
c© 2014 Dongjing He

SECURITY THREATS TO ANDROID APPS

BY

DONGJING HE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Advisers:

Professor Carl A. Gunter
Professor Klara Nahrstedt

ABSTRACT

Smartphones have become ubiquitous and smartphone users are increasingly

relying on the mobile applications (app for short) to store and handle private

information. The fluidity of mobile apps and mobile app markets has com-

plicated mobile app security. Many new threats emerged are either because

of the deficiency of mobile app development or the design ambiguities of the

Android operating system.

In order to seek a better understanding of mobile app security, we present

a systematic study on security threats to Android apps in two dimensions.

First, we study Android apps from mobile health (mHealth for short) sector,

in order to understand the prevalence of mobile app threats to that sector. In

particular, we present a three-stage study of the mHealth apps to show that

mHealth apps make widespread use of unsecured Internet communications

and third party servers. Assuming that mobile apps are well protected by

their developers, we ask a second question: are there any limitations in

fundamental Android security design that can be used by malicious parties

to disclose users’ sensitive information? We study a newly discovered threat,

side-channel information leaks on Android devices, in detail. Particularly, we

discover an unexpected channel of information leaks from per-app data-usage

statistics and demonstrate that a malicious app can infer users’ identity or

investment information with zero-permission by monitoring the channel. To

mitigate these threats, we propose defense strategies for both widespread

threats on mHealth apps and the side-channel information leaks on Android

devices.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my special appreciation to my

advisers Professor Carl A. Gunter and Professor Klara Nahrstedt, who have

been offering tremendous helps to me. The extreme kindness, valuable oppor-

tunities and learning experiences they have given me are deeply appreciated.

Only under their guidance, I had the opportunity to be introduced to the

current challenges in mHealth security and privacy which further motivated

me to work in this field.

I am also grateful to Soteris Demtrious, Muhammud Naveed from the

University of Illinois at Urbana-Champaign, Professor Xiaofeng Wang, Xi-

aoyong Zhou and Rui Wang from the Indiana University Bloomington for

being wonderful collaborators. I cherish the opportunity to learn from them

and gain deeper insights into Android security during our weekly discussions

and project meetings.

I deeply appreciate the friendship and the support from the two research

groups I have worked with. I enjoy all the conversations I had with my lab-

mates in the Multimedia Operating System and Networking Group, including

Debish Fesehaye, Haiming Jin, Zhenhuan Gao, Hongyang Li, Shannon Chen,

Ting-yu Wang, Wenyu Ren, Rauol Rivas, Ahsan Arefin, Rehana Tabassum,

Phuong V. Nguyen, Zixia Huang, Anjali Sridhar, as well as labmates in

the Illinois Security Lab, including Soteris Demetrious, Muhammud Naveed,

Xun(Sean) Lu, Ting Wu, Se Eun Oh, Gaurav Lahoti, Siddharth Gupta,

Vincent Bindschaedler, Ravinder Shankesi, Ji Young Chun, Lingyu Xu and

Aston Zhang, and the deputy director from SHARPS, Antonios Michalos.

Above all, I would also like to thank my parents, who have always been

supportive and caring. I appreciate Liang Xia, for his encouragements, un-

derstandings, patience, and support during my research. Without their firm

love and support, especially at those difficult moments, I would not have

successfully made so far.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Our Approach . 3
1.4 Main Contributions . 5
1.5 Outline . 6

CHAPTER 2 BACKGROUND . 8
2.1 Android Operating System . 8
2.2 Android Security . 10

CHAPTER 3 PREVALENCE OF SECURITY CONCERNS IN
ANDROID MHEALTH APPS . 12
3.1 Related Work . 12
3.2 Methodology . 14
3.3 Study 1: What are the Potential Attack Surfaces? 18
3.4 Study 2: How Widespread is the Threat? 21
3.5 Study 3: How Serious is the Threat? 25

CHAPTER 4 SIDE-CHANNEL THREATS AGAINST ANDROID
APPS . 28
4.1 Related Work . 28
4.2 Mechanism . 29
4.3 Identity Inference . 36
4.4 Investment Inference . 40

CHAPTER 5 MITIGATION TECHNIQUES 42
5.1 Strategies for Side-channel Information Leakage 42
5.2 Strategies for Security Concerns in mHealth Apps 44

v

CHAPTER 6 DISCUSSION . 48
6.1 Summary of Findings . 48
6.2 Limitations . 49

CHAPTER 7 CONCLUSION . 51

REFERENCES . 52

vi

LIST OF TABLES

3.1 Description of attack surfaces 15
3.2 Classification of popular free mHealth apps on Google Play . . 17

4.1 Performance overhead of the monitor tool: there the base-
line is measured by AnTuTu [1] 35

4.2 City information and Twitter identity exploitation 39

vii

LIST OF FIGURES

3.1 App selection flow graph for Study 2 16
3.2 App selection flow graph for Study 3 18
3.3 Network traffic from Doctor Online containing sensitive in-

formation . 20
3.4 Log messages from CVS/pharmacy containing sensitive in-

formation . 20
3.5 Access Noom Weight Loss Coach’s user workout history

using Drozer . 21
3.6 Sensitive information distribution in the 22-app dataset for

Study 3 . 26

4.1 Monitor tool precision . 35

5.1 Data leakage detection with static analysis 45
5.2 Static analysis system design framework 46

viii

CHAPTER 1

INTRODUCTION

With the growing popularity of Android operating system, an enormous num-

ber of Android apps has been developed in recent years. As smartphones are

becoming a ubiquitous source of private and sensitive personal information,

the quality of the booming apps can be a concern. Poorly programmed An-

droid apps may contain information leakage that undermines mobile users’

privacy and security. In this chapter, section 1.1 gives an overview of the

phenomenal trend of Android mobile system. Along with this trend, secu-

rity concerns are also expressed and their relevant research studies regarding

Android app security are listed in section 1.1. Section 1.2 refines the initial

motivation and focuses our research questions on specific components in An-

droid app security. Section 1.3 presents the approach to address the problem

in two different directions as elaborated in sections 1.3.1 and 1.3.2. The main

contributions of this master thesis are summarized in section 1.4. Section 1.5

gives the organization of this master thesis.

1.1 Overview

Today’s smartphones have as much computing resources and power as a high

end computer only a few years ago and smartphones are becoming more and

more popular these years. Current mobile operating system, such as Android,

has gained tremendous popularity these years, with 81.4% market share in

the mobile operating system market share [2] and more than one billion device

activations [3]. Android allows users to run various apps developed by many

independent developers downloaded from app markets, and more than one

million apps are available on official Android app market, Google Play [4].

Unlike most of the PC apps, Android apps collect, process and store personal

sensitive information, which may undermine users’ security and privacy.

1

Indeed, in recent years, we have seen waves of Android-based malware

[5, 6] that exploit different vulnerabilities within this new computing plat-

form, highlighting the security and privacy threats it is facing. Furthermore,

Android’s security protection has been under scrutiny for years. A few weak-

nesses of the system, such as permission re-delegation [7] and capability leaks

[8], are revealed by researchers. Particularly, a recent blog [9] from Leviathan

Security Group describes the malicious activities that could be performed by

an app without any permissions, including reading from SD card, accessing a

list of installed apps, getting some device and system information (GSM and

SIM vendor ID, the Android ID and kernel version) and pinging through a

Linux Shell. Most of the problems reported here are either implementation

weaknesses or design ambiguities that lead developers to inadvertent expo-

sures. Examples include SD card read and unauthorized ping, which have

all been fixed. The rest turns out to be less of a concern, as they are al-

most impossible to exploit in practice (GSM/SIM/Android ID, which leads

to nothing more than mobile country code and mobile network code).

1.2 Problem Statement

Compared with the phenomenal progress in Android operating system and

the apps on its platform, the ways Android devices are being used today

are even more stunning. Increasingly, Android smartphones become primary

devices not only for traditional phone calling, but for email checking, mes-

saging, mapping/navigation, entertainment, social networking and even for

activities as important as healthcare and investment management. The vast

array of Android apps enables mobile users to store sensitive private infor-

mation on their smartphones. As a large amount of new Android apps are

constantly submitted to app markets and become instantly available to users,

we believe Android device has become an increasingly attractive target for

security attacks, which calls for several specific questions:

1. What are the most widespread and serious security concerns existing

among Android apps?

2. Are the original security designs of smartphone systems, like Android,

ready for those highly diverse, fast-evolving apps?

2

3. Given the findings of limitations in Android security design, what kind

of vulnerabilities can be explored by malicious parties if they want to

pilfer users’ secrets?

4. How is it possible to protect mobile phone users against security threats

such as information leakage on the Android apps?

1.3 Our Approach

To answer the first question, we will choose a specific sector of Android apps,

for example, mHealth, which usually contains highly sensitive information.

By studying the Android apps in mHealth sector, we try to answer what

the most widespread security concerns are and the approach is illustrated

in section 1.3.1. After understanding what the widespread threats are, we

are further asking if any loopholes exist in fundamental security designs of

Android. If so, we want to further explore the possibility to pilfer users’

sensitive information with the finding of the security loopholes. We illustrate

the approach to address the second and third questions in section 1.3.2.

A fourth question naturally comes into our mind after exploring enough

security threats on Android apps: how can we mitigate these threats? Two

different mitigation techniques are to be proposed for the purpose of the

above two distinct directions: one is for general security threats on Android,

and another one is for a specific threat based on the finding of security

loopholes on Android.

1.3.1 Study on Security Threats in mHealth

Advanced techniques based on mobile computing and communications tech-

nology significantly improve health care quality and efficiency. Mobile devices

greatly enable individuals and their hospital staffs to better monitor their

health and deliver health care services. However, implementing these mo-

bile health (mHealth) technologies brings up certain privacy concerns about

users’ sensitive health care data. The proliferation of mHealth applications

results in greater chance that applications are not being carefully examined

in terms of privacy protection.

3

In our study, we choose mHealth sector as our study target, since new se-

curity and privacy risks particular to mobile computing and communications

technology abound in mHealth apps [10, 11] and the data from mHealth

apps is particularly private and sensitive to mobile users. Furthermore, the

aspects of mHealth make it different from other health information systems:

First, mHealth apps allow a much larger amount of data being collected from

the patient, as mobile devices can collect data over extended periods of time.

Second, a much broader range of health-related data is being collected, as

many mHealth apps collect patient activities and lifestyle, not only phys-

iological data, but also include physical activity, location tracking, eating

habits and diet details, social interactions and so on. Third, the nature of

communications technology and mobile computing exposes many new attack

surfaces to the outside world.

To answer what the most widespread and serious security concerns are

among Android mHealth apps, we conduct our study with a narrow-down

methodology: firstly, we prepare a list of attack surfaces by researching liter-

ature and observing a large dataset of randomly sampled apps; second, from

the above list, we study each one attack surface and find whether indeed the

threat exists extensively in a small dataset; lastly, after locating the threats

that are widespread in Android mHealth apps, we further explore how se-

rious the threats can be by surveying a small dataset of randomly sampled

apps. The study on security concerns of Android mHealth apps is elaborated

in chapter 3.

1.3.2 Study Side Channel Threats against Android Apps

Actually, the design of Android takes security seriously. It is built upon a

sandbox and permission model, in which each app is isolated from others by

Linux user-based protection and required to explicitly ask for permissions

to access the resources outside its sandbox before it can be installed on a

phone. Compared with what security models are provided by conventional

desktop-oriented OSes, even Linux on which Android is built, this security

design looks pretty solid.

In our research, we are asking a different question: assuming that Android’s

security design has been faithfully implemented and apps are well protected by

4

their developers, what can a malicious app still learn about the user’s private

information without any permission at all? For such a zero-permission app,

all it can access are a set of seemingly harmless resources shared across users

(i.e., apps), which are made publicly available by Android and its underlying

Linux, for the purpose of facilitating coordination among apps and simplify-

ing access control. However, the rapidly-evolving designs and functionalities

of emerging apps, particularly their rich and diverse background informa-

tion (e.g. social network, public online services, etc.), begin to invalidate

such design assumptions, turning thought-to-be innocuous data into serious

information leaks.

In chapter 4, we explore the possibility of Android turning public resources

into sources of side-channel information leaks. For example, network data

usage of an app is deliberately published by Android through its Linux public

directory, aiming to help a smartphone user keep track of the app’s mobile

data consumption. In our research, we try to prove that this piece of ap-

parently harmless and also useful data can actually be used to fingerprint a

user’s certain online activity, such as tweeting. This knowledge, combined

with the background information that comes with the Twitter app (i.e., pub-

lic tweets), can be used to infer the user’s true identity, using an inference

technique we developed as described in section 4.2 and 4.3. As another ex-

ample, a user’s investment interests can be inferred by fingerprinting the

network usage statistics as described in section 4.4.

1.4 Main Contributions

Some of the major contributions are as follows:

• Understanding major security issues in Android mHealth apps. Through

our multi-stage study, it shows some serious problems with the Android

mHealth apps. The major issue is unencrypted communication over the

Internet and the use of third party hosting and storage services. Our

study shows that a significant number of mHealth apps from Google

Play market have these issues. Many Android app developers are not

security experts and using encrypted communication is more expensive

than using unencrypted communication. Third party cloud and hosting

services provide a very economical solution but have serious implica-

5

tions to host the app’s services and store users’ sensitive data. We

believe that these issues need immediate attentions from both vendors

and users.

• Understanding of information leaks from Android public resources. Dif-

ferent from prior research that mainly focuses on implementation flaws

within Android, our study contributes to a better understanding of

an understudied yet fundamental weakness in Android design: the in-

formation leaks from the resources that are not originally considered

to be confidential and therefore made available for improving system

usability. This has been achieved through a suite of new inference tech-

niques designed to demonstrate that highly-sensitive user data can be

recovered from the public resources, in the presence of rich background

information provided by popular apps and online resources.

• First step toward mitigating information leaks from Android public re-

sources. We have designed a new mitigation approach, aiming to pre-

serve the utility of such public data to the legitimate parties while

controlling the way that an adversary can use it to derive user secrets.

• Proposing strategies for security concerns of mHealth apps. To auto-

matically detect data leaks in Android mHealth apps, we have proposed

a static analysis framework for mHealth apps to detect any possible

links between private data and leakage sinks. We also present general

compliance recommendations for mHealth app vendors to minimize se-

curity risks to mHealth users.

1.5 Outline

Chapter 2 gives thorough background information on the mHealth technol-

ogy, Android operating system and its security mechanisms. Section 2.1 ex-

plains various important concepts in the Android operating system such as

four components, inter-component communication, and permissions. Section

2.2 explains Android security mechanisms.

Chapter 3 aims to understand the security threats to Android apps in a

specific sector, mHealth. Section 3.1 introduces the related work. Section

6

3.2 explains the methods to build datasets for the three stages of the study

respectively. Sections 3.3, 3.4 and 3.5 highlight the results for the three-stage

study. Section 3.3 provides a classification of Android mHealth apps and

forms a list of attack surfaces that need attention. Section 3.4 investigates the

list of attack surfaces and forms a subset of the attack surfaces are the most

widespread. Then section 3.5 study the problems that are the most serious

in section 3.4 and concludes that Android mHealth apps make widespread

use of unsecured Internet and third party servers.

Chapter 4 introduces a newly-discovered side channel attack on Android,

which uses per-app data-usage statistics to cause information leaks. Section

4.1 illustrates the related work. Section 4.2 describes the techniques we

use to infer private information from public resources on Android with zero

permission. Section 4.3 and section 4.4 highlight two attack instances using

the techniques described in section 4.2. Section 4.3 demonstrates an instance

of inferring a mobile user’s identity with combined usage of Twitter app data-

usage statistics and publicly accessible Twitter API. Section 4.4 introduces

an example of knowing a mobile user’s investment interests by monitoring

the data-usage statistics of Yahoo! Finance.

Chapter 5 discusses mitigation strategies for the security risks introduced

in chapter 3 and 4. Section 5.1 introduces strategies and enforcement frame-

work on Android to mitigate the side channel inference from public resources

on Android. The methods introduced are round up or round down and aggre-

gation of data usage statistics on Android. Section 5.2 proposes a static anal-

ysis framework to mitigate general information leaks from Android mHealth

apps and provides compliance recommendations for the threats that are the

most widespread and serious as concluded in chapter 3.

Chapter 6 discusses the summary of findings of this master thesis in section

6.1 and the limitations for our study in section 6.2.

Chapter 7 concludes the entire master thesis with the highlights of our

work and potential future scope of this work.

7

CHAPTER 2

BACKGROUND

This chapter gives background information of the Android operating system

and its security mechanisms. Section 2.1 explains the fundamentals of the

Android operating system. Section 2.2 introduces Android security mecha-

nisms.

2.1 Android Operating System

Android is an operating system based on Linux for mobile devices. It provides

a rich application framework to allow developers to build apps written in

Java. The Android operating system is a multi-user system, in which each

app has a unique user ID (UID). All files in an app will be assigned to that

apps UID and normally not accessible to other apps. Every app runs in its

own Linux process on a separate Dalvik Virtual Machine isolated from other

apps, so that apps must explicitly share data and resources. In this way,

Android implements the principle of least privilege. That is, no application,

by default, will have the permission to perform operations to adversely impact

the system, other applications, or the user.

App components are the essential building blocks of an Android app. There

are four different types of components, of which each serves a distinct pur-

pose.

• An Activity component is a single screen with user interface, which can

interact with the user via touchscreen or physical keyboard. An app

commonly contains multiple Activities, one for each screen presented

to the user. The Activities work together to form a cohesive user expe-

rience, and each one is independent of the others. A different app can

start any one of these Activities (if it is allowed), possibly expecting a

8

return value. Only one Activity at a time on the screen has input and

processing focus.

• A Service component provides background long-running operations or

performs work for remote processes that continues even after its appli-

cation loses focus. A Service does not provide a user interface. Another

component, such as an Activity, can start a Service or interact with it.

In order to interact with other component, Services define arbitrary

interfaces for Remote Procedure Call (RPC), including method execu-

tion and callbacks, which can only be called if the Service has been

bound.

• A Content Provider component manages a shared set of app data. The

app data could be either private to the app itself or shared with other

apps, if they have the proper permissions. You can store the data in

many different places: in the file system, a SQLite database, on the

web, or any other persistent storage location. The Content Provider

supports the basic CRUD (create, retrieve, update, and delete) func-

tions, through which components in other apps can retrieve or modify

the data according to the Content Providers schema. The data in a

Content Provider is addressed via a content URI.

• A Broadcast Receiver component is asynchronous event mailbox that

responds to system-wide broadcast announcements represented by ac-

tion strings. Android defines many standard action string correspond-

ing to system events for example, the screen has turned off, the battery

is low, or the system has booted. Developers can define their own ac-

tion strings for example, to let other apps know that some data has

been downloaded is available for them to use.

Android uses Intent for inter-component communication in many ways:

to start an Activity, to start a Service, or to deliver a Broadcast message.

There are two types of Intents: explicit intent and implicit intent. Explicit

intents specify the component to start by name, whereas implicit intents

do not name a specific component, but instead declare a general operation

to perform. An intent filter is an expression of action strings, in order to

specify what type of intents the component would like to receive. Android

provides a permission mechanism to enforce restrictions of inter-component

9

communication and access to system resources. Per-URI permissions can be

granted to specify ad hoc accesses to specific pieces of data. Permissions

are requested per application at its installation time. Once installed, this

security policy cannot change.

Each application includes a manifest file. The manifest file describes the

component of the app, including their types and intent filters. Note that

Broadcast Receiver can be dynamically created in runtime, in addition to

being statically defined in the manifest file. The manifest file declares which

permissions the app must have in order to access protected parts of the API

and interact with other apps.

2.2 Android Security

2.2.1 Android Security Mechanisms

Android is designed and built based on the Linux and it seeks to provide

additional security controls over: user data protection, system resources pro-

tection (including the network) and application isolation. To provide these

additional security controls, Android supports these key extra security fea-

tures:

Security at the OS level through the Linux kernel. As described in

section 2.1, Android is based on Linux and the Linux kernel provides several

key security features to Android, including a user-based permission model,

process isolation and secure IPC and so on.

Secure inter-process communication. Processes are able to commu-

nicate using any of the standard UNIX-style mechanisms. Android also

provides new inter-process communication (IPC for short) mechanisms, in-

cluding Binder, sssServices, Intents and Content Providers. Binder is a

lightweight remote procedure call mechanism designed for high-performance

in-process and cross-process calls. Services can provide interfaces directly ac-

cessible using Binder. The concepts of Intents and Content Providers have

been discussed in section 2.1.

Android permission model. By default, an Android app can only ac-

cess a limited range of system resources. The access to sensitive resources is

protected via a security mechanisms known as Permissions. It provides pro-

10

tected APIs for the sensitive resources, including camera, location, Bluetooth,

telephony, SMS/MMS and network. To make use of the protected APIs, an

app must declare APIs’ associated permissions in a manifest file and the per-

missions are agreed upon at installation time by users. Once granted, the

permissions are applied to the app as long as it’s installed.

Application sandbox. All applications on Android run in an application

sandbox. As described in section 2.1, the Android assigns UID to each An-

droid app and runs it as an individual user in a separate process. The kernel

enforces security between applications through standard Linux facilities, such

as UID-based permissions and process isolation. The application sandbox is

implemented in the kernel, this security model extends to native code and

operating system apps. Since all Android applications are sandboxed at the

OS level, memory corruption is not an issue in Android.

Application signing. Application signing allows developers to identify

the author of the application and enables updating applications without using

complicated interfaces and permissions. Application signing is the first step

to ensure the application sandbox mechanism. It signs certificates to ensure

which UID is associated with which app and different apps run under different

UIDs. When an app is installed on an Android device, the system verifies

that the app has been properly certified.

11

CHAPTER 3

PREVALENCE OF SECURITY CONCERNS
IN ANDROID MHEALTH APPS

In this chapter, we aim to provide a deeper understanding of the security

threats to Android apps by studying apps from a specific sector, mHealth.

Section 3.1 illustrates the related work of mHealth technology and its secu-

rity and privacy issues. Section 3.2 explains the main methods to conduct a

systematic study on the security threats to Android mHealth apps. Specif-

ically, it elaborates the methods of how we collect apps as our dataset for

the three-stage study. Sections 3.3, 3.4 and 3.5 elaborate the findings for

the three-stage study. Section 3.3 formulates a list of attack surfaces that

need attention in mHealth apps. Section 3.5 focuses on the attack surfaces

that are proven by section 3.4 for having significant issues in most of the

apps. By analyzing a new randomly selected dataset, section 3.5 shows that

mHealth apps make widespread use of unsecured Internet communications

and third party servers, suggesting that increased use of mHealth apps could

lead to less secure treatment of health data unless mHealth vendors make

improvements in the way they communication and store data.

3.1 Related Work

3.1.1 mHealth Technology

Advanced techniques based on mobile computing and communications tech-

nology significantly improve health care quality, improve efficiency and re-

duce costs. Mobile health (mHealth) apps and medical devices greatly enable

individuals to better monitor and manage their health conditions. Mobile

apps for clinicians improve the way in which hospital professions interact

with their patients and deliver health care services.

The mHealth trend is evident: as of March 2013, Research2Guidance re-

12

ported that there were about 97,000 mHealth apps across 62 app stores [12].

According to a report from MarketsandMarkets, the global mHealth market

is predicted to grow from $6.21 billion in revenue in 2013 to $23.49 billion by

2018 at a compound annual growth rate (CAGR for short) of 30.5 percent

over the five-year-period from 2013 to 2018. The mobile fitness and well-

ness market is expected to grow at a CAGR of 36.7 percent from 2013 to

2018 [13]. This rising mHealth market threatens changes in the way signif-

icant amounts of health data will be managed, with a paradigm shift from

mainframe systems located in the facilities of healthcare providers to apps

on mobiles and storage in shared cloud services. This trend is paralleled by

a new openness in which devices that were once only available in hospitals

become widely available to individuals outside the hospitals. Furthermore,

flexible mHealth applications tempt clinicians away from the hospital-based

systems they used in the past. This popular market will disruptively chal-

lenge traditional approaches by being cheap and accessible.

The proliferation of mHealth apps is radically changing the way healthcare

services are delivered. In mHealth, mobile devices connected to portable or

embedded medical sensors will enable long-term continuous medical or health

monitoring for many purposes [14, 15, 16, 10]: for outpatients to monitor their

chronic medical conditions, for individuals to increase physical activities and

to change their eating habits, for athletes to track their training activities

and performance, or for physicians to remotely monitor their patients’ health

conditions and to respond to emergencies in a timely manner.

3.1.2 Security and Privacy of mHealth

Despite the great potential and benefits that mHealth creates, new security

and privacy risks abound in mHealth apps [10, 17, 18]. Security and pri-

vacy of health data could be significantly affected by the mHealth trend.

Freed from the bonds of HIPAA, mHealth apps are free to handle data using

lower assurances than those typically applied to HIPAA entities. However,

the data they handle is often as sensitive as the data handled by HIPAA

entities. Typical Google Play apps such as Self-help Anxiety Management,

iCardio, Epocrates CME, and Clinical Advisor provide assurance with men-

tal health concerns, activity monitoring, and information services that reveal

13

user interests in particular symptoms or diseases. To exercise enforcement

discretion on the emerging mHealth market, the Food and Drug Administra-

tion (FDA for short) issued guidelines for mobile medical applications [19] in

September 2013, intending to apply its regulatory oversight to ”mobile medi-

cal applications”. Section III.C of the FDA guidance defines ”mobile medical

applications” as those ”to be used as accessories to regulated medical devices

or to transform into a regulated medical devices”. The FDA only regulates

a small subset of mHealth apps that connect to and act as an extension of

medical devices, and mobile apps that transform mobile platforms into reg-

ulated medical devices, such as an app that turns a mobile device into an

electrocardiography (ECG) machine. It doesn’t regulate mHealth apps in a

broader range. Based on the incompleteness of FDA regulatory scopes, it is

important to develop guidelines for the security and privacy of mHealth apps

that suit a dynamic market while assuring that the growth of mHealth does

not lead to a cavalier vendor attitude toward personal data.

3.2 Methodology

We carry out a three-stage study of the security and privacy status of free

mHealth apps offered on Google Play. In the first study we classify the top

160 free mHealth apps in Google Play and examine them to formulate a list

of six attack surfaces that need attention in mHealth apps. These are shown

in Table 3.1. We then select a random sample of 27 apps from the top 1080

apps and analyze them with respect to these six attack surfaces. We find

significant issues with three attack surfaces: Internet, Logging, and Third

Party Services. The concerns we find with Logging will be addressed to a

significant degree by the deployment of a version of Android, which is elabo-

rated in section 6.2, so we focus our attention on the other two. We develop a

random sample of additional 22 apps that involve Internet communications,

analyze these 22 apps, and find a significant number of risks to security and

privacy based on these two attack surfaces. Our primary conclusions are that

the mHealth apps in Google Play commonly send sensitive data in clear text

and store them on third party servers whose confidentiality rules may not be

as strong as they need to be for the type of data being stored.

Specifically, we want to understand the threats against Android mHealth

14

Table 3.1: Description of attack surfaces

Attack Surface Description
Internet Sending sensitive information over the Internet

with insecure protocols, e.g., HTTP, misconfig-
ured HTTPS, etc.

Third Party Ser-
vices

Storing sensitive information on third party
servers

Bluetooth Sniffing or injecting sensitive information that is
collected by Bluetooth-enabled health devices

Logging Putting sensitive information into system logs
where it is not secured

SD Card Storage Storing sensitive information as unencrypted files
on SD card, publicly accessible by any other app

Exported Com-
ponents

Accessing Android app components from other
apps, which are intended to be private, but set
as exported

apps by answering the following three questions:

1. What are the potential attack surfaces for Android mHealth apps?

2. How widespread is the threat?

3. How serious is the threat?

In the first study, in order to understand what the potential attack surfaces

are, we identify a total number of 160 apps by selecting the top 80 free

apps in Health & Fitness category and another top 80 free apps in Medical

category on Google Play. To get a sense of the context of Android mHealth

apps and formulate a list of attack surfaces that need attention, we divide

the 160 apps into two groups with regard to their target users and classify

them into eight categories by their functionalities. By reviewing research

papers [20, 21] and online documents [22, 23], and analyzing the problems we

found directly in these 160 mHealth apps, we develop the following six attack

surfaces that represent the primary areas needing protections: Internet, third

party services, Bluetooth, logging, SD card storage, and exported components.

After identifying the attack surfaces in Study 1, in Study 2, we aim to

learn how widespread attack surfaces are. We choose the top 1080 free apps

from the Medical and Health & Fitness categories on Google Play, 540 from

15

each. By using a random number generator without replacement, we select

27 apps as our dataset for Study 2. Of the 27 apps we have selected, we

analyze them one by one in details regarding to the six attack surfaces we

have identified in Study 1. As a result, three attack surfaces are identified

as important ones: Internet, third party storage and logging, because the

majority of the 27 apps suffer from the problems. Figure 3.1 shows how we

include and exclude apps for the app selection process in Study 2.

Figure 3.1: App selection flow graph for Study 2

For Study 3, we want to have a deeper understanding of how serious the

threat is with regarding to the most common attack surfaces we have identi-

fied in Study 2. The app selection process here is similar to that of Study 2.

We randomly select 120 apps from the top 1080 free mHealth apps on Google

Play and exclude the apps that have already been studied in Study 2 and

also exclude those are not sending sensitive information over the Internet.

Then we analyze the included 22 apps in detail to understand how serious

the threat is. Figure 3.2 shows how we include and exclude apps for the app

selection process in Study 3.

16

Table 3.2: Classification of popular free mHealth apps on Google Play

Target
users

Category Functionality examples Modules
used

Number of
apps (%)

Lifestyle
manage-
ment

Count calories; track
eating habits, exercise,
sleep, period, pregnancy,
etc.

gyroscope,
accelerom-
eter, GPS,
network

96(60%)

Medical
sensor-
based
monitor-
ing

Monitor health metrics
such as: heart rate,
blood pressure, blood
glucose, insulin, choles-
terol, etc.

externally
connected
health
sensors,
network

15(9.38%)

Patients Medical
contact

Contact registered
nurses, doctors or
hospitals

network,
phone
call, email

14(8.75%)

Medication
and dis-
ease

Manage prescription
records; identify pills;
shop medication online;
look up symptoms;
manage chronic diseases

Network 27(16.88%)

PHR man-
agement

Manage and/or synchro-
nize PHR with health
services

Network 75(46.88%)

Medical
references

Look up drug, disease
and condition; anatomy
tool; medical calculator;
medical dictionary

Network 26(16.25%)

Healthcare
profes-
sionals

Medical
training

Aid medical students
studying medical theo-
ries

Network 9(5.63%)

Clinical
communi-
cation

Emergency alert; photo
sharing

GPS, net-
work

2(1.25%)

17

Figure 3.2: App selection flow graph for Study 3

3.3 Study 1: What are the Potential Attack Surfaces?

To investigate the potential attack surfaces, we first try to understand the

context of Android mHealth apps. We summarize the classification of An-

droid mHealth apps by studying the 160 apps collected as described in section

3.2. In Table 3.2, we divide the top 160 free mHealth apps into two groups by

the expected user. Patient apps are the ones mainly used by the individual

whose health is being monitored. In most cases the monitoring is done by

the individual herself. Healthcare professional apps are the ones mainly used

by physicians, nurses, medical students and other healthcare professionals

mainly to support their activities, including the monitoring of patients. We

further classify the apps into 8 categories according to their functionalities.

These categories include Lifestyle management, Sensor-based health moni-

toring, Medical contact, Medication and disease management, and Personal

health record (PHR for short) management (Here we define PHR manage-

ment as patients to sync and manage health records on an online service

provider.) targeted for Patients, and Medical references, Medical training,

and Clinical communication targeted for Professionals. An mHealth app may

18

be useful for both the Patients and the Professionals (e.g., a pill identifier

app can be used by a patient to organize pills or to be used by a pharmacist

to prevent errors in dispensing medications). Besides, an mHealth app may

belong to more than one category, since it may serve multiple functionali-

ties (e.g., a fitness tracking app can monitor lifestyle data as well as manage

PHR).

Most of the applications in the categories are appropriate for our study but

we exclude one app because it lack a medical or healthcare purpose, and we

exclude another app because its language is not English. Among the included

158 apps, we have 129 (81.65%) that are Patient-facing, 32 (20.25%) that are

Professional-facing, and 3 (1.90%) apps, drug identifiers, are both. All the

Patient-facing apps are from the Health & Fitness category and 41.03% of

the apps from the Medical category are Professional-facing. From Table 3.2,

we can see the majority (60%) of our selected apps belong to the Life man-

agement category. Nearly half (46.88%) of the apps manage and synchronize

user health records to online service providers. The average rating score

for the Patient-facing apps have almost 4 times more user installations than

Professional-facing apps.

We identify several attack surfaces as important when we review previ-

ous literature [20, 21] and online documents [22, 23]. By studying the 160

apps, we have a sense of what commercial mHealth apps do and whether

indeed there exist attack surfaces exposing vulnerabilities. We find real se-

curity threats against many Android mHealth apps, and identity six potential

attack surfaces as the most important: Internet, Third Party Services, Blue-

tooth, Logging, SD Card Storage, and Exported Components. Here we show

several example vulnerabilities found in Android commercial mHealth apps

and demonstrate that they can lead to realistic and serious consequences.

Example 1(Unencrypted Internet). From Table 3.2, many mHealth

apps send information and most of them send unencrypted information over

the Internet. For example, both Doctor Online [24] (patients can contact

doctors online) and Recipes by Ingredients [25] (patients can search recipes

according their illness or ingredients suitable for their disease), are not only

sending sensitive information over the Internet unencrypted but also are send-

ing user email and password in cleartext over the Internet. Figure 3.3 shows

the network traffic from Doctor Online captured by Wireshark that contains

user’s name, email and password in cleartext.

19

Figure 3.3: Network traffic from Doctor Online containing sensitive
information

Example 2 (Logging vulnerability). We find many mHealth apps put

user’s sensitive information into logs. For example, CVS/pharmacy [26], a

popular app with millions of users on Google Play, put user login creden-

tials and other sensitive information in their apps’ log messages. Figure 3.4

shows the log messages with sensitive information from CVS/pharmacy. In

Case 1, CVS/pharmacy logs prescription refill details from user input, in-

cluding name, email address, store number, and Rx number. In Case 2,

CVS/pharmacy puts login credentials in a debug log message. With the lo-

gin credentials for CVS/pharmacy, anyone could view a user’s profile and

prescription history, which can potentially lead to a medical identity theft.

A malicious party can even conduct pharmacy online shopping with a user’s

credit card information stored in the CVS/pharmacy online shopping store.

Figure 3.4: Log messages from CVS/pharmacy containing sensitive
information

Note that in both cases, the sensitive information is in HTTPS URLs

using a GET request method. Developers may have a misconception that all

HTTPS requests, either using GET or POST, are sent over encrypted TCP

connections so that sensitive information can be safely put into the HTTPS

URLs. However, even if sensitive information won’t be seen during transition,

it still remains visible in places like mobile app logs, server logs, browser

history and etc. Developers should avoid putting sensitive information in

any form of logs.

Example 3 (Exported components vulnerability). We find that sev-

eral mHealth apps have security threats rooted from component exposures.

20

For instance, Noom Weight Loss Coach [27], an app with more than 10 million

installations, exposes its Content Providers to external apps, which means

any app can access the exposed Content Providers without declaring any per-

mission. After searching for "content://" paths in Manifest and the source

code decompiled from Noom Weight Loss Coach apk, we get a list of content

URIs defined in the app. Figure 3.5 demonstrates using an automatic secu-

rity analysis tool called Drozer [28] to read user workout history from Content

Provider with the content URI "content://com.wsl.noom.exerciseinfo".

Figure 3.5: Access Noom Weight Loss Coach’s user workout history using
Drozer

Example 4 (SD card storage vulnerability). We discover many

sleep monitoring apps, such as SnoreClock [29] and Sleep Talk Recorder

[30], record sound when users sleep and store the sleep recordings as un-

encrypted audio files on an external storage. For example, the Sleep Talk

Recorder explicitly stores sleep-recording audio files unencrypted on SD card

as YYYY-MM-DD-HH-MM-SS.wav. A malicious app with read storage permis-

sion can read the users’ sleep recordings; with internet permission, it can

further send out the files. Another example is that Urgent Care [31] stores

system logs in an unencrypted file on SD card, which leaks out what symp-

toms the patient looked up within this app.

3.4 Study 2: How Widespread is the Threat?

The complexity of Android system has led to numerous potential attack

surfaces, which could be explored by a malicious party to gain unauthorized

access to sensitive data in mHealth apps and cause serious consequences.

Analyzing these attack surfaces help security specialists perform security

assessments as well as help mHealth users/vendors understand and manage

security risks. In Study 2, we analyze these attack surfaces with a new set

of randomly selected apps. The 27 mHealth apps in Study 2 are identified

as described in section 3.2.

21

Internet. Many apps access Internet either to transfer information to

a remote server or to display ads. Information that is transferred over the

Internet to the remote server is sensitive health information and ideally all

such communication with the remote server should be encrypted. We analyze

the randomly sampled apps to study why they require the Internet access

(i.e. to transfer information or to display ads). Furthermore, we analyze

if the encrypted communication is used to transfer the information to the

remote server.

Any app can get access to the Internet using INTERNET permission. To

study if the apps are using Internet for displaying ads or transferring infor-

mation to the remote server, we study the description of the apps and check

the functionality of the apps by installing and using them on a Samsung

Galaxy SII phone. We observe that 85.2% (23/27) of all the apps have per-

missions to access the Internet. 70.4% (19/27) use the Internet permissions

to display ads, while 29.6% (8/27) of them use the Internet permissions to

communicate information over the Internet.

To study whether the communication with the remote server is encrypted,

we install and use the apps. We capture their network traffic using “Shark for

Root” app and analyze the network traffic in Wireshark to see if the traffic

is encrypted. We find that 7.4% (2/27) of the apps allow the users to use the

blog or social network associated with the app via Internet, of which only one

of the apps is using encrypted communication. 25.9% (7/27) of all the apps

transmit medical information to the remote server. 66.7% (4/6) of the apps

use encrypted communication, while 50% (3/6) of the apps use unencrypted

communication to transfer the sensitive health related information.

We further analyze if the three aforementioned apps sending unencrypted

data over the Internet are sending sensitive information. And we find that

one of the app is used to search for nearby pharmacies, doctors, etc., the

second app is used to track exercise workouts, and the third (from Spain) is

used to find and contact doctors online. The third app (Doctor Online) is

sending email, username and even password unencrypted over the Internet.

Third Party Services. Android apps use storage and hosting services

such as Amazon instead of maintaining their own infrastructure. This is an

economical as well as scalable solution for mobile app vendors. But, storing

sensitive health information on these third party services can have serious

implications and that is why HIPAA does not allow storing unencrypted

22

data on third party cloud services. 22.2% (6/27) apps are sending sensitive

data over the Internet. To study if these 6 apps that are actually transferring

information to remote servers are hosted on the cloud or in-premises servers

owned by the app vendors, we analyze the IP addresses of the apps from their

communication with their respective servers. IP addresses have a publicly

available record of to whom it belongs to and we use that information to find

out from where the traffic is coming. We find surprising results: all six apps

are hosted on third party services. Three of them are hosted on Amazon and

the rest three are hosted on other hosting services. Note that these apps are

using encryption for the communication only, we are not sure if data on the

remote third party services is stored in a encrypted fashion such that the

hosting companies do not have access to the data.

Bluetooth. Many Bluetooth sensing apps use Bluetooth primarily to col-

lect data from health sensors to mobile devices. Out of the 27 apps in our

dataset, one app (3.7%) connects to a Bluetooth health device to collect extra

health information. Supporting Bluetooth devices is more common among

the 160 most popular Android mHealth apps, where 15 (9.5%) provide op-

tions to collect health data from external health sensors and all of them are

Patient-facing apps. 12 of the 15 apps declare and use both BLUETOOTH and

BLUETOOTH ADMIN permissions, so that they can use Bluetooth to connect

to and collect data from external health sensors, while the remaining three

apps collect health data via Internet or by connecting with other apps. All

the apps we find with Bluetooth connectivity are Patient-facing apps. They

collect various types of health information, including heart rate, respiration,

pulse oximetry, electrocardiogram (ECG for short), blood pressure, body

weight, body temperature, quality of sleep, exercise activities and etc. Ap-

parently, Bluetooth is a major communication technology for sensor-based

health monitoring in mHealth apps. Naveed et al. [20] present a problem of

external-device misbinding (DMB for short), under the context of Bluetooth-

enabled Android devices and health sensors. They show that a malicious

app can stealthily collect user data from an Android device and also deploy

a spoofed device that injects fake data into the original device’s app. We

find one of the 27 apps actually connects to an external health sensor and

uses a default PIN code 0000, which makes that app vulnerable to the DMB

attack. To defend against the Bluetooth-based threats on mHealth apps,

Naveed et al. [20] propose an OS-level protection, which generates secure

23

binding policies between a device and its official app and enforces these rules

when establishing and unpairing Bluetooth connections.

Logging. Android logging system is designed for app developers to col-

lect and view app debug output. The logging facility allows a system-wide

logging, including application information and system events. If an app is

granted READ LOGS permission, the app is allowed to read low-level system

log messages. With the READ LOGS permission, a malicious app can monitor

system logs from mHealth apps in the background and extract sensitive in-

formation from the log messages. To discover logging vulnerability, we use

a tool called logcat from Android Debug Bridge (ADB for short) shell to

view system log messages.

In our dataset, we find 9 out of 27 apps (33.3%) include sensitive infor-

mation in app logs. Among the 9 aforementioned apps, two (22.2%) dis-

close GPS coordinates, three (33.3%) disclose Facebook friend information,

one (11.1%) discloses the direction to the dentist office that a user inquires

about. One (11.1%) discloses sensitive data that could lead to more serious

consequences, that is disclosing user sign up data, including name, location

and profession. That app also leaks the medical tests that user takes on this

app. All the disclosure of private data from this app can potentially lead to

a medical identity theft. Three (33.3%) apps leak disease and drug browsing

history in the app logs. From the study on our 27-app dataset, we find a

large number (33.3%) of mHealth apps leak sensitive information in system

logs and many of them could cause serious problems.

SD Card Storage. Each Android app gets a dedicated part of file sys-

tem where it can write its private data. However, if an app writes files to

an external storage, such as an SD card, the files are not guaranteed to be

protected. With READ EXTERNAL STORAGE or WRITE EXTERNAL STORAGE per-

missions, any app can read or write files from an external storage. Note that

before API level 19, the READ EXTERNAL STORAGE permission is not enforced

and all apps still have access to read from an external storage.

In our dataset, 66.7% (18/27) of the apps declare the WRITE EXTERNAL STO-

RAGE permission, which means they write data to the external storage and

the data is universally readable by any app with the READ EXTERNAL STORAGE

permission. Then, we use an existing tool Dex2jar [32] to decompile the 27

apps’ apk (application package) files to get their Java source code. After

that, we search for "ExternalStorage" and "ExternalFiles" keywords in

24

the source code to construct all possible paths for any file to be stored on the

SD card. Then, we execute all possible operations with the studied apps and

go through these directories to check their file contents. As a result, we find

none of the apps stores sensitive information as files on the external storage.

Exported Components. An Android app developer has the rights to

specify if an app component (i.e. Activity, Service, Broadcast Receiver, or

Content Provider) is public to external apps or not. A component is declared

as exported, or public, if its declaration sets the EXPORTED flag or includes at

least one Intent Filter without any permission protection. However, setting

a private component improperly as exported enables a malicious app to send

unwanted Intents to the component, which can cause security problems [21]:

broadcast injection, activity launch, or service launch. In addition, if the

Content Provider is exported, a malicious app can read or write the exported

Content Provider without declaring any particular permission. The Content

Provider supports basic "CRUD" (create, retrieve, update and delete) func-

tions and the data in a Content Provider is addressed via a "content URI".

Knowing the "content URI" from an exported Content Provider, a malicious

app can retrieve or modify the data according to the Content Provider ’s

schema. We already showed an example of unauthorized access to an ex-

ported Content Provider to read its sensitive information in Study 1.

3.5 Study 3: How Serious is the Threat?

Study 2 reveals three vulnerabilities that are common and serious: sending

sensitive information unencrypted over the Internet, using third party ser-

vices, and logging containing private data. Since logging can be fixed by

Android version upgrade, we focus on the other two threats, which are the

Internet traffic and third party services.

As only 6 apps in Study 2 are actually sending sensitive information over

the Internet, we perform another study to understand the prevalence of the

two threats. We randomly sample another 120 apps from the 540 top Health

& Fitness apps and 540 top Medical apps (1080 in total) on Google Play.

Then we manually analyze these apps to filter those are not sending any

sensitive information over the Internet. The filtering results show that 22

apps are actually sending sensitive data over the Internet and we could an-

25

alyze their Internet traffic (some apps require subscription and we filter out

those also). We install these 22 apps and capture their traffic using the same

techniques described in Study 2. We find that 63.6% (14/22) of these apps

are sending data unencrypted over the Internet and 81.8% (18/22) of them

are using third party storage and hosting services such as Amazon’s cloud

services. One of our randomly selected apps is Fitbit app and it is using en-

cryption over the Internet, but is also using third party storage and hosting

services. The four apps that are using their own servers to store and host

their app data are big companies such as Aetna, United Healthcare, Caring

Bridge and US Dept. of Health and Human Services. If third party services

receive data in cleartext, there is no point in sending data in encrypted fash-

ion. We do not have the ground truth, but we suspect that the apps that

are doing encryption for the communication are storing data unencrypted on

the clouds.

Figure 3.6: Sensitive information distribution in the 22-app dataset for
Study 3

When used as intended, a variety of sensitive user data are collected, stored,

or transmitted by these Android mHealth apps. Figure 3.6 shows the distri-

bution of sensitive information in these 22 apps. Based on our study, these

26

include at least personal profiles, health sensor data, lifestyle data, medi-

cal information browsing history, and third-party app data (e.g. Facebook

account information). Depending on the type, sensitivity, and volume of

mHealth data breaches, disclosure or tampering with these sensitive data

may lead to serious consequences, such as loss of privacy, medical identity

theft, and errors in healthcare decision-making. According to a report by

World Privacy Forum [33], thefts have used stolen medical information for

a resourceful collection of nefarious reasons. For example, a Colorado man

whose Social Security number, name and address had been stolen received a

bill for $44,000 he presumably owed to a hospital because his identity had

been used by a thief to get medical services in his name. In another case,

another identity thief in Missouri used the personal data of multiple victims

to establish false driving licenses and was able to use them to obtain pre-

scriptions in the victims’ names at a regional health center. All the above

examples prove that leakage of health information can lead to serious conse-

quences.

27

CHAPTER 4

SIDE-CHANNEL THREATS AGAINST
ANDROID APPS

After understanding the widespread security threats in Android mHealth

apps in the last chapter, we ask a further question: are there any limita-

tions in Android security design that could be utilized by malicious parties to

pilfer mobile users’ private information on the phone? In this chapter, we

introduce a newly-discovered side channel that can cause information leaks

on Android, which is per-app data-usage statistics. By utilizing this side

channel, a malicious party can divulge users’ private information on Android

devices. This reveals the gap between the fundamental limitations of Android

security design and the diversity in the ways the system is utilized by de-

velopers. Section 4.1 illustrates the related work of side-channel information

leaks on general platforms and Android devices. Section 4.2 describes the

techniques we develop for learning private information from Android public

resources with zero permission. More specifically, in section 4.2.1 describes

the public resources on Android leaking out information, section 4.2.2 and

4.2.3 show how a zero-permission malicious app monitors and analyzes the

public resources. Sections 4.3 and 4.4 demonstrate that we can actually uti-

lize the public resources on Android to infer users’ identity (section 4.3) and

investment interests (section 4.4).

4.1 Related Work

Side-channel information leaks have been studied for decades and new dis-

coveries continue to be made in recent years [34, 35, 36]. Among them,

most related to our work is the work on the information leaks from procfs,

which includes using ESP/EIP data to infer keystrokes [37] and leveraging

memory usage to fingerprint visited websites [38]. However, it is less clear

whether those attacks pose a credible threat on Android, due to the high non-

28

determinism of its memory allocation [38] and the challenges in keystroke

analysis [37]. In comparison, our work shows that the usage statistics under

procfs can be practically exploited to infer an Android user’s sensitive infor-

mation. The attack technique used here is related to prior work on traffic

analysis [39]. However, those approaches assume the presence of an adver-

sary who sees encrypted packets. Also, their analysis techniques cannot be

directly applied to smartphone. Our attack is based upon a different adver-

sary model, in which an app uses public resources to infer the content of

the data received by a target app on the same device. For this purpose, we

need to build different inference techniques based on the unique features of

mobile computing, particularly the rich background information (i.e., social

network) that comes with the target app.

Information leaks have been discovered on smartphone by both academia

and the hacker community [7, 8, 9]. Most of known problems are caused by

implementation errors, either in Android or within mobile apps. By compari-

son, the privacy risks come from shared resources in the presence of emerging

background information have not been extensively studied on mobile devices.

Up to our knowledge, all prior research on this subject focuses on the privacy

implications of motion sensors or microphones [40, 41, 38, 42, 43]. What has

never been done before is a systematic investigation on what can be inferred

from the public resources exposed by both Linux and Android layers.

New techniques for better protecting user privacy on Android also continue

to pop up [44, 45, 8, 46, 47, 48, 7]. Different from such research, our work

focuses on the new privacy risks emerging from the fast-evolving smartphone

apps, which could render innocuous public resources related to sensitive user

information.

4.2 Mechanism

An in-depth understanding of information leaks from Android public re-

sources is critical, as it reveals the gap between the fundamental limitations

of Android security design and the diversity in the ways the system is uti-

lized by app developers. This understanding will be invaluable for the future

development of securer mobile OSes that support the evolving utility. How-

ever, a study on the problem has never been done before. In this chapter,

29

we report our first study on this crucial yet understudied direction.

Our study inspects public resources disclosed at both the Android and

its Linux layers and analyzes the impact such exposures can have on the

private information maintained by a set of popular apps, in the presence

of the rich background information they bring in. This research leads to a

series of stunning discoveries on what can actually be inferred from those

public resources by leveraging such auxiliary information. Specifically, by

monitoring the network-data usage statistics of high-profile Android apps,

such as Twitter and Yahoo! Finance (one of the most widely-used stock

apps), one can find out a smartphone user’s true identity and stocks one is

interested in, without any permission at all.

All such information leaks are found to be strongly related to the fallacies

of design assumptions instead of mere implementation bugs. Every piece of

information here is actually meant to be disclosed by Android and most of

such data has been extensively used by legitimate Android apps: for example,

hundreds of data usage monitors are already out there [49], relying on the

usage statistics to keep track of a user’s mobile data consumption.

4.2.1 Leaks from Public Resources

Android is an operating system based on Linux kernel. Its security model

is based on Linux’s kernel level protection (process separation, file system

access control). Specifically, each Android app is assigned with a unique

user ID and runs as that user. Sensitive resources are usually mapped to

special Linux groups such as inet, gps, etc. This approach, called appli-

cation sandboxing, enables the Linux kernel to separate an app from other

running apps. Within a sandbox, an app can invoke Android APIs to access

system resources. The APIs that operate on sensitive resources, including

camera, location, network, etc., are protected by permissions. An app needs

to explicitly request (using AndroidManifest.xml) from the device’s user such

permissions during its installation so as to get assigned to the Linux groups

of the resources under protection, before it can utilize such resources.

Public resources on Android. Like any operating system, Android

provides a set of shared resources that underprivileged users (apps without

any permission) can access. This is necessary for making the system easy to

30

use for both app developers and end users. Following is a rough classification

of the resources available to zero-permission apps:

• Linux layer: public directories. Linux historically makes available a

large amount of resources considered harmless to normal users, to

help them coordinate their activities. A prominent example is the

process information displayed by the ps command (invoked through

Runtime.getRuntime.exec, which includes each running process’s user

ID, Process ID (PID), memory and CPU consumption and other statis-

tics. Most of such resources are provided through two virtual filesys-

tems, the proc filesystem (procfs) and the sys filesystem (sysfs). The

procfs contains public statistics about process’s use of memory, CPU,

network resources and other data. Under the sysfs directories, one can

find device/driver information, network environment data (/sys/class

/net/) and more. Android inherits such public resources from Linux

and enhances the system with new ones (e.g. /proc/uid stat). For

example, the network traffic statistics (/proc/uid stat/tcp snd and

/proc/uid stat/tcp rcv) are extensively utilized [49] to keep track of

individual apps’ mobile data consumption.

• Android layer: Android public APIs. In addition to the public resources

provided by Linux, Android further offers public APIs to enable apps

to get access to public data and interact with each other. An example

is AudioManager.requestAudioFocus, which coordinates apps’ use of

the audio resource (e.g., muting the music when a phone call comes

in).

Privacy risks. All such public resources are considered to be harmless and

their releases are part of the design which is important to the system’s normal

operations. Examples include the coordination among users through ps and

among the apps using audio resources through AudioManager.requestAudio-

Focus. However, those old design assumptions on the public resources are

becoming increasingly irrelevant in front of the fast-evolving ways to use

smartphones. We find that the following design/use gaps are swiftly widen-

ing:

• Gap between Linux design and smartphone use. Linux comes with the

legacy of its original designs for workstations and servers. Some of

31

its information disclosure, which could be harmless in these station-

ary environments, could become a critical issue for mobile phones. For

example, Linux makes the MAC address of the wireless access points

(WAP) available under its procfs. This does not seem to be a big is-

sue for a workstation or even a laptop back a few years ago. For a

smartphone, however, knowledge about such information will lead to

disclosure of a phone user’s location, particularly with the recent devel-

opment that databases have been built for fingerprinting geo-locations

with WAPs’ MAC addresses (called Basic Service Set Identification, or

BSSID).

• Gap between the assumptions on Android public resources and evolving

app design, functionalities and background information. Even more

challenging is the dramatic evolution of Android apps. For example, an

app is often dedicated to a specific website. Therefore, an adversary no

longer needs to infer the website a user visits, as it can be easily found

out by looking at which app is running (through ps for example). Most

importantly, today’s apps often come with a plethora of background

information like tweets, public posts and public web services such as

Google Maps. As a result, even very thin information about the app’s

behavior (e.g. posting a message), as exposed by the public resources,

could be linked to such public knowledge to recover sensitive user data.

Information leaks. In our research, we carefully analyze the ways that

public resources are utilized by the OS and popular apps on Android, to-

gether with the public online information related to their operations. Our

study discovered a new source of information leak, which is App network-

data usage. We find that the data usage statistics disclosed by the procfs can

be used to precisely fingerprint an app’s behavior and even infer its input

data, by leveraging online resources such as tweets published by Twitter.

To demonstrate the seriousness of the information leakage from those usage

data, we develop a suite of inference techniques that can reveal a phone user’s

identity from the network-data consumption of Twitter app and the stock

she is looking at from Yahoo! Finance app. We build a zero-permission app

that stealthily collects information for these attacks.

32

4.2.2 Zero-Permission Adversary

Adversary model. The adversary considered in our research runs a zero-

permission app on the victim’s smartphone. Such an app needs to operate

in a stealthy way to visually conceal its presence from the user and also

minimize its impact on a smartphone’s performance. On the other hand, the

adversary has the resources to analyze the data gathered by the app using

publicly available background information, for example, through crawling the

public information released by social networks, etc. Such activities can be

performed by ordinary Internet users.

What the adversary can do. In addition to collecting and analyzing the

information gathered from the victim’s device, a zero-permission malicious

app needs a set of capabilities to pose a credible privacy threat. Particularly,

it needs to send data across the Internet without the INTERNET permission.

Also, it should stay aware of the system’s situation, i.e., which apps are

currently running? This enables the malicious app to keep a low profile, start

data collection only when its target app is being executed. Here we show how

these capabilities can be obtained by the app without any permission.

• Networking. Leviathan’s blog describes a zero-permission technique to

smuggle out data across the Internet [9]. The idea is to let the sender

app use the URI ACTION VIEW Intent to open a browser and sneak the

payload it wants to deliver to the parameters of an HTTP GET from the

receiver website. We re-implement this technique in our research and

further make it stealthy. Leviathan’s approach does not work when

the screen is off because the browser is paused when the screen is off.

We improve this method to smuggle data right before the screen is

off or the screen is being unlocked. Specifically, our app continuously

monitors /lcd power (/sys/class/lcd/panel/lcd power on Galaxy

Nexus), an LCD status indicator released under the sysfs. Note that

this indicator can be located under other directory on other devices,

for example, sys/class/backlight/s6e8aa0 on Nexus Prime. When

the indicator becomes zero, the phone screen dims out, which allows

our app to send out data through the browser without being noticed by

the user. After the data transmission is done, our app can redirect the

browser to Google and also set the phone to its home screen to cover

this operation.

33

• Situation awareness. Our zero permission app defines a list of target

applications such as social network app and stock applications and

monitors their activities. It first checks whether those packages are

installed on the victim’s system (getInstalledApplications()) and

then periodically calls ps to get a list of active apps and their PIDs.

Once a target is found to be active, our app will start a thread that

closely monitors the /proc/uid stats/[uid] and the /proc/[pid]/

of the target.

4.2.3 Usage Monitoring and Analysis

Mobile-data usage statistics. Mobile data usages of Android are made

public under /proc/uid stat/ (per app) and /sys/class/net/[interface]

/statistics/ (per interface). The former is newly introduced by Android

to keep track of individual apps. These directories can be read by any app

directly or through TrafficStats, a public API class. Of particular interest

here are two files /proc/uid stat/[uid]/tcp rcv and /proc/uid stat

/[uid]/tcp snd, which record the total number of bytes received and sent

by a specific app respectively. We find that these two statistics are actually

aggregated from TCP packet payloads: for every TCP packet received or sent

by an app, Android adds the length of its payload onto the corresponding

statistics. These statistics are extensively used for mobile data consumption

monitoring [49]. However, our research shows that their updates can also be

leveraged to fingerpint an app’s network operations, such as sending HTTP

POST or GET messages.

Stealthy and realtime monitoring. To catch the updates of those

statistics in real time, we build a data-usage monitor that continuously reads

from tcp rcv and tcp snd of a target app to record increments in their val-

ues. Such an increment is essentially the length of the payload delivered by a

single or multiple TCP packets the app receives and sends, depending on how

fast the monitor samples from those statistics. Our current implementation

has a sampling rate of 10 times per second. This is found to be sufficient

for picking up individual packets most of the time, as illustrated in Figure

4.1, in which we compare the packet payloads observed by Shark for Root

(a network traffic sniffer for 3G and WiFi), when the user is using Yahoo!

34

Table 4.1: Performance overhead of the monitor tool: there the baseline is
measured by AnTuTu [1]

Total CPU GPU RAM I/O
Baseline 3776 777 1816 588 595
Monitor Tool 3554 774 1606 589 585
Overhead 5.8% 0.3% 11.6% -0.1% 1.7%

Finance, with the cumulative outbound data usage detected by our usage

monitor.

Figure 4.1: Monitor tool precision

From the figure, we can see that most of the time, our monitor can separate

different packets from each other. However, there are situations in which only

the cumulative length of multiple packets is identified (see the markers in the

figure). This requires an analysis that can tolerate such non-determinism,

which we will discuss later.

In terms of performance, our monitor has a very small memory footprint,

only 28 MB, even below that of the default Android keyboard app. When

it is running at its peak speed, it takes 7% of a core’s cycles on a Google

Nexus S phone. Since all the new phones released today are armed with

multi-core CPUs, the monitor’s operations will not have noticeable impacts

on the performance of the app running in the foreground as demonstrated

by a test described in Table 4.1 measured using AnTuTu [1] with a sampling

rate of 10Hz for network usage. The scores in Table 4.1 measured by An-

TuTu benchmark imply the performances of a mobile device when or when

not running our monitor tool. The higher the scores are, the better the per-

35

formance of a mobile device are. To make this data collection stealthier, we

adopt a strategy that samples intensively only when the target app is being

executed, which is identified through ps.

Analysis methodology. The monitor cannot always produce determinis-

tic outcomes: when sampling the same packet sequence twice, it may observe

two different sequences of increments from the usage statistics. To obtain a

reliable traffic fingerprint of a target app’s activity we design a methodology

to bridge the gap between the real sequence and what the monitor sees.

Our approach first uses Shark for Root to analyze a target app’s behavior

(e.g., click on a button) offline - i.e. in a controlled context - and generate

a payload-sequence signature for the behavior. Once our monitor collects a

sequence of usage increments from the app’s runtime on the victim’s Android

phone, we compare this usage sequence with the signature as follows. Con-

sider a signature (· · · , si, si+1, · · · , si+n, · · ·), where si,··· ,i+n are the payload

lengths of the TCP packets with the same direction (inbound/outbound),

and a sequence (· · · ,mj, · · ·), where mj is an increment on a usage statis-

tic (tcp rcv or tcp snd) of the direction of si, as observed by our monitor.

Suppose that all the elements before mj match the elements in the signature

(those prior to si). We say that mj also matches the signature elements if

either mj = si or mj = si + · · ·+ si+k with 1 < k ≤ n. The whole sequence is

considered to match the signature if all of its elements match the signature

elements.

The payload-sequence signature can vary across different mobile devices,

due to the difference in the User-Agent field on the HTTP packets produced

by these devices. This information can be acquired by a zero-permission app

through the android.os.Build API.

4.3 Identity Inference

A person’s identity, such as name, email address, etc., is always considered

to be highly sensitive [50, 51] and should not be released to an untrusted

party. For a smartphone user, unauthorized disclosure of her identity can

immediately reveal a lot of private information about her (e.g., disease, sex

orientation, etc.) simply from the apps on her phone. Here we show one’s

identity can be easily inferred using the shared resources and rich background

36

information from Twitter.

Twitter is one of the most popular social networks with about 500 million

users worldwide. It is common for Twitter users to use their mobile phones

to tweet extensively and from diverse locations. Many Twitter users disclose

their identity information which includes their real names, cities and some-

times homepage or blog URL and even pictures. Such information can be

used to discover one’s accounts on other social networks, revealing even more

information about the victim according to prior research [52]. We also per-

form a small range survey on the identity information directly disclosed from

public Twitter accounts to help us better understand what kind of informa-

tion users disclose and at which extend. By manually analyzing randomly

selected 3908 accounts (obvious bot accounts excluded), we discover that

78.63% of them apparently have users’ first and last names there, 32.31%

set the users’ locations, 20.60% include bio descriptions and 12.71% provide

URLs. This indicates that the attack we describe below poses a realistic

threat to Android users’ identity.

The idea. In our attack, a zero-permission app monitors the mobile-data

usage count tcp snd of the Twitter 3.6.0 app when it is running. When

the user send tweets to the Twitter server, the app detects this event and

send its timestamp to the malicious server stealthily. This gives us a vector

of timestamps for the users’ tweets, which we then use to search the tweet

history through public Twitter APIs for the account whose activities are

consistent with the vector: that is, the account’s owner posts her tweets at the

moments recorded by these timestamps. Given a few of timestamps, we can

uniquely identity that user. An extension of this idea could also be applied

to other public social media and their apps, and leverage other information

as vector elements for this identity inference: for example, the malicious app

could be designed to figure out not only the timing of a blogging activity,

but also the number of characters typed into the blog through monitoring

of the CPU usage of the keyboard app, which can then be correlated to a

published post.

To make this idea work, we need to address a few technical challenges.

Particularly, searching across all 340 million tweets daily is impossible. Our

solution is using less protected, the coarse location (e.g., city) of the person

who tweets, to narrow down the search range.

Fingerprinting tweeting event. To fingerprint the tweeting event from

37

the Twitter app, we use the aforementioned methodology to first analyze

the app offline to generate a signature for the event. This signature is then

compared with the data usage increments our zero-permission app collects

online from the victim’s phone to identify the moment she tweets.

Specifically, during the offline analysis, we observed the following TCP

payload sequence produced by the Twitter app: (420|150, 314, 580 − 720).

The first element here is the payload length of a TLS Client Hello. This

message normally has 420 bytes but can become 150 when the parameters

of a recent TLS session are reused. What follow are a 314-byte payload for

Client Key Exchange and then that of an encrypted HTTP request, either a

GET (download tweets) or a POST (tweet). The encrypted GET has a relatively

stable payload size, between 541 and 544 bytes. When the user tweets, the

encrypted POST ranges from 580 to 720 bytes, due to the tweet’s 140-character

limit. So, the length sequence can be used as a signature to determine when

a tweet is sent.

As discussed before, what we want to do here is to use the signature to

find out the timestamp when the user tweets. The problem here is that

our usage monitor running on the victim’s phone does not see those packets

and can only observe the increments in the data-usage statistics. Our offline

analysis shows that the payload for Client Hello can be reliably detected

by the monitor. However, the time interval between Key-Exchange message

and POST turns out to be so short that it can easily fall through the cracks.

Therefore, we have to resort to the aforementioned analysis methodology

to compare the data-usage sequence collected by our app with the payload

signature: a tweet is considered to be sent when the increment sequence is

either (420|150, 314, 580− 720) or (420|150, 894− 1034).

Identity discovery. From the tweeting events detected, we obtain a

sequence of timestamps T = [t1, t2, · · · , tn] that describe when the phone

user tweets. This sequence is then used to find out the user’s Twitter ID

from the public index of tweets. Such an index can be accessed through the

Twitter Search API [53]: one can call the API to search the tweets from a

certain geo-location within 6 to 8 days. Each query returns 1500 most recent

tweets or those published in the prior days (1500 per day). An unauthorized

user can query 150 times every hour.

To collect relevant tweets, we need to get the phone’s geo-location, which

is specified by a triplet (latitude, longitude, radius) in the twitter search

38

Table 4.2: City information and Twitter identity exploitation

Location Population City size Time inter-
val covered
(radius)

of times-
tamps

Urbana 41,518 11.58 mi2 243 min(3 mi) 3
Bloomington 81,381 19.9 mi2 87 min (3 mi) 5
Chicago 2,707,120 234 mi2 141 sec (3 mi) 9

API. Here all we need is a coarse location (at city level) to set these pa-

rameters. Android has permissions to control the access to both coarse and

fine locations of a phone. Our zero-permission app can invoke the mobile

browser to visit a malicious website, which can then search her IP in public

IP-to-location databases [54] to find her city. This allows us to set the query

parameters using Google Maps. Note that smartphone users tend to use

Wi-Fi whenever possible to conserve their mobile data, which gives our app

chances to get their coarse locations. Please note that we do not require the

user to geo-tag each tweet. The twitter search results include the tweets in

a area as long as the user specifies her geo-location in her profile.

As discussed before, our app can only sneak out the timestamps it collects

from the Twitter app when the phone screen dims out. This could happen

minutes away from the moment a user tweets. For each timestamp ti ∈ T , we

use the twitter API to search for the set of users ui who tweet in that area in

ti±60s (due to the time skew between mobile phone and the twitter server).

The target user is in the set U = ∩ui. When U contains only one twitter ID,

the user is identified. For a small city, oftentimes 1500 tweets returned by a

query are more than enough to cover the delay including both the ti ± 60s

period and the duration between the tweet event and the moment the screen

dims out. For a bigger city with a large population of Twitter users, however,

we need to continuously query the Twitter server to dump the tweets to a

local database, so when our app report a timestamp, we can search it in the

database to find those who tweet at that moment.

Attack evaluation. We evaluate the effectiveness of this attack at three

cities, Urbana, Bloomington and Chicago. Table 4.2 describes these cities’

information.

We first study the lengths of the time intervals the 1500 tweets returned

39

by a Twitter query can cover in these individual cities. To this end, we

examine the difference between the first and the last timestamps on 1500

tweets downloaded from the Twitter server through a single API call, and

present the results in Table 4.2. As we can see here, for small towns with

populations below 100 thousand, all the tweets within one hour and a half

can be retrieved through a single query, which is sufficient for our attack:

it is conceivable that the victim’s phone screen will dim out within that

period after she tweets, allowing the malicious app to send out the timestamp

through the browser. However, for Chicago, the query outcome only covers

2 minutes of tweets. Therefore, we need to continuously dump tweets from

the Twitter server to a local database to make the attack work.

In this experiment, we run a script that repeatedly calls the Twitter Search

API, at a rate of 135 queries per hour. All the results without duplicates are

stored in a local SQL database. Then, we post tweets through the Twitter

app on a smartphone, under the surveillance of the zero-permission app. Af-

ter obvious robot Twitter accounts are eliminated from the query results, our

Twitter ID are recovered by merely 3 timestamps at Urbana, 5 timestamps

at Bloomington and 9 timestamps in Champaign, which is aligned with the

city size and population (number of people).

4.4 Investment Inference

Knowing your personal investment. A person’s investment information

is private and highly sensitive. Here we demonstrate how an adversary can

infer her financial interest from the network data usage of Yahoo! Finance,

a popular finance app on Google Play with nearly one million users. We

discover that Yahoo! Finance discloses a unique network data signature

when the user is adding or clicking on a stock.

Stock search autocomplete. Similar to all aforementioned attacks, here

we consider that a zero-permission app running in the background collects

network data usage related to Yahoo! Finance and sends it to a remote

attacker when the device’s screen dims out. Searching for a stock in Yahoo!

Finance generates a unique network data signature, which can be attributed

to its network-based autocomplete feature (i.e. suggestion list) that returns

suggested stocks according to the user’s input. Consider for example the

40

case when a user looks for Google’s stock (GOOG). In response to each

letter she enters, the Yahoo! Finance app continuously updates a list of

possible autocomplete options from the Internet, which is characterized by a

sequence of unique payload lengths. For example, typing ”G” in the search

box produces 281 bytes outgoing and 1361 to 2631 bytes incoming traffic.

We find that each time the user enters an additional character, the outbound

HTTP GET packet increases by one byte. In its HTTP response, a set of

stocks related to the letters the user types will be returned, whose packet size

depends on the user’s input and is unique for each character combination.

Stock news signature. From the dynamics of mobile data usage pro-

duced by the suggestion lists, we can identify a set of candidate stocks. To

narrow it down, we further study the signature when a stock code is clicked

upon. We find that when this happens, two types of HTTP GET requests will

be generated, one for a chart and the other for related news. The HTTP

response for news has more salient features, which can be used to build a

signature. Whenever a user clicks on a stock, Yahoo! Finance will refresh the

news associated with that stock, which increases the tcp rcv count. This

count is then used to compare with the payload sizes of the HTTP packets

for downloading stock news from Yahoo! so as to identify the stock chosen

by the user. Also note that since the size of the HTTP GET for the news is

stable, 352 bytes, our app can always determine when a news request is sent.

Attack evaluation. In our study, we run our zero-permission app to

monitor the Yahoo! Finance app on a Nexus S 4G smartphone. From the

data-usage statistics collected while the suggestion list is being used to add

10 random stocks onto the stock watch list, we manage to narrow down

the candidate list to 85 possible stocks that match the data-usage features

of these 10 stocks. Further analyzing the increment sequence when the user

clicks on a particular stock code, which downloads related news to the phone,

we are able to uniquely identify each of the ten stocks the user selects among

the 85 candidates.

41

CHAPTER 5

MITIGATION TECHNIQUES

To address the security concerns as described in chapter 3 and 4, we proposes

mitigation techniques in this chapter. Section 5.1 discusses the strategies for

side-channel information leakage and its permission enforcement framework

on Android. Section 5.2 proposes a mitigation strategy and introduces a

static analysis framework, and also discusses compliance recommendations

for mHealth apps.

5.1 Strategies for Side-channel Information Leakage

Given the various public resources on Android, the information leaks we

found are very likely to be just a tip of the iceberg. Finding an effective

solution to this problem is especially challenging with rich background in-

formation of users or apps gratuitously available on the web. To mitigate

such threats, we first take a closer look at the attacks discovered in our re-

search. To address the availability mechanism of the data usage statistics,

which have already been used by hundreds of apps to help Android users

keep track of their mobile data consumption, merely removing them from

the list of public resources is not an option. In this section, we report our

approach on mitigating the threat deriving from the statistics availability,

while maintaining their utility.

5.1.1 Mitigation Strategies

To suppress information leaks from statistics available through tcp rcv and

tcp snd as described in Chapter 4, we can release less accurate information.

Here we analyze a few strategies designed for this purpose.

Round up and round down. One strategy is to reduce the accuracy

42

of the available information by rounding up or down the actual number of

bytes sent or received by an app to a multiple of a given integer before

disclosing that value to the querying process. This approach is reminiscent

of a predominant defense strategy against traffic analysis, namely packet

padding [39, 55]. The difference between that and our approach is that we

can not only round up but also round down to a target number and also work

on accumulated payload lengths rather than the size of an individual packet.

This enables us to control the information leaks at a low cost, in terms of

impact on data utility.

Specifically, let d be the content of a data usage counter (tcp rcv or

tcp snd) and α an integer. When the counter is queried by an app, our

approach first finds a number k such that kα ≤ d ≤ (k+ 1)α and reports kα

to the app when d− kα < 0.5α and (k + 1)α otherwise.

Aggregation. A limitation of the simple rounding strategy results from

the fact that it still gives away the payload size of each packet, even though

the information is perturbed. As a result, it cannot hid packets with exceed-

ingly large payloads. To address this issue, we can accumulate the data usage

information of multiple queries, for example, stocks on Yahoo! Finance the

user looks at, and only release the cumulative result when a time interval ex-

pires. This can be done, for example, by updating an app’s data usage to the

querying app once every week, which prevents the adversary from observing

individual packets.

5.1.2 Enforcement Framework

To enforce the aforementioned policies, we design a preliminary framework,

which is elaborated below.

A naive idea would be adding yet another permission to Android’s al-

ready complex permission system and have any data monitoring app re-

questing this permission in AndroidManifest.xml. However, prior research

shows that the users do not pay too much attention to the permission list

when installing apps, and the developers tend to declare more permissions

than needed [56]. On the other hand, the traffic usage data generated by

some applications (e.g., banking applications) is exceptionally sensitive, at

a degree that the app developer might not want to divulge them even to

43

the legitimate data monitoring apps. To address this problem, our solu-

tion is to let an app specify ”permissions” to Android, which defines how

its network usage statistics should be released. Such permissions, which are

essentially a security policy, was built into the Android permission system

in our research. Using this usage counters as an example, our framework

supports four policies: NO ACCESS, ROUNDING, AGGREGATION and

NO PROTECTION. These policies determine whether to release an app’s

usage data to a querying app, how to release this information and when

to do that. They are enforced at a UsageService, a policy enforcement

mechanism by holding back the answer and adding noise to it or periodically

updating this information.

5.2 Strategies for Security Concerns in mHealth Apps

We have discussed several vulnerabilities discovered in Android mHealth apps

in chapter 3 - unsecured Internet, third party storage, Bluetooth, logging, SD

card storage, and exported components. Given the variety of existing Android

mHealth apps and the number of upcoming new apps in the market, the

vulnerabilities we found and discussed in chapter 3 is just a tip of the iceberg.

Furthermore, even though applications in the markets were not designed to

be malicious and were carefully programmed, they may still surfer from data

leakage threats, for instance, when their source code contains unnecessary

system logs that disclose sensitive information. Many developers are not

able to fully understand the privacy implications, nor are they not be able

to take fully control which data flows to which dangerous channel.

5.2.1 Static Analysis

To circumvent the data leakage threats in Android mHealth apps, we need

a way to automatically assess and detect both newly discovered and existing

known threats in the market. Static taint analysis addresses this problem

by analyzing tainted data flows through Android applications and sending

outputs to human analysts or to automated tools which can make security-

decisions. This static taint analysis approach can keep track of sensitive

“tainted” information through the application by starting at any one from

44

a list of pre-defined sources (e.g., an API method returning users’ contact

list or a source labeled in source code) and then following the data flow

until it reaches any one from a list of pre-defined sinks (e.g., an API method

storing the information on a SD card). It gives precise information about

which sensitive data may leak to which sink channel, as shown in figure 5.1.

Many previous research works [57, 58, 59] work on the static taint analysis,

while some work on dynamic program analysis such as TaintDroid [44]. Both

static analysis and dynamic analysis can be used for this task. But dynamic

analysis may require many test runs to reach appropriate code coverage. On

the other side, malware can be developed to be able to recognize the behavior

of dynamic analysis and pose as a benign application to bypass the detection.

For the above reasons, we choose static analysis over dynamic analysis for

data leakage detection.

Figure 5.1: Data leakage detection with static analysis

Many challenges exist for implementing static analysis on Android due

to the special design of Android operating system. Existing data-flow anal-

ysis techniques and modeling methods are not directly applicable to An-

droid applications. Difficulties are triggered because of Android program-

ming paradigm’s special multiple entry points. Unlike a Java program, an

Android app doesn’t have a single entry point. Developers can define many

entry points for a single Android app. As noted in section 2.1, there are

four types of components developers can define: Activity, Service, Content

Provider and Broadcast Receiver. The Android framework calls the meth-

ods associated with these components, to start, stop, pause, or to resume the

components, depending on the environment needs. Data flow analysis can be

expensive on Android apps because of its asynchronous execution and inter-

component data flow. To be able to effectively predict the data flow, static

analysis must not only precisely model the life-cycles of components but also

integrate callbacks for system-event handling (e.g., for camera sensor), UI

interaction and so on.

45

Figure 5.2: Static analysis system design framework

From our observation, many real-world vulnerabilities we discovered in

chapter 3 have sources beyond the scope of FlowDroid’s pre-defined source

list, including account, Bluetooth, browser, calendar, contact, database, file,

network, nfc, settings, sync, and unique-identifiers. The FlowDroid’s sources

are all returned from API methods, but for sensitive information (e.g., per-

sonal information like name, age and weight, or health information) that is

from user input is hard to be categorized and captured with the tool. Neither

false positive or false negative is acceptable in this scenario, since false posi-

tive may lead to too much inaccurate warnings and false negative can make

the warnings incomplete. So we add a source builder into the architecture,

with which the sources can be collected from labels in the source code or au-

tomated detection tool based on machine-learning technique [57]. Figure 5.2

shows our proposed framework for the static taint analysis tool on Android

apps. This architecture is derived from FlowDroid [58], and we improve it

by adding source builder into the architecture. After unzipping the app’s

46

app file, our tool searches through the application for lifecycle and call back

methods by parsing various Android-specific files, including manifest, Java

source code, layout xmls and so on. The source builder then constructs a list

of sources from automated source detection tool built upon machine-learning

technique [57] or from labels defined by developers in source code. Sinks are

built with automated sink detection from pre-defined sink list. Next, the

tool generates a dummy main method as a single entry point for the Android

program from the list of lifecycle and callback methods. This main method

is then used to generate a call graph for the taint analyzer. The taint ana-

lyzer reports any possible links between the sources and sinks as warnings of

potential vulnerabilities to the developers for a further check.

5.2.2 Compliance Recommendations

The increased use of mHealth in various scenarios results in greater risks

to health-related information on mobile devices. MHealth vendors including

app developers and healthcare service providers should make efforts to ensure

that mHealth apps facilitate security compliance. Based on our study on

the risks from Android mHealth apps, here are some important compliance

recommendations:

• Encryption is essential to secure personal data stored on mobile devices.

• When accessing web-based services for syncing users’ sensitive data,

TLS/SSL is necessary to be deployed throughout the Internet trans-

mission session.

• Even though the network transmission session is protected and en-

crypted, using third party services to store users’ sensitive data must

be closely reviewed and users should be informed when it is happening.

• Developer guidelines or training can be helpful in avoiding many of the

common mistakes that are rooted from development with poor secure

practices.

• Risk assessment provided by authorities can further minimize the se-

curity risks that may harm users.

47

CHAPTER 6

DISCUSSION

In this chapter, we summarize the findings from the study of Android mHealth

apps and the investigation on Android side channel exploits in section 6.1,

and discuss the limitations of the study for these two studies respectively in

section 6.2.

6.1 Summary of Findings

In this section, we summarize the findings from the studies in this thesis.

Study of Android mHealth apps. Our three-stage study in chapter

3 shows some serious problems with the Android mHealth apps. The ma-

jor issue is unencrypted communication over the Internet and the use of

third party services. Our study shows that a significant amount of Android

mHealth apps on Google Play suffer from these issues. We believe that these

issues need further attention from vendors, users and administration author-

ities, since these issues cannot be easily fixed. Many Android mHealth app

developers are not security experts and lack of necessary security senses. It is

not economical for the app vendors to maintain their own servers and it not

clear how encryption could be used to store data on the third-party services.

App vendors tend to use unencrypted communication and build services on

third party hosts. For Android mHealth apps, more adequate security and

privacy guarantees are in urgent demand.

Understanding and proving data leakage from public resources on

Android. In chapter 4, we make a first step to understand the fundamental

design deficiencies of Android: the Android operating system is designed

based on a set of shared resources, which could be utilized by a malicious

party to infer sensitive information. We discover an unexpected channel on

Android: per-app data-usage statistics. Our study reveal that the per-app

48

data-usage statistics channel can be a threat to user privacy by showing

two attack instances - to infer a user’s identity with Twitter app and public

databases and to infer a user’s investment interests with Yahoo! Finance

app.

Mitigation strategies for the side-channel data leakage. The side-

channel threat discussed in chapter 4 can hardly be mitigated, but it is still

possible to circumvent this threat with Android version upgrades. As dis-

cussed in section 5.1, we add the Android kernel with additional permissions

control for the data-usage statistics readings, such that developers can have

the rights to define how the network usage statistics should be released for

each app. We propose round up or round down and aggregation strategies

and further discuss the enforcement framework for permissions control in

Android kernel.

Proposal of static analysis framework. As the number of Android

apps is exploding, many new security vulnerabilities emerge in the market.

It is becoming hard for us to clearly define and detect all the data leakage

threats for new channels and new data types, so we propose an automated

static analysis technique in section 5.2. We add an additional source detection

mechanism into an existing static analysis tool called FlowDroid and enable

the tool to find sources that are labeled by developers.

6.2 Limitations

In this section, we discuss the limitations of our study in this thesis.

App version upgrade. In chapter 4, we describe a discovery of a new

data leakage channel: per-app data-usage statistics and we give two instances

of private inferences: identity inference from Twitter app and investment

interest inference from Yahoo! Finance app. The success of data inferences is

highly dependent on the accuracy of data-usage statistics from pre-analysis.

If the target app has any version upgrade, the data-usage statistics may

change. It will cause our data monitoring tool to be inaccurate or even to

become unable to work. The only way to circumvent this problem is to create

a variety of signature data entries for various different versions of target apps,

so that even the version changes, we can still detect correctly the behavior

with the data-usage signature.

49

Android library behavior change. Android has been making efforts by

doing system behavior changes to circumvent newly found threats. Some of

the security issues discussed in chapter 3 can be mitigated by Android version

updates. For example, to mitigate the storage information leakage problem,

starting from Android 4.4, the WRITE EXTERNAL STORAGE permission has been

modified that it only allows apps to write on an external storage within its

app-specific directory. To mitigate the logging information leakage problem,

since Jelly Bean (Android 4.1), an app can only collect and view log messages

originating from itself. However, on a rooted device (i.e., a device allows any

app to run administration permissions on Android), a malicious app can, by

executing a pm grant command, grant itself a READ LOGS permission. This

means that it is still dangerous for an app to keep sensitive information in the

system logs. According to the Android platform distribution [60] collected

in March, 2014, almost 40% of the overall Android devices are under the

version of Jelly Bean. Due to a large number of Android devices users and

mHealth apps, it is still highly lucrative for malicious to investigate ways to

harvest sensitive personal healthcare information from mHealth apps.

Side-channel information leakage mitigation strategies. To miti-

gate the side-channel information leaks from data-usage stats as described

in chapter 4, we propose data-usage stats mitigation strategies in chapter

5. The strategies are to round up, round down or aggregate statistics avail-

able through tcp rcv and tcp snd in order to suppress information leaks.

However, there are some mobile apps on Android that are operating highly

dependent on the statistics collected via these channels. For example, hun-

dreds of data usage monitors are already out there [49], relying the usage

statistics to keep track of a user’s mobile data consumption. If we suppress

the information leaks by making these statistics less accurate, it would affect

the data monitor apps’ current level of precision.

50

CHAPTER 7

CONCLUSION

In this master thesis, we explore the security threats in Android apps in two

different directions: studying vulnerabilities in the mHealth sector and dis-

cussing a specific side-channel attack on Android. With a three-stage study

on Android mHealth apps, we discover that many Android mHealth apps

have issues of using unsecured Internet and third party hosting services. We

present our compliance recommendations for these problems needing atten-

tion from vendors, users, and authorities. To mitigate the general data leak-

age problem in mHealth apps, we propose a static analysis framework, with

a source detection mechanism, to enable developers labeling sensitive data

that is easily to be missed by automated tools without human interaction.

Our second study on the side-channel attack discovers an unexpected in-

formation leakage channel: per-app data-usage statistics. Our study reveals

that highly sensitive user data, such as identity and investment interests, can

be inferred from public resources by a malicious app with zero permission

on Android devices. Our findings call into question the design assumptions

made by Android developers on public resources and demand new efforts to

address such privacy risks. To this end, we further propose a preliminary

design for mitigating the threats from the selected public resources, while

preserving their utility.

51

REFERENCES

[1] “Antutu benchmark,” https://play.google.com/store/apps/details?id=
com.antutu.ABenchMark, 2014, [Online; accessed 3-April-2014].

[2] “Comparison of mobile operating systems,”
http://en.wikipedia.org/wiki/Comparison of mobile operating systems,
2014, [Online; accessed 16-April-2014].

[3] “Google announces android has surpassed 1 billion device activa-
tions,” http://phandroid.com/2013/09/03/android-device-activations-
1-billion/, Sept. 2014, [Online; accessed 16-April-2014].

[4] “Number of available android applications,”
https://www.appbrain.com/stats/number-of-android-apps, AppBrain,
April 2014, [Online; accessed 16-April-2014].

[5] B. Singer, “Fbi issues android smartphone malware warning,”
http://www.forbes.com/sites/billsinger/2012/10/15/fbi-issues-android-
smartphone-malware-warning/, October 2012, [Online; accessed
6-April-2014].

[6] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, ser. SP ’12. Washington, DC, USA: IEEE Computer So-
ciety, 2012. [Online]. Available: http://dx.doi.org/10.1109/SP.2012.16
pp. 95–109.

[7] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in 20th
USENIX Security Symposium, San Francisco, CA, Aug. 2011.

[8] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones,” in NDSS, 2012.

[9] P. Brodeur, “Zero-permission android applications,”
http://www.leviathansecurity.com/blog/zero-permission-android-
applications/, 2012, [Online; accessed 2-April-2014].

52

[10] S. Avancha, A. Baxi, and D. Kotz, “Privacy in mo-
bile technology for personal healthcare,” ACM Computing Sur-
veys, vol. 45, no. 1, November 2012. [Online]. Available:
http://www.cs.dartmouth.edu/ dfk/papers/avancha-survey.pdf

[11] D. Kotz, “A threat taxonomy for mhealth privacy,” in COMSNETS,
2011, pp. 1–6.

[12] “Mobile health market report 2013-2017,”
http://www.research2guidance.com/shop/index.php/mhealth-report-2,
Research2Guidance, March 2013, [Online; accessed 6-April-2014].

[13] “Mobile health apps & solutions market by connected devices (car-
diac monitoring, diabetes management devices), health apps (exercise,
weight loss, women’s health, sleep and medication), medical apps (med-
ical reference) - global trends & forecast to 2018,” MarketsandMarkets,
Sep 2013.

[14] R. Murthy and D. Kotz, “Assessing blood-pressure measure-
ment in tablet-based mHealth apps,” in Workshop on Net-
worked Healthcare Technology (NetHealth). IEEE Press, Jan-
uary 2014, accepted for publication. [Online]. Available:
http://www.cs.dartmouth.edu/ dfk/papers/murthy-bp.pdf

[15] R. Istepanian, S. Laxminarayan, and C. S. Pattichis, “M-health: emerg-
ing mobile health systems,” M-Health: Emerging Mobile Health Systems,
Edited by R. Istepanian, S. Laxminarayan, and CS Pattichis. 2006 XXX,
624 p. 182 illus. 0-387-26558-9. Berlin: Springer, 2006., vol. 1, 2006.

[16] Y. Anokwa, N. Ribeka, T. Parikh, G. Borriello, and M. C. Were,
“Design of a phone-based clinical decision support system for resource-
limited settings,” in Proceedings of the Fifth International Conference
on Information and Communication Technologies and Development,
ser. ICTD ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2160673.2160676 pp. 13–24.

[17] D. Kotz, S. Avancha, and A. Baxi, “A privacy frame-
work for mobile health and home-care systems,” in Workshop
on Security and Privacy in Medical and Home-Care Systems
(SPIMACS). ACM Press, November 2009. [Online]. Available:
http://www.cs.dartmouth.edu/ dfk/papers/kotz-mhealth-spimacs.pdf
pp. 1–12.

[18] C. C. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method
to secure wireless body area sensor networks for telemedicine and
m-health,” Comm. Mag., vol. 44, no. 4, pp. 73–81, Sep. 2006. [Online].
Available: http://dx.doi.org/10.1109/MCOM.2006.1632652

53

[19] “Mobile medical applications guidance for industry and food and drug
administration staff,” US. Food and Drug Administration, Sept. 2013.

[20] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside
job: Understanding and mitigating the threat of external device mis-
bonding on android,” 2014.

[21] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/1999995.2000018 pp. 239–252.

[22] “Mobile threat report,” http://www.f-
secure.com/static/doc/labs global/Research/
Mobile Threat Report Q3 2013.pdf, F-Secure Labs, Helsinki, Finland,
2013, [Online; accessed 5-April-2014].

[23] E. C. Yekaterina Tsipenyuk O’Neil, “Seven ways to hang yourself with
google android,” http://www.cs.berkeley.edu/ emc/slides/
SevenWaysToHangYourselfWithGoogleAndroid.pdf, 2011, [Online; ac-
cessed 5-April-2014].

[24] “Doctor online,” https://play.google.com/store/apps/details?id=
com.airpersons.airpersonsmobilehealth, 2014, [Online; accessed 5-April-
2014].

[25] “Recipes by ingredients,” https://play.google.com/store/apps/details?
id=com.abMobile.recipebyingredient, 2014, [Online; accessed 5-April-
2014].

[26] “Cvs/pharmacy,” https://play.google.com/store/apps/details?id=
com.cvs.launchers.cvs, 2014, [Online; accessed 5-April-2014].

[27] “Noom weight loss coach,” https://play.google.com/store/apps/details?
id=com.wsl.noom, 2014, [Online; accessed 5-April-2014].

[28] “Drozer,” https://www.mwrinfosecurity.com/products/drozer/, 2014,
[Online; accessed 5-April-2014].

[29] “Snoreclock,” https://play.google.com/store/apps/details?id=
de.ralphsapps.snorecontrol, 2014, [Online; accessed 5-April-2014].

[30] “Sleep talk recorder,” https://play.google.com/store/apps/details?id=
com.madinsweden.sleeptalk, 2014, [Online; accessed 5-April-2014].

[31] “Urgent care,” https://play.google.com/store/apps/details?id=
com.greatcall.urgentcare, 2014, [Online; accessed 5-April-2014].

54

[32] “Dex2jar,” https://code.google.com/p/dex2jar/, 2014, [Online; ac-
cessed 5-April-2014].

[33] P. Dixon, “Medical identity theft: The information crime
that can kill you,” http://www.worldprivacyforum.org/wp-
content/uploads/2007/11/wpf medicalidtheft2006.pdf, World Privacy
Forum, 2006, [Online; accessed 5-April-2014].

[34] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ser. CCS ’09. New York, NY, USA: ACM,
2009. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653687
pp. 199–212.

[35] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382230 pp. 305–316.

[36] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Uncovering spoken phrases in encrypted voice over ip conversations,”
ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 35:1–35:30, Dec. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1880022.1880029

[37] K. Zhang and X. Wang, “Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems,” in Proceedings of
the 18th Conference on USENIX Security Symposium, ser. SSYM’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855770 pp. 17–32.

[38] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Proceedings of the 2012 IEEE Symposium on Security and
Privacy, ser. SP ’12. Washington, DC, USA: IEEE Computer Society,
2012. [Online]. Available: http://dx.doi.org/10.1109/SP.2012.19 pp.
143–157.

[39] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in Proceedings
of the 2010 IEEE Symposium on Security and Privacy, ser. SP
’10. Washington, DC, USA: IEEE Computer Society, 2010. [Online].
Available: http://dx.doi.org/10.1109/SP.2010.20 pp. 191–206.

[40] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones,” in NDSS, 2011.

55

[41] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on
touch screen from smartphone motion,” in Proceedings of the 6th
USENIX Conference on Hot Topics in Security, ser. HotSec’11.
Berkeley, CA, USA: USENIX Association, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028040.2028049 pp. 9–9.

[42] L. Cai and H. Chen, “On the practicality of motion based keystroke
inference attack,” in Proceedings of the 5th International Conference on
Trust and Trustworthy Computing, ser. TRUST’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 273–290.

[43] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accom-
plice: Location inference using accelerometers on smartphones.” in
COMSNETS, K. K. Ramakrishnan, R. Shorey, and D. F. Towsley, Eds.
IEEE, 2012, pp. 1–9.

[44] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924971 pp. 1–6.

[45] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A
study of android application security,” in Proceedings of the
20th USENIX Conference on Security, ser. SEC’11. Berke-
ley, CA, USA: USENIX Association, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028088 pp. 21–21.

[46] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall,
“These aren’t the droids you’re looking for: Retrofitting android to
protect data from imperious applications,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser.
CCS ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046780 pp. 639–652.

[47] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid:
Trading privacy for application functionality on smartphones,” in
Proceedings of the 12th Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/2184489.2184500 pp.
49–54.

56

[48] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS
’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653691 pp. 235–245.

[49] “Google play,” https://play.google.com/store/search?q=
traffic+monitor&c=apps, 2014, [Online; accessed 2-April-2014].

[50] D. J. Solove, “Identity theft, privacy, and the architecture of vulnerabil-
ity,” Hastings Law Journal, vol. 54, p. 1227, 2003.

[51] J. Camenisch, a. shelat, D. Sommer, S. Fischer-Hübner, M. Hansen,
H. Krasemann, G. Lacoste, R. Leenes, and J. Tseng, “Privacy and iden-
tity management for everyone,” in Proceedings of the 2005 Workshop on
Digital Identity Management, ser. DIM ’05. New York, NY, USA: ACM,
2005. [Online]. Available: http://doi.acm.org/10.1145/1102486.1102491
pp. 20–27.

[52] T. Govani and H. Pashley, “Student awareness of the privacy
implications when using facebook,” Draft, Jan. 2005. [Online].
Available: http://lorrie.cranor.org/courses/fa05/tubzhlp.pdf

[53] “Get search, twitter api,” https://dev.twitter.com/docs/api/1/get/
search, 2013, [Online; accessed 4-April-2014].

[54] “Ip address lookup,” http://whatismyipaddress.com/ip-lookup, 2014,
[Online; accessed 4-April-2014].

[55] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan,
and L. Qiu, “Statistical identification of encrypted web browsing traffic,”
in Proceedings of the 2002 IEEE Symposium on Security and Privacy,
ser. SP ’02. Washington, DC, USA: IEEE Computer Society, 2002.
[Online]. Available: http://dl.acm.org/citation.cfm?id=829514.830535
pp. 19–.

[56] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser.
CCS ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779 pp. 627–638.

[57] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks,” 2014 Network
and Distributed System Security Symposium (NDSS), 2014.

57

[58] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” 2014.

[59] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382223 pp. 229–240.

[60] “Android historical version distribution,”
https://developer.android.com/about/dashboards/index.html, 2014,
[Online; accessed March-2014].

58

