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Abstract

Medical specialties provide essential information about which providers have

the skills needed to carry out key procedures or make critical judgments.

They are useful for training and staffing and provide confidence to patients

that their providers have the experience needed to address their problems.

This work evaluates how machine learning classifiers can be trained on

treatment histories to recognize medical specialties. Such classifiers can be

used to evaluate staffing and workflows and have applications to safety and se-

curity. We focus on treatment histories that consist of the patient diagnoses.

We find that some specialties, such as a urologist, can be learned with good

precision and recall, while other specialties, such as anesthesiology, are less

easily recognized. We call the former diagnosis specialties and explore four

machine learning techniques for them, which we compare to a naive baseline

based on the diagnoses most commonly treated by specialists in a training

set. We find that these techniques can improve substantially on the baseline

and that the best technique, which uses Latent Dirichlet Allocation (LDA),

provides precision and recall above 80% for many diagnosis specialties based

on a study with one year of chart accesses and discharge diagnoses from a

major hospital. Furthermore, we explored several data mining techniques

to discover valid but unlisted diagnosis specialties. We present the diagno-

sis specialty discoveries and their associated attributes that corroborate the

discoveries.
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Chapter 1

Introduction

After completing medical school, physicians usually further their medical

education in a specific specialty of medicine by completing a multiple year

residency to become a medical specialist. Specialties are an important part

of the medical profession. They provide information about which providers

have the skills needed to carry out key procedures or make critical judgments.

They are useful for training and staffing and provide confidence to patients

that their providers have the experience needed to address their problems.

There are many ways in which provider institutions express and take advan-

tage of the specialties of their staff, including organizing them into groupings

like departments or assigning them attributes like specialty codes. However,

these expressions have limitations. For instance, at a given institution, some

specialties may not be adequately expressed in these ways, or a specialty

may be better assigned to one provider than another. In general, there could

be a gap between the treatment history of a provider and the specialty ex-

pressed for the provider. Techniques for addressing these limitations can

benefit staffing, quality control, building patient confidence, and other areas.

1.1 Problem Statement

Currently the Healthcare Provider Taxonomy Code [1] is used to describe

providers’ specialties. The code set is a Health Insurance Portability and Ac-

countability (HIPAA) standard code set and it is the only code set that may

be used in HIPAA standard transactions to report the type/classification/

specialization of a health care provider when such reporting is required [2].

Providers obtain their taxonomy codes by self-reporting when they apply

for their National Provider Identifiers (NPIs) [3]. Providers usually report

one or a few taxonomy codes according to their specialized training or the
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certifications they have.

Ideally, this mechanism would identify every health care provider with one

or more taxonomy codes that most accurately describe their specialization.

However, this is not always the case due to the following reasons:

1. The National Plan & Provider Enumeration System (NPPES) does not

verify with the health care providers or with trusted sources that the

taxonomy code selections made by health care providers when applying

for the NPIs are accurate [1].

2. Some taxonomy codes do not correspond with any nationwide certifi-

cations that are approved by a professional board. For example, the

specialty for “Men and Masculinity” is a well recognized area of in-

terest, study and activity in the field of psychology, but there is no

certification or credential available to identify psychologists who might

work in this area [4].

3. Some national certifications are not reflected on the specialty code list.

Since the specialty codes do not correspond to certifications within the

field, health care providers will interpret these codes in different ways.

4. Health insurers may have access to the taxonomy code and they may

use it in ways that affect health care provider’s reimbursement. There-

fore, health care providers are encouraged to choose taxonomy code

with broader scope, like Internal Medicine as opposed to Cardiovascu-

lar Disease.

These observations argue that it is desirable to have additional systematic

methods for the identification of provider’s specialty.

1.2 Objectives of Study

In this work, we propose to identify providers’ specialties by their treat-

ment histories, particularly the diagnoses of patients whose Electronic Med-

ical Record (EMR) the providers have accessed. Depending on whether a

provider’s specialty is listed in the Healthcare Provider Taxonomy Code Set

there are two different problems to solve. If a provider have a listed spe-

cialty (i.e., there is a taxonomy code corresponding to the specialty), we
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will need to correctly predict the provider’s specialty. Otherwise, before we

declare a provider as having no specialty we need to discover all the hidden

specialties in hospital and check if the user has any of them. We denote the

former problem as Specialty Prediction and the latter problem as Specialty

Discovery.

For specialty prediction, we explore the question of whether a provider

specialty can be learned by machine learning classifiers from the diagnoses of

patients that were treated by a provider. Our specific focus is on a subset of

Healthcare Provider Taxonomy Codes [1]. Such codes are often reflected in

the history of the diagnoses of patients treated by the provider. For instance,

a urologist (physician with a urology specialty code) might be expected to

treat conditions like “retention of urine” and “calculus of kidney” more fre-

quently than a provider that does not have a specialty in this area. By

contrast, certain specialties, such as an anesthesiologist, seem likely to treat

a wide range of patients where there may be less prevalence of any specific

collection of diagnoses such as a provider’s treatment record. The goal is to

investigate the extent to which supervised learning techniques can be lever-

aged to learn, and subsequently classify, specialists based on their treatment

histories with respect to diagnoses.

For specialty discovery, we explore the possibility of using data mining

to discover some clusters of providers who don’t have listed specialties but

whose treatment histories nevertheless have pervasive themes within each

cluster. For example, there is no taxonomy code for breast cancer specialist,

but they are expected to work a lot with patients who have “neoplasm of

breast” and “plastic surgery”. Therefore, if there is a cluster of providers

whose treatment histories have such common characteristics then we can

argue that breast cancer deserves to be a specialty. Hidden specialties are

very likely to exist since observation of the Healthcare Provider Taxonomy

Code Set and medical expert opinion both suggest the incompleteness of the

current code set [4]. Since the new specialties will be discovered base on

treatment history, they should be diagnosis specialties as well.

To perform these investigations, we work with one year of treatment history

for the healthcare providers in a major academic medical center.
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1.3 Contributions

The main contribution of this project includes:

• Our findings reveal that provider specialties can be usefully classified

into two general groups: (1) those which are strongly determined by

diagnosis treatment history (e.g., urology) and (2) those that are only

weakly determined (e.g., anesthesiology).

• For the specialties strongly determined by treatment history, which we

call diagnosis specialties, we find that a naive classifier that provides

a ranked list of diagnoses commonly treated by the specialty performs

fairly well. Such a classifier generally models how a human might re-

view the treatment history of a provider to determine the provider’s

specialty.

• We find that more statistically-informed machine learning techniques

can provide significantly better precision and recall than the naive clas-

sifier for specialty prediction. The best results are obtained by su-

pervise Latent Dirichlet Allocation (sLDA), which is a dimensionality-

reduction technique that learn a basis of topics that represent diagnoses

commonly grouped together in patient diagnosis lists. These techniques

are able to achieve predictive capability on most diagnosis specialties

with precision and recall in the range of 80% to 90%.

• We find that diagnoses frequently grouped together in patients’ diag-

noses histories provide a good basis for specialty discovery. As a result,

we proposed a method for diagnosis specialty discovery using Latent

Dirichlet Allocation (LDA) as well as two easy-to-follow criteria for

evaluating potential new specialties. From the diagnosis topics gen-

erated by LDA, we discovered a valid breast cancer specialty in our

dataset.

• Although user-guided clustering technique designed for Heterogeneous

Information Network (HIN) such as PathSelClus [5] generally performs

well on HIN, our experiment result shows that it is not effective at

clustering users based on their treatment histories.

4



1.4 Thesis Structure

Chapter 2 describes the key concepts required to understand our methods

and provides thorough background information. Section 2.1 describes vari-

ous standard clinical terminology used in EMR system to denote patients’

diseases and providers’ specialties. Section 2.2 introduces the concept and a

formal definition of diagnosis specialty. Section 2.3 provide an overview of

related works.

Chapter 3 offers an insight into the Northwestern Memorial Hospital EMR

and Audit log dataset. Section 3.1 describes the information contained in

the dataset and Section 3.2 summarize important statistics of the providers’

taxonomy codes in the dataset.

Chapter 4 highlights the methods we explored for predicting diagnosis

specialty. Section 4.1 introduces the naive classifier we devised. Section 4.2

describes the sLDA classifier. And section 4.3 and Section 4.4 shows our

baseline classifiers and the cross-validation method we adopted.

Chapter 5 aims at describing the data mining techniques we explored to

discover new diagnosis specialties. Section 5.1 and Section 5.2 explains how

to find new diagnosis specialties with LDA and PathSelClus respectively.

Chapter 6 presents experiment measurements and evaluation results. Sec-

tion 6.1 displays the precision and recall of the classifiers we explored for

specialty prediction. It also features a case study of the negative results.

Section 6.2 shows the discovery result for each of the data mining techniques

we explored.

Chapter 7 features some potentially useful applications of our specialty

identification technique. Section 7.1 talks about the implications for EMR

privacy , Section 7.2 explain how our work can be applied to hospital staffing

support and Section 7.3 describes how our technique enhances patient expe-

rience.

Chapter 8 summarizes the results and discusses limitation and future

scope.

The following components of this thesis were reported in [6]: Section 2.3,

Chapter 3, Chapter 4, Section 6.1 and Section 7.3.
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Chapter 2

Background

2.1 Clinical Terminology

Clinical terminology translates the complex medicine language to a compact

and machine-readable format. Most data in the Electronic Medical Record

(EMR) are stored in the form of some clinical terminology. In this section,

we will introduce three terminologies that are relevant to our analysis: ICD-9

Diagnosis [7], CCS Diagnosis [8] and Healthcare Provider Taxonomy Code

Set [1].

2.1.1 ICD-9 Diagnosis Code

The International Classification of Disease, Ninth Revision, (ICD-9) [7] is de-

signed to promote international comparability in the collection, processing,

classification, and presentation of mortality statistics. ICD-9 is the current

official system of diagnosis code assignment in the United State, but it will

be replaced by ICD-10 on October 1st, 2014 [9]; ICD-9 is a tabular form

containing a numerical list of disease code number. It also includes an al-

phabetical index to the disease entries as well as a classification system for

surgical, diagnostic and therapeutic procedures. ICD-9 diagnosis code is hi-

erarchical with three levels. The highest level contains 19 diagnosis chapters

bond together as a high level concept of different diagnosis. The middle

level has more than 1000 diagnosis chapters where each diagnosis chapter

can contain a group of correlated diagnosis codes. The lowest level consists

of thousands of diagnosis chapters and each chapter is a leaf diagnosis code.

This hierarchy can be expressed in the number range of the first 3 digits of

an ICD-9 code. For example, the range [390-459] represent the highest-level

diagnosis chapter which contains all codes related to “Diseases Of The Cir-
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culatory System”. Its sub-range [430-438] is a middle level diagnosis chapter

containing all codes related to “Cerebrovascular Disease”. And finally the

code 432 denote the diagnosis “Other and unspecified intracranial hemor-

rhage”. Further division of diagnosis is possible by appending the code by

a dot and additional digits. For instance, code 432.1 represents “Subdural

hemorrhage”.

2.1.2 CCS Diagnosis Code

The Clinical Classifications Software (CCS) is based on ICD-9. CCS maps

over 14,000 ICD-9 diagnosis codes into a much smaller number of clinically

meaningful categories that are less redundant and more useful for present-

ing descriptive statistics than ICD-9 codes. CCS consists of two related

classification systems, single-level and multi-level, which come with different

levels of details. The single-level CCS aggregates diagnoses into 285 mutu-

ally exclusive categories. Meanwhile, multi-level CCS expands and splits the

single-level CCS categories into 585 disjoint classes to provide more detail.

For instance, the single-level CCS code 98 (Essential hypertension) encom-

passes the ICD-9 codes 401.1 (Benign essential hypertension) and 401.9 (Un-

specified essential hypertension). The corresponding multi-level CCS code is

7.1.1 (Essential hypertension) and its related codes are: 7 (Diseases of the

circulatory system), 7.1 (Hypertension), 7.1.2 (Hypertension with complica-

tions and secondary hypertension), 7.1.2.1 (Hypertensive heart and/or renal

disease), 7.1.2.2 (Other hypertensive complications).

For this study, we translate diagnosis data from ICD-9 to multi-level CCS

to better analyze the pattern of diagnoses.

2.1.3 Healthcare Provider Taxonomy Code Set

The Healthcare Provider Taxonomy Code Set is designed to categorize the

type, classification and specialization of healthcare providers. The code set

is a Health insurance Portability and Accountability (HIPAA) standard code

set. As such, it is the only code set that may be used in HIPAA standard

transactions to report the type/classification/specialization of a health care

provider when such reporting is required. Taxonomy codes are unique 10
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character alphanumeric codes. The code set is structured into three dis-

tinct “levels” including Provider Type, Classification and Area of Specializa-

tion. As an example, the code 207RG0100X describes providers whose type,

classification and specialization are “Allopathic & Osteopathic Physician”,

“Internal Medicine” and “Gastroenterology” respectively.

2.2 Diagnosis Specialty

In this section we will define the notion of Diagnosis Specialty formally as

it will be used throughout the rest of the paper. Let us begin with some

examples before we attempt formal definitions. Consider the first few sen-

tences of the descriptions of the specialties of urology and anesthesiology

from the AAMC web site on Careers in Medicine (https://www.aamc.org/

cim/specialty/list):

Urology focuses on the medical and surgical treatment of the male

genitourinary system, female urinary tract, and the adrenal gland.

Urologists treat patients with kidney, ureter, bladder, prostate,

urethra, and male genital structure disorders and injuries.

An anesthesiologist is trained to provide pain relief and mainte-

nance, or restoration, of a stable condition during and immedi-

ately following an operation, obstetric, or diagnostic procedure. It

is the anesthesiologist’s foremost purpose and concern to protect

the patient’s well-being and safety just prior to, during, and after

surgery.

These short descriptions hint that it will be easier to characterize a urologist

in terms of medical diagnoses for conditions, for example, of the kidney,

ureter, and bladder, as opposed to an anesthesiologist, whose duties are more

cross-cutting with respect to diagnoses, concerning essentially all conditions

related to surgeries. Let us test this hypothesis with a naive classifier, which

we will base on diagnosis codes. To see the general idea consider the following

steps. First, take a dataset that indicates which patients have been treated

by urologists and anesthesiologists and view each patient they treated as

a document whose words are their diagnoses. Create a weighting for how

many diagnoses of each kind were addressed by each provider, with some

8
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adjustment for how common the diagnosis is. This technique is typified by

Term Frequency - Inverse Document Frequency (TF-IDF) and it gives a basic

way to query for documents using terms. We can use it to query for specialists

using the diagnoses they most often treat. For instance, using a dataset we

will describe later, we find that urologists most often treat diagnoses like

“retention of urine” and “urinary tract infection” whereas radiologist most

often treat diagnoses like “other aftercare” and “other screening”. When we

take the 20 conditions most often treated by each of the two specialties and

use them as a classifier, the results are fairly good for urology, yielding a

precision of 83% and a recall of 71% in finding the urologists. However, the

results for anesthesiologists are not so good, yielding a precision of 10% and

a recall of 13%. If we try to get smarter and use a serious machine learning

technique like a Support Vector Machine (SVM) we can do better at finding

anesthesiologists with a 57% precision and 46% recall, but this is still weak

compared to what we get for urologists, namely 100% precision and recall.

To think about this more generally one may ask: to what extent is it

possible to train machine learning classifiers to recognize specialists based on

the diagnoses of patients they treated? Which specialties are most amenable

to training classifiers and which classifiers work the best? To address these

questions formally we need some notation. Let Bags(X) be the collection of

sets over X that respect multiplicity. For instance, if X is the set of numbers,

then {1, 1, 2} is the bag with two ones and a two. Let us suppose we are given

a collection of providers U , a collection of diagnoses D, and a bag of sets

of diagnoses A ∈ Bags(Subsets(D)) called the diagnosis lists that represent

the lists of diagnoses of a collection of patients. The collection of diagnosis

lists need to be a bag because it is possible that two patients have exactly

the same diagnoses (hence giving a multiplicity of at least two for that set of

diagnoses). Let us further assume that we are given a function T called the

treatment history such that for each provider u, the value T (u) is an element

of Bags(Subsets(D)) that represents the diagnosis lists of patients treated by

u.

A specialty is a subset S of U that describes a set of providers that have

a given skill or certification. Based on this definition, the specialty learning

problem is to use T , the treatment history function, together with the spe-

cialty, S, to produce a classifier CS : u 7→ Bool (where Bool = {true, false})
that approximates S. Now, let us say that a diagnosis specialty is a speciality
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for which we are able to find a classifier that has precision and recall above

a specified threshold.

It may be helpful to see these definitions by analogy to the classification of

documents, an area that has inspired many of the techniques we will apply.

The providers u can be likened to readers of documents, where A represents

an archive of documents in which the words in each document correspond to

diagnoses. The function T indicates for each user u the collection of docu-

ments that u has read. A specialty is a group of readers who (presumably)

have something in common. The specialty learning problem is to develop a

classifier that characterizes this common interest in terms of the documents

they have read, if possible. So, for instance, if we were given a group of

readers that are ophthalmologists and we find that they are inordinately in-

terested in documents on disorders of the eyes, then we can use this proclivity

to serve as a classifier for ophthalmologists, as we attempted to do for urolo-

gists and anesthesiologists using the naive classifier mentioned above. Such

determinations are noisy and there may be no useful classifier. For instance,

if our “specialty” consists of providers with blond hair, then we may not

be able to determine any reasonable classifier for them from their reading

history alone.

2.3 Related Works

A key driver behind our interest in inferring medical specialties is the analysis

of audit logs for security and privacy purposes. Users have roles in the

healthcare organization and if these roles are not respected by the online

behavior of the users then there may be evidence of a security or privacy

violation.

An early study on this theme examined the idea of looking at accesses

to patient records to determine the position of an employee (doctor, nurse,

dietician, and so on) [10]. This work used a Naive Bayes classifier and had

generally poor performance on many positions, often because such positions

could not easily be characterized in terms of the attributes used by the study.

Experience Based Access Management (EBAM) envisioned such studies as

part of a general effort to understand roles and least privilege by exploit-

ing information about organizational behavior through the study of audit
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logs [11]. One other study in this direction sought to infer new roles from

ways in which employees acted in their positions [12] by iteratively revising

existing positions based on experience. Studies on Explanation Based Access

(EBAS) [13, 14] addressed the problem of determining which departments are

responsible for treating a given diagnosis, which is very similar to our problem

of identifying an employee’s specialty. In these studies the auditing system

utilizes the access patterns of departments to determine diagnosis responsi-

bility information in two ways: by analyzing (i) how frequent a department

accesses patients with the diagnosis, and (ii) how focused the department is

at treating the given diagnosis relative to others. For instance, EBAS can

use this approach to determine that the Oncology Department is responsible

for chemotherapy patients, while the Central Staffing Nursing Department is

not responsible for those patients (even though they frequently access their

records). The Random Topic Access Model (RTAM) [15] went beyond ap-

proaches based on conditional probabilities to work with topic models based

on LDA that characterize the common behavior of employees in certain po-

sitions in the hospital.

The work in this paper can be seen as merging ideas from EBAS and

RTAM to explore when a specialty can be described with a classifier based

on LDA and whether new specialties can be discovered by data mining.
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Chapter 3

Dataset

3.1 Dataset Description

The data for this study comes from the Cerner Powerchart EMR system in

use at Northwestern Memorial Hospital (NMH). It contains all user accesses

(audit logs) made over a one year period, as well as Electronic Medical Record

(EMR) data for patient admitted during this period, specifically diagnosis

lists, for patient encounters during this period. All data was de-identified for

this study in accordance with the Safe Harbor standard of the HIPAA Pri-

vacy Rule and carried out under IRB approval. Since specialties are mainly

concerned with respect to physicians, we filtered out users with other posi-

tions (e.g., nurses, dieticians, and so on) from the dataset. The final dataset

contains 4.8 million accesses made by more than three thousand physicians

for almost 300,000 patients1. The data fields in the audit log are summarized

in Table 3.1.

Attribute Value
Timeframe One year
# of Accesses 4,829,376
# of patients 291,562
# of Physicians 3,269
# of Patient Encounters 890,812
# of Taxonomy Codes 151

Table 3.1: Statistics for Audit Logs

Attribute Value
# of User Roles 171
# of Locations 251
# of Services 104
# of Diagnoses 13,566
# of Procedures 2,165
# of Medications 1,822

Table 3.2: Statistics for Pa-
tient EMR Records

The EMR data consists of patient-encounter records, with each record cor-

responding to various diagnoses, procedures and medication. Approximately

13,000 diagnoses and 2,000 procedures are recorded in ICD-9 and ICD-9-CM

1This includes both hospitalization and hospital based outpatient encounters
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format, respectively. Approximately 1,800 medications are recorded using

RxNorm, a normalized naming system for generic and branded drugs [16].

Table 3.2 summarizes the fields of the EMR data. It is important to note that

the dataset does not include information about which provider performed

which procedure, prescribed which medication, or decided which diagnosis.

We believe that our results would be similar if we did have this information,

but such an analysis will need to await the opportunity to work with a more

fine-grained dataset.

3.2 Taxonomy Code Statistics

A key feature of the dataset crucial to this study is that it also contains NPI

taxonomy codes [1] for 60% of the physicians. About 150 NPI taxonomy

codes are listed in the dataset, but most have fewer than 10 user instances,

i.e., providers who have the respective taxonomy code. Figure 3.1 shows

frequency distribution of the taxonomy code in the dataset. Note the dis-

tribution is quite similar to the power-law distribution [17]. To ensure there

were a sufficient amount of data for training the classifiers [18], we filtered

out NPI taxonomy codes with fewer than 20 user instances. The resulting

23 NPI taxonomy codes2 are shown in Table 3.3.

Figure 3.1: Frequency Distribution of Taxonomy Codes

2In this work, the terms NPI taxonomy code name and NPI taxonomy code are used
interchangeably.
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NPI Taxonomy Description NPI Taxonomy Code
Internal Medicine 207R00000X
Pediatrics 208000000X
Obstetrics & Gynecology 207V00000X
Psychiatry 2084P0800X
Anesthesiology 207L00000X
Cardiovascular Disease 207RC0000X
Diagnostic Radiology 2085R0202X
Emergency Medicine 207P00000X
Neurology 2084N0400X
Nurse Anesthetist, Certified Registered 367500000X
Ophthalmology 207W00000X
Gastroenterology 207RG0100X
Physical Medicine & Rehabilitation 208100000X
Dermatology 207N00000X
Physician Assistant 363A00000X
Orthopaedic Surgery 207X00000X
Neonatal-Perinatal Medicine 2080N0001X
Infectious Disease 207RI0200X
Endocrinology, Diabetes & Metabolism 207RE0101X
Pulmonary Disease 207RP1001X
Neurological Surgery 207T00000X
Urology 208800000X
Acute Care 363LA2100X

Table 3.3: Selected NPI Taxonomy Code
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Chapter 4

Diagnosis Specialty Prediction

Learning providers’ diagnosis specialties from the diagnoses of patients they

treated requires the training of some machine learning classifiers. This chap-

ter introduces a range of classifiers we explored for diagnosis specialty pre-

diction. We start off with an intuitive naive classifier in Section 4.1 that

models how a human might review the treatment history of a provider to

determine the provider’s specialty. Then we move on to a more sophisticated

topic modeling based classifier in Section 4.2. We also used three other state

of the art classifiers to provide a baseline for classifier performance evalua-

tion, and they are introduced in Section 4.3. In Section 4.4 we describe the

cross-validation method we used for performance evaluation.

4.1 Naive Approach

Before delving into more sophisticated classifiers, let us first review an intu-

itive naive classifier of a kind that a human might imagine and apply to infer

a specialty from a treatment history. The technique proceeds by finding the

most relevant diagnoses of each diagnosis specialty (taxonomy code) and the

most relevant diagnoses of each user. Users are classified according to the

specialties with which they share the most common relevant diagnoses.

To describe this in detail, let Un be the set of users with taxonomy code

n ∈ N , where N is the set of NPI taxonomy codes. And let dj be the j -th

diagnosis and each user ui ∈ Un has a vector vi = {c1, ..., ck} where cj denotes

the number of times that the user has accessed patients with dj. We define

tfidfdj = log(
vi[dj]

ai
+ 1)× log(

|U |+ 1

rdj
)

where ai is the total count of all diagnoses in vi, and rdj is the number
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of users who are associated with the j -th diagnosis. The TF-IDF vector

measures the relevance of diagnoses to users. In doing so, we can represent

users by v′i = {tfidfd1 , ..., tfidfdk}. For every user we collect their top m most

relevant diagnoses Ri by sorting v′i by value.

Similarly, we calculate the m most relevant diagnoses Sn for each taxonomy

code using TF-IDF weighting. The TF-IDF values for taxonomy code n is∑
ui∈Un

v′i. The similarity between specialty (taxonomy code) n and user ui

can be measured using Sn and Ri by the Jaccard Coefficient [19]:

J(R, S) =
|R ∩ S|
|R ∪ S|

In this way, the naive classifier will predict user ui’s specialty according to:

npredict = argmaxn∈NJ(Ri, Sn)

4.2 Supervised Latent Dirichlet Allocation

The supervised Latent Dirichlet Allocation (sLDA) [20] is a generative model.

The graphical model of sLDA is displayed in Figure 4.1. In the figure, α de-

notes the Dirichlet parameter, θd denotes per-document topic proportion,

Zd,n denotes per-word topic assignment, Wd,n denotes observed word, βk de-

notes topics, Yd denotes per-document response and (η, σ) denote the regres-

sion parameters. sLDA characterizes documents in a corpus as multinomials

of a set of latent topics zn where the topic proportions θ follows θ|α ∼ Dir(α),

and α is the Dirichlet parameter. These latent topics are modeled as multi-

nomials over the words in a corpus as wn|zn, β1:k ∼ Mult(βzn). In this way,

topics act as summaries of the different themes pervasive in the corpus and

documents are characterized with respect to these summaries. The frequency

of topics for each document will deterministically yield a response value y

from a normal linear model as y|Z1:k, η, σ
2 ∼ N(ηT z, σ2).

To apply sLDA to our problem, we model each physician as a document

where the content is a bag of the diagnoses of patients he/she accessed.

His/her primary NPI taxonomy is then treated as the response that corre-

sponds to the document. The sLDA algorithm is adept at clustering words

that frequently appear together in documents into topics. And in our case,

16



this aspect translates into the ability to group correlated diagnoses together

into diagnosis topics. After the sLDA model is trained, when it is provided

with a physician (document) it will summarize the physician’s associated

diagnoses into a distribution over K topics. The number of topics K is

determined from perplexity measure which can assess the effectiveness of dif-

ferent topic numbers. More details about perplexity measure can be found

in Section 5.1.2. The allocation of the topics in a document then determine

the response, which is the predicted specialty.

The effective generation of diagnosis topics makes sLDA model an effective

tool for predicting diagnosis specialty, which is validated by the experiment

results in the Evaluation chapter.

Figure 4.1: Graphical Model for supervised Latent Dirichlet Allo-
cation (sLDA) [20]

4.3 Baseline Classifiers

We also evaluated three additional machine learning methods: decision tree

(J48), Support Vector Machine (SVM), and K-Nearest-Neighbor with Prin-

cipal Component Analysis (PCA-KNN) [21].

Decision trees are constructed in a top-down recursive divide-and-conquer

manner. At start, all the training examples are at the root. Examples

are partitioned recursively based on selected attributes. Test attributes are

selected on the basis of a heuristic or statistical measure. Decision tree is

a popular nonlinear classifier because it is convertible to classification rules

than can be reviewed and interpreted by experts.
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SVM is a classification method for both linear and nonlinear data. It uses

a nonlinear mapping to transform the original training data into a higher di-

mension. With the new dimension, it searches for the linear optimal separat-

ing hyperplane using support vectors that lie closest to the decision bound-

ary. Particularly, SVM is effective on high dimensional data because the

complexity of trained classifier is characterized by the number of support

vectors rather than the dimensionality of the data.

KNN is an instance-based learning method—it stores training examples

and delay the processing until a new instance must be classified. All instances

correspond to points in the n-D space. The nearest neighbors are defined in

terms of Euclidean distance. KNN returns the most common label among

the K training examples nearest to the new testing instance. KNN suffers

from the “curse of dimensionality”—distance between neighbors could be

dominated by irrelevant attributes when the dimensionality of space goes

higher.

To apply these methods, we map each user ui to TF-IDF weighted diag-

nosis vectors v′i, similar to the naive classifier. This vector along with ui’s

primary taxonomy code serves as the input to these classifiers, with a length

of 599. To address “curse of dimensionality” for KNN, we conduct dimen-

sionality reduction for vectors before applying KNN. Here we use Principal

Component Analysis (PCA) [22] to perform the dimensionality reduction and

50 most principal features are selected based on the parameter-tuning results

in Figure 4.2. This experiment is conducted in the experiment setting of 12

core NPI taxonomy codes, which will be covered in the Evaluation chapter.

4.4 Cross-Validation

We will use 5×2 cross-validation for performance evaluation of the classifiers.

In each of the 5 rounds, observations are split into two equal-sized sets A and

B. Then a classier is trained with A and tested with B and vise versa. After

5 rounds, the average of the 10 results is returned. We choose 5 × 2 cross-

validation over the n-fold cross-validation because 5 × 2 cross-validation is

considered better at comparing the performance of algorithms [23].
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Figure 4.2: KNN with varying feature numbers
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Chapter 5

Diagnosis Specialty Discovery

Discovering new diagnosis specialties from the treatment histories of providers

requires effective clustering techniques that can divide a pool of providers into

groups that have high inter-group distances (distinctiveness) but low intra-

group distances (coherence). And new diagnosis specialties may emerge from

these clusters. In this chapter, we describe two state of the art data mining

techniques we use for diagnosis specialty discovery.

5.1 Topic Model Based Discovery

For this approach, we employee Latent Dirichlet Allocation (LDA) [24]. LDA

is the base model for supervised Latent Dirichlet Allocation (sLDA) [20],

which we introduced in Section 4.2. The graphical model of LDA is shown

in Figure 5.1. In the figure, α denotes the Dirichlet parameter, θ denotes

topic proportions, z denotes topic assignment, w denotes observed word and

β denotes topics. As sLDA, LDA provides a set of topics, each represented

as a bag of words that frequently appears in the same documents. And each

document can be described as a distribution of topics.

The intuition behind using LDA to discover new diagnosis specialty is to

find some LDA diagnosis topics that have coherent themes which correspond

to some unlisted specialties in the hospital. And by representing providers as

documents (i.e., distribution of topics), we can cluster the providers based on

which topic simplex1 they are closest to. Details are provided in the following

subsections.

1This can be visualized by plotting the providers by their topic distributions
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Figure 5.1: Graphical Model for (unsupervised) Latent Dirichlet
Allocation (LDA) [24]

5.1.1 Representation of Providers

Since we are generating topics of diagnosis, the content of each document

(provider) has to be diagnosis. However, diagnoses in our dataset are not

provided with respect to providers, but patients. Therefore, we need to

connect providers to diagnoses via patients. And there are two ways we can

do it:

1. For any user2 ui, cross-referencing to find the set of patients Pi whose

EMRs he accessed. Then for each patient pj ∈ Pi we can get the set of

Diagnosis Dj that pj has. From here, we can add diagnoses in Dj that

occurred during the encounter of ui and pj to the “document” Doci

representing ui. In this way, the topics and their allocations for users

can be found directly by training a LDA model with these documents.

2. We can also run the LDA on the patient dimension and get the topic

distribution of patients first. Let Tpj denote the topic distribution of

patient pj, Tui
denote the topic distribution of user ui and Pi denotes

the set of patients whose EMRs are accessed by ui. Then the topic

distribution of users can be calculated as:

Tui
=

1

|Pi|
×

∑
pj∈Pi

Tpj

2 We will use provider and user interchangeably since providers are users of the EMR
system.
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We tested both approaches, Table 5.1a and 5.1b show one topic summary

for each approach respectively.

Topic 10 diagnoses
Other hypertensive complications
Hypotension
Cancer of ovary
Coma, stupor, and brain damage
Hyposmolality
Ascites
Hematuria
Acute myocardial infarction
Backache, unspecified
Other connective tissue disease

(a) Example Topic From First Approach

Topic 10 diagnoses
Calculus of kidney
Elevated prostate specific antigen
Hematuria
Impotence of organic origin
Incomplete bladder emptying
Bladder neck obstruction
Urinary frequency
Hydronephrosis
Unspecified retention of urine
Other testicular hypofunction

(b) Example Topic From Second Approach

Table 5.1: Topic Quality Comparison

It is clear from the table that the topic obtained from the first approach

has no clear theme and is even a little random, whereas the topic obtained

from the second approach has a clear concentration on Urology. This is due

to the fact that in the first approach each document contains the union of

the diagnoses of all patients a user accessed, and in the second approach

only the diagnoses of a single patient is in the document. The hodgepodge

of many patients’ diagnoses is likely to have multiple themes, thus rendering

the topics generated by the first approach uninterpretable.

Therefore, we choose the second approach for our analysis.

5.1.2 Choice of Topic Number

An important parameter for LDA is the number of topics and we shall de-

note it as k. Unfortunately, there is no consensus on how to determine the

value of k. A sign of good topic number is that the resulting topic sum-

maries are semantically meaningful. And a rule of thumb for picking k is

by utilizing the perplexity measure as we did in Section 4.2. The perplexity

measure is an estimation of the expected number of equally likely words in

the population, and minimizing perplexity corresponds to maximizing the

22



Topic 10 diagnoses
Other acne
Benign neoplasm of skin of trunk, except scrotum
Neoplasm of uncertain behavior of skin
Actinic keratosis
Viral warts, unspecified
Other seborrheic keratosis
Rosacea
Sebaceous cyst
Benign neoplasm of skin, site unspecified
Scar condition and fibrosis of skin

Table 5.2: Example topic for k set to 30

topic variance captured by the system [24]. The perplexity is calculated as:

perplexity(Dtest) = exp

{
−
∑M

d=1 logp(wd)∑M
d=1Nd

}

where Dtest is a held-out collection of users to evaluate the models, wd is

diagnosis of patients.

We learn from the perplexity measure that 25,30 and 35 are good candi-

dates for k. We then run LDA with all three topic numbers and compared the

resulting topics. Overall when k = 30 the topics are most semantically mean-

ingful. For example, Table 5.2 show a dermatology related topic generated

when k = 30.

5.1.3 Topic-based Clustering

After LDA training, each user get an allocation in the topic simplex. A higher

proportion in a topic indicates the user is more likely to access patient with

diagnosis popular in that topic. Therefore, if we are trying to cluster users by

their treatment history, it is reasonable to cluster them by their closest topic

simplex which corresponds to the topic with the highest proportion among

all topics. And the clustering follows:

Ci = argmaxt∈TP (ui, t)
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where Ci denotes the cluster assignment for user ui, T denotes the set of

topics and P (ui, t) denotes the proportion of topic t for user ui.

In order to rule out the cases where the user is not leaning toward any

topic, we set a threshold τ to cluster users whose maxt∈TP (ui, t) ≤ τ into a

single cluster for users with no specialty. By default, we set τ = 0.5.

5.1.4 Strategy for New Topic Evaluation

To find new diagnosis specialties from the topic generated by LDA model, we

rely on our collaborator with medical expertise. Our expert will go through

the diagnosis summaries of the topics and label each with one or a few medical

themes that are pervasive in the topic.

After labeling, we compare the labeled topics with the Healthcare Provider

Taxonomy Code Set [1] to see if there are topics that have pervasive themes

but not listed in the code set. If such topics exist, they are potential new

diagnosis specialties. For us to recognize a topic as new diagnosis specialty,

there are two additional criteria:

1. The topic’s cluster has to have at least 20 users in it.

2. The topic needs to be able to be learned by classifiers in Chapter 4

with performance comparable to existing diagnosis specialties.

The first criterion is required because it is not meaningful to discover spe-

cialties that have smaller crowd. Besides, this criterion is necessary for the

second criterion. For the second criterion, if we mark the users in the topic’s

cluster with a new unique taxonomy code and include them in a training

set with the incumbent diagnosis specialties, the classifiers from Chapter 4

have to perform well on both the incumbent and new taxonomy codes. This

criterion is required by the definition of diagnosis specialty. And it requires

the first criterion to be met to ensure there were a sufficient amount of data

for training the classifiers [18].

5.2 User Guided Discovery

The structure of our data forms a typical heterogeneous information network

(HIN) [25, 5]. Therefore, we use PathSelClus [5], a very effective technique
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in HIN, for user-guided clustering.

5.2.1 Preliminaries

A HIN is an information network with multiple types of objects and/or mul-

tiple types of links. For example, if a relation exists from type A to type

B, denoted as ARB, the inverse relation R−1 holds naturally for BR−1A.

R and its inverse R−1 are usually not equal, unless the two types are the

same and R is symmetric. Different from traditional network, HIN explicitly

distinguishes object types and relationship types in the network. When the

types of objects |A| > 1 or the types of relations |R| > 1, the network is

called a heterogeneous information network ; otherwise, it is a homogeneous

information network.

Figure 5.2: Network Schema of Dataset

Figure 5.2 shows the network schema of our dataset. It contains 3 types of

objects, namely user (U), patient (P) and diagnosis (D). Links exist between

user and patient by the relation of ”access” and ”accessed by”, between

patient and diagnosis by the relation of ”diagnosed with” and ”given to”.

Link-based clustering in HIN clusters objects based on their connections

to other objects in the network. The possible relations derived from a HIN

between two types of objects in a meta level is called meta-path [26]. In

our case, the target object type to cluster is U (users). And there are two

meta-paths: U − P − U and U − P −D − P − U .

5.2.2 Clustering and Specialty Discovery

During clustering, a decision has to be made about the weighted combination

of different meta-paths to use. This is where user guidance comes in. We use

PathSelClus [5] for user-guided clustering. In PathSelClus, user guidance is

given in the form of object seeds in each cluster. For example, to cluster
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users based on the pattern of the diagnoses of patients treated by them,

one can first provide several representative users as seeds for each pattern

of diagnoses. On one hand, these seeds provide guidance for clustering the

target object in the HIN. On the other hand, the seed information helps

selecting the most relevant meta-paths for the clustering task.

The PathSelClus algorithm is designed to handle unseeded initial clusters

since in practice there may not be enough information to seed all the clusters.

This is the exact feature that makes it possible for us to use PathSelClus to

discover new diagnosis specialties.

Let the number of listed diagnosis specialties be N and the number of new

diagnosis specialties we are trying to explore be δ. Then we will create N +δ

empty clusters at the initiation of PathSelClus and seed N of them with

corresponding specialists. And the input to PathSelClus will include all the

physicians in the hospital regardless of whether they have taxonomy code or

not.

After PathSelClus has converged, all the users should have been assigned

to an exclusive cluster. The δ unseeded clusters should also be filled with

some users. We can analyze the semantics of the unseeded clusters by the

users in them using the technique we described in Section 4.1. Namely, we

treat a cluster as a taxonomy code and the users in t as having the taxonomy

code. We can calculate the most relevant diagnoses for each cluster using

the TF-IDF weighting technique. And then we can have our medical expert

collaborator to label the clusters. As Topic model based discovery, the new

clusters have to satisfy the two criteria in Section 5.1.4 to be recognized as

a new diagnosis specialty.
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Chapter 6

Experiment Results and Evaluation

6.1 Result of Diagnosis Specialty Prediction

6.1.1 Evaluation Setup

Since this part deals with diagnosis specialties, we have identified 12 NPI tax-

onomy codes from the 23 NPI taxonomy codes as likely diagnosis specialties.

We chose these at first by expert opinion from the specialty description and

the diagnosis rankings obtained from the naive classifier, but we also found

that these are the specialties for which we were able to develop diagnosis-

based classifiers that had recall and precision higher than 60%. These 12 NPI

taxonomy codes are: Obstetrics & Gynecology, Cardiovascular Disease, Neu-

rology, Ophthalmology, Gastroenterology, Dermatology, Orthopaedic Surgery,

Neonatal-Perinatal Medicine, Infectious Disease, Pulmonary Disease, Neu-

rological Surgery, Urology. We will denote them as the 12 core NPI taxonomy

codes.

Based on this distinction of NPI taxonomy codes, we designed four settings

of experiments that explore the performance of the classifiers:

• 12 core NPI taxonomy codes only (12-core). This experiment

setting evaluates how the classifiers perform only on users with diag-

nosis specialties. In this setting the class number is 12.

• 12 core NPI taxonomy codes and 1 non-core class comprising

of all the remaining 11 codes (12-core and 1-non-core). This

experiment setting does not distinguish NPI taxonomy codes that do

not belong to the 12 core codes—it treats them as a single class denoted

as non-core. In this setting the class number is 13. This experiment

setting evaluates the classifiers’ performance when there are noisy non-
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diagnosis specialties.

• All 23 NPI taxonomy codes (23-all). This experiment setting

evaluates the classifier performance on users with all the 23 specialty

codes. In this setting the class number is 23.

• 12 core NPI taxonomy codes in the setting of 23-all (12-core

in 23-all). This experiment setting is the same as that of 23-all

except for average precision and recall of the 12 core NPI taxonomy

codes are reported instead. In this setting the class number is 23. We

plan to use results from this experiment and those of 23-all to contrast

the classifiers’ performance on diagnosis specialties and non-diagnosis

specialties.

As for classifiers’ implementations, we used Weka [27] for SVM and Deci-

sion Tree (J48) with the default parameter values. For PCA-KNN, we used

MATLAB for PCA and JAVA-ML [28] for KNN where the parameter K is

set to 91. For sLDA, we used an open source implementation [29].

6.1.2 Evaluation Results

The experimental results of the four sets of experiments are presented in Ta-

ble 6.1. Table 6.1 shows the precision and recall for each of the experimental

settings. The reported metrics are the average of the 5×2 cross-validation. In

general, when the number of classes grows, the overall performance degrades

because the multi-class classification problem gets more challenging.

Figure 6.1 shows the performance of the classifiers for each of the 12 core

NPI taxonomy codes in the setting of 12-core. The relative performance of

the classifiers varies for different NPI taxonomy codes. Overall the classifiers

perform best on the code Obstetrics & Gynecology and worst on code Infec-

tious Disease. This is not surprising since Obstetrics & Gynecology can be

described by a very distinctive set of diagnosis (e.g., Ovarian Cyst, Outcome

of delivery) whereas the diagnoses related to Infectious Disease are more gen-

eral. The sLDA classifier show superior performance among all classifiers in

Figure 6.1 as it get the highest precision for 8 out of 12 taxonomy codes and

1Parameter K is tuned based on the best performance and the value of 9 is reasonable
since each class has at least 20 instances.
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Experiment set Classifier Precision Recall

12-core

Naive 70.2% 69.6%
Decision Tree 72.6% 69.2%
SVM 82.1% 81.8%
PCA-KNN 77.0% 66.2%
sLDA 83.9%%%ndk 83.6%%%nsdk

12-core & 1-non-core

Naive 67.4% 39.8%
Decision Tree 75.4% 75.2%
SVM 74.0% 77.0%
PCA-KNN 51.7% 50.0%
sLDA 76.2%%%nk 78.3%%%nsdk

23-all

Naive 43.3% 39.3%
Decision Tree 57.7% 55.6%
SVM 57.9% 61.5%
PCA-KNN 61.2% 48.4%
sLDA 62.8%%%nsdk 62.3%%%nsdk

12-core in 23-all

Naive 42.3% 42.2%
Decision Tree 55.0% 52.7%
SVM 62.2% 56.5%
PCA-KNN 61.9% 53.6%
sLDA 66.4%%%nsdk 70.1%%%nsdk

Table 6.1: Experimental results of classifiers (in percentage). The
best results are boldfaced. Superscripts n, d, s and k denote that
the performance difference is statistically significant (p < 0.05) com-
pared to Naive, Decision Tree, SVM and PCA-KNN for the respec-
tive metrics.

the highest recall for 6 out of 12 taxonomy codes. The classifiers’ average

performance (weighted by the number of users with each taxonomy code)

for the 12-core experiment setting reported in Table 6.1 corroborated this

finding. The SVM classifier and the Decision Tree classifier also did well and

their performance are acceptable throughout all 12 taxonomy codes. The

PCA-KNN classifier faltered markedly on the codes Urology and Neurolog-

ical Surgery as reporting 0% precision and recall for both. This is possibly

due to the dimensionality reduction with PCA. In Section 4.3, we choose 50

as the number of output features from PCA by maximizing the PCA-KNN

classifier’s overall performance in the 12-core experiment setting. However,

50 may not be the best choice for all 12 core NPI taxonomy codes. There-

fore, although PCA-KNN has shown good average precision and recall in

Table 6.1 it can fail on a small portion of taxonomy codes such as Urol-
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Dermatology Cardiovascular Disease Neonatal-Perinatal Medicine

Obstetrics & Gynecology Infectious Disease Gastroenterology

Urology Pulmonary Disease Ophthalmology

Neurological Surgery Neurology Orthopaedic Surgery

Figure 6.1: Performance of the classifiers for each of the 12 core
NPI taxonomy codes in the setting of 12-core .

ogy and Neurological Surgery. The Naive classifier performs the worst for

most of the 12 taxonomy codes and it has reported 0% precision and recall
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for code Pulmonary Disease and Neurological Surgery. As PCA-KNN, the

Naive classifier involves dimensionality reduction but it is done in a very

crude way as described in Section 4.1—by selecting the m most relevant

diagnoses as features. We picked m = 20 by maximizing the classifier’s per-

formance but the resulting features are not effective enough to describe the

users and specialties. For instance, Table 6.2 shows the diagnosis features

selected to represent the Pulmonary Disease code. It is not very specific to

pulmonary-related conditions.

Diagnosis Features
Residual codes; unclassified; all E codes
Pleurisy; pleural effusion
Other and unspecified lower respiratory disease
Other and unspecified liver disorders
Chronic airway obstruction; not otherwise specified
Essential hypertension
Other injuries and conditions due to external causes
Congestive heart failure
Pneumonia; organism unspecified
Other connective tissue disease
Other fluid and electrolyte disorders
Anemia; unspecified
Emphysema
Respiratory failure
Other and unspecified circulatory disease
Pulmonary collapse; interstitial and compensatory emphysema
Atrial fibrillation
Other complications of surgical and medical procedures
Other back pain and disorders
Phlebitis and thrombophlebitis

Table 6.2: Diagnosis Features for Pulmonary Disease

To justify that sLDA’s outperforming is statistically significant in general,

we conducted the paired t-test and the results are also reported in Table 6.1.

Although the precision of SVM classifier is close to sLDA in the experimental

setting of 12-core, the recall of sLDA is still significantly better than that of

SVM. The better recall with statistical significance for sLDA than that of

Decision Tree and SVM have also been observed in the setting of 12-core and

1-non-core.

According to Table 6.1, the naive approach does not show promising results
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Urology topic

Calculus of kidney

Elevated prostate specific antigen

Hematuria

Impotence of organic origin

Incomplete bladder emptying

Bladder neck obstruction

Urinary frequency

Hydronephrosis

Unspecified retention of urine

Other testicular hypofunction

(a) Urology Topic

Opthalmology Topic

Cortical senile cataract

Lens replaced by other means

Myopia

Unspecified tear film insufficiency

Cataract extraction status

Primary open-angle glaucoma

Unspecified cataract

Borderline glaucoma

Vitreous degeneration

Blepharitis, unspecified

(b) Opthalmology Topic

Table 6.3: Examples of Diagnosis Topics

especially when the number of classes grows and the multi-class problem

gets more challenging. Smarter methods like Decision Tree demonstrates

better performance than the naive approach due to its more sophisticated

mechanisms in the attribute selection and partition. Moreover, in most cases

both SVM and PCA-KNN perform better than Decision Tree because they

are more effective on high dimensional data. Notably, SVM, PCA-KNN and

sLDA reported better performance in the setting of 12-core in 23-all than

those in the setting of 23-all, and this resonate well with our choice of the

12 core diagnosis specialties. Particularly, it is observed that PCA-KNN

performs drastically worse in the setting of 12-core and 1-non-core than in

the other experimental settings. This may be explained by the fact that

the “non-core” class in this experimental setting is very noisy since it is the

mixture of 11 NPI taxonomy codes whereas KNN is extremely sensitive to

noisy data [30].

The experimental results indicate that sLDA is the superior classifier on

predicting physicians’ specialties based on their associated diagnoses. The

key reasons are as follows:

1. sLDA classifies users based on the weighting of diagnosis topics rather

than simple feature weighting of diagnoses as in the case of other clas-

sifiers. The semantic topic summary filters out noises from individual

diagnoses and generates more representative attributes.

2. The topics generated by sLDA are descriptive of diagnosis specialties.
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Therefore, most of the diagnosis specialists are near the edge simplex

of the diagnosis topics that reflects their specialties.

To highlight the second point, Table 6.3 shows two examples of the diagnosis

topics generated by sLDA.

6.1.3 False Positives and Negatives

The previous section focused on the true predictions by the classifiers, but

in some cases the false positives and negatives may be more interesting. A

false negative represents an instance in which a user has a specialty but the

classifier does not identify this specialty from the treatment history of the

user. A false positive is an instance where a user does not have a specialty,

but appears to have one based on the concentration of diagnoses in their

treatment history.

False Negative Prediction

We found two primary reasons for false negatives. The first was relying on

only a small value of T (u), that is, making predictions for users who had

treated only a small number of patients. The second was users who do

not seem to be primarily treating patients in their specialty. This may be

because: (1) they treat few patients in their declared area of specialty, or

(2) they treat many patients outside their specialty, or (3) their specialty

designation represents an error, or (4) some combination of these factors.

As an example of the first case, consider user u who is a physician and

lists a taxonomy code in Ophthalmology (207W000000X). Table 6.4a lists

the 10 diagnoses u mainly treats 2. It is easy to observe that these are not

specifically related to ophthalmology. However, upon closer examination,

we find that u had only two patient-encounters during our one year of data

collection. This contrasts with an average number of encounters in our cohort

of 97. Hence the classifier misclassified user u because the user’s data was

not sufficient.

2For each user we compute the TF-IDF weights of their associated diagnoses as we did
for the naive classifier, and the 10 diagnoses with the highest weights is reported in the
table
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Diagnoses
Acute pancreatitis
Bipolar disorders
Other thyroid disorders
Nausea and vomiting
Abdominal pain
Other and unspecified gastroin-
testinal disorders
Other screening for suspected
conditions
Nonspecific chest pain
Benign neoplasm of ovary
Administrative/social admission

(a) User u most related diagnoses

Diagnoses
Cancer of bladder
Cystitis and urethritis
Other and unspecified diseases of
bladder and urethra
Cancer of prostate
Cancer of testis
Cancer of kidney and renal pelvis
Other male genital disorders
Other and unspecified lower res-
piratory disease
Hematuria
Cancer of other urinary organs

(b) User w most related diagnoses

Diagnoses
Other nervous system symptoms and disorders
Other injuries and conditions due to external causes
Malfunction of device; implant; and graft
Codes related to mental health disorders
Cellulitis and abscess of leg
Paralytic ileus
Other and unspecified upper respiratory infections
Administrative/social admission
Other upper respiratory disease
Benign neoplasm of ovary

(c) User v most related diagnoses

Table 6.4: User Cases

To see another example illustrating the second case, we consider a user v

who is a physician with a taxonomy code for Neonatal-Perinatal Medicine

(2080N0001X). The top 10 diagnoses of user v are given in Table 6.4c. Like

user u, they do not look closely related to the specialty, but unlike user

u, user v is very active with 754 encounters. With this many encounters

one is tempted to the view that user v may well practice neonatal-perinatal

medicine but v also does a large number of other things that cause the clas-

sifier to fail to recognize the specialty.
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False Positive Prediction

The false positive predictions are cases where users are predicted to have NPI

taxonomy codes they do not have. These cases overlap with the false negative

cases when the classifier is used to classify diagnosis specialists. But when

we extend the classifier to roles other than physicians, we find many users

with non-diagnosis specialties who nevertheless saw specialized diagnoses.

For example, user w is a Registered Nurse (RN) who has over 1,300 patient-

encounters. However, the top 10 most related diagnoses as shown for w

in Table 6.4b) are consistent with a Urology specialty, which is what the

classifier for urology concluded about w. We did not have enough RNs in

our dataset to tell if RN would have been a diagnosis specialty, but we

conjecture that it would not have been one by itself. However, RNs can

work in specialized fields, as w appears to do, even though it is not reflected

by a taxonomy code.

The false positive specialty predictions may have significant derivative

value. As in the case of the RN who focuses on urology patients, inci-

dentally included in this analysis given an NPI entry, the latent expertise

for other clinicians without NPI based specialties may be revealed through

this analysis. With this new knowledge of staff members’ clinical experi-

ence, staffing decisions and clinical coverage for short-staffed units becomes

capable of automation yielding the possibility of more appropriately mapped

staff allocations as the individual with the best experience match is chosen

for coverage of a specific unit.

6.2 Evaluation of Diagnosis Specialty Discovery

6.2.1 LDA Outcomes

After running LDA on the physicians in our dataset, we found three promis-

ing candidate topics that can lead to new diagnosis specialties. The three

candidates are: Breast Cancer, Obesity, Ear & Nose & Throat (ENT), and

their respective topic summaries are provided in Table 6.5. It is clear from

the topic summaries that these topics each have a distinct diagnosis pattern.

Then we cluster the users by the method described in Section 5.1.3, and
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Topic 10 diagnoses

Obesity, unspecified

Morbid obesity

Obstructive sleep apnea

Unspecified sleep apnea

Hypersomnia with sleep apnea, un-
specified

Paralysis agitans

Hip joint replacement by other
means

Edema

Other dyspnea and respiratory ab-
normality

Body Mass Index 4

(a) Obesity

Topic 10 diagnoses

Allergic rhinitis due to other aller-
gen

Allergic rhinitis due to pollen

Extrinsic asthma, unspecified

Unspecified asthma, with exacerba-
tion

Intrinsic asthma, unspecified

Unspecified sinusitis (chronic)

Allergic rhinitis, cause unspecified

Chronic rhinitis

Polyp of nasal cavity

Cough variant asthma

(b) ENT

Topic 10 diagnoses

Personal history of malignant neoplasm of breast

Lump or mass in breast

Abnormal mammogram, unspecified

Other specified aftercare following surgery

Other sign and symptom in breast

Carcinoma in situ of breast

Family history of malignant neoplasm of breast

Other specified disorder of breast

Benign neoplasm of breast

Acquired absence of breast and nipple

(c) Breast Cancer

Table 6.5: Potential New Diagnosis Specialties

we put the three topics’ clusters to test with the two criteria introduced

in Section 5.1.4 to determine whether they are eligible to become diagnosis

specialties. Table 6.6 show the evaluation statistics of the potential diagnosis

specialties.

Topic Description Breast Cancer ENT Obesity Average 12-core

Cluster Size 68 3 20 40 (20)

SVM
Precision 68.0% N/A 13.9% 80.9% (60%)
Recall 75.0% N/A 10.3% 81.0% (50%)

PCA-KNN
Precision 62.1% N/A 0% 76.0% (41.2%)
Recall 55.9% N/A 0% 66.2% (36.8%)

Table 6.6: Evaluation Statistics of Potential Diagnosis Specialtis
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In Table 6.6, the column Cluster Size shows the number of users in each

cluster and the column Prediction shows how well a potential diagnosis spe-

cialty can be learned by machine learning classifiers. The experiment setting

is similar to 12-core in Section 6.1 except we added these three potential

specialties to make it 15-core. Also we excluded the sLDA classifier from

prediction. It is because sLDA classify users based on their topic allocations,

and if the test cases are initially clustered by their topic allocations (as in

our case of using LDA ) then sLDA is almost guaranteed to have high per-

formance. In this way, sLDA is not effective in evaluating the topics based

on their semantics. We end up using the SVM and PCA-KNN classifiers

because they have shown good performance at learning specialties in Section

6.1. Also note the reported values are result of the 5× 2 cross-validation.

We also included the column Average 12-core to show the average statistics

of the 12 existing core diagnosis specialties. And the values in the parenthesis

represent the lowest respective values among the 12 existing core diagnosis

specialties. Overall, this column provides a baseline that helps us decide

whether a topic cluster can be considered as a new diagnosis specialty.

From Table 6.6 we can see that ENT don’t satisfy the first criterion so it

is out. Although Obesity have enough user instances, it is also eliminated

because none of our classifiers was able to learn the topic well. The topic

cluster of Breast Cancer not only has a good number of crowd but it is also

able to be learned by the classifier with precision and recall comparable to

the existing diagnosis specialties. Therefore, we shall tender Breast Cancer

as the only discovered new diagnosis specialty.

6.2.2 PathSelClus Results

We run PathSelClus with the target number of new specialties δ from 1 to 10.

Then we analyze the semantics of each unseeded cluster by method described

in Section 5.2.2 for every experiment setting of different δ in hope of finding

some potential diagnosis specialties. To our surprise, it turns out that none

of the experiment settings could produce a semantically meaningful cluster

of users that can form a new specialist group. For example, Table 6.7 show

the summaries of the three unseeded clusters when δ is set to 3.

The top diagnoses within each clusters in Table 6.7 seem to be all over the
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Topic 10 diagnoses
Other bacterial infections
Other non-traumatic joint disor-
ders
Convulsions
Other upper respiratory disease
Phlebitis and thrombophlebitis
Malaise and fatigue
Other skin disorders
Fever of unknown origin
Cardiomyopathy
Substance-related disorders

(a) First Cluster

Topic 10 diagnoses
Chronic kidney disease
Essential hypertension
Other cardiac dysrhythmias
Abdominal pain
Phlebitis and thrombophlebitis
Other fluid and electrolyte disor-
ders
Anemia; unspecified
Pleurisy; pleural effusion
Acute renal failure
Hyperpotassemia

(b) Second Cluster

Topic 10 diagnoses
Abdominal pain
Other and unspecified lower respiratory disease
Nonspecific chest pain
Urinary tract infection; site not specified
Diabetes mellitus without complication
Essential hypertension
Other nervous system symptoms and disorders
Pneumonia; organism unspecified
Phlebitis and thrombophlebitis
Other and unspecified circulatory disease

(c) Third Cluster

Table 6.7: Cluster Summaries for δ = 3

map. We are not able to make any interpretation based on these clusters.

Therefore, PathSelClus fail to discover any new diagnosis specialties. This

is most likely because such link-based clustering techniques are generally

susceptible to noises from objects (e.g. Diagnosis) that form inter-cluster

bridges [31], which are abundant in our data.
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Chapter 7

Applications

The experiment results have proven this work to be effective at identifying

providers’ genuine specialty as expressed in their treatment history. There-

fore, this work has potential for a rich variety of applications in which accu-

rate specialty information about providers are beneficial. This chapter shows

some prospective applications in the healthcare domains.

7.1 Security and Privacy

As EMR systems expand in size, scope and distribution, it is critical to

ensure the privacy of those whose information is stored. There have been

many attempts to establish various access control policies in EMR system.

In this respect, our work can be useful in assisting the detection of anomalous

EMR accesses.

In general it is expected that EMR users, if having specialties, should

mostly be accessing patients relevant to their diagnosis specialties. There-

fore, if we compile a diagnosis summary of a EMR user either by TF-IDF

weighting (described in Section 4.1) or topic modeling (described in Section

4.2), the diagnosis summary should match the user’s putative diagnosis spe-

cialty. For instance, Cardiology specialists should have many heart and valve

related diagnoses in their diagnosis summaries. Otherwise, there is an dis-

crepancy between the user’s putative specialty and his/her chart activity. In

such case, there are two possible explanations: (i) The users have changed

their interests and specialties after they got their NPIs but they failed to

update the information; (ii) The users are accessing patients’ records anoma-

lously for illegitimate purpose. For the former cases, our work can help

verifying users’ Healthcare Provider Taxonomy Codes are accurate. And if

a major discrepancy is detected, the users and his department can be auto-
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matically notified. For the latter case, our work helps filter out users whose

activities are consistent with their putative diagnosis specialties, leaving only

the suspicious ones for further investigation.

7.2 Staffing Support

Staff planning is crucial for the long-term development of any hospital. Un-

informed staffing decisions can lead to not only under-staffing or over-staffing

but also an evil combination of both — imagine a hospital with an overstaffed

Neurology department and an understaffed Urology department.

The specialist identification technique in this work enables hospitals to

have a clear and accurate accounting of different types of providers they

have. Knowing “what we have” is first step of successful staff planning.

Another crucial question to answer needs to be “what we need?”. A easy

way out is to learn from other well-staffed hospitals. To do so, hospitals

need to understand each others’ specialist structures, which may not be easy

since physicians at different hospital may use the taxonomy differently [4].

Our work can be used to provide consistent specialist manifests across all

hospitals.

7.3 Patient Experience Enhancement

There are many research projects and government initiatives aiming at pro-

viding better healthcare experience for patients, and our work can be applied

to those projects to make the patient experiences even better.

To help patients finding suitable physicians there are research projects

that enable patients to search the web for physicians with specific clinical

expertise [32]. It is desirable that search results are ordered by the physicians’

specialties so that the most suitable physician appears on top. Our work can

help assure that the ordering is accurate.

Another great project is Health Information Exchanges (HIE) that allows

healthcare professionals and patients across different institutions to appro-

priately access and securely share patients’ EMRs. For HIE to work, the

difference between institutions needs to be considered [33]. Our work can be
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useful in that it can help ensure consistent NPI taxonomy code usage across

individual institutions participating in HIE, thus lowering the communication

barrier.
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Chapter 8

Conclusion and Future Works

This work shows the feasibility of identifying providers’ specialties by their

treatment histories. In the course of this study we defined a group of provider

specialties as diagnosis specialties, which are strongly determined by di-

agnosis treatment history. We devised an intuitive naive classifier to il-

lustrate how human may infer a specialty from treatment history. Then

we demonstrated that diagnosis specialties can be learned with good pre-

cision and recall by machine learning classifiers. We measured four statis-

tically informed machine learning techniques—Decision tree, SVM, PCA-

KNN and sLDA—for predicting users’ diagnosis specialties and found the

dimensionality-reduction technique sLDA to have the best performance. sLDA

is able to predict diagnosis specialty with precision and recall above 80%.

Additionally, we explored the possibility of discovering hidden diagnosis spe-

cialties by clustering providers by their treatment histories. We evaluated

a topic modeling approach with LDA and a user-guided approach for HIN

with PathSelClus. LDA is able to discover a breast cancer specialty in our

dataset and we are able to verify its validity.

A limitation of this work is that we only considered the providers’ primary

taxonomy code and we assumed they could only have one specialty. This is

true for most providers, but some providers do have more than one taxonomy

code. Therefore, our future work can explore method to identify providers’

subordinate specialties based on treatment history and department informa-

tion. Furthermore, it can lead to techniques to rank the specialties a provider

have. Multi-label machine learning techniques will be used to achieve these

goals.
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