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ABSTRACT
One of the greatest challenges an organization faces is deter-
mining when an employee is permitted to utilize a certain
resource in a system. This “insider threat” can be addressed
through two strategies: i) prospective methods, such as ac-
cess control, that make a decision at the time of a request,
and ii) retrospective methods, such as post hoc auditing, that
make a decision in the light of the knowledge gathered af-
terwards. While it is recognized that each strategy has a
distinct set of benefits and drawbacks, there has been lit-
tle investigation into how to provide system administrators
with practical guidance on when one or the other should
be applied. To address this problem, we introduce a frame-
work to compare these strategies on a common quantitative
scale. In doing so, we translate these strategies into classi-
fication problems using a context-based feature space that
assesses the likelihood that an access request is legitimate.
We then introduce a technique called bispective analysis to
compare the performance of the classification models under
the situation of non-equivalent costs for false positive and
negative instances, a significant extension on traditional cost
analysis techniques, such as analysis of the receiver operator
characteristic (ROC) curve. Using domain-specific cost es-
timates and access logs of several months from a large Elec-
tronic Medical Record (EMR) system, we demonstrate how
bispective analysis can support meaningful decisions about
the relative merits of prospective and retrospective decision
making for specific types of hospital personnel.
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1. INTRODUCTION
A fundamental tradeoff in authorization pits making a de-

cision prospectively, before access is granted, against mak-
ing a decision retrospectively, when an audit is carried out.
Much of the work on access control has focused on the
prospective decision making, but it has often been pointed
out [15, 20] that retrospective decision making, in which
users beg for forgiveness rather than permission, has some
significant advantages. In many applications: (1) it is diffi-
cult to determine what access a user requires in advance, (2)
denying access to a user with a legitimate need could result
in significant inconvenience, expense, or loss, (3) most users
are responsible and can be trusted to access resources for le-
gitimate reasons, and (4) accountability (such as disciplinary
action) is effective in deterring abuses. An iconic example
of such a situation is access to patient records in Electronic
Medical Record (EMR) systems, where (1) hospital work-
flows are complex and commonly involve emergencies and
unexpected events, (2) lack of timely access could result in
the loss of a patient’s life, (3) most healthcare providers are
highly trained and ethical professionals, and (4) there are
strong penalties for abuse. These four criteria (and oth-
ers, such as the ability in certain cases to roll back an ille-
gitimate action) provide a good qualitative story for when
retrospective decision-making based on audit may be bet-
ter than prospective decision-making based on preventing
access to a resource. We see the phenomena in many non-
computer contexts already. For example, a red light tells a
driver not to cross an intersection, but it does not prevent
the driver from crossing it. On the other hand, there are in-
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stances where retrospective techniques are inadequate or too
risky: the honor system may not be sufficient if the stakes
for abuse are too high and the effectiveness of accountability
is too low.

Given the recognition that retrospective techniques will
have their place, we are led to ask: is there any system-
atic way to determine when retrospective techniques are
better than prospective ones? Ideally this would be done
quantitatively by measuring the tradeoff between the risks
of addressing an abuse at audit time versus denying access
to user when it is requested. If we accept the idea that
the implementation of access control provides, in general,
only an approximation of the desired access rules, then we
may be able to quantify the rules with a Receiver Operating
Curve (ROC) that compares false positives to true positives
(a technique commonly used already for biometric authen-
tication systems [18]). Better decision making then means
better Area Under the ROC Curve (AUC) values. For ex-
ample, if we are able to estimate that a prospective access
control system gives proper access 95% of the time (true
positives), but only if we accept that 10% of the time it
will grant access where access should not have been granted
(false positives), then we are on the path to quantify whether
one type of prospective access is better than another. How-
ever, this does not offer a clear way to compare prospective
techniques with retrospective ones. The latter, which can
use information from both before and after a user has ac-
cessed a record, is expected to have better AUC values. The
problem is that we do not have a cost model that allows us
to judge tradeoffs between a pair of ROCs.

The aim of this paper is introduce a technique called bis-
pective analysis that can be used to compare prospective and
retrospective techniques for access control by a model that
accounts for the different costs associated with false positives
and negatives associated with each model. This is accom-
plished by weighting the ROC models for prospective and
retrospective techniques by their costs and, subsequently,
combining these in a way that enables direct comparison
to see which is better in which circumstance. The primary
contributions are:

• A Novel Cost Analysis Technique We devise a
novel cost comparison method called bispective analy-
sis that allows for an explicit comparison of classifica-
tion models with different costs. Once provided with
the knowledge of the variables (i.e., the costs of false
positive and false negative for prospective model, the
costs of false positive and false negative for retrospec-
tive, and the receiver operator characteristic (ROC)
curves for both models), bispective analysis allows ad-
ministrators to calculate which is the better option.
Moreover, bispective analysis provides insight about
the distribution of results under varying cost mod-
els, such that administrators can make decisions when
their confidence in the variables is uncertain (e.g., only
a range of costs are known or only partial costs are
known).

• Classification Models for Prospective and Ret-
rospective Security We develop a technique to rep-
resent and evaluate both prospective and retrospective
models. To do so, we translate the context associ-
ated (e.g., other users who accessed a record, when
the access was committed, and where the entity asso-

ciated with the record was located) with each access
into a vector space representation. We then subject
such vectors to a classical machine learning model to
build classifiers. In this way, prospective model and
retrospective model are mapped to a common frame-
work, such that comparable results can be generated.
In addition, due to its simplicity and compactness in
representation, this technique is scalable and adapt-
able to most information systems.

• Empirical Analysis and Case Study We illustrate
how to apply bispective analysis to analyze tradeoffs
for a large urban hospital system based on its EMR
audit logs to provide assessments for various positions
at the hospital. We deploy prospective and retrospec-
tive models implemented by the proposed technique in
this system, and then obtain detection results (i.e, false
positive rate, false negative rate) respectively. With
bispective analysis and our detection results, we con-
duct illustrative case studies about the model selection
with different assumptions on costs. In doing so, we
assess how the model plays out for ten care provider
positions in the system. The results show how cost
weighting can yields different guidance in comparison
to a standard ROC analysis.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a survey of cost-driven security models and
comparison methods for classification methods. Section 3
describes foundational concepts, cost function, ROC curve
and traditional cost analysis methods, including ROC con-
vex hull methods and cost curves. Section 4 introduces bis-
pective analysis. Section 5 presents the dataset preparation
and experimental design. Section 6 introduces analysis on
dataset by traditional methods. Section 7 presents exper-
iment with bispective analysis on dataset and case studies
showing the application of bispective analysis in real envi-
ronment. Section 8 discusses potential extensions and varia-
tions of the proposed technique and some limitations of this
work. Finally, Section 9 concludes the paper and suggests
next steps for extending this work.

2. RELATED WORK
In this section, we review how existing cost-based security

models differ from our work. We then review methodologies
to compare classification models and the limitations asso-
ciated with applying them to the prospective versus retro-
spective model analysis.

2.1 Cost-based Security Models
According to the National Institutes of Standards and

Technologies [6], organizations should rate their informa-
tion systems in terms of risk across three class: i) low, ii)
medium, or iii) high. An organization should then adopt
their security protections proportional to such risk. How-
ever, the selected security control may not be appropriate
in that the rating for impact is highly subjective.

To reduce subjectivity in decision making, several risk-
based strategies have been suggested for information secu-
rity management. In particular, based on the recognition
that business processes are often disrupted by static and
rigid policies, many of these strategies are focused on access
control. Here we review the approaches most related to our
own. First, [5] proposed an adaptive access control model
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to balance the tradeoff between risk and utility in dynamic
environments. They create a system that encourages infor-
mation sharing among multiple organizations while keeping
its users accountable for their actions and capping the ex-
pected damage an organization could suffer due to sensitive
information disclosure. In relation to our own work, they in-
troduce a method to compute the expected risk based on 1)
the uncertainty and 2) the cost associated with an incorrect
decision. Second, [13], introduced a policy-based access con-
trol model to infer a decision for an incoming access. This
is achieved by training classifiers, using machine learning,
on known decisions and subsequently inferring the new de-
cision when there is no exact matching pattern. By doing
so, each access decision is assigned a certain degree of risk.
Third, [21] introduced the Benefit and Risk Access Control
(BARAC) system, which identifies a set of correlated ac-
cess requests as a closed system. Based on this system, this
method uses a graph-based model to make a decision for each
access, such that the cost of the entire system is minimized.
All of these lines of research are significantly different from
our own in that they focus on decisions between prospective
access control models with constant misclassification costs,
whereas we investigate a decision between prospective and
retrospective models with varying costs.

2.2 Comparison of Classification Models
There are a number of performance measures that can be

applied to assess the robustness of a classification model. For
instance, one could assess the accuracy; i.e., the proportion
of total instances that are correctly labeled by the model.
However, accuracy is a biased assessment because it assumes
that false positives and negatives occur at the same rate and
are equally costly. As such, a more nuanced strategy for as-
sessing classification models is to measure the ROC under a
range of acceptance levels for false positive and false nega-
tive thresholds. In doing so, the AUC indicates the agility of
a classifier, where the “best” classifier is the one that maxi-
mizes this value. The AUC has been invoked as a common
approach for assessing various classification models for in-
formation security, such as intrusion detection systems (e.g.,
[12]), malware detection (e.g., [11]), and auditing techniques
for EMRs (e.g., [1]). We recognize the relevance of machine
learning (for which AUC is a popular evaluation measure),
for information security has been questioned [19]. Yet, we
stress that our goal is to assess how misclassification costs,
rather than the machine learning algorithm itself, influence
information security decisions. AUC also has serious defi-
cencies in itself, 1)it is misleading when ROC curves cross
and 2) it makes an unrealistic assumption on costs [8].

[16] proposed using a method to analyze the ROC convex
hull to compose a dominant classification strategy over a
set of classifiers and class frequencies (in the form of prior
probabilities). This method begins by constructing a convex
hull from all ROC curves (classifiers) to be compared, and
then determines which point in the convex hull corresponds
to the least overall cost, given the costs of each classifier and
prior probabilities. A key advantage of this method is that
it needs only the ratio of costs and ratio of class frequencies
to compose the optimal classifier, such that it is robust to a
changing environment.

Subsequently, [7] introduced an alternative to traditional
ROC analysis, which is called a cost curve. In this model,
the expected cost of a classifier is represented as a function

of costs and class frequencies, such that the expected cost
can be computed explicitly. A cost curve provides several
benefits over the traditional ROC convex hull, including:
1) given specific cost estimates and prior probabilities, it
is easy to “read-off” the expected cost, 2) it is immediately
clear which, if any, classifier is the dominant strategy, and
3) it is straightforward to determine how much one classifier
outperforms another. Building on this work, [8] introduced
an approach to compares classifiers by computing their ex-
pected overall cost, in terms of a unified assumption on the
probability density function of the costs of false positives
(negatives).

However, in all of these techniques, it is assumed that the
costs (or cost distributions) of false positive (false negative)
for both classifiers are equivalent. Yet, this is clearly not
the case in our situation, which implies that such strategies
could incorrectly select a model. In fact, we verify this to
be the case in our empirical analysis.

3. PRELIMINARIES
This section begins by reviewing basic concepts in classi-

fier performance evaluation that are relevant to our strategy.
Next, we introduce the definition of the cost of a classifier.
This is followed by a review of the concept of an ROC curve,
and several ROC-based comparison methods for classifiers.
Finally, we review the notion of context, which is used in the
implementation of our prospective and retrospective models.

3.1 Basic Concepts
The application of a classifier to a test instance results

in either a correct or an incorrect decision. To assess the
performance of a classifier, we consider the rates of these
results over a set of cases. In doing so, the following sim-
ple measures are relevant: 1) True Positive Rate (tpr): the
fraction of positive samples correctly classified; 2) False Neg-
ative Rate (fnr = 1− tpr): the fraction of positive samples
misclassified; 3) True Negative Rate (tnr): the fraction of
negative samples correctly classified; and 4) False Positive
Rate (fpr = 1− tnr): the fraction of negative samples mis-
classified. Finally we report 5) Accuracy: the fraction of all
samples correctly classified.

For orientation, it should be made clear that false posi-
tive and negatives have different implications (and thus dif-
ferent costs) in prospective and retrospective systems. In
the prospective system, a false positive indicates the system
approves an illegitimate access, while a false negative indi-
cates the system denies access to a legitimate request. In the
retrospective system, a false positive indicates that no inves-
tigation is performed for an illegitimate access, while a false
negative means the system recommends an investigation for
a legitimate access.

3.2 Cost Function
The cost of a classifier can be represented by Equation

1 [16]. Let π1 and π0 be the prior probabilities of positive
and negative cases, respectively, such that π0 = 1 − π1.
Let p10 and p01 be the fnr and fpr, respectively. And, let
c10 ∈ (0,∞) and c01 ∈ (0,∞) be the associated costs for the
fnr and fpr, respectively. In the remainder of this paper,
we refer to c10 and c01 as the false negative cost and false
positive cost, respectively.

cost = π1p10c10 + π0p01c01 (1)
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3.3 ROC Curve
The result of a probabilistic classifier is dependent on its

parameterization. For example, the näıve Bayes classifier
incorporates a threshold for the probability with which it
claims a class label (e.g., negative versus positive) corre-
sponds to a certain instance. Traditionally, the result of
a classifier is represented by a (fpr, tpr) pair. The ROC
curve can be obtained by plotting these pairs with respect
to a range of parameterizations of the classifier. And, the
AUC [2] is a commonly used measure for the evaluation of
classification models. The larger the AUC of a classifier, the
better its performance.

Now, in this setting, a classifier A is said to dominate
another classifier B if for any point (fprA, tprA), there exists
a point (fprB, tprB), such that tprB > tprA and fprB <
tprA. For example, in Figure 5(a), it can be seen that the
ROC of the retrospective model dominates the ROC of the
prospective model.

Given any combination of π1, π0, c10 and c01,MIN(costA)
< MIN(costB) will be true if A dominates B [16], where
MIN(costX) is the minimal value of cost over the ROC
curve of classifier X. This proposition is true because the
ROC of A forms the convex hull for both A and B, and
the point (fpr, tpr) that minimizes cost, for any combina-
tion of π1, π0, c10 and c01, is only located on the convex
hull [16]. As noted in Section 2.2, a premise for the convex
hull method is that the cost of a false positive (negative)
is equivalent for both classifier A and B. However, as we
will show in our empirical analysis, selecting security mod-
els by identifying dominance is inappropriate in situations
for which this premise fails to hold.

3.4 Cost Curve
In this section, we review the cost curve introduced in

[7]. As mentioned in the previous section, the cost curve
retains all the merits of the ROC curve, but provides for
several notable benefits. Though it is also hampered by
the assumption of equivalent costs (as mentioned above), it
serves as a foundation of our cost analysis.

Given estimates for π1, c10, π0 and c01, we can discover
a point on the ROC curve to minimize cost. It has been
proven that only W = π0c01

π1c10
is needed to determine the

point (1− p̄10, p̄01) of ROC that can minimize cost[16].
[7] introduced the concept of a normalized expected cost,

which is defined in equation 2. (π1c10 + π0c01) in Equa-
tion 2 is the maximized cost because it indicates both p10
and p01 are equal to 1. In other words, the classifier has
misclassified all samples. Thus, computing normcost cor-
responds to normalizing cost into the (0,1) range. In this
model, (1 − p̄10, p̄01) in the ROC minimizes normcost as
well.

normcost =
π1p10c10 + π0p01c01

π1c10 + π0c01

= p10 · 1

W + 1
+ p01 · W

W + 1

= p10 · (1−K) + p01 ·K

(2)

From Equation 2, we can stateK =W/(W+1) = π0c01/(π1

c10 + π0c01), which means K and W constitute a one-to-one
mapping. So, the values for p̄10 and p̄01 can be determined
by K. Thus, the minimized normcost, denoted by norm-
cost∗(K), can be represented by Equation 3. [7] provides
a detailed method for deriving the curve of normcost∗ (i.e.,

the cost curve). We directly employ this method when a
computation of normcost∗ is required, but, due to space
limitations, we refer the reader to [7] for the details.

normcost∗(K) = p̄10 · (1−K) + p̄01 ·K (3)

K can be interpreted as the false positive cost ratio. In-
formally, this corresponds to the proportion of cost resulting
from false positives.

3.5 Context
In this paper, we refer to the access event that is under

review as the target. This event can be associated with a
wide range of semantics, which we call the context around
the target access. The access itself is a request to a resource
that is issued by a user, but there is a variety of contextual
information that surrounds the target.

We assume that the target access takes place in the midst
of a workflow, which we represent as a sequence of accesses,
such that each is associated with the same underlying re-
source. We will represent a workflow as ε = 〈e1, e2, . . .,
ei, . . ., el〉. For illustration, Figure 1 depicts a series of
accesses to a specific patient’s EMR from the point of ad-
mission to discharge from a hospital. Here, e3 is the target
access and the corresponding workflow is 〈e1,e2,e3,e4,e5,e6〉.
Context can be extracted from the target access itself (e.g.,
the time this access occurs). It can also be extracted from
the corresponding workflow (e.g, users participated in the
workflow). Note the availability of context in a workflow for
the prospective model and the retrospective model are dif-
ferent. The retrospective model can take advantage of the
entire workflow, while the prospective model can only take
advantage of the parts of the workflow that occur before the
target access.

Figure 1: An example of a workflow of accesses to
a patient’s medical record. Here, the target access
e3 is surrounded by a solid rectangle. The other ac-
cesses in the workflow are surrounded by a dashed
rectangle. Parts contained by brackets represent
context.

4. FRAMEWORK

4.1 Framework Overview
To orient the reader, Figure 2 provides a high-level view

of the proposed decision process for a specific user. As pre-
vious work shown [13], reliable access control policies (i.e.,
a prospective model) can be learned by a machine learn-
ing algorithm. We extend this notion for implementation
of both the prospective model and the retrospective model.
To do so, first, we extract workflows of targeted user from

ACM CCS, Scottsdale AZ, November 2014



a database of transactions. Next, we construct vectors from
the workflows to represent all accesses issued by the user.
For the prospective model, the vectors are composed of con-
textual information that occurs at or before the point of a
target access. For the retrospective model, the vectors are
composed of context observed at any time (i.e., before, at
or after the time of the target access). Next, the vectors are
subject to a standard machine learning framework to build
classifiers that are representative of prospective and retro-
spective models. Finally, a decision support system uses
the ROC curves for the classifiers and their associated costs
and returns an answer for which classifier (model) should be
adopted to manage this specific user.

Figure 2: An architectual view of the Bispective
Analysis

4.2 Decision Support

4.2.1 Bispective Analysis
As mentioned earlier, the prospective and retrospective se-

curity models are based on as machine learning algorithms.
Traditional methods (e.g., ROC analysis) for comparing clas-
sifiers work under the belief that the costs for false posi-
tives (false negatives) are equivalent. However, this premise
does not hold in the prospective versus retrospective secu-
rity decision. Thus, we propose an analytic method called
bispective analysis that extends cost curves to account for
classifiers with differing misclassification costs. As will be
illustrated, this method has a natural visual interpretation
that can facilitate the decision making process.

To begin, equations 4 and 5 provide formulations for the
overall cost of a prospective (P) and retrospective (R) model,
respectively.

costP = π1p
(P )
10 c

(P )
10 + π0p

(P )
01 c

(P )
01 (4)

costR = π1p
(R)
10 c

(R)
10 + π0p

(R)
01 c

(R)
01 (5)

These functions allow us to derive a comparison function to
compare the costs caused by the two models, denoted by

equation 6.

comp(P,R) = ln(
cost∗P
cost∗R

) (6)

Here, cost∗P and cost∗R correspond to the minimized overall
costs given: i) the false positive (negative) costs estimates
and ii) the prior distributions of positives and negatives. iii)
the ROC curves. When comp(P,R) > 0, the prospective
model incurs greater cost than the retrospective model (de-
noted by R � P). When comp(P,R) < 0, the retrospective
model incurs greater cost than the prospective model (de-
noted by R ≺ P). And, when comp(P,R) = 0, the prospec-
tive and retrospective models have equivalent costs (denoted
by R � P).

The comparison function contains too many variables to
be visualized in an interpretable manner. Thus, we reduce
the number of variables via a mathematical deduction in
Equation 7. Note we use the cost curve normcost∗(K) in
Equation 7. It can be seen that comp(P,R) is a function

of KP = π0c
(P )
01 /(π1c

(P )
10 + π0c

(P )
01 ) , KR = π0c

(R)
01 /(π1c

(R)
10 +

π0c
(R)
01 ) and ratio = c

(P )
01 /c

(R)
01 . When ratio is a constant z,

the comparison function can be represented as Magnitude(
KP ,KR), as shown in Equation 8. Given this representation,
we can then compose a contour for Magnitude(KP , KR) to
investigate the tradeoffs under various cost conditions.

comp(P,R) = ln(
π1p̄

(P )
10 c

(P )
10 + π0p̄

(P )
01 c

(P )
01

π1p̄
(R)
10 c

(R)
10 + π0p̄

(R)
01 c

(R)
01

)

= ln(
π1c

(P )
10 + π0c

(P )
01

π1c
(R)
10 + π0c

(R)
01

·
π1p̄

(P )
10 c

(P)
10 +π0p̄

(P )
01 c

(P )
01

π1c
(P)
10 +π0c

(P )
01

π1p̄
(R)
10 c

(R)
10 +π0p̄

(R)
01 c

(R)
01

π1c
(R)
10 +π0c

(R)
01

)

= ln(
c
(P )
01

c
(R)
01

· KR

KP
· normcost∗P (KP )

normcost∗R(KR)
)

(7)

Magnitude(KP ,KR) = comp(P,R)|ratio=z

= ln(z · KR

KP
· normcost∗P (KP )

normcost∗R(KR)
)

(8)

Figure 3(a) depicts an example of such a contour for one
user associated with the job title of NMH Physician CPOE
(Computerized Provider Order Entry) in the EMR dataset
of our case study. Each line in the contour plot, which we
call a contour line, consists of the points (KP , KR) for which
Magnitude(KP ,KR) has a constant value. This value is
represented by the number on the contour line.

To further simplify the decision making process, we can
compose a contour using Equation 9, where sgn(·) is the
sign function. The value of Threshold() must be drawn from
{−1, 0, 1}, which corresponds to R ≺ P , R � P and R � P ,
respectively. Figure 3(b) provides an example of the contour
after applying this threshold, where the red region corre-
sponds to R � P , the blue region corresponds to R ≺ P and
the boundary between them corresponds to R � P . To pro-
vide guidance, the former contour should be utilized when
the magnitude of difference between the prospective and re-
spective models is of interest to an administrator (e.g., the
trends of comparison results when KP and KR changes),
while the latter should be chosen when the administrator is
interested only in which model is dominant.
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Threshold(KP ,KR) = sgn(Magnitude(KP ,KR)) (9)

4.2.2 Probability Computation with Comparison Func-
tion

Intuitively, in contour plot, the proportion of the area de-
termined by Threshold() = 1 reflects the probability that
the retrospective model will be the dominant strategy. For
illustration, in Figure 3(b), the region shaded in red indi-
cates the probability that retrospective is the dominant so-
lution for the NMH Physician CPOE is very high.

This type of contour can enable an administrator to ascer-
tain which model has a higher probability of effectiveness.
To understand how, let us assume that f(KP ,KR) corre-
sponds to the joint density function of KP and KR. Now,
KP and KR can be considered independent because they are
derived from two distinct classification models. As a conse-
quence, the probability that the retrospective model domi-
nates the prospective model can be represented by Equation
10, where fP () and fR() indicate the density functions of KP

and KR, respectively.

Pr(R � P ) =

∫
Threshold(KP ,KR)=1

f(KP ,KR)dKP dKR

=

∫
Threshold(KP ,KR)=1

fP (KP )fR(KR)dKP dKR

(10)

A common and reasonable assumption for fP () and fR() is
the density function of the uniform distribution with range
(0,1) [7, 14]. This is useful because, in combination with
Equation 10, it follows that Pr(R � P ) corresponds to the
proportion of the contour where Threshold(KP ,KR) = 1.
More formally, this is derived as follows

Pr(R � P ) =

∫
Threshold(KP ,KR)=1

fP (KP )fR(KR)dKP dKR

=

∫
Threshold(KP ,KR)=1

1 · 1dKP dKR

=

∫
Threshold(KP ,KR)=1

dKP dKR.

(11)

4.3 Context-based Classification
The context-based classification consists of three steps: i)

construct vectors from the workflows; ii) train a classifier
on a subset of the vectors; and iii) test the classifier on the
remainder of the vectors. Since this paper does not focus on
a specific machine learning algorithm, here we focus on the
process by which we construct vectors used for prospective
and retrospective models.

4.3.1 Prospective Model
We use C = {C1, C2, . . . , Ch} to denote the set of context

that is associated with a target access. Cr is composed of
elements from dom(Cr), which is the domain of elements
associated with this type of context. For example, let U ∈ C
denote all users that attend the workflow of target access.
As such, we have dom(U) = {u1, u2, . . . , ud}, such that ui

is a certain user in the system.
In a prospective model, the system needs to make a de-

cision once the target access ei has been issued. At the

moment ei is issued, we only know the accesses transpir-
ing beforehand, which corresponds to ε1 = 〈e1, e2, . . . , ei−1〉.
For ei, we can use vectors as representations of all h types of
context. Equation 12 denotes V (U), the vector correspond-
ing to context U .

V (U) = (vu1 , vu2 , . . . , vud) (12)

In this model, vux is set to 1 if ux is observed when at least
one ej ∈ ε1 transpires, otherwise it is set to 0.

For example, imagine we want to construct a vector corre-
sponding to U (i.e., V (U)), for the target access e3 in Figure
1. Let dom(U) = {u1, u2, u3, u4, u5, u6, u7, u8} in the system
and 〈u2, u4, u5, u1, u3, u8〉 be the user sequence correspond-
ing to the workflow in Figure 1. ε1 = 〈e1, e2〉 is the access
sequence occurring before e3, where e1 and e2 are executed
by u2 and u4 respectively. Thus, the vector corresponding
to U for target user is (0, 1, 0, 1, 0, 0, 0, 0).

We use ⊕ to denote the union of two vectors1. As such,
the vector for all h context can be represented as CV =
V (C1)⊕V (C2)⊕. . .⊕V (Ch).

4.3.2 Retrospective Model
A retrospective model is employed to review the target

access using accesses occurring in the entire workflow. These
accesses correspond to ε0 = 〈e1, e2, . . . , ei−1, ei+1, . . . , el〉. In
this case, during construction of V (U), vux is assigned 1, if
user ux exists when at least one ej ∈ ε0 transpires (i.e., ej
is executed by ux). In Figure 1, the user context vector
of the retrospective model is (1, 1, 1, 1, 0, 0, 0, 1). It is not
necessary for the vector V (Cr) in the prospective model and
retrospective model to be different. For example, V (Cr) will
be identical for two models when Cr denotes the time the
target access was issued.

5. EXPERIMENTAL DESIGN
This section provides an overview of the experiments de-

signed for this study. It begins with a description of the
real electronic medical record (EMR) data. This is followed
by an explanation of how context was modeled to train the
prospective and the retrospective security models. We then
introduce the machine learning algorithm used for training
the models and the specific measures used for assessing their
performance.

5.1 Electronic Medical Record
The dataset was extracted from three consecutive months

of access logs from the Cerner Corporation’s PowerChart
EMR system in use at Northwestern Memorial Hospital,
which is an 854 bed primary teaching affiliate of Northwest-
ern University. All clinicians retrieve clinical information
and enter inpatient notes and orders using the system. Each
entry of the log contains information about a distinct access
made to the EMR is associated with seven pieces of infor-
mation: i) encounter-id, ii) user-id, iii) patient-id, iv) time,
v) user job title, vi) service , and vii) location where the
associated patient is located.

Let us take a moment to provide more detail on what this
information corresponds to. Each (patient-id, encounter-id)
pair defines a unique workflow for patient treatment. This

1For example, vector C = 〈a1, a2, . . . , am, b1, b2, . . . , bn〉 is
the union of vector A = 〈a1, a2, . . . , am〉 and vector B =
〈b1, b2, . . . , bn〉 (i.e., C = A⊕B)
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Figure 3: Contour plots for the NMH Physician CPOE role in the NMH dataset. The red and blue regions
correspond to when the retrospective and prospective models dominate, respectively.

encounter begins when the patient is admitted to the hos-
pital and ends two weeks after discharge (to ensure that
accesses associated with medical billing are captured). Ta-
ble 1 summarizes each context we use to represent an access
and the size of its domain. Of the remaining information,
there are five types of context: i) the time a target access
was issued (Time)2, ii) the hospital service the patient was
on at the time of the target access (e.g., General Medicine
vs. Obstetrics), iii) location in the medical center where the
patient resided when the target access was issued, iv) the
users who commit accesses in the workflow of target access
and v) the job titles associated with these users.

Table 1: The context used in experiment
Users Time Job Titles Services Locations

|Dom| 8095 4 140 43 58

5.2 Dataset Preparation
Without loss of generality, assume target user t partici-

pates in N patient workflows. The corresponding context
vectors are CV +

1 , CV +
2 , . . . , CV +

N , which are composed us-
ing the approach described in Section 4.3. These vectors are
associated with a positive label class. We use the follow-
ing process to generate a corresponding set of N negative
labeled instances. We randomly select a workflow in which
user t failed to issue an access. From this workflow, we ran-
domly select an access and build a corresponding context
vector. Doing so N times yields a set of vectors CV −

1 , CV −
2 ,

. . . , CV −
N , which are associated with the negative class.

Note that we create different CV +
i and CV −

i for prospective
model and retrospective model respectively.

To conduct our evaluation, we construct 10 datasets, each
of which corresponds to a different job title. Let us use Pa-
tient Care Staff Nurse as an example. We randomly pick 10
users whose job titles are Patient Care Staff Nurse. For each
user, we construct N positive samples and N negative sam-
ples using the process described above. We select 80% of the
vectors from the positive and negative samples, respectively,
for the training set, and use the remaining 20% as the test

2For this work, dom(T ime) consists of four values: a) Morn-
ing (6am - 12pm), b) Afternoon (12pm - 6pm), c) Evening
(6pm - 12am), and d) Night (12am - 6am)

set. The samples generated for all 10 users are then com-
bined to form a single dataset for this job title and the overall
performance across the 10 users is measured to evalute the
entire dataset. To ensure the results are representative, we
select job titles from 10 different hospital departments. The
job titles and summary statistics are shown in Table 2.

We train a classifier for each user using a support vector
machine (SVM) using an RBF kernel [10]. We utilize a grid
search technique [10] to find values for parameters to enable
a robust SVM. For each user in the job title, we use the
classifier trained on the training set of this user to assess the
corresponding test set.

PN PC RC EN QA US AC RR RE PS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Datasets

P
R

Figure 4: Accuracy of the prospective and retro-
spective security models

6. TRADITIONAL METHODS TO COMPARE
MODELS

In this section, we compare prospective and retrospective
security models using traditional evaluation strategies to set
a baseline. We observe what kind of decision would be made
by these traditional strategies, and figure out they may make
unwise decision sometimes.

First, Figure 4 presents the accuracy of both the prospec-
tive model and the retrospective model on 10 datasets. It
can be seen that the retrospective model has a higher accu-
racy than the prospective model for each job title. This ev-
idence supports the hypothesis that contextual information
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Table 2: Datasets per job titles and the AUC for their corresponding prospective and retrospective models.
Abbrev. Job Title Instances Per Class AUCP AUCR

US Unit Secretary 1839 0.984 0.994
QA Utilization Review/Quality Assurance 1 1069 0.959 0.972
PS Patient Care Assistive Staff 777 0.979 0.983
RE Rehabilitation - Physical Therapist 712 0.944 0.964
RC Resident/Fellow CPOE 504 0.925 0.967
AC Anesthesia CPOE 456 0.932 0.953
PC NMH Physician CPOE 448 0.953 0.979
PN Patient Care Staff Nurse 382 0.939 0.959
EN Emergency Department Patient Care Staff Nurse 366 0.961 0.976
RR Radiology Resident/Fellow 364 0.919 0.944
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Figure 5: ROC curves for the prospective and retrospective models of three job titles.

obtained after a target access can lead to better classification
performance. Simply put, an retrospective model can yield
a more correct assessment of an access request. Moreover,
from Table 2 it can be observed that AUCR is larger than
AUCP for every job title, which further indicates that retro-
spective security models are better than prospective security
models under a traditional assumption of costs.

Next, we inspected the ROC curves of the prospective and
retrospective models. The curves for three of the job titles
are depicted in Figure 5. From the ROC curves, we find that
the retrospective model dominates the prospective model for
the three datasets. This indicates that, if the assumption of
equal costs for false positive (negative) holds true, then the
retrospective model will always be chosen regardless of the
false positive (negative) cost estimation and prior positive
(negative) probability. The cost curve is considered a dual
representation of the ROC curve. This means using cost
curve would reach the same conclusion (i.e., retrospective
model wins) as the ROC curve for the job titles studied. As
such, we do not present the cost curve in this section.

The assumption of equal costs for security-related classi-
fiers is made in almost all previous research. And, if a se-
curity professional worked under this belief, then retrospec-
tive protections would almost be utilized over prospective
models. However, as has been alluded to, this assumption
certainly does not hold and, as the following results will il-
lustrate, can unnecessarily justify costly behavior.

7. HOW THE BISPECTIVE ANALYSIS IN-
FLUENCES SECURITY DECISIONS

This section shows how our proposed technique affects
the prospective versus retrospective decision model. First,
we draw a series of contour plots for Magnitude(KP ,KR) or

Threshold(KP , KR) under a different ratio = c
(P )
01 /c

(R)
01 for

job title Radiology Resident/Fellow. We demonstrate how
prospective and retrospective models can be compared from
various pespective. Then, we present several case studies to
show the application of our cost analysis technique in real
environments, which demonstrates our technique can make
a more reasonable decision than traditional methods.

7.1 Make Decision with Bispective Analysis
Figure 6 shows the contour plots of Threshold(KP ,KR)

for the Radiology Resident/Fellow job title. With full knowl-
edge about costs and the prior distribution of positive and
negative instances, we can determine which security is best
by pinpointing the corresponding coordinate in the plot. We
will present case studies later to show this process in detail.
With uncertainty in costs and prior distributions, bispective
analysis can still be conducted through the contour plots
from various perspectives, as we now illustrate.

7.1.1 Probability Analysis
According to section 4.2.2, the area of the region in the

contour plot determined by Threshold(KP ,KR) = 1 equals
the probability that R � P . Now, assume that we already
know ratio = 0.3. Then, if we look at the contour plot
corresponding to ratio = 0.3 in Figure 6(a), it is clear that
P (R � P ) < 0.5. This means that an administrator should
choose a prospective model to manage the accesses from
Radiology Resident/Fellow when only ratio = 0.3 is known.

7.1.2 Range Narrowing Analysis
In certain instances, with limited knowledge of costs and

prior distributions, the search space can be narrowed into
a small area. When this is possible, it can provide a clear
solution to which model should be selected, even if such a
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Figure 6: Contour plots for Threshold(KP ,KR) with different ratio for the Radiology Resident/Fellow. The red
and blue regions correspond to when the retrospective and prospective models dominate, respectively.

decision was not possible in general. For instance, in an
hospital system, the following assumptions about costs for
misclassification in prospective and retrospective systems:

c
(P )
01 ≈ c

(R)
01 (13)

c
(P )
10 > c

(R)
10 (14)

The first assumption (Equation 13) states that the cost of
the prospective system allowing a malicious access and the
cost of the retrospective system failing to identify a mali-
cious access are approximately equal. The second assump-
tion (Inequation 14) states that the cost of a prospective
system blocking an access from Radiology Resident/Fellow
would be greater than that of a retrospective system incor-
rectly identifying a normal and historical access from this
job title as malicious. We will discuss how these assumptions
are justified in our case studies. When such an assumption
holds, we should look at Figure 6(b), which is a contour

plot of Threshold(KP ,KR) given ratio = c
(P )
01 /c

(R)
01 = 1.0.

Additionally, based on these assumptions, it follows that
KP − KR < 0 because the numerator of KP and KR are
equal according to c

(P )
01 ≈ c

(R)
01 , and denominator of KP

would be larger than that of KR according to c
(P )
01 ≈ c

(R)
01

and c
(P )
10 > c

(R)
10 . In Figure 6(b), it can be seen that the

KP − KR < 0 is always located at the left of the diagonal
(i.e., the black dashed line in the figure), a region where the
retrospective security model is always dominant.

Note that when c
(P )
01 = c

(R)
01 and c

(P )
10 = c

(R)
10 (i.e., the

premise that false positive (negative) costs are equal across
two models holds), we haveKP−KR = 0, which corresponds
to the dashed line in Figure 6(b). That means our bispective
analysis can still work under the permise as is believed in
traditional ROC analysis.

7.2 Case Studies
In this section, we show three examples of bispective anal-

ysis in the domain of healthcare. We consider three job
titles, Patient Care Assistive Staff and Anesthesia CPOE,

and Rehabilitation - Physical Therapist, estimating c
(P )
01 ,

c
(R)
01 , c

(P )
10 , and c

(R)
10 for each job title, and then apply bispec-

tive analysis to determine if a prospective or a retrospective
models should be applied on this job title. We show that,
for some jobs, choosing a prospective model will minimize

cost, disagreeing with techniques that do not take cost into
account. The estimations described are by no means ex-
haustive; rather they exist to demonstrate the utility of a
cost-based decision support.

7.2.1 Cost Estimation
c
(P )
01 represents the costs of allowing an inappropriate ac-

cess under a prospective model, while c
(R)
01 represents the

costs of deciding not to review an illegitimate access under
a retrospective model. These costs are generally the result of
fines under HIPAA, HITECH, and other heathcare security
statues. As the fines associated with inappropriate access
are likely relatively independent of the security model that

they were performed under, we assume equality of c
(P )
01 and

c
(R)
01 . We also assume that fines due to inappropriate accesses
are equivalent regardless of who makes them. For the sake
of example, fines for inappropriate access over eight sepa-
rate incidents in California hospitals ranged from $5,000 to
$225,000, averaging $18,546 per inappropriate access [4, 17].
Costs associated with inappropriate access will vary due to
jurisdiction and individual details, we use this average as

both c
(P )
01 and c

(R)
01 for the three job titles.

c
(P )
10 represents denying a legitimate access under a prospec-

tive model. This is likely the most difficult cost to estimate,
as it alters behavior in a way that is not currently present
in medical settings. For Patient Care Assistive Staff, which
generally would be assisting another employee that has chart

access permission, we can estimate c
(P )
10 as an hour of person-

nel time with no other costs. The national average wage for
medical assistive staff is $11.73 [3]. For Anesthesia CPOE,
in the best case, withholding physician access to a patient
chart would cause the physician to wait, incurring a cost
of only an hour of personnel time. The national average
hourly compensation for anesthesiologists is $183 [9]. How-
ever, withholding access during a high-risk, high-urgency sit-
uation could result in a number of adverse outcomes, such as
misdiagnosis or drug interactions, reducing quality of care
and introducing the prospect of legal action. There is very

little data on such a scenario. We estimate c
(P )
10 for Anes-

thesia CPOE to be $500, although it could range from our
conservative estimate of $183 to something orders of mag-
nitude higher depending on physician behavior. Physical
therapists generally work in low-urgency situations, so ad-
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Figure 7: Case Study Contour Plots

verse outcomes are significantly less likely. We estimate c
(P )
10

for them as $39.51, the national average wage [3].

c
(R)
10 represents the costs associated with auditing a legiti-

mate access. We assume that this decision only incurs costs
related to personnel time, specifically an hour of auditor
time at $32.10 [3], again the national average for compli-
ance officers, and an hour of time from the individual be-

ing audited. Thus c
(R)
10 for Patient Care Assistive Staff is

approximately $43.83, while c
(R)
10 for Anesthesia CPOE is

approximately $215, and c
(R)
10 for Rehabilitation - Physical

Therapist is $71.61.

Table 3: Cost Estimation
c
(P )
01 c

(R)
01 c

(P )
10 c

(R)
10 KP KR

PS $18,546 $18,546 $11.73 $43.84 0.94 0.81

AC $18,546 $18,546 $183 $215.10 0.33 0.46

RE $18,546 $18,546 $39.51 $71.61 0.82 0.72

7.2.2 Bispective Analysis on Three Job titles
The resulting values of KP andKR for Patient Care Assis-

tive Staff (PS), Anesthesia CPOE (AC) and Rehabilitation-
Physical Therapist (RE) are in Table 3, assuming 1% of
accesses are inappropriate. Using the contour plots in Fig-
ure 7, we can make the following observations. For AC, a
retrospective model minimizes cost. For PS, a prospective
model minimizes cost. For RE, bispective analysis shows the
prospective model minimizes cost (or at least no preference
between the two). Remember if we use traditional methods,
retrospective models would be chosen for all three job titles.

8. DISCUSSION

8.1 Extensions
In Section 4.2.1, we derive functions for contour plot draw-

ing by fixing ratio. Likewise, we can also derive two other
two-variables functions by fixing KP or KR. This assures
that we can still produce contour plots for decision mak-
ing when we only have the estimation of KP or KR rather
than ratio. In addition, we note that the comp() function

can also be a function of ratio1 = c
(P )
10 /c

(R)
10 , KP and KR.

That means we can obtain a contour plot when only ratio1
is known. In summary, the visualized analysis for decision

can be performed when value of only one of ratio, ratio1,
KP and KR is known.

In addition, note that the final decision is made on a role-
basis in our experiment. That means once one of the two
security models is selected by applying our technique and
deployed in the system, all access requests from users in
this role would be evaluated by this model. In practice,
there may exist a big variance among users in the same role.
Specifically, there can be different ROC curves for different
users in the same role. In this situation, it is inappropri-
ate to apply an unified security model for all users of the
role. Instead, administrator would need to conduct person-
alized model selection by applying our framework to each
user separately.

8.2 Limitations
Our decision support method relies heavily on the contour

plot of comparison function of two models. That means
we may need C2

n=n(n − 1)/2 contour plots when there are
options of n models. When n is a large number, we would
need to study too many contour plots to make a decision,
which would offset the visual convenience of contour plot.

Another limitation is that the cost function used in this
paper assumes correct classification does not incur cost, which
however is not the case in reality. For example, let us con-
sider retrospective model in hospital system. Assume a user
issued a malicious access to a patient’s record in the sys-
tem, and was identified later by retrospective system. Even
though the user would be penalized, it is possible the pa-
tient’s information has already been leaked to the public,
which would lead to costly consequence.

9. CONCLUSIONS
This paper proposed a novel framework that enables or-

ganizations to perform comparison between prospective and
retrospective models on a quantitative scale. Developing
such a framework addresses two challenges. First, existing
prospective and retrospective models are semantically dif-
ferent such that their results are not directly comparable.
Second, the assumption that costs of false positive (and false
negative) are equivalent across the classifiers needs to hold
for existing technique to conduct cost analysis of multiple
classifiers. To address the first challenge, we converted the
two security models (i.e., prospective and retrospective) into
a unified classification models by training the same classi-
fiers on the data represented by the same set of features
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(contexts). To address the second challenge, we devise a
visualized analysis method, named bispective analysis, that
leverage contour plot of a comparison function to provide
a direct decision support for administrator. We then ex-
perimented on a real hospital information system with this
framework to show that it can provide good decision sup-
port quality. Somewhat surprisingly, we also found it can
provide decision support even when knowledge about costs
are insufficient.

This work opens up a wide array of opportunities for fea-
ture security research. First, we assumed that prospective
analysis would be done after a workflow ends. Yet, in prac-
tice, it could start at any time after the target access hap-
pens. It is worth extending our work to implement such a
prospective system for comparison. Second, cost analysis
method can be extended to handle the situation that cost
for correct classification is not equal to zero.
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