seconds with a standard deviation of 0.5 seconds.
The average time that the application required to initialize
the external flash memory with 256KiB of firmware and the
associated command value in preparation for an upgrade was
6.2 seconds with a standard deviation of 0.8 seconds.

VIII. RelatedWork

The Linux Integrity Measurement Architecture (Linux-IMA)
supports remote attestation of a Linux system. It uses a TPM
to record the configuration of the system and to provide a
signed copy of that configuration information to authorized
remote challengers [5]. It only maintains information about
the configuration of a system since it was last reset.

The Mobile Trusted Module standard supports the remote
attestation features provided by the TPM, as well as secure
boot functionality [28]. It also supports a small implementation
footprint and non-ASIC implementations, including software
implementations [29].

It is possible to use a TPM with a sensor node to support
remote attestation and other services [30]. However, that paper
does not discuss how to securely handle remote firmware up-
grades, which is substantially more challenging than performing
remote attestation of a static firmware image.

DataGuard detects when a data object is overflowed by first
causing the application to initialize canary values surrounding
data objects using seed data that is deleted from the sensor
node immediately after initialization, and then permitting the
verifier to perform remote attestation by demanding that the
sensor node produce the canary values [31]. Since the seed
data is no longer available to the sensor node at the time of

Fig. 9: A performance comparison of TPM-assisted and
CESIum-based remote attestation.

attestation, a compromised node that was infected using a
buffer overflow will be unable to produce the canary values.
However, this assumes that the application is initially trusted
to not store the seed data, which is a weaker threat model than
the one we apply to CRAESI and CESIum.

As an alternative to attesting the code currently installed
on a sensor node, it is also possible for a sensor node to
prove to a remote verifier that it has securely erased all of
its code, which can then be used as a foundation for proving
that it has subsequently installed specific new code [32]. This
approach requires that the code to coordinate that process be
installed in ROM. It also requires that the sensor node not
offload computation during attestation, making it more narrowly
applicable than CRAESI and CESIum.

Attempts to perform ROP can be detected with high
probability by requiring all return addresses to be stored
redundantly in encrypted form on the stack [33]. However, it
is not necessary to use such a complex scheme in CESIum, as
we have demonstrated. Furthermore, it is necessary to consider
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several complex ways in which attackers can manipulate kernel
code to bypass CFI enforcement and potentially steal kernel
secrets that can be leveraged in future attacks.

SWATT is an approach to verify the memory contents of
embedded systems [34]. Its basic operating model assumes that
the external verifier knows the precise type of hardware installed
in the embedded system to be verified, that the network exhibit
low jitter, and that the system being verified not be able to
offload computation to an external device. Embedded systems
often operate on networks where the latter two assumptions is
not valid. It provides no intrinsic assurances of the continuous
proper operation of embedded systems. Other potential pitfalls
have been identified for attestation approaches on embedded
systems that involve software, and CRAESI and CESIum both
avoid those pitfalls [35].

The ReVirt project has shown that it is feasible to maintain
information on the execution of a fully-featured desktop or
server system running within a virtual machine that is sufficient
to replay the exact instruction sequence executed by the system
prior to some failure that must be debugged [36]. DejaView uses
a kernel-level approach to process recording to allow desktop
sessions to be searched and restarted at arbitrary points [37].
It is conceivable that these techniques could support a CAK
for desktops and servers, although it may not be feasible to
store cumulative information for a long enough period of the
system’s life to be useful.

Attested append-only memory maintains a cumulative record
of logged kernel events in an isolated component to increase
the proportion of attackers that can be safely tolerated within
Byzantine-fault-tolerant replicated state machines [38]. Their
architecture proposals are oriented towards server applications,
but the paper provides examples of how attested information
besides application firmware identity can be useful. The Trusted
Incrementer project showed that the trusted computing base
for attested append-only memory and many other interesting
systems can be reduced to a simple set of counters, cryptog-
raphy, and an attestation-based API implemented in a trusted
hardware component [39]. A CAK could be adapted to provide
similar functionality in firmware with a potentially different
threat model.

SCUBA is a software-based system for recovering sen-
sor nodes that have been compromised with malicious
firmware [40]. It is based upon a revised version of the Pioneer
primitive [41], and uses self-checksumming code to construct
an Indisputable Code Execution (ICE) environment, which
allows a remote party to ensure that a specific code image
is atomically executed on a remote sensor node. In SCUBA,
the particular code image that is used has the sole purpose
of installing a firmware image that is provided by the verifier.
Of course, the malicious firmware on the sensor node may
interfere with this update process, in which case the node must
be blacklisted and manually restored later. This scheme can
guarantee the atomic completion of the restoration operation,
but it does not provide any assurances about the past or future
operation of the node and exhibits many of the same limitations
as SWATT. Additionally, it requires the attacker’s hardware to
not be present in the network at the time of the restoration
process. However, if all these assumptions can be satisfied in

particular systems, SCUBA provides a useful technique for
remotely restoring a compromised node.

Our attestation kernels do not explicitly attempt to prevent
embedded system compromise or provide any mechanism for
securely deploying firmware updates. They only allow remote
verifiers to detect the presence of untrusted firmware during
the past execution of the system. However, recovering from
compromises can be expensive, so it is critical that compromises
be prevented whenever possible, using good coding practices
and any other applicable techniques, and that a secure update
mechanism be used to deploy firmware updates. Sluice uses a
progressive verification scheme to efficiently propagate updates
in a secure manner by constructing “pipelines” of nodes
that sequentially propagate small portions of updates after
individually verifying their origin and integrity [42]. No updates
are applied until being verified, which helps to prevent some
battery-stealing attacks that exploit the energy-intensive nature
of flash memory updates.

One primary factor leading to the security issues in hardware
CACs is the complexity of their APIs [43]. To ease analysis
and reduce the incidence of vulnerabilities our designs export
very simple APIs. We have analyzed the security of CRAESI
using a model checker.

A previous methodology for modeling faults that can occur
in systems and verifying that the systems tolerate those faults
using a model checker only gives examples of logical faults,
such as dropped messages [44]. We analyze the tolerance
of CRAESI against physical faults, such as power supply
interruptions.

Many operating systems have been formally verified to
varying degrees [45]. The seL4 project is notable in that it
resulted in verification of a microkernel down to the level
of C source code, although the correctness of the compiler,
assembly language code, and certain other components was
assumed [46]. The total effort required to construct the proof
was about 20 person-years, although the seL4-specific portions
of that effort required only 11 person-years. The functionality
to tolerate physical faults that is included in CRAESI has no
analogue within seL4.

IX. Conclusion

We present requirements for cumulative attestation kernels
and coprocessors for flash MCUs to audit application firmware
integrity. Auditing is accomplished by recording an unbroken
sequence of application firmware revisions installed on the
system in kernel or coprocessor memory and by providing a
signed version of that audit log to the verifier during attestation
operations. We have shown that this model of attestation is
suitable for the applications in which sensor and control systems
are used, and proposed a design for an attestation kernel that
can be implemented entirely in firmware. CRAESI is cost-
effective and energy-efficient for use on mid-range 32-bit flash
MCUs, and can be implemented without special support from
microcontroller manufacturers. We used a model checker to
verify that CRAESI satisfies important correctness and fault-
tolerance properties. CESIum is suitable for use with low-end
8-bit flash MCUs.
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